WO2020164413A1 - 化石燃料污染物防治系统 - Google Patents

化石燃料污染物防治系统 Download PDF

Info

Publication number
WO2020164413A1
WO2020164413A1 PCT/CN2020/074278 CN2020074278W WO2020164413A1 WO 2020164413 A1 WO2020164413 A1 WO 2020164413A1 CN 2020074278 W CN2020074278 W CN 2020074278W WO 2020164413 A1 WO2020164413 A1 WO 2020164413A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
tank
lime
pipe
aeration
Prior art date
Application number
PCT/CN2020/074278
Other languages
English (en)
French (fr)
Inventor
陈添泉
陈信宇
Original Assignee
源洁科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 源洁科技股份有限公司 filed Critical 源洁科技股份有限公司
Publication of WO2020164413A1 publication Critical patent/WO2020164413A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/502Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific solution or suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Definitions

  • the present disclosure relates to a fossil fuel pollutant prevention system, in particular, a fossil fuel pollutant prevention system for providing air pollutants generated by burning fossil fuels to undergo cooling, washing, and aeration procedures in order.
  • Fossil fuel is a hydrocarbon or its derivatives, including natural resources such as coal, oil, and natural gas. Fossil fuel is a very important energy source, and the benefits it brings to civilization are numerous, such as thermal power generation.
  • Common equipment for removing air pollutants generated by burning fossil fuels include: nitrogen oxide reduction equipment, boiler exhaust temperature reduction equipment, particulate collection equipment, desulfurization equipment, and dust reduction equipment.
  • nitrogen oxide reduction equipment boiler exhaust temperature reduction equipment
  • particulate collection equipment desulfurization equipment
  • dust reduction equipment Although there are related equipment for removing carbon dioxide (CO 2 ), sulfur dioxide (SO 2 ) and suspended particulate matter (Particulate Matter), many of the equipment directly spray water or lime water on high-temperature air pollutants. The higher the temperature of air pollutants, the poorer the solubility of carbon dioxide and sulfur dioxide in water or lime water. Therefore, the existing equipment is not effective in removing carbon dioxide, sulfur dioxide and suspended particulate matter.
  • the main purpose of the present disclosure is to provide a fossil fuel pollutant prevention and control system, which provides air pollutants generated by burning fossil fuels through cooling, washing and aeration procedures in order to improve the dissolution of carbon dioxide and sulfur dioxide in air pollutants.
  • the solubility of water and lime water effectively reduces the content of carbon dioxide and sulfur dioxide in air pollutants.
  • the present disclosure will provide a fossil fuel pollutant prevention and control system, which includes a control module, a pollutant generating device, a continuous washing device, a continuous aeration device, and a sewage treatment device.
  • the pollutant generating device includes a combustion furnace, an air duct and a cooling module.
  • the combustion furnace surrounds a combustion space and is provided with an air inlet, a fossil fuel input port and an exhaust port.
  • the air inlet is connected to the combustion space
  • the fossil fuel input port is connected between the combustion space and the external space and is used to input a fossil fuel to the combustion space.
  • the air duct is connected to the exhaust port and the cooling space.
  • modules are used to reduce air pollutants. temperature.
  • the continuous washing device includes a liquid storage tank, a connecting tube module, a washing tank module, and a water injection module.
  • the connecting tube module includes a first connecting tube, at least one second connecting tube, and at least one third connecting tube
  • the washing tank module includes a first washing tank, at least one second washing tank and a third washing tank, the first connecting pipe is connected to the top of the cooling module and the first washing tank, and the top of at least one second connecting pipe
  • the two openings are respectively connected to the bottom of the first washing tank and the bottom of at least one second washing tank, the bottom of at least one second connecting pipe is located in the sump, and at least one third connecting pipe is connected to at least one second washing tank.
  • the top of the tank is connected to the top of the third washing tank.
  • the bottom of the third washing tank is connected to the top of the liquid storage tank.
  • the water injection module includes a water storage tank, a water diversion main line, multiple water diversion auxiliary pipes and a water injection pump.
  • the water tank is used to store water
  • the main water diversion line is connected to the water storage tank
  • a plurality of auxiliary water diversion lines are respectively connected between the main water diversion line and the first washing tank, between the main water diversion line and at least one second washing tank, and the main water diversion line
  • the water injection pump is arranged on the water diversion main line and is electrically connected to the control module.
  • the air pollutants pass through the first connecting pipe, the first washing tank, at least one second connecting pipe, at least one second washing tank, at least one third connecting pipe, and the third washing tank in sequence.
  • the control module controls the water injection pump to turn on
  • the water in the water storage tank sequentially passes through the main water diversion pipe and multiple sub-pipes before entering the first washing tank, at least one second washing tank and the third washing tank.
  • the water flows from top to bottom through the first washing tank, at least one second washing tank, the third washing tank and at least one second connecting pipe into the liquid storage tank.
  • Part of the air pollutants are dissolved in the water and chemically changed with the water.
  • a first pollutant solution is formed and enters the liquid storage tank.
  • the air pollutants that are not dissolved in the water enter the liquid storage tank after passing through the third washing tank.
  • the continuous aeration device includes an aeration tank module, a lime water injection module, and a gas guide module.
  • the aeration tank module includes a first aeration tank, at least one second aeration tank, and a third aeration tank.
  • the gas tank, the lime water injection module includes a lime water tank, a lime water main line, multiple lime water injection auxiliary pipelines and multiple lime water pumps.
  • the lime water tank is used to store lime water
  • the main lime water pipeline is connected to
  • a plurality of auxiliary lime water lines are respectively connected between the main lime water injection line and the first aeration tank, between the main lime water injection line and at least one second aeration tank, and between the main lime water injection line and the first aeration tank.
  • a plurality of lime injection pumps are respectively arranged on the plurality of lime injection auxiliary pipelines and are electrically connected to the control module.
  • the gas guide module includes a first vent pipe and at least two second vent pipes , A third vent pipe and multiple exhaust fans, the first vent pipe is connected to the top of the liquid storage tank and the bottom of the first aeration tank, and at least two second vent pipes are respectively connected to the top of the first aeration tank and Between the bottom of at least one second aeration tank and between the top of at least one second aeration tank and the bottom of the third aeration tank, the third aeration pipe is connected to the top of the third aeration tank, and a plurality of exhaust fans They are respectively arranged on the first vent pipe and at least two second vent pipes and are electrically connected to the control module.
  • the control module controls multiple lime injection pumps to turn on
  • the lime water in the lime water tank sequentially passes through the lime injection main pipeline and multiple lime injection auxiliary pipelines, and then enters the first aeration tank and at least one second aeration tank.
  • the control module controls multiple exhaust fans to turn on
  • the air pollutants in the liquid storage tank that are not dissolved in the water pass through the first vent pipe, the first aeration tank, at least two second vent pipes, and at least A first aeration tank and a third aeration tank.
  • Some air pollutants are dissolved in the lime water and chemically changed with the lime water to form a second pollutant solution.
  • the air pollutants that are not dissolved in the lime water pass through the third channel.
  • the trachea enters the outer space.
  • the sewage treatment device includes a sedimentation module, a drainage module and a lime water drainage module.
  • the sedimentation module includes a sedimentation tank and a sedimentation pipe.
  • the sedimentation pipe is connected to the sedimentation tank.
  • the drainage module includes a drainage pipe and a pump The drainage pipe is connected between the bottom of the liquid storage tank and the sedimentation pipe.
  • the pump is installed on the drainage pipe and is electrically connected to the control module.
  • the lime water drainage module includes a lime water drainage main line and multiple lime water drainage sub Pipes and multiple lime water pumps, the main pipe of lime water discharge is connected to the sedimentation pipe, and multiple auxiliary pipes of lime water are connected between the main pipe of lime water discharge and the bottom of the first aeration tank, and the main pipe of lime water discharge Between the bottom of the second aeration tank and the bottom of the at least one second aeration tank and between the main line of lime water discharge and the bottom of the third aeration tank, a plurality of lime water pumping pumps are respectively arranged on the plurality of lime water discharge auxiliary pipelines and are electrically connected Control module.
  • the control module controls the pumping pump to turn on
  • the first pollutant solution in the liquid storage tank passes through the drain pipe and the sedimentation pipe in sequence, and then enters the sedimentation tank.
  • the control module controls the lime pump to be turned on
  • the second pollutant solution in the first aeration tank, at least one second aeration tank, and the third aeration tank sequentially passes through a plurality of lime water discharge sub-pipes After entering the sedimentation tank, the first pollutant solution and the second pollutant solution are mixed to form a third pollutant solution in the sedimentation tank.
  • the cooling module includes a cooling water tank, a water cooler, a cold water pipe, a hot water pipe, and a cooling pipeline.
  • the cooling water tank is used to contain a cooling water
  • the cold water pipe is connected to one side of the cooling water tank.
  • the hot water pipe is connected between an outlet on the top of the side wall of the cooling water tank and an inlet of the water cooler.
  • the cooling pipeline is located In the water tank and connected between the air guide pipe and the first connecting pipe, high-temperature air pollutants enter the first connecting pipe after passing through the air guide pipe and the cooling pipe in sequence.
  • the high-temperature air pollutants exchange heat with the cooling water through the pipe wall of the cooling pipeline, thereby reducing the temperature of the air pollutants.
  • the cooling water with increased temperature rises and enters the water cooler through the hot water pipe, the cooling water with the increased temperature passes through the water cooler for heat exchange, thereby reducing the temperature of the cooling water, and the cooling water after the temperature is further passed through the cold water pipe Into the cooling water tank.
  • the side wall of the cooling water tank is provided with a first side hole and a second side hole, the first side hole is close to the bottom of the cooling water tank, the second side hole is close to the top of the cooling water tank, and one end of the cooling pipe passes through the first side hole.
  • the side hole is connected to the air duct, and the other end of the cooling pipeline is connected to the first connecting pipe through the second side hole.
  • the cooling pipeline has a plurality of U-shaped bending parts, and the opening directions of two adjacent U-shaped bending parts are opposite.
  • each water diversion auxiliary pipeline includes a vertical pipeline and a plurality of horizontal pipelines, the vertical pipeline is connected to the main water diversion pipeline, the plurality of horizontal pipelines are respectively connected to the vertical pipeline, and at least one sprinkler is opened at the bottom.
  • a plurality of horizontal pipelines of one of the auxiliary water diversion pipelines extend transversely into the first washing tank and are arranged longitudinally apart from each other.
  • a plurality of horizontal pipelines of at least one water diversion auxiliary pipeline extend transversely into the at least one second washing tank, and are arranged longitudinally apart from each other.
  • a plurality of horizontal pipelines of one of the water diversion auxiliary pipelines extend transversely into the third washing tank and are arranged longitudinally apart from each other.
  • a plurality of lime injection water auxiliary pipelines are respectively connected to the top of the first aeration tank, the top of the at least one second aeration tank, and the top of the third aeration tank.
  • the gas guiding module further includes a plurality of aeration tubes, and the plurality of aeration tubes are respectively arranged in the first aeration tank, the at least one second aeration tank and the third aeration tank, and are respectively connected to the first aeration tank.
  • the vent pipe and at least two second vent pipes are provided with a plurality of air holes.
  • the air pollutants enter the first aeration tank, the at least one second aeration tank, and the third aeration tank after passing through the multiple air holes of the multiple aeration pipes.
  • a plurality of aeration tubes are ring-shaped and are coaxial with the first aeration tank, at least one second aeration tank and the third aeration tank respectively, and the plurality of air holes of the plurality of aeration tubes are opened in the plurality of The top surface of the aeration pipe.
  • the lime water injection module further includes a plurality of first liquid level sensors, and the plurality of first liquid level sensors are respectively arranged in the first aeration tank, the at least one second aeration tank, and the third aeration tank, and Electrically connected to the control module, a plurality of first liquid level sensors are respectively used for sensing the liquid level of the lime water in the first aeration tank, at least one second aeration tank and the third aeration tank.
  • the plurality of first liquid level sensors when the plurality of first liquid level sensors respectively sense that the liquid level of the lime water in the first aeration tank, at least one second aeration tank and the third aeration tank is at a high level, the plurality of first liquid level sensors
  • the level sensors respectively generate a first high level signal, and respectively transmit multiple first high level signals to the control module, and the control module controls the multiple lime injection pumps to close according to the multiple first high level signals. Control multiple lime pumps to start at the same time.
  • the plurality of first liquid level sensors when the plurality of first liquid level sensors respectively sense that the liquid level of the lime water in the first aeration tank, at least one second aeration tank and the third aeration tank is at a low level, the plurality of first liquid level sensors
  • the level sensor respectively generates a first low level signal, and respectively transmits a plurality of first low level signals to the control module, and the control module controls the opening of a plurality of lime injection pumps according to the plurality of first low level signals. Control multiple lime pumps to close at the same time.
  • control module includes a first relay, a plurality of second relays, and a power supply touch controller.
  • the water injection pump and the water pump are electrically connected to the first relay, and the multiple lime water pumps are electrically connected to the multiple second relays.
  • the first liquid level sensors are electrically connected to the second relays, the lime pumps are electrically connected to the second relays, and the exhaust fans are electrically connected to the power supply touch controller.
  • the effect of the present disclosure is that the fossil fuel pollutant prevention system of the present disclosure provides that air pollutants generated by burning fossil fuels are sequentially cooled, washed, and aerated to improve the solubility of carbon dioxide and sulfur dioxide in air pollutants in water. And the solubility of lime water, effectively reduce the content of carbon dioxide and sulfur dioxide in air pollutants.
  • Figure 1 shows a schematic diagram of the pollutant generating device of the present disclosure
  • Figure 2 shows a schematic diagram of the continuous washing device of the present disclosure, in which the liquid level of the first pollutant solution is at a high level;
  • FIG. 3 shows a schematic diagram of the continuous washing device of the present disclosure, in which the liquid level of the first pollutant solution is at a low level;
  • FIG. 4 shows a schematic diagram of the continuous aeration device of the present disclosure, in which the liquid level of the second pollutant solution is at a high level;
  • Figure 5 shows a schematic diagram of the continuous aeration device of the present disclosure, in which the liquid level of the second pollutant solution is at a low level;
  • Fig. 6 shows a schematic diagram of the sewage treatment device of the present disclosure.
  • Sewage treatment device 511, sedimentation tank; 512, sedimentation pipe; 513, sedimentation hole row; 514, waste liquid tank; 515, sludge tank; 516, drain pipe; 517, mud pipe 518, mud pump; 521, drain pipe; 522, water pump; 523, second liquid level sensor; 531, lime drain main line; 532, 533, 534, lime drain auxiliary pipeline; 535, 536, 537. Lime pump; 100. Air pollutants; 101. Bubbles; 200. First pollutant solution; 201. Second pollutant solution; 202. Third pollutant solution; H1, H2, high liquid level; L1 L2, low liquid level.
  • FIG. 1 is a schematic diagram of the pollutant generating device 20 of the present disclosure
  • FIG. 2 is a schematic diagram of the continuous washing device 30 of the present disclosure, in which the liquid level of the first pollutant solution 200 is at a high level H2
  • Figure 3 is a schematic diagram of the continuous washing device 30 of the present disclosure, in which the liquid level of the first pollutant solution 200 is located at the low level L2
  • Figure 4 is a schematic diagram of the continuous aeration device 40 of the present disclosure, in which the second pollutant solution The liquid level of 201 is at the high level H1;
  • FIG. 1 is a schematic diagram of the pollutant generating device 20 of the present disclosure
  • FIG. 2 is a schematic diagram of the continuous washing device 30 of the present disclosure, in which the liquid level of the first pollutant solution 200 is at a high level H2
  • Figure 3 is a schematic diagram of the continuous washing device 30 of the present disclosure, in which the liquid level of the first pollutant solution 200 is located at the low level L
  • FIG. 5 is a schematic diagram of the continuous aeration device 40 of the present disclosure, in which the liquid level of the second pollutant solution 201 is at the low level L1;
  • FIG. 6 is the sewage treatment device 50 of the present disclosure Schematic diagram.
  • the present disclosure provides a fossil fuel pollutant prevention system, which includes a control module, a pollutant generating device 20, a continuous washing device 30, a continuous aeration device 40, and a sewage treatment device 50.
  • the control module includes a first relay 11 (see Figures 2 and 3), a plurality of second relays 12, 13, 14 (see Figures 4 and 5), and a power touch controller 15 (see Figures 4 and 5) ).
  • the pollutant generating device 20 includes a combustion furnace 21, an air duct 22 and a cooling module 23.
  • the combustion furnace 21 encloses a combustion space 211 and defines an air inlet 212, a fossil fuel input port 213, and an exhaust port 214.
  • the air inlet 212 communicates between the combustion space 211 and the external space, and is used to introduce external air into the combustion space 211.
  • the fossil fuel input port 213 is connected between the combustion space 211 and the external space, and is used to input a fossil fuel (not shown) into the combustion space 211.
  • the air duct 22 is connected between the exhaust port 214 and the cooling module 23.
  • the fossil fuel burns in the combustion space 211 and generates a high-temperature air pollutant 100.
  • the high-temperature air pollutant 100 passes through the exhaust port 214 and the air duct 22 in sequence, and then enters the cooling module 23.
  • the cooling module 23 is used to reduce the temperature of the air pollutants 100.
  • the air inlet 212 is opened on a side wall of the combustion furnace 21 and is close to the bottom of the combustion furnace 21.
  • the fossil fuel input port 213 is opened on the side wall of the combustion furnace 21 and is close to the bottom of the combustion furnace 21.
  • the exhaust port 214 is opened at the top of the combustion furnace 21.
  • the fossil fuels include natural resources such as coal, oil, and natural gas.
  • the air pollutants 100 generated by burning fossil fuels at least include carbon dioxide (CO 2 ), sulfur dioxide (SO 2 ) and suspended particulate matter (Particulate Matter).
  • the fossil fuel consumes a large amount of oxygen in the combustion space 211 during the combustion process, and produces a large amount of high-temperature air pollutants 100.
  • the cooling module 23 includes a cooling water tank 231, a water cooler 232, a cold water pipe 233, a hot water pipe 234, and a cooling pipe 235.
  • the cooling water tank 231 is used to contain a cooling water.
  • the cold water pipe 233 is connected between a water inlet at the bottom of a side wall of the cooling water tank 231 and a water outlet of the water cooler 232.
  • the hot water pipe 234 is connected between a water outlet at the top of the side wall of the cooling water tank 231 and a water inlet of the water cooler 232.
  • the cooling pipe 235 is located in the cooling water tank 231 and is connected between the air duct 22 and the continuous washing device 30. The high-temperature air pollutants 100 enter the continuous washing device 30 after passing through the air duct 22 and the cooling pipe 235 in sequence.
  • the high-temperature air pollutant 100 passes through the cooling pipe 235, the high-temperature air pollutant 100 exchanges heat with the cooling water through the wall of the cooling pipe 235, thereby reducing the temperature of the air pollutant 100. Therefore, the temperature of the air pollutants 100 entering the continuous washing device 30 is greatly reduced.
  • the density of hot liquid is lower than that of cold liquid, so the hot liquid rises and the cold liquid falls. Therefore, the cooling water with increased temperature rises and enters the water cooler 232 through the hot water pipe 234. The temperature of the cooling water is increased through the water cooler 232 for heat exchange, thereby reducing the temperature of the cooling water. The cooled cooling water further enters the cooling water tank 231 through the cold water pipe 233. In this way, the cooling water can be reused through the above mechanism, which is economical and environmentally friendly.
  • a first side hole and a second side hole are defined on one side wall of the cooling water tank 231, the first side hole is close to the bottom of the cooling water tank 231, and the second side hole is close to the top of the cooling water tank 231.
  • One end of the cooling pipe 235 is connected to the air duct 22 through a first side hole, and the other end of the cooling pipe 235 is connected to the continuous washing device 30 through a second side hole.
  • the cooling pipe 235 extends from the bottom of the cooling water tank 231 upward to the top of the cooling water tank 231. Because the water inlet of the cooling water tank 231 is located at the bottom of the side wall of the cooling water tank 231, the cooling water passing through the cold water pipe 233 enters the bottom of the cooling water tank 231 first.
  • the cooling module 23 can improve the heat exchange efficiency between the high-temperature air pollutants 100 and the cooling water, so that the cooling effect of the high-temperature air pollutants 100 is more significant.
  • the cooling pipe 235 has a plurality of U-shaped bending parts, and the opening directions of two adjacent U-shaped bending parts are opposite.
  • the cooling pipe 235 is a continuous U-shaped bent pipe, and the path length of the cooling pipe 235 is greater than the linear distance between the first side hole and the second side hole.
  • the serpentine cooling pipeline 235 can extend the heat exchange time between the high-temperature air pollutant 100 and the cooling water, so that the cooling effect of the high-temperature air pollutant 100 is more obvious.
  • the continuous washing device 30 includes a liquid storage tank 31, a connecting pipe module, a washing tank module, and a water injection module.
  • the connecting tube module includes a first connecting tube 321, two second connecting tubes 322, 323, and two third connecting tubes 324, 325.
  • the washing tank module includes a first washing tank 331, three second washing tanks 332, 333, 334, and a third washing tank 335.
  • the first connecting pipe 321 is connected between the other end of the cooling pipe 235 and the top of the first washing tank 331.
  • the two openings at the top of one of the second connecting pipes 322 are respectively connected to the bottom of the first washing tank 331 and the bottom of the second washing tank 332 close to the first washing tank 331.
  • the two openings at the top of the other second connecting pipe 323 are respectively connected to the bottom of the second washing tank 333 in the middle and the bottom of the second washing tank 334 close to the third washing tank 335.
  • the bottoms of the two second connecting pipes 322 and 323 are both located in the liquid storage tank 31.
  • One of the third connecting pipes 324 is connected to the top of the second washing tank 332 close to the first washing tank 331 and the top of the second washing tank 333 in the middle.
  • the other third connecting pipe 324 is connected to the top of the second washing tank 334 and the top of the third washing tank 335 close to the third washing tank 335.
  • the bottom of the third washing tank 335 is connected to the top of the liquid storage tank 31.
  • the water injection module includes a water storage tank 341, a main water diversion line 342, a plurality of auxiliary water diversion lines 343-347, and a water injection pump 348.
  • the water storage tank 341 is used to store water 3411.
  • the main water diversion line 342 is connected to the water storage tank 341.
  • a plurality of auxiliary water pipes 343-347 are respectively connected between the main water diversion line 342 and the first washing tank 331, between the main water diversion line 342 and the plurality of second washing tanks 332, 333, 334, and the main water diversion line 342 and the first washing tank 331. Between three washing tanks 335.
  • the water injection pump 348 is arranged on the water diversion main line 342 and is electrically connected to the first relay 11.
  • the air pollutants 100 sequentially pass through the first connecting pipe 321, the first washing tank 331, one of the second connecting pipes 322, the second washing tank 332 close to the first washing tank 331, one of the third connecting pipes 324, in the middle
  • the water 3411 in the water storage tank 341 sequentially passes through the water diversion main line 342 and the multiple water diversion sub-pipes 343-347, and then enters the first washing tank 331 and the three second The washing tanks 332, 333, 334 and the third washing tank 335.
  • the water 3411 flows from top to bottom through the first washing tank 331, the three second washing tanks 332, 333, 334, the third washing tank 335 and the two second connecting pipes 322, 323 and enters the liquid storage tank 31.
  • Part of the air pollutant 100 is dissolved in the water 3411 and chemically changes with the water 3411 to form a first pollutant solution 200 and enters the liquid storage tank 31.
  • the air pollutants 100 that are not dissolved in the water 3411 pass through the third washing tank 335 and then enter the liquid storage tank 31.
  • the air pollutants 100 enter the second washing tank 332 near the first washing tank 331 and the second washing tank 334 near the third washing tank 335, from the second washing tank 332 near the first washing tank 331 and near the third washing tank 331
  • the bottom of the second washing tank 334 of the tank 335 flows upward to the top of the second washing tank 332 near the first washing tank 331 and the top of the second washing tank 334 near the third washing tank 335.
  • the chemical change of carbon dioxide dissolved in water produces carbonic acid.
  • the chemical change of sulfur dioxide dissolved in water produces sulfurous acid. Therefore, the main components of the first pollutant solution 200 include carbonic acid and sulfurous acid.
  • the air pollutant 100 has been pre-cooled and cooled by the cooling module 23 before entering the continuous washing device 30, which greatly improves the solubility of carbon dioxide and sulfur dioxide in the air pollutant 100 in water, so the air pollution During the continuous washing process performed by the continuous washing device 30, the content of carbon dioxide and sulfur dioxide dissolved in the water greatly increases, effectively reducing the content of carbon dioxide and sulfur dioxide in the air pollutant 100.
  • each of the auxiliary water diversion pipelines 343-347 includes a vertical pipeline 3431, 3441, 3451, 3461, 3471 and a plurality of horizontal pipelines 3432, 3442, 3452 , 3462, 3472.
  • the vertical pipelines 3431, 3441, 3451, 3461, and 3471 are connected to the water diversion main line 342.
  • a plurality of horizontal pipelines 3432, 3442, 3452, 3462, 3472 are respectively connected to vertical pipelines 3431, 3441, 3451, 3461, 3471, and two sprinklers 3433, 3443, 3453, 3463, 3473 are respectively opened at the bottom.
  • a plurality of horizontal pipes 3432 of one of the auxiliary water diversion pipes 343 extend transversely into the first washing tank 331 and are arranged longitudinally apart from each other.
  • the multiple horizontal pipes 3442, 3452, 3462 of the three water diversion auxiliary pipes 344, 345, 346 respectively extend transversely into the three second washing tanks 332, 333, 334, and are arranged longitudinally apart from each other.
  • a plurality of horizontal pipes 3472 of one of the auxiliary water diversion pipes 347 extend transversely into the third washing tank 335 and are arranged longitudinally apart from each other.
  • a plurality of horizontal pipes of a plurality of sub-pipes 343-347 are arranged at different vertical positions of the first washing tank 331, the three second washing tanks 332, 333, 334, and the third washing tank 335.
  • the first relay 11 controls the water injection pump 348 to turn on, the water 3411 in the water storage tank 341 passes through the main water diversion line 342 and the plurality of auxiliary water diversion lines 343-347 in sequence, and then flows from the plurality of sprinklers 3433, 3443, 3453, 3463.
  • 3473 sprays downwards, so water is sprayed down from different vertical positions of the first washing tank 331, the three second washing tanks 332, 333, 334, and the third washing tank 335 to achieve the purpose of multi-stage watering.
  • the probability of the air pollutant 100 contacting the water 3411 is greatly increased, so that the content of carbon dioxide and sulfur dioxide dissolved in the water is significantly increased, and the content of carbon dioxide and sulfur dioxide in the air pollutant 100 is significantly reduced.
  • the continuous aeration device 40 includes an aeration tank module, a lime water injection module, and a gas guiding module.
  • the aeration tank module includes a first aeration tank 411, a second aeration tank 412, and a third aeration tank 413.
  • the lime water injection module includes a lime water tank 421, a lime water main pipe 422, multiple lime water sub-pipes 423, 424, 425, multiple lime water pumps 426, 427, 428, and multiple first liquid levels Sensors 4291, 4292, 4293.
  • the lime water tank 421 is used to store lime water 4211.
  • the lime water main pipe 422 is connected to the lime water tank 421.
  • a plurality of lime water injection sub-pipes 423, 424, 425 are respectively connected between the lime water main pipe 422 and the top of the first aeration tank 411, and between the lime water main pipe 422 and the top of the second aeration tank 412. Between the main pipe 422 of lime water injection and the top of the third aeration tank 413.
  • a plurality of lime water pumps 426, 427, 428 are respectively arranged on a plurality of lime water sub-pipes 423, 424, 425, and are electrically connected to a plurality of second relays 12, 13, 14 respectively.
  • a plurality of first liquid level sensors 4291, 4292, and 4293 are respectively provided in the first aeration tank 411, the second aeration tank 412 and the third aeration tank 413, and are respectively electrically connected to the plurality of second relays 12, 13, and 14.
  • the plurality of first liquid level sensors 4291, 4292, and 4293 are respectively used to sense the liquid level of the lime water 4211 in the first aeration tank 411, the second aeration tank 412, and the third aeration tank 413.
  • the gas guiding module includes a first vent pipe 431, two second vent pipes 432, 433, a third vent pipe 434, and multiple exhaust fans 435, 436, 437.
  • the first vent pipe 431 is connected to the top of the liquid storage tank 31 and the bottom of the first aeration tank 411.
  • the two second aeration pipes 432 and 433 are respectively connected between the top of the first aeration tank 411 and the bottom of the second aeration tank 412 and the top of the second aeration tank 412 and the bottom of the third aeration tank 413 between.
  • the third aeration pipe 434 is connected to the top of the third aeration tank 413.
  • a plurality of exhaust fans 435, 436, and 437 are respectively disposed on the first air pipe 431 and the two second air pipes 432, 433, and are electrically connected to the power supply touch controller 15.
  • first liquid level sensors 4291, 4292, and 4293 respectively sense the liquid level of lime water 4211 in the first aeration tank 411, the second aeration tank 412, and the third aeration tank 413
  • the multiple first level sensors 4291, 4292, and 4293 respectively generate a first high level signal, and respectively transmit the multiple first high level signals to the multiple second relays 12, 13, 14.
  • the plurality of second relays 12, 13, and 14 respectively control the plurality of lime injection pumps 426, 427, and 428 to close according to the plurality of first high level signals, so as to stop the injection of lime water 4211 into the first aeration tank 411 and the second aeration tank 411, In the air tank 412 and the third aeration tank 413.
  • the multiple first level sensors 4291, 4292, and 4293 respectively sense the liquid level of lime water 4211 in the first aeration tank 411, the second aeration tank 412, and the third aeration tank 413
  • the multiple first level sensors 4291, 4292, and 4293 respectively generate a first low level signal, and respectively transmit multiple first low level signals to the multiple second relays 12, 13, 14.
  • the plurality of second relays 12, 13, and 14 respectively control the plurality of lime injection pumps 426, 427, and 428 to turn on according to the plurality of first low level signals.
  • the lime water 4211 in the lime water tank 421 sequentially passes through the lime water main pipe 422 and the multiple lime water sub pipes 423, 424, 425, and then enters the first aeration tank 411, the second aeration tank 412 and the third aeration tank 411. In the aeration tank 413.
  • the air pollutants 100 in the reservoir 31 that are not dissolved in the water 3411 pass through the first The vent pipe 431, the first aeration tank 411, one of the second vent pipe 432, the second aeration tank 412, the other second vent pipe 433, and the third aeration tank 413.
  • Part of the air pollutant 100 is dissolved in the lime water 4211 and chemically changed to form a second pollutant solution 201.
  • the air pollutants 100 that are not dissolved in the lime water 4211 enter the external space through the third vent pipe 434.
  • the air pollutants 100 in the liquid storage tank 31 that are not dissolved in the lime water 4211 are continuously drawn out to the continuous aeration device 40, the pressure in the tank space of the liquid storage tank 31 drops, and the air pollutants 100 can continue to The ground from the pollutant generating device 20 enters the continuous aeration device 40 through the continuous washing device 30.
  • the chemical change of carbon dioxide dissolved in lime water produces calcium carbonate and water.
  • the chemical change of sulfur dioxide dissolved in lime water produces calcium sulfite and water. Therefore, the components of the second pollutant solution 201 mainly include calcium carbonate, calcium sulfite and water.
  • the cooling module 23 greatly improves the solubility of the carbon dioxide and sulfur dioxide in the air pollutant 100 in the lime water 4211, so During the continuous aeration procedure of the air pollutant 100 through the continuous aeration device 40, the content of carbon dioxide and sulfur dioxide dissolved in the lime water 4211 is greatly increased, effectively further reducing the content of carbon dioxide and sulfur dioxide in the air pollutant 100.
  • the air pollutants 100 that are not dissolved in the lime water 4211 that enter the external space actually have almost no carbon dioxide and sulfur dioxide, and are quite clean.
  • the gas guiding module further includes a plurality of aeration tubes 4381, 4382, 4383, and the plurality of aeration tubes 4381, 4382, 4383 are respectively provided in the first aeration tube.
  • the air tank 411, the second aeration tank 412, and the third aeration tank 413 the first air pipe 431 and the two second air pipes 432, 433 are respectively connected, and a plurality of air holes (not shown) are opened.
  • the air pollutants 100 After passing through the multiple pores of the multiple aeration tubes 4381, 4382, 4383, the air pollutants 100 enter the first aeration tank 411, the second aeration tank 412, and the third aeration tank 413, and are removed in the form of bubbles 101
  • the bottoms of the first aeration tank 411, the second aeration tank 412, and the third aeration tank 413 flow upward through the lime water 4211 to the first aeration tank 411, the second aeration tank 412, and the third aeration tank 413 the top of.
  • the multiple aeration tubes 4381, 4382, 4383 can increase the amount of air pollutants 100 entering the first aeration tank 411, the second aeration tank 412, and the third aeration tank 413 per unit time.
  • a plurality of aeration tubes 4381, 4382, 4383 are ring-shaped and coaxial with the first aeration tank 411, the second aeration tank 412, and the third aeration tank 413, respectively, and the plurality of aeration tubes 4381
  • the multiple air holes of 4382 and 4383 are opened on the top surface of the multiple aeration pipes 4381, 4382, 4383. This technical feature can further increase the amount of air pollutants 100 entering the first aeration tank 411, the second aeration tank 412, and the third aeration tank 413 per unit time.
  • the sewage treatment device 50 includes a sedimentation module, a drainage module and a lime water drainage module.
  • the sedimentation module includes a sedimentation tank 511 and a sedimentation tube 512.
  • the sedimentation tank 511 is in the shape of a funnel, and the interior of the sedimentation tank 511 is divided into a waste liquid tank 514 and a sludge tank 515 by a sedimentation hole row 513.
  • the waste liquid tank 514 is located above the mud hole row 513 and communicates with a drain pipe 516.
  • the sludge tank 515 is located below the sludge hole row 513 and communicates with a sludge pipe 517.
  • a mud pump 518 is provided on the mud pipe 517, and the mud pump 518 is electrically connected to the control module.
  • the sedimentation pipe 512 is connected to the sedimentation tank 511 and communicates with the waste liquid tank 514.
  • the drainage module includes a drainage pipe 521, a water pump 522, and a second liquid level sensor 523.
  • the drain pipe 521 is connected between the bottom of the liquid storage tank 31 and the sedimentation pipe 512.
  • the water pump 522 is installed on the drain pipe 521 and is electrically connected to the first relay 11.
  • the second liquid level sensor 523 is disposed in the liquid storage tank 31 and is electrically connected to the first relay 11 for sensing the liquid level of the first pollutant solution 200.
  • the lime water discharging module includes a lime discharging main line 531, a plurality of lime discharging auxiliary pipelines 532, 533, 534, and a plurality of lime water pumps 535, 536, 537.
  • the main pipe 531 for discharging lime water is connected to the precipitation pipe 512.
  • a plurality of lime water discharge auxiliary pipelines 532, 533, 534 are respectively connected between the lime water main line 531 and the bottom of the first aeration tank 411, and between the lime water main line 531 and the bottom of the second aeration tank 412. And between the main pipe 531 for discharging lime water and the bottom of the third aeration tank 413.
  • a plurality of lime water pumps 535, 536, 537 are respectively arranged on the plurality of lime water discharge auxiliary pipes 532, 533, and 534, and are electrically connected to a plurality of second relays 12, 13, and 14.
  • the second liquid level sensor 523 senses that the liquid level of the first pollutant solution 200 in the liquid storage tank 31 is at the high liquid level H2
  • the second liquid level sensor 523 generates a second high liquid level signal , And transmit the second high level signal to the first relay 11.
  • the first relay 11 controls the pump 522 to turn on according to the second high liquid level signal.
  • the first pollutant solution 200 in the storage tank 31 passes through the drain pipe 521 and the sedimentation pipe 512 in sequence, and then enters the waste liquid tank 514 of the sedimentation tank 511. in.
  • the space maintained at least above the high liquid level H2 in the liquid storage tank 31 is left for the air pollutants 100 not dissolved in the water 3411.
  • the second liquid level sensor 523 senses that the liquid level of the first pollutant solution 200 in the liquid storage tank 31 is at the low liquid level L2
  • the second liquid level sensor 523 generates a second low liquid level signal , And transmit the second low level signal to the first relay 11.
  • the first relay 11 controls the water pump 522 to close according to the second low liquid level signal, so as to stop pumping the first pollutant solution 200 in the liquid tank 31.
  • At least the bottoms of the two second connecting pipes 322 and 323 are maintained below the low liquid level L2 in the liquid storage tank 31 so that the bottoms of the two second connecting pipes 322 and 323 are kept immersed in the first pollutant solution 200.
  • the plurality of second relays 12, 13, and 14 respectively control the plurality of lime pumps 535, 536, 537 to turn on according to the plurality of first high liquid level signals, and the first aeration tank 411 and the second aeration tank 411,
  • the second pollutant solution 201 in the air tank 412 and the third aeration tank 413 sequentially passes through the multiple lime water discharge sub-pipes 532, 533, 534, the lime water main line 531 and the sedimentation pipe 512, and then enters the sedimentation tank 511 in the waste tank 514.
  • the first pollutant solution 200 and the second pollutant solution 201 are mixed in the waste liquid tank 514 of the sedimentation tank 511 to form a third pollutant solution 202.
  • the sludge 203 in the third pollutant solution 202 will pass downwards through the multiple holes of the sedimentation hole row 513 and enter the sludge tank 515.
  • the remaining third pollutants The substance solution 202 remains in the waste tank 514.
  • the main components of the sludge 202 include calcium carbonate, calcium sulfite and suspended particulate matter.
  • the main components of the remaining third pollutant solution 202 include carbonic acid, sulfurous acid, and water.
  • the control module controls the sludge pump 518 to turn on
  • the sludge 203 passes through the sludge pipe 517 and enters a sludge collection part (not shown).
  • the remaining third pollutant solution 202 in the waste liquid tank 514 can pass through the drain pipe 516 and enter a waste liquid collection part (not shown).
  • the user can determine to increase or decrease the concentration of lime water 4211 in the lime water tank 421 by detecting the pH value of the remaining third pollutant solution 202 passing through the drain pipe 516.
  • the pH value of the remaining third pollutant solution 202 is greater than 7, the concentration of lime water 4211 in the lime water tank 421 must be reduced.
  • the pH value of the remaining third pollutant solution 202 is lower than 7, the concentration of lime water must be increased.
  • the fossil fuel pollutant prevention system of the present disclosure provides that the air pollutants 100 generated by burning fossil fuels are sequentially cooled, washed, and aerated to improve the dissolution of carbon dioxide and sulfur dioxide in the air pollutants 100.
  • the solubility of water and lime water effectively reduces the content of carbon dioxide and sulfur dioxide in air pollutants 100.

Abstract

一种化石燃料污染物防治系统,包括控制模组、污染物产生装置(20)、连续洗涤装置(30)、连续曝气装置(40)及污水处理装置(50)。污染物产生装置(20)包括燃烧炉(21)、导气管(22)及冷却模组(23)。连续洗涤装置(30)包括贮液槽(31)、连接管模组、洗涤槽模组及注水模组。连续曝气装置(40)包括曝气槽模组、注石灰水模组及气体引导模组。污水处理装置(50)包括沉淀模组、排水模组及排石灰水模组。

Description

化石燃料污染物防治系统
相关申请的交叉引用
本公开主张在2019年2月12日在中国提交的中国专利申请号No.201910111440.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开是有关一种化石燃料污染物防治系统,特别是一种用以提供燃烧化石燃料所产生的空气污染物依序经过冷却、洗涤和曝气等程序的化石燃料污染物防治系统。
背景技术
化石燃料(fossil fuel)是一种碳氢化合物或其衍生物,包括煤炭、石油、天然气等天然资源。化石燃料是相当重要的能源,带给人类的好处不胜枚举,例如火力发电。
然而,燃烧化石燃料会产生空气污染物,例如二氧化碳(CO 2)、二氧化硫(SO 2)及悬浮粒状物(Particulate Matter)。空气污染物和水气混合后降落地面,形成酸雨,对于自然环境和建筑物都有腐蚀作用。
常见去除燃烧化石燃料所产生的空气污染物的设备包括:抑减氮氧化物设备、抑减锅炉排烟温度设备、粒状物收集设备、脱硫设备及降低落尘设备等。虽然已有去除二氧化碳(CO 2)、二氧化硫(SO 2)及悬浮粒状物(Particulate Matter)的相关设备,但多个设备都是直接对高温的空气污染物喷洒水或石灰水。空气污染物的温度愈高,二氧化碳和二氧化硫溶解于水或石灰水的溶解度愈差,因此现有的设备去除二氧化碳、二氧化硫及悬浮粒状物的成效欠佳。
发明内容
本公开的主要目的在于提供一种化石燃料污染物防治系统,提供燃烧化石燃料所产生的空气污染物依序经过冷却、洗涤和曝气等程序,提高空气污染物中的二氧化碳与二氧化硫的溶解于水和石灰水的溶解度,有效降低空气 污染物中的二氧化碳及二氧化硫的含量。
为了达成前述的目的,本公开将提供一种化石燃料污染物防治系统,包括一个控制模组、一个污染物产生装置、一个连续洗涤装置、一个连续曝气装置以及一个污水处理装置。
污染物产生装置包括一个燃烧炉、一个导气管及一个冷却模组,燃烧炉围构一个燃烧空间并且开设一个进气口、一个化石燃料输入口及一个排气口,进气口连通于燃烧空间与外部空间之间,并且用以引入外部空气进入燃烧空间,化石燃料输入口连通于燃烧空间与外部空间之间,并且用以输入一个化石燃料至燃烧空间,导气管连接于排气口与冷却模组之间。其中,化石燃料在燃烧空间中进行燃烧并且产生一个高温的空气污染物,高温的空气污染物依序通过排气口与导气管以后,进入冷却模组中,冷却模组用以降低空气污染物的温度。
连续洗涤装置包括一个贮液槽、一个连接管模组、一个洗涤槽模组及一个注水模组,连接管模组包括一个第一连接管、至少一个第二连接管及至少一个第三连接管,洗涤槽模组包括一个第一洗涤槽、至少一个第二洗涤槽及一个第三洗涤槽,第一连接管连接于冷却模组与第一洗涤槽的顶部,至少一个第二连接管的顶部的两个开口分别连接于第一洗涤槽的底部与至少一个第二洗涤槽的底部,至少一个第二连接管的底部位于贮液槽中,至少一个第三连接管连接于至少一个第二洗涤槽的顶部与第三洗涤槽的顶部,第三洗涤槽的底部连接于贮液槽的顶部,注水模组包括一个储水槽、一个引水主管路、多个引水副管路及一个注水泵,储水槽用以储存水,引水主管路连接于储水槽,多个引水副管路分别连接于引水主管路与第一洗涤槽之间、引水主管路与至少一个第二洗涤槽之间及引水主管路与第三洗涤槽之间,注水泵设于引水主管路上并且电性连接控制模组。其中,空气污染物依序通过第一连接管、第一洗涤槽、至少一个第二连接管、至少一个第二洗涤槽、至少一个第三连接管及第三洗涤槽。其中,当控制模组控制注水泵开启时,储水槽中的水依序通过引水主管路及多个引水副管路以后,进入第一洗涤槽、至少一个第二洗涤槽及第三洗涤槽,水从上而下流经第一洗涤槽、至少一个第二洗涤槽、第三洗涤槽及至少一个第二连接管而进入贮液槽中,部分空气污染物溶解于 水中并且与水产生化学变化而形成一个第一污染物溶液,并且进入贮液槽中,未溶解于水中的空气污染物通过第三洗涤槽以后,进入贮液槽中。
连续曝气装置包括一个曝气槽模组、一个注石灰水模组及一个气体引导模组,曝气槽模组包括一个第一曝气槽、至少一个第二曝气槽及一个第三曝气槽,注石灰水模组包括一个石灰水槽、一个注石灰水主管路、多个注石灰水副管路及多个注石灰水泵,石灰水槽用以储存石灰水,注石灰主水管路连接于石灰水槽,多个注石灰水副管路分别连接于注石灰水主管路与第一曝气槽之间、注石灰水主管路与至少一个第二曝气槽之间及注石灰水主管路与第三曝气槽之间,多个注石灰水泵分别设于多个注石灰水副管路上并且电性连接控制模组,气体引导模组包括一个第一通气管、至少两个第二通气管、一个第三通气管及多个抽风机,第一通气管连接于贮液槽的顶部与第一曝气槽的底部,至少两个第二通气管分别连接于第一曝气槽的顶部与至少一个第二曝气槽的底部之间及至少一个第二曝气槽的顶部与第三曝气槽的底部之间,第三通气管连接于第三曝气槽的顶部,多个抽风机分别设于第一通气管与至少两个第二通气管上并且电性连接控制模组。其中,当控制模组控制多个注石灰水泵开启时,石灰水槽中的石灰水依序通过注石灰水主管路及多个注石灰水副管路以后,进入第一曝气槽、至少一个第二曝气槽及第三曝气槽中。其中,当控制模组控制多个抽风机开启时,贮液槽中的未溶解于水中的空气污染物依序通过第一通气管、第一曝气槽、至少两个第二通气管、至少一个第一曝气槽及第三曝气槽,部分空气污染物溶解于石灰水中并且与石灰水产生化学变化而形成一个第二污染物溶液,未溶解于石灰水中的空气污染物通过第三通气管进入外部空间。
污水处理装置包括一个沉淀模组、一个排水模组及一个排石灰水模组,沉淀模组包括一个沉淀池及一个沉淀管,沉淀管连接沉淀池,排水模组包括一个排水管及一个抽水泵,排水管连接于贮液槽的底部与沉淀管之间,抽水泵设于排水管上并且电性连接控制模组,排石灰水模组包括一个排石灰水主管路、多个排石灰水副管路及多个抽石灰水泵,排石灰水主管路连接于沉淀管,多个排石灰水副管路分别连接于排石灰水主管路与第一曝气槽的底部之间、排石灰水主管路与至少一个第二曝气槽的底部之间及排石灰水主管路与 第三曝气槽的底部之间,多个抽石灰水泵分别设于多个排石灰水副管路上并且电性连接控制模组。其中,当控制模组控制抽水泵开启时,贮液槽中的第一污染物溶液依序通过排水管及沉淀管以后,进入沉淀池中。其中,当控制模组控制等抽石灰水泵开启时,第一曝气槽、至少一个第二曝气槽及第三曝气槽中的第二污染物溶液依序通过多个排石灰水副管路、排石灰水主管路及沉淀管以后,进入沉淀池中,第一污染物溶液与第二污染物溶液在沉淀池中混合成一个第三污染物溶液。
可选地,冷却模组包括一个冷却水槽、一个水冷却器、一个冷水管、一个热水管及一个冷却管路,冷却水槽用以容设一个冷却水,冷水管连接于冷却水槽的一个侧壁的底部的一个进水口与水冷却器的一个出水口之间,热水管连接于冷却水槽的侧壁的顶部的一个出水口与水冷却器的一个进水口之间,冷却管路位于冷却水槽中并且连接于导气管与第一连接管之间,高温的空气污染物在依序通过导气管与冷却管路以后,进入第一连接管。其中,高温的空气污染物在通过冷却管路的过程中,高温的空气污染物透过冷却管路的管壁与冷却水进行热交换,借以降低空气污染物的温度。其中,温度升高的冷却水上升并且通过热水管进入水冷却器,温度升高的冷却水透过水冷却器进行热交换,借以降低冷却水的温度,降温后的冷却水进一步通过冷水管进入冷却水槽中。
可选地,冷却水槽的侧壁开设一个第一侧孔及一个第二侧孔,第一侧孔靠近冷却水槽的底部,第二侧孔靠近冷却水槽的顶部,冷却管路的一端通过第一侧孔连接于导气管,冷却管路的另一端通过第二侧孔连接于第一连接管。
可选地,冷却管路具有多个U形弯折部,相邻的两个U形弯折部的开口方向相反。
可选地,各引水副管路包括一个垂直管路及多个水平管路,垂直管路连接于引水主管路,多个水平管路分别连接于垂直管路并且底部分别开设至少一个洒水口。其中,其中一个引水副管路的多个水平管路横向延伸进入第一洗涤槽中,并且彼此纵向地间隔设置。其中,其中至少一个引水副管路的多个水平管路横向延伸进入至少一个第二洗涤槽中,并且彼此纵向地间隔设置。其中,其中一个引水副管路的多个水平管路横向延伸进入第三洗涤槽中,并 且彼此纵向地间隔设置。
可选地,多个注石灰水副管路分别连接于第一曝气槽的顶部、至少一个第二曝气槽的顶部及第三曝气槽的顶部。
可选地,气体引导模组更包括多个曝气管,多个曝气管分别设于第一曝气槽、至少一个第二曝气槽及第三曝气槽中,分别连接于第一通气管及至少两个第二通气管,并且开设多个气孔。其中,空气污染物通过多个曝气管的多个气孔以后,进入第一曝气槽、至少一个第二曝气槽及第三曝气槽中。
可选地,多个曝气管呈环状并且分别与第一曝气槽、至少一个第二曝气槽与第三曝气槽同轴,多个曝气管的多个气孔开设于多个曝气管的顶面。
可选地,注石灰水模组更包括多个第一液位传感器,多个第一液位传感器分别设于第一曝气槽、至少一个第二曝气槽及第三曝气槽,并且电性连接控制模组,多个第一液位传感器分别用以感测第一曝气槽、至少一个第二曝气槽及第三曝气槽的石灰水的液位高度。其中,当多个第一液位传感器分别感测到第一曝气槽、至少一个第二曝气槽及第三曝气槽的石灰水的液面位于高液位时,多个第一液位传感器分别产生一个第一高液位讯号,并且分别将多个第一高液位讯号传送至控制模组,控制模组分别依据多个第一高液位讯号控制多个注石灰水泵关闭,同时控制多个抽石灰水泵开启。其中,当多个第一液位传感器分别感测到第一曝气槽、至少一个第二曝气槽及第三曝气槽的石灰水的液面位于低液位时,多个第一液位传感器分别产生一个第一低液位讯号,并且分别将多个第一低液位讯号传送至控制模组,控制模组分别依据多个第一低液位讯号控制多个注石灰水泵开启,同时控制多个抽石灰水泵关闭。
可选地,控制模组包括一个第一继电器、多个第二继电器及一个电源触控器,注水泵和抽水泵电性连接第一继电器,多个注石灰水泵分别电性连接多个第二继电器,多个第一液位传感器分别电性连接多个第二继电器,多个抽石灰水泵分别电性连接多个第二继电器,多个抽风机电性连接电源触控器。
本公开的效果在于,本公开的化石燃料污染物防治系统提供燃烧化石燃料所产生的空气污染物依序经过冷却、洗涤和曝气等程序,提高空气污染物中的二氧化碳与二氧化硫的溶解于水和石灰水的溶解度,有效降低空气污染 物中的二氧化碳及二氧化硫的含量。
附图说明
图1表示本公开的污染物产生装置的示意图;
图2表示本公开的连续洗涤装置的示意图,其中第一污染物溶液的液面位于高液位;
图3表示本公开的连续洗涤装置的示意图,其中第一污染物溶液的液面位于低液位;
图4表示本公开的连续曝气装置的示意图,其中第二污染物溶液的液面位于高液位;
图5表示本公开的连续曝气装置的示意图,其中第二污染物溶液的液面位于低液位;
图6表示本公开的污水处理装置的示意图。
附图标记说明:
11、第一继电器;12、13、14、第二继电器;15、电源触控器;20、污染物产生装置;21、燃烧炉;211、燃烧空间;212、进气口;213、化石燃料输入口;214、排气口;22、导气管;23、冷却模组;231、冷却水槽;232、水冷却器;233、冷水管;234、热水管;235、冷却管路;30、连续洗涤装置;31、贮液槽;321、第一连接管;322、323、第二连接管;324、325、第三连接管;331、第一洗涤槽;332、333、334、第二洗涤槽;335、第三洗涤槽;341、储水槽;3411、水;342、引水主管路;343~347、引水副管路;3431、3441、3451、3461、3471、垂直管路;3432、3442、3452、3462、3472、水平管路;3433、3443、3453、3463、3473、洒水口;348、注水泵;40、连续曝气装置;411、第一曝气槽;412、第二曝气槽;413、第三曝气槽;421、石灰水槽;4211、石灰水;422、石灰水主管路;423、424、425、石灰水副管路;426、427、428、注石灰水泵;4291、4292、4293、第一液位传感器;431、第一通气管;432、433、第二通气管;434、第三通气管;435、436、437、抽风机;4381、4382、4383、曝气管;50、污水处理装置;511、沉淀池;512、沉淀管;513、沉泥孔排;514、废液槽;515、污泥槽;516、排液 管;517、排泥管;518、排泥泵;521、排水管;522、抽水泵;523、第二液位传感器;531、排石灰水主管路;532、533、534、排石灰水副管路;535、536、537、抽石灰水泵;100、空气污染物;101、气泡;200、第一污染物溶液;201、第二污染物溶液;202、第三污染物溶液;H1、H2、高液位;L1、L2、低液位。
具体实施方式
以下配合图式及组件符号对本公开的实施方式做更详细的说明,俾使熟悉该项技艺者在研读本说明书后能据以实施。
请参阅图1至图6,图1是本公开的污染物产生装置20的示意图;图2是本公开的连续洗涤装置30的示意图,其中第一污染物溶液200的液面位于高液位H2;图3是本公开的连续洗涤装置30的示意图,其中第一污染物溶液200的液面位于低液位L2;图4是本公开的连续曝气装置40的示意图,其中第二污染物溶液201的液面位于高液位H1;图5是本公开的连续曝气装置40的示意图,其中第二污染物溶液201的液面位于低液位L1;图6是本公开的污水处理装置50的示意图。本公开提供一种化石燃料污染物防治系统,包括一个控制模组、一个污染物产生装置20、一个连续洗涤装置30、一个连续曝气装置40以及一个污水处理装置50。
控制模组包括一个第一继电器11(参见图2及图3)、多个第二继电器12、13、14(参见图4及图5)及一个电源触控器15(参见图4及图5)。
如图1所示,污染物产生装置20包括一个燃烧炉21、一个导气管22及一个冷却模组23。燃烧炉21围构一个燃烧空间211并且开设一个进气口212、一个化石燃料输入口213及一个排气口214。进气口212连通于燃烧空间211与外部空间之间,并且用以引入外部空气进入燃烧空间211。化石燃料输入口213连通于燃烧空间211与外部空间之间,并且用以输入一个化石燃料(图未示)至燃烧空间211。导气管22连接于排气口214与冷却模组23之间。
化石燃料在燃烧空间211中进行燃烧并且产生一个高温的空气污染物100,高温的空气污染物100依序通过排气口214与导气管22以后,进入冷却模组23中。冷却模组23用以降低空气污染物100的温度。
更明确地说,进气口212开设于燃烧炉21的一个侧壁,并且靠近燃烧炉21的底部。化石燃料输入口213开设于燃烧炉21的侧壁,并且靠近燃烧炉21的底部。排气口214开设于燃烧炉21的顶部。所述化石燃料包括煤炭、石油、天然气等天然资源,燃烧化石燃料所产生的空气污染物100至少包含二氧化碳(CO 2)、二氧化硫(SO 2)及悬浮粒状物(Particulate Matter)。化石燃料在燃烧的过程中会消耗掉燃烧空间211内的大量的氧气,并且产生大量的高温的空气污染物100,同时外部空气源源不断地通过进气口212,补充入燃烧空间211中。依照热对流原理,热空气密度较冷空气密度小,所以热空气上升,冷空气下降。所以,高温的空气污染物100上升至排气口214。
在可选的实施例中,冷却模组23包括一个冷却水槽231、水冷却器232、一个冷水管233、一个热水管234及一个冷却管路235。冷却水槽231用以容设一个冷却水。冷水管233连接于冷却水槽231的一个侧壁的底部的一个进水口与水冷却器232的一个出水口之间。热水管234连接于冷却水槽231的侧壁的顶部的一个出水口与水冷却器232的一个进水口之间。冷却管路235位于冷却水槽231中并且连接于导气管22与连续洗涤装置30之间。高温的空气污染物100在依序通过导气管22与冷却管路235以后,进入连续洗涤装置30。
高温的空气污染物100在通过冷却管路235的过程中,高温的空气污染物100透过冷却管路235的管壁与冷却水进行热交换,借以降低空气污染物100的温度。因此,进入连续洗涤装置30的空气污染物100的温度大幅降低。
依照热对流原理,热液体密度较冷液体密度小,所以热液体上升,冷液体下降。是以,温度升高的冷却水上升并且通过热水管234进入水冷却器232。温度升高的冷却水透过水冷却器232进行热交换,借以降低冷却水的温度。降温后的冷却水进一步通过冷水管233进入冷却水槽231中。借此,冷却水可透过上述机制重复循环使用,经济实惠又环保。
可选地,冷却水槽231的一个侧壁开设一个第一侧孔及一个第二侧孔,第一侧孔靠近冷却水槽231的底部,第二侧孔靠近冷却水槽231的顶部。冷却管路235的一端通过第一侧孔连接于导气管22,冷却管路235的另一端通过第二侧孔连接于连续洗涤装置30。换句话说,冷却管路235是从冷却水槽 231的底部往上延伸至冷却水槽231的顶部。因为冷却水槽231的进水口位于冷却水槽231的侧壁的底部,所以通过冷水管233的冷却水率先进入冷却水槽231的底部。又,依照热对流原理,愈靠近冷却水槽231的底部,冷却水的温度愈低;反之,愈靠近冷却水槽231的顶部,冷却水的温度愈高。因此,高温的空气污染物100在进入冷却管路235以后,马上通过冷却管路235的管壁与冷却水槽231的底部的低温冷却水进行热交换。接着,高温的空气污染物100从冷却管路235的底部一路往上流动至冷却管路235的顶部,持续通过冷却管路235的管壁与冷却水槽231的冷却水进行热交换。借此,冷却模组23可提升高温的空气污染物100和冷却水的热交换效率,使得高温的空气污染物100的降温效果更加显著。
可选地,冷却管路235具有多个U形弯折部,相邻的两个U形弯折部的开口方向相反。换句话说,冷却管路235为一个连续U形弯折管路,冷却管路235的路径长度大于第一侧孔与第二侧孔之间的直线距离。借此,蜿蜒的冷却管路235能够延长高温的空气污染物100和冷却水进行热交换的时间,使得高温的空气污染物100降温的效果愈明显。
如图2及图3所示,连续洗涤装置30包括一个贮液槽31、一个连接管模组、一个洗涤槽模组及一个注水模组。连接管模组包括一个第一连接管321、两个第二连接管322、323及两个第三连接管324、325。洗涤槽模组包括一个第一洗涤槽331、三个第二洗涤槽332、333、334及一个第三洗涤槽335。第一连接管321连接于冷却管路235的另一端与第一洗涤槽331的顶部之间。其中一个第二连接管322的顶部的两个开口分别连接于第一洗涤槽331的底部与靠近第一洗涤槽331的第二洗涤槽332的底部。另一个第二连接管323的顶部的两个开口分别连接于位于中间的第二洗涤槽333的底部与靠近第三洗涤槽335的第二洗涤槽334的底部。该两个第二连接管322、323的底部均位于贮液槽31中。其中一个第三连接管324连接于靠近第一洗涤槽331的第二洗涤槽332的顶部与位于中间的第二洗涤槽333的顶部。另一个第三连接管324连接于靠近第三洗涤槽335的第二洗涤槽334的顶部与第三洗涤槽335的顶部。第三洗涤槽335的底部连接于贮液槽31的顶部。注水模组包括一个储水槽341、一个引水主管路342、多个引水副管路343~347及一个注水泵 348。储水槽341用以储存水3411。引水主管路342连接于储水槽341。多个引水副管路343~347分别连接于引水主管路342与第一洗涤槽331之间、引水主管路342与多个第二洗涤槽332、333、334之间及引水主管路342与第三洗涤槽335之间。注水泵348设于引水主管路342上,并且电性连接第一继电器11。
空气污染物100依序通过第一连接管321、第一洗涤槽331、其中一个第二连接管322、靠近第一洗涤槽331的第二洗涤槽332、其中一个第三连接管324、位于中间的第二洗涤槽333、另一个第二连接管323、靠近第三洗涤槽335的第二洗涤槽334、另一个第三连接管324及第三洗涤槽335。
当第一继电器11控制注水泵348开启时,储水槽341中的水3411依序通过引水主管路342及多个引水副管路343~347以后,进入第一洗涤槽331、该三个第二洗涤槽332、333、334及第三洗涤槽335。水3411从上而下流经第一洗涤槽331、该三个第二洗涤槽332、333、334、第三洗涤槽335及该两个第二连接管322、323而进入贮液槽31中。部分空气污染物100溶解于水3411中并且与水3411产生化学变化而形成一个第一污染物溶液200,并且进入贮液槽31中。未溶解于水3411中的空气污染物100通过第三洗涤槽335以后,进入贮液槽31中。
重要的是,空气污染物100进入第一洗涤槽331、位于中间的第二洗涤槽333及第三洗涤槽335以后,从第一洗涤槽331、位于中间的第二洗涤槽333及第三洗涤槽335的顶部往下流动至第一洗涤槽331、位于中间的第二洗涤槽333及第三洗涤槽335的底部。空气污染物100进入靠近第一洗涤槽331的第二洗涤槽332及靠近第三洗涤槽335的第二洗涤槽334以后,从靠近第一洗涤槽331的第二洗涤槽332及靠近第三洗涤槽335的第二洗涤槽334的底部往上流动至靠近第一洗涤槽331的第二洗涤槽332及靠近第三洗涤槽335的第二洗涤槽334的顶部。借此,部分空气污染物100中的两个氧化钙及二氧化硫能够充分地溶解于水3411并且与水3411产生化学变化而形成第一污染物溶液200。
二氧化碳溶解于水的化学变化产生碳酸。二氧化硫溶解于水的化学变化产生亚硫酸。因此,第一污染物溶液200的主要成分包含碳酸与亚硫酸。
值得一提的是,因为空气污染物100在进入连续洗涤装置30以前,已经通过冷却模组23预先冷却降温,大幅提升空气污染物100中的二氧化碳与二氧化硫的溶解于水的溶解度,所以空气污染物100在通过连续洗涤装置30的执行连续洗涤的程序中,溶解于水的二氧化碳及二氧化硫的含量大幅增加,有效初步降低空气污染物100中的二氧化碳及二氧化硫的含量。
如图2及图3所示,在可选的实施例中,各引水副管路343~347包括一个垂直管路3431、3441、3451、3461、3471及多个水平管路3432、3442、3452、3462、3472。垂直管路3431、3441、3451、3461、3471连接于引水主管路342。多个水平管路3432、3442、3452、3462、3472分别连接于垂直管路3431、3441、3451、3461、3471并且底部分别开设两个洒水口3433、3443、3453、3463、3473。其中一个引水副管路343的多个水平管路3432横向延伸进入第一洗涤槽331中,并且彼此纵向地间隔设置。其中三个引水副管路344、345、346的多个水平管路3442、3452、3462分别横向延伸进入该三个第二洗涤槽332、333、334中,并且彼此纵向地间隔设置。其中一个引水副管路347的多个水平管路3472横向延伸进入第三洗涤槽335中,并且彼此纵向地间隔设置。换言之,本公开在第一洗涤槽331、该三个第二洗涤槽332、333、334及第三洗涤槽335的不同垂直位置上,配置多个引水副管路343~347的多个水平管路3432、3442、3452、3462、3472。当第一继电器11控制注水泵348开启时,储水槽341中的水3411依序通过引水主管路342及多个引水副管路343~347以后,从多个洒水口3433、3443、3453、3463、3473向下喷出,因而从第一洗涤槽331、该三个第二洗涤槽332、333、334及第三洗涤槽335的不同垂直位置上往下洒水,达到多段洒水的目的。借此,空气污染物100接触水3411的机率大幅提升,从而溶解于水的二氧化碳及二氧化硫的含量显著增加,显著降低空气污染物100中的二氧化碳及二氧化硫的含量。
如图4及图5所示,连续曝气装置40包括一个曝气槽模组、一个注石灰水模组及一个气体引导模组。曝气槽模组包括一个第一曝气槽411、一个第二曝气槽412及一个第三曝气槽413。注石灰水模组包括一个石灰水槽421、一个注石灰水主管路422、多个注石灰水副管路423、424、425、多个注石灰水泵426、427、428及多个第一液位传感器4291、4292、4293。石灰水槽421 用以储存石灰水4211。注石灰水主管路422连接于石灰水槽421。多个注石灰水副管路423、424、425分别连接于注石灰水主管路422与第一曝气槽411的顶部之间、注石灰水主管路422与第二曝气槽412的顶部之间及注石灰水主管路422与第三曝气槽413的顶部之间。多个注石灰水泵426、427、428分别设于多个注石灰水副管路423、424、425上,并且分别电性连接多个第二继电器12、13、14。多个第一液位传感器4291、4292、4293分别设于第一曝气槽411、第二曝气槽412及第三曝气槽413,并且分别电性连接多个第二继电器12、13、14。多个第一液位传感器4291、4292、4293分别用以感测第一曝气槽411、第二曝气槽412及第三曝气槽413的石灰水4211的液位高度。气体引导模组包括一个第一通气管431、两个第二通气管432、433、一个第三通气管434及多个抽风机435、436、437。第一通气管431连接于贮液槽31的顶部与第一曝气槽411的底部。该两个第二通气管432、433分别连接于第一曝气槽411的顶部与第二曝气槽412的底部之间及第二曝气槽412的顶部与第三曝气槽413的底部之间。第三通气管434连接于第三曝气槽413的顶部。多个抽风机435、436、437分别设于第一通气管431与该两个第二通气管432、433上,并且电性连接电源触控器15。
如图4所示,当多个第一液位传感器4291、4292、4293分别感测到第一曝气槽411、第二曝气槽412及第三曝气槽413的石灰水4211的液面位于高液位H1时,多个第一液位传感器4291、4292、4293分别产生一个第一高液位讯号,并且分别将多个第一高液位讯号传送至多个第二继电器12、13、14。多个第二继电器12、13、14分别依据多个第一高液位讯号控制多个注石灰水泵426、427、428关闭,借以停止将石灰水4211注入第一曝气槽411、第二曝气槽412及第三曝气槽413中。
如图5所示,当多个第一液位传感器4291、4292、4293分别感测到第一曝气槽411、第二曝气槽412及第三曝气槽413的石灰水4211的液面位于低液位L1时,多个第一液位传感器4291、4292、4293分别产生一个第一低液位讯号,并且分别将多个第一低液位讯号传送至多个第二继电器12、13、14。多个第二继电器12、13、14分别依据多个第一低液位讯号控制多个注石灰水泵426、427、428开启。石灰水槽421中的石灰水4211依序通过注石灰水主 管路422及多个注石灰水副管路423、424、425以后,进入第一曝气槽411、第二曝气槽412及第三曝气槽413中。
如图4及图5所示,当电源触控器15控制多个抽风机435、436、437开启时,贮液槽31中的未溶解于水3411中的空气污染物100依序通过第一通气管431、第一曝气槽411、其中一个第二通气管432、第二曝气槽412、另一个第二通气管433及第三曝气槽413。部分空气污染物100溶解于石灰水4211中并且产生化学变化而形成一个第二污染物溶液201。未溶解于石灰水4211中的空气污染物100通过第三通气管434进入外部空间。另外,因为贮液槽31中的未溶解于石灰水4211中的空气污染物100不断地被抽出至连续曝气装置40,所以贮液槽31的槽内空间压力下降,空气污染物100能够不断地从污染物产生装置20通过连续洗涤装置30进入连续曝气装置40。
重要的是,空气污染物100进入第一曝气槽411、第二曝气槽412及第三曝气槽413以后,以气泡101的形式从第一曝气槽411、第二曝气槽412及第三曝气槽413的底部往上流动通过石灰水4211至第一曝气槽411、第二曝气槽412及第三曝气槽413的顶部。借此,空气污染物100中的二氧化碳及二氧化硫能够充分地溶解于石灰水并且与石灰水产生化学变化而形成第二污染物溶液201。
二氧化碳溶于石灰水的化学变化产生碳酸钙及水。二氧化硫溶于石灰水的化学变化产生亚硫酸钙及水。因此,第二污染物溶液201的成分主要包含碳酸钙、亚硫酸钙及水。
值得一提的是,因为空气污染物100在进入连续洗涤装置30以前,已经通过冷却模组23预先冷却降温,大幅提升空气污染物100中的二氧化碳与二氧化硫的溶解于石灰水4211的溶解度,所以空气污染物100在通过连续曝气装置40的执行连续曝气的程序中,溶解于石灰水4211的二氧化碳及二氧化硫的含量大幅增加,有效进一步降低空气污染物100中的二氧化碳及二氧化硫的含量。进入外部空间的未溶解于石灰水4211中的空气污染物100,实际上几乎没有二氧化碳及二氧化硫,相当干净。
如图4及图5所示,在可选的实施例中,气体引导模组更包括多个曝气管4381、4382、4383,多个曝气管4381、4382、4383分别设于第一曝气槽 411、第二曝气槽412及第三曝气槽413中,分别连接第一通气管431及该两个第二通气管432、433,并且开设多个气孔(图未示)。空气污染物100通过多个曝气管4381、4382、4383的多个气孔以后,进入第一曝气槽411、第二曝气槽412及第三曝气槽413中,以气泡101的形式从第一曝气槽411、第二曝气槽412及第三曝气槽413的底部往上流动通过石灰水4211至第一曝气槽411、第二曝气槽412及第三曝气槽413的顶部。借此,多个曝气管4381、4382、4383能够增加空气污染物100在单位时间内进入第一曝气槽411、第二曝气槽412及第三曝气槽413的量。
可选地,多个曝气管4381、4382、4383呈环状并且分别与第一曝气槽411、第二曝气槽412与第三曝气槽413同轴,多个曝气管4381、4382、4383的多个气孔开设于多个曝气管4381、4382、4383的顶面。这个技术特征能够进一步增加空气污染物100在单位时间内进入第一曝气槽411、第二曝气槽412及第三曝气槽413的量。
如图6所示,污水处理装置50包括一个沉淀模组、一个排水模组及一个排石灰水模组。沉淀模组包括一个沉淀池511及一个沉淀管512。沉淀池511呈漏斗状,并且通过一个沉泥孔排513将沉淀池511的内部分隔成一个废液槽514及一个污泥槽515。废液槽514位于沉泥孔排513的上方,并且与一个排液管516相通。污泥槽515位于沉泥孔排513的下方,并且与一个排泥管517相通。排泥管517上设有一个排泥泵518,排泥泵518电性连接控制模组。沉淀管512连接沉淀池511,并且与废液槽514相通。排水模组包过一个排水管521、一个抽水泵522及一个第二液位传感器523。排水管521连接于贮液槽31的底部与沉淀管512之间。抽水泵522设于排水管521上,并且电性连接第一继电器11。第二液位传感器523设于贮液槽31,电性连接第一继电器11,用以感测第一污染物溶液200的液位高度。排石灰水模组包括一个排石灰水主管路531、多个排石灰水副管路532、533、534及多个抽石灰水泵535、536、537。排石灰水主管路531连接于沉淀管512。多个排石灰水副管路532、533、534分别连接于排石灰水主管路531与第一曝气槽411的底部之间、排石灰水主管路531与第二曝气槽412的底部之间及排石灰水主管路531与第三曝气槽413的底部之间。多个抽石灰水泵535、536、537 分别设于多个排石灰水副管路532、533、534上,并且电性连接多个第二继电器12、13、14。
如图2所示,当第二液位传感器523感测到贮液槽31的第一污染物溶液200液面位于高液位H2时,第二液位传感器523产生一个第二高液位讯号,并且将第二高液位讯号传送至第一继电器11。第一继电器11依据第二高液位讯号控制抽水泵522开启,贮液槽31中的第一污染物溶液200依序通过排水管521及沉淀管512以后,进入沉淀池511的废液槽514中。贮液槽31内至少维持高液位H2以上的空间留给未溶解于水3411的空气污染物100。
如图3所示,当第二液位传感器523感测到贮液槽31的第一污染物溶液200液面位于低液位L2时,第二液位传感器523产生一个第二低液位讯号,并且将第二低液位讯号传送至第一继电器11。第一继电器11依据第二低液位讯号控制抽水泵522关闭,借以停止将贮液槽31中的第一污染物溶液200抽出。贮液槽31内至少维持该两个第二连接管322、323的底部在低液位L2以下,使得该两个第二连接管322、323的底部维持浸泡在第一污染物溶液200中。
如图4所示,当多个第一液位传感器4291、4292、4293分别感测到第一曝气槽411、第二曝气槽412及第三曝气槽413的石灰水4211的液面位于高液位H1时,多个第二继电器12、13、14分别依据多个第一高液位讯号控制多个抽石灰水泵535、536、537开启,第一曝气槽411、第二曝气槽412及第三曝气槽413中的第二污染物溶液201依序通过多个排石灰水副管路532、533、534、排石灰水主管路531及沉淀管512以后,进入沉淀池511的废液槽514中。
第一污染物溶液200与第二污染物溶液201在沉淀池511的废液槽514中混合成一个第三污染物溶液202。第三污染物溶液202静置一段时间以后,第三污染物溶液202中的污泥203会向下穿过沉泥孔排513的多个孔洞,进入污泥槽515中,剩余的第三污染物溶液202则留在废液槽514中。所述污泥202的主要成分包含碳酸钙、亚硫酸钙及悬浮粒状物。所述剩余的第三污染物溶液202的主要成分包含碳酸、亚硫酸及水。
当控制模组控制排泥泵518开启时,污泥203通过排泥管517,进入一 个污泥收集部(图未示)。废液槽514中的剩余的第三污染物溶液202可通过排液管516,进入一个废液收集部(图未示)。使用者可透过检测通过排液管516的剩余的第三污染物溶液202的酸碱值,决定增加或减少石灰水槽421中的石灰水4211浓度。当剩余的第三污染物溶液202的酸碱值大于7时,必须减少石灰水槽421中的石灰水4211浓度。当剩余的第三污染物溶液202的酸碱值低于7时,必须增加石灰水的浓度。
如图5所示,当多个第一液位传感器4291、4292、4293分别感测到第一曝气槽411、第二曝气槽412及第三曝气槽413的石灰水4211的液面位于低液位L1时,多个第二继电器12、13、14分别依据多个第一低液位讯号控制多个抽石灰水泵535、536、537关闭,借以停止将第一曝气槽411、第二曝气槽412及第三曝气槽413中的第二污染物溶液201抽出。
综上所述,本公开的化石燃料污染物防治系统提供燃烧化石燃料所产生的空气污染物100依序经过冷却、洗涤和曝气等程序,提高空气污染物100中的二氧化碳与二氧化硫的溶解于水和石灰水的溶解度,有效降低空气污染物100中的二氧化碳及二氧化硫的含量。
以上所述者仅为用以解释本公开的可选的实施例,并非企图据以对本公开做任何形式上的限制,是以,凡有在相同的发明精神下所作有关本公开的任何修饰或变更,皆仍应包括在本公开意图保护的范畴。

Claims (10)

  1. 一种化石燃料污染物防治系统,包括:
    一个控制模组;
    一个污染物产生装置,包括一个燃烧炉、一个导气管及一个冷却模组,该燃烧炉围构一个燃烧空间并且开设一个进气口、一个化石燃料输入口及一个排气口,该进气口连通于该燃烧空间与外部空间之间,并且用以引入外部空气进入该燃烧空间,该化石燃料输入口连通于该燃烧空间与外部空间之间,并且用以输入一个化石燃料至该燃烧空间,该导气管连接于该排气口与该冷却模组之间,其中,该化石燃料在该燃烧空间中进行燃烧并且产生一个高温的空气污染物,该高温的空气污染物依序通过该排气口与该导气管以后,进入该冷却模组中,该冷却模组用以降低该空气污染物的温度;
    一个连续洗涤装置,包括一个贮液槽、一个连接管模组、一个洗涤槽模组及一个注水模组,该连接管模组包括一个第一连接管、至少一个第二连接管及至少一个第三连接管,该洗涤槽模组包括一个第一洗涤槽、至少一个第二洗涤槽及一个第三洗涤槽,该第一连接管连接于该冷却模组与该第一洗涤槽的顶部,该至少一个第二连接管的顶部的两个开口分别连接于该第一洗涤槽的底部与该至少一个第二洗涤槽的底部,该至少一个第二连接管的底部位于该贮液槽中,该至少一个第三连接管连接于该至少一个第二洗涤槽的顶部与该第三洗涤槽的顶部,该第三洗涤槽的底部连接于该贮液槽的顶部,该注水模组包括一个储水槽、一个引水主管路、多个引水副管路及一个注水泵,该储水槽用以储存水,该引水主管路连接于该储水槽,多个引水副管路分别连接于该引水主管路与该第一洗涤槽之间、该引水主管路与该至少一个第二洗涤槽之间及该引水主管路与该第三洗涤槽之间,该注水泵设于该引水主管路上并且电性连接该控制模组,其中,该空气污染物依序通过该第一连接管、该第一洗涤槽、该至少一个第二连接管、该至少一个第二洗涤槽、该至少一个第三连接管及该第三洗涤槽,其中,当该控制模组控制该注水泵开启时,该储水槽中的水依序通过该引水主管路及多个引水副管路以后,进入该第一洗涤槽、该至少一个第二洗涤槽及该第三洗涤槽,水从上而下流经该第一洗 涤槽、该至少一个第二洗涤槽、该第三洗涤槽及该至少一个第二连接管而进入该贮液槽中,部分空气污染物溶解于水中并且与水产生化学变化而形成一个第一污染物溶液,并且进入贮液槽中,未溶解于水中的空气污染物通过该第三洗涤槽以后,进入该贮液槽中;
    一个连续曝气装置,包括一个曝气槽模组、一个注石灰水模组及一个气体引导模组,该曝气槽模组包括一个第一曝气槽、至少一个第二曝气槽及一个第三曝气槽,该注石灰水模组包括一个石灰水槽、一个注石灰水主管路、多个注石灰水副管路及多个注石灰水泵,该石灰水槽用以储存石灰水,该注石灰主水管路连接于该石灰水槽,多个注石灰水副管路分别连接于该注石灰水主管路与该第一曝气槽之间、该注石灰水主管路与该至少一个第二曝气槽之间及该注石灰水主管路与该第三曝气槽之间,多个注石灰水泵分别设于多个注石灰水副管路上并且电性连接该控制模组,该气体引导模组包括一个第一通气管、至少两个第二通气管、一个第三通气管及多个抽风机,该第一通气管连接于该贮液槽的顶部与该第一曝气槽的底部,该至少两个第二通气管分别连接于该第一曝气槽的顶部与该至少一个第二曝气槽的底部之间及该至少一个第二曝气槽的顶部与该第三曝气槽的底部之间,该第三通气管连接于该第三曝气槽的顶部,多个抽风机分别设于该第一通气管与该至少两个第二通气管上并且电性连接该控制模组,其中,当该控制模组控制多个注石灰水泵开启时,该石灰水槽中的石灰水依序通过该注石灰水主管路及多个注石灰水副管路以后,进入该第一曝气槽、该至少一个第二曝气槽及该第三曝气槽中,其中,当该控制模组控制多个抽风机开启时,该贮液槽中的未溶解于水中的空气污染物依序通过该第一通气管、该第一曝气槽、该至少两个第二通气管、该至少一个第一曝气槽及该第三曝气槽,部分空气污染物溶解于石灰水中并且与石灰水产生化学变化而形成一个第二污染物溶液,未溶解于石灰水中的空气污染物通过该第三通气管进入外部空间;以及
    一个污水处理装置,包括一个沉淀模组、一个排水模组及一个排石灰水模组,该沉淀模组包括一个沉淀池及一个沉淀管,该沉淀管连接该沉淀池,该排水模组包括一个排水管及一个抽水泵,该排水管连接于该贮液槽的底部与该沉淀管之间,该抽水泵设于该排水管上并且电性连接该控制模组,该排 石灰水模组包括一个排石灰水主管路、多个排石灰水副管路及多个抽石灰水泵,该排石灰水主管路连接于该沉淀管,多个排石灰水副管路分别连接于该排石灰水主管路与该第一曝气槽的底部之间、该排石灰水主管路与该至少一个第二曝气槽的底部之间及该排石灰水主管路与该第三曝气槽的底部之间,多个抽石灰水泵分别设于多个排石灰水副管路上并且电性连接该控制模组,其中,当该控制模组控制该抽水泵开启时,该贮液槽中的该第一污染物溶液依序通过该排水管及该沉淀管以后,进入该沉淀池中,其中,当该控制模组控制多个抽石灰水泵开启时,该第一曝气槽、该至少一个第二曝气槽及该第三曝气槽中的该第二污染物溶液依序通过多个排石灰水副管路、该排石灰水主管路及该沉淀管以后,进入该沉淀池中,该第一污染物溶液与该第二污染物溶液在该沉淀池中混合成一个第三污染物溶液。
  2. 根据权利要求1所述的化石燃料污染物防治系统,其中,该冷却模组包括一个冷却水槽、一个水冷却器、一个冷水管、一个热水管及一个冷却管路,该冷却水槽用以容设一个冷却水,该冷水管连接于该冷却水槽的一个侧壁的底部的一个进水口与该水冷却器的一个出水口之间,该热水管连接于该冷却水槽的该侧壁的顶部的一个出水口与该水冷却器的一个进水口之间,该冷却管路位于该冷却水槽中并且连接于该导气管与该第一连接管之间,该高温的空气污染物在依序通过该导气管与该冷却管路以后,进入该第一连接管;
    其中,该高温的空气污染物在通过该冷却管路的过程中,该高温的空气污染物透过该冷却管路的管壁与该冷却水进行热交换,借以降低该空气污染物的温度;以及
    其中,温度升高的冷却水上升并且通过该热水管进入该水冷却器,温度升高的冷却水透过该水冷却器进行热交换,借以降低冷却水的温度,降温后的冷却水进一步通过该冷水管进入该冷却水槽中。
  3. 根据权利要求2所述的化石燃料污染物防治系统,其中,该冷却水槽的该侧壁开设一个第一侧孔及一个第二侧孔,该第一侧孔靠近该冷却水槽的底部,该第二侧孔靠近该冷却水槽的顶部,该冷却管路的一端通过该第一侧 孔连接于该导气管,该冷却管路的另一端通过该第二侧孔连接于该第一连接管。
  4. 根据权利要求3所述的化石燃料污染物防治系统,其中,该冷却管路具有多个U形弯折部,相邻的两个U形弯折部的开口方向相反。
  5. 根据权利要求1所述的化石燃料污染物防治系统,其中,各该引水副管路包括一个垂直管路及多个水平管路,该垂直管路连接于该引水主管路,多个水平管路分别连接于该垂直管路并且底部分别开设至少一个洒水口;
    其中,其中一个该引水副管路的多个水平管路横向延伸进入该第一洗涤槽中,并且彼此纵向地间隔设置;
    其中,其中至少一个该引水副管路的多个水平管路横向延伸进入该至少一个第二洗涤槽中,并且彼此纵向地间隔设置;以及
    其中,其中一个该引水副管路的多个水平管路横向延伸进入该第三洗涤槽中,并且彼此纵向地间隔设置。
  6. 根据权利要求1所述的化石燃料污染物防治系统,其中,多个注石灰水副管路分别连接于该第一曝气槽的顶部、该至少一个第二曝气槽的顶部及该第三曝气槽的顶部。
  7. 根据权利要求1所述的化石燃料污染物防治系统,其中,该气体引导模组更包括多个曝气管,多个曝气管分别设于该第一曝气槽、该至少一个第二曝气槽及该第三曝气槽中,分别连接于该第一通气管及该至少两个第二通气管,并且开设多个气孔;其中,该空气污染物通过多个曝气管的多个气孔以后,进入该第一曝气槽、该至少一个第二曝气槽及该第三曝气槽中。
  8. 根据权利要求7所述的化石燃料污染物防治系统,其中,多个曝气管呈环状并且分别与该第一曝气槽、该至少一个第二曝气槽与该第三曝气槽同轴,多个曝气管的多个气孔开设于多个曝气管的顶面。
  9. 根据权利要求1所述的化石燃料污染物防治系统,其中,该注石灰水模组更包括多个第一液位传感器,多个第一液位传感器分别设于该第一曝气槽、该至少一个第二曝气槽及该第三曝气槽,并且电性连接该控制模组,多个第一液位传感器分别用以感测该第一曝气槽、该至少一个第二曝气槽及该第三曝气槽的石灰水的液位高度;
    其中,当多个第一液位传感器分别感测到该第一曝气槽、该至少一个第二曝气槽及该第三曝气槽的石灰水的液面位于高液位时,多个第一液位传感器分别产生一个第一高液位讯号,并且分别将多个第一高液位讯号传送至该控制模组,该控制模组分别依据多个第一高液位讯号控制多个注石灰水泵关闭,同时控制多个抽石灰水泵开启;以及
    其中,当多个第一液位传感器分别感测到该第一曝气槽、该至少一个第二曝气槽及该第三曝气槽的石灰水的液面位于低液位时,多个第一液位传感器分别产生一个第一低液位讯号,并且分别将多个第一低液位讯号传送至该控制模组,该控制模组分别依据多个第一低液位讯号控制多个注石灰水泵开启,同时控制多个抽石灰水泵关闭。
  10. 根据权利要求9所述的化石燃料污染物防治系统,其中,该控制模组包括一个第一继电器、多个第二继电器及一个电源触控器,该注水泵和该抽水泵电性连接该第一继电器,多个注石灰水泵分别电性连接多个第二继电器,多个第一液位传感器分别电性连接多个第二继电器,多个抽石灰水泵分别电性连接多个第二继电器,多个抽风机电性连接该电源触控器。
PCT/CN2020/074278 2019-02-12 2020-02-04 化石燃料污染物防治系统 WO2020164413A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910111440.7A CN111545031A (zh) 2019-02-12 2019-02-12 化石燃料污染物防治系统
CN201910111440.7 2019-02-12

Publications (1)

Publication Number Publication Date
WO2020164413A1 true WO2020164413A1 (zh) 2020-08-20

Family

ID=71999960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074278 WO2020164413A1 (zh) 2019-02-12 2020-02-04 化石燃料污染物防治系统

Country Status (2)

Country Link
CN (1) CN111545031A (zh)
WO (1) WO2020164413A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678657A (en) * 1970-01-07 1972-07-25 Edith A Hale Fluid pollution eradicator system including an air bubble scrubbing unit
US4111672A (en) * 1973-10-10 1978-09-05 Saint-Gobain Industries Method and apparatus for suppression of pollution in mineral fiber manufacture
CN87106045A (zh) * 1986-07-31 1988-03-16 千代田化工建设有限公司 湿式排烟净化方法及其装置
CN1035959A (zh) * 1987-09-16 1989-10-04 帕塞玛库第·特赖布 洗涤废气流中污染物的方法
CN105080269A (zh) * 2015-08-19 2015-11-25 江苏大德能源科技发展有限公司 一种炭黑尾气净化系统
CN206414968U (zh) * 2016-12-06 2017-08-18 山东天力节能环保工程有限公司 一种多级过滤塔及其脱硫除尘装置
CN107441921A (zh) * 2017-09-22 2017-12-08 长江水利委员会长江科学院 消除粉尘和废气中多种污染物的多级组合湿式净化系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6453829B1 (en) * 2001-10-01 2002-09-24 Wu Chin Tsai Incinerator assembly having waste smoke treating device
CN201658942U (zh) * 2010-03-03 2010-12-01 欧国基 脱碳、脱硫零排放,低温排烟环保装置
CN202191818U (zh) * 2011-07-27 2012-04-18 上海复旦水务工程技术有限公司 废气处理装置
CN203853019U (zh) * 2014-04-26 2014-10-01 南京宇行环保科技有限公司 一种生物法脱除烟气中SO2和NOx的双塔串联装置
CN204176663U (zh) * 2014-10-14 2015-02-25 天津锐锟科技有限公司 一种工艺余热回收节能系统
CN206549352U (zh) * 2016-12-28 2017-10-13 王书建 家庭用烟气处理组件
CN206404581U (zh) * 2017-01-14 2017-08-15 山东启航环保科技有限公司 一种锅炉尾气脱硫脱硝设备
CN206793316U (zh) * 2017-06-09 2017-12-26 河南省安克林滤业有限公司 一种烟气过滤装置
CN107421354A (zh) * 2017-07-20 2017-12-01 盐城海之诺机械有限公司 一种燃烧炉尾气净化处理利用装置
CN207445968U (zh) * 2017-08-24 2018-06-05 成都圻坊生物科技有限公司 一种高浓度挥发有机物废气处理装置
CN207287121U (zh) * 2017-10-18 2018-05-01 山东中航天业科技有限公司 一种烟气用多级喷淋脱硫、脱硝、除尘一体化装置
CN107648893A (zh) * 2017-11-09 2018-02-02 东莞市联洲知识产权运营管理有限公司 一种高效的污水沉淀池
CN108465339A (zh) * 2018-04-29 2018-08-31 成都奕州环保科技有限公司 一种沥青烟气冷凝净化处理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678657A (en) * 1970-01-07 1972-07-25 Edith A Hale Fluid pollution eradicator system including an air bubble scrubbing unit
US4111672A (en) * 1973-10-10 1978-09-05 Saint-Gobain Industries Method and apparatus for suppression of pollution in mineral fiber manufacture
CN87106045A (zh) * 1986-07-31 1988-03-16 千代田化工建设有限公司 湿式排烟净化方法及其装置
CN1035959A (zh) * 1987-09-16 1989-10-04 帕塞玛库第·特赖布 洗涤废气流中污染物的方法
CN105080269A (zh) * 2015-08-19 2015-11-25 江苏大德能源科技发展有限公司 一种炭黑尾气净化系统
CN206414968U (zh) * 2016-12-06 2017-08-18 山东天力节能环保工程有限公司 一种多级过滤塔及其脱硫除尘装置
CN107441921A (zh) * 2017-09-22 2017-12-08 长江水利委员会长江科学院 消除粉尘和废气中多种污染物的多级组合湿式净化系统

Also Published As

Publication number Publication date
CN111545031A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
CN102112207A (zh) 一种海船排烟洗涤装置及洗涤方法
CN204073811U (zh) 海水排烟脱硫系统及发电系统
CN102309912A (zh) 一种对船舶排烟进行碱法脱硫除尘的装置及其方法
CN103282101A (zh) 海水排烟脱硫系统及发电系统
CN106039755A (zh) 一种烟气冷凝提水系统
CN105688581A (zh) 液膜除尘装置以及利用该装置的脱硫塔除尘整流系统
JP5186396B2 (ja) 海水脱硫装置
CN102588989B (zh) 燃气锅炉或燃气、燃油设备的烟气喷淋净化热回收系统
CN108072045B (zh) 锅炉烟汽节能低碳减霾系统
CN205517263U (zh) 一种烟气换热节能脱硫脱硝装置
CN201058282Y (zh) 海水脱硫系统
CN110726148A (zh) 一种烟气消白冷却装置
WO2020164413A1 (zh) 化石燃料污染物防治系统
CN102343209B (zh) 应用锅炉排污水的烟气海水脱硫系统
CN206566739U (zh) 一种烟气脱硫脱硝的装置
TWM580579U (zh) Fossil fuel pollutant prevention system
TWI689343B (zh) 化石燃料污染物防治系統
CN103388829A (zh) 湿法脱硫石膏雨或烟囱雨消除装置
CN102274688A (zh) 多级喷雾高效吸收装置
CN101732973A (zh) 双液位喷射鼓泡管脱硫除尘装置
CN210128513U (zh) 天然气冷凝锅炉烟气喷淋热回收系统
CN206318731U (zh) 低温喷淋蒸发脱硫废水处理装置
CN112723453A (zh) 用于干渣冷却的脱硫废水零排放系统
CN201603514U (zh) 一种用于海水脱硫系统的原烟气降温装置
CN205965084U (zh) 一种烟气冷凝提水系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755517

Country of ref document: EP

Kind code of ref document: A1