WO2020164231A1 - 一种新能源汽车电池壳及其生产方法 - Google Patents

一种新能源汽车电池壳及其生产方法 Download PDF

Info

Publication number
WO2020164231A1
WO2020164231A1 PCT/CN2019/098366 CN2019098366W WO2020164231A1 WO 2020164231 A1 WO2020164231 A1 WO 2020164231A1 CN 2019098366 W CN2019098366 W CN 2019098366W WO 2020164231 A1 WO2020164231 A1 WO 2020164231A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery case
battery
new energy
welding
shell
Prior art date
Application number
PCT/CN2019/098366
Other languages
English (en)
French (fr)
Inventor
陈卫宁
陈小波
蒋晓飞
生柳亚
Original Assignee
南京优仁有色金属有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京优仁有色金属有限公司 filed Critical 南京优仁有色金属有限公司
Publication of WO2020164231A1 publication Critical patent/WO2020164231A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of new energy, in particular to a new energy automobile battery shell and a production method thereof.
  • the power battery system directly determines the market pricing of the entire vehicle. It is currently believed that only when the cost of the power battery system drops to a level equivalent to the cost of the traditional fuel vehicle engine, pure electric vehicles can have real market competitiveness in terms of terminal prices after the financial subsidies are withdrawn. In the development and evolution of the cost of power battery products in my country, the construction and improvement of the industrial chain and the continuous improvement of the localization rate have played a key role in the reduction of the cost of power batteries.
  • the battery shell is too thick, heavy, poor heat dissipation performance, low production efficiency, it is difficult to greatly increase the energy density of new energy vehicle batteries, reduce battery weight, reduce battery volume, improve battery heat dissipation, and reduce
  • the cost of batteries increases the range of new energy vehicles and becomes a bottleneck for the large-scale promotion and application of new energy vehicles.
  • New energy vehicle batteries can greatly increase the energy density of new energy vehicles, reduce battery weight, reduce battery volume, improve battery heat dissipation, reduce battery costs, and increase the range of new energy vehicles, which is more conducive to the promotion and promotion of new energy vehicles. application.
  • the present invention proposes a new energy vehicle battery case, which includes a battery case, a battery case bottom and a battery case cover, wherein the battery case, the battery case bottom and the battery case cover are made of rolled metal plates.
  • the metal plate has at least one layer of metal material, and the thickness of the metal plate is greater than 0.01mm; there is at least one continuous weld in the axial direction of the battery case; the battery case can be welded to the bottom of the battery case and the battery case cover, but not limited to welding Connection method; the surface of the battery shell, the bottom of the battery shell, and the battery shell cover can be treated with but not limited to anti-corrosion surface treatment.
  • the welding slag left by the continuous welding seam on the inner and outer surfaces of the battery case must be smoothed so that the thickness of the welding seam is not higher than the thickness of the metal sheet
  • the above-mentioned battery case cover or battery case bottom further includes battery positive/negative electrodes, a battery pressure relief valve, and a battery injection hole.
  • the battery pressure relief valve is used for exhaust gas pressure when the pressure of the exhaust gas in the battery case is too high. Waste gas; the battery injection hole is used to inject the electrolyte into the battery according to the required amount.
  • the aforementioned metal plates include aluminum plates, copper plates, and steel plates, and the metal plates are single-layer plates or multi-layer anticorrosive composite plates.
  • the cross-sectional shape of the battery casing is a circle, a rectangle, an ellipse, a triangle, a trapezoid, a diamond, or an irregular shape.
  • the invention also provides a method for producing battery shells for new energy vehicles, which includes the following steps:
  • On-line chilling cools and hardens the welding slag, and continuously scrapes the welding slag on the inner and outer surfaces of the battery shell through the internal and external slag scraping device;
  • step 5 also includes the following content:
  • an eddy current flaw detector to continuously inspect the welding seam of the battery shell and the surface of the battery shell; if it is found that the welding seam of the battery shell and the surface of the battery shell are due to abnormal welding or abnormal metal plate organization, the eddy current flaw detector will alarm and be in the battery shell Color marking on abnormal parts of the body.
  • the battery case is cut to a specified length and then cleaned and dried for later use.
  • the surface of the battery case bottom and the battery case cover can be treated with but not limited to anti-corrosion surface treatment.
  • the aforementioned metal plates include aluminum plates, copper plates, and steel plates, and the metal plates are single-layer plates or multi-layer anticorrosive composite plates.
  • weld seam welding in the above step 3) can use high-frequency welding process, laser welding process or argon arc welding process, and the metal plate used to produce the battery shell is continuously formed by in-line rollers and continuously welded in-line and in the metal
  • the running speed of the continuous weld formed at both ends of the sheet is greater than 0.01 meters per minute.
  • a sufficiently long battery case cannot be produced by stamping and stretching, and the length of the battery case of the present invention can be adjusted by itself, which can effectively increase the battery energy density and increase the cruising range of a new energy vehicle.
  • the thickness of the battery shell material of the present invention can be greatly reduced, effectively improving battery heat dissipation efficiency, reducing battery volume, reducing battery weight, increasing battery capacity, and reducing battery cost. This is incomparable to the thickness of aluminum battery shell materials produced by stamping and stretching methods and hot extrusion methods.
  • the battery casing of the present invention is formed by continuous forming and continuous welding of metal plates through online rollers and wheels, and forming continuous welds at both ends of the metal plates.
  • the operating speed can reach more than 100 meters per minute. This production efficiency is at least 30 times that of stamping, stretching or hot extrusion, effectively reducing the cost of new energy vehicle batteries.
  • the battery shell, battery shell bottom and battery shell cover materials of the present invention can be made of aluminum sheet, copper sheet, steel sheet, etc. with anti-corrosion layer of multilayer composite metal, preferably aluminum sheet with anti-corrosion layer.
  • the aluminum plate with anticorrosion layer can effectively extend the service life of the battery.
  • the battery shell, battery shell bottom and battery shell cover materials of the present invention are rolled by a metal rolling mill many times, eliminating many defects of the material itself, and improving the quality of the battery shell and the battery safety. This is unmatched by hot-extruded aluminum battery case materials.
  • the battery shell of the present invention is formed by continuously forming the rolled metal sheet of the battery shell through in-line rollers and continuous welding and forming continuous welds at both ends of the metal sheet.
  • the metal sheet has very little deformation and no damage.
  • the performance of the material itself can effectively extend the service life of the battery. This is unmatched by aluminum battery cases produced by stamping and stretching.
  • Figure 1 is a schematic diagram 1 of the battery shell structure of a new energy vehicle of the present invention.
  • Figure 2 is a schematic diagram 2 of the battery shell structure of a new energy vehicle of the present invention.
  • Figure 3 is a schematic diagram 3 of the battery shell structure of a new energy vehicle of the present invention.
  • Fig. 4 is a schematic diagram 4 of the battery shell structure of a new energy vehicle of the present invention.
  • Fig. 5 is a schematic diagram 5 of the battery shell structure of a new energy automobile according to the present invention.
  • Fig. 6 is a schematic diagram of the production line of the battery shell of a new energy automobile according to the present invention.
  • the present invention proposes a new energy vehicle battery case, including a battery case, a battery case bottom and a battery case cover, wherein the battery case, the battery case bottom and the battery case cover are made of rolled Made of sheet metal, the sheet metal has at least one layer of metal material, and the thickness of the metal sheet is greater than 0.01mm; there is at least one continuous weld in the axial direction of the battery case, and the welding slag left by the continuous weld on the inner and outer surfaces of the battery case must Scrape so that the thickness of the welding seam is not higher than the thickness of the metal sheet; the battery case can be connected to the bottom of the battery case and the battery case cover, but not limited to welding; the surface of the battery case, the bottom of the battery case, and the battery case cover can but not Limited to anti-corrosion surface treatment.
  • the battery case of the present invention also includes a battery positive/negative electrode assembly, a battery pressure relief valve assembly and a battery liquid injection assembly on the battery case cover or the bottom of the battery case.
  • the pressure relief valve is used to utilize air pressure when the exhaust gas pressure in the battery case is too high. If bad, exhaust the exhaust gas; the liquid injection hole is used to inject the electrolyte into the battery according to the required amount.
  • the battery case cover is equipped with battery positive components, battery injection components, and battery A battery negative component and a battery pressure relief valve component are installed on the bottom of the shell.
  • the battery positive/negative electrode assembly, battery pressure relief valve assembly and battery liquid injection assembly can also be installed on the battery case cover.
  • the aforementioned metal plates include aluminum plates, copper plates, and steel plates, and the metal plates are single-layer plates or multi-layer anti-corrosion composite plates.
  • the cross-sectional shape of the battery casing is a circle, a rectangle, an ellipse, a triangle, a trapezoid, a diamond, or an irregular shape.
  • the present invention also proposes a new energy vehicle battery shell production method, including the following steps:
  • On-line chilling cools and hardens the welding slag, and continuously scrapes the welding slag on the inner and outer surfaces of the battery shell through the internal and external slag scraping device;
  • the battery case Cut the battery case to a specified length according to the technical requirements of the battery case, clean and dry it for later use.
  • the bottom of the battery case and the surface of the battery case cover can be treated with but not limited to anti-corrosion surface treatment.
  • the aforementioned metal plates include aluminum plates, copper plates, and steel plates, and the metal plates are single-layer plates or multi-layer anticorrosive composite plates.
  • weld seam welding in the above step 3) can use high-frequency welding process, laser welding process or argon arc welding process, and the metal plate used to produce the battery shell is continuously formed by in-line rollers and continuously welded in-line and in the metal
  • the running speed of the continuous weld formed at both ends of the sheet is greater than 0.01 meters per minute.
  • the rolled aluminum sheet is cut into a specified width by a slitting machine and then wound up to be used as a material for the battery shell of a new energy vehicle.
  • the metal material of the battery case in this embodiment uses 3003 single-layer aluminum alloy, and the heat treatment state is H14.
  • the rolled aluminum plate is sucked up by a vacuum suction cup and installed on the uncoiler of the new energy automobile battery shell production line.
  • the aluminum plate is sent to the forming mold through the tension-free automatic feeding system for continuous online forming, and the formed form is continuously welded by the high-frequency welding machine.
  • the two ends of the aluminum plate are welded together, leaving welding slag on the inner and outer surfaces of the battery case.
  • the welding slag is cooled and hardened by online chilling, and the welding slag on the inner and outer surfaces of the battery casing is continuously scraped online.
  • the battery shell that has been welded by high-frequency welding is processed online to make its shape and size meet the requirements of the drawings.
  • the eddy current flaw detector performs continuous online flaw detection on the high-frequency welds of the battery casing and the surface of the battery casing. If it is found that the high-frequency welding seam of the battery case and the surface of the battery case are due to abnormal welding or abnormal structure of the aluminum plate, the eddy current flaw detector will automatically alarm and spray color marks on the abnormal parts of the battery case to facilitate subsequent sorting and processing.
  • the battery case that meets the requirements of the drawing will be cut to the specified length according to the customer's requirements, and then cleaned, dried and placed for use.
  • the surface of the battery case, the bottom of the battery case, and the surface of the battery case cover can be, but not limited to, anti-corrosion surface treatment.
  • Other preferred shell metal materials include 3003MOD single-layer aluminum alloy and 3005 single-layer aluminum alloy.
  • the heat treatment state of 3003MOD single-layer aluminum alloy is H14 and the heat treatment state of 3005 single-layer aluminum alloy is H24.
  • the rolled aluminum sheet is cut into a specified width by a slitting machine and then wound up to be used as a material for the battery shell of a new energy vehicle.
  • the metal material of the battery case in this embodiment uses 3003/7072 composite aluminum alloy, the 7072 composite ratio is 10%, and the heat treatment state is H14.
  • the rolled aluminum plate is sucked up by a vacuum suction cup and installed on the uncoiler of the battery shell production line for new energy vehicles, so that the 7072 aluminum alloy layer is inside the battery shell.
  • the aluminum plate is sent to the forming mold through the tension-free automatic feeding system for continuous online forming, and the two ends of the formed aluminum plate are welded through the high-frequency welding machine on-line continuous welding, and welding slag is left on the inner and outer surfaces of the battery case.
  • the welding slag is cooled and hardened by online chilling, and the welding slag on the inner and outer surfaces of the battery casing is continuously scraped online.
  • the battery shell that has been welded by high-frequency welding is processed online to make its shape and size meet the requirements of the drawings.
  • the eddy current flaw detector performs continuous online flaw detection on the high-frequency welds of the battery casing and the surface of the battery casing.
  • the eddy current flaw detector will automatically alarm and spray color marks on the abnormal parts of the battery case to facilitate subsequent sorting and processing.
  • Other preferred battery shell metal materials include 3003MOD/7072 composite aluminum alloy (7072 composite ratio is 10%), 3005/7072 composite aluminum alloy (7072 composite ratio is 10%), and the heat treatment state of 3003MOD/7072 composite aluminum alloy It is H14, and the heat treatment state of 3005/7072 composite aluminum alloy is H24.
  • the rolled aluminum sheet is cut into a specified width by a slitting machine and then wound up to be used as a material for the battery shell of a new energy vehicle.
  • the metal material of the battery casing of this embodiment uses 7072/3003/7072 composite aluminum alloy, the composite ratio of 7072 is 10%, and the heat treatment state is H14.
  • the rolled aluminum plate is sucked up by a vacuum suction cup and installed on the uncoiler of the new energy automobile battery shell production line.
  • the aluminum plate is sent to the forming mold through the tension-free automatic feeding system for continuous online forming, and the formed form is continuously welded by the high-frequency welding machine.
  • the two ends of the aluminum plate are welded together, leaving welding slag on the inner and outer surfaces of the battery case.
  • the welding slag is cooled and hardened by online chilling, and the welding slag on the inner and outer surfaces of the battery casing is continuously scraped online.
  • the battery shell that has been welded by high-frequency welding is processed online to make its shape and size meet the requirements of the drawings.
  • the eddy current flaw detector performs continuous online flaw detection on the high frequency welds of the battery shell and the surface of the battery shell. If it is found that the high-frequency welding seam of the battery case and the surface of the battery case are due to abnormal welding or abnormal structure of the aluminum plate, the eddy current flaw detector will automatically alarm and spray color marks on the abnormal parts of the battery case to facilitate subsequent sorting and processing.
  • Other preferred battery shell metal materials include 7072/3003MOD/7072 composite aluminum alloy (7072 composite ratio is 10%), 7072/3005/7072 composite aluminum alloy (7072 composite ratio is 10%), of which 7072/3003MOD
  • the heat treatment state of /7072 composite aluminum alloy is H14, and the heat treatment state of 7072/3005/7072 composite aluminum alloy is H24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

一种新能源汽车电池壳及其生产方法,涉及新能源领域,该电池壳包括电池壳体、电池壳底和电池壳盖,其中电池壳体、电池壳底和电池壳盖由经过轧制的金属板材制成,金属板材至少有一层金属材料,金属板材厚度大于0.01mm;电池壳体轴向方向上至少有一条连续焊缝,连续焊缝在电池壳体内外表面所留下的焊渣必须刮平,使焊缝厚度不高于金属板材厚度。可以大幅度地提高新能源汽车电池能量密度,降低电池重量,减小电池体积,改善电池散热,降低电池成本,增加新能源汽车续航里程,更加有利于新能源汽车的推广和应用。

Description

一种新能源汽车电池壳及其生产方法 技术领域
本发明涉及新能源领域,具体涉及一种新能源汽车电池壳及其生产方法。
背景技术
动力电池系统作为新能源汽车中成本占比最高的部件直接决定了整车的市场定价。目前认为只有动力电池系统成本降至与传统燃油车发动机成本相当的水平,纯电动汽车才能于财政补贴退出后在终端售价方面具有真正的市场竞争力。在我国动力电池产品成本的发展演变中,产业链的建设完善和国产化率的不断提高对动力电池的成本下降起到了关键的助推作用。
基于以上国家政策导向和市场需求,开发高能量密度电池,减轻电池重量,降低电池成本是当前新能源电池发展中的重中之重。目前市场上的新能源汽车电池大部分是能量密度不太高的电池,而且电池重量太重,体积过大,成本较高等,致使新能源汽车在续航里程,充电便捷性,市场推广和消费者接受程度上遇到一些瓶颈。目前市场上的新能源汽车电池壳大部分是通过冲压拉伸和热挤压的铝电池壳,由于这种生产方式的局限、电池壳铝材自身性能和缺陷致使通过冲压拉伸工艺不能生产出长电池壳,电池壳厚度太厚,重量过重,散热性能较差,生产效率低,很难大幅度地提高新能源汽车电池能量密度,降低电池重量,减小电池体积,改善电池散热,降低电池成本,增加新能源汽车续航里程,成为新能源汽车大规模推广应用的瓶颈。
发明内容
为解决上述现有技术中存在的电池壳厚度太厚,重量过重,散热性能较差,生产效率低等问题,本发明提出了一种新型新能源汽车电池壳,使用这种电池壳生产的新能源汽车电池,可以大幅度地提高新能源汽车电池能量密度,降低电池重量,减小电池体积,改善电池散热,降低电池成本,增加新能源汽车续航里程,更加有利于新能源汽车的推广和应用。
为实现上述发明目的,本发明提出了一种新能源汽车电池壳,包括电池壳体、电池壳底和电池壳盖,其中电池壳体、电池壳底和电池壳盖由经过轧制的金属板材制成,金属板材至少有一层金属材料,金属板材厚度大于0.01mm;电池壳体轴向方向上至少有一条连续焊缝;电池壳体分别和电池壳底、电池壳盖可以但不限于用焊接方式连接;电池壳体、电池壳底、电池壳盖表面可以但不限于做防腐表面处理。
进一步地,上述连续焊缝在电池壳体内外表面所留下的焊渣必须刮平,使焊缝厚度不高 于金属板材厚度
进一步地,上述电池壳盖或电池壳底还包括电池正/负极、电池泄压阀和电池注液孔,所述电池泄压阀用于电池壳内废气压力过高时,利用气压差,排出废气;所述电池注液孔用于把电解液按照需要的量注入电池内部。
进一步地,上述金属板材包括铝板材、铜板材、钢板材,所述金属板材为单层板材或多层防腐复合板材。
进一步地,上述电池壳体截面形状为圆形、矩形、椭圆形、三角形、梯形、菱形、不规则形状。
本发明还提供了一种新能源汽车电池壳生产方法,包括以下步骤:
1)将轧制到设计厚度的金属板材经过分切机分切到设计宽度后收卷;
2)用真空吸盘吸起收卷后的金属板材并装载至开卷机,通过自动送料系统将金属板材送至成型模具中在线连续成型;
3)使用焊机在线连续焊接,将已经成型的金属板材两端连续焊合,在电池壳轴向形成一条连续焊缝,同时在电池壳体内外表面留下焊渣;
4)在线激冷使焊渣冷却硬化,通过内外刮渣装置连续刮去电池壳体内外表面焊渣;
5)将已经焊合的电池壳体进行在线精整处理,使电池壳体的外形和尺寸等满足图纸要求;
6)使用冲床把金属板材冲压加工成电池壳底和电池壳盖,将电池电极组件、泄压阀组件、注液组件等零件分别装配固定在电池壳底和电池壳盖上;电池壳体分别和电池壳底、电池壳盖用激光焊机或氩弧焊机焊接连接。
进一步地,上述步骤5)还包括以下内容:
使用涡流探伤仪对电池壳体的焊缝和电池壳体表面在线连续探伤;如发现电池壳体的焊缝和电池壳体表面由于焊接异常或金属板材组织异常,涡流探伤仪报警并在电池壳体相关异常部位喷色标记。
进一步地,上述步骤6)之前还包括以下内容:
根据电池壳技术要求将电池壳体切断到规定长度后清洗干燥备用,其中对单层金属板材制造的电池壳体,电池壳底、电池壳盖表面可以但不限于做防腐表面处理。
进一步地,上述金属板材包括铝板材、铜板材、钢板材,所述金属板材为单层板材或多层防腐复合板材。
进一步地,上述步骤3)中的焊缝焊接可使用高频焊接工艺、激光焊接工艺或氩弧焊工 艺,用于生产电池壳体的金属板材经过在线棍轮连续成型、在线连续焊接并在金属板材两端形成连续焊缝的运行速度大于0.01米每分钟。
本发明的有益效果如下:
1.通过冲压拉伸的方式无法生产出足够长的电池壳,而本发明的电池壳长度可以自己调节,可以有效提高电池能量密度,增加新能源汽车续航里程。
2.本发明的电池壳材料厚度可以大幅度减薄,有效改善电池散热效率,减少电池体积,降低电池重量,提高电池容量,降低电池成本。这是冲压拉伸方式和热挤压方式生产的铝电池壳材料厚度所无法比拟的。
3.本发明的电池壳体是金属板材经过在线棍轮连续成形和在线连续焊接并在金属板材两端形成连续焊缝焊接而成,其运行速度可达100米每分钟以上。这种生产效率至少是冲压拉伸或热挤压方式生产效率的30倍,有效地降低新能源汽车电池成本。
4.本发明的电池壳体、电池壳底和电池壳盖材料可以用带有防腐层的多层复合金属的铝板材,铜板材,钢板材等,优选地使用带有防腐层的铝板材。这种带有防腐层的铝板材可以有效延长电池的使用寿命。
5.本发明的电池壳体、电池壳底和电池壳盖材料是经过金属轧机多次轧制而成的,消除了材料自身的众多缺陷,提高了电池壳的质量和的电池安全性。这是热挤压铝电池壳材料所无法比拟的。
6.本发明的电池壳是通过轧制后的电池壳体金属板材经过在线棍轮连续成形和在线连续焊接并在金属板材两端形成连续焊缝焊接而成,金属板材变形量很小没有破坏材料自身的性能,可以有效延长电池的使用寿命。这是冲压拉伸方式生产的铝电池壳所无法比拟的。
附图说明
附图1为本发明新能源汽车电池壳结构示意图1。
附图2为本发明新能源汽车电池壳结构示意图2。
附图3为本发明新能源汽车电池壳结构示意图3。
附图4为本发明新能源汽车电池壳结构示意图4。
附图5为本发明新能源汽车电池壳结构示意图5。
附图6为本发明的新能源汽车电池壳体生产线示意图。
具体实施方式
下面结合附图和具体实施例详细描述本发明。
如图1-5所示,本发明提出了一种新能源汽车电池壳,包括电池壳体、电池壳底和电池 壳盖,其中电池壳体、电池壳底和电池壳盖由经过轧制的金属板材制成,金属板材至少有一层金属材料,金属板材厚度大于0.01mm;电池壳体轴向方向上至少有一条连续焊缝,连续焊缝在电池壳体内外表面所留下的焊渣必须刮平,使焊缝厚度不高于金属板材厚度;电池壳体分别和电池壳底、电池壳盖可以但不限于用焊接方式连接;电池壳体、电池壳底、电池壳盖表面可以但不限于做防腐表面处理。
本发明的电池壳在电池壳盖或电池壳底还包括电池正/负极组件、电池泄压阀组件和电池注液组件,所述泄压阀用于电池壳内废气压力过高时,利用气压差,排出废气;所述注液孔用于把电解液按照需要的量注入电池内部。作为本发明的优选实施例,如图1-2和图4-5所示,当电池壳体截面形状为圆形或矩形时,电池壳盖上安装有电池正极组件、电池注液组件,电池壳底安装有电池负极组件、电池泄压阀组件。如图3所示,当电池壳体截面形状为矩形时,也可以把电池正/负极组件、电池泄压阀组件和电池注液组件都安装在电池壳盖上。
进一步地,上述金属板材包括铝板材、铜板材、钢板材,金属板材为单层板材或多层防腐复合板材。
进一步地,上述电池壳体截面形状为圆形、矩形、椭圆形、三角形、梯形、菱形、不规则形状。
如图6所示,本发明还提出了一种新能源汽车电池壳体生产方法,包括以下步骤:
1)将轧制到设计厚度的金属板材经过分切机分切到设计宽度后收卷;
2)用真空吸盘吸起收卷后的金属板材并装载至开卷机,通过自动送料系统将金属板材送至成型模具中在线连续成型;
3)使用焊机在线连续焊接,将已经成型的金属板材两端连续焊合,在电池壳轴向形成一条连续焊缝,同时在电池壳体内外表面留下焊渣;
4)在线激冷使焊渣冷却硬化,通过内外刮渣装置连续刮去电池壳体内外表面焊渣;
5)将已经焊合的电池壳体进行在线精整处理,使电池壳体的外形和尺寸等满足图纸要求;
6)使用涡流探伤仪对电池壳体的焊缝和电池壳体表面在线连续探伤;如发现电池壳体的焊缝和电池壳体表面由于焊接异常或金属板材组织异常,涡流探伤仪报警并在电池壳体相关异常部位喷色标记。
7)根据电池壳技术要求将电池壳体切断到规定长度后清洗干燥备用,其中对单层金属板材制造的电池壳体,电池壳底、电池壳盖表面可以但不限于做防腐表面处理。
8)使用冲床把金属板材冲压加工成电池壳底和电池壳盖,将电池电极组件、泄压阀组件、注液组件等零件分别装配固定在电池壳底和电池壳盖上;电池壳体分别和电池壳底、电池壳盖用激光焊机或氩弧焊机焊接连接。
进一步地,上述金属板材包括铝板材、铜板材、钢板材,所述金属板材为单层板材或多层防腐复合板材。
进一步地,上述步骤3)中的焊缝焊接可使用高频焊接工艺、激光焊接工艺或氩弧焊工艺,用于生产电池壳体的金属板材经过在线棍轮连续成型、在线连续焊接并在金属板材两端形成连续焊缝的运行速度大于0.01米每分钟。
下面通过具体实施例对本发明进行详细说明。
具体实施例1
轧制后的铝板经过分切机分切成规定的宽度后收卷,作为新型新能源汽车电池壳体的材料。本实施例的电池壳体金属材料使用3003单层铝合金,热处理状态为H14。成卷的铝板用真空吸盘吸起装在新能源汽车电池壳体生产线开卷机上,通过无张力自动送料系统将铝板送到成型模具中在线连续成型,经过高频焊机在线连续焊接将已经成型的铝板两端焊合,并在电池壳体内外表面留下焊渣。通过在线激冷使焊渣冷却硬化并在线连续刮去电池壳体内外表面焊渣。随后是把已经通过高频焊接焊合的电池壳体进行在线精整处理,使其外形和尺寸等满足图纸要求。在切断机在线切断电池壳体前,涡流探伤仪对电池壳体的高频焊缝和电池壳体表面在线连续探伤。如果发现电池壳体的高频焊缝和电池壳体表面由于焊接异常或铝板组织异常,涡流探伤仪会自动报警并在电池壳体相关异常部位喷色标记,便于后续分拣处理。
电池壳体生产线在线运行过程中,每隔10分钟需要在线取样进行严格检验,包括上爆破试验台检测电池壳体爆破压力,检验电池壳体外观、形状和尺寸等。符合图纸要求的电池壳体将会根据客户要求切断到规定长度,然后清洗、干燥放置备用。其中电池壳体,电池壳底、电池壳盖表面可以但不限于做防腐表面处理。
使用冲床冲压把热处理状态H14的3003单层铝合金板材加工成电池壳底和电池壳盖,再把电池电极组件,泄压阀组件和注液组件等零件分别装配在电池壳底和电池壳盖上。电池壳体分别和电池壳底和电池壳盖用激光焊机或氩弧焊机焊接连接。经过以上加工,就可以生产出这种新型新能源汽车电池壳。
其他优选的壳体金属材料还有3003MOD单层铝合金、3005单层铝合金,其中3003MOD单层铝合金的热处理状态为H14,3005单层铝合金的热处理状态为H24。
具体实施例2
轧制后的铝板经过分切机分切成规定的宽度后收卷,作为新型新能源汽车电池壳体的材料。本实施例的电池壳体金属材料使用3003/7072复合铝合金,7072复合比为10%,热处理状态为H14。成卷的铝板用真空吸盘吸起装在新能源汽车电池壳体生产线开卷机上,使7072铝合金层在电池壳体内侧。通过无张力自动送料系统将铝板送到成型模具中在线连续成型,经过高频焊机在线连续焊接将已经成型的铝板两端焊合,并在电池壳体内外表面留下焊渣。通过在线激冷使焊渣冷却硬化并在线连续刮去电池壳体内外表面焊渣。随后是把已经通过高频焊接焊合的电池壳体进行在线精整处理,使其外形和尺寸等满足图纸要求。在切断机在线切断电池壳体前,涡流探伤仪对电池壳体的高频焊缝和电池壳体表面在线连续探伤。如果发现电池壳体的高频焊缝和电池壳体表面由于焊接异常或铝板组织异常,涡流探伤仪会自动报警并在电池壳体相关异常部位喷色标记,便于后续分拣处理。
电池壳体生产线在线运行过程中,每隔10分钟需要在线取样进行严格检验,包括上爆破试验台检测电池壳体爆破压力,检验电池壳体外观、形状和尺寸等。符合图纸要求的电池壳体将会根据客户要求切断到一定长度,然后清洗、干燥放置备用。
使用冲床冲压把热处理状态H14,复合比10%的3003/7072复合铝合金板材加工成电池壳底和电池壳盖,再把电池电极组件,泄压阀组件和注液组件等零件分别装配在电池壳底和电池壳盖上。电池壳体分别和电池壳底和电池壳盖用激光焊机或氩弧焊机焊接连接。焊接时特别需要注意的是电池壳底和电池壳盖上的7072铝合金层应该在电池壳内侧。经过以上加工,就可以生产出新型使用寿命更长的新能源汽车电池壳。
其他优选的电池壳体金属材料还有3003MOD/7072复合铝合金(7072复合比是10%)、3005/7072复合铝合金(7072复合比是10%),其中3003MOD/7072复合铝合金的热处理状态为H14,3005/7072复合铝合金的热处理状态为H24。
具体实施例3
轧制后的铝板经过分切机分切成规定的宽度后收卷,作为新型新能源汽车电池壳体的材料。本实施例的电池壳体金属材料使用7072/3003/7072复合铝合金,7072复合比都是10%,热处理状态为H14。成卷的铝板用真空吸盘吸起装在新能源汽车电池壳体生产线开卷机上,通过无张力自动送料系统将铝板送到成型模具中在线连续成型,经过高频焊机在线连续焊接将已经成型的铝板两端焊合,并在电池壳体内外表面留下焊渣。通过在线激冷使焊渣冷却硬化并在线连续刮去电池壳体内外表面焊渣。随后是把已经通过高频焊接焊合的电池壳体进行在线精整处理,使其外形和尺寸等满足图纸要求。在切断机在线切断电池壳体前,涡 流探伤仪对电池壳体的高频焊缝和电池壳体表面在线连续探伤。如果发现电池壳体的高频焊缝和电池壳体表面由于焊接异常或铝板组织异常,涡流探伤仪会自动报警并在电池壳体相关异常部位喷色标记,便于后续分拣处理。
电池壳体生产线在线运行过程中,每隔10分钟需要在线取样进行严格检验,包括上爆破试验台检测电池壳体爆破压力,检验电池壳体外观、形状和尺寸等。符合图纸要求的电池壳体将会根据客户要求切断到规定长度,然后清洗、干燥放置备用。
使用冲床冲压把热处理状态为H14、复合比为10%的7072/3003/7072复合铝合金板材加工成电池壳底和电池壳盖,再把电池电极组件,泄压阀组件和注液组件等零件分别装配在电池壳底和电池壳盖上。电池壳体分别和电池壳底和电池壳盖用激光焊机或氩弧焊机焊接连接。经过以上加工,就可以生产出新型使用寿命更长的新能源汽车电池壳。
其他优选的电池壳体金属材料还有7072/3003MOD/7072复合铝合金(7072复合比都是10%)、7072/3005/7072复合铝合金(7072复合比都是10%),其中7072/3003MOD/7072复合铝合金的热处理状态为H14,7072/3005/7072复合铝合金的热处理状态为H24。

Claims (10)

  1. 一种新能源汽车电池壳,其特征在于包括电池壳体、电池壳底和电池壳盖,所述电池壳体、电池壳底和电池壳盖由经过轧制的金属板材制成,所述金属板材至少有一层金属材料,金属板材厚度大于0.01mm;所述电池壳体轴向方向上至少有一条连续焊缝;所述电池壳体分别和电池壳底、电池壳盖可以但不限于用焊接方式连接;所述电池壳体、电池壳底、电池壳盖表面可以但不限于做防腐表面处理。
  2. 如权利要求1所述的新能源汽车电池壳,其特征在于所述连续焊缝在电池壳体内外表面所留下的焊渣必须刮平,使焊缝厚度不高于金属板材厚度。
  3. 如权利要求1所述的新能源汽车电池壳,其特征在于所述电池壳盖或电池壳底还包括电池正/负极、电池泄压阀和电池注液孔,所述电池泄压阀用于电池壳内废气压力过高时,利用气压差,排出废气;所述电池注液孔用于把电解液按照需要的量注入电池内部。
  4. 如权利要求1所述的新能源汽车电池壳,其特征在于所述金属板材包括铝板材、铜板材、钢板材,所述金属板材为单层板材或多层防腐复合板材。
  5. 如权利要求1所述的新能源汽车电池壳,其特征在于电池壳体截面形状为圆形、矩形、椭圆形、三角形、梯形、菱形、不规则形状。
  6. 一种新能源汽车电池壳生产方法,其特征在于包括以下步骤:
    1)将轧制到设计厚度的金属板材经过分切机分切到设计宽度后收卷;
    2)用真空吸盘吸起收卷后的金属板材并装载至开卷机,通过自动送料系统将金属板材送至成型模具中在线连续成型;
    3)使用焊机在线连续焊接,将已经成型的金属板材两端连续焊合,在电池壳体轴向形成一条连续焊缝,同时在电池壳体内外表面留下焊渣;
    4)在线激冷使焊渣冷却硬化,通过内外刮渣装置连续刮去电池壳体内外表面焊渣;
    5)将已经焊合的电池壳体进行在线精整处理,使电池壳体的外形和尺寸等满足图纸要求;
    6)使用冲床把金属板材冲压加工成电池壳底和电池壳盖,将电池电极组件、泄压阀组件、注液组件等零件分别装配固定在电池壳底和电池壳盖上;电池壳体分别和电池壳底、电池壳盖用激光焊机或氩弧焊机焊接连接。
  7. 如权利要求6所述的新能源汽车电池壳生产方法,其特征在于步骤5)还包括以下内容:
    使用涡流探伤仪对电池壳体的焊缝和电池壳体表面在线连续探伤;如发现电池壳体的焊缝和电池壳体表面由于焊接异常或金属板材组织异常,涡流探伤仪报警并在电池壳体相关异 常部位喷色标记。
  8. 如权利要求6所述的新能源汽车电池壳生产方法,其特征在于步骤6)之前还包括以下内容:
    根据电池壳技术要求将电池壳体切断到规定长度后清洗干燥备用,其中对单层金属板材制造的电池壳体,电池壳底、电池壳盖表面可以但不限于做防腐表面处理。
  9. 如权利要求6所述的新能源汽车电池壳生产方法,其特征在于所述金属板材包括铝板材、铜板材、钢板材,所述金属板材为单层板材或多层防腐复合板材。
  10. 如权利要求6所述的新能源汽车电池壳生产方法,其特征在于所述步骤3)中的焊缝焊接可使用高频焊接工艺、激光焊接工艺或氩弧焊工艺,用于生产电池壳体的金属板材经过在线棍轮连续成型、在线连续焊接并在金属板材两端形成连续焊缝的运行速度大于0.01米每分钟。
PCT/CN2019/098366 2019-02-12 2019-07-30 一种新能源汽车电池壳及其生产方法 WO2020164231A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910111396.X 2019-02-12
CN201910111396 2019-02-12

Publications (1)

Publication Number Publication Date
WO2020164231A1 true WO2020164231A1 (zh) 2020-08-20

Family

ID=72045239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098366 WO2020164231A1 (zh) 2019-02-12 2019-07-30 一种新能源汽车电池壳及其生产方法

Country Status (1)

Country Link
WO (1) WO2020164231A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112719807A (zh) * 2020-12-24 2021-04-30 江阴东华铝材科技有限公司 一种新能源汽车电池换电箱体的制造方法
CN115213644A (zh) * 2022-09-19 2022-10-21 宁波震裕科技股份有限公司 一体式电池壳成型工艺
EP4340082A1 (de) * 2022-09-16 2024-03-20 DREISTERN GmbH & Co.KG Batteriezellengehäuse und verfahren sowie anlage zum herstellen von batteriezellengehäusen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335841A (en) * 1990-11-02 1994-08-09 Usui Kokusai Sangyo Kaisha Ltd. Method of manufacturing welded pipe with excellent corrosion-resistant inner surface
CN2424531Y (zh) * 2000-01-27 2001-03-21 深圳市华粤宝电池有限公司 新封装结构的电池
CN201590455U (zh) * 2009-12-30 2010-09-22 上海比亚迪有限公司 一种新型电池
CN101937977A (zh) * 2010-09-26 2011-01-05 广州市云通磁电有限公司 一种正六方柱形电池壳的制造方法
CN103026529A (zh) * 2011-05-30 2013-04-03 松下电器产业株式会社 电池块及其制造方法
CN109935744A (zh) * 2019-02-14 2019-06-25 南京优仁有色金属有限公司 一种新能源汽车电池壳及其生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335841A (en) * 1990-11-02 1994-08-09 Usui Kokusai Sangyo Kaisha Ltd. Method of manufacturing welded pipe with excellent corrosion-resistant inner surface
CN2424531Y (zh) * 2000-01-27 2001-03-21 深圳市华粤宝电池有限公司 新封装结构的电池
CN201590455U (zh) * 2009-12-30 2010-09-22 上海比亚迪有限公司 一种新型电池
CN101937977A (zh) * 2010-09-26 2011-01-05 广州市云通磁电有限公司 一种正六方柱形电池壳的制造方法
CN103026529A (zh) * 2011-05-30 2013-04-03 松下电器产业株式会社 电池块及其制造方法
CN109935744A (zh) * 2019-02-14 2019-06-25 南京优仁有色金属有限公司 一种新能源汽车电池壳及其生产方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112719807A (zh) * 2020-12-24 2021-04-30 江阴东华铝材科技有限公司 一种新能源汽车电池换电箱体的制造方法
EP4340082A1 (de) * 2022-09-16 2024-03-20 DREISTERN GmbH & Co.KG Batteriezellengehäuse und verfahren sowie anlage zum herstellen von batteriezellengehäusen
CN115213644A (zh) * 2022-09-19 2022-10-21 宁波震裕科技股份有限公司 一体式电池壳成型工艺

Similar Documents

Publication Publication Date Title
WO2020164231A1 (zh) 一种新能源汽车电池壳及其生产方法
CN209344138U (zh) 一种新能源汽车电池壳
CN104128694A (zh) 钢制薄板压力容器纵缝紫铜衬垫焊接工艺及其所使用的紫铜衬垫
CN102248372B (zh) 单面复合不锈钢冷轧基料的生产方法
CN109065789A (zh) 一种新型电池包托盘
CN104028556A (zh) 一种多层金属合金复合钢板的轧制方法
CN101885136A (zh) 空调压缩机外壳专用钢管生产工艺
CN109361037A (zh) 新能源汽车电池包液冷板涨型成型方法及液密性检测方法
CN109935744A (zh) 一种新能源汽车电池壳及其生产方法
CN104611616A (zh) 一种利用铸轧坯生产的动力功能材料用铝箔及其制备方法
CN105880935A (zh) 凹印版辊的制作方法
CN112548295A (zh) 汽车铝合金电阻点焊方法
CN100574967C (zh) 一种屏蔽套拉伸制造工艺
CN101357520B (zh) 一种镁合金复合材料及其制备方法
CN106425020B (zh) 一种焊接垫板及其在镁/铝异种金属焊接中的应用
CN109807438A (zh) 一种用于热水器搪瓷钢内胆环缝焊接的方法
CN109216599A (zh) 一种新能源锂电池薄壁铝壳及生产工艺
TW201231184A (en) Process for seamless metal ring
CN102513443A (zh) 一种铅酸蓄电池冲孔板栅处理方法
CN216175317U (zh) 一种大尺寸钼板的轧制装置
CN106624278B (zh) 一种变壁厚铝材焊接方法
CN104476122A (zh) 一种锅炉用焊接钢管的制备方法
CN115194105A (zh) 一种减少新能源动力电池用铝箔切边量的系统
CN208674205U (zh) 一种新型电池包托盘
CN109368356B (zh) 一种锂电池分切机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915541

Country of ref document: EP

Kind code of ref document: A1