WO2020164223A1 - 一种激光雷达及组合扫描装置 - Google Patents

一种激光雷达及组合扫描装置 Download PDF

Info

Publication number
WO2020164223A1
WO2020164223A1 PCT/CN2019/094822 CN2019094822W WO2020164223A1 WO 2020164223 A1 WO2020164223 A1 WO 2020164223A1 CN 2019094822 W CN2019094822 W CN 2019094822W WO 2020164223 A1 WO2020164223 A1 WO 2020164223A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
scanning device
rotating
combined scanning
reflection mechanism
Prior art date
Application number
PCT/CN2019/094822
Other languages
English (en)
French (fr)
Inventor
任建峰
虞爱华
Original Assignee
昂纳信息技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昂纳信息技术(深圳)有限公司 filed Critical 昂纳信息技术(深圳)有限公司
Publication of WO2020164223A1 publication Critical patent/WO2020164223A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the invention relates to the field of laser radar, in particular to a laser radar and a combined scanning device.
  • Lidar is a radar system that emits laser beams to detect the position and speed of the target. Its working principle is to transmit a detection signal (laser beam) to the target, and then compare the received signal (target echo) from the target with the transmitted signal. After proper processing, the relevant information of the target can be obtained, such as Target distance, azimuth, height, speed, attitude, and even shape and other parameters.
  • lidar One of the important supporting sensors, lidar, has emerged in various types of solutions in order to meet various specific needs.
  • lidar products (such as vehicles) need to be able to cover a large range of horizontal scanning field of view and vertical field of view.
  • a common one is to arrange a larger number of laser transceiver components in the vertical field of view, and use a rotating motor to drive the horizontal field of view to achieve 360° horizontal scanning, so as to achieve larger coverage of both the horizontal field of view and the vertical field of view.
  • Range one is to use two galvanometers to scan in the two directions of the horizontal field of view and the vertical field of view, so that both the vertical field of view and the horizontal field of view can meet the requirements.
  • the second dual galvanometer scanning scheme cannot achieve a large scanning range and a high scanning repetition frequency at the same time, which is often not conducive to high frame rate and large-range scanning.
  • the technical problem to be solved by the present invention is to provide a laser radar and a combined scanning device in view of the above-mentioned defects of the prior art, so as to solve the problems of small scanning range, complicated process, and limited scanning frequency of existing laser radar products.
  • the technical solution adopted by the present invention to solve its technical problem is to provide a combined scanning device, including: a rotatable rotating reflection mechanism, including at least one reflecting surface arranged on the rotating side; a galvanometer mirror facing the rotating reflection mechanism The device is configured to receive an external light beam and deflect it in a first direction; wherein the deflected light beam in the first direction scans the second direction outward through the reflecting surface.
  • the combined scanning device includes a plurality of galvanometer mirrors arranged around the rotating reflection mechanism.
  • the first direction field of view of the multiple galvanometer mirrors is arranged to overlap or not to overlap.
  • first direction and the second direction are perpendicular to each other.
  • first direction and the second direction are arranged non-parallel.
  • a preferred solution is that: a plurality of reflecting surfaces are provided on the rotating side of the rotating reflecting mechanism.
  • the rotating reflection mechanism includes a polygonal cylindrical support that can rotate.
  • the reflecting surface is arranged parallel to the rotation axis of the rotating reflection mechanism, or arranged obliquely.
  • the technical solution adopted by the present invention to solve its technical problem is: provide a laser radar, including a combined scanning device; a transceiver module, including a laser transmitter and a detector, the laser transmitter emits a laser beam incident on the vibration of the combined scanning device The mirror reflector, the detector obtains the light signal reflected from the galvanometer reflector.
  • the laser transmitter includes one or more laser emitting heads
  • the detector includes a probe head matched with the laser emitting head
  • the laser transmitter includes a plurality of laser emitting heads, and the plurality of laser emitting heads are arranged vertically or in an array.
  • the galvanometer mirror includes a mirror body and a movement module that controls the reciprocating movement of the mirror body in the first direction, so as to realize the first direction deflection of the laser beam.
  • the beneficial effect of the present invention is that, compared with the prior art, by designing a laser radar and a combined scanning device, the present invention can use a small amount of laser light sources to achieve scanning coverage of a large field of view, with a wide horizontal field of view and scanning frame.
  • Features such as high frequency, large vertical field of view, and high angular resolution in the vertical field of view direction; further, the number of transceiver components in the system is greatly reduced under the same vertical field of view resolution, which has a positive significance for reducing the overall hardware cost of the system;
  • the difficulty of system alignment is reduced, so that the labor cost of assembly and adjustment is significantly reduced, and it is suitable for industrial production.
  • Figure 1 is a schematic diagram of the structured lidar of the present invention
  • FIG. 2 is a schematic diagram of the structure of multiple galvanometer mirrors of the present invention.
  • the present invention provides a preferred embodiment of a lidar.
  • a laser radar includes a rotating reflection mechanism 10, a transceiver module and a galvanometer mirror 20, wherein the rotating reflection mechanism 10 includes at least one reflective surface 11 arranged on the rotating side and can rotate; the transceiver module includes a laser transmitter 31 And the detector 32; the galvanometer mirror is arranged between the rotating reflection mechanism 10 and the transceiver module, and receives the laser beam from the laser transmitter 31 and deflects it in the first direction; further, the laser beam deflected in the first direction is reflected by the rotation The reflective surface 11 of the mechanism 10 scans outward in the second direction.
  • the laser transmitter 31 emits a laser beam to the galvanometer mirror 20, is deflected in the first direction of the galvanometer mirror 20, forms multiple laser beams in the first direction, and is incident on the rotating reflection mechanism 10 to pass
  • the rotating reflection mechanism 10 rotates to realize scanning outward in the second direction, and the rotating reflection mechanism 10 transmits the light signal reflected from the outside to the detector 32 through the galvanometer mirror 20, and the detection is realized by the detector 32.
  • the rotating reflecting mechanism 10 rotates around the rotating shaft 101 to realize the reciprocating or rotating movement of the reflecting surface 11.
  • first direction and the second direction are arranged non-parallel to achieve polarization in two different directions; and the first direction and the second direction are arranged vertically, preferably the first direction is a vertical direction and the second direction is a horizontal direction.
  • the galvanometer mirror 20 vertically offsets the incident laser beam to achieve vertical scanning, increasing the scanning angle in the first direction, and the rotating reflection mechanism 10 scans the incident laser beam in the second direction to improve the scanning in the second direction. angle.
  • the path of the laser beam is: laser transmitter 31 (to emit laser beam), galvanometer mirror 20 (to achieve vertical scanning), rotating reflection mechanism 10 (to realize scanning in the second direction), external obstacles, and rotating reflection mechanism 10.
  • Galvo mirror 20 and detector 32 The specific information of the obstruction is obtained by the detector 32 to form radar scan information.
  • a combined scanning device which includes a rotating reflection mechanism 10 having at least one reflecting surface 11 and capable of rotating movement, and at least one galvanometer mirror 20 matched with the rotating reflection mechanism 10; wherein, the external The laser transmitter 31 emits a laser beam to the galvanometer mirror 20, is deflected by the galvanometer mirror 20 in the first direction, and then is reflected to the rotating reflection mechanism 10, and the rotating reflection mechanism 10 rotates to realize scanning outward in the second direction , And, the rotating reflection mechanism 10 reflects the laser beam from the outside and then enters the corresponding detector 32 through the galvanometer mirror 20.
  • the separately configured combined scanning device and the corresponding laser transmitter 31 and detector 32 it can scan a wide range, which is convenient for later maintenance, repair and upgrade, and the structure is modularized and more humane.
  • the galvanometer mirror 20 includes a mirror body and a movement module that controls the reciprocating rotation of the mirror body in the first direction, so as to realize the first direction deflection of the laser beam.
  • the movement module drives the mirror body to reciprocate and rotate along the rotation axis 201 of the mirror body.
  • the movement module drives the galvanometer mirror 20 to reciprocate and rotate in the first direction, driving the incident laser beam to emit outward at different angles in the first direction to achieve verticality. scanning.
  • the rotation direction of the mirror body is preferably the first direction, but it can also be tilted and rotated, and only vertical scanning can be achieved in the first direction, and the "reciprocating rotation in the first direction" can be regarded as the mirror body
  • the rotation of is in the first direction, or it can be considered that the rotation of the mirror body can be embodied in the first direction.
  • the motion module may be a MEMS structure, or other structures that can drive the galvanometer mirror 20 to rotate.
  • the laser transmitter 31 includes one or more laser emitting heads
  • the detector 32 includes one or more probe heads matched with the corresponding laser emitting heads.
  • the laser emitting head and the detecting head 321 are paired one by one to improve the feasibility of alignment.
  • a plurality of the laser emitting heads are arranged vertically or in an array.
  • the vertical setting reduces the setting of the laser emitting head, reduces the cost and reduces the volume, and the array setting increases the density of the scanning area and improves the scanning accuracy.
  • the detection head 321 can be arranged adjacent to the laser emitting head, and also form a corresponding vertical arrangement or array arrangement.
  • the present invention provides a preferred embodiment of multiple galvanometer mirrors.
  • the rotating reflection mechanism 10 is a polygonal columnar structure that can rotate around a central axis, and the side surfaces of the polygonal columnar structure are all provided with reflective surfaces.
  • the polygonal columnar structure may be a columnar structure corresponding to a quadrilateral, a pentagon, or a hexagon.
  • the reflecting surface 11 is arranged parallel to the central axis, or arranged obliquely to the central axis. To meet the needs of different optical paths, such as a more compact optical path and increase the reflection angle.
  • the lidar includes one or more galvanometer mirrors 20, the galvanometer mirrors 20 are arranged around the rotating reflection mechanism 10, and each of the galvanometer mirrors 20 is arranged in cooperation with a transceiver module.
  • the vertical fields of view of the multiple galvanometer mirrors 20 are overlapped or non-overlapping.
  • the multiple galvanometer mirrors 20 meet the requirements of a wide range of fields of view, and ordinary galvanometer mirrors are used. 20 to complete the corresponding control requirements.
  • different galvanometer mirrors 20 have different vertical rotation directions, which increases the scanning frequency, and at the same time, it can also achieve a wide range of angles covering the first direction.
  • the left galvanometer mirror 20 can be rotated upward by 90 degrees to horizontal
  • the right galvanometer mirror 20 can be rotated by 90 degrees downward to horizontal.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

公开了一种激光雷达,包括旋转反射机构(10),至少设置一反射面(11),且可旋转运动;收发模块,包括激光发射器(31)和探测器(32);振镜反射镜(20),设置在旋转反射机构(10)与收发模块之间,接收激光发射器(31)的激光光束并进行垂直方向的偏转;其中,垂直方向偏转的激光光束通过旋转反射机构的反射面向外水平扫描。还公开了一种组合扫描装置。可用少量的激光光源实现大视场范围的扫描覆盖,具有水平视场宽、扫描帧频高、垂直视场大且垂直视场方向角度分辨率高等特点;在同等垂直视场分辨率情况下大大降低了系统中收发组件的数量,系统整体硬件成本降低。

Description

一种激光雷达及组合扫描装置 技术领域
本发明涉及激光雷达领域,具体涉及一种激光雷达及组合扫描装置。
背景技术
激光雷达,是以发射激光束探测目标的位置、速度等特征量的雷达系统。其工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数。
特别是在自动驾驶领域,自动驾驶等技术高速发展,其中一项重要配套传感器激光雷达,为了满足各种特定需求,涌现出各种类型的方案。
为了满足障碍检测等方面的使用需求,激光雷达产品(如车用)需要能够覆盖较大范围的水平扫描视场角和垂直视场角。常见的一种是在垂直视场上排布较多数量的激光收发组件,在水平视场上用旋转电机带动实现360°水平扫描,从而实现水平视场和垂直视场均有较大的覆盖范围;一种是在水平视场和垂直视场两个方向上分别使用2个振镜进行扫描,从何达到垂直视场和水平视场都都达到需求指标的目的。
但是,上述方案均存在问题,如第一种360°扫描的激光雷达产品,为了能够覆盖较大范围的垂直视场,需要放置较多数量的激光收发组件,这些激光组件往往需要做到一一对准,在生产调试过程中难度较大且由于组件数量高而成本高昂。而且在特定应用场合不需要360°全范围数据时,在局部视场扫描需求环境下扫描频率受限,不利于局部高密度扫描。
而第二种双振镜扫描方案由于振镜系统自身特性,无法同时达到大扫描范围和高扫描重频,往往不利于高帧频大范围扫描。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种激光雷达及组合扫描装置,解决现有激光雷达产品存在的扫描范围小,工艺复杂,扫描频率受限等问题。
技术解决方案
本发明解决其技术问题所采用的技术方案是:提供一种组合扫描装置,包括:可旋转运动的旋转反射机构,至少包括一设置在旋转侧的反射面;振镜反射镜,朝向旋转反射机构设置,且接收外部光束并进行第一方向的偏转;其中,第一方向的偏转光束通过反射面向外进行第二方向的扫描。
其中,较佳方案是:所述组合扫描装置包括多个且设置在旋转反射机构四周的振镜反射镜。
其中,较佳方案是:多个所述振镜反射镜的第一方向视场为重叠设置或不重叠设置。
其中,较佳方案是:所述第一方向与第二方向相互垂直。
其中,较佳方案是:所述第一方向与第二方向非平行设置。
其中,较佳方案是:所述旋转反射机构的旋转侧设置有多个反射面。
其中,较佳方案是:所述旋转反射机构包括可旋转运动的多边形柱状支架。
其中,较佳方案是:所述反射面与旋转反射机构的旋转轴平行设置,或倾斜设置。
本发明解决其技术问题所采用的技术方案是:提供一种激光雷达,包括组合扫描装置;收发模块,包括激光发射器和探测器,所述激光发射器发射激光光束入射至组合扫描装置的振镜反射镜,所述探测器获取从振镜反射镜反射回的光信号。
其中,较佳方案是:所述激光发射器包括一个或多个激光发射头,所述探测器包括与激光发射头相互匹配设置的探测头。
其中,较佳方案是:所述激光发射器包括多个激光发射头,多个所述激光发射头垂直设置或阵列设置。
其中,较佳方案是:所述振镜反射镜包括反射镜主体和控制反射镜主体在第一方向往复旋转运动的运动模块,以实现激光光束的第一方向偏转。
有益效果
本发明的有益效果在于,与现有技术相比,本发明通过设计一种激光雷达及组合扫描装置,可以用少量的激光光源实现大视场范围的扫描覆盖,具有水平视场宽、扫描帧频高、垂直视场大且垂直视场方向角度分辨率高等特点;进一步地,在同等垂直视场分辨率情况下大大降低了系统中收发组件的数量,对系统整体硬件成本降低具有积极意义;同时由于激光发射头及探测器的减少,系统对准难度降低,从而装调的人力成本显著降低,适合工业化生产。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明结构激光雷达的示意图;
图2是本发明多个振镜反射镜的结构示意图。
本发明的最佳实施方式
现结合附图,对本发明的较佳实施例作详细说明。
如图1所示,本发明提供一种激光雷达的优选实施例。 
一种激光雷达,包括旋转反射机构10、收发模块和振镜反射镜20,其中,旋转反射机构10至少包括一设置在旋转侧的反射面11,且可旋转运动;收发模块包括激光发射器31和探测器32;振镜反射镜设置在旋转反射机构10与收发模块之间,接收激光发射器31的激光光束并进行第一方向的偏转;进一步地,第一方向偏转的激光光束通过旋转反射机构10的反射面11向外以第二方向进行扫描。
具体地,所述激光发射器31发射激光光束至振镜反射镜20,经过振镜反射镜20的第一方向偏转,形成第一方向的多道激光光束,并入射至旋转反射机构10,通过旋转反射机构10旋转实现向外以第二方向进行扫描,以及,所述旋转反射机构10将外部反射回的光信号再经过振镜反射镜20入射至探测器32中,通过探测器32实现探测。其中,旋转反射机构10绕着转轴101旋转,以实现反射面11的往返或旋转运动。
其中,第一方向与第二方向非平行设置,实现在两个不同方向进行偏振;以及,第一方向和第二方向为垂直设置,优选第一方向为垂直方向,第二方向为水平方向。
振镜反射镜20对入射的激光光束进行垂直偏移以实现垂直扫描,提高第一方向的扫描角度,旋转反射机构10对入射的激光光束进行以第二方向进行扫描,提高第二方向的扫描角度。所述激光光束的路径是:激光发射器31(发射激光光束)、振镜反射镜20(实现垂直扫描)、旋转反射机构10(实现以第二方向进行扫描)、外界阻碍物、旋转反射机构10、振镜反射镜20、探测器32。通过探测器32获取阻碍物的具体信息,以形成雷达扫描信息。
进一步的,提供一种组合扫描装置,所述组合扫描装置包括具有至少一反射面11且可旋转运动的旋转反射机构10,至少一与旋转反射机构10配合的振镜反射镜20;其中,外部的激光发射器31发射激光光束至振镜反射镜20,经过振镜反射镜20的第一方向偏转后再反射至旋转反射机构10,通过旋转反射机构10旋转实现向外以第二方向进行扫描,以及,所述旋转反射机构10将外部反射回的激光光束再经过振镜反射镜20入射至对应的探测器32中。通过单独配置的组合扫描装置,配合对应的激光发射器31和探测器32,进行大范围扫描,便于后期维护、修理、升级,将结构模块化,更人性化。
在本实施例中,所述振镜反射镜20包括反射镜主体和控制反射镜主体在第一方向往复旋转运动的运动模块,以实现激光光束的第一方向偏转。运动模块沿着反射镜主体的旋转轴201带动反射镜主体向往复旋转运动。
当激光光束入射至振镜反射镜20后,在运动模块的带动下实现振镜反射镜20的第一方向往复旋转运动,带动入射的激光光束在第一方向以不同角度向外发射,实现垂直扫描。进一步地,反射镜主体的旋转方向优选为第一方向,但是也可以倾斜旋转,只有在第一方向上可以实现垂直扫描即可,而所述“第一方向往复旋转运动”可以认为反射镜主体的旋转是第一方向的,或者可认为反射镜主体的旋转可在第一方向上体现。
优选地,运动模块可为MEMS结构,或者其他可带动振镜反射镜20旋转的结构。
在本实施例中,关于收发模块,所述激光发射器31包括一个或多个激光发射头,所述探测器32包括一个或多个与对应激光发射头匹配设置的探测头。
优选是激光发射头与探测头321一一配对,提高对准可行性。
优选地,多个所述激光发射头垂直设置或阵列设置。通过垂直设置减少激光发射头的设置,降低成本,缩小体积,通过阵列设置提高扫描区域的密度,提高扫描精准性。以及,所述探测头321可邻近激光发射头设置,也形成对应的垂直设置或阵列设置。
如图2所示,本发明提供多个振镜反射镜的较佳实施例。
所述旋转反射机构10为可绕中心轴旋转的边形柱状结构,所述多边形柱状结构的侧面均设有反射面。当然,边形柱状结构可为四边形、五边形、六边形所对应的柱状结构。进一步的,所述反射面11与中心轴平行设置,或者与中心轴倾斜设置。以满足不同光路路径的需求,如更紧凑型光路路径,增加反射角度。
以及,所述激光雷达包括一个或多个振镜反射镜20,所述振镜反射镜20设置在旋转反射机构10的四周,每一所述振镜反射镜20均与一收发模块配合设置。
在本实施例中,多个所述振镜反射镜20的垂直视场为重叠设置或不重叠设置,通过多个振镜反射镜20满足大范围视场的要求,采用普通的振镜反射镜20即可完成对应控制要求。
通过重叠或不重叠的设置,不同振镜反射镜20的垂直旋转方向不同,提高扫描频率,同时也可实现全面覆盖第一方向的大范围角度。例如,参考图4,左侧振镜反射镜20可实现向上90度至水平的旋转,右侧振镜反射镜20可实现向下90度至水平的旋转。
 以上所述者,仅为本发明最佳实施例而已,并非用于限制本发明的范围,凡依本发明申请专利范围所作的等效变化或修饰,皆为本发明所涵盖。

Claims (12)

  1. 一种组合扫描装置,其特征在于,包括:
    可旋转运动的旋转反射机构,至少包括一设置在旋转侧的反射面;
    振镜反射镜,朝向旋转反射机构设置,且接收外部光束并进行第一方向的偏转;
    其中,第一方向的偏转光束通过反射面向外进行第二方向的扫描。
  2. 根据权利要求1所述的组合扫描装置,其特征在于:所述组合扫描装置包括多个且设置在旋转反射机构四周的振镜反射镜。
  3. 根据权利要求2所述的组合扫描装置,其特征在于:多个所述振镜反射镜的第一方向视场为重叠设置或不重叠设置。
  4. 根据权利要求1至3任一所述的组合扫描装置,其特征在于:所述第一方向与第二方向相互垂直。
  5. 根据权利要求1至3任一所述的组合扫描装置,其特征在于:所述第一方向与第二方向非平行设置。
  6. 根据权利要求1所述的组合扫描装置,其特征在于:所述旋转反射机构的旋转侧设置有多个反射面。
  7. 根据权利要求6所述的组合扫描装置,其特征在于:所述旋转反射机构包括可旋转运动的多边形柱状支架。
  8. 根据权利要求1、6或7所述的组合扫描装置,其特征在于:所述反射面与旋转反射机构的旋转轴平行设置,或倾斜设置。
  9. 一种激光雷达,其特征在于,包括:
    如权利要求1至8任一所述的组合扫描装置;
    收发模块,包括激光发射器和探测器,所述激光发射器发射激光光束入射至组合扫描装置的振镜反射镜,所述探测器获取从振镜反射镜反射回的光信号。
  10. 根据权利要求9所述的激光雷达,其特征在于:所述激光发射器包括一个或多个激光发射头,所述探测器包括与激光发射头相互匹配设置的探测头。
  11. 根据权利要求10所述的激光雷达,其特征在于:所述激光发射器包括多个激光发射头,多个所述激光发射头垂直设置或阵列设置。
  12. 根据权利要求10所述的激光雷达,其特征在于:所述振镜反射镜包括反射镜主体和控制反射镜主体在第一方向往复旋转运动的运动模块,以实现激光光束的第一方向偏转。
PCT/CN2019/094822 2019-02-14 2019-07-05 一种激光雷达及组合扫描装置 WO2020164223A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910124578.0A CN109828259A (zh) 2019-02-14 2019-02-14 一种激光雷达及组合扫描装置
CN201910124578.0 2019-02-14

Publications (1)

Publication Number Publication Date
WO2020164223A1 true WO2020164223A1 (zh) 2020-08-20

Family

ID=66863817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094822 WO2020164223A1 (zh) 2019-02-14 2019-07-05 一种激光雷达及组合扫描装置

Country Status (2)

Country Link
CN (1) CN109828259A (zh)
WO (1) WO2020164223A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285673A (zh) * 2020-11-16 2021-01-29 北京未感科技有限公司 一种激光雷达及智能感应设备
CN112946665A (zh) * 2021-01-28 2021-06-11 深圳市镭神智能系统有限公司 一种激光雷达系统
CN113156400A (zh) * 2021-04-01 2021-07-23 上海星秒光电科技有限公司 基于微反射镜阵列的激光雷达系统
CN114636984A (zh) * 2020-12-15 2022-06-17 武汉万集信息技术有限公司 一种激光雷达

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828259A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种激光雷达及组合扫描装置
CN110187497A (zh) * 2019-06-11 2019-08-30 杨荣 基于双反射镜的大角度范围扫描成像装置及方法
CN112180344A (zh) * 2019-07-04 2021-01-05 北醒(北京)光子科技有限公司 一种激光雷达光学系统
WO2021030993A1 (zh) * 2019-08-16 2021-02-25 上海禾赛科技股份有限公司 激光雷达及其发射装置
CN112789512A (zh) * 2019-08-23 2021-05-11 深圳市速腾聚创科技有限公司 激光雷达及自动驾驶设备
CN110501689B (zh) * 2019-09-24 2024-06-18 中国工程物理研究院电子工程研究所 一种水下激光周向扫描光束发射系统
CN110824458A (zh) * 2019-11-06 2020-02-21 中科融合感知智能研究院(苏州工业园区)有限公司 一种大范围扫描共轴式mems激光雷达光学系统
CN110967681B (zh) * 2019-12-18 2023-09-26 中国科学院半导体研究所 用于三维扫描的结构振镜及应用其的激光雷达
CN110988844A (zh) * 2019-12-27 2020-04-10 陈泽雄 一种光路系统及激光雷达
WO2021051722A1 (zh) * 2020-01-03 2021-03-25 深圳市速腾聚创科技有限公司 激光雷达及自动驾驶设备
CN113075642B (zh) * 2020-01-06 2023-09-29 宁波舜宇车载光学技术有限公司 激光雷达和用于激光雷达的探测方法
CN113075680B (zh) * 2020-01-06 2024-07-05 宁波舜宇车载光学技术有限公司 激光雷达和激光雷达的制造方法
WO2021168849A1 (zh) * 2020-02-29 2021-09-02 深圳市速腾聚创科技有限公司 激光雷达及激光雷达的扫描方法
CN111505605A (zh) * 2020-05-27 2020-08-07 中科融合感知智能研究院(苏州工业园区)有限公司 一种摆镜和转镜相结合的大范围扫描激光雷达
CN111781579A (zh) * 2020-06-30 2020-10-16 昂纳信息技术(深圳)有限公司 一种激光雷达扫描装置的控制方法
CN116457698A (zh) * 2020-11-30 2023-07-18 华为技术有限公司 一种激光雷达及移动平台
CN117063089A (zh) * 2021-03-11 2023-11-14 深圳市速腾聚创科技有限公司 固态激光雷达的微振镜控制方法、装置和固态激光雷达
CN113075681B (zh) * 2021-03-16 2024-10-01 长沙思木锐信息技术有限公司 一种扫描装置和扫描测量系统
CN113933813A (zh) * 2021-09-07 2022-01-14 陈泽雄 一种混合固态激光雷达及其扫描方法
CN116027353A (zh) * 2021-10-26 2023-04-28 华为技术有限公司 一种探测装置及扫描器
CN114397666A (zh) * 2021-12-08 2022-04-26 陈伟红 一种单线激光雷达探头及激光雷达
CN114296053A (zh) * 2021-12-30 2022-04-08 深圳市镭神智能系统有限公司 一种激光雷达和扫描监测系统
CN116559826A (zh) * 2022-01-30 2023-08-08 睿镞科技(北京)有限责任公司 光扫描组件、激光系统和激光测量方法
WO2023184061A1 (zh) * 2022-03-28 2023-10-05 深圳市大疆创新科技有限公司 控制方法、探测装置、可移动平台及计算机可读存储介质
CN117008081A (zh) * 2022-04-29 2023-11-07 深圳市速腾聚创科技有限公司 一种光机系统
CN115166693A (zh) * 2022-08-02 2022-10-11 天津帆探科技有限公司 一种混合固态式激光雷达及激光雷达扫描方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107703510A (zh) * 2017-06-15 2018-02-16 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法
CN207037073U (zh) * 2017-05-25 2018-02-23 深圳市速腾聚创科技有限公司 激光雷达
CN108051868A (zh) * 2017-11-16 2018-05-18 欧必翼太赫兹科技(北京)有限公司 太赫兹人体安检成像系统
CN109254297A (zh) * 2018-10-30 2019-01-22 杭州欧镭激光技术有限公司 一种激光雷达的光路系统及一种激光雷达
CN109343034A (zh) * 2018-09-19 2019-02-15 中国电子科技集团公司第三十八研究所 一种基于mems振镜的激光雷达发射系统
CN109828259A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种激光雷达及组合扫描装置
US10324170B1 (en) * 2018-04-05 2019-06-18 Luminar Technologies, Inc. Multi-beam lidar system with polygon mirror

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6111617B2 (ja) * 2012-07-03 2017-04-12 株式会社リコー レーザレーダ装置
KR101415918B1 (ko) * 2013-10-15 2014-08-06 (주)엘투케이플러스 레이저 멀티 스캔 장치
CN105824004A (zh) * 2016-04-29 2016-08-03 深圳市虚拟现实科技有限公司 一种交互式空间定位方法及系统
EP3264135B1 (en) * 2016-06-28 2021-04-28 Leica Geosystems AG Long range lidar system and method for compensating the effect of scanner motion
CN106353745A (zh) * 2016-11-01 2017-01-25 北京北科天绘科技有限公司 一种激光雷达的二维扫描装置
CN108205124B (zh) * 2016-12-19 2024-05-10 武汉万集光电技术有限公司 一种基于微机电振镜的光学装置和激光雷达系统
CN107153200A (zh) * 2017-05-25 2017-09-12 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207037073U (zh) * 2017-05-25 2018-02-23 深圳市速腾聚创科技有限公司 激光雷达
CN107703510A (zh) * 2017-06-15 2018-02-16 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法
CN108051868A (zh) * 2017-11-16 2018-05-18 欧必翼太赫兹科技(北京)有限公司 太赫兹人体安检成像系统
US10324170B1 (en) * 2018-04-05 2019-06-18 Luminar Technologies, Inc. Multi-beam lidar system with polygon mirror
CN109343034A (zh) * 2018-09-19 2019-02-15 中国电子科技集团公司第三十八研究所 一种基于mems振镜的激光雷达发射系统
CN109254297A (zh) * 2018-10-30 2019-01-22 杭州欧镭激光技术有限公司 一种激光雷达的光路系统及一种激光雷达
CN109828259A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种激光雷达及组合扫描装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285673A (zh) * 2020-11-16 2021-01-29 北京未感科技有限公司 一种激光雷达及智能感应设备
CN114636984A (zh) * 2020-12-15 2022-06-17 武汉万集信息技术有限公司 一种激光雷达
CN112946665A (zh) * 2021-01-28 2021-06-11 深圳市镭神智能系统有限公司 一种激光雷达系统
CN113156400A (zh) * 2021-04-01 2021-07-23 上海星秒光电科技有限公司 基于微反射镜阵列的激光雷达系统

Also Published As

Publication number Publication date
CN109828259A (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
WO2020164223A1 (zh) 一种激光雷达及组合扫描装置
CN112616318B (zh) 激光雷达及自动驾驶设备
CN109254286B (zh) 机载激光雷达光学扫描装置
CN210864033U (zh) 一种扫描装置及激光雷达系统
WO2020114229A1 (zh) 激光雷达光学系统及扫描方法
CN113640812A (zh) 基于一维振镜和多面转镜的同轴激光雷达系统
CN112789512A (zh) 激光雷达及自动驾驶设备
CN212008926U (zh) 一种激光雷达
CN110824458A (zh) 一种大范围扫描共轴式mems激光雷达光学系统
CN116719010A (zh) 一种激光雷达
CN210572728U (zh) 一种激光雷达及激光雷达系统
CN113075642A (zh) 激光雷达和用于激光雷达的探测方法
JP6704537B1 (ja) 障害物検出装置
CN113093149B (zh) 一种转镜装置以及激光雷达
CN109765542B (zh) 多线激光雷达
CN110794382A (zh) 激光雷达及其探测方法
CN217543379U (zh) 激光雷达
CN111505605A (zh) 一种摆镜和转镜相结合的大范围扫描激光雷达
CN111766588A (zh) 全景激光雷达
CN108646405A (zh) 一种用于实现多线扫描的系统
WO2023035326A1 (zh) 一种混合固态激光雷达及其扫描方法
CN216209858U (zh) 一种激光雷达系统
US20230028159A1 (en) Lidar, and detection method and manufacturing method for lidar
CN113640773A (zh) 一种激光雷达系统
CN105549026A (zh) 一种多线光学扫描测距装置及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915366

Country of ref document: EP

Kind code of ref document: A1