WO2023184061A1 - 控制方法、探测装置、可移动平台及计算机可读存储介质 - Google Patents

控制方法、探测装置、可移动平台及计算机可读存储介质 Download PDF

Info

Publication number
WO2023184061A1
WO2023184061A1 PCT/CN2022/083266 CN2022083266W WO2023184061A1 WO 2023184061 A1 WO2023184061 A1 WO 2023184061A1 CN 2022083266 W CN2022083266 W CN 2022083266W WO 2023184061 A1 WO2023184061 A1 WO 2023184061A1
Authority
WO
WIPO (PCT)
Prior art keywords
point cloud
posture
distribution
reflector
reflection module
Prior art date
Application number
PCT/CN2022/083266
Other languages
English (en)
French (fr)
Inventor
陈亚林
王栗
黄潇
谢小兵
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2022/083266 priority Critical patent/WO2023184061A1/zh
Priority to CN202280050800.7A priority patent/CN117677866A/zh
Publication of WO2023184061A1 publication Critical patent/WO2023184061A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Definitions

  • the present application relates to the field of detection, and in particular, to a control method, detection device, movable platform and computer-readable storage medium.
  • Detection devices such as lidar can scan the scene within the detection range by emitting a sequence of light pulses, thereby collecting point clouds corresponding to the scene. By analyzing the point cloud corresponding to the scene, relevant information of the scene can be obtained to realize the perception of the environment.
  • One indicator of measuring point cloud data is point cloud uniformity. Point cloud uniformity can represent the consistency of point cloud density in space. In most applications, the higher the uniformity of the lidar point cloud, the smaller the leakage during measurement. The smaller the size of the object, the smaller the probability.
  • point cloud distribution with multiple point cloud rows through multi-line lidar scanning.
  • the uniform distribution of point cloud rows means that in different areas, the point cloud density of the lidar point cloud in different areas is different. The smaller it is, the higher its uniformity can be considered.
  • the working condition of the detection device will affect the uniformity of point cloud distribution, so that the desired point cloud distribution cannot be obtained.
  • embodiments of the present application provide a control method, detection device, movable platform and computer-readable storage medium, which can help obtain uniform point cloud distribution.
  • the solution proposed by the present invention is briefly described below, and more details will be described later in the specific implementation mode in conjunction with the accompanying drawings. .
  • the first aspect of the embodiment of the present application provides a method for controlling a detection device.
  • the detection device includes a light source, a first reflection module and a second reflection module.
  • the first reflection module and the second reflection module cause the light source to emit
  • the beam is scanned in the first direction and the second direction respectively to obtain the point cloud within the detection range, and the method includes:
  • the second aspect of the embodiment of the present application provides a detection device, including:
  • a light source a first reflection module and a second reflection module.
  • the light source is used to emit a sequence of light pulses.
  • the first reflection module and the second reflection module cause the light beam emitted by the light source to proceed in the first direction and the second direction respectively. Scan to obtain a point cloud within the detection range;
  • a processor and a memory storing a computer program the processor implements the following steps when executing the computer program:
  • the third aspect of the embodiment of the present application provides a movable platform, including:
  • a detection device mounted on the movable platform body is the detection device in any implementation provided in the second aspect of the embodiment of the present application.
  • the fourth aspect of the embodiment of the present application provides a movable platform, including:
  • a detection device mounted on the movable platform body includes a light source, a first reflection module and a second reflection module, the light source is used to emit a light pulse sequence, the first reflection module and the second reflection module Scan the light beam emitted by the light source in the first direction and the second direction respectively to obtain a point cloud within the detection range;
  • the processor When executing the computer program, the processor implements any one of the control methods provided in the first aspect of the embodiment of the present application to control the detection device.
  • the fifth aspect of the embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • any of the methods provided in the first aspect of the embodiment of the present application is implemented. Control Method.
  • the control method provided by the embodiment of the present application can adjust the point cloud distribution of the detection device.
  • the point cloud distribution of the detection device can be adjusted by controlling the scanning module of the detection device.
  • the posture changes and the point cloud row distribution is corrected to the appropriate direction to generate a point cloud distribution that meets the requirements.
  • Figure 1 is a flow chart of a control method provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a detection device provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a first reflection module provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a second reflection module provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a point cloud frame provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a second reflection module provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a point cloud frame obtained by scanning the second reflection module shown in FIG. 6 according to an embodiment of the present application.
  • Figure 8 is a flow chart of a control method provided by an embodiment of the present application.
  • Figure 9 is a flow chart of a control method provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a detection device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • Detection devices such as lidar are a sensing system that uses lasers to scan and measure distances to obtain three-dimensional information in the surrounding scene. Its basic principle is: actively emit laser pulses to the detected object, capture the laser echo signal, and use laser emission and The time difference between reception is used to calculate the distance of the measured object; through high-frequency transmission and reception, a large amount of distance and angle information of detection points can be obtained, called a point cloud. Based on the point cloud, the three-dimensional information of the surrounding scene can be reconstructed.
  • One of the core indicators of lidar is the density of point clouds (referred to as point cloud density in this article), which can be defined as the number of points in a unit three-dimensional space.
  • the higher the point cloud density of lidar the higher the resolution and efficiency of its three-dimensional measurement.
  • Another core indicator of lidar is the uniformity of point clouds (referred to as point cloud uniformity in this article), which can characterize the consistency of point cloud density in space. The smaller the difference in point cloud density in different areas of the lidar, the higher its uniformity can be considered. In most applications, the higher the uniformity of the lidar point cloud, the smaller the probability of missing small-sized objects during measurement.
  • multi-line scanning lidars are usually multi-line scanning lidars. Common ones include 16, 32, 40, or 64 lines. Multi-line scanning lidars can obtain multiple laser scanning lines through scanning, thereby obtaining points. Cloud distribution.
  • the lidar will be equipped with multiple reflection modules, and the rotation of the reflection modules is used to cause the light pulses to emit at different angles and reach different areas within the detection range.
  • a reflection module fails, it may change the desired optical path and change the exit angle of the light pulse, causing the obtained point cloud distribution to be abnormal and deviate from expectations. Due to the high cost of LiDAR and the time-consuming and labor-intensive installation and debugging, replacing the entire LiDAR or replacing the reflective module is obviously not the optimal solution.
  • the first aspect of the embodiment of the present application provides a control method for a detection device.
  • This control method can use other reflection modules to adjust the point cloud distribution when a problem with one reflection module causes the point cloud distribution to be abnormal. Expect to get the desired point cloud distribution.
  • control method provided by this application includes step S110 and step S120.
  • S120 Determine whether the point cloud row distribution in the point cloud is along the second direction. If the point cloud row distribution of the point cloud deviates from the second direction, control the first reflection module to adjust from the current attitude to the target. gesture to correct the point cloud row distribution in the point cloud to the second direction.
  • the detection device includes a light source, a first reflection module and a second reflection module.
  • the light pulses emitted by the light source are successively reflected by the first reflection module and the second reflection module.
  • the first reflection The module can cause the light pulses to emit at different angles in the first direction, and then the light pulses reach the second reflection module.
  • the second transmitting module can cause the light pulses to emit at different angles in the second direction, thus causing the light source to emit
  • the light pulses are scanned in the first direction and the second direction respectively to obtain a point cloud within the detection range.
  • the point cloud information of the detection range can usually be obtained by the processing device.
  • the processing device can judge the point cloud distribution, thereby determining the point cloud. Check whether there are any distribution anomalies in the cloud distribution caused by problems with the working conditions of the detection device. Specifically, the processing device can determine the point cloud line distribution in the point cloud. If the point cloud line distribution of the point cloud deviates from the second direction, it can indicate that an abnormality occurs in the second reflection module. After the second reflection The light pulse of the module cannot scan the detection range along the predetermined second direction, so the reflection module needs to be adjusted.
  • the first reflection module is controlled to adjust from the current posture to the target posture to adjust the point cloud in the point cloud.
  • the point cloud row distribution is corrected to the second direction. Because the light pulse reaches the second reflection module after being reflected by the first reflection module, by adjusting the first reflection module, the angle and direction of the light pulse after reflection by the first reflection module can be changed. After the light pulse reaches the second reflection module , there will be a new reflection path, thereby having the opportunity to adjust the light pulse reflected by the second reflection module to the desired direction. In this way, even if the second reflection module works abnormally, there is no need to replace the second reflection module or replace the entire detection device. By adjusting the working status of the first reflection module, the detection device can be corrected, which greatly reduces the cost of the detection device. The maintenance and replacement cost is low, which is conducive to the wide-scale promotion and use of detection devices.
  • the current posture of the first reflection module refers to the first reflection module at the current position
  • the target posture of the first reflection module refers to the first reflection module at the target position.
  • controlling the first reflection module to adjust from the current posture to the target posture actually controls the first reflection module to adjust from the current position to the target position. If there is no abnormality in the second reflection module, then the light pulse should be along the expected second direction after being reflected by the first reflection module and the second module. Therefore, if the point cloud line distribution of the point cloud deviates from the second direction, controlling the first reflection module to adjust from the current posture to the target posture can correct the point cloud line distribution in the point cloud to the desired in the second direction.
  • the first direction may be a vertical direction
  • the second direction may be a horizontal direction
  • the first direction may be a vertical direction
  • the second direction may be a horizontal direction
  • Figure 2 is a schematic structural diagram of a detection device provided by an embodiment of the present application.
  • the detection device 100 may include a light source 10, a first reflection module 20 and a second reflection module 30.
  • the light source 10 can emit a sequence of light pulses, and the first reflection module 20 and the second reflection module 30 are sequentially arranged on the optical path of the light pulse, so that the light beam emitted by the light source 10 can pass through the first reflection module 20 and the second reflection module 30 After reflection, it reaches a certain position in the detection range.
  • the first reflection module 10 can be configured to scan the beam in the first direction
  • the second reflection module 30 can be configured to scan the beam in the second direction, so that the point cloud distribution within the detection range can be obtained.
  • the first direction is the vertical direction
  • the second direction is the horizontal direction
  • the first reflection module 20 can rotate driven by the driving mechanism 22, so that the light beams reflected by it can be reflected from different vertical directions.
  • the angle of emission can form a vertical scan of the detection range, so that the detection device has a vertical FOV.
  • the angle in the vertical direction may be the angle between the exit direction of the light beam and the horizontal plane.
  • the second reflection module 30 can rotate driven by the driving mechanism 31, so that the light beam reflected by it is emitted at different horizontal angles, thereby forming a horizontal scan of the detection range, thereby obtaining a horizontal FOV.
  • the light pulse sequence emitted by the light source can cover the entire detection range, so that the point cloud corresponding to the scene in the detection range can be collected.
  • the first reflection module includes a first reflection mirror. Under the action of a driving mechanism, the first reflection mirror can make the light beam scan the detection range in the vertical direction through stepwise swing.
  • the reflector 21 may include a larger-area reflector, or may include a smaller-area Micro-Electro-Mechanical System (MEMS) galvanometer, etc., which are not limited here.
  • MEMS Micro-Electro-Mechanical System
  • the shape of the first reflector is designed to be any suitable shape according to the spot shape or arrangement.
  • the shape of the first reflector includes an ellipse, a square, or any other suitable shape. In this way, it can not only satisfy the optical path design, but also reduce the waste of materials as much as possible, thereby reducing costs.
  • the first reflector in the step-type swing, will maintain the current posture for a period of time (that is, remain stationary for a period of time) after swinging one step, and then swing the next step after this period of time.
  • the step-type swing can be realized by a driving mechanism such as a stepper motor.
  • Figure 3 is a schematic structural diagram of a first reflection module provided by an embodiment of the present application.
  • the first reflection module 20 includes a first reflection mirror 21.
  • the first reflection mirror swings along the axis B as the swing axis under the action of the driving structure 22.
  • the solid line box and the dashed line box respectively represent two different postures of the first reflector 21 .
  • the first reflector 21 takes the axis B as the swing axis, swings at least one step from the first posture 21A to the second posture 21B.
  • the light pulse is incident on the incident optical path of the first reflector 21 While remaining stationary, swing from the first posture to the second posture 21B.
  • the light pulse sequence In the first posture 21A, the light pulse sequence reaches the upper end AA of the scanning range. In the second posture 21F, the light pulse sequence reaches the lower end FF of the scanning range. During the swing from the first posture 21A to the second posture 21F, the light pulse moves along the first direction from the upper end AA of the scanning range to the lower end FF of the scanning range.
  • the scanning range AA-FF constitutes the FOV of the detection device in the first direction. .
  • the first reflective mirror when the first reflective mirror performs a stepwise swing, the first reflective mirror can swing from the first posture to the second posture through multiple steps, and then swing from the second posture through one step to The first gesture.
  • the first reflecting mirror when the first reflecting mirror swings back to the first posture from the second posture, it may swing in a clockwise direction or a counterclockwise direction.
  • the timing of the light source emitting light pulses may be coordinated with the first reflector.
  • the light source may emit light pulses during the swing of the first reflector from the first posture to the second posture, but not emit the light pulse sequence during the swing of the first reflector from the second posture to the first posture.
  • the first reflector swings from the first posture to the second posture through multiple steps, and the first reflector will remain stationary for a period of time each time it swings one step.
  • the light source may emit light pulses during the period when the first reflector remains stationary during the swing of the first reflector from the first posture to the second posture, and during the period when the first reflector swings. No light pulses can be emitted during the period.
  • the second reflection module includes a second reflection mirror and a third reflection mirror. Both the second reflection mirror and the third reflection mirror can enable the beam to scan the detection range in the horizontal direction through continuous rotation.
  • the second reflection module can be connected to the rotating motor, and is driven by the rotating motor to achieve continuous rotation.
  • the continuous rotation that is, the rotation of the second reflector is continuous
  • the continuous rotation can be a constant speed rotation or a variable speed rotation.
  • multiple reflectors may be provided on the second reflective module, such as three, four, five, six, etc.
  • the second reflection module 30 includes a second reflection mirror 32 and a third reflection mirror 33 .
  • the second reflection mirror 32 and the third reflection mirror 33 are respectively second reflection mirrors 32 and 33 .
  • the two reflective mirrors provided on the module 30, the second reflective mirror 32 and the third reflective mirror 33 constitute two reflective surfaces of the second reflective module 30.
  • the second reflective module 30 can rotate along the The axis R rotates.
  • the second reflection mirror 32 and the third reflection mirror 33 can rotate to the optical path in sequence to reflect the light beam on the optical path. Since the second reflection module 30 continues to rotate, after the light beam hits the second reflector 32, it can be emitted at different angles in the second direction.
  • the light beam hits the third reflector 33, it can also be emitted at different angles.
  • the light is emitted at different angles to realize scanning of the detection range in the second direction.
  • the second direction is a horizontal direction.
  • junction area 35 between the second reflector 32 and the third reflector 33 , and both the second reflector 32 and the third reflector 33 are connected to the junction area 35 .
  • the second reflector 32 , the junction area 35 and the third reflector 33 are arranged in sequence along the rotation direction of the second reflection module 30 .
  • the second reflection module 30 rotates, the second reflector 32 , the junction area 35 and the third reflector 33 Turn to the light path of the light pulse sequence in turn.
  • the junction area 35 is rotated onto the optical path, the light beam will not be able to emit normally, and a blackout period will occur.
  • black vision period also occurs at this time.
  • blackout periods also occur when the reflective surface closest to the optical path is approximately parallel to the optical path.
  • the light beam can be normally reflected by the second reflector or the third reflector and emitted normally, which is called the white-view period.
  • the first reflector can swing during the black viewing period and stop swinging during the white viewing period.
  • the light source can emit the light pulse sequence during the period when the first reflector remains stationary, and can emit the light pulse sequence during the period when the first reflector swings. No light pulse sequence is emitted.
  • the first emitter mirror when the first emitter mirror is swinging, the light pulses will be emitted at different angles in the first direction, such as the vertical direction. Therefore, during the white-view period, since the first emitter mirror stops swinging, only The second reflection module changes the emission direction of the light pulse, so that the light pulse can scan along the second direction, such as the horizontal direction.
  • the first reflector when scanning the detection range in a progressive scanning manner, can continuously swing from the first posture to the second posture through multiple steps, and then from the second posture through a The step length swings to the first posture, and the second reflector can rotate continuously.
  • the first reflector In the process of the first reflector swinging from the first posture to the second posture through multiple steps, the first reflector can enter a stationary period after swinging one step, and the light source can emit during the stationary period of the first reflector.
  • the second reflective module since the second reflective module is still rotating during the stationary period of the first reflective mirror, different light beams can be emitted at different horizontal angles after being reflected by the second reflective module, so that in The current height can be scanned to obtain horizontal point cloud rows.
  • the first reflector can swing to the next step to change the exit angle of the light beam in the vertical direction, so that the point cloud row at the next height can be scanned during the stationary period. Repeat this process.
  • the point cloud row scan of the last height of the currently scanned point cloud frame is completed, and the first reflector can swing back to the first reflector by one step. Attitude, start progressive scanning of the next frame of point cloud.
  • multi-line scanning lidars are usually multi-line scanning lidars. Common ones include 16, 32, 40, or 64 lines.
  • Multi-line scanning lidars can scan Obtain multiple laser scanning lines, and there will be as many point cloud rows as there are laser scanning lines.
  • the multiple laser scanning lines that can be obtained by scanning a multi-line scanning lidar at a height are regarded as a point cloud line, that is, the multi-line scanning lidar is regarded as a single-line scanning lidar. , that is, only one point cloud row can be obtained when scanning at a height.
  • FIG. 5 is a schematic diagram of a point cloud frame.
  • the detection device can scan the detection range in a line-by-line scanning manner, and the point cloud frame scanned within one frame can include multiple point cloud lines.
  • the first reflector When the first reflector is in the first attitude, the light pulse reaches the upper end of the scanning range, so the point cloud row AA can be obtained, and then the first reflector can swing the next step to change the exit angle of the beam in the vertical direction. , so that the point cloud row at the next height can be scanned during the stationary period of the first reflector, thereby obtaining the point cloud row BB.
  • the mirror directions of the second reflector and the third reflector it is necessary to control the mirror directions of the second reflector and the third reflector to be consistent, so that the angle and direction of the light beam after being reflected by the second reflector are consistent with the angle and direction of the light beam after being reflected by the third reflector.
  • the shape of the point cloud distribution obtained by reflection by the second reflector is consistent with the shape of the point cloud distribution obtained by reflection by the third reflector, so that evenly distributed point cloud rows can be obtained when the second reflection module continues to rotate.
  • the mirror directions of the second reflective mirror and the third reflective mirror remain consistent, when the second reflective module rotates, the light pulses can always emit at different angles along the second direction. Therefore, in the second direction , the point cloud distribution is uniform.
  • the mirror directions of the second reflective mirror and the third reflective mirror may be different, and the light beam passes through the second reflective mirror and the third reflective mirror.
  • the three reflectors cannot always maintain the same reflection angle and direction; for example, one of the second reflector or the third reflector can keep rotating around the vertical axis when rotating, and the other one, because it is different from the previous one.
  • There are tolerances in the installation, or the second reflection module may be deformed during the factory or use process, causing the mirror surface to be uneven and at an angle with the vertical direction. Therefore, when rotating, the second emitter mirror is in contact with the third emitter. The angle between the mirror surface and the vertical direction is different.
  • the reflection angle and direction of the beam after passing through the second reflector are different from the reflection angle and direction of the beam after passing through the third reflector. This will appear in the point cloud distribution.
  • the point cloud distribution changes unevenly.
  • the point cloud will be densely distributed in part of the scan range, and there will be holes in the point cloud in part of the scan range. Therefore, the point cloud distribution will be uneven.
  • the angle between the second reflector and the vertical direction is 0, while the third reflector is tilted, and the angle between the second reflector and the vertical direction is ⁇ , and ⁇ is greater than 0. Therefore, during progressive scanning, the horizontally incident light beam will emit in the horizontal direction when passing through the second reflector, and the horizontally incident light beam will emit in other directions when passing through the third reflector. Therefore, it is reflected in the point cloud distribution.
  • the angles of the point cloud rows obtained by scanning the second emitter mirror and the point cloud rows obtained by scanning the third reflector are different. The point cloud rows obtained by scanning the third reflector will deviate in the vertical direction, thus deviating from the expected horizontal direction.
  • FIG. 7 is a point cloud image obtained by scanning the first reflection module provided by the embodiment of the present application and the second reflection module shown in FIG. 6 .
  • the point cloud row reflected by the second reflector is called the second point cloud row
  • the point cloud row reflected by the third reflector is called the third point.
  • Cloud row the hollow origin represents the expected point cloud distribution when the second reflection module is working normally, that is, both the second point cloud row and the third point cloud row can be distributed in the horizontal direction
  • the solid origin represents the actually obtained point cloud distribution.
  • the second point cloud row can be distributed in the horizontal direction, and because the third reflector is tilted and has an angle with the vertical direction, the third point cloud row deviation from the horizontal direction.
  • the upper part of the third reflector deviates farther from the vertical direction than the lower part. Therefore, in the point cloud distribution, the upper part of the third point cloud row deviates from the horizontal direction at a larger angle. more obvious.
  • the second reflection module is continuously rotating, on the point cloud of the detection range, the point cloud rows are discontinuous in the horizontal direction. There will be dense distribution of point clouds in part of the scanning range, and point clouds in part of the scanning range. A void appears, as shown in Figure 7 where the hollow origin is located. The point cloud distribution is uneven and the desired point cloud distribution cannot be obtained.
  • step S810 obtaining the distribution information of the point cloud includes obtaining the second point cloud row distribution and the third point cloud row distribution in the point cloud; the second point cloud row distribution is obtained.
  • the point cloud row distribution is obtained by scanning the light beam through the second reflector, and the third point cloud row distribution is obtained by scanning the light beam through the third reflector.
  • step S820 it is determined whether the point cloud row distribution in the point cloud is along the second direction. If the point cloud row distribution of the point cloud deviates from the second direction, the first reflection is controlled.
  • the module adjusts from the current posture to the target posture to correct the distribution of point cloud rows in the point cloud to the second direction, including: if the distribution direction of the third point cloud row deviates from the second point cloud row distribution direction, then control the first reflection module to adjust from the current posture to the target posture, so that the distribution direction of the third point cloud row is consistent with the distribution direction of the second point cloud row.
  • the distribution direction of the third point cloud row can also be taken as the desired direction. If the distribution direction of the second point cloud row deviates from the distribution direction of the third point cloud row, then the first reflection module is controlled from The current posture is adjusted to the target posture so that the second point cloud row distribution and the third point cloud row distribution direction are consistent.
  • whether there is an angle difference between the angle of the third point cloud row and the angle of the second point cloud row can be used to determine whether the distribution direction of the third point cloud row deviates from the distribution direction of the second point cloud row. For example, if the second point cloud row is along the horizontal direction and the third point cloud row has an angle with the horizontal direction, it is considered that the distribution direction of the third point cloud row deviates from the distribution direction of the second point cloud row.
  • whether the distribution direction of the third point cloud row deviates from the distribution direction of the second point cloud row can be determined by whether the angle difference between the third point cloud row and the second point cloud row exceeds a preset threshold.
  • the second point cloud row has a first included angle with the horizontal direction
  • the third point cloud row has a second included angle with the horizontal direction
  • the difference between the first included angle and the second included angle meets the preset threshold
  • the third point cloud row is considered to have a second included angle with the horizontal direction.
  • the distribution direction of the three point cloud rows deviates from the distribution direction of the second point cloud row.
  • the threshold size includes 0.5°, 1°, 2°, 5°, 10°, 15°, and any value between any two values.
  • the size of the preset threshold can be adjusted according to the sensitivity controlled by the first reflection module and the uniformity of the point cloud distribution.
  • the first reflection module does not need to be immediately controlled to adjust from the current attitude to the target attitude to adjust the reflection of the light pulse. angle, this can avoid frequent swings of the first reflective module, thereby reducing the control accuracy requirements for the first reflective module, and can increase the life of the first reflective module and reduce the power consumption of the first reflective module.
  • a lower threshold will improve the accuracy of the first reflection module.
  • the first reflection module can be immediately controlled to adjust from the current attitude to the target attitude to adjust the light.
  • the reflection angle of the pulse therefore, the third point cloud row can be immediately adjusted to the distribution direction of the second point cloud row, making the point cloud rows more continuous and the point cloud distribution more uniform.
  • the second reflection module may include a plurality of reflection mirrors, such as a fourth reflection mirror.
  • the fourth reflection mirror like the second reflection mirror and the third reflection mirror, can be continuously rotated to The beam scans the detection range in the horizontal direction.
  • the second reflector 32, the third reflector 33, and the fourth reflector 34 are respectively three reflectors provided on the second reflector module.
  • the second reflector module 30 rotates, the second reflector 32.
  • the third reflector 33 and the fourth reflector 34 can be rotated to the optical path in sequence. Therefore, in addition to the second point cloud row distribution and the third point cloud row distribution, the obtained point cloud information also has a fourth point cloud row distribution. Distribution, the fourth point cloud row distribution is obtained by scanning the light pulse through the fourth reflector.
  • the fourth reflector 34 in the above embodiment is not necessarily adjacent to the second reflector 32 or the third reflector 33, but is just for the purpose of being connected in name with the second reflector 32 and the third reflector.
  • the mirrors 33 are distinguished, that is, there may be several reflecting mirrors between the second reflecting mirror 32 and the third reflecting mirror 33 , and there may also be several reflecting mirrors between the third reflecting mirror 32 and the fourth reflecting mirror 34 . Only when the second reflection module 30 rotates, in terms of the rotation sequence, the light pulse is reflected by the second mirror 32, the third mirror 33, and the fourth mirror 34 successively. Therefore, in the obtained point cloud information, the The distribution range of the four point cloud rows is closer to the distribution range of the third point cloud row than the distribution range of the second point cloud row.
  • step S910 the distribution information of the point cloud is obtained, in addition to obtaining the second point cloud row in the point cloud distribution and the third point cloud row distribution, further including obtaining a fourth point cloud row distribution.
  • step S920 it is determined whether the point cloud row distribution in the point cloud is along the second direction. If the point cloud row distribution of the point cloud deviates from the second direction, the first reflection is controlled.
  • the module adjusts from the current posture to the target posture to correct the distribution of point cloud rows in the point cloud to the second direction, including: if the distribution direction of the fourth point cloud row deviates from the third point cloud row distribution direction, then control the first reflection module to adjust from the current posture to the target posture, so that the distribution direction of the fourth point cloud row is consistent with the distribution direction of the third point cloud row.
  • the third point cloud row distribution range is closer to the fourth point cloud row distribution range.
  • the third point cloud row distribution direction is used as the basis for judgment. When the fourth point cloud row distribution direction deviates from the third point cloud row distribution direction, it can be quickly identified whether the fourth point cloud row distribution direction deviates.
  • the point cloud row distribution in the point cloud can be obtained by sampling the point cloud.
  • the requirements for the point cloud information acquisition device can be reduced and power consumption can be reduced.
  • the point cloud can be sampled according to a preset time interval, and the rotation of the first reflection module or the second reflection module can also be controlled.
  • the first reflection module or the second reflection module is at a preset
  • the point cloud is sampled during the posture, such as when the first reflection module or the second reflection module is at a preset position or a preset angle.
  • the point cloud is sampled to obtain the point cloud row distribution in the point cloud. Because, during the time period when the first reflector is stationary, the distribution direction of the point cloud rows is completely affected by the second reflection module. Therefore, if during this time period, if the point cloud row distribution deviates in direction, it can be considered that It is the second reflection module that is abnormal.
  • the point cloud is sampled to obtain the point cloud row distribution in the point cloud.
  • the first reflector can be controlled from the current stationary state to the rotation state, thereby adjusting from the current attitude to the target attitude.
  • the light pulse arrives after being reflected by the first reflector in the target attitude.
  • the second reflection module enables the emission direction of the light pulse to be along the second direction.
  • the point cloud is sampled to obtain the point cloud row distribution in the point cloud.
  • the first reflector can be controlled to adjust from the current posture to the target posture. For example, the first reflector must swing to the first angle to stop swinging, and the driving mechanism can be controlled to make the first reflector swing.
  • the mirror directly swings to the second angle and then stops swinging. In this way, when the first mirror is stationary, the light pulse is reflected by the first mirror at the second angle and then reaches the second reflection module, so that the emission direction of the light pulse can be along the Second direction.
  • the detection device includes a first reflection module and a second reflection module.
  • the first reflection module can make the beam scan the detection range in the vertical direction through stepwise swing.
  • the second reflection module can enable the beam to scan the detection range in the horizontal direction through continuous rotation. Since the light beam needs to pass through the first reflection module and the second reflection module, the swing periods of the first reflection module 2 and the second reflection module need to be controlled so that at the beginning of each swing period of the first reflection module, the second reflection module At a specific starting position, the first reflection module is also at a specific ending position at the end of each swing cycle. This ensures that in each scan, each line of the point cloud obtained is equal. Have the same scan start position and scan end position.
  • each point cloud row After progressive scanning, in a point cloud frame, each point cloud row has the same starting position and ending position to avoid periodic problems of the first reflection module and the second reflection module, resulting in Because the starting position or ending position of each point cloud line is different, the point cloud distribution on the point cloud frame is discontinuous, a "vacuum" appears in some areas, and the point cloud is uneven. Or, the starting position of the point cloud row does not correspond to the same position in the scan range, causing the point cloud density at that position to decrease.
  • the control method of the detection device provided by the embodiment of the present application can solve the problem of uneven point cloud caused by the periodic problem of the first reflection module and the second reflection module.
  • the first reflector swings from the first posture to the second posture through multiple steps during the step-wise swing, and then swings from the second posture to the first posture through one step.
  • the light source causes the light beam to continuously scan the detection range in the horizontal direction through the same position of the second reflector. Therefore, every time the first reflector is in the first posture, the light source can be reflected from the same position of the second reflector, ensuring that each cloud line has the same starting position.
  • the first reflector is reset after a single frame duration.
  • the first reflector swings from the first posture to the second posture through multiple steps, and then from the first posture to the second posture.
  • the second posture swings to the first posture through one step. That is, the first reflector always moves from the first posture to the second posture, and then from the second posture to the first posture as a swing cycle of the first reflector.
  • the first reflector is controlled. In the reset state, that is, in the first posture. In this case, it can be ensured that the first reflector is always in the first attitude at the beginning of the cycle every time.
  • the rotation speed of the second reflective module is relatively slow, leaving a short reset time for the first reflective mirror.
  • the first reflector can be reset by controlling every two frame durations, wherein, within the odd-numbered frame duration, the first reflector swings from the first posture to the second posture through multiple steps, and within the even-numbered frame duration, The first reflector swings from the second posture to the first posture through a plurality of steps. That is, the first reflector needs two frames to be reset.
  • the odd frame duration corresponds to the time it takes to swing from the first posture through multiple steps to the second posture
  • the even frame duration corresponds to the time it takes to swing from the second posture through multiple steps.
  • the time it takes to swing to the first posture the duration of two frames constitutes one swing cycle of the first reflector.
  • the first reflection module swings from the first posture to the second posture, it does not swing from the second posture to the first posture in one step, but still swings from the second posture through the second posture in the even-numbered frames. Swing to the first posture in multiple steps.
  • the step size of the odd frame is controlled to be symmetrical with the step size of the even frame, the even frame swings from the second posture to the first posture through multiple steps in a step-wise manner.
  • the effect of the first reflection module swinging from the first posture to the second posture in odd frames is similar.
  • the control method provided by the embodiment of the present application can be applied to the detection device itself.
  • the detection device can include a processor and a memory.
  • the processor executes the computer program stored in the memory, it can execute the present invention.
  • the control method provided by the application embodiment can be applied to the detection device itself.
  • control method provided by the embodiments of the present application can also be applied to the processing device.
  • the processing device is another device that can be independent of the detection device. It can be connected to the detection device and can provide the processing device by executing the embodiments of the present application.
  • the control method controls the detection device.
  • the processing device can be a control system of the movable platform, that is, the movable platform can control the detection device mounted on the movable platform by executing the control method provided in the embodiment of the present application.
  • a second aspect of this application provides a detection device.
  • the detection device 100 includes a light source 101, a first reflection module 102 and a second reflection module 103.
  • the light source 101 is used to emit A light pulse sequence, the first reflection module 101 and the second reflection module 102 cause the light beam emitted by the light source 101 to scan in the first direction and the second direction respectively to obtain a point cloud within the detection range; and the processor 104 and
  • the memory 105 stores a computer program, and the processor implements the following steps when executing the computer program:
  • the first reflection module includes a first reflection mirror, the first direction is a vertical direction, and the first reflection mirror can make the light beam reflect in the vertical direction through stepwise swing.
  • the detection range is scanned;
  • the second reflection module includes a second reflector and a third reflector, the second direction is the horizontal direction, and both the second reflector and the third reflector can be continuously rotated
  • the beam is caused to scan the detection range in the horizontal direction.
  • the processor when acquiring the distribution information of the point cloud, acquires the second point cloud row distribution and the third point cloud row distribution in the point cloud; wherein, the second point cloud row distribution The point cloud row distribution is obtained by scanning the light beam through the second reflector, and the third point cloud row distribution is obtained by scanning the light beam through the third reflector.
  • the processor controls the first reflection module to adjust from the current posture to the target posture, so that The third point cloud row distribution is in the same direction as the second point cloud row distribution.
  • the processor controls the first reflection module to adjust from the current posture to the target posture. .
  • the processor controls the first reflection module to change from the current attitude Adjust to the target posture so that the angle difference between the third point cloud row distribution and the second point cloud row distribution meets a preset threshold.
  • the second reflection module further includes a fourth reflector
  • the distribution information of the point cloud further includes a fourth point cloud row distribution.
  • the fourth point cloud row distribution is determined by the light beam passing through it. Obtained by scanning the fourth reflector.
  • the processor controls the first reflection module to adjust from the current posture to the target posture, so that The fourth point cloud row distribution is in the same direction as the third point cloud row distribution.
  • the processor samples the point cloud to obtain a point cloud row distribution in the point cloud.
  • the second reflection module is driven by a rotating motor to realize continuous rotation.
  • the first reflector is driven by a stepper motor to realize stepwise swing.
  • the first reflector swings from the first posture to the second posture through multiple steps during the step-wise swing, and then swings from the second posture to the third posture through one step.
  • a gesture is a gesture.
  • the light source emits a sequence of light pulses during the swing of the first reflector from the first posture to the second posture, and when the first reflector swings from the second posture The light pulse sequence is not emitted during the posture swing to the first posture.
  • the light source emits a sequence of light pulses during a period when the first reflector is stationary during the swing of the first reflector from the first posture to the second posture.
  • the point cloud is sampled to obtain the point cloud row distribution in the point cloud.
  • the first reflection mirror During the period when the mirror is stationary, the second reflection module continuously rotates to scan the light beam in the horizontal direction.
  • the light source each time the first reflector is in the first posture, the light source causes the light beam to continuously scan the detection range in the horizontal direction through the same position of the second reflector.
  • the first reflector is reset after a single frame duration. Within the single frame duration, the first reflector swings from the first posture to the second posture through multiple steps, and then from the first posture to the second posture. The second posture swings to the first posture through one step.
  • the first reflector is reset every two frames, wherein within an odd frame duration, the first reflector swings from the first posture to the second posture through a plurality of steps, Within an even frame duration, the first reflector swings from the second posture to the first posture through a plurality of steps.
  • FIG. 11 is a schematic structural diagram of the movable platform provided by an embodiment of the present application.
  • the movable platform 110 includes: a movable platform body 111 and a detection device 100 mounted on the movable platform body 111.
  • the detection device can be any of the methods provided in the second aspect of the present application.
  • the specific implementation of the various implementations of the detection device can be referred to the relevant descriptions in the foregoing, and will not be described again here.
  • FIG. 12 is a schematic structural diagram of the movable platform provided by an embodiment of the present application.
  • the movable platform 120 includes:
  • the detection device 122 is mounted on the movable platform body 121.
  • the detection device 122 includes a light source 1220, a first reflection module 1221 and a second reflection module 1222.
  • the light source is used to emit a sequence of light pulses.
  • the first reflection The module and the second reflection module cause the light beam emitted by the light source to scan in the first direction and the second direction respectively to obtain a point cloud within the detection range; and
  • the processor 1224 and the memory 1225 store a computer program.
  • the processor 1224 executes the computer program, it can implement any control method provided by the embodiment of the present application.
  • the movable platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, and a camera.
  • the ranging device is applied to an unmanned aerial vehicle
  • the movable platform body is the fuselage of the unmanned aerial vehicle.
  • the distance measuring device is applied to a car
  • the movable platform body is the body of the car.
  • the car can be an autonomous vehicle or a semi-autonomous vehicle, and there is no restriction here.
  • the distance measuring device is applied to a remote control car
  • the movable platform body is the body of the remote control car.
  • the ranging device is applied to a robot
  • the movable platform body is the robot.
  • the movable platform body is the body of the camera.
  • the movable platform may further include a power system for driving the movable platform body to move.
  • the power system may be an engine inside the vehicle, which will not be listed here.
  • a fifth aspect of the present application also provides a computer-readable storage medium that stores a computer program.
  • the computer program is executed by a processor, any control provided by the embodiments of the present application is implemented. method.
  • Embodiments of the present application may take the form of a computer program product implemented on one or more storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing program code.
  • Storage media available for computers include permanent and non-permanent, removable and non-removable media, and can be implemented by any method or technology to store information.
  • Information may be computer-readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to: phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disc read-only memory (CD-ROM), digital versatile disc (DVD) or other optical storage, Magnetic tape cassettes, tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium can be used to store information that can be accessed by a computing device.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technology
  • CD-ROM compact disc read-only memory
  • DVD digital versatile disc
  • Magnetic tape cassettes tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium can be used to store information that can be accessed by

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

控制方法,包括:获取点云的分布信息(110);判断点云中的点云行分布是否沿第二方向,若点云的点云行分布偏离第二方向,则控制第一反射模块(20,102,1221)从当前姿态调整至目标姿态,以将点云行分布修正至第二方向上(120)。控制方法可以对探测装置(100,122)的点云分布进行调整,在点云行分布出现偏离而影响点云分布的均匀度时,能够通过控制扫描模块的姿态改变,将点云行分布修正至合适方向从而生成符合期望的点云分布。

Description

控制方法、探测装置、可移动平台及计算机可读存储介质 技术领域
本申请涉及探测领域,尤其涉及一种控制方法、探测装置、可移动平台及计算机可读存储介质。
背景技术
探测装置如激光雷达可以通过发射光脉冲序列对探测范围内的场景进行扫描,从而可以采集到场景对应的点云。通过对场景对应的点云进行分析,可以获得场景的相关信息,实现对环境的感知。衡量点云数据的一个指标是点云均匀度,点云均匀度可表征空间中点云密度的一致性,在大多数的应用中,激光雷达点云的均匀度越高,测量时漏过小尺寸物体的概率就越小。
目前业界常通过多线激光雷达的扫描,得到具有多个点云行的点云分布,点云行的均匀分布,意味着在不同的区域,激光雷达的点云在不同区域的点云密度相差越小,可以认为其均匀度越高。但是,探测装置的工作情况会影响点云分布的均匀性,从而不能获得期望的点云分布。
发明内容
有鉴于此,本申请实施例提供了一种控制方法、探测装置、可移动平台及计算机可读存储介质,其可以有助于获得均匀的点云分布。下面简要描述本发明提出的方案,更多细节将在后续结合附图在具体实施方式中加以描述。。
本申请实施例第一方面提供一种探测装置的控制方法,所述探测装置包括光源、第一反射模块和第二反射模块,所述第一反射模块和第二反射模块使所述光源发射的光束分别在第一方向和第二方向进行扫描以获得探测范围内的点云,所述方法包括:
获取所述点云的分布信息;
判断所述点云中的点云行分布是否沿第二方向,若所述点云的点云行分布偏离所述第二方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以将所述点云中的点云行分布修正至所述第二方向上。
本申请实施例第二方面提供一种探测装置,包括:
光源、第一反射模块和第二反射模块,所述光源用于发射光脉冲序列,所述第一 反射模块和第二反射模块使所述光源发射的光束分别在第一方向和第二方向进行扫描以获得探测范围内的点云;
处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
获取所述点云的分布信息;
判断所述点云中的点云行分布是否沿第二方向,若所述点云的点云行分布偏离所述第二方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以将所述点云中的点云行分布修正至所述第二方向上。
本申请实施例第三方面提供一种可移动平台,包括:
可移动平台本体;
搭载在所述可移动平台本体上的探测装置,所述探测装置是本申请实施例第二方面提供的任一种实施方式中的探测装置。
本申请实施例第四方面提供一种可移动平台,包括:
可移动平台本体;
搭载在所述可移动平台本体上的探测装置;该探测装置包括光源、第一反射模块和第二反射模块,所述光源用于发射光脉冲序列,所述第一反射模块和第二反射模块使所述光源发射的光束分别在第一方向和第二方向进行扫描以获得探测范围内的点云;以及
处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现本申请实施例第一方面提供的任一种所述的控制方法对所述探测装置进行控制。
本申请实施例第五方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例第一方面提供的任一种控制方法。
本申请实施例提供的控制方法,可以对探测装置的点云分布进行调整,在点云中的点云行分布出现偏离而影响点云分布的均匀度时,能够通过控制探测装置的扫描模块的姿态改变,将点云行分布修正至合适方向从而生成符合需求的点云分布。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附 图获得其他的附图。
图1是本申请实施例提供的控制方法的流程图。
图2是本申请实施例提供的一种探测装置的结构示意图。
图3是本申请实施例提供的一种第一反射模块的结构示意图。
图4是本申请实施例提供的一种第二反射模块的结构示意图。
图5是本申请实施例提供的一帧点云帧的示意图。
图6是本申请实施例提供的一种第二反射模块的结构示意图。
图7是本申请实施例提供的经图6所示的第二反射模块扫描得到的一帧点云帧的示意图。
图8是本申请实施例提供的一种控制方法的流程图。
图9是本申请实施例提供的一种控制方法的流程图。
图10是本申请实施例提供的一种探测装置的结构示意图。
图11是本申请实施例提供的一种可移动平台的结构示意图。
图12是本申请实施例提供的一种可移动平台的结构示意图。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本发明,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本发明提出的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细 描述外,本发明还可以具有其他实施方式。
探测装置如激光雷达是一种利用激光进行扫描和距离测量从而获取周围场景中三维信息的感知系统,其基本原理为:主动对被探测物体发射激光脉冲,捕捉激光回波信号并根据激光发射和接收之间的时间差计算出被测对象的距离;通过高频率的发射和接收,可以获取海量的探测点的距离及角度信息,称为点云。基于点云即可以重建周围场景的三维信息。激光雷达的核心指标之一是点云的密度(本文中简称为点云密度),可定义为单位三维空间内的点的数量。一般而言,在相同时间内,激光雷达的点云密度越高,其三维测量的分辨率和效率就越高。激光雷达的另一核心指标是点云的均匀度(本文中简称为点云均匀度),可表征空间中点云密度的一致性。激光雷达不同区域的点云密度相差越小,可以认为其均匀度越高。在大多数的应用中,激光雷达点云的均匀度越高,测量时漏过小尺寸物体的概率就越小。
目前业界常用激光雷达通常为多线扫描式激光雷达,常见的有16条、32条、40条、或64条等,多线扫描式激光雷达通过扫描可以获得多条激光扫描线,从而获得点云分布。通常,为了获得较大的扫描范围,激光雷达会设置多个反射模块,利用反射模块的转动使得光脉冲以不同的角度出射,到达探测范围内的不同区域。但是如果一个反射模块出现故障,就可能会改变期望的光路,改变光脉冲的出射角度,从而导致获得的点云分布出现异常,偏离期望。由于激光雷达的造价成本较高、安装调试也耗时耗力,更换整个激光雷达或更换反射模块显然不是最优的解决方法。
基于此,本申请实施例的第一方面,提供一种探测装置的控制方法,该控制方法可以在一个反射模块出现问题导致点云分布出现异常时,利用其它反射模块来调整点云分布,以期望获得期望的点云分布。
请参阅图1,本申请提供的控制方法包括步骤S110和步骤S120。
S110、获取所述点云的分布信息;
S120、判断所述点云中的点云行分布是否沿第二方向,若所述点云的点云行分布偏离所述第二方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以将所述点云中的点云行分布修正至所述第二方向上。
本实施例中,如图1提供的控制方法,探测装置包括光源、第一反射模块和第二反射模块,光源发射的光脉冲先后经第一反射模块和第二反射模块发生反射,第一反射模块能够使光脉冲在第一方向上以不同角度出射,然后光脉冲到达第二反射模块,第二发射模块能够使光脉冲在第二方向上以不同角度出射,因此,使得所述光源发射的光脉冲分别在第一方向和第二方向进行扫描以获得探测范围内的点云。
在上述实施例提供的控制方法中,探测范围的点云信息通常可以被处理装置获得,在获取探测装置探测得到的点云的分布信息后,处理装置可以对点云分布进行判断,从而决定点云分布是否存在因为探测装置工作情况问题导致的分布异常。具体地,处理装置可以对所述点云中的点云行分布进行判断,若所述点云的点云行分布偏离所述第二方向,可以表明第二反射模块出现异常,经过第二反射模块的光脉冲不能沿预定的第二方向对探测范围进行扫描,因此,需要对反射模块进行调整。
在上述实施例提供的控制方法中,若所述点云的点云行分布偏离所述第二方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以将所述点云中的点云行分布修正至所述第二方向上。因为,光脉冲经第一反射模块反射后到达第二反射模块,所以通过调整第一反射模块,可以改变光脉冲经过第一反射模块反射后的角度和朝向,光脉冲在到达第二反射模块后,会有新的反射路径,从而有机会将经过第二反射模块反射的光脉冲调整到期望的方向。这样,即使第二反射模块出现工作异常,也不必要去更换第二反射模块或更换整个探测装置,通过调整第一反射模块的工作状态,即可对探测装置进行纠错,大大降低了探测装置的维修更换成本,有利于探测装置的大范围推广使用。
在上述实施例提供的控制方法中,第一反射模块的当前姿态是指第一反射模块在当前位置,而第一反射模块的目标姿态是指第一反射模块在目标位置,该目标位置处,光脉冲先后经第一反射模块和第二模块反射后,能够沿第二方向出射。
可以理解的是,控制所述第一反射模块从当前姿态调整至目标姿态,实际上是控制第一反射模块从当前位置调整到目标位置。如果第二反射模块没有异常,那么光脉冲先后经第一反射模块和第二模块反射后,是应该沿期望中的第二方向的。因此,若所述点云的点云行分布偏离所述第二方向时,控制所述第一反射模块从当前姿态调整至目标姿态,能够将所述点云中的点云行分布修正至所述第二方向上。
在一种实施方式中,第一方向可以是竖直方向,相应地,第二方向可以是水平方向。
在一种实施方式中,第一方向可以是竖直方向,相应地,第二方向可以是水平方向。
在一种实施方式中,作为示例,如图2所示,图2为本申请实施例提供的一种探测装置的结构示意图。探测装置100可以包括光源10、第一反射模块20和第二反射模块30。其中,光源10可以发射光脉冲序列,第一反射模块20和第二反射模块30依次设置在光脉冲的光路上,从而使光源10发射的光束可以经过第一反射模块20和 第二反射模块30的反射后到达探测范围中的某一位置。其中,第一反射模块10能够被设置为使光束在第一方向上扫描,第二反射模块30能够被设置为使光束在第二方向上扫描,因此可以获得探测范围内的点云分布。
在本实施方式中,第一方向是竖直方向,第二方向是水平方向;第一反射模块20能够在驱动机构22的带动下转动,从而使经过其反射的光束从不同的竖直方向的角度出射,从而可以形成对探测范围在竖直方向上的扫描,从而使探测装置具有竖直FOV。这里,竖直方向的角度可以是光束的出射方向与水平面的夹角。第二反射模块30能够在驱动机构31的带动下转动,从而使经过其反射的光束以不同的水平方向的角度出射,从而可以形成对探测范围在水平方向上的扫描,从而获得水平FOV。通过第一反射模块和第二反射模块的配合,光源发射的光脉冲序列可以覆盖整个探测范围,从而可以采集到探测范围中场景对应的点云。
在一种实施方式中,第一反射模块包括第一反射镜,在驱动机构的作用下,第一反射镜能够通过步进式摆动使光束在竖直方向上对所述探测范围进行扫描。示例性地,反射镜21可以包括面积较大的反射镜,也可以包括面积很小的微电子机械系统(Micro-Electro-Mechanical System,MEMS)振镜等,在此不作限制。
可以理解地,第一反射镜的形状根据光斑形状或者排列设计为任意合适形状。示例性地,第一反射镜的形状包括椭圆形、方形等任意合适的形状。如此,既能够满足光路设计,又能够尽可能降低材料的浪费,从而降低成本。
在上述实施方式中,在步进式摆动中,第一反射镜在摆动一个步长后会保持当前姿态一段时间(即保持静止一段时间),在这段时间过后再摆动下一个步长。步进式摆动可以由驱动机构实现,驱动机构诸如步进电机等。
请参考图2和图3所示,图3是本申请实施例提供的一种第一反射模块的结构示意图。第一反射模块20包括第一反射镜21,第一反射镜在驱动结构22的作用下,沿以轴B为摆动轴做摆动。在图3中,实线方框和虚线方框分别表示第一反射镜21的两种不同姿态。在驱动机构22的作用下,第一反射镜21以轴B为摆动轴,从第一姿态21A摆动至少一个步长偏转至第二姿态21B,在光脉冲入射至第一反射镜21的入射光路保持不动时,从第一姿态摆动到第二姿态21B,在第一姿态21A时,光脉冲序列到达扫描范围的上端AA,在第二姿态21F时,光脉冲到达扫描范围的下端FF,从第一姿态21A摆动到第二姿态21F的过程中,光脉冲沿第一方向,从扫描范围的上端AA达到扫描范围的下端FF,扫描范围AA-FF构成了探测装置在第一方向上的FOV。
在一种实施方式中,第一反射镜在进行步进式摆动时,第一反射镜可以从第一姿 态通过多个步长摆动至第二姿态,再从第二姿态通过一个步长摆动至第一姿态。这里,第一反射镜从第二姿态摆动回第一姿态时,可以沿顺时针方向摆动,也可以沿逆时针方向摆动。
在一种实施方式中,光源发射光脉冲的时机可以与第一反射镜配合。例如,光源可以在第一反射镜从第一姿态摆动至第二姿态的过程中发射光脉冲,在第一反射镜从第二姿态摆动至第一姿态的过程中不发射光脉冲序列。
如前所述,第一反射镜是通过多个步长从第一姿态摆动至第二姿态的,而第一反射镜每摆动一个步长将保持一段时间的静止。在一种实施方式中,光源可以在第一反射镜从第一姿态摆动至第二姿态的过程中,在第一反射镜保持静止的时段内发射光脉冲,而在第一反射镜摆动的时段内可以不发射光脉冲。
在一种实施方式中,第二反射模块包括第二反射镜和第三反射镜,第二反射镜和第三反射镜均能够通过连续转动使光束在水平方向上对所述探测范围进行扫描。
在一种实施方式中,第二反射模块可以与旋转电机连接,在旋转电机的驱动下实现连续式转动。其中,在连续式转动中,即第二反射镜的转动是连续的,该连续旋转可以是匀速旋转,也可以是变速旋转。
可以理解的是,在一些实施方式中,在第二反射模块上可设置多个反射镜,如三个、四个、五个、六个等。
在一种实施方式中,作为示例,如图2所示,第二反射模块30包括第二反射镜32和第三反射镜33,第二反射镜32和第三反射镜33分别是第二反射模块30上设置的两块反射镜,第二反射镜32和第三反射镜33构成了第二反射模块30的两个反射面,在驱动机构31的作用下,第二反射模块30能够沿旋转轴R进行旋转,当第二反射模块30转动时,第二反射镜32、第三反射镜33可以依次转动到光路上,对光路上的光束进行反射。由于第二反射模块30在持续转动,因此,在光束射到第二反射镜32后,能够沿第二方向,以不同的角度出射,然后,在光束射到第三反射镜33后,也能沿第二方向,以不同的角度出射,实现对探测范围在第二方向上的扫描。在一个实施方式中,如图2所示,第二方向为水平方向。
在一种实施方式中,请参考图4,第二反射镜32和第三反射镜33之间存在交界区域35,第二反射镜32和第三反射镜33均与交界区域35连接。第二反射镜32、交界区域35和第三反射镜33沿第二反射模块30的旋转方向依次设置,第二反射模块30旋转时,第二反射镜32、交界区域35、第三反射镜33依次转动到光脉冲序列的光路上。在一种情况中,当交界区域35转动到光路上时,光束将无法正常出射,此时出 现黑视时段。在一种情况中,当第二反射镜32的边缘区域321或322,或者,第三反射镜33的边缘区域331或332转动到光路上时,由于边缘区域的反射角度过大,光束同样无法正常出射,此时也出现黑视时段。在一种情况中,当与光路最近的反射面与光路大致平行时,也会出现黑视时段。相对的,其他时间段,光束能够被第二反射镜或第三反射镜正常反射而正常出射,被称为白视时段。
在一种实施方式中,第一反射镜可以在黑视时段进行摆动,在白视时段内停止摆动。相对应的,光源可以在第一反射镜从第一姿态摆动至第二姿态的过程中,在第一反射镜保持静止的时段内发射光脉冲序列,而在第一反射镜摆动的时段内可以不发射光脉冲序列。如此,如前文所述,第一发射镜在摆动时会让光脉冲在第一方向上如竖直方向以不同的角度出射,因此,在白视时段,由于第一发射镜停止摆动,所以仅由第二反射模块在改变光脉冲的出射方向,因此光脉冲能够沿第二方向如水平方向进行扫描。
在一种实施方式中,在采用逐行扫描的方式对探测范围进行扫描时,第一反射镜可以不断的从第一姿态通过多个步长摆动至第二姿态,再从第二姿态通过一个步长摆动至第一姿态,第二反射镜可以连续不断的转动。在第一反射镜在从第一姿态通过多个步长摆动至第二姿态的过程中,第一反射镜在摆动一个步长后可以进入静止时段,光源可以在第一反射镜的静止时段发射光脉冲序列,由于第二反射模块在第一反射镜的静止时段内仍然在不停的转动,因此不同的光束在经过第二反射模块的反射后可以以不同的水平方向的角度出射,从而在当前高度可以扫描得到水平方向的点云行。静止时段结束后,第一反射镜可以摆动下一个步长,使光束在竖直方向的出射角度发生变化,从而可以在静止时段对下一个高度的点云行进行扫描。重复该过程,当第一反射镜摆动至第二姿态并经过静止时段后,当前扫描的点云帧的最后一个高度的点云行扫描完成,第一反射镜可以通过一个步长摆动回第一姿态,开始下一帧点云的逐行扫描。
应当理解的是,如前文所述,目前业界常用激光雷达通常为多线扫描式激光雷达,常见的有16条、32条、40条、或64条等,多线扫描式激光雷达通过扫描可以获得多条激光扫描线,多少条激光扫描线就有多少个点云行。而在本申请中,为方便理解,将多线扫描式激光雷达在一个高度处通过扫描可以获得的多条激光扫描线作为一个点云行,即将多线扫描式激光雷达当做单线扫描式激光雷达,即在一个高度扫描时仅能获得一个点云行。
在一种实施方式中,可以参考图5,图5是一帧点云帧的示意图。探测装置可以 采用逐行扫描的方式对探测范围进行扫描,在一帧时长内扫描得到的点云帧可以包括多个点云行。在第一反射镜处于第一姿态时,光脉冲到达扫描范围的上端,因此可以获得点云行AA,然后第一反射镜可以摆动下一个步长,使光束在竖直方向的出射角度发生变化,从而可以在第一反射镜静止时段对下一个高度的点云行进行扫描,从而获得点云行BB,重复该过程,依次获得点云行CC、点云行DD、点云行EE,直至第一反射镜摆动至第二姿态,光脉冲到达扫描范围的下端,因此获得点云行FF。
通常,需要控制第二反射镜和第三反射镜的镜面方向保持一致,如此,光束在经过第二反射镜反射后的角度和方向,与光束在经过第三反射镜反射后的角度和方向保持一致,经过第二反射镜反射获得的点云分布的形状和第三反射镜反射获得的点云分布的形状一致,从而在第二反射模块在持续转动时,可以获得分布均匀的点云行。如图5所示,因为第二反射镜和第三反射镜的镜面方向保持一致,在第二反射模块进行旋转时,光脉冲能够始终沿第二方向以不同的角度出射,因此在第二方向上,点云分布是均匀的。
然而,在一些情况下,由于第二反射模块的生产制造公差或者使用过程中造成的变形,可能造成第二反射镜和第三反射镜的镜面方向出现不同,光束在经第二反射镜和第三反射镜并不能总是保持相同的反射角度和方向;比如,第二反射镜或第三反射镜中的一个在旋转时能够保持绕竖直方向的转轴旋转,另一个,因为与前一个的安装存在公差,或者第二反射模块在出厂过程、使用过程等环节中,反射镜发生变形造成反射镜的镜面不平整,与竖直方向存在夹角,因此在旋转时第二发射镜与第三反射镜的镜面与竖直方向的夹角不同,光束在经第二反射镜的反射角度和朝向,与光束在经过第三反射镜的反射角度和朝向不同,表现在点云分布上就会出现点云分布不均匀变化,会出现部分扫面范围内点云分布密集,而部分扫面范围内点云出现空洞,因此,点云分布不均匀。
在一种实施方式中,如图6所示,第二反射镜与竖直方向的夹角为0,而第三反射镜出现倾斜,与竖直方向的夹角为α,α大于0。因此,在进行逐行扫描时,水平入射的光束经过第二反射镜时会以水平方向出射,而水平入射的光束经过第三反射镜时会以其他方向出射,因此,表现在点云分布上,经过第二发射镜扫描获得的点云行和经过第三反射镜扫描获得的点云行的角度不同,经过第三反射镜扫描获得的点云行会向竖直方向偏离,从而偏离期望的水平方向。
请参考图7,图7是经过本申请实施例提供的第一反射模块和图6所示的第二反射模块扫描获得的点云图。在图7所示的点云帧上,将经过第二反射镜反射得到的点 云行称之为第二点云行,将经过第三反射镜反射得到的点云行称之为第三点云行,空心原点表示第二反射模块正常工作时,期望的点云分布,即第二点云行和第三点云行均能够沿水平方向分布,而实心原点表示实际获得的点云分布。在图7中,因为第二反射镜竖直放置,因此第二点云行均能够沿水平方向分布,而因为第三反射镜发生倾斜,与竖直方向存在夹角,所以第三点云行偏离水平方向。在一种情况中,第三反射镜的上部相比下部,与竖直方向偏离的距离更远,因此,在点云分布上,第三点云行上部偏离水平方向的夹角更大,偏离的更明显。由于第二反射模块在连续旋转,因此,在获得探测范围的点云上,点云行在水平方向上不连续,会出现部分扫面范围内点云分布密集,而部分扫面范围内点云出现空洞,如图7中空心原点所在区域。点云分布不均匀,不能获得期望的点云分布。
因此,请参考图8所示,在步骤S810中,获取所述点云的分布信息,包括获取所述点云中第二点云行分布和所述第三点云行分布;所述第二点云行分布由所述光束经所述第二反射镜扫描得到,所述第三点云行分布由所述光束经所述第三反射镜扫描得到。相对应地,在步骤S820中,判断所述点云中的点云行分布是否沿第二方向,若所述点云的点云行分布偏离所述第二方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以将所述点云中的点云行分布修正至所述第二方向上,包括:若所述第三点云行分布方向偏离所述第二点云行分布方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以使得所述第三点云行分布与所述第二点云行分布方向一致。
在上述实施方式中,也可以以第三点云行的分布方向为期望方向,所述第二点云行分布方向偏离所述第三点云行分布方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以使得所述第二点云行分布与所述第三点云行分布方向一致。
在一种实施方式中,可以通过第三点云行的角度与第二点云行的角度是否有角度差来判断第三点云行分布方向是否偏离所述第二点云行分布方向。比如第二点云行沿水平方向,第三点云行与水平方向存在夹角,则认为第三点云行分布方向偏离了所述第二点云行分布方向。
在一种实施方式中,可以通过第三点云行与第二点云行之间的角度差是否超过预设阈值来判断第三点云行分布方向是否偏离所述第二点云行分布方向。比如第二点云行与水平方向存在第一夹角,第三点云行与水平方向存在第二夹角,第一夹角与第二夹角之间差值满足预设阈值,则认为第三点云行分布方向偏离了所述第二点云行分布方向。
在上述实施方式中,阈值大小包括0.5°、1°、2°、5°、10°、15°以及任意两个数值之间的任意值等。预设阈值的大小可根据第一反射模块控制的灵敏度以及点 云分布的均匀度来调整。在设置阈值大小时,较高的阈值,在第三点云行分布偏离第二点云行分布时,第一反射模块就不需要被立刻控制从当前姿态调整到目标姿态去调整光脉冲的反射角度,这样可以避免第一反射模块的频繁摆动,从而降低对第一反射模块的控制精度要求,并且能够提高第一反射模块的寿命,减低第一反射模块的功耗。而较低的阈值,则会提高第一反射模块的精度,在第三点云行分布偏离第二点云行分布时,第一反射模块能够被立刻控制从当前姿态调整到目标姿态去调整光脉冲的反射角度,因此,第三点云行能够被立刻调整到第二点云行的分布方向上,使得点云行比较连续,点云分布比较均匀。
在一种实施方式中,如上文所述,第二反射模块可以包括多块反射镜,如第四反射镜,第四反射镜如第二反射镜和第三反射镜一样,能够通过连续转动使光束在水平方向上对所述探测范围进行扫描。
如图2所示,第二反射镜32、第三反射镜33、第四反射镜34分别是第二反射模块上设置的三块反射镜,当第二反射模块30转动时,第二反射镜32、第三反射镜33和第四反射镜34可以依次转动到光路上,因此,获得的点云信息除了第二点云行分布和第三点云行分布外,还有第四点云行分布,第四点云行分布是光脉冲经所述第四反射镜扫描得到。
应当理解的是,上述实施例中的第四反射镜34并不一定是和第二反射镜32或第三反射镜33相邻接,只是为了从名称上和第二反射镜32、第三反射镜33进行区分,即第二反射镜32与第三反射镜33之间可能存在若干反射镜,第三反射镜32和第四反射镜34之间也可能存在若干反射镜。只是在第二反射模块30旋转时,从旋转的先后关系上,光脉冲先后经第二反射镜32、第三反射镜33、第四反射镜反射34,因此,获得的点云信息中,第四点云行分布为范围,相比第二点云行的分布范围,更靠近第三点云行分布的范围。
因此,在一种实施方式中,在本申请提供的控制方法中,如图9所示,在步骤S910中,获取所述点云的分布信息,除了获取所述点云中第二点云行分布和所述第三点云行分布,还包括获取第四点云行分布。相对应地,在步骤S920中,判断所述点云中的点云行分布是否沿第二方向,若所述点云的点云行分布偏离所述第二方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以将所述点云中的点云行分布修正至所述第二方向上,包括:若所述第四点云行分布方向偏离所述第三点云行分布方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以使得所述第四点云行分布与所述第三点云行分布方向一致。
在上述实施方式中,虽然第二点云行分布是期望方向,但是第三点云行分布范围距离第四点云行分布范围更近,以第三点云行分布方向作为判断的基础,在第四点云行分布方向偏离第三点云行分布方向时,能够更快识别第四点云行分布方向是否出现偏离。这是因为,即使第四点云行与第三点云行之间的角度差很小,没有超过阈值,即第四点云行方向并没有发生明显偏离,但是如果第四点云行分布去与更远处的第二点云行分布做对比时,由于误差的累计,在一些情况下,第四点云行分布与第二点云行之间的角度差会超过阈值,会误认为第四点云行分布方向相比第二点云行分布出现明显偏离,从而激活第一反射模块开始摆动。显然,这种对第一反射模块并不友好。另外一方面,直接将第四点云行分布方向调整至第二点云行分布方向,在整个点云分布上,会存在明显的跳跃,而将第四点云行分布方向调整至第三点云行分布方向,而第三点云行分布会被调整至与第二点云行分布方向一致,在整个点云分布上,从第二点云行、第三点云行、第四点云行之间的分布来看是逐渐过渡的而非突变或跳跃。这样做的好处,可以保持点云的连续,从而避免整个点云中出现部分“真空”,有利于提高点云分布的均匀性。
在上述的实施方式中,可通过对所述点云进行采样以获得所述点云中的点云行分布。如此,可以降低对点云信息获取装置的要求,降低功耗。在一些实施方式中,可以根据预设的时间间隔对点云进行采样,也可以对第一反射模块或第二反射模块的转动进行控制,在第一反射模块或第二反射模块处于预设的姿态时对点云进行采样,如第一反射模块或第二反射模块处于预设的位置,或预设的角度。
在一种实施方式中,所述第一反射镜静止的时段内,对于所述点云进行采样以获得所述点云中的点云行分布。因为,在第一反射镜静止的时间段内,点云行的分布方向是完全由第二反射模块影响的,因此,如果在此时间段内,如果点云行分布出现方向偏离,则可以认为是第二反射模块出现异常。
在上述实施方式中,在第一反射镜静止的时段内,对于所述点云进行采样以获得所述点云中的点云行分布。在第一反射镜静止的时间段内,第一反射镜可以从当前的静止状态被控制到转动状态,从而从当前姿态调整至目标姿态,光脉冲经过处于目标姿态的第一反射镜反射后到达第二反射模块,从而使得光脉冲的出射方向能够沿第二方向。
而在另一种实施方式中,在第一反射镜静止的时段内,对于所述点云进行采样以获得所述点云中的点云行分布。而在第一反射镜摆动的时间段内,第一反射镜可以被控制从当前姿态调整至目标姿态,如第一反射镜要摆动至第一角度才能停止摆动,可以控制驱动机构使得第一反射镜直接摆动至第二角度再停止摆动,如此,在第一反射镜静止时,光脉冲经过处于第二角度的第一反射镜反射后到达第二反射模块,从而使 得光脉冲的出射方向能够沿第二方向。
如上文所述,本申请实施例提供的探测装置包括了第一反射模块和第二反射模块,第一反射模块能够通过步进式摆动使光束在竖直方向上对所述探测范围进行扫描,第二反射模块能够通过连续转动使光束在水平方向上对所述探测范围进行扫描。由于光束需要经过第一反射模块和第二反射模块,因此,需要控制第一反射模块二和第二反射模块的摆动周期,使得第一反射模块在每一个摆动周期开始时,第二反射模块均处于特定的起始位置,第一反射模块在每一个摆动周期结束时,第二反射模块也均处于特定的结束位置,这样可以保证,在每一次扫描时,获得的点云行中每一行均具有相同的扫描起始位置和扫描终止位置。逐行扫描后,在一帧点云帧中,每一点云行均有相同的起始位置和终止位置,避免因为第一反射模块和第二反射模块的周期问题,导致在逐行扫描后,每一点云行因为起始位置或终止位置不同,导致在点云帧上表现为点云分布不连续,部分区域出现“真空”,点云不均匀。或者,点云行的起始位置并不对应扫描范围的同一位置,导致该位置处的点云密度下降。
本申请实施例提供的探测装置的控制方法能够解决因为第一反射模块和第二反射模块的周期问题带来的点云不均匀问题。
在一种实施方式中,第一反射镜在步进式摆动时从第一姿态通过多个步长摆动至第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态的过程中,每次所述第一反射镜位于第一姿态时,所述光源均经所述第二反射镜的同一位置使光束在水平方向上对所述探测范围进行连续扫描。因此,每次第一反射镜在第一姿态时,光源均能从第二反射镜的同一位置处反射,保证了每一点云行均有相同的起始位置。
在一种实施方式中,第一反射镜经过单帧时长进行复位,所述单帧时长内所述第一反射镜从第一姿态通过多个步长摆动至第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态。即将第一反射镜总是从第一姿态到第二姿态,然后再从第二姿态到第一姿态作为第一反射镜的一个摆动周期,在一个摆动周期结束时,控制所述第一反射镜在复位状态,即在第一姿态。在这种情况下,可以保证每次第一反射镜在周期开始时总在第一姿态时。
在一些情况下,第二反射模块的旋转速度比较块,留给第一反射镜的复位时间很短。可以通过控制第一反射镜经过每两帧时长进行复位,其中,在奇数帧时长内,所述第一反射镜从第一姿态通过多个步长摆动至第二姿态,在偶数帧时长内,所述第一反射镜从所述第二姿态通过多个步长摆动至所述第一姿态。即第一反射镜需要经过两帧时长才能实现复位,奇数帧时长对应从第一姿态通过多个步长摆动至第二姿态的时间,偶数帧时长对应从所述第二姿态通过多个步长摆动至所述第一姿态的时间,两帧 时长构成了第一反射镜的一个摆动周期。其中,奇数帧中,第一反射模块从第一姿态摆动至第二姿态后,并非从第二姿态一步摆动至第一姿态,而是在偶数帧中仍通过步进式摆动从第二姿态通过多个步长摆动至第一姿态,在控制奇数帧的步长和偶数帧的步长相对称的条件下,偶数帧中通过步进式摆动从第二姿态通过多个步长摆动至第一姿态,和奇数帧第一反射模块从第一姿态摆动至第二姿态的效果是类似的。如,奇数帧内,从扫描范围的上端扫描至下端,而在偶数帧内,从扫描范围的下端扫描至上端,在点云分布上,不会出现因为第一反射镜因为在奇数和偶数帧的摆动方向不一样而出现异样。
如上述的任一实施方式中,本申请实施例提供的控制方法可以应用于探测装置本身,例如探测装置可以包括处理器和存储器,当处理器在执行存储器中存储的计算机程序时,可以执行本申请实施例提供的控制方法。
在一种实施方式中,本申请实施例提供的控制方法也可以应用于处理装置,处理装置是可以独立于探测装置的其它装置,其可以与探测装置连接,并可以通过执行本申请实施例提供的控制方法对探测装置进行控制。在一个例子中,处理装置可以是可移动平台的控制系统,即可移动平台可以通过执行本申请实施例提供的控制方法对可移动平台搭载的探测装置进行控制。
本申请的第二方面,提供了一种探测装置。下面可以参考图10,图10是本申请实施例提供的一种探测装置的结构示意图,该探测装置100包括光源101、第一反射模块102和第二反射模块103,所述光源101用于发射光脉冲序列,所述第一反射模块101和第二反射模块102使所述光源101发射的光束分别在第一方向和第二方向进行扫描以获得探测范围内的点云;以及处理器104和存储有计算机程序的存储器105,所述处理器在执行所述计算机程序时实现以下步骤:
获取所述点云的分布信息;
判断所述点云中的点云行分布是否沿第二方向,若所述点云的点云行分布偏离所述第二方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以将所述点云中的点云行分布修正至所述第二方向上。
在一种实施方式中,所述第一反射模块包括第一反射镜,所述第一方向为竖直方向,所述第一反射镜能够通过步进式摆动使光束在竖直方向上对所述探测范围进行扫描;所述第二反射模块包括第二反射镜和第三反射镜,所述第二方向为水平方向,所述第二反射镜和所述第三反射镜均能够通过连续转动使光束在水平方向上对所述探测范围进行扫描。
在一种实施方式中,所述处理器在获取所述点云的分布信息时,获取所述点云中第二点云行分布和所述第三点云行分布;其中,所述第二点云行分布由所述光束经所述第二反射镜扫描得到,所述第三点云行分布由所述光束经所述第三反射镜扫描得到。
在一种实施方式中,若所述第三点云行分布方向偏离所述第二点云行分布方向,所述处理器则控制所述第一反射模块从当前姿态调整至目标姿态,以使得所述第三点云行分布与所述第二点云行分布方向一致。
在一种实施方式中,若所述第三点云行分布和所述第二点云行分布之间存在角度差,所述处理器则控制所述第一反射模块从当前姿态调整至目标姿态。
在一种实施方式中,若所述第三点云行分布和所述第二点云行分布之间的角度差超出预设阈值,所述处理器则控制所述第一反射模块从当前姿态调整至目标姿态,使得所述第三点云行分布与所述第二点云行分布之间的角度差满足预设阈值。
在一种实施方式中,所述第二反射模块还包括第四反射镜,所述点云的分布信息还包括第四点云行分布,所述第四点云行分布由所述光束经所述第四反射镜扫描得到。
在一种实施方式中,若所述第四点云行分布方向偏离所述第三点云行分布方向,所述处理器则控制所述第一反射模块从当前姿态调整至目标姿态,以使得所述第四点云行分布与所述第三点云行分布方向一致。
在一种实施方式中,所述处理器对所述点云进行采样以获得所述点云中的点云行分布。
在一种实施方式中,所述第二反射模块是在旋转电机的驱动下实现连续式转动的。
在一种实施方式中,所述第一反射镜是在步进电机的驱动下实现步进式摆动的。
在一种实施方式中,所述第一反射镜在步进式摆动时从第一姿态通过多个步长摆动至第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态。
在一种实施方式中,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中发射光脉冲序列,在所述第一反射镜从所述第二姿态摆动至所述第一姿态的过程中不发射光脉冲序列。
在一种实施方式中,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中,在所述第一反射镜静止的时段内发射光脉冲序列。
在一种实施方式中,在所述第一反射镜静止的时段内,对于所述点云进行采样以获得所述点云中的点云行分布。
在一种实施方式中,在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中,所述第一反射镜在摆动一个步长后,在所述第一反射镜静止的时段内所述第二 反射模块通过连续转动使光束在水平方向进行扫描。
在一种实施方式中,每次所述第一反射镜位于第一姿态时,所述光源均经所述第二反射镜的同一位置使光束在水平方向上对所述探测范围进行连续扫描。
在一种实施方式中,所述第一反射镜经过单帧时长进行复位,所述单帧时长内所述第一反射镜从第一姿态通过多个步长摆动至第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态。
在一种实施方式中,所述第一反射镜经过每两帧时长进行复位,其中,在奇数帧时长内,所述第一反射镜从第一姿态通过多个步长摆动至第二姿态,在偶数帧时长内,所述第一反射镜从所述第二姿态通过多个步长摆动至所述第一姿态。
以上的探测装置的各种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
本申请的第三方面,提供了一种可移动平台,可以参考图11,图11是本申请一实施例提供的可移动平台的结构示意图,
如图11所示,可移动平台110包括:可移动平台本体111以及搭载在所述可移动平台本体111上的探测装置100,所述探测装置可以是本申请的第二方面所提供的任一实施方式中的探测装置,以上的探测装置的各种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
本申请的第四方面,仍提供了一种可移动平台,可以参考图12,图12是本申请一实施例提供的可移动平台的结构示意图。
如图12所示,可移动平台120包括:
可移动平台本体121;以及
搭载在所述可移动平台本体121上的探测装置122,该探测装置122包括光源1220、第一反射模块1221和第二反射模块1222,所述光源用于发射光脉冲序列,所述第一反射模块和第二反射模块使所述光源发射的光束分别在第一方向和第二方向进行扫描以获得探测范围内的点云;以及
处理器1224和存储有计算机程序的存储器1225,所述处理器1224在执行所述计算机程序时可以实现本申请实施例提供的任一种控制方法。
对于本申请实施例提供的控制方法的各种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
对于本申请实施例提供的探测装置的各种实施方式,其具体实现可以参考前文中的相关说明,在此不再赘述。
在一些实施方式中,可移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当测距装置应用于无人飞行器时,可移动平台本体为无人飞行器的机身。当测距装置应用于汽车时,可移动平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当测距装置应用于遥控车时,可移动平台本体为遥控车的车身。当测距装置应用于机器人时,可移动平台本体为机器人。当测距装置应用于相机时,可移动平台本体为相机的机身。
其中,所述可移动平台还可以进一步包括动力系统,用于驱动所述可移动平台本体移动。例如当所述可移动平台为车辆时,所述动力系统可以为车辆内部的发动机,在此不再一一列举。
本申请的第五方面,还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的任一种控制方法。
以上针对每个保护主题均提供了多种实施方式,在不存在冲突或矛盾的基础上,本领域技术人员可以根据实际情况自由对各种实施方式进行组合,由此构成各种不同的技术方案。而本申请文件限于篇幅,未能对所有组合而得的技术方案展开说明,但可以理解的是,这些未能展开的技术方案也属于本申请实施例公开的范围。
本申请实施例可采用在一个或多个其中包含有程序代码的存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机可用存储介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括但不限于:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅 包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (46)

  1. 一种探测装置的控制方法,所述探测装置包括光源、第一反射模块和第二反射模块,所述第一反射模块和第二反射模块使所述光源发射的光束分别在第一方向和第二方向进行扫描以获得探测范围内的点云,其特征在于,
    获取所述点云的分布信息;
    判断所述点云中的点云行分布是否沿第二方向,若所述点云的点云行分布偏离所述第二方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以将所述点云中的点云行分布修正至所述第二方向上。
  2. 根据权利要求1所述的控制方法,其特征在于,所述第一方向为竖直方向,所述第二方向为水平方向。
  3. 根据权利要求1或2所述的控制方法,其特征在于,所述第一反射模块包括第一反射镜,所述第一反射镜能够通过步进式摆动使光束在竖直方向上对所述探测范围进行扫描;所述第二反射模块包括第二反射镜和第三反射镜,所述第二反射镜和所述第三反射镜均能够通过连续转动使光束在水平方向上对所述探测范围进行扫描。
  4. 根据权利要求3所述的控制方法,其特征在于,获取所述点云的分布信息,包括:
    获取所述点云中第二点云行分布和第三点云行分布;
    其中,所述第二点云行分布由所述光束经所述第二反射镜扫描得到,所述第三点云行分布由所述光束经所述第三反射镜扫描得到。
  5. 根据权利要求3所述的控制方法,其特征在于,判断所述点云中的点云行分布是否沿第二方向,若所述点云的点云行分布偏离所述第二方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以将所述点云中的点云行分布修正至所述第二方向上,包括:
    若所述第三点云行分布方向偏离所述第二点云行分布方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以使得所述第三点云行分布与所述第二点云行分布方向一致。
  6. 根据权利要求5所述的控制方法,其特征在于,若所述第三点云行分布方向偏离所述第二点云行分布方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以使得所述第三点云行分布与所述第二点云行分布方向一致,包括:
    若所述第三点云行分布和所述第二点云行分布之间存在角度差,则控制所述第一反射模块从当前姿态调整至目标姿态。
  7. 根据权利要求6所述的控制方法,其特征在于,若所述第三点云行分布方向偏 离所述第二点云行分布方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以使得所述第三点云行分布与所述第二点云行分布方向一致,包括:
    若所述第三点云行分布和所述第二点云行分布之间的角度差超出预设阈值,则控制所述第一反射模块从当前姿态调整至目标姿态,使得所述第三点云行分布与所述第二点云行分布之间的角度差满足预设阈值。
  8. 根据权利要求3所述的控制方法,其特征在于,所述第二反射模块还包括第四反射镜,所述点云的分布信息还包括第四点云行分布,所述第四点云行分布由所述光束经所述第四反射镜扫描得到。
  9. 根据权利要求8所述的控制方法,其特征在于,还包括:
    若所述第四点云行分布方向偏离所述第三点云行分布方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以使得所述第四点云行分布与所述第三点云行分布方向一致。
  10. 根据权利要求1所述的控制方法,其特征在于,获取所述点云的分布信息,包括:
    对所述点云进行采样以获得所述点云中的点云行分布。
  11. 根据权利要求10所述的控制方法,其特征在于,对所述点云进行采样以获得所述点云中的点云行分布,包括:
    按照时间间隔对所述点云进行采样,或者,按照第一反射模块或第二反射模块的姿态对所述点云进行采样。
  12. 根据权利要求3所述的控制方法,其特征在于,所述第二反射模块是在旋转电机的驱动下实现连续式转动的。
  13. 根据权利要求3所述的控制方法,其特征在于,所述第一反射镜是在步进电机的驱动下实现步进式摆动的。
  14. 根据权利要求3所述的控制方法,其特征在于,所述第一反射镜在步进式摆动时从第一姿态通过多个步长摆动至第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态。
  15. 根据权利要求3所述的控制方法,其特征在于,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中发射光脉冲序列,在所述第一反射镜从所述第二姿态摆动至所述第一姿态的过程中不发射光脉冲序列。
  16. 根据权利要求15所述的控制方法,其特征在于,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中,在所述第一反射镜静止的时段内发射光脉冲序列。
  17. 根据权利要求15所述的控制方法,其特征在于,在所述第一反射镜静止的时 段内,对于所述点云进行采样以获得所述点云中的点云行分布。
  18. 根据权利要求15所述的控制方法,其特征在于,在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中,所述第一反射镜在摆动一个步长后,在所述第一反射镜静止的时段内所述第二反射模块通过连续转动使光束在水平方向进行扫描。
  19. 根据权利要求14所述的控制方法,其特征在于,每次所述第一反射镜位于第一姿态时,所述光源均经所述第二反射镜的同一位置使光束在水平方向上对所述探测范围进行连续扫描。
  20. 根据权利要求19所述的控制方法,其特征在于,所述第一反射镜经过单帧时长进行复位,所述单帧时长内所述第一反射镜从第一姿态通过多个步长摆动至第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态。
  21. 根据权利要求19所述的控制方法,其特征在于,所述第一反射镜经过每两帧时长进行复位,其中,在奇数帧时长内,所述第一反射镜从第一姿态通过多个步长摆动至第二姿态,在偶数帧时长内,所述第一反射镜从所述第二姿态通过多个步长摆动至所述第一姿态。
  22. 一种探测装置,其特征在于,包括:
    光源、第一反射模块和第二反射模块,所述光源用于发射光脉冲序列,所述第一反射模块和第二反射模块使所述光源发射的光束分别在第一方向和第二方向进行扫描以获得探测范围内的点云;
    处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
    获取所述点云的分布信息;
    判断所述点云中的点云行分布是否沿第二方向,若所述点云的点云行分布偏离所述第二方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以将所述点云中的点云行分布修正至所述第二方向上。
  23. 根据权利要求22所述的探测装置,其特征在于,所述第一方向为竖直方向,所述第二方向为水平方向。
  24. 根据权利要求22或23所述的探测装置,其特征在于,所述第一反射模块包括第一反射镜,所述第一反射镜能够通过步进式摆动使光束在竖直方向上对所述探测范围进行扫描;所述第二反射模块包括第二反射镜和第三反射镜,所述第二反射镜和所述第三反射镜均能够通过连续转动使光束在水平方向上对所述探测范围进行扫描。
  25. 根据权利要求24所述的探测装置,其特征在于,获取所述点云的分布信息,包括:
    获取所述点云中第二点云行分布和第三点云行分布;
    其中,所述第二点云行分布由所述光束经所述第二反射镜扫描得到,所述第三点云行分布由所述光束经所述第三反射镜扫描得到。
  26. 根据权利要求24所述的探测装置,其特征在于,判断所述点云中的点云行分布是否沿第二方向,若所述点云的点云行分布偏离所述第二方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以将所述点云中的点云行分布修正至所述第二方向上,包括:
    若所述第三点云行分布方向偏离所述第二点云行分布方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以使得所述第三点云行分布与所述第二点云行分布方向一致。
  27. 根据权利要求26所述的探测装置,其特征在于,若所述第三点云行分布方向偏离所述第二点云行分布方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以使得所述第三点云行分布与所述第二点云行分布方向一致,包括:
    若所述第三点云行分布和所述第二点云行分布之间存在角度差,则控制所述第一反射模块从当前姿态调整至目标姿态。
  28. 根据权利要求27所述的探测装置,其特征在于,若所述第三点云行分布方向偏离所述第二点云行分布方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以使得所述第三点云行分布与所述第二点云行分布方向一致,包括:
    若所述第三点云行分布和所述第二点云行分布之间的角度差超出预设阈值,则控制所述第一反射模块从当前姿态调整至目标姿态,使得所述第三点云行分布与所述第二点云行分布之间的角度差满足预设阈值。
  29. 根据权利要求24所述的探测装置,其特征在于,所述第二反射模块还包括第四反射镜,所述点云的分布信息还包括第四点云行分布,所述第四点云行分布由所述光束经所述第四反射镜扫描得到。
  30. 根据权利要求29所述的探测装置,其特征在于,还包括:
    若所述第四点云行分布方向偏离所述第三点云行分布方向,则控制所述第一反射模块从当前姿态调整至目标姿态,以使得所述第四点云行分布与所述第三点云行分布方向一致。
  31. 根据权利要求22所述的探测装置,其特征在于,获取所述点云的分布信息,包括:
    对所述点云进行采样以获得所述点云中的点云行分布。
  32. 根据权利要求31所述的探测装置,其特征在于,对所述点云进行采样以获得所述点云中的点云行分布,包括:
    按照时间间隔对所述点云进行采样,或者,按照第一反射模块或第二反射模块的 姿态对所述点云进行采样。
  33. 根据权利要求24所述的探测装置,其特征在于,所述第二反射模块是在旋转电机的驱动下实现连续式转动的。
  34. 根据权利要求24所述的探测装置,其特征在于,所述第一反射镜是在步进电机的驱动下实现步进式摆动的。
  35. 根据权利要求24所述的探测装置,其特征在于,所述第一反射镜在步进式摆动时从第一姿态通过多个步长摆动至第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态。
  36. 根据权利要求24所述的探测装置,其特征在于,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中发射光脉冲序列,在所述第一反射镜从所述第二姿态摆动至所述第一姿态的过程中不发射光脉冲序列。
  37. 根据权利要求36所述的探测装置,其特征在于,所述光源在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中,在所述第一反射镜静止的时段内发射光脉冲序列。
  38. 根据权利要求36所述的探测装置,其特征在于,在所述第一反射镜静止的时段内,对于所述点云进行采样以获得所述点云中的点云行分布。
  39. 根据权利要求36所述的探测装置,其特征在于,在所述第一反射镜从所述第一姿态摆动至所述第二姿态的过程中,所述第一反射镜在摆动一个步长后,在所述第一反射镜静止的时段内所述第二反射模块通过连续转动使光束在水平方向进行扫描。
  40. 根据权利要求35所述的探测装置,其特征在于,每次所述第一反射镜位于第一姿态时,所述光源均经所述第二反射镜的同一位置使光束在水平方向上对所述探测范围进行连续扫描。
  41. 根据权利要求40所述的探测装置,其特征在于,所述第一反射镜经过单帧时长进行复位,所述单帧时长内所述第一反射镜从第一姿态通过多个步长摆动至第二姿态,再从所述第二姿态通过一个步长摆动至所述第一姿态。
  42. 根据权利要求40所述的探测装置,其特征在于,所述第一反射镜经过每两帧时长进行复位,其中,在奇数帧时长内,所述第一反射镜从第一姿态通过多个步长摆动至第二姿态,在偶数帧时长内,所述第一反射镜从所述第二姿态通过多个步长摆动至所述第一姿态。
  43. 一种可移动平台,其特征在于,包括:
    可移动平台本体;
    如权利要求22-42任一项所述的探测装置,所述探测装置搭载在所述可移动平台本体上。
  44. 一种可移动平台,其特征在于,包括:
    可移动平台本体;
    搭载在所述可移动平台本体上的探测装置,所述探测装置包括光源、第一反射模块和第二反射模块,所述第一反射模块和第二反射模块使所述光源发射的光束分别在第一方向和第二方向进行扫描以获得探测范围内的点云;
    处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现如权利要求1-21任一项所述的控制方法。
  45. 根据权利要求43或44所述的可移动平台,其特征在于,可移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种
  46. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-21任一项所述的控制方法。
PCT/CN2022/083266 2022-03-28 2022-03-28 控制方法、探测装置、可移动平台及计算机可读存储介质 WO2023184061A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/083266 WO2023184061A1 (zh) 2022-03-28 2022-03-28 控制方法、探测装置、可移动平台及计算机可读存储介质
CN202280050800.7A CN117677866A (zh) 2022-03-28 2022-03-28 控制方法、探测装置、可移动平台及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/083266 WO2023184061A1 (zh) 2022-03-28 2022-03-28 控制方法、探测装置、可移动平台及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023184061A1 true WO2023184061A1 (zh) 2023-10-05

Family

ID=88198530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083266 WO2023184061A1 (zh) 2022-03-28 2022-03-28 控制方法、探测装置、可移动平台及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117677866A (zh)
WO (1) WO2023184061A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014757A (ja) * 2013-07-08 2015-01-22 株式会社豊田中央研究所 走査光学系、光走査装置、及び距離測定装置
CN109828259A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种激光雷达及组合扫描装置
CN110325877A (zh) * 2017-03-29 2019-10-11 深圳市大疆创新科技有限公司 用于支持激光雷达应用的系统和方法
CN210119568U (zh) * 2018-12-06 2020-02-28 蔚来汽车有限公司 激光雷达扫描装置及具有该装置的车辆
CN211086603U (zh) * 2019-08-12 2020-07-24 北京万集科技股份有限公司 一种激光雷达扫描装置及激光雷达
WO2021226764A1 (zh) * 2020-05-09 2021-11-18 深圳市大疆创新科技有限公司 测距装置、测距方法及可移动平台
CN114077048A (zh) * 2020-08-06 2022-02-22 睿镞科技(北京)有限责任公司 光扫描系统和扫描方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014757A (ja) * 2013-07-08 2015-01-22 株式会社豊田中央研究所 走査光学系、光走査装置、及び距離測定装置
CN110325877A (zh) * 2017-03-29 2019-10-11 深圳市大疆创新科技有限公司 用于支持激光雷达应用的系统和方法
CN210119568U (zh) * 2018-12-06 2020-02-28 蔚来汽车有限公司 激光雷达扫描装置及具有该装置的车辆
CN109828259A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种激光雷达及组合扫描装置
CN211086603U (zh) * 2019-08-12 2020-07-24 北京万集科技股份有限公司 一种激光雷达扫描装置及激光雷达
WO2021226764A1 (zh) * 2020-05-09 2021-11-18 深圳市大疆创新科技有限公司 测距装置、测距方法及可移动平台
CN114077048A (zh) * 2020-08-06 2022-02-22 睿镞科技(北京)有限责任公司 光扫描系统和扫描方法

Also Published As

Publication number Publication date
CN117677866A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
KR101964971B1 (ko) 라이다 장치
US11953626B2 (en) LiDAR device
CN109458928B (zh) 基于扫描振镜和事件相机激光线扫描3d检测方法及系统
CN109001713B (zh) 测距精度校准系统
CN207318710U (zh) 一种单激光器多线束混合激光雷达
US11415681B2 (en) LIDAR based distance measurements with tiered power control
US8964281B2 (en) Optical probe
CN207114752U (zh) 一种单激光器多线束扫描雷达
US10162171B2 (en) Scanning optical system and light projecting and receiving apparatus
WO2022188090A1 (zh) 固态激光雷达的微振镜控制方法、装置和固态激光雷达
WO2023240619A1 (zh) 测量距离的方法及激光雷达
EP2574877B1 (en) Optical probe
WO2023184061A1 (zh) 控制方法、探测装置、可移动平台及计算机可读存储介质
US20240053448A1 (en) Laser Detection Apparatus and Control Method Thereof, Control Apparatus, and Terminal
CN108152822B (zh) 激光雷达及激光雷达控制方法
US11733362B2 (en) Distance measuring apparatus comprising deterioration determination of polarizing filters based on a reflected polarized intensity from a reference reflector
WO2023206946A1 (zh) 激光雷达的检测方法及其检测系统、激光雷达
US20220187429A1 (en) Optical ranging device
CN112835017B (zh) 一种多线激光雷达的扫描系统、多线激光雷达及扫描方法
CN212872882U (zh) 光学器件、激光雷达以及可移动设备
JP7339277B2 (ja) 測距センサおよび車両用灯具、測距方法
CN113030912B (zh) 一种基于扫描振镜的激光雷达系统
CN207114758U (zh) 一种单激光器多线束扫描雷达
JP7087633B2 (ja) ライダー、およびライダーの制御方法
CN207164240U (zh) 一种单激光器多线束扫描雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933920

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280050800.7

Country of ref document: CN