WO2020162273A1 - 測距装置及び測距方法 - Google Patents
測距装置及び測距方法 Download PDFInfo
- Publication number
- WO2020162273A1 WO2020162273A1 PCT/JP2020/003077 JP2020003077W WO2020162273A1 WO 2020162273 A1 WO2020162273 A1 WO 2020162273A1 JP 2020003077 W JP2020003077 W JP 2020003077W WO 2020162273 A1 WO2020162273 A1 WO 2020162273A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- time
- address
- unit
- distance
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
- G01C3/02—Details
- G01C3/06—Use of electric means to obtain final indication
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/487—Extracting wanted echo signals, e.g. pulse detection
Definitions
- the present invention relates to a distance measuring device and a distance measuring method that emit coherent light to an object and calculate the distance to the object based on the reflected light from the object.
- Patent Document 1 relates to an optical correlation device, which transmits a modulated transmission signal, receives the reception signal delayed by the transmission signal being reflected by an object, and further, in order to determine the flight time of the signal, the transmission signal The received signal is periodically integrated over a plurality of integration cycle periods so as to identify a correlation peak between the received signal and the received signal. This is intended to reduce interference in the optical correlation device.
- Patent Document 2 relates to an interference removal method in a time-of-flight measurement system, which measures the modulation frequency of all infrared illuminations in the surroundings, and when the duration of the measured modulation frequency exceeds a preset threshold value, a flight is performed. Adjust the modulation frequency of the infrared illumination of the time measurement system. In this way, interference with surrounding time-of-flight measurement systems is eliminated.
- an object is to provide a distance measuring device. Further, an object of the present invention is to calculate a distance at high speed or with high frequency by using a light modulation unit having a liquid crystal layer, and thereby, a moving speed of an automobile or other moving body or an object equipped with the device. Despite this, it is to measure the distance continuously with high accuracy.
- the distance measuring apparatus of the present invention includes a light source that emits coherent light to an object, an interval adjusting unit that adjusts the emission interval of the coherent light, and a light receiving device that receives reflected light from the object. Section and a time measuring instrument that measures the time difference from the emission time of the emitted light from the light source to the light receiving time when the reflected light corresponding to this emitted light is received by the light receiving section, and the time difference measured by the time measuring instrument.
- An address calculation unit that converts the address into a corresponding address, a storage unit that adds the index value of the corresponding address every time the address is input from the address calculation unit, and the target value based on the index value for each address
- the interval adjusting unit is characterized in that the interval adjusting unit randomly sets the intervals of the emission times.
- the address corresponding to the measured time difference can be calculated, the index values of the addresses can be sequentially added in the storage unit, and the distance to the object can be calculated based on the index value of each address. It is possible to reduce the storage capacity for storing the data that serves as the basis for calculating the distance to the object. Furthermore, by setting the intervals of emission times at random, it is possible to distinguish from noise light, and it is possible to reliably avoid interference by noise light.
- the distance measuring device of the present invention it is preferable to include a light modulation unit that emits modulated light obtained by modulating the emitted light to an object, the light receiving unit receives the modulated light reflected by the object, and the time measuring device, It is preferable to measure the time difference from the emission time of the emitted light to the light reception time at which the reflected light corresponding to the modulated light of the emitted light is received by the light receiving unit.
- the emission interval from the light source can be shortened, so that the integrated number of index values in the storage unit can be made larger than a predetermined value. Therefore, interference due to noise light can be further suppressed, and measurement with a high SN ratio can be performed.
- the distance can be calculated at high speed or with high frequency. Therefore, regardless of the moving speed of an automobile or other moving body equipped with the device or the moving speed of an object, the distance can be continuously and accurately. The distance can be measured. Further, by using the modulated light, it becomes easy to distinguish it from noise light such as sunlight.
- the light modulation unit is preferably a liquid crystal panel or an LCOS having a liquid crystal layer.
- the integrated number of index values can be set to be larger than a predetermined value, so that the effect of suppressing interference due to noise light can be further enhanced, and a rangefinder having a high SN ratio and high measurement accuracy can be realized. it can.
- the integrated number becomes smaller than the above-mentioned predetermined value, so that the effect of suppressing interference due to noise light becomes small, and the false detection rate of the distance may increase.
- the intervals of the emission times are 10 ns or more, and the average value of the intervals of the emission times is 100 ⁇ s or less. Furthermore, it is preferable that the average value of the intervals of the emission times is less than 5 ⁇ s. As a result, the integrated number of index values in the storage unit can be made larger than a predetermined value, and thus distance measurement with a high SN ratio becomes possible.
- the average value of the number of times the index value of the storage unit is added per 1 s is 500 times/s or more.
- the integrated number of index values in the storage unit can be made larger than a predetermined value, and thus distance measurement with a high SN ratio becomes possible.
- the distance measuring method of the present invention is to emit coherent light from a light source to a target object at random time intervals, to measure an emission time of the emitted light, to receive reflected light from the target object, and to receive the received light.
- the light receiving step for measuring the time the address calculating step for measuring the time difference from the emission time to the light receiving time and converting it to the corresponding address, and the index value of the corresponding address is added every time the address is acquired. It is characterized by including an index value adding step and a distance calculating step of calculating a distance to an object based on an index value for each address.
- the address corresponding to the time difference can be calculated, the index values of the addresses can be sequentially added in the storage unit, and the distance to the object can be calculated based on the index value for each address. It is possible to reduce the storage capacity for storing the data that serves as the basis for calculating the distance. Furthermore, by setting the intervals of emission times at random, it is possible to distinguish from noise light, and it is possible to reliably avoid interference by noise light.
- a distance device can be provided.
- FIG. 1 is a block diagram showing a configuration of a distance measuring device according to an embodiment.
- FIG. 2 is a flowchart showing the procedure of distance measurement using the distance measuring device.
- the distance measuring apparatus includes a control unit 10, a light source 21, a light modulation unit 22, a time measuring device 23, a light receiving unit 24, and a calculation unit 30. Further, the control unit 10 includes an interval adjustment unit 11 and a counter unit 12, and the calculation unit 30 includes an address calculation unit 31 and a storage unit 32.
- the light source 21 is a light source that emits coherent light, and is, for example, a laser light source that emits a Gaussian beam. Further, it is preferable to provide a collimating optical system that emits light emitted from the light source 21 to the light modulation unit 22 as collimated light.
- the light source 21 outputs an emission notification signal to the time measuring device 23 at the emission timing. Instead of the emission notification signal, when the control unit 10 issues an emission instruction signal to the light source 21, the notification signal may be output to the time measuring device 23 at the same time.
- the light modulation unit 22 is arranged in the optical path of the light emitted from the light source 21, modulates the incident light and emits it.
- a mode of the light modulation unit 22 for example, when a liquid crystal panel or an LCOS having a liquid crystal layer is used, the interval of emission time can be shortened. This makes it possible to increase the number of times the light emitted from the light source 21 is reflected by the object S and received by the light receiving unit 24 per unit time. Therefore, the time difference between the light emitted from the light source 21 reflected or scattered by the object S and reaching the light receiving section 24 and the corresponding address and the time difference for each measurement (frequency (index value) for each address) are associated with each other. Since the number of times of acquisition of the matrix data shown can be increased, the reliability of the distance to the object S calculated from the matrix data can be improved and highly accurate distance measurement can be performed.
- the light receiving unit 24 can use various optical sensors. When the reflected light from the object S enters, the light receiving unit 24 outputs a light reception notification signal to the time measuring device 23 at that timing.
- the reflected light from the object S includes scattered light in which the light emitted from the light source 21 is scattered on the surface of the object S.
- the time measuring device 23 resets the time to zero with the time of receiving the emission notification signal from the light source 21 as the emission time. Further, the time measuring device 23 measures the time when the light receiving notification signal is received from the light receiving unit 24 as the light receiving time, and the time from the emission time to the light receiving time as the time difference. The measured time difference is output to the calculation unit 30.
- the calculation unit 30 includes an address calculation unit 31 and a storage unit 32.
- the address calculation unit 31 converts the time difference input from the time measuring device 23 into an address corresponding to this.
- the list of addresses is stored in the storage unit 32 in advance, and every time the address calculation unit 31 performs address conversion, an index value indicating the frequency of the corresponding address is added.
- the index value is reset for all addresses at the start of measurement when the count value in the counter unit 12 is zero.
- the count value is incremented by 1 each time the light source 21 emits light, and when the count value reaches a predetermined specified value, the count value is reset as the end of measurement.
- the arithmetic unit 30 calculates the distance to the object S based on the index value for each address when the count value reaches the specified value and the measurement is completed.
- the light emitted from the light modulation unit 22 is modulated (modulated light) at random emission time intervals, and therefore is easily different from outside light other than the light source 21, for example, sunlight. Can be distinguished.
- the index value The time difference can be specified from the address corresponding to, and the distance to the object S can be calculated from this time difference and the speed of light.
- the control unit 10 includes an interval adjustment unit 11 and a counter unit 12.
- the interval adjusting unit 11 randomly sets the emission interval of the coherent light from the light source 21.
- the random emission intervals are set based on, for example, the Monte Carlo method.
- the random emission intervals set by the interval adjusting unit 11 include pseudo-random emission intervals.
- the pseudo-random emission intervals are set based on, for example, the quasi-Monte Carlo method.
- the control unit 10 gives an emission instruction signal (trigger signal) to the light source 21 in accordance with the emission interval set by the interval adjustment unit 11.
- the counter unit 12 receives a signal from the light source 21 and increments the count value by 1 at the timing of emission from the light source 21.
- the counter value is stored in the memory (not shown) in the control unit 10, and is reset when the preset value is reached.
- the counter unit 12 outputs a distance calculation instruction signal to the arithmetic unit 30 when the counter value reaches the specified value.
- the arithmetic unit 30 receiving this signal calculates the distance to the object S based on the index value for each address stored at that time.
- the interval adjusting unit 11 and the counter unit 12 may be provided as a circuit or the like independent of the control unit 10.
- the address calculation unit 31 and the storage unit 32 may also be provided as a circuit or the like independent of the calculation unit 30. Further, the interval adjusting unit 11 can also make the drive control circuit of the light source 21 have the function.
- the time measuring device 23 may have the function in the control unit 10 or the calculation unit 30.
- the interval adjusting unit 11 sends an emission instruction signal to the light source 21 (step S1).
- the instruction signal is generated by the interval adjusting unit 11 and output to the light source 21 so that the emission interval of the coherent light from the light source 21 becomes random.
- the light source 21 that has received the instruction signal emits coherent light to the object S (emission step) (step S2).
- the light source 21 outputs an emission notification signal to the time measuring device 23 at the emission timing.
- the time measuring device 23 resets the time to zero with the time when the notification signal of the extraction is received as the extraction time (step S3).
- the light source 21 outputs a notification signal to the counter unit 12 of the control unit 10 each time the coherent light is emitted.
- the counter unit 12 adds 1 to the count value each time it receives the notification signal from the light source 21 (step S4).
- the light receiving unit 24 Upon receiving the reflected light from the object S, the light receiving unit 24 sends a light reception notification signal to the time measuring device 23.
- the time measuring device 23 measures the time difference from the emission time by using the time when the light reception notification signal is received as the light reception time (light reception step) (step S5).
- the measured time difference data is output to the address calculation unit 31 of the calculation unit 30.
- the address calculation unit 31 converts the input time difference into an address corresponding thereto (address calculation step) (step S6).
- the conversion into an address is executed by referring to a list of addresses stored in the storage unit 32 in advance based on the time difference.
- the address calculation unit 31 adds one by one to the index value held by the register corresponding to the calculated address in the storage unit 32 (index value addition step) (step S7).
- step S7 Each time the index value is added (step S7), a notification signal is sent to the control unit 10, and the counter unit 12 of the control unit 10 determines whether or not the count value has reached a predetermined specified value. Is determined (step S8). While the specified value is not reached (NO in step S8), the processes in steps S1 to S6 are executed.
- step S8 when the specified value is reached (YES in step S8), the data indicating the correspondence between the address and the index value is read from the storage unit 32, and the distance to the object S is calculated based on this data (distance). Calculation step) (step S9). After calculating the distance, the register holding the index value in the storage unit 32 is reset (step S10).
- Example 1 As the light receiving section 24, a Geiger mode avalanche photodiode is used. Based on the binarized value of the output of this diode, the time difference is converted into an address and added to the index value stored in the storage unit 32 so as to correspond to the address.
- the emission interval from the light source 21 was fixed, and the interval of the measurement time at which emission was started by the trigger signal from the interval adjusting unit 11 to the light source 21 was set to 2 ⁇ s.
- the time resolution of the time measuring device 23 was 125 ps. The maximum distance that can be measured under this condition, the distance resolution, and the number of measurement points in the time direction are as follows.
- a liquid crystal panel was used as the light modulation unit 22, and the number of times of integration (the number of times an index value was added per second) was set to 255. Under this condition, the maximum value of each measurement point in the time direction can be represented by an unsigned 8-bit integer. Therefore, the amount of memory required in the storage unit 32 is about 128 kbit. In order to further reduce the memory usage, the average interval of trigger signal generation was set to 3 ⁇ s. Under this condition, the time required to measure one measurement point is 765 ⁇ s.
- the amount of memory required for the storage unit 32 depends on the maximum measurable distance and the time resolution. For example, if the maximum measurable distance is 250 m and the time resolution is 407 ps, the required memory amount can be reduced to about 32 kbit.
- Example 2 The emission interval from the light source 21 was set at random, and the emission interval was set by the Monte Carlo method.
- the time difference from the light emitted from the light source 21 was calculated from the distance and the speed of light, and a plurality of interfering lights were randomly entered for the time difference.
- the configuration of the device used for simulation is as follows.
- a Geiger mode avalanche photodiode array was used as the light receiving unit 24.
- the array size was 10 mm ⁇ 10 mm.
- the performance of all the photodiodes included in this array was the same, and the quantum yield was 7% and the dead time was 1.5 ns.
- the output of this photodiode is binarized and added to the index value stored in the storage unit 32.
- the address set in the storage unit 32 where the addition is performed has a one-to-one correspondence with the time difference measured with a resolution of 125 ps.
- the light source 21 is monochromatic coherent light with a light output of 100 W and a wavelength of 906 nm.
- the time profile of the light emission of the light source 21 is such that a component whose intensity changes according to an exponential function with a rise time of 1 ns and a fall time of 1 ns is added before and after a rectangle having a pulse width of 5 ns.
- the spread of the light emitted from the light source 21 was 7°.
- LIDAR Light Detection and Ranging or Laser Imaging Detection and Ranging, and is a device that performs distance measurement and the like based on scattered light with respect to laser irradiation.
- illuminance 0.5% of the energy defined by illuminance is incident on the light receiving section 24 under all conditions.
- the illuminance was set to four conditions of about 140,000 lx (daytime in midsummer fine weather), about 35,000 lx (brightness at about 3:00 pm in fine weather), about 7,000 lx (evening in cloudy evening), and about 400 lx (under night street lamp illumination).
- the light emitted by LIDAR existing in the vicinity was monochromatic light with an output of 50 W and a wavelength of 906 nm.
- the light emission has a time profile in which the intensity changes according to an exponential function with a rise time of 1 ns and a fall time of 1 ns before and after a rectangle having a pulse width of 5 ns, and the spread of light was set to 0.01°.
- the size of the object recognized by LIDAR is larger than the range covered by one photodiode.
- the reflectance of the object was set to 10% with respect to all the light, and the reflected light was uniformly scattered in the range of 2 ⁇ sr.
- the time difference recognized by the distance measuring device of Example 2 was the time when the integrated value per 1 ns was the maximum after a certain number of times of light emission. No threshold value was set for this integrated value. Under this condition, when the distance recognized by the own LIDAR has an error of 1 m or more from the distance from the actual object, it is defined as measurement failure.
- Table 1 is a table showing the detection result (detection distance) of the distance to the object when the illuminance by the background light (background illuminance) is changed. As shown in Table 1, it was found that the intensity of the background light has a great influence on the detection distance.
- Table 2 is a table showing the measurement result of the false detection rate when the integrated number is changed under the condition that the illuminance by background light is 140000 lx (lux) and the distance to the object is 100 m. As shown in Table 2, it was found that the distance can be measured with almost no erroneous detection by integrating 255 times when the object is 100 m. On the other hand, the smaller the integrated number is 100 or less, the higher the false detection rate. Therefore, it was found that the integrated number of index values in the storage unit is preferably 255 times (predetermined value) or more, and when less than 255 times, interference due to noise light increases. Furthermore, it is preferable that the average value of the number of times the index value of the storage unit 32 is added per second is 500 times/s or more.
- the distance measuring apparatus does not need to prepare a memory having a large storage capacity for storing the data that is the basis of the calculation of the distance to the object, and reliably detects noise light. This is useful in that the interference of can be eliminated.
- Control Part 11 Interval Adjusting Part 12 Counter Part 21
- Light Source 22 Light Modulating Unit 23
- Time Measuring Device 24 Light Receiving Part 30 Computing Part 31
- Address Calculating Part 32 Storage Part S Object
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
対象物との距離の算出の基礎となるデータを記憶するために大きな記憶容量のメモリーを用意する必要がなく、かつ、確実にノイズ光との干渉を除去することができる本発明の測距装置は、コヒーレント光を対象物へ出射する光源と、コヒーレント光の出射間隔を調整する間隔調整部と、対象物からの反射光を受光する受光部と、光源からの出射光の出射時刻から、この出射光に対応する反射光が受光部で受光された受光時刻までの時間差を測定する時間測定器と、時間測定器で測定された時間差を、これに対応するアドレスに変換するアドレス算出部と、アドレス算出部からアドレスが入力されるたびに、該当するアドレスのインデックス値が加算される記憶部と、アドレスごとのインデックス値に基づいて、対象物との距離を算出する演算部とを備え、間隔調整部は、出射時刻の間隔をランダムに設定する。
Description
本発明は、コヒーレント光を対象物へ出射し、対象物からの反射光に基づいて対象物との距離を算出する測距装置及び測距方法に関する。
特許文献1は光相関装置に関し、変調された送信信号を送信するとともに、この送信信号が対象物で反射され遅延した受信信号を受信し、さらに、信号の飛行時間を決定するために、送信信号と受信信号との間の相関ピークを識別するように、受信信号を複数の積分サイクル期間に渡って周期的に積分している。これにより光相関装置での干渉の低減を図っている。
特許文献2は、飛行時間測定システムにおける干渉除去方法に関し、周囲の全ての赤外線照明の変調周波数を測定し、測定された変調周波数の持続時間が、予め設定された閾値を超えた場合に、飛行時間測定システムの赤外線照明の変調周波数を調整する。これにより、周囲にある飛行時間測定システムとの間の干渉の除去を図っている。
コヒーレント光を対象物へ出射し、その反射光に基づいて対象物との距離を測定する場合に、測定精度を確保するためには、環境光、及び、ほかの装置からのコヒーレント光などのノイズ光による干渉(妨害)を除去することが求められる。従来の装置においては、特許文献1のように、送信信号と受信信号の相関関係を計算したり、特許文献2のように出射光の周波数を変調することによって、干渉の除去を図っていた。しかし、特許文献1の装置において送信信号と受信信号の間の相関関係を計算するためには、長時間に渡って測定した大量のデータを保存する必要があることから、このようなデータを記憶するために大きな記憶容量のメモリーを要していた。また、ほかの装置からのコヒーレント光と区別するために周波数を変調するには、ほかの装置からのコヒーレント光の周波数を測定し、これを解析しなければならないことから、一定の期間に渡る測定データを記憶するために大きな記憶容量のメモリーを必要としていた。
そこで本発明は、対象物との距離の算出の基礎となるデータを記憶するために大きな記憶容量のメモリーを用意する必要がなく、かつ、確実にノイズ光との干渉を除去することができる測距装置を提供することを目的としている。また、本発明の目的は、液晶層を有する光変調ユニットを用いることにより、高速又は高頻度で距離を算出し、これによって、装置を搭載した自動車その他の移動体、又は、対象物の移動速度に拘わらずに、継続的に高精度で距離を測定することにある。
上記課題を解決するために、本発明の測距装置は、コヒーレント光を対象物へ出射する光源と、コヒーレント光の出射間隔を調整する間隔調整部と、対象物からの反射光を受光する受光部と、光源からの出射光の出射時刻から、この出射光に対応する反射光が受光部で受光された受光時刻までの時間差を測定する時間測定器と、時間測定器で測定された時間差を、これに対応するアドレスに変換するアドレス算出部と、アドレス算出部からアドレスが入力されるたびに、該当するアドレスのインデックス値が加算される記憶部と、アドレスごとのインデックス値に基づいて、対象物との距離を算出する演算部とを備え、間隔調整部は、出射時刻の間隔をランダムに設定することを特徴としている。
これにより、測定された時間差に対応するアドレスを算出し、記憶部においてアドレスのインデックス値を順次加算し、そしてアドレスごとのインデックス値に基づいて対象物との距離を算出することができるため、対象物との距離の算出の基礎となるデータを記憶するための記憶容量を小さく抑えることが可能となる。さらに、出射時刻の間隔をランダムに設定することにより、ノイズ光との判別ができ、確実にノイズ光による干渉を避けることが可能となる。
本発明の測距装置において、出射光を変調した変調光を対象物へ出射する光変調ユニットを備えることが好ましく、受光部は対象物で反射された変調光を受光し、時間測定器は、出射光の出射時刻から、この出射光の変調光に対応する反射光が受光部で受光された受光時刻までの時間差を測定することが好ましい。
これにより、光源からの出射間隔を短くすることができるため、記憶部におけるインデックス値の積算数を所定値より大きくすることができる。よって、ノイズ光による干渉をさらに抑えることができ、SN比の高い測定を行うことができる。また、出射間隔が短いため、高速又は高頻度で距離を算出することができることから、装置を搭載した自動車その他の移動体、又は、対象物の移動速度に拘わらずに、継続的に高精度で距離を測定することができる。また、変調光を用いることで太陽光等のノイズ光との区別が容易となる。
これにより、光源からの出射間隔を短くすることができるため、記憶部におけるインデックス値の積算数を所定値より大きくすることができる。よって、ノイズ光による干渉をさらに抑えることができ、SN比の高い測定を行うことができる。また、出射間隔が短いため、高速又は高頻度で距離を算出することができることから、装置を搭載した自動車その他の移動体、又は、対象物の移動速度に拘わらずに、継続的に高精度で距離を測定することができる。また、変調光を用いることで太陽光等のノイズ光との区別が容易となる。
本発明の測距装置において、光変調ユニットは、液晶層を有する、液晶パネル又はLCOSであることが好ましい。
これにより、インデックス値の積算数を所定値より大きくとることができるため、ノイズ光による干渉の抑止効果をさらに高めることができ、SN比が高く、測定精度の高い測距装置を実現することができる。これに対して、光変調ユニットを用いない場合では積算数が上記所定値よりも小さくなるため、ノイズ光による干渉の抑止効果が小さくなり、距離の誤検出率が高くなってしまうおそれがある。
これにより、インデックス値の積算数を所定値より大きくとることができるため、ノイズ光による干渉の抑止効果をさらに高めることができ、SN比が高く、測定精度の高い測距装置を実現することができる。これに対して、光変調ユニットを用いない場合では積算数が上記所定値よりも小さくなるため、ノイズ光による干渉の抑止効果が小さくなり、距離の誤検出率が高くなってしまうおそれがある。
本発明の測距装置において、出射時刻の間隔は10ns以上であることが好ましく、出射時刻の間隔の平均値は100μs以下であるとよい。さらに、出射時刻の間隔の平均値は5μs未満であることが好ましい。
これにより、記憶部におけるインデックス値の積算数を所定値より大きくできるため、SN比の高い測距が可能となる。
これにより、記憶部におけるインデックス値の積算数を所定値より大きくできるため、SN比の高い測距が可能となる。
本発明の測距装置において、記憶部のインデックス値が1sあたりに加算される回数の平均値は500回/s以上であることが好ましい。
これにより、記憶部におけるインデックス値の積算数を所定値より大きくできるため、SN比の高い測距が可能となる。
これにより、記憶部におけるインデックス値の積算数を所定値より大きくできるため、SN比の高い測距が可能となる。
本発明の測距方法は、コヒーレント光を光源から対象物へ、ランダムな時間間隔で出射し、この出射光の出射時刻を測定する出射ステップと、対象物からの反射光を受光し、その受光時刻を測定する受光ステップと、出射時刻から受光時刻までの時間差を測定し、これに対応するアドレスに変換するアドレス算出ステップと、アドレスを取得するたびに、該当するアドレスのインデックス値が加算されるインデックス値加算ステップと、アドレスごとのインデックス値に基づいて、対象物との距離を算出する距離算出ステップとを備えることを特徴としている。
これにより、時間差に対応するアドレスを算出し、記憶部においてアドレスのインデックス値を順次加算し、そしてアドレスごとのインデックス値に基づいて対象物との距離を算出することができるため、対象物との距離の算出の基礎となるデータを記憶するための記憶容量を小さく抑えることが可能となる。さらに、出射時刻の間隔をランダムに設定することにより、ノイズ光との判別ができ、確実にノイズ光による干渉を避けることが可能となる。
本発明によると、対象物との距離の算出の基礎となるデータを記憶するために大きな記憶容量のメモリーを用意する必要がなく、かつ、確実にノイズ光との干渉を除去することができる測距装置を提供することができる。
以下、本発明の実施形態に係る測距装置及び測距方法について図面を参照しつつ詳しく説明する。図1は、実施形態に係る測距装置の構成を示すブロック図である。図2は、測距装置を用いた測距の手順を示すフローチャートである。
<測距装置>
図1に示すように、本実施形態に係る測距装置は、制御部10と、光源21と、光変調ユニット22と、時間測定器23と、受光部24と、演算部30とを備える。さらに、制御部10は、間隔調整部11と、カウンター部12とを備え、演算部30は、アドレス算出部31と記憶部32とを備える。
図1に示すように、本実施形態に係る測距装置は、制御部10と、光源21と、光変調ユニット22と、時間測定器23と、受光部24と、演算部30とを備える。さらに、制御部10は、間隔調整部11と、カウンター部12とを備え、演算部30は、アドレス算出部31と記憶部32とを備える。
光源21は、コヒーレント光を出射する光源であって、例えば、ガウシアンビームを出射するレーザー光源である。また、光源21からの出射光をコリメート光とし、光変調ユニット22へ出射するコリメート光学系を備えることが好ましい。光源21は、出射のタイミングに合わせて、出射通知信号を時間測定器23へ出力する。
なお、上記出射通知信号に代えて、制御部10が光源21へ出射の指示信号を出したときに、同時に時間測定器23へ通知信号を出力するようにしてもよい。
なお、上記出射通知信号に代えて、制御部10が光源21へ出射の指示信号を出したときに、同時に時間測定器23へ通知信号を出力するようにしてもよい。
光変調ユニット22は、光源21からの出射光の光路に配置され、入射光を変調して出射する。光変調ユニット22の態様としては、例えば、液晶層を有する、液晶パネル又はLCOSを用いると、出射時刻の間隔を短くすることができる。これによって、光源21からの出射光が対象物Sで反射されて受光部24に受光される、単位時間あたりの回数を大きくすることができる。したがって、光源21からの出射光が対象物Sで反射又は散乱されて受光部24に至る時間差及びこれに対応するアドレスと、測定ごとの時間差(各アドレスに対する頻度(インデックス値))との対応を示すマトリックスデータの取得回数を増やすことができることから、マトリックスデータから算出される対象物Sとの距離の信頼性を高め、高精度の測距を実行することが可能となる。
受光部24は、各種の光センサを用いることができる。受光部24は、対象物Sからの反射光が入射すると、そのタイミングで時間測定器23へ受光通知信号を出力する。ここで、対象物Sからの反射光には、光源21からの出射光が対象物Sの表面で散乱された散乱光を含む。
時間測定器23は、光源21からの出射通知信号を受けた時刻を出射時刻として、時間をゼロにリセットする。さらに、時間測定器23は、受光部24からの受光通知信号を受けた時刻を受光時刻として、出射時刻から受光時刻までの時間を時間差として測定する。測定された時間差は、演算部30へ出力される。
演算部30は、アドレス算出部31と記憶部32とを備える。アドレス算出部31は、時間測定器23から入力された時間差を、これに対応するアドレスに変換する。アドレスのリストは、あらかじめ記憶部32に保存されており、アドレス算出部31がアドレス変換を行うたびに、該当するアドレスの頻度を示すインデックス値が加算される。インデックス値は、カウンター部12におけるカウント値をゼロとした測定開始時に、すべてのアドレスについてリセットされる。上記カウント値は、光源21からの出射ごとに1ずつ加算され、予め定めた規定値に達したところで、測定が終了としたものとしてリセットされる。
演算部30は、上記カウント値が規定値に達して測定が終了したときに、アドレスごとのインデックス値に基づいて、対象物Sとの距離を算出する。光変調ユニット22からの出射光は、出射の時間間隔がランダムに設定され、かつ、変調されている(変調光である)ため、光源21以外からの外光、例えば太陽光、とは容易に区別することができる。一方、ほかの測距装置からの出射光については、光源21からの出射の間隔がランダムに設定されていることや、受光頻度の違いから、インデックス値が高いアドレスを特定すれば、そのインデックス値に対応するアドレスから時間差を特定でき、この時間差と光速から、対象物Sとの距離を算出することができる。
制御部10は、間隔調整部11とカウンター部12とを備える。間隔調整部11は、光源21からのコヒーレント光の出射間隔をランダムに設定する。ランダムな出射間隔の設定は、例えばモンテカルロ法に基づいて行う。ここで、間隔調整部11が設定するランダムな出射間隔には擬似ランダムな出射間隔も含まれる。疑似ランダムな出射間隔の設定は、例えば、準モンテカルロ法に基づいて行う。
制御部10は、間隔調整部11が設定した出射間隔にしたがって、光源21に対して出射の指示信号(トリガー信号)を与える。
カウンター部12は、光源21からの出射のタイミングに合わせて、光源21から信号を受けとりカウント値を1ずつ加算する。カウンター値は制御部10内のメモリー(不図示)に記憶されており、予め定めた規定値に達したところでリセットされる。カウンター部12は、カウンター値が規定値に達したところで、演算部30に対して距離算出指示信号を出力する。この信号を受けた演算部30では、その時点で記憶されている、アドレスごとのインデックス値に基づいて対象物Sとの距離を算出する。
(変形例)
間隔調整部11とカウンター部12は制御部10とは独立した回路等として設けてもよい。アドレス算出部31と記憶部32も、演算部30とは独立した回路等として設けてもよい。
また、間隔調整部11は、光源21の駆動制御回路にその機能を持たせることもできる。時間測定器23は、制御部10又は演算部30にその機能を持たせてもよい。
間隔調整部11とカウンター部12は制御部10とは独立した回路等として設けてもよい。アドレス算出部31と記憶部32も、演算部30とは独立した回路等として設けてもよい。
また、間隔調整部11は、光源21の駆動制御回路にその機能を持たせることもできる。時間測定器23は、制御部10又は演算部30にその機能を持たせてもよい。
次に、図2を参照して測距の処理手順について説明する。
間隔調整部11は、光源21に対して出射の指示信号を送出する(ステップS1)。この指示信号は、光源21からのコヒーレント光の出射間隔がランダムになるように、間隔調整部11で生成され、光源21へ出力される。
間隔調整部11は、光源21に対して出射の指示信号を送出する(ステップS1)。この指示信号は、光源21からのコヒーレント光の出射間隔がランダムになるように、間隔調整部11で生成され、光源21へ出力される。
指示信号を受けた光源21は、コヒーレント光を対象物Sへ出射する(出射ステップ)(ステップS2)。光源21は、出射のタイミングに合わせて、出射通知信号を時間測定器23へ出力する。時間測定器23は、出射通知信号を受けた時刻を出射時刻として、時間をゼロにリセットする(ステップS3)。
光源21は、コヒーレント光出射のたびに、制御部10のカウンター部12に対して通知信号を出力する。カウンター部12は、光源21からの通知信号を受けるたびにカウント値を1ずつ加算する(ステップS4)。
受光部24は、対象物Sからの反射光を受光すると、時間測定器23に対して受光通知信号を送出する。時間測定器23は、受光通知信号を受けた時刻を受光時刻として、出射時刻からの時間差を測定する(受光ステップ)(ステップS5)。
測定された時間差のデータは、演算部30のアドレス算出部31へ出力される。アドレス算出部31は、入力された時間差を、これに対応するアドレスに変換する(アドレス算出ステップ)(ステップS6)。アドレスへの変換は、時間差に基づいて、予め記憶部32に保存されたアドレスのリストを参照することにより実行される。アドレス算出部31は、記憶部32において、算出されたアドレスに対応するレジスターが保持するインデックス値を1ずつ加算する(インデックス値加算ステップ)(ステップS7)。
上記インデックス値の加算(ステップS7)が行われるたびに、制御部10に対して通知信号が送出され、制御部10のカウンター部12は、カウント値が予め定めた規定値に到達したか否かを判別する(ステップS8)。規定値に達していない間(ステップS8でNO)は、上記ステップS1~S6までの処理を実行する。
一方、規定値に達したとき(ステップS8でYES)は、記憶部32から、アドレスとインデックス値の対応関係を示すデータを読み出し、このデータに基づいて対象物Sとの距離を算出する(距離算出ステップ)(ステップS9)。距離の算出後は、記憶部32においてインデックス値を保持しているレジスターをリセットする(ステップS10)。
(実施例1)
受光部24として、ガイガーモードのアバランシェフォトダイオードを使用した。このダイオードの出力を2値化した値に基づいて、時間差をアドレスに変換し、記憶部32においてアドレスに対応するように格納されているインデックス値に加算する構成とした。光源21からの出射間隔を一定とし、間隔調整部11から光源21へのトリガー信号により出射が開始される測定時間の間隔を2μsとした。時間測定器23の時間分解能を125psとした。この条件で測定できる距離の最大値、距離分解能、及び、時間方向の測定点数はそれぞれ次の通りとなる。
(1)距離の最大値:光速(3×108(m/s))×2×10-6(s)÷2=300(m)
(2)距離分解能:光速(3×108(m/s))×125×10-12(s)÷2≒0.019(m)
(3)測定点数:2×10-6(s)÷125×10-12(s)=16000点
受光部24として、ガイガーモードのアバランシェフォトダイオードを使用した。このダイオードの出力を2値化した値に基づいて、時間差をアドレスに変換し、記憶部32においてアドレスに対応するように格納されているインデックス値に加算する構成とした。光源21からの出射間隔を一定とし、間隔調整部11から光源21へのトリガー信号により出射が開始される測定時間の間隔を2μsとした。時間測定器23の時間分解能を125psとした。この条件で測定できる距離の最大値、距離分解能、及び、時間方向の測定点数はそれぞれ次の通りとなる。
(1)距離の最大値:光速(3×108(m/s))×2×10-6(s)÷2=300(m)
(2)距離分解能:光速(3×108(m/s))×125×10-12(s)÷2≒0.019(m)
(3)測定点数:2×10-6(s)÷125×10-12(s)=16000点
光変調ユニット22として液晶パネルを用い、積算回数(インデックス値が1sあたりに加算される回数)は255回とした。この条件では、時間方向の各測定点の値の最大値は符号なし8bitの整数で表現することができる。よって、記憶部32において必要なメモリーの量は約128kbitとなる。メモリーの使用量をさらに削減するために、トリガー信号発生の平均間隔を3μsとした。この条件で1つの測定点の測定に要する時間は765μsとなる。
記憶部32に必要なメモリーの量は、測定できる距離の最大値や時間分解能に依存する。例えば、測定できる距離の最大値を250m、時間分解能を407psとすると、必要なメモリーの量は約32kbitまで削減することができる。
(比較例1)
受光部24として、ガイガーモードのアバランシェフォトダイオードを使用した。このダイオードの出力を2値化した値に基づいて時間差を算出し、その時間差をそのまま記憶部32に格納する構成とした。時間測定器23の時間分解能は125psとした。1つの測定点の測定に要する時間は、実施例1と同じく765μsとした。この場合に必要なメモリーの量は約5.8Gbitとなった。
受光部24として、ガイガーモードのアバランシェフォトダイオードを使用した。このダイオードの出力を2値化した値に基づいて時間差を算出し、その時間差をそのまま記憶部32に格納する構成とした。時間測定器23の時間分解能は125psとした。1つの測定点の測定に要する時間は、実施例1と同じく765μsとした。この場合に必要なメモリーの量は約5.8Gbitとなった。
(実施例2)
光源21からの出射間隔をランダムとし、その出射間隔はモンテカルロ法で設定した。光源21からの出射光との時間差を距離と光速から算出し、その時間差に対してランダムに複数の妨害光が入射する条件とした。
光源21からの出射間隔をランダムとし、その出射間隔はモンテカルロ法で設定した。光源21からの出射光との時間差を距離と光速から算出し、その時間差に対してランダムに複数の妨害光が入射する条件とした。
シミュレーションに用いる装置の構成は以下とした。受光部24として、ガイガーモードのアバランシェフォトダイオードアレイを使用した。そのアレイサイズは10mm×10mmとした。このアレイに含まれるフォトダイオードの性能は全て同一で、量子収率7%、不感時間1.5nsとした。このフォトダイオードの出力を2値化し、記憶部32に格納されているインデックス値に加算する構成とした。加算が行われる記憶部32において設定されたアドレスは、125psの分解能で測定された時間差と1対1で対応するものとした。
光源21は、光出力100W、波長906nmの単色のコヒーレント光とした。光源21の発光の時間プロファイルは、パルス幅5nsの矩形前後に、立ち上がり時間1ns、立ち下がり時間1nsの指数関数に従って強度が変化する成分を付加したものとした。光源21からの出射光の広がりは7°とした。
妨害光(ノイズ光)として、太陽光等に由来する背景光、近傍に存在するLIDARが同一の対象物に照射した光の散乱光、近傍に存在するLIDARの発光が直接受光器へ入射したものの3つを考慮した。ここで、LIDARは、Light Detection and Ranging又はLaser Imaging Detection and Rangingであり、レーザー照射に対する散乱光に基づいて測距等を行う装置である。
上記背景光は、全ての条件で、照度で定義されるエネルギーの0.5%が受光部24へ入射するとした。照度は、約140000lx(真夏晴天時の昼間)、約35000lx(晴天時午後3時程度の明るさ)、約7000lx(曇天時夕方)、約400lx(夜間街灯照明下)の4つの条件とした。
近傍に存在するLIDARが発する光は、いずれも、出力50W、波長906nmの単色光とした。その発光は、パルス幅5nsの矩形前後に、立ち上がり時間1ns、立ち下がり時間1nsの指数関数に従って強度が変化する時間プロファイルを持ち、光の広がりは0.01°とした。
LIDARで認識する対象物は、フォトダイオード1個がカバーする範囲よりも大きいサイズとした。上記対象物の反射率は、全ての光に対して10%とし、この反射光は2πsrの範囲に均一に散乱されることとした。
実施例2の測距装置(以下「自LIDAR」と言う。)が認識する時間差は、一定回数の発光後、1nsあたりの積分値が最大となる時間を採った。この積分値に閾値は設けなかった。この条件で、自LIDARが認識した距離が、実際の対象物との距離と1m以上の誤差が出た場合を測定失敗と定義した。
本シミュレーションの結果を表1と表2にまとめた。
表1は、背景光による照度(背景照度)を変えたときの、対象物までの距離の検出結果(検出距離)を示す表である。表1に示すように、背景光の強度が検出距離に大きな影響を及ぼすことが分かった。
表1は、背景光による照度(背景照度)を変えたときの、対象物までの距離の検出結果(検出距離)を示す表である。表1に示すように、背景光の強度が検出距離に大きな影響を及ぼすことが分かった。
表2は、背景光による照度140000lx(ルクス)、対象物との距離100mとした条件において、積算数を変えた場合の誤検出率の測定結果を示す表である。表2に示すように、対象物が100mにある場合で、255回の積算でほぼ誤検知無く距離の測定ができることが分かった。これに対して積算数が100以下で小さくなるほど誤検出率が高くなっている。よって、記憶部におけるインデックス値の積算数としては255回(所定値)以上であることが好ましく、255回未満ではノイズ光による干渉が増えることが分かった。さらに、記憶部32のインデックス値が1sあたりに加算される回数の平均値は500回/s以上であることが好ましい。
本発明について上記実施形態を参照しつつ説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的又は本発明の思想の範囲内において改良又は変更が可能である。
以上のように、本発明に係る測距装置は、対象物との距離の算出の基礎となるデータを記憶するために大きな記憶容量のメモリーを用意する必要がなく、かつ、確実にノイズ光との干渉を除去することができる点で有用である。
10 制御部
11 間隔調整部
12 カウンター部
21 光源
22 光変調ユニット
23 時間測定器
24 受光部
30 演算部
31 アドレス算出部
32 記憶部
S 対象物
11 間隔調整部
12 カウンター部
21 光源
22 光変調ユニット
23 時間測定器
24 受光部
30 演算部
31 アドレス算出部
32 記憶部
S 対象物
Claims (8)
- コヒーレント光を対象物へ出射する光源と、
前記コヒーレント光の出射間隔を調整する間隔調整部と、
前記対象物からの反射光を受光する受光部と、
前記光源からの出射光の出射時刻から、この出射光に対応する前記反射光が前記受光部で受光された受光時刻までの時間差を測定する時間測定器と、
前記時間測定器で測定された前記時間差を、これに対応するアドレスに変換するアドレス算出部と、
前記アドレス算出部から前記アドレスが入力されるたびに、該当するアドレスのインデックス値が加算される記憶部と、
前記アドレスごとの前記インデックス値に基づいて、前記対象物との距離を算出する演算部とを備え、
前記間隔調整部は、前記出射時刻の間隔をランダムに設定することを特徴とする測距装置。 - 前記出射光を変調した変調光を前記対象物へ出射する光変調ユニットを備え、
前記受光部は前記対象物で反射された前記変調光を受光し、
前記時間測定器は、前記出射光の出射時刻から、この出射光の前記変調光に対応する前記反射光が前記受光部で受光された受光時刻までの時間差を測定する請求項1に記載の測距装置。 - 前記光変調ユニットは、液晶層を有する、液晶パネル又はLCOSである請求項2に記載の測距装置。
- 前記出射時刻の間隔は10ns以上である請求項2又は請求項3に記載の測距装置。
- 前記出射時刻の間隔の平均値は100μs以下である請求項4に記載の測距装置。
- 前記出射時刻の間隔の平均値は5μs未満である請求項5に記載の測距装置。
- 前記記憶部の前記インデックス値が1sあたりに加算される回数の平均値は500回/s以上である請求項5又は請求項6に記載の測距装置。
- コヒーレント光を光源から対象物へ、ランダムな時間間隔で出射し、この出射光の出射時刻を測定する出射ステップと、
前記対象物からの反射光を受光し、その受光時刻を測定する受光ステップと、
前記出射時刻から前記受光時刻までの時間差を測定し、これに対応するアドレスに変換するアドレス算出ステップと、
前記アドレスを取得するたびに、該当するアドレスのインデックス値が加算されるインデックス値加算ステップと、
前記アドレスごとの前記インデックス値に基づいて、前記対象物との距離を算出する距離算出ステップとを備えることを特徴とする測距方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019018563A JP2020125983A (ja) | 2019-02-05 | 2019-02-05 | 測距装置及び測距方法 |
JP2019-018563 | 2019-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020162273A1 true WO2020162273A1 (ja) | 2020-08-13 |
Family
ID=71947636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/003077 WO2020162273A1 (ja) | 2019-02-05 | 2020-01-29 | 測距装置及び測距方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020125983A (ja) |
WO (1) | WO2020162273A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008003099A (ja) * | 1995-06-22 | 2008-01-10 | 3Dv Systems Ltd | 改善された光学測距カメラ |
JP2016170038A (ja) * | 2015-03-12 | 2016-09-23 | 本田技研工業株式会社 | 光通信装置、送信信号、及びプログラム |
JP2017191042A (ja) * | 2016-04-14 | 2017-10-19 | 株式会社村田製作所 | 距離センサ |
JP6281796B2 (ja) * | 2014-08-27 | 2018-02-21 | 株式会社ニコンビジョン | 振れ補正装置および測距計 |
-
2019
- 2019-02-05 JP JP2019018563A patent/JP2020125983A/ja active Pending
-
2020
- 2020-01-29 WO PCT/JP2020/003077 patent/WO2020162273A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008003099A (ja) * | 1995-06-22 | 2008-01-10 | 3Dv Systems Ltd | 改善された光学測距カメラ |
JP6281796B2 (ja) * | 2014-08-27 | 2018-02-21 | 株式会社ニコンビジョン | 振れ補正装置および測距計 |
JP2016170038A (ja) * | 2015-03-12 | 2016-09-23 | 本田技研工業株式会社 | 光通信装置、送信信号、及びプログラム |
JP2017191042A (ja) * | 2016-04-14 | 2017-10-19 | 株式会社村田製作所 | 距離センサ |
Also Published As
Publication number | Publication date |
---|---|
JP2020125983A (ja) | 2020-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10775507B2 (en) | Adaptive transmission power control for a LIDAR | |
CN111830530B (zh) | 一种距离测量方法、系统及计算机可读存储介质 | |
US9417326B2 (en) | Pulsed light optical rangefinder | |
JP6236758B2 (ja) | 光学的測距装置 | |
CN211014629U (zh) | 一种激光雷达装置 | |
JP5655133B2 (ja) | 空間情報検出装置 | |
US20170307359A1 (en) | Distance measuring device and method for determining a distance | |
CN111766596A (zh) | 一种距离测量方法、系统及计算机可读存储介质 | |
KR102367123B1 (ko) | 티오에프 방식의 거리 측정 장치에서 제어 방법 | |
CN111886517B (zh) | 距离测量装置、距离测量系统、距离测量方法和程序 | |
JP2009192499A (ja) | 距離画像生成装置 | |
CN111796295B (zh) | 一种采集器、采集器的制造方法及距离测量系统 | |
CN111796296A (zh) | 一种距离测量方法、系统及计算机可读存储介质 | |
WO2020070280A3 (en) | High resolution time-of-flight measurements | |
WO2020162273A1 (ja) | 測距装置及び測距方法 | |
CN213091889U (zh) | 一种距离测量系统 | |
US20230273304A1 (en) | Efficient Fault Detection For Lidar Sensors | |
JP2020085477A (ja) | 光測距装置及び光測距方法 | |
CN114236504A (zh) | 一种基于dToF的探测系统及其光源调整方法 | |
WO2023001363A1 (en) | Time-of-flight sensor | |
CN112946602A (zh) | 多路径误差补偿的方法和多路径误差补偿的间接飞行时间距离计算装置 | |
US20230221439A1 (en) | Addressing redundant memory for lidar pixels | |
US10241204B2 (en) | Method for illuminating an object | |
US20240004041A1 (en) | Distance measuring device and distance measuring system | |
WO2021059638A1 (ja) | 距離測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20752784 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20752784 Country of ref document: EP Kind code of ref document: A1 |