WO2020162037A1 - 金属粉末製造装置及びそのガス噴射器 - Google Patents

金属粉末製造装置及びそのガス噴射器 Download PDF

Info

Publication number
WO2020162037A1
WO2020162037A1 PCT/JP2019/048541 JP2019048541W WO2020162037A1 WO 2020162037 A1 WO2020162037 A1 WO 2020162037A1 JP 2019048541 W JP2019048541 W JP 2019048541W WO 2020162037 A1 WO2020162037 A1 WO 2020162037A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
nozzle
molten metal
spray tank
injection
Prior art date
Application number
PCT/JP2019/048541
Other languages
English (en)
French (fr)
Inventor
隆史 芝山
今野 晋也
玉艇 王
滋信 江口
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to SG11202012686QA priority Critical patent/SG11202012686QA/en
Priority to CN201980050329.XA priority patent/CN112533712B/zh
Publication of WO2020162037A1 publication Critical patent/WO2020162037A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0892Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting nozzle; controlling metal stream in or after the casting nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a metal powder production apparatus for producing fine metal particles (metal powder) by colliding a high-pressure gas fluid with molten metal flowing down from a molten metal nozzle, and a gas injector thereof.
  • atomization methods that include a gas atomization method and a water atomization method as a method for producing fine metal particles (metal powder) from molten metal.
  • the gas atomizing method the molten metal is made to flow down from a molten metal nozzle below a melting tank that stores molten metal, and an inert gas is blown to the molten metal from a plurality of gas injection nozzles arranged around the molten metal nozzle.
  • the flow of the molten metal from the molten metal nozzle is divided by the inert gas flow from the gas injection nozzle to form a large number of fine metal droplets that drop in the spray tank and are solidified while being spherical due to surface tension.
  • the spherical metal powder is collected by the collection hopper at the bottom of the spray tank.
  • a crucible provided in the upper part of a spray chamber (spray tank) for holding a molten metal, and a crucible connected to the bottom of the crucible to blow the inert gas onto the molten metal Atomizing nozzle (molten metal nozzle) that drops into the atomizing chamber, and a plurality of nozzles that are provided around the atomizing nozzle and spray a high-pressure inert gas onto the molten metal flowing down the atomizing nozzle to form a large number of fine metal droplets.
  • An active gas nozzle gas injection nozzle
  • a gas inlet and a gas outlet for replacing the gas in the spray chamber
  • a second gas supply for supplying a gas for making the spray chamber an oxidizing atmosphere and/or a nitriding atmosphere.
  • the particle size of metal powder used for powder metallurgy or welding is about 70-100 ⁇ m, but the particle size of metal powder used for a three-dimensional printer is very small, for example, about 20-50 ⁇ m.
  • a molten metal nozzle and a gas injection nozzle which is composed of a plurality of injection holes provided around the molten metal nozzle and which injects gas from the plurality of injection holes to crush the molten metal flowing down from the molten metal nozzle.
  • spray nozzle Collectively referred to as "spray nozzle”.
  • the metal particles crushed by the spray nozzles may come into contact with each other before solidification and the particle size of the metal particles may be expanded. There is concern about a decrease in yield. Also, if multiple spray nozzles are provided, the distance from each spray nozzle (melt nozzle) to the inner wall of the spray tank will be shorter than before, so that metal particles before solidification will contact or stick to the inner wall of the spray tank. And the yield tends to decrease. Furthermore, if the heat dissipation performance of the spray tank deteriorates due to the metal particles sticking to and depositing on the inner wall of the spray tank, the metal powder does not cool sufficiently in the spray tank and sticks to and accumulates on the hopper. May decrease.
  • An object of the present invention is to provide a metal powder manufacturing apparatus and a gas injector for the same, which can efficiently manufacture fine metal powder without changing the body shape of the spray tank.
  • the present application includes a plurality of means for solving the above problems, but if one example is given, a spray tank, a plurality of molten metal nozzles for flowing molten metal stored in a crucible into the spray tank, and the plurality of A gas injector provided with a plurality of melt nozzle insertion holes into which the melt nozzles are respectively inserted, and arranged on the bottom surface of the gas injector so as to draw a first ring around each of the plurality of melt nozzle insertion holes.
  • a plurality of injection holes that are formed, and a second gas ring is drawn outside each of the first ring and a first gas injection nozzle that injects gas into the molten metal flowing down from the molten metal nozzle to pulverize the gas.
  • a third gas injection which is composed of a plurality of injection holes arranged on the bottom surface of the gas injector so as to draw a third ring outside the second gas injection nozzle, and injects gas onto the inner wall surface of the spray tank.
  • fine metal powder can be efficiently produced without changing the body shape of the spray tank.
  • FIG. 3 is a cross-sectional view of the periphery of the gas injector 200.
  • FIG. 6 is a diagram showing the relationship between the gas injection directions of a plurality of injection holes 91 forming the gas injection nozzle 71A and the molten metal flow-down region 27 of the first molten metal nozzle 11A.
  • FIG. 9 is a relationship diagram of a gas injection direction of a plurality of injection holes 92 configuring the gas injection nozzle 72A and a focus (first focus) 261 of the gas injection nozzle 71A. VII-VII arrow sectional view in FIG. 1 of the spray tank 4.
  • FIG. 1 is an overall configuration diagram of a gas atomizing apparatus which is a metal powder manufacturing apparatus according to the present invention.
  • the gas atomizing apparatus of FIG. 1 includes a melting tank 1 in which a crucible (tundish) 100 (see FIG. 2), which is a container for storing molten metal (molten metal) that is a liquid metal, and a melting nozzle from the melting tank 1.
  • a high-pressure gas gas fluid
  • a spray tank 4 for rapid solidification and a collection hopper (hopper) 5 provided at the bottom of the spray tank 4 for collecting the powdery solid metal solidified during falling in the spray tank 4 are provided.
  • the gas atomizing apparatus injects gas with a gas injector 200 to the molten metal flowing down from the molten metal nozzle 11 to produce metal powder.
  • the spray tank 4 is a cylindrical container having the same diameter in the upper portion and the middle portion, but from the viewpoint of the ease of collecting the metal powder by the collection hopper 5, the spray tank 4 has a taper whose diameter becomes smaller toward the collection hopper 5 in the lower portion. It has a shape. Inert gas is appropriately discharged as exhaust gas 6 from the collection hopper 5.
  • FIG. 2 is a cross-sectional view of the periphery of the gas injector 200 of the gas atomizing apparatus according to this embodiment
  • FIG. 3 is a bottom view of the gas injector 200 of this embodiment
  • FIG. 4 is a gas injector 200 of this embodiment.
  • the plurality of injection holes (through holes) 92 and 93 forming the second gas injection nozzle 72 and the third gas injection nozzle 73 shown in FIG. 3 are omitted.
  • melt nozzles 11A and 11B which are a plurality of melt nozzles for respectively flowing the molten metal in the crucible 100 into the spray tank 4, are provided in the melting tank 1. It is provided so as to project vertically downward from the bottom surface.
  • the two melt nozzles 11A and 11B can have the same shape, and each has a vertically elongated hole extending in the vertical direction through which the melt flows. This vertically long hole serves as a molten metal flow path from which the molten metal flows vertically downward from the bottom of the crucible 100.
  • the open ends 21A and 21B located at the lower ends of the molten metal nozzle 11A and the molten metal nozzle 11B are arranged so as to project from the bottom surface of the gas injector 200 and face the cavity in the spray tank 4.
  • the molten metal in the crucible 100 flows down through the holes inside the molten metal nozzles 11A and 11B as a molten metal flow 8 and is discharged (flowed down) into the spray tank 4 through the open ends 21A and 21B.
  • a value of 5 mm or less, which is smaller than before, can be selected.
  • the gas injector 200 having a substantially columnar outer shape includes a plurality of molten metal nozzle insertion holes 12A and 12B into which a plurality of molten metal nozzles 11A and 11B are respectively inserted, and the molten metal nozzles 11A and 11B. It is provided with a first gas injection nozzle 71 which injects gas into the flowing molten metal to pulverize it.
  • the gas injector 200 has a hollow cylindrical outer shape filled with an inert high-pressure gas, and the inside thereof is a gas that forms a gas flow around each of the plurality of melt nozzle insertion holes 12A and 12B. It is the flow path 50.
  • the gas flow path 50 receives supply of high-pressure gas from the injection gas supply pipe 3 connected to a gas suction hole (not shown) provided on the side surface of the cylinder of the gas injector 200.
  • the gas injector 70 also supports the crucible 100. Although not shown, it is preferable to insert a heat insulating material between the melting tank 1 and the gas injector 70 from the viewpoint of preventing heat conduction from the melting tank 1.
  • the molten metal nozzle insertion hole 12A and the molten metal nozzle insertion hole 12B have two cylindrical shapes having axes (Cm1, Cm2) parallel to the central axis (Cg0) of the cylindrical gas injector 200. It is a through hole.
  • the first melt nozzle 11A and the second melt nozzle 11B are inserted into the first melt nozzle insertion hole 12A and the second melt nozzle insertion hole 12B, respectively.
  • the center axes Cm1 and Cm2 of the first melt nozzle insertion hole 12A and the second melt nozzle insertion hole 12B can be made to coincide with the center axes of the holes of the first melt nozzle 11A and the second melt nozzle 11B.
  • the first gas injection nozzle 71 includes a plurality of injection holes (through holes) 91 arranged so as to draw a first ring (see FIG. 3) 61 around each of the plurality of molten metal nozzle insertion holes 12A and 12B. ..
  • first gas injection nozzles 71 those formed by the plurality of injection holes 91 located around the melt nozzle insertion hole 12A are referred to as gas injection nozzles 71A, and the plurality of gas injection nozzles 71 located around the melt nozzle insertion hole 12B. What the injection hole 91 forms is called a gas injection nozzle 71B.
  • FIG. 5 is a diagram showing the relationship between the gas injection directions of the plurality of injection holes 91 forming the gas injection nozzle 71A and the molten metal flow-down region 27 of the first molten metal nozzle 11A.
  • the gas injection direction of the plurality of injection holes 91 forming the gas injection nozzle 71A is shown by a straight line 251, and each injection hole 91 has a through hole having a central axis that matches the corresponding straight line 251. It is formed by drilling on the bottom surface of 200.
  • the plurality of injection holes 91 are arranged at equal intervals on the bottom surface of the gas injector 200 on the first ring 61 that is concentric with the central axis Cm1 of the first molten metal nozzle insertion hole 12A.
  • the gas injection direction (straight line 251) of all the injection holes 91 forming the gas injection nozzle 71A passes through a common focus (first focus) 261.
  • the focal point 261 is located in a substantially cylindrical flow-down region 27 defined by the outer diameter of the molten metal flowing down from the first melt nozzle 11A (not shown in FIG. 4).
  • the diameter of the flow-down region 27 can be appropriately adjusted according to the minimum inner diameter (orifice diameter) of the holes forming the first molten metal nozzle 11A.
  • the diameter of the flow-down region 27 can be set to a value equal to or smaller than the diameter of the opening end 21A of the first molten metal nozzle 11A, for example.
  • the gas injection nozzle 71B is also formed similarly to the gas injection nozzle 71A.
  • the first ring 61 in the present embodiment is a perfect circle centered on the intersection of the central axes of the melt nozzle insertion holes 12A and 12B and the bottom surface of the gas injector 200 (the surface facing the spray tank 4). ..
  • the number of the injection holes 91 forming the gas injection nozzle 71A and the number of the injection holes 91 forming the gas injection nozzle 71B are the same, but they may be different.
  • the gas injection nozzle 71A and the melt nozzle 11A constitute a first spray nozzle 20A for liquid-spraying molten metal in the spray tank 4, and the gas injection nozzle 71B and the melt nozzle 11B similarly constitute a second spray nozzle 20B.
  • the gas atomizing device of this embodiment includes two spray nozzles, a first spray nozzle 20A and a second spray nozzle 20B.
  • the gas injector 200 of the present embodiment further includes a second gas injection nozzle 72 and a third gas injection nozzle 73 provided on the bottom surface of the gas injector 200, and the spray tank 4. And a fourth gas injection nozzle 74 (see FIG. 1) provided on the inner wall surface of the.
  • the second gas injection nozzle 72 includes a plurality of injection holes (through holes) 92 arranged on the bottom surface of the gas injector 200 so as to draw the second ring 62 outside each of the two first rings 61.
  • the first gas injection nozzle 71 is a gas injection nozzle that injects gas to prevent the metal particles crushed by the first gas injection nozzle 71 from scattering.
  • the plurality of injection holes 92 are formed in the bottom surface of the gas injector 200.
  • gas injection nozzles 72A those formed by the plurality of injection holes 92 located around the melt nozzle insertion hole 12A are referred to as gas injection nozzles 72A, and the plurality of gas injection nozzles 72 located around the melt nozzle insertion hole 12B. What the injection hole 92 forms is called a gas injection nozzle 72B.
  • FIG. 6 is a diagram showing the relationship between the gas injection directions of the plurality of injection holes 92 forming the gas injection nozzle 72A and the focus (first focus) 261 of the gas injection nozzle 71A.
  • the gas injection direction of the plurality of injection holes 92 forming the gas injection nozzle 72A is shown by a straight line 252, and each injection hole 92 has a through hole having a central axis that matches the corresponding straight line 252. It is formed by drilling on the bottom surface of 200.
  • the plurality of injection holes 92 are arranged on the bottom surface of the gas injector 200 at equal intervals on the second ring 62 that is concentric with the central axis Cm1 of the first molten metal nozzle insertion hole 12A.
  • the gas injection direction (straight line 252) of all the injection holes 92 forming the gas injection nozzle 72A passes through a common focus (second focus) 262.
  • the gas injection directions of all the injection holes 92 are concentrated at one point (focal point 262).
  • the focus (second focus) 262 is located below the focus (first focus) 261 of the gas injection nozzle 71A.
  • the gas injection nozzle 72B is also formed similarly to the gas injection nozzle 72A.
  • the second ring 62 in the present embodiment is a perfect circle centered on the intersection of the central axes of the molten metal nozzle insertion holes 12A and 12B and the bottom surface of the gas injector 200 (the surface facing the spray tank 4). However, it may be oval or polygonal, and the center thereof may be offset from the central axes of the melt nozzle insertion holes 12A, 12B.
  • the injection of the second ring 62 and each injection hole 92 is performed so that the focal points (second focal points) 262 of the plurality of injection holes 92 arranged on the second ring 62 are located below the first focal point 261.
  • the direction 252 needs to be set. Further, in FIG.
  • the number of the injection holes 92 forming the gas injection nozzle 72A and the number of the injection holes 92 forming the gas injection nozzle 72B are the same, but they may be different. Further, in FIG. 6, the number of the injection holes 92 forming the gas injection nozzle 72A and the number of the injection holes 91 forming the gas injection nozzle 71A are the same, but they may be different.
  • the third gas injection nozzle 73 has a plurality of injection holes arranged on the bottom surface of the gas injector 200 so as to draw the third ring 63 outside the second gas injection nozzle 72 (two second rings 62 ). And a gas injection nozzle for injecting gas onto the inner wall surface of the spray tank 4.
  • the plurality of injection holes 93 are arranged on the bottom surface of the gas injector 200 at equal intervals on the third ring 63 centered on the point where the central axis Cg0 of the gas injector 200 passes.
  • an arrow 253 indicates the gas injection direction of the injection holes 93 that form the gas injection nozzle 73.
  • the gas injection direction (straight line 253) of each injection hole 93 is directed toward the nearest inner wall surface of the spray tank 4.
  • the vector obtained by projecting the gas injection direction 253 of the present embodiment onto the gas injector 200 is outward from the center of the third ring 63 (the point where the central axis Cg0 of the gas injector 200 passes on the bottom surface of the gas injector 200). It is radiating toward you.
  • one gas injection direction 253 of the plurality of injection holes 93 is shown.
  • Each injection hole 93 is formed by forming a through hole having a central axis coinciding with the corresponding straight line 253 in the bottom surface of the gas injector 200.
  • the third ring 63 in the present embodiment is a perfect circle centered on the point where the central axis Cg0 of the gas injector 200 passes through the bottom surface of the gas injector 200, but may be an ellipse or a polygon. The center may be offset from the center axis Cg0 of the gas injector 200. However, it is necessary to set the axial direction of the third ring 63 and each injection hole 93 so that the injection direction 253 of the gas injected from each injection hole 92 faces the inner wall surface of the spray tank 4. It should be noted that the number of the injection holes 93 shown in FIG. 3 is merely an example, and any number can be selected as long as the cooling performance of the spray tank 4 is not impaired.
  • the fourth gas injection nozzle 74 includes a plurality of injection holes 94 arranged at a predetermined height in the spray tank 4, and injects gas along the inner wall surface of the spray tank 4. Is a gas injection nozzle that generates a swirling flow 81 around the central axis Cg0 of the spray tank 4 in the spray tank 4.
  • two gas injection nozzles 74A and 74B having different installation heights in the spray tank 4 are provided.
  • gas injection nozzles 74 those provided at a relatively high position in the height direction of the spray tank 4 are referred to as gas injection nozzles 74A, and those provided at a relatively low position are referred to. It is referred to as a gas injection nozzle 74B.
  • FIG. 7 is a cross-sectional view of the spray tank 4 taken along the line VII-VII in FIG. 1, and is a configuration diagram of the gas injection nozzle 74A and the plurality of injection holes 94 constituting the gas injection nozzle 74A.
  • arrows 254 show the flow of gas injected from the plurality of injection holes 94 that form the gas injection nozzle 74A, and each injection hole 94 corresponds to the tangential direction in the axial cross section of the inner wall surface of the spray tank 4. It is formed of a tube having a coincident central axis.
  • the plurality of injection holes 94 are arranged at equal intervals in the circumferential direction of the inner peripheral surface of the spray tank 4.
  • Each of the plurality of injection holes 94 is connected to the injection gas supply pipe (injection fluid supply pipe) 3 and receives the high-pressure gas supplied from the injection gas supply pipe 3.
  • injection gas supply pipe injection fluid supply pipe
  • the number of injection holes 94 may be any other value as long as the swirl flow 81 can be generated.
  • the gas injection nozzle 74B is also formed similarly to the gas injection nozzle 74A.
  • First gas injection nozzle 71 (spray nozzles 20A, 20B)
  • all the injection holes forming the first gas injection nozzles 71A and 71B in the gas injector 200 High-pressure gas having the same pressure is injected from 91 toward the inside of the spray tank 4 in accordance with a predetermined injection direction (straight line 251 (see FIG. 5)) for each injection hole 91.
  • the gas is intensively injected to the respective focal points (first focal points) 261, and a plurality of injection holes 91 are arranged with the focal point 261 as the apex as shown in FIG.
  • An inverted conical (reverse conical) fluid film 101 having a circular (ring) 61 as a bottom surface is formed.
  • This fluid film 101 may be referred to as a metal atomization gas jet (first gas jet) 101.
  • a value (for example, 1-2 mm) smaller than before (for example, about 5 mm) is selected as the minimum inner diameter of the holes forming the two molten metal nozzles 11A and 11B. , 71B, even if the gas is injected at the same pressure as before, it is possible to easily obtain finer metal particles than before. Further, when the gas is injected at the same pressure as before, the flight distance of the metal particles in the spray tank 4 can also be suppressed, so it is necessary to replace with a spray tank 4 having a larger diameter from the viewpoint of preventing deformation of the metal particles. There is no need to expand the installation space of the tank 4.
  • the flow rate of the molten metal flow 8 per time is reduced and the yield is reduced as compared with that of the molten metal nozzles 11A and 11B. Since the two melt nozzles 11A and 11B (that is, the two spray nozzles 20A and 20B) are provided for the spray tank 4, the yield per time can be doubled.
  • Second gas injection nozzle 72 When the high-pressure gas is supplied from the injection gas supply pipe 3 to the gas injector 200, all the second gas injection nozzles 72A and 72B are configured in the gas injector 200, as in the case of the first gas injection nozzle 71 described above.
  • the high-pressure gas having the same pressure is injected from the injection holes 92 of the above to the inside of the spray tank 4 according to a predetermined injection direction (straight line 252 (see FIG. 6)) for each injection hole 92.
  • the gas is intensively injected to the respective focal points (second focal points) 262, and a plurality of injection holes 92 are arranged with the focal point 262 as the apex as shown in FIG.
  • An inverted conical (reverse conical) fluid film 102 having a circular (ring) 62 as a bottom surface is formed. This fluid film 102 may be referred to as a contact prevention gas jet (second gas jet) 102.
  • the contact prevention gas jet 102 formed by the second gas injection nozzles 72A and 72B is the fine particles 15 sprayed from one of the two spray nozzles 20A and 20B (for example, the melt flowing down from the melt nozzle 11A). It functions as an air curtain that prevents collision between the metal) and the fine particles 15 (eg, molten metal flowing down from the molten metal nozzle 11B) sprayed from the other spray nozzle. As a result, generation of deformed metal particles is prevented, and the production efficiency of metal powder can be improved as compared with the case where only the spray nozzles 20A and 20B are provided.
  • the metal powder manufacturing apparatus is provided with two sets of spray nozzles 20A and 20B in one spray tank 4, and each spray nozzle 20 has a single spray nozzle 20 as compared with the conventional one.
  • the distance from the nozzles 20A, 20B to the inner wall surface of the spray tank 4 is short, and the metal powder 15 before solidification is likely to collide with and adhere to the inner wall surface of the spray tank 4.
  • the contact prevention gas jet (second gas jet) 102 formed by the second gas injection nozzle 72 of the present embodiment has a substantially conical shape that covers the metal atomization gas jet (first gas jet) 101 from the outside. It is possible to prevent the fine particles 15 from scattering toward the inner wall surface of the spray tank 4.
  • the production efficiency of the metal powder can be improved also from this viewpoint. Further, for example, even when the spray tank 4 having the same diameter as the conventional one is used, the collision of the fine particles 15 can be prevented, so that the replacement cost of the spray tank 4 and the installation space can be prevented from increasing.
  • the metal that has become the fine particles 15 due to the injection gas from the first gas injection nozzle 71 and has been prevented from scattering in the radial direction of the spray tank 4 by the injection gas from the second gas injection nozzle 72 falls within the spray tank 4. It is rapidly cooled and solidified therein and collected as a large number of metal powders in the collection hopper 5.
  • the third gas injection nozzle 73 is configured in the gas injector 200 as in the case of the first and second gas injection nozzles 71 and 72.
  • the high-pressure gas having the same pressure is injected from all the injection holes 93 toward the inner wall of the spray tank 4 in accordance with a predetermined injection direction (straight line 253 (see FIG. 3)) for each injection hole 93.
  • the gas is injected from each injection hole 93 to the nearest inner wall surface of the spray tank 4, and the substantially frustoconical fluid film 103 as shown in FIG. 2 is formed. ..
  • This fluid film 103 may be referred to as a spray tank cooling gas jet (third gas jet) 103.
  • the spray tank cooling gas jet 103 thus formed by the third gas injection nozzle 73 is discharged to the inner wall surface of the spray tank 4 to cool the spray tank 4.
  • the fine particles (metal powder) 15 sprayed by the spray nozzles 20A and 20B are easily cooled sufficiently in the spray tank 4, so that the fine particles (metal powder) 15 are not solidified in the spray tank 4 and are fixed and deposited on the hopper 5 to yield. Can be suppressed.
  • the spray tank cooling gas jet 103 has a function of preventing the fine particles 15 from colliding with the inner wall surface of the spray tank 4, similarly to the contact prevention gas jet 102. That is, according to this embodiment, the production efficiency of the metal powder can be improved also from this viewpoint.
  • Fourth gas injection nozzle 74 Further, when high-pressure gas is supplied to the fourth gas injection nozzles 74 (74A, 74B), it is predetermined for each injection hole 94 from all the injection holes 94 that form the fourth gas injection nozzle 74 along the inner wall of the spray tank 4.
  • the high-pressure gas having the same pressure is injected in accordance with the injection direction (for example, the tangential direction of the inner peripheral wall in FIG. 7).
  • the injection direction for example, the tangential direction of the inner peripheral wall in FIG. 7
  • a gas flow as indicated by an arrow 254 in FIG. 7 is generated in the spray tank 4, and as a result, a swirl flow 81 is generated around the central axis of the spray tank 4 along the inner wall of the spray tank 4.
  • the swirl flow 81 exerts a function of preventing the fine particles 15 from colliding with the inner wall surface of the spray tank 4, like the second gas jet 102 and the third gas jet 103. Further, since the swirling flow 81 exerts the effect of making the heat distribution in the horizontal plane of the spray tank 4 uniform, the cooling performance of the spray tank 4 can be improved by the synergistic effect with the third gas jet 103. That is, according to this embodiment, the production efficiency of the metal powder can be improved also from this viewpoint.
  • the metal spraying device of the present embodiment including the second, third, and fourth gas injection nozzles 72, 73, 74 in addition to the first gas injection nozzle 71, the shape of the spray tank is changed. Therefore, fine metal powder can be efficiently produced.
  • the present invention is not limited to the above-described embodiments, and includes various modifications within the scope of the invention.
  • the present invention is not limited to those having all the configurations described in the above-described embodiments, and includes those in which a part of the configuration is deleted.
  • a part of the configuration according to one embodiment can be added or replaced with the configuration according to another embodiment.
  • the gas flow passage 50 in the gas injector 200 may be separated for each of the gas injection nozzles 71-73, or the gas flow passage 50 may be divided into a plurality of gas passages, and the gas having different pressures may be supplied to the respective gas flow passages.
  • the pressure of the gas injected from each gas injection nozzle 71-73 may be changed/adjusted.
  • the diameters of the gas injection nozzles 71-74 may be appropriately changed.
  • the second to fourth gas injection nozzles 72-74 are provided in addition to the first gas injection nozzle 71 has been described, but at least one of the second to fourth gas injection nozzles 72-74 is described.
  • the effect of improving the manufacturing efficiency of the metal powder can be exhibited even in the embodiment including one gas injection nozzle.
  • the fourth gas injection nozzle 74 is configured to generate the swirl flow 81 in the counterclockwise direction in FIG. 7, the direction of the injection hole 94 is changed so as to generate the swirl flow 81 in the clockwise direction. Is also good. Further, although the fourth gas injection nozzle 74 is provided at two positions in the height direction of the spray tank 4, it may be provided at one position or at three or more positions.
  • gas gas fluid
  • liquid such as water
  • the present invention may be applicable to any nozzle that ejects a fluid.
  • Third ring 71 (71A, 71B)... 1st gas injection nozzle, 72 (72A, 72B)... 2nd gas injection nozzle, 73... 3rd gas injection nozzle, 74 (74A, 74B)... 4th gas injection nozzle, 91... injection hole, 93... injection hole, 94... Injection hole, 100... Crucible, 101... Metal atomization gas jet, 102... Contact prevention gas jet, 200... Gas injector, 251... Gas injection direction (center axis of injection hole), 252... Gas injection direction (center of injection hole) Axis... 253... Gas injection direction (center axis of injection hole), 254... Gas flow direction, 261... Focus of first gas injection nozzle (first focus), 262... Focus of second gas injection nozzle (second focus) )

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Nozzles (AREA)

Abstract

複数の溶湯ノズル挿入孔(12A,12B)のそれぞれの周囲に第1の環(61)を描くようにガス噴射器(200)の底面に配置された複数の噴射孔(91)からなり、溶湯ノズル(11A,11B)から流下する溶融金属に対してガスを噴射して粉砕する第1ガス噴射ノズル(71)と、第1の環(61)のそれぞれの外側に第2の環(62)を描くようにガス噴射器(200)の底面に配置された複数の噴射孔(92)からなり、第1ガス噴射ノズル(71)で粉砕された金属粒(15)の飛散を防止するためにガスを噴射する第2ガス噴射ノズル(72)と、第2ガス噴射ノズル(72)の外側に第3の環(63)を描くようにガス噴射器(200)の底面に配置された複数の噴射孔(93)からなり、噴霧槽(4)の内壁面に対してガスを噴射する第3ガス噴射ノズル(73)とを金属粉末製造装置に備える。

Description

金属粉末製造装置及びそのガス噴射器
 本発明は溶湯ノズルから流下する溶融金属に高圧ガス流体を衝突させることで微粒子状の金属(金属粉末)を製造する金属粉末製造装置及びそのガス噴射器に関する。
 溶融金属から微粒子状の金属(金属粉末)を製造する方法にガスアトマイズ法や水アトマイズ法を含むアトマイズ法がある。ガスアトマイズ法は、溶融金属を貯留する溶解槽の下部の溶湯ノズルから溶湯を流下させ、溶湯ノズルの周囲に配置された複数のガス噴射ノズルから不活性ガスを溶湯に吹きつける。溶湯ノズルからの溶融金属の流れは、ガス噴射ノズルからの不活性ガス流によって分断され微細な多数の金属液滴となって噴霧槽内を落下し、表面張力によって球状化しながら凝固する。これにより噴霧槽底部の採集ホッパで球状の金属粉末が回収される。
 例えば特開2016-211027号公報には、噴霧チャンバ(噴霧槽)上部に設けられ金属溶湯を保持するるつぼと、前記るつぼの底部に接続して前記不活性ガスを吹きつけながら前記金属溶湯を前記噴霧チャンバ内に落下させるアトマイズノズル(溶湯ノズル)と、アトマイズノズルの周囲に備えられ、アトマイズノズルを流下する金属溶湯に高圧の不活性ガスを吹き付けて微細な多数の金属液滴とする複数の不活性ガスノズル(ガス噴射ノズル)と、前記噴霧チャンバ内をガス置換させるガス導入口及びガス排出口と、前記噴霧チャンバ内を酸化雰囲気及び/又は窒化雰囲気とするためのガスを与える第2のガス導入口とを有する金属粉末の製造装置が開示されている。
特開2016-211027号公報
 大量の金属粒子を積層して所望の形状の金属を造形する金属3次元プリンターの材料等をはじめとして、アトマイズ法に従前求められていた金属粉末よりも粒径の小さいもののニーズが近年高まっている。粉末冶金や溶接等に用いられる従前からの金属粉末の粒径は例えば70-100μm程度であったが、3次元プリンターに用いられる金属粉末の粒径は例えば20-50μm程度と非常に細かい。
 ここで、溶湯ノズルと、その溶湯ノズルの周囲に設けられた複数の噴射孔からなり、当該複数の噴射孔からガスを噴射することで当該溶湯ノズルから流下する溶湯を粉砕するガス噴射ノズルとを「噴霧ノズル」と総称する。従前からの噴霧槽の体型を変えずに微細な金属粉末を効率良く製造する方策としては、1つの噴霧槽に対して通常は1つだけ設けられる噴霧ノズルを、複数設けることが考えられる。
 しかし、このように複数の噴霧ノズルを設けると、各噴霧ノズルで粉砕された金属粒子同士が凝固前に接触して金属粒子の粒径が拡大し得るため、所望の粒径を有する金属粉末の収率の低下が懸念される。また、複数の噴霧ノズルを設けると、各噴霧ノズル(溶湯ノズル)から噴霧槽の内壁までの距離は従前より短くなるため、凝固前の金属粒子が噴霧槽の内壁に接触したり固着したりして収率が低下し易い。さらに、噴霧槽の内壁に金属粒子が固着・堆積することで噴霧槽の放熱性能が低下した場合には、金属粉末が噴霧槽内で充分に冷却されずにホッパに固着・堆積して収率が低下する可能性もある。
 本発明の目的は、噴霧槽の体型を変えずに微細な金属粉末を効率良く製造できる金属粉末製造装置及びそのガス噴射器を提供することにある。
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、噴霧槽と、るつぼに蓄えられた溶融金属を前記噴霧槽内に流下させる複数の溶湯ノズルと、前記複数の溶湯ノズルがそれぞれ挿入される複数の溶湯ノズル挿入孔が設けられたガス噴射器と、前記複数の溶湯ノズル挿入孔のそれぞれの周囲に第1の環を描くように前記ガス噴射器の底面に配置された複数の噴射孔からなり、前記溶湯ノズルから流下する溶融金属に対してガスを噴射して粉砕する第1ガス噴射ノズルと、前記第1の環のそれぞれの外側に第2の環を描くように前記ガス噴射器の底面に配置された複数の噴射孔からなり、前記第1ガス噴射ノズルで粉砕された金属粒の飛散を防止するためにガスを噴射する第2ガス噴射ノズルと、前記第2ガス噴射ノズルの外側に第3の環を描くように前記ガス噴射器の底面に配置された複数の噴射孔からなり、前記噴霧槽の内壁面に対してガスを噴射する第3ガス噴射ノズルとを金属粉末製造装置に備えることとする。
 本発明によれば噴霧槽の体型を変えずに微細な金属粉末を効率良く製造できる。
金属粉末製造装置であるガスアトマイズ装置の全体構成図。 ガス噴射器200の周辺の断面図。 ガス噴射器200の底面図。 ガス噴射器200の斜視図。 ガス噴射ノズル71Aを構成する複数の噴射孔91のガス噴射方向と第1溶湯ノズル11Aの溶湯の流下領域27の関係図。 ガス噴射ノズル72Aを構成する複数の噴射孔92のガス噴射方向とガス噴射ノズル71Aの焦点(第1焦点)261の関係図。 噴霧槽4の図1におけるVII-VII矢視断面図。
 以下、本発明の実施の形態について図面を用いて説明する。
 図1は本発明に係る金属粉末製造装置であるガスアトマイズ装置の全体構成図である。図1のガスアトマイズ装置は、液体状の金属である溶融金属(溶湯)が蓄えられる容器であるるつぼ(タンディッシュ)100(図2参照)が収納される溶解槽1と、溶解槽1から溶湯ノズル(後述)11を介して細粒となって流下する溶湯に対して高圧ガス(ガス流体)を吹き付けて多数の微粒子に粉砕して溶融金属を液体噴霧するガス噴射器200と、ガス噴射器200に高圧ガスを供給するための噴射ガス供給管(噴射流体供給管)3と、不活性ガス雰囲気に保持された容器であってガス噴射器200から噴霧された微粒子状の液体金属が落下中に急冷凝固される噴霧槽4と、噴霧槽4の底部に設けられ噴霧槽4での落下中に凝固した粉末状の固体金属を回収する採集ホッパ(ホッパ)5とを備えている。ガスアトマイズ装置は、溶湯ノズル11から流下する溶湯に対して、ガス噴射器200でガスを噴射して金属粉末を製造する。
 溶解槽1内は不活性ガス雰囲気に保持することが好ましい。噴霧槽4は、上部及び中部では同一の径を有する円筒状の容器であるが、採集ホッパ5による金属粉末の回収し易さの観点から、下部では採集ホッパ5に近づくほど径が小さくなるテーパ形状になっている。採集ホッパ5からは不活性ガスが適宜排気6として排出されている。
 図2は本実施形態に係るガスアトマイズ装置のガス噴射器200周辺の断面図であり、図3は本実施形態のガス噴射器200の底面図であり、図4は本実施形態のガス噴射器200の斜視図である。なお、図4では図3中に示した第2ガス噴射ノズル72及び第3ガス噴射ノズル73を構成する複数の噴射孔(貫通孔)92,93は省略している。
 -溶湯ノズル11A,11B-
 図2に示すように、溶解槽1内のるつぼ100の底部には、るつぼ100内の溶融金属を噴霧槽4内にそれぞれ流下させる複数の溶湯ノズルである溶湯ノズル11A,11Bが溶解槽1の底面から鉛直下方に向かって突出して設けられている。2本の溶湯ノズル11A,11Bは、同一の形状とすることができ、それぞれの内部に溶湯が流下する鉛直方向に延びた縦長の孔を有している。この縦長の孔は、るつぼ100の底部から鉛直下方に向かって溶融金属が流下する溶湯流路となる。
 溶湯ノズル11Aと溶湯ノズル11Bの下端に位置する開口端21A,21Bは、ガス噴射器200の底面から突出して噴霧槽4内の空洞に臨むようにそれぞれ配置されている。るつぼ100内の溶融金属は溶湯ノズル11A,11Bの内部の孔を溶湯流8となって流下し開口端21A,21Bを介して噴霧槽4内に放出(流下)される。噴霧槽4内に導入される溶湯の径の大きさに寄与する第1溶湯ノズル11Aと第2溶湯ノズル11Bの最小内径としては、例えば従前より小さい5mm以下の値が選択できる。
 -ガス噴射器200-
 略円柱状の外形を有するガス噴射器200は、図2に示すように、複数の溶湯ノズル11A,11Bがそれぞれ挿入される複数の溶湯ノズル挿入孔12A,12Bと、各溶湯ノズル11A,11Bから流下する溶融金属に対してガスを噴射して粉砕する第1ガス噴射ノズル71を備えている。ガス噴射器200は、不活性の高圧ガスで満たされる中空構造の円柱形状の外形を有しており、その内部は複数の溶湯ノズル挿入孔12A,12Bのそれぞれの周囲にガス流を形成するガス流路50となっている。ガス流路50は、ガス噴射器200の円柱の側面に設けられたガス吸入孔(図示せず)に接続される噴射ガス供給管3から高圧ガスの供給を受ける。また、ガス噴射器70はるつぼ100を支持している。なお、図示は省略するが、溶解槽1とガス噴射器70の間には、溶解槽1からの熱伝導を防止する観点から断熱材を挿入することが好ましい。
 -溶湯ノズル挿入孔12A,12B-
 溶湯ノズル挿入孔12Aと溶湯ノズル挿入孔12Bは、図4に示すように、円柱状のガス噴射器200の中心軸(Cg0)と平行の軸(Cm1,Cm2)を有する2本の円柱状の貫通孔である。第1溶湯ノズル挿入孔12Aと第2溶湯ノズル挿入孔12Bには、第1溶湯ノズル11Aと第2溶湯ノズル11Bがそれぞれ挿入される。第1溶湯ノズル挿入孔12Aと第2溶湯ノズル挿入孔12Bの中心軸Cm1,Cm2は第1溶湯ノズル11Aと第2溶湯ノズル11Bの孔の中心軸に一致させることができる。
 -第1ガス噴射ノズル71(71A,71B)-
 第1ガス噴射ノズル71は、複数の溶湯ノズル挿入孔12A,12Bのそれぞれの周囲に第1の環(図3参照)61を描くように配置された複数の噴射孔(貫通孔)91からなる。ここでは第1ガス噴射ノズル71のうち、溶湯ノズル挿入孔12Aの周囲に位置する複数の噴射孔91が形成するものをガス噴射ノズル71Aと称し、溶湯ノズル挿入孔12Bの周囲に位置する複数の噴射孔91が形成するものをガス噴射ノズル71Bと称する。
 図5はガス噴射ノズル71Aを構成する複数の噴射孔91のガス噴射方向と第1溶湯ノズル11Aの溶湯の流下領域27の関係図である。
 図5にはガス噴射ノズル71Aを構成する複数の噴射孔91のガス噴射方向を直線251で示しており、各噴射孔91は対応する直線251と一致する中心軸を有する貫通孔をガス噴射器200の底面に穿つことで形成されている。この複数の噴射孔91はガス噴射器200の底面において第1溶湯ノズル挿入孔12Aの中心軸Cm1と同心円である第1の環61の上に等間隔で配置されている。ガス噴射ノズル71Aを構成する全ての噴射孔91のガス噴射方向(直線251)は共通の焦点(第1焦点)261を通過している。すなわち全ての噴射孔91のガス噴射方向は一点(焦点261)に集中している。焦点261は第1溶湯ノズル11A(図4には図示せず)から流下する溶融金属の外径によって規定される略円柱状の流下領域27内に位置している。流下領域27の径は、第1溶湯ノズル11Aを構成する孔の最小内径(オリフィス径)に応じて適宜調整できる。流下領域27の径は例えば第1溶湯ノズル11Aの開口端21Aの径以下の値にすることもできる。なお、説明は省略するが、ガス噴射ノズル71Bもガス噴射ノズル71Aと同様に形成されている。
 なお、本実施形態における第1の環61は、溶湯ノズル挿入孔12A,12Bの中心軸とガス噴射器200の底面(噴霧槽4内に臨む面)との交点を中心とする真円である。図3中では、ガス噴射ノズル71Aを構成する噴射孔91の数とガス噴射ノズル71Bを構成する噴射孔91の数とは同数であるが、異ならせても良い。
 -噴霧ノズル20A,20B-
 ガス噴射ノズル71Aと溶湯ノズル11Aは、噴霧槽4内に溶融金属を液体噴霧する第1噴霧ノズル20Aを構成し、ガス噴射ノズル71Bと溶湯ノズル11Bは、同様に、第2噴霧ノズル20Bを構成する。すなわち本実施形態のガスアトマイズ装置は第1噴霧ノズル20Aと第2噴霧ノズル20Bの2つの噴霧ノズルを備えている。
 本実施形態のガス噴射器200は、上記の第1ガス噴射ノズル71に加えてさらに、ガス噴射器200の底面に設けられる第2ガス噴射ノズル72及び第3ガス噴射ノズル73と、噴霧槽4の内壁面に設けられる第4ガス噴射ノズル74(図1参照)とを備えている。
 -第2ガス噴射ノズル72(72A,72B)-
 第2ガス噴射ノズル72は、2つの第1の環61のそれぞれの外側に第2の環62を描くようにガス噴射器200の底面に配置された複数の噴射孔(貫通孔)92からなり、第1ガス噴射ノズル71で粉砕された金属粒の飛散を防止するためにガスを噴射するガス噴射ノズルである。複数の噴射孔92は、ガス噴射器200の底面に穿たれている。ここでは第2ガス噴射ノズル72のうち、溶湯ノズル挿入孔12Aの周囲に位置する複数の噴射孔92が形成するものをガス噴射ノズル72Aと称し、溶湯ノズル挿入孔12Bの周囲に位置する複数の噴射孔92が形成するものをガス噴射ノズル72Bと称する。
 図6はガス噴射ノズル72Aを構成する複数の噴射孔92のガス噴射方向とガス噴射ノズル71Aの焦点(第1焦点)261の関係図である。
 図6にはガス噴射ノズル72Aを構成する複数の噴射孔92のガス噴射方向を直線252で示しており、各噴射孔92は対応する直線252と一致する中心軸を有する貫通孔をガス噴射器200の底面に穿つことで形成されている。この複数の噴射孔92はガス噴射器200の底面において第1溶湯ノズル挿入孔12Aの中心軸Cm1と同心円である第2の環62の上に等間隔で配置されている。ガス噴射ノズル72Aを構成する全ての噴射孔92のガス噴射方向(直線252)は共通の焦点(第2焦点)262を通過している。すなわち全ての噴射孔92のガス噴射方向は一点(焦点262)に集中している。この焦点(第2焦点)262はガス噴射ノズル71Aの焦点(第1焦点)261よりも下方に位置している。なお、説明は省略するが、ガス噴射ノズル72Bもガス噴射ノズル72Aと同様に形成されている。
 なお、本実施形態における第2の環62は、溶湯ノズル挿入孔12A,12Bの中心軸とガス噴射器200の底面(噴霧槽4内に臨む面)との交点を中心とする真円であるが、楕円でも多角形でも良く、その中心は溶湯ノズル挿入孔12A,12Bの中心軸上からずれていても良い。ただし、第2の環62上に配置される複数の噴射孔92の焦点(第2焦点)262が第1焦点261よりも下方に位置するように第2の環62及び各噴射孔92の噴射方向252を設定する必要がある。また、図3中では、ガス噴射ノズル72Aを構成する噴射孔92の数とガス噴射ノズル72Bを構成する噴射孔92の数は同数であるが、異ならせても良い。また、図6中では、ガス噴射ノズル72Aを構成する噴射孔92の数とガス噴射ノズル71Aを構成する噴射孔91の数は同数であるが、異ならせても良い。
 -第3ガス噴射ノズル73-
 第3ガス噴射ノズル73は、第2ガス噴射ノズル72(2つの第2の環62)の外側に第3の環63を描くようにガス噴射器200の底面に配置された複数の噴射孔(貫通孔)93からなり、噴霧槽4の内壁面に対してガスを噴射するガス噴射ノズルである。複数の噴射孔93は、ガス噴射器200の底面においてガス噴射器200の中心軸Cg0が通過する点を中心とする第3の環63の上に等間隔で配置されている。
 図2及び図3にはガス噴射ノズル73を構成する噴射孔93のガス噴射方向を矢印253で示している。各噴射孔93のガス噴射方向(直線253)は噴霧槽4における最寄りの内壁面に対して向かっている。本実施形態のガス噴射方向253をガス噴射器200に投影したベクトルは、第3の環63の中心(ガス噴射器200の底面においてガス噴射器200の中心軸Cg0が通過する点)から外側に向かって放射状になっている。図3中に複数の噴射孔93のうちの1つのガス噴射方向253を示す。各噴射孔93は対応する直線253と一致する中心軸を有する貫通孔をガス噴射器200の底面に穿つことで形成されている。
 なお、本実施形態における第3の環63は、ガス噴射器200の中心軸Cg0がガス噴射器200の底面を通過する点を中心とする真円であるが、楕円でも多角形でも良く、その中心はガス噴射器200の中心軸Cg0上からずれていても良い。ただし、各噴射孔92から噴射されるガスの噴射方向253が噴霧槽4の内壁面に向かうように第3の環63及び各噴射孔93の軸方向を設定する必要がある。なお、図3に示した噴射孔93の数は一例に過ぎず、噴霧槽4の冷却性能が損なわれない範囲で任意の数が選択できる。
 -第4ガス噴射ノズル74(74A,74B)-
 第4ガス噴射ノズル74は、図1に示すように、噴霧槽4内の所定の高さに配置された複数の噴射孔94からなり、噴霧槽4の内壁面に沿ってガスを噴射することで噴霧槽4内に噴霧槽4の中心軸Cg0の周囲に旋回流81を発生するガス噴射ノズルである。本実施形態では図1に示すように噴霧槽4における設置高さの異なる2つのガス噴射ノズル74A,74Bが設けられている。ここでは第4ガス噴射ノズル74のうち、噴霧槽4の高さ方向において相対的に高い位置に設けられているものをガス噴射ノズル74Aと称し、相対的に低い位置に設けられているものをガス噴射ノズル74Bと称する。
 図7は噴霧槽4の図1におけるVII-VII矢視断面図であり、ガス噴射ノズル74A及びそれを構成する複数の噴射孔94の構成図である。図7にはガス噴射ノズル74Aを構成する複数の噴射孔94から噴射されるガスの流れを矢印254で示しており、各噴射孔94は噴霧槽4の内壁面の軸方向断面における接線方向と一致する中心軸を有する管で形成されている。この複数の噴射孔94は図7に示すように噴霧槽4の内周面の周方向において等間隔で配置されている。複数の噴射孔94のそれぞれは噴射ガス供給管(噴射流体供給管)3と接続されており、噴射ガス供給管3から高圧ガスの供給を受ける。なお、図7の例では同一平面上に4つの噴射孔94が90度間隔で配置されているが、旋回流81が発生可能であれば噴射孔94の数はその他の値でも良い。また、説明は省略するが、ガス噴射ノズル74Bもガス噴射ノズル74Aと同様に形成されている。
 -動作・効果-
 (1)第1ガス噴射ノズル71(噴霧ノズル20A,20B)
 上記のように構成された金属粉末製造装置において、噴射ガス供給管3からガス噴射器200に高圧ガスを供給すると、ガス噴射器200において第1ガス噴射ノズル71A,71Bを構成する全ての噴射孔91から噴霧槽4の内部に向かって噴射孔91ごとに予め定められた噴射方向(直線251(図5参照))に従って同じ圧力の高圧ガスが噴射される。このとき、第1ガス噴射ノズル71A,71Bでは、それぞれの焦点(第1焦点)261に対してガスが集中噴射され、図5に示すような焦点261を頂点とし複数の噴射孔91が配置された円(環)61を底面とする逆円錐状(逆円錐形状)の流体膜101が形成される。この流体膜101を金属噴霧ガスジェット(第1ガスジェット)101と称することがある。
 一方、溶解槽1に溶融金属を投入すると、溶解槽1の底面に設けられた複数の溶湯ノズル11A,11Bを介して噴霧槽4の内部に対して2本の溶湯流8が流下される。そして、その溶湯流8は、第1ガス噴射ノズル71A,71Bに係る2つの焦点261の近傍で高圧ガスが形成する金属噴霧ガスジェット101と衝突して多数の微粒子15に粉砕される。
 本実施形態では2本の溶湯ノズル11A,11Bを構成する孔の最小内径として従前(例えば5mm程度)よりも小さな値(例えば1-2mm)を選択しているため、例えば第1ガス噴射ノズル71A,71Bから従前と同じ圧力でガスを噴射しても従前よりも径の細かな金属粒子を容易に得られる。また、従前と同じ圧力でガスを噴射した場合には噴霧槽4内での金属粒子の飛距離も抑えられるので、金属粒子の変形防止の観点から径の大きな噴霧槽4への取り替える必要や噴霧槽4の設置スペースを拡大する必要もない。一方、従前よりも最小内径を縮小しているため、溶湯ノズル11A,11Bごとでみれば時間あたりの溶湯流8の流量が従前より低下して収率が低下するものの、本実施形態では1つの噴霧槽4に対して2本の溶湯ノズル11A,11B(すなわち2つの噴霧ノズル20A,20B)を有するため、時間あたりの収率を2倍にすることができる。
 (2)第2ガス噴射ノズル72
 また、噴射ガス供給管3からガス噴射器200に高圧ガスを供給すると、上記の第1ガス噴射ノズル71の場合と同様に、ガス噴射器200において第2ガス噴射ノズル72A,72Bを構成する全ての噴射孔92から噴霧槽4の内部に向かって噴射孔92ごとに予め定められた噴射方向(直線252(図6参照))に従って同じ圧力の高圧ガスが噴射される。このとき、第2ガス噴射ノズル72A,72Bでは、それぞれの焦点(第2焦点)262に対してガスが集中噴射され、図6に示すような焦点262を頂点とし複数の噴射孔92が配置された円(環)62を底面とする逆円錐状(逆円錐形状)の流体膜102が形成される。この流体膜102を接触防止ガスジェット(第2ガスジェット)102と称することがある。
 このように第2ガス噴射ノズル72A,72Bが形成する接触防止ガスジェット102は、2つの噴霧ノズル20A,20Bのうち一方の噴霧ノズルから噴霧された微粒子15(例えば溶湯ノズル11Aから流下される溶融金属)と他方の噴霧ノズルから噴霧された微粒子15(例えば溶湯ノズル11Bから流下される溶融金属)が衝突することを防止するエアカーテンとして機能する。その結果、変形した金属粒子の発生が防止され、噴霧ノズル20A,20Bのみを備える場合と比較して金属粉末の製造効率を向上できる。
 また、本実施形態に係る金属粉末製造装置は、1つの噴霧槽4内に2組の噴霧ノズル20A,20Bを備えており、噴霧ノズル20が1組のみの従前のものに比して各噴霧ノズル20A,20Bから噴霧槽4の内壁面までの距離が短く、凝固前の金属粉末15が噴霧槽4の内壁面に衝突・付着しやすい構造となっている。この点に関し、本実施形態の第2ガス噴射ノズル72が形成する接触防止ガスジェット(第2ガスジェット)102は、金属噴霧ガスジェット(第1ガスジェット)101を外側から覆うような略円錐形状を有しており、微粒子15が噴霧槽4の内壁面に向かって飛散することを抑制できる。すなわち、本実施形態によれば、この観点からも金属粉末の製造効率を向上できる。また、例えば従前と同径の噴霧槽4を利用した場合であっても微粒子15の衝突を防止できるので、噴霧槽4の取り替えコストや設置スペースの増大を防止することもできる。
 なお、第1ガス噴射ノズル71からの噴射ガスによって微粒子15となり、第2ガス噴射ノズル72からの噴射ガスによって噴霧槽4の径方向への飛散を抑止された金属は、噴霧槽4内の落下中に急速冷却されて凝固して多数の金属粉として採集ホッパ5で回収される。
 (3)第3ガス噴射ノズル73
 また、噴射ガス供給管3からガス噴射器200に高圧ガスを供給すると、上記の第1,2ガス噴射ノズル71,72の場合と同様に、ガス噴射器200において第3ガス噴射ノズル73を構成する全ての噴射孔93から噴霧槽4の内壁に向かって噴射孔93ごとに予め定められた噴射方向(直線253(図3参照))に従って同じ圧力の高圧ガスが噴射される。このとき、第3ガス噴射ノズル73では、各噴射孔93から噴霧槽4における最寄りの内壁面に対してガスが噴射され、図2に示すような略円錐台状の流体膜103が形成される。この流体膜103を噴霧槽冷却ガスジェット(第3ガスジェット)103と称することがある。
 このように第3ガス噴射ノズル73が形成する噴霧槽冷却ガスジェット103は、噴霧槽4の内壁面に放出されて噴霧槽4を冷却する。これにより噴霧ノズル20A,20Bで噴霧された微粒子(金属粉末)15が噴霧槽4内で充分に冷却され易くなるため、噴霧槽4内で凝固せずにホッパ5に固着・堆積して収率が低下することが抑制できる。また、噴霧槽冷却ガスジェット103は、接触防止ガスジェット102と同様に微粒子15が噴霧槽4の内壁面と衝突することを防止する機能を発揮する。すなわち、本実施形態によれば、この観点からも金属粉末の製造効率を向上できる。
 (4)第4ガス噴射ノズル74
 また、第4ガス噴射ノズル74(74A,74B)に高圧ガスを供給すると、第4ガス噴射ノズル74を構成する全ての噴射孔94から噴霧槽4の内壁に沿って噴射孔94ごとに予め定められた噴射方向(例えば図7における内周壁の接線方向)に従って同じ圧力の高圧ガスが噴射される。これにより図7に示す矢印254のようなガスの流れが噴霧槽4に発生し、その結果、噴霧槽4の中心軸の周りに噴霧槽4の内壁に沿った旋回流81が発生する。
 この旋回流81は、第2ガスジェット102,第3ガスジェット103と同様に微粒子15が噴霧槽4の内壁面と衝突することを防止する機能を発揮する。また、旋回流81は、噴霧槽4の水平面内における熱分布を均一化する作用を発揮するため、第3ガスジェット103との相乗効果により噴霧槽4の冷却性能を向上できる。すなわち、本実施形態によれば、この観点からも金属粉末の製造効率を向上できる。
 以上のように、第1ガス噴射ノズル71に加えて,第2,第3及び第4ガス噴射ノズル72,73,74を備える本実施形態の金属噴霧装置によれば、噴霧槽の体型を変えずに微細な金属粉末を効率良く製造できる。
 <その他>
 本発明は、上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、ある実施の形態に係る構成の一部を、他の実施の形態に係る構成に追加又は置換することが可能である。
 例えば、ガス噴射器200内のガス流路50はガス噴射ノズル71-73ごとに分離しても良いし、ガス流路50を複数に分離した上で各ガス流路に異なる圧力のガスを供給することで各ガス噴射ノズル71-73から噴射されるガス圧を変更・調整しても良い。また、各ガス噴射ノズル71-74の径を適宜異ならせても良い。
 上記の実施形態では、第1ガス噴射ノズル71に加えて、第2-第4ガス噴射ノズル72-74を備える場合を説明したが、第2-第4ガス噴射ノズル72-74のうち少なくとも1つのガス噴射ノズルを備える実施形態においても、金属粉末の製造効率の向上効果は発揮され得る。
 上記の第4ガス噴射ノズル74は、図7中における反時計回りに旋回流81を発生するように構成したが、時計回りの旋回流81を発生するように噴射孔94の向きを変更しても良い。また、第4ガス噴射ノズル74は、噴霧槽4の高さ方向の2箇所に設けたが、1箇所や3箇所以上設けても良い。
 上記の実施形態では1つ噴霧槽につき2つの噴霧ノズル20A,20Bを備える場合について説明したが、噴霧ノズルの数は1つに減らしても構わないし、3つ以上に増加しても構わない。
 また、上記ではガス噴射ノズル71-74から気体(ガス流体)を噴射する場合について説明したが水などの液体を噴射しても構わない。すなわち流体を噴射するノズルであれば本発明は適用できる可能性がある。
 Cg0…金属噴霧装置200(噴霧槽4)の中心軸、Cm1,Cm2…溶湯ノズル挿入孔の中心軸、1…溶解槽、3…噴射ガス供給管、4…噴霧槽、5…採集ホッパ、6…排気、7…溶融金属(溶湯)、8…溶湯流、10…噴射ガスジェット、11(11A,11B)…溶湯ノズル、12(12A,12B)…溶湯ノズル挿入孔、15…微粒子、20(20A,20B)…噴霧ノズル、21…溶湯ノズルの開口端、50…ガス流路、61…第1の環、62…第2の環、63…第3の環、71(71A,71B)…第1ガス噴射ノズル、72(72A,72B)…第2ガス噴射ノズル、73…第3ガス噴射ノズル、74(74A,74B)…第4ガス噴射ノズル、91…噴射孔、93…噴射孔、94…噴射孔、100…るつぼ、101…金属噴霧ガスジェット、102…接触防止ガスジェット、200…ガス噴射器、251…ガス噴射方向(噴射孔中心軸)、252…ガス噴射方向(噴射孔中心軸)、253…ガス噴射方向(噴射孔中心軸)、254…ガスの流れ方向、261…第1ガス噴射ノズルの焦点(第1焦点)、262…第2ガス噴射ノズルの焦点(第2焦点)

Claims (4)

  1.  噴霧槽と、
     るつぼに蓄えられた溶融金属を前記噴霧槽内に流下させる複数の溶湯ノズルと、
     前記複数の溶湯ノズルがそれぞれ挿入される複数の溶湯ノズル挿入孔が設けられたガス噴射器と、
     前記複数の溶湯ノズル挿入孔のそれぞれの周囲に第1の環を描くように前記ガス噴射器の底面に配置された複数の噴射孔からなり、前記溶湯ノズルから流下する溶融金属に対してガスを噴射して粉砕する第1ガス噴射ノズルと、
     前記第1の環のそれぞれの外側に第2の環を描くように前記ガス噴射器の底面に配置された複数の噴射孔からなり、前記第1ガス噴射ノズルで粉砕された金属粒の飛散を防止するためにガスを噴射する第2ガス噴射ノズルと、
     前記第2ガス噴射ノズルの外側に第3の環を描くように前記ガス噴射器の底面に配置された複数の噴射孔からなり、前記噴霧槽の内壁面に対してガスを噴射する第3ガス噴射ノズルとを備えることを特徴とする金属粉末製造装置。
  2.  請求項1の金属粉末製造装置において、
     前記噴霧槽内の所定の高さに配置された複数の噴射孔からなり、前記噴霧槽の内壁面に沿ってガスを噴射することで前記噴霧槽内に前記噴霧槽の中心軸の周囲に旋回流を発生する第4ガス噴射ノズルを備えることを特徴とする金属粉末製造装置。
  3.  請求項2の金属粉末製造装置において、
     前記第4ガス噴射ノズルは前記噴霧槽の高さ方向において複数設けられていることを特徴とする金属粉末製造装置。
  4.  溶湯にガスを噴射して金属粉末を製造する金属粉末製造装置のガス噴射器であって、
     噴霧槽内に溶融金属を流下させる溶湯ノズルが挿入される複数の溶湯ノズル挿入孔と、
     前記複数の溶湯ノズル挿入孔のそれぞれの周囲に第1の環を描くように配置された複数の噴射孔からなり、前記溶湯ノズルから流下する溶融金属に対してガスを噴射して粉砕する第1ガス噴射ノズルと、
     前記第1の環のそれぞれの外側に第2の環を描くように配置された複数の噴射孔からなり、前記第1ガス噴射ノズルで粉砕された金属粒の飛散を防止するためにガスを噴射する第2ガス噴射ノズルと、
     前記第2ガス噴射ノズルの外側に第3の環を描くように配置された複数の噴射孔からなり、前記噴霧槽の内壁面に対してガスを噴射する第3ガス噴射ノズルとを備えることを特徴とするガス噴射器。
PCT/JP2019/048541 2019-02-04 2019-12-11 金属粉末製造装置及びそのガス噴射器 WO2020162037A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11202012686QA SG11202012686QA (en) 2019-02-04 2019-12-11 Metal powder producing apparatus and gas jet device for same
CN201980050329.XA CN112533712B (zh) 2019-02-04 2019-12-11 金属粉末制造装置及其气体喷射器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-018040 2019-02-04
JP2019018040A JP6982015B2 (ja) 2019-02-04 2019-02-04 金属粉末製造装置及びそのガス噴射器

Publications (1)

Publication Number Publication Date
WO2020162037A1 true WO2020162037A1 (ja) 2020-08-13

Family

ID=68944586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048541 WO2020162037A1 (ja) 2019-02-04 2019-12-11 金属粉末製造装置及びそのガス噴射器

Country Status (8)

Country Link
US (1) US11298746B2 (ja)
EP (1) EP3689512B1 (ja)
JP (1) JP6982015B2 (ja)
KR (1) KR102266202B1 (ja)
CN (1) CN112533712B (ja)
CA (1) CA3065363C (ja)
SG (1) SG11202012686QA (ja)
WO (1) WO2020162037A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022118751A (ja) * 2021-02-03 2022-08-16 三菱重工業株式会社 金属粉末製造装置
TWI820465B (zh) * 2020-09-11 2023-11-01 日商三菱動力股份有限公司 金屬粉末製造裝置以及其氣體噴射器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432963B (zh) * 2017-12-07 2022-11-25 三菱重工业株式会社 金属粉末制造装置及其气体喷射器以及罐器
JP1683151S (ja) * 2020-08-12 2021-04-12 金属粉末製造装置用ガス噴射器
CN112453415B (zh) * 2020-11-27 2022-03-25 佛山市中研非晶科技股份有限公司 喷气盘及应用其的雾化制粉系统
USD982627S1 (en) * 2021-02-10 2023-04-04 Mitsubishi Heavy Industries, Ltd. Gas injector for metal powder manufacturing equipment
CN115213420B (zh) * 2022-07-29 2024-04-26 江苏天楹等离子体科技有限公司 一种金属粉末制备炉

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192506A (ja) * 1986-02-19 1987-08-24 Sumitomo Metal Ind Ltd 溶融材料の微粒化方法およびその装置
JPS63230806A (ja) * 1987-03-19 1988-09-27 Toyota Central Res & Dev Lab Inc 金属粉末製造ガス噴霧装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309733A (en) * 1964-07-14 1967-03-21 Smith Corp A O Apparatus for producing metal powder
US3588951A (en) * 1968-11-08 1971-06-29 William G Hegmann Fractional disintegrating apparatus
GB1272229A (en) * 1968-11-27 1972-04-26 British Iron Steel Research Improvements in and relating to the treatment of molten material
GB1413651A (en) * 1971-11-04 1975-11-12 Singer A R E Atomising of metals
US4272463A (en) * 1974-12-18 1981-06-09 The International Nickel Co., Inc. Process for producing metal powder
US4025249A (en) * 1976-01-30 1977-05-24 United Technologies Corporation Apparatus for making metal powder
US4284394A (en) * 1980-09-19 1981-08-18 United Technologies Corporation Gas manifold for particle quenching
US4869469A (en) * 1987-04-24 1989-09-26 The United States Of America As Represented By The Secretary Of The Air Force System for making centrifugally cooling metal powders
US4787935A (en) * 1987-04-24 1988-11-29 United States Of America As Represented By The Secretary Of The Air Force Method for making centrifugally cooled powders
DE3811077A1 (de) * 1988-03-29 1989-10-19 Mannesmann Ag Einrichtung fuer die zerstaeubung eines giessstrahles fluessigen metalls
JPH0649512A (ja) * 1992-08-03 1994-02-22 Hitachi Metals Ltd ガス噴霧金属粉末製造装置
JPH0665613A (ja) * 1992-08-24 1994-03-08 Kobe Steel Ltd 噴霧ノズル装置
JP2000273506A (ja) * 1999-03-19 2000-10-03 Asahi Chem Ind Co Ltd 新規な銅合金粉末とその製造方法
JP4715174B2 (ja) * 2004-11-26 2011-07-06 セイコーエプソン株式会社 樹脂微粒子の製造方法、および樹脂微粒子の製造装置
JP4778355B2 (ja) * 2006-04-25 2011-09-21 セイコーエプソン株式会社 金属粉末製造装置
CN101376172B (zh) * 2008-09-24 2010-12-01 上海大学 旋成膜二次喷射金属雾化装置
KR101128374B1 (ko) * 2010-01-25 2012-03-27 (주)모인시스 금속분말 제조용 분무노즐 어셈블리 및 이를 구비한 금속분말 제조장치
CN101992301A (zh) * 2010-12-06 2011-03-30 石家庄铁道大学 高压水雾化法生产球形不锈钢粉末材料的方法
CN103635273A (zh) * 2011-05-18 2014-03-12 东北泰克诺亚奇股份有限公司 金属粉末的制造方法及金属粉末的制造装置
JP6029446B2 (ja) * 2012-12-13 2016-11-24 セコム株式会社 自律飛行ロボット
JP6178575B2 (ja) * 2013-01-15 2017-08-09 ハード工業有限会社 金属粉末の製造装置および金属粉末の製造方法
KR101512772B1 (ko) * 2013-05-14 2015-04-22 부산대학교 산학협력단 금속 분말을 제조하기 위한 방법 및 아토마이저 장치
WO2015030456A1 (ko) 2013-08-26 2015-03-05 공주대학교 산학협력단 분말 제조방법, 다중 분사노즐 및 분말 제조장치
KR101536454B1 (ko) * 2013-12-20 2015-07-13 주식회사 포스코 분말 제조 장치 및 분말 형성 방법
WO2015114838A1 (ja) * 2014-02-03 2015-08-06 ハード工業有限会社 金属粉末の製造方法および金属粉末の製造装置
JP2016211027A (ja) 2015-05-01 2016-12-15 大同特殊鋼株式会社 金属粉末の製造方法及び製造装置
CN107924743B (zh) * 2015-07-31 2020-04-17 株式会社村田制作所 软磁性粉末
CN107096921A (zh) * 2016-02-19 2017-08-29 精工爱普生株式会社 金属粉末制造装置
CN105618773B (zh) * 2016-03-21 2019-01-04 南京理工大学 一种用于制备3d打印金属粉末的气雾化装置
CN105903975B (zh) * 2016-06-06 2018-06-29 江苏威拉里新材料科技有限公司 一种用于雾化金属粉末生产方法的设备
WO2018035205A1 (en) * 2016-08-17 2018-02-22 Urban Mining Technology Campany, Inc. Sub-micron particles of rare earth and transition metals and alloys, including rare earth magnet materials
CN106378461B (zh) * 2016-11-21 2019-01-29 华南理工大学 一种制备3d打印球形金属粉末的双喷嘴雾化装置及方法
CN106513692B (zh) * 2016-12-30 2018-05-25 长沙新材料产业研究院有限公司 一种用于生产粉末的雾化喷嘴及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192506A (ja) * 1986-02-19 1987-08-24 Sumitomo Metal Ind Ltd 溶融材料の微粒化方法およびその装置
JPS63230806A (ja) * 1987-03-19 1988-09-27 Toyota Central Res & Dev Lab Inc 金属粉末製造ガス噴霧装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI820465B (zh) * 2020-09-11 2023-11-01 日商三菱動力股份有限公司 金屬粉末製造裝置以及其氣體噴射器
JP2022118751A (ja) * 2021-02-03 2022-08-16 三菱重工業株式会社 金属粉末製造装置
JP7296998B2 (ja) 2021-02-03 2023-06-23 三菱重工業株式会社 金属粉末製造装置

Also Published As

Publication number Publication date
KR20200096403A (ko) 2020-08-12
US20200246874A1 (en) 2020-08-06
US11298746B2 (en) 2022-04-12
KR102266202B1 (ko) 2021-06-17
JP2020125512A (ja) 2020-08-20
SG11202012686QA (en) 2021-02-25
CN112533712B (zh) 2023-04-11
EP3689512A1 (en) 2020-08-05
CN112533712A (zh) 2021-03-19
CA3065363C (en) 2023-09-05
EP3689512B1 (en) 2024-05-01
CA3065363A1 (en) 2020-08-04
JP6982015B2 (ja) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2020162037A1 (ja) 金属粉末製造装置及びそのガス噴射器
JP6906631B2 (ja) 金属粉末製造装置並びにそのガス噴射器及びるつぼ器
JP2010090410A (ja) 金属粉末製造装置
JP2010090421A (ja) 金属粉末製造装置
KR102502063B1 (ko) 금속 분말 제조 장치 및 그 가스 분사기
JP7296998B2 (ja) 金属粉末製造装置
JPH0649512A (ja) ガス噴霧金属粉末製造装置
KR20230129084A (ko) 금속 및 합금 분말 제조용 가스분사장치 및 이를 이용한 가스분사 금속분말 제조장치
KR20040056548A (ko) 분무 주조용 가스 분무기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914275

Country of ref document: EP

Kind code of ref document: A1