WO2020161932A1 - 発光装置、光学装置および情報処理装置 - Google Patents

発光装置、光学装置および情報処理装置 Download PDF

Info

Publication number
WO2020161932A1
WO2020161932A1 PCT/JP2019/024547 JP2019024547W WO2020161932A1 WO 2020161932 A1 WO2020161932 A1 WO 2020161932A1 JP 2019024547 W JP2019024547 W JP 2019024547W WO 2020161932 A1 WO2020161932 A1 WO 2020161932A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
element array
emitting element
emitting device
Prior art date
Application number
PCT/JP2019/024547
Other languages
English (en)
French (fr)
Inventor
逆井 一宏
大介 井口
佳則 白川
智明 崎田
道昭 村田
Original Assignee
富士ゼロックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士ゼロックス株式会社 filed Critical 富士ゼロックス株式会社
Priority to CN201980088650.7A priority Critical patent/CN113273041B/zh
Publication of WO2020161932A1 publication Critical patent/WO2020161932A1/ja
Priority to US17/341,595 priority patent/US20210293966A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present invention relates to a light emitting device, an optical device, and an information processing device.
  • Patent Document 1 discloses a surface emitting laser array having a light emitting region having a plurality of light emitting portions formed by a surface emitting laser element including a lower reflecting mirror, a resonator region including an active layer, and an upper reflecting mirror.
  • a surface emitting device having an electrode pad portion formed so as to surround the periphery of the light emitting region and a wall formed so as to surround the periphery of the electrode pad portion and electrically insulated from the electrode pad portion.
  • Laser arrays are disclosed.
  • At least one embodiment of the present invention uses a light emitting device having a configuration that facilitates both reduction of the inductance of a circuit that drives the light emitting device array and close disposition of the light emitting device array and the light receiving device, and the light emitting device.
  • An optical device and an information processing device are provided.
  • the light emitting device has a substrate, first and second side surfaces facing each other, and third and fourth side surfaces facing each other, which connect the first and second side surfaces.
  • a light emitting element array provided on the substrate, a drive element provided on the substrate on the first side surface side and driving the light emitting element array, and a drive element on the second side surface side.
  • a light receiving element which is provided and receives light emitted from the light emitting element array, and which is provided on the third and fourth side surfaces and extends from the upper surface electrode of the light emitting element array toward the outside of the light emitting element array.
  • a wiring member which is provided and receives light emitted from the light emitting element array, and which is provided on the third and fourth side surfaces and extends from the upper surface electrode of the light emitting element array toward the outside of the light emitting element array.
  • a light emitting device is the light emitting device according to the first aspect, further comprising a capacitor that is provided closer to the drive element than the second side surface and supplies a current to the light emitting element array. Is.
  • a light emitting device is the light emitting device according to the second aspect, wherein the capacitor is closer to the light emitting element array than a position of an end face of the driving element farthest from the light emitting element array. It is provided on the side.
  • a light emitting device is the light emitting device according to the second or third aspect, wherein the plurality of capacitors are provided, and each of the plurality of capacitors has a center of the light emitting element array and a center of the driving element. It is arranged so as to be divided into the third side surface side and the fourth side surface side with respect to the connecting straight line.
  • a light emitting device is the light emitting device according to any one of the first to fourth aspects, in which a space between the second side surface and the light receiving element is an upper surface electrode of the light emitting element array. A wiring member extending toward the light receiving element is not provided.
  • a light emitting device is the light emitting device according to any one of the first to fifth aspects, wherein the distance between the second side surface and the light receiving element is the first side surface and the second side surface. Is less than the distance between the sides.
  • a light emitting device is the light emitting device according to any one of the first to sixth aspects, wherein a distance between the second side surface and the light receiving element corresponds to a length of the wiring member. It is shorter than the length.
  • the light emitting device is the light emitting device according to any one of the first to seventh aspects, in which the upper surface electrode of the light emitting element array is provided between the first side surface and the driving element.
  • the wiring member extending toward the outside of the light emitting element array is not provided.
  • a light emitting device is the light emitting device according to any one of the first to eighth aspects, wherein the light emitting element array has a plurality of light emitting elements, and the plurality of light emitting elements are arranged in the light emitting element array.
  • the region in which the elements are arranged has a shape in which the length along the first and second side faces is shorter than the length in the direction along the third and fourth side faces.
  • a light emitting device is the light emitting device according to the ninth aspect, wherein the plurality of light emitting elements are connected in parallel with each other.
  • a light emitting device is the light emitting device according to any one of the first to ninth aspects, in which light emitted from the light emitting element array is disposed on a light emission path of the light emitting element array. Is further provided with a light diffusing member for diffusing the light toward the outside.
  • a light emitting device is the light emitting device according to the eleventh aspect, wherein the light diffusion member is provided at a position overlapping the light receiving element in a plan view.
  • An optical device receives the light emitting device according to any one of the first to twelfth aspects, and the reflected light emitted from the light emitting element array included in the light emitting device and reflected by an object to be measured. And a three-dimensional sensor for outputting a signal corresponding to the time from the emission of light from the light emitting element array to the reception of light by the three-dimensional sensor.
  • An information processing device is the optical device according to the thirteenth aspect, the light emitting element array included in the optical device, the light being reflected by an object to be measured, and received by a three-dimensional sensor included in the optical device. And a shape specifying unit that specifies the three-dimensional shape of the object to be measured based on the reflected light.
  • the information processing apparatus is the information processing apparatus according to the fourteenth aspect, which includes an authentication processing unit that performs an authentication process related to the use of the own device based on the identification result by the shape identifying unit.
  • a light emitting device having a configuration that easily achieves both reduction of the inductance of the circuit that drives the light emitting element array and close disposition of the light emitting element array and the light receiving element, and the light emission. It is possible to provide an optical device and an information processing device using the device.
  • the power supply is more stabilized.
  • the current path for driving the light emitting element array is shortened as compared with the case where the capacitor is provided on the side farthest from the end surface farthest from the light emitting element array among the end surfaces forming the drive circuit. Has the effect of being easy.
  • the path length of the current passing through the wiring member on the third side surface and the current passing through the wiring member on the fourth side surface are compared with the configuration arranged only on one side surface side. The effect that it is easy to equalize the path length is obtained.
  • the light receiving element can be easily arranged close to the light emitting element array.
  • the amount of light received by the light receiving element is increased as compared with the case where the distance is longer than the distance between the first and second side surfaces.
  • the amount of light received by the light receiving element is increased when the light diffusing member is provided in the light emitting path of the light emitting element array, as compared with the case where the distance is longer than the distance corresponding to the length of the wiring member. It has the effect of.
  • the eighth aspect compared with the configuration in which the wiring member is provided between the first side surface and the driving element, it is possible to easily shorten the current path for driving the light emitting element array.
  • the ninth aspect as compared with the case where the length along the first and second side surfaces is longer, the increase in inductance due to the absence of the wiring member on the second side surface side is suppressed. Produce an effect.
  • the eleventh aspect there is an effect that the light emitted from the light emitting element array is irradiated in a wide range as compared with the configuration without the light diffusing member.
  • the amount of light received by the light-receiving element with respect to the light emitted from the light-emitting element array and reflected by the light diffusion member increases. Play.
  • the fifteenth aspect there is an effect that the authentication is performed more stably as compared with the case where the authentication processing unit is not used.
  • FIG. 1 is a diagram showing an information processing apparatus according to an embodiment, (a) included in FIG. 1 is a diagram showing an example of an external appearance, and (b) included in FIG. 1 is an electrical diagram. Is a block diagram showing an example of such a configuration.
  • FIG. 2 is a diagram according to an embodiment, (a) included in FIG. 2 is a plan view of a light emitting element array, and (b) included in FIG. 2 is a circuit diagram of a light emitting device.
  • 2C is a side sectional view for explaining the function of the light diffusion plate.
  • FIG. 3 is a side sectional view and a plan view of the light emitting device according to the embodiment.
  • FIG. 4 is a plan view showing an example of the configuration of the light emitting device according to the embodiment.
  • FIG. 5 is a plan view (a) showing a configuration of a light emitting device according to a first comparative example, a plan view (b) showing a configuration of a light emitting device according to a second comparative example, and a bonding wire of each light emitting device. It is a figure containing the graph (c) which compared the inductance of.
  • a light emitting device, an optical device, and an information processing device according to the present embodiment will be described with reference to FIGS. 1 to 5.
  • a portable information processing device represented by a smartphone or the like will be described as an example of the information processing device.
  • FIG. 1A shows the appearance of the information processing device 10 according to the present embodiment.
  • the information processing device 10 includes an optical device 24 and a UI (User Interface) unit 20.
  • the UI unit 20 is configured by integrating, for example, a display device that displays information to the user and an input device that inputs an instruction for information processing by a user operation.
  • the display device is, for example, a liquid crystal display or an organic EL display, and the input device is, for example, a touch panel.
  • the optical device 24 includes a light emitting device 23 and a three-dimensional sensor 13.
  • the light emitting device 23 is a part that emits light toward the object to be measured in order to acquire a three-dimensional image.
  • a human face will be described as an example of the object to be measured.
  • the three-dimensional sensor 13 receives the reflected light returned from the light emitted from the light emitting device 23 reflected by the face.
  • the three-dimensional sensor 13 according to the present embodiment has a function of acquiring, for example, a three-dimensional image of a human face based on the so-called TOF (Time of Flight) method.
  • TOF Time of Flight
  • the information processing device 10 includes a system control unit 16, a ROM 18, a RAM 19, a UI unit 20, an optical device 24, a speaker 21, and a two-dimensional camera 22.
  • a system control unit 16 controls the information processing device 10 to control the information processing device 10.
  • the system control unit 16 is, for example, a CPU, and the information processing device 10 is configured as a computer including the system control unit 16, the ROM 18, the RAM 19, and the like.
  • the system control unit 16 controls the entire information processing apparatus 10 as a system, and includes an authentication processing unit 17.
  • the ROM 18 includes a non-volatile rewritable memory such as a flash memory. Then, the programs and constants stored in the ROM 18 are expanded in the RAM 19, and the system control unit 16 executes the programs, whereby the information processing apparatus 10 operates and various information processing is executed.
  • the speaker 21 is a part that emits sound to the user
  • the two-dimensional camera 22 is a normal camera used for photographing by the user.
  • Each of the ROM 18, the RAM 19, the UI unit 20, the speaker 21, and the two-dimensional camera 22 is connected to the system control unit 16 via the bus 25.
  • the optical device 24 includes the above-described light emitting device 23, the three-dimensional sensor 13, and the optical device control unit 14.
  • the optical device controller 14 is connected to the system controller 16 and controls the entire optical device 24. Further, the optical device control unit 14 includes a shape specifying unit 15. Each of the light emitting device 23 and the three-dimensional sensor 13 is connected to the optical device controller 14.
  • the light emitting device 23 includes a light emitting element array 11 and a driving element 12.
  • the light emitting element array 11 is a semiconductor light emitting element in which a plurality of light emitting elements are arranged.
  • the drive element 12 is a driver IC that drives the light emitting element array 11.
  • the light emitting element array 11 is driven by the driving element 12 so as to emit pulsed light (emitted light pulse) of, for example, several 10 MHz to several 100 MHz.
  • the light emitting device 23 is configured such that the three-dimensional sensor 13 receives the reflected light, which is the light emitted from the light emitting element array 11 toward the object to be measured and reflected by the object to be measured.
  • the three-dimensional sensor 13 includes a plurality of light receiving regions (pixels).
  • the three-dimensional sensor 13 receives the reflected light (light receiving pulse) from the object to be measured with respect to the light pulse emitted from the light emitting element array 11, and accumulates the charge corresponding to the time until the light is received for each light receiving region.
  • the three-dimensional sensor 13 is configured as a CMOS structure device in which each light receiving region includes two gates and a charge storage section corresponding to the two gates.
  • the generated photoelectrons are transferred to either of the two charge storage units at high speed, and charges corresponding to the phase difference (that is, time difference) between the emitted light pulse and the light reception pulse are generated. It is configured to accumulate.
  • a signal corresponding to the accumulated electric charge is output from the three-dimensional sensor 13 as a digital signal corresponding to the electric charge corresponding to the phase difference between the emitted light pulse and the light receiving pulse for each light receiving area through an AD (Analog Digital) converter. .. That is, the three-dimensional sensor 13 outputs a signal corresponding to the time from the emission of light from the light emitting element array 11 to the reception of light by the three-dimensional sensor 13.
  • the three-dimensional sensor 13 may include a lens for collecting light.
  • the shape specifying unit 15 included in the optical device control unit 14 acquires the digital value generated for each light receiving area of the three-dimensional sensor 13, calculates the distance to the object to be measured for each light receiving area, and measures the object to be measured.
  • the three-dimensional shape of is specified.
  • the authentication processing unit 17 included in the system control unit 16 outputs information when the three-dimensional shape (specification result) of the measured object identified by the shape identifying unit 15 matches the three-dimensional shape stored in advance in the ROM 18 or the like. Authentication processing relating to the use of the processing device 10 is performed.
  • the authentication process regarding the use of the information processing device 10 is, for example, a process of whether or not to permit the use of the own device (the information processing device 10). For example, when the three-dimensional shape of the face to be measured matches the face shape stored in the storage unit such as the ROM 18, the information processing apparatus 10 including various applications provided by the information processing apparatus 10 may be used. Allowed
  • the above-mentioned shape specifying unit 15 and authentication processing unit 17 are configured by a program as an example. Further, it may be configured by an integrated circuit such as ASIC or FPGA. Further, it may be composed of software such as a program and an integrated circuit.
  • the light emitting element array 11 emits light for specifying the three-dimensional shape of the measured object and irradiates the measured object as described above. That is, the light emitting element array 11 irradiates a predetermined measurement range with light having a predetermined density.
  • the form of the plurality of light emitting devices included in the light emitting device array 11 is not particularly limited, and a VCSEL (Vertical Cavity Surface Emitting Laser), an LED (Light Emitting Diode), or the like is used, but in the present embodiment, the VCSEL is used as an example. ing. Preferably, it is configured by a multi-mode VCSEL that is easier to achieve higher output than a single-mode VCSEL.
  • FIG. 2A shows a plan view of the light emitting element array 11. As shown in FIG. 2A, the surface of the light emitting element array 11 is covered with a solid anode pattern 50 (electrode wiring) formed in a region excluding the light emitting port 52 of each VCSEL, In the end portion along each side of, the connection area of the anode pattern 50 by the bonding wire is provided.
  • a solid anode pattern 50 electrode wiring
  • the semiconductor substrate of the light emitting element array 11 is, for example, an n-type GaAs substrate, and the cathode electrode is arranged on the back surface side of the substrate.
  • the anode pattern 50 is an example of the “upper surface electrode” according to the present invention.
  • FIG. 2B shows a circuit diagram of the light emitting device 23.
  • the light emitting device 23 includes a light emitting element array 11, a driving element 12, a light quantity monitoring light receiving element 30, a resistor 38, a capacitor 35, and a power supply 36.
  • the light emitting element array 11 is configured by connecting a plurality of VCSELs 26 in parallel.
  • a current source included in the driving element 12 is connected to the VCSELs 26 connected in parallel, and the driving current id is supplied from the current source.
  • the light amount monitoring light receiving element 30 has a function of monitoring the light amount of the light emitting element array 11. That is, the output signal from the light quantity monitoring light receiving element 30 is used to control the light emitting element array 11 so as to emit light while maintaining a predetermined light quantity.
  • the light quantity monitoring light receiving element 30 is, for example, a photodiode (PD) made of silicon or the like, which outputs an electric signal according to the light receiving quantity. That is, the light amount monitoring light receiving element 30 receives a part of the light emitted from the light emitting element array 11, and outputs the monitor current im according to the received light amount.
  • the monitor current im is converted into a voltage by the resistor 38 and output as a monitor voltage Vpd.
  • the monitor voltage Vpd is sent to a light amount monitor circuit (not shown) provided inside the drive element 12, and the light amount monitor circuit monitors the light amount emitted from the light emitting element array 11 based on the monitor voltage Vpd. ..
  • the light quantity monitoring light receiving element 30 is an example of the “circuit element” according to the present invention.
  • the power source 36 is a power source for operating the light emitting element array 11 and the light quantity monitoring light receiving element 30, and the capacitor 35 has a function as a current source as described later.
  • the power supply 36 includes, for example, a power supply layer and a ground layer provided inside the wiring board 27.
  • the configuration of the light emitting device 23 according to the present embodiment will be described with reference to FIG. ⁇ 1> of FIG. 3 is a side sectional view of the light emitting device 23, and ⁇ 2> of FIG. 3 is a plan view.
  • the light emitting device 23 includes a light emitting element array 11 mounted on a wiring board 27, a light amount monitoring light receiving element 30, a light diffusing plate 33, a spacer 32, and a driving element 12.
  • the wiring board 27 is composed of, for example, a glass epoxy board on which wirings connecting the respective elements are formed.
  • the light diffusion plate 33 is an example of the “light diffusion member” according to the present invention.
  • the light diffusion plate 33 has a function of diffusing the outgoing light L emitted from the light emitting element array 11 and expanding the outgoing angle. That is, as shown in FIG. 2C, the light diffusing plate 33 includes the uneven member 39, and expands the emission angle of the emission light L emitted from the light emitting element array 11 at the emission angle ⁇ 1 to ⁇ 2 (> ⁇ 1). To do.
  • the light diffusing plate 33 includes, for example, a concavo-convex member 39 made of a resin layer in which concavities and convexities for diffusing light are formed on one surface of a flat glass substrate whose both surfaces are parallel. Then, due to the unevenness, the emitted light L emitted from the light emitting element array 11 is further diffused and radiated to the outside.
  • a concavo-convex member 39 made of a resin layer in which concavities and convexities for diffusing light are formed on one surface of a flat glass substrate whose both surfaces are parallel.
  • the spacer 32 is arranged between the wiring board 27 and the light diffusing plate 33, supports the light diffusing plate 33, and positions the light diffusing plate 33 so that the distance from the light emitting element array 11 is a predetermined distance. doing. Further, in the present embodiment, the light-diffusing plate 33 and the spacer 32 seal the light-emitting element array 11 and the like to prevent dust and moisture.
  • the spacer 32 is made of, for example, ceramic or resin material.
  • the light diffusing plate 33 further has a function of guiding a part of the light emitted from the light emitting element array 11 to the light quantity monitoring light receiving element 30. That is, the light diffusion plate 33 is provided so as to cover the light emitting element array 11 and the light amount monitoring light receiving element 30, and the light reflected by the back surface of the light diffusion plate 33 without passing through the light diffusion plate 33 is the light amount monitoring light receiving element 30. It is arranged to be received by. Since the amount of light received by the light amount monitoring light receiving element 30 decreases as the distance from the light emitting element array 11 increases, it is preferable to arrange the light emitting element array 11 and the light amount monitoring light receiving element 30 close to each other. The light quantity monitoring light receiving element 30 is also used to detect that the light emitted from the light emitting element array 11 is directly irradiated to the outside when the light diffusing plate 33 is detached or damaged.
  • a large current of 2 A may be required to rise at a rise time of 1 ns or less, or to be driven at a high frequency of about 100 MHz. It is important to reduce the inductance component of the circuit. As one method of reducing the inductance component, it is conceivable to increase the number of bonding wires as much as possible. However, in consideration of the positional relationship with other elements (light quantity monitoring light receiving element 30, drive element 12, etc.), bonding is performed. The number of wires may also be limited. Therefore, in the present embodiment, the device is devised so as to reduce the inductance component of the drive circuit while considering the positional relationship with other elements.
  • the light emitting device 23 includes a wiring board 27, a light emitting element array 11 mounted on the wiring board 27, a driving element 12, a light quantity monitoring light receiving element 30, and capacitors 72-1 and 72-2. It is composed of. Conductive patterns 42-1, 42-2, 43-1 and 43-2 are formed on the wiring board 27. A conductive pattern (not shown) is also formed on the wiring board 27 at each position of the light emitting element array 11, the driving element 12, and the light quantity monitoring light receiving element 30, and the light emitting element array 11 and the driving element 12 are formed on the conductive pattern. The back surface of each of the light quantity monitoring light receiving elements 30 is connected.
  • the light quantity monitoring light receiving element 30 may have a rectangular shape whose side facing the light emitting element array 11 is longer. With such a shape, compared with the case of a square shape, the light receiving area at a position closer to the light emitting element array 11 increases even if the light receiving area is the same, so that the received light amount increases.
  • the light emitting element array 11 has a first side surface S1, a second side surface S2, a third side surface S3, and a fourth side surface S4.
  • the bonding wire W is connected between the end of the anode pattern 50 on the third side face S3 side and the conductive pattern 42-1 and the end of the anode pattern 50 on the fourth side face S4 side and the conductive pattern 42-.
  • a bonding wire W is connected between the two.
  • the capacitor 72-1 serving as a current source is connected between the conductive patterns 42-1 and 43-1 and the capacitor 72-2 is connected between the conductive patterns 42-2 and 43-2. It is not always necessary to provide both of the capacitors 72-1 and 72-2, and only one of them may be provided.
  • the bonding wire W is an example of the “wiring member” according to the present invention.
  • inductance of circuit In the element having the structure such as the light emitting element array 11 according to the present embodiment, the inductance of the bonding wire occupies a large proportion of the inductance of the circuit. Therefore, it is necessary to first reduce the inductance of the bonding wire.
  • the light emitting element array has a rectangular outer shape, it is possible to reduce the inductance component by striking bonding wires in all directions to increase the number of bonding wires.
  • there are members such as a drive circuit and a light receiving element for monitoring the amount of light, which are originally desired to be arranged near the light emitting element array it may be difficult to hit the bonding wires in all directions.
  • the configuration such as the light emitting device 23 according to the present embodiment which is provided with the light diffusing plate 33 that diffuses the light emitted from the light emitting element array 11, the light amount of the light emitted from the light emitting element array 11 is changed.
  • the light emitting device 23 according to the present embodiment has the light emitting element array 11.
  • the light emitting device 23 having a configuration that facilitates both reduction of the inductance of the circuit that drives the light emitting element array and close disposition of the light emitting element array 11 and the light amount monitoring light receiving element 30 is realized.
  • the reason will be described with reference to FIG.
  • FIG. 5A shows a plan view of a light emitting device 60A according to the first comparative example
  • FIG. 5B shows a light emitting device 60B according to the second comparative example
  • FIG. 5C compares the inductance (that is, the circuit inductance) between the light emitting element array 11 and the wiring board 27 in the light emitting device 23 according to the present embodiment with the light emitting devices 60A and 60B according to the comparative example.
  • FIG. In the following description, the same components as those of the light emitting device 23 in FIG. 5 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the conductive patterns 47 and 48 are formed on the wiring board 27, and the light emitting element array 11, the driving element 12, the light quantity monitoring light receiving element 30, and A capacitor 72 is arranged.
  • the conductive pattern 47 faces the third side surface S3 of the light emitting element array 11, and the bonding wire W is connected between the anode pattern 50 of the light emitting element array 11 and the conductive pattern 47.
  • the light quantity monitoring light receiving element 30 is mounted at a position facing the fourth side surface S4.
  • a capacitor 72 is connected between the conductive patterns 47 and 48. That is, the current loop in the light emitting device 60A is one of the current loops L3.
  • the conductive patterns 45, 46-1, 46-2 are formed on the wiring board 27, and the light emitting element array 11, the driving element 12, A light quantity monitoring light receiving element 30 and capacitors 72-1 and 72-2 are arranged.
  • the conductive pattern 45 faces three surfaces of the light emitting element array 11, that is, the second side surface S2, the third side surface S3, and the fourth side surface S4. Therefore, the bonding wires W between the anode pattern 50 and the conductive pattern 45 of the light emitting element array 11 are connected in three directions.
  • the light quantity monitoring light receiving element 30 is mounted on the second side surface S2 side.
  • the capacitor 72-1 is connected between the conductive patterns 45 and 46-1
  • the capacitor 72-2 is connected between the conductive patterns 45 and 46-2. That is, the current loop in the light emitting device 60B has two current loops L4 and L5.
  • the inductance of each circuit of the light emitting devices 23, 60A, and 60B will be examined. That is, in the light emitting device 60A according to the comparative example, the light emitting element array 11 and the light quantity monitoring light receiving element 30 can be arranged close to each other, but since the wire bonding is performed in only one direction, the circuit inductance is large. On the other hand, in the light emitting device 60B according to the comparative example, since the bonding wires W can be connected from three directions, the inductance of the circuit decreases. However, in the light emitting device 60B, the light emitting element array 11 and the light quantity monitoring light receiving element 30 cannot be arranged close to each other.
  • the bonding wire W on the second side face S2 side is a circuit wire. Attention is paid to the fact that the bonding wires W on the third side surface S3 and the fourth side surface S4 greatly contribute to reducing the inductance of the circuit, but do not contribute much to reducing the inductance.
  • FIG. 5C shows the inductance of the circuits of the light emitting devices 23, 60A, and 60B. As shown in FIG.
  • the difference between the circuit inductance of the light emitting device 60A and the circuit inductance of the light emitting device 23 is compared.
  • the difference between the circuit inductance of the light emitting device 23 and the circuit inductance of the light emitting device 60B is smaller.
  • the second side surface S2 is farther from the current loops L4 and L5 than the third side surface S3 and the fourth side surface S4. That is, since the second side surface S2 is originally separated from the current loop formed by the light emitting element array 11, the driving element 12, and the capacitors 72 (72-1, 72-2), it is connected to the second side surface S2 side. This is because the influence of the inductance component due to the bonded bonding wire W is small. Therefore, even if the bonding wire W connected to the second side surface S2 is deleted, the increase in the inductance component is relatively small.
  • the bonding wire W is not connected to the second side surface S2 side in contrast to the light emitting devices 60A and 60B according to the comparative example, and the light amount monitoring light receiving element is provided at that position. 30 were placed.
  • the light emitting element array and the light receiving element can be arranged close to each other while suppressing an increase in the inductance component of the circuit.
  • the characteristics of the light emitting device 23 will be described in more detail.
  • At least one of the capacitors 72-1 and 72-1 may be provided closer to the drive element 12 than the second side surface S2. As a result, the power supply is more stabilized than in the case where the capacitors 72-1 and 72-2 are provided on the side farther from the drive element 12 than the second side surface S2.
  • At least one of the capacitors 72-1 and 72-2 may be provided on the side closer to the light emitting element array 11 than the position of the end surface of the driving element 12 that is farthest from the light emitting element array 11.
  • a current path for driving the light emitting device array 11 is obtained. This has the effect of making it easier to shorten the (current loop).
  • each of the capacitors 72-1 and 72-2 has a third side surface S3 side and a fourth side surface S4 with respect to a straight line connecting the center of the light emitting element array 11 and the center of the driving element 12. It may be arranged separately from the side.
  • the path length of the current passing through the wiring member on the third side surface S3 side and the current path passing through the wiring member on the fourth side surface S4 side Easy to equalize the length.
  • the distance between the second side surface S2 and the light quantity monitoring light receiving element 30 may be shorter than the distance between the first side surface S1 and the second side surface S2. As a result, compared to the case where the distance between the first side surface S1 and the second side surface S2 is longer than that in the case where the light diffusion member is provided in the light emitting path of the light emitting element array 11, the light amount monitoring is performed. The amount of light received by the light receiving element 30 increases.
  • the distance between the second side surface S2 and the light quantity monitoring light receiving element 30 may be shorter than the length corresponding to the length of the bonding wire W.
  • the distance between the light emitting element array 11 and the light quantity monitoring light receiving element 30 becomes shorter than in the case where the distance is longer than the distance corresponding to the length of the bonding wire W, so that the light is diffused to the light emission path of the light emitting element array 11.
  • the amount of light received by the light receiving element increases.
  • a bonding wire extending from the anode pattern 50 of the light emitting element array 11 toward the outside of the light emitting element array 11 is not provided between the first side surface S1 and the driving element 12. This makes it easier to shorten the current path for driving the light emitting element array 11, as compared with the configuration in which the bonding wire is provided between the first side surface S1 and the driving element 12.
  • the shape of the region in which the plurality of VCSELs 26 are arranged in the light emitting element array 11 is larger than the length in the direction along the third side surface S3 and the fourth side surface S4.
  • the length along may be shorter. This suppresses an increase in inductance due to not providing the bonding wire W on the second side surface S2 side, as compared with the case where the length along the first side surface S1 and the second side surface S2 is longer.
  • the light diffusion plate 33 may be provided at a position overlapping the light amount monitoring light receiving element 30 in a plan view. As a result, the amount of light received by the light amount monitoring light receiving element 30 with respect to the light emitted from the light emitting element array 11 and reflected by the light diffusing plate 33, as compared with the case where the light amount monitoring light receiving element 30 is not provided at a position overlapping with the light amount monitoring light receiving element 30. Will increase.
  • the light emitting element array 11, the light quantity monitoring light receiving element 30, and the driving element 12 are directly arranged on the wiring board 27, but the wiring board 27 is not always required. Need not be located directly in.
  • a heat dissipating base material or the like may be disposed on the wiring board 27, and each element may be disposed on the heat dissipating base material. That is, they may be indirectly arranged on the wiring board 27. Further, a part of each element may be arranged directly on the wiring board 27, and the remaining elements may be arranged on the base material for heat dissipation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

基板(40)と、互いに対向する第1および第2の側面(S1、S2)と、第1および第2の側面(S1、S2)とを接続する、互いに対向する第3および第4の側面(S3、S4)とを有し、基板(40)上に設けられた発光素子アレイ(11)と、第1の側面(S1)側の基板(40)上に設けられ、発光素子アレイ(11)を駆動する駆動素子(12)と、第2の側面(S2)側の基板(40)上に設けられ、発光素子アレイ11から出射される光を受光する受光素子(30)と、第3および第4の側面(S3、S4)側に設けられ、発光素子アレイ11の上面電極50から発光素子アレイ11の外側に向けて延びる配線部材(W)と、を備える。

Description

発光装置、光学装置および情報処理装置
 本発明は、発光装置、光学装置および情報処理装置に関する。
 特許文献1には、下部反射鏡と、活性層を含む共振器領域と、上部反射鏡とを含む面発光レーザ素子により形成された発光部を複数備える発光領域を有する面発光レーザアレイであって、発光領域の周囲を囲むように形成された電極パッド部と、電極パッド部の周囲を囲むように形成され、電極パッド部と電気的に絶縁された壁とを有することを特徴とする面発光レーザアレイが開示されている。
日本国特開2017-084899号公報
 本発明の少なくとも一の実施形態は、発光素子アレイを駆動する回路のインダクタンスの低減と、発光素子アレイと受光素子との近接配置とを両立しやすい構成の発光装置、および該発光装置を用いた光学装置および情報処理装置を提供する。
 第1態様に係る発光装置は、基板と、互いに対向する第1および第2の側面と、当該第1および第2の側面とを接続する、互いに対向する第3および第4の側面とを有し、前記基板上に設けられた発光素子アレイと、前記第1の側面側の前記基板上に設けられ、前記発光素子アレイを駆動する駆動素子と、前記第2の側面側の前記基板上に設けられ、前記発光素子アレイから出射される光を受光する受光素子と、前記第3および第4の側面側に設けられ、前記発光素子アレイの上面電極から前記発光素子アレイの外側に向けて延びる配線部材と、を備えたものである。
 第2態様に係る発光装置は、第1態様に係る発光装置において、前記第2の側面よりも前記駆動素子に近い側に設けられ、前記発光素子アレイに電流を供給するキャパシタをさらに備えたものである。
 第3態様に係る発光装置は、第2態様に係る発光装置において、前記キャパシタは、前記駆動素子を構成する端面のうち前記発光素子アレイから最も遠い端面の位置よりも、前記発光素子アレイに近い側に設けられているものである。
 第4態様に係る発光装置は、第2態様または第3態様に係る発光装置において、前記キャパシタを複数備え、複数の前記キャパシタの各々は、前記発光素子アレイの中心と前記駆動素子の中心とを結ぶ直線に対し、前記第3の側面側と前記第4の側面側とに分かれて配置されているものである。
 第5態様に係る発光装置は、第1態様から第4態様のいずれかの態様に係る発光装置において、前記第2の側面と前記受光素子との間には、前記発光素子アレイの上面電極から前記受光素子に向けて延びる配線部材が設けられていないものである。
 第6態様に係る発光装置は、第1態様から第5態様のいずれかの態様に係る発光装置において、前記第2の側面と前記受光素子との距離は、前記第1の側面と前記第2の側面との間の距離よりも短いものである。
 第7態様に係る発光装置は、第1態様から第6態様のいずれかの態様に係る発光装置において、前記第2の側面と前記受光素子との距離は、前記配線部材の長さに相当する長さよりも短いものである。
 第8態様に係る発光装置は、第1態様から第7態様のいずれかの態様に係る発光装置において、前記第1の側面と前記駆動素子との間には、前記発光素子アレイの上面電極から前記発光素子アレイの外側に向けて延びる配線部材が設けられていないものである。
 第9態様に係る発光装置は、第1態様から第8態様のいずれかの態様に係る発光装置において、前記発光素子アレイは複数の発光素子を有し、前記発光素子アレイ内において前記複数の発光素子が配列されている領域の形状は、前記第3および第4の側面に沿った方向の長さよりも、前記第1および第2の側面に沿った長さの方が短いものである。
 第10態様に係る発光装置は、第9態様に係る発光装置において、前記複数の発光素子は、互いに並列に接続されたものである。
 第11態様に係る発光装置は、第1態様から第9態様のいずれかの態様に係る発光装置において、前記発光素子アレイの光出射経路上に配置された、前記発光素子アレイから出射された光を外部に向けて拡散する光拡散部材をさらに備えたものである。
 第12態様に係る発光装置は、第11態様に係る発光装置において、前記光拡散部材は、平面視において前記受光素子と重なる位置に設けられているものである。
 第13態様に係る光学装置は、第1態様から第12態様のいずれかの態様に係る発光装置と、前記発光装置が備える前記発光素子アレイから出射され被測定物で反射された反射光を受光する三次元センサと、を備え、前記三次元センサは、前記発光素子アレイから光が出射されてから当該三次元センサで受光されるまでの時間に相当する信号を出力するものである。
 第14態様に係る情報処理装置は、第13態様に係る光学装置と、前記光学装置が備える前記発光素子アレイから出射され被測定物で反射され、当該光学装置が備える三次元センサで受光された反射光に基づき、当該被測定物の三次元形状を特定する形状特定部と、を備えるものである。
 第15態様に係る情報処理装置は、第14態様に係る情報処理装置において、前記形状特定部での特定結果に基づき、自装置の使用に関する認証処理を行う認証処理部を備えるものである。
 第1、第13、および第14態様によれば、発光素子アレイを駆動する回路のインダクタンスの低減と、発光素子アレイと受光素子との近接配置とを両立しやすい構成の発光装置、および該発光装置を用いた光学装置および情報処理装置を提供することができる、という効果を奏する。
 第2態様によれば、発光素子アレイに電流を供給するキャパシタを第2の側面よりも駆動素子から遠い側に設ける場合と比較して、電源がより安定化される、という効果を奏する。
 第3態様によれば、キャパシタが、駆動回路を構成する端面のうち発光素子アレイから最も遠い端面よりも遠い側に設けられている場合と比較し、発光素子アレイを駆動する電流経路を短くしやすい、という効果を奏する。
 第4態様によれば、一方の側面側にのみ配置されている構成と比較し、第3の側面側の配線部材を介する電流の経路長と、第4の側面側の配線部材を介する電流の経路長とを均等にしやすい、という効果を奏する。
 第5態様によれば、第2の側面と受光素子との間に配線部材が設けられている場合と比較し、受光素子を発光素子アレイに近接して配置しやすい、という効果を奏する。
 第6態様によれば、第1および第2の側面間の距離よりも長い場合と比較し、発光素子アレイの光出射経路に光拡散部材が設けられた場合に、受光素子の受光量が増加する、という効果を奏する。
 第7態様によれば、配線部材の長さに相当する距離よりも長い場合と比較し、発光素子アレイの光出射経路に光拡散部材が設けられた場合に、受光素子の受光量が増加する、という効果を奏する。
 第8態様によれば、第1の側面と駆動素子との問に配線部材が設けられている構成と比較し、発光素子アレイを駆動する電流経路を短くしやすい、という効果を奏する。
 第9態様によれば、第1および第2の側面に沿った長さの方が長い場合と比較し、第2の側面側に配線部材を設けないことによるインダクタンスの増加が抑制される、という効果を奏する。
 第10態様によれば、発光素子を個別に駆動する構成と比較し、強い強度の光が同時に照射される、という効果を奏する。
 第11態様によれば、光拡散部材がない構成と比較し、発光素子アレイから出射された光が広い範囲に照射される、という効果を奏する。
 第12態様によれば、受光素子と重なる位置に設けられていない場合と比較し、発光素子アレイから出射されて光拡散部材で反射した光に対する受光素子での受光量が増加する、という効果を奏する。
 第15態様によれば、認証処理部を使用しない場合と比較して、より安定に認証が行われる、という効果を奏する。
図1は実施の形態に係る情報処理装置を示す図であり、図1に含まれている(a)は外観の一例を示す図であり、図1に含まれている(b)は電気的な構成の一例を示すブロック図である。 図2は実施の形態に係る図であり、図2に含まれている(a)は発光素子アレイの平面図であり、図2に含まれている(b)は発光装置の回路図であり、図2に含まれている(c)は光拡散板の機能を説明する側面断面図である。 図3は実施の形態に係る発光装置の側面断面図および平面図である。 図4は実施の形態に係る発光装置の構成の一例を示す平面図である。 図5は、第1の比較例に係る発光装置の構成を示す平面図(a)と、第2の比較例に係る発光装置の構成を示す平面図(b)と、各発光装置のボンディングワイヤのインダクタンスを比較したグラフ(c)を含んだ図である。
 以下、図面を参照し、本発明を実施するための形態について詳細に説明する。
 図1から図5を参照して、本実施の形態に係る発光装置、光学装置および情報処理装置について説明する。以下の実施の形態では、情報処理装置の一例としてスマートフォン等で代表される携帯型情報処理装置を例示して説明する。
 図1の(a)は、本実施の形態に係る情報処理装置10の外観を示している。情報処理装置10は、光学装置24、およびUI(User Interface)部20を備えている。UI部20は、例えばユーザに対して情報を表示する表示デバイスとユーザの操作により情報処理に対する指示が入力される入力デバイスとが一体化されて構成されている。表示デバイスは、例えば液晶ディスプレイや有機ELディスプレイであり、入力デバイスは、例えばタッチパネルである。
 光学装置24は、発光装置23と、3次元センサ13とを備えている。発光装置23は、三次元像を取得するために被測定物に向けて光を出射する部位である。本実施の形態では被測定物の一例として人の顔を例示して説明する。3次元センサ13は、発光装置23が出射した光が顔で反射されて戻ってきた反射光を受光する。本実施の形態に係る3次元センサ13は、いわゆるTOF(Time of Flight:光の飛行時間)法に基づいて例えば人の顔の三次元像を取得する機能を有している。
 図1の(b)を参照して、情報処理装置10の電気的な構成について説明する。図1の(b)に示すように、情報処理装置10はシステム制御部16、ROM18、RAM19、UI部20、光学装置24、スピーカ21および2次元カメラ22を含んで構成されている。むろん本構成は一例であり、目的、用途等に応じて一部の構成が削除されたり、他の構成が付加されたりしてもよい。
 システム制御部16は例えばCPUであり、情報処理装置10は当該システム制御部16と、ROM18、RAM19等を含むコンピュータとして構成されている。システム制御部16は情報処理装置10の全体をシステムとして制御するとともに、認証処理部17を備えている。なお、ROM18には、不揮発性の書き換え可能なメモリ、例えばフラッシュメモリを含む。そして、ROM18に蓄積されたプログラムや定数がRAM19に展開され、当該プログラムをシステム制御部16が実行することによって、情報処理装置10が動作し、各種の情報処理が実行される。スピーカ21はユーザに対して音を発する部位であり、2次元カメラ22はユーザによる撮影に供する通常のカメラである。ROM18、RAM19、UI部20、スピーカ21および2次元カメラ22の各々はバス25を介してシステム制御部16に接続されている。
 図1の(b)に示すように、光学装置24は、上述した発光装置23、3次元センサ13と、さらに光学装置制御部14を含んで構成されている。光学装置制御部14はシステム制御部16に接続され、光学装置24の全体を制御する。また、光学装置制御部14は形状特定部15を含んでいる。発光装置23、3次元センサ13の各々は光学装置制御部14に接続されている。
 図1の(b)に示すように、発光装置23は発光素子アレイ11、および駆動素子12を含んで構成されている。発光素子アレイ11は複数の発光素子が配置された半導体発光素子である。駆動素子12は発光素子アレイ11を駆動するドライバICである。発光素子アレイ11は駆動素子12によって、例えば、数10MHz~数100MHzのパルス光(出射光パルス)を出射するように駆動される。そして、発光装置23は、発光素子アレイ11から被測定物に向けて照射された光が被測定物で反射した反射光を3次元センサ13が受光するように構成されている。
 次に、3次元センサ13とTOFとの関係について説明する。本実施の形態に係る3次元センサ13は、複数の受光領域(画素)を備えている。3次元センサ13は、発光素子アレイ11からの出射光パルスに対する被測定物からの反射光(受光パルス)を受光し、受光されるまでの時間に対応する電荷を受光領域ごとに蓄積する。一例として、3次元センサ13は、各受光領域が、2つのゲートと該2つのゲートに対応した電荷蓄積部を備えたCMOS構造のデバイスとして構成されている。該2つのゲートに交互にパルスを加えることによって、発生した光電子を2つの電荷蓄積部の何れかに高速に転送し、出射光パルスと受光パルスとの位相差(すなわち時間差)に応じた電荷を蓄積するように構成されている。蓄積された電荷に応じた信号はAD(Analog Digital)コンバータを介し、受光領域ごとの出射光パルスと受光パルスとの位相差に応じた電荷に対応するデジタル信号として3次元センサ13から出力される。すなわち、3次元センサ13は、発光素子アレイ11から光が出射されてから3次元センサ13で受光されるまでの時間に相当する信号を出力する。なお、3次元センサ13は、集光用のレンズを備えてもよい。
 光学装置制御部14に含まれる形状特定部15は、3次元センサ13の受光領域ごとに生成されるデジタル値を取得し、受光領域ごとに被測定物までの距離を算出して、被測定物の3次元形状を特定する。
 一方システム制御部16に含まれる認証処理部17は、形状特定部15が特定した被測定物の三次元形状(特定結果)がROM18などに予め蓄積された三次元形状と一致する場合に、情報処理装置10の使用に関する認証処理を行う。なお、情報処理装置10の使用に関する認証処理とは、一例として、自装置(情報処理装置10)の使用を許可するか否かの処理である。例えば、被測定物である顔の3次元形状が、ROM18等の記憶手段に記憶された顔形状に一致する場合は、情報処理装置10が提供する各種アプリケーション等を含む情報処理装置10の使用が許可される。
 上述の形状特定部15および認証処理部17は、一例としてプログラムによって構成される。また、ASICやFPGA等の集積回路で構成されてもよい。さらには、プログラム等のソフトウエアと集積回路とで構成されてもよい。
 発光素子アレイ11は、上述したように被測定物の三次元形状を特定するための光を出射し被測定物に照射する。すなわち、発光素子アレイ11は予め定められた測定範囲に対して、予め定められた密度の光を照射する。発光素子アレイ11に含まれる複数の発光素子の形態は特に限定されず、VCSEL(Vertical Cavity Surface Emitting Laser)、LED(Light Emitting Diode)等が用いられるが、本実施の形態では一例としてVCSELを用いている。好ましくは、シングルモードVCSELよりも高出力化しやすいマルチモードVCSELで構成される。
 複数のVCSEL(発光素子)は、電気的に互いに並列に接続されている。VCSEL1個当たりの光出力は一例として4mW~8mWに設定され、発光素子アレイ11に含まれるVCSELの個数は一例として100個~1000個である。図2の(a)は発光素子アレイ11の平面図を示している。図2の(a)に示すように、発光素子アレイ11の表面は、各VCSELの光出射口52を除く領域に形成されたベタのアノードパターン50(電極配線)で被覆され、発光素子アレイ11の各辺に沿う端部に、アノードパターン50のボンディングワイヤによる接続領域を有している。発光素子アレイ11の半導体基板は一例としてn型のGaAs基板とされ、該基板の裏面側にカソード電極が配置されている。なお、アノードパターン50は本発明に係る「上面電極」の一例である。
 図2の(b)を参照して、発光素子アレイ11の駆動回路について説明する。図2の(b)は発光装置23の回路図を示している。図2の(b)に示すように、発光装置23は、発光素子アレイ11、駆動素子12、光量監視用受光素子30、抵抗38、キャパシタ35、および電源36を含んで構成されている。
 上述したように発光素子アレイ11は複数のVCSEL26が並列に接続されて構成されている。並列に接続されたVCSEL26には駆動素子12に含まれる電流源が接続され、該電流源から駆動電流idが供給される。
 光量監視用受光素子30は発光素子アレイ11の光量をモニタする機能を有する。すなわち、光量監視用受光素子30からの出力信号は発光素子アレイ11が予め定められた光量を維持して出射するように制御するために使用される。光量監視用受光素子30は、例えば、受光量に応じた電気信号を出力する、シリコン等で構成されたフォトダイオード(PD)である。すなわち、光量監視用受光素子30は発光素子アレイ11から出射された光の一部を受光し、受光量に応じたモニタ電流imを出力する。モニタ電流imは抵抗38で電圧に変換され、モニタ電圧Vpdとして出力される。モニタ電圧Vpdは、図示を省略する、駆動素子12内部に設けられた光量監視回路に送られ、該光量監視回路はモニタ電圧Vpdに基づいて発光素子アレイ11から出射される光量の監視を実行する。なお、光量監視用受光素子30は本発明に係る「回路素子」の一例である。
 一方、電源36は発光素子アレイ11および光量監視用受光素子30を動作させる電源であり、キャパシタ35は後述するように電流源としての機能を有する。電源36は、例えば、配線基板27の内部に設けられる電源層およびグランド層で構成される。
 次に図3を参照して、本実施の形態に係る発光装置23の構成について説明する。図3の<1>は発光装置23の側面断面図であり、図3の<2>は平面図である。図3に示すように、発光装置23は配線基板27上に搭載された発光素子アレイ11、光量監視用受光素子30、光拡散板33、スペーサ32および駆動素子12を含んで構成されている。配線基板27は、例えば各素子を接続する配線が形成されたガラスエポキシ基板で構成されている。なお、光拡散板33は、本発明に係る「光拡散部材」の一例である。
 ここで、TOF方式では、被測定物の照射面(例えば数m先)に予め定められた範囲で均一なレーザ光を照射する必要がある。そのため光拡散板33は、発光素子アレイ11から出射された出射光Lを拡散し、出射角を拡大する機能を有する。すなわち、図2の(c)に示すように、光拡散板33は凹凸部材39を備え、発光素子アレイ11から出射角θ1で出射された出射光Lの出射角をθ2(>θ1)に拡大する。より具体的には、光拡散板33は例えば両面が平行で平坦なガラス基材の一方の表面に、光を拡散させるための凹凸が形成された樹脂層による凹凸部材39を備えている。そして、この凹凸により、発光素子アレイ11から出射された出射光Lをさらに拡散して外部に照射する。
 スペーサ32は配線基板27と光拡散板33との間に配置され、光拡散板33を支持するとともに、光拡散板33の発光素子アレイ11からの距離が予め定められた距離となるように位置決めしている。また、本実施の形態では、光拡散板33およびスペーサ32により発光素子アレイ11等を封止することで、防塵、防湿等を図っている。スペーサ32は例えばセラミックや樹脂材料で構成される。
 光拡散板33はさらに発光素子アレイ11から出射された光の一部を光量監視用受光素子30に導く機能を有する。すなわち、光拡散板33は発光素子アレイ11および光量監視用受光素子30を覆って設けられ、光拡散板33を透過せずに光拡散板33の裏面で反射した光が光量監視用受光素子30で受光されるように配置されている。発光素子アレイ11からの距離が大きくなるほど光量監視用受光素子30における受光量が低下するため、発光素子アレイ11と光量監視用受光素子30とは近接させて配置することが好ましい。また光量監視用受光素子30は、光拡散板33が外れたり破損したりして、発光素子アレイ11から出射する光が直接外部に照射されていることを検知するためにも使用される。
 ところで、TOFを計測するために用いるVCSELアレイでは、例えば2Aの大電流を1ns以下の立ち上がり時間で立ち上げること、あるいは100MHz程度の高周波で駆動させることが要求される場合もあり、そのためには駆動回路のインダクタンス成分を低減することが重要となる。インダクタンス成分を低減する方法の一つとして、可能な限りボンディングワイヤを多くすることが考えられるが、他の素子(光量監視用受光素子30、駆動素子12等)との配置関係を勘案すると、ボンディングワイヤの数も制限される場合がある。そこで、本実施の形態では、他の素子との配置関係を考慮しつつ駆動回路のインダクタンス成分を低減するように工夫している。駆動回路のインダクタンスを低減するために、他方では、電流源となるキャパシタ35、発光素子アレイ11、駆動素子12で構成される電流ループを短くすることが重要となる。図3の<2>ではキャパシタ35として2つのキャパシタ35-1および35-2を配置し、2つの電流ループL1、L2を形成する場合を例示している。
 図4を参照して、本実施の形態に係る発光装置23について詳細に説明する。図4に示すように、発光装置23は配線基板27、配線基板27上に搭載された発光素子アレイ11、駆動素子12、光量監視用受光素子30、およびキャパシタ72-1、72-2を含んで構成されている。配線基板27上には導電パターン42-1、42-2、43-1、および43-2が形成されている。また、発光素子アレイ11、駆動素子12、光量監視用受光素子30の各々の位置の配線基板27上にも図示しない導電パターンが形成されており、該導電パターンに発光素子アレイ11、駆動素子12、光量監視用受光素子30の各々の裏面が接続されている。さらに配線基板27の裏面には、発光素子アレイ11のカソードと駆動素子12とを接続するカソードパターン54が形成されている。なお、光量監視用受光素子30の形状は、図4に示すとおり、発光素子アレイ11と対向する辺の方が長い長方形状とすることができる。このような形状であれば、正方形状の場合と比較し、同じ受光面積であっても発光素子アレイ11により近い位置での受光面積が増えるため、受光光量が増加する。
 図4に示すように、発光素子アレイ11は、第1の側面S1、第2の側面S2、第3の側面S3、および第4の側面S4を有している。そして、第3の側面S3側のアノードパターン50の端部と導電パターン42-1との間にボンディングワイヤWが接続され、第4の側面S4側のアノードパターン50の端部と導電パターン42-2との間にボンディングワイヤWが接続されている。一方電流源となる、キャパシタ72-1は導電パターン42-1と43-1との間に接続され、キャパシタ72-2は導電パターン42-2と43-2との間に接続されている。なお、キャパシタ72-1および72-2は必ずしも両方を設ける必要はなく、いずれか一方のみであってもよい。なお、ボンディングワイヤWは本発明に係る「配線部材」の一例である。
 ところで、発光素子アレイを高速に駆動するためには発光素子アレイと配線基板との間のインダクタンス(以下、「回路のインダクタンス」)を低減することが望まれる。本実施の形態に係る発光素子アレイ11のような構造の素子では、ボンディングワイヤのインダクタンスが回路のインダクタンスに占める割合が大きいので、まずボンディングワイヤのインダクタンスの低減を図ることが必要である。
 発光素子アレイの外形が矩形であった場合、四方にボンディングワイヤを打ってボンディングワイヤの本数を多くし、インダクタンス成分を減らすことが考えられる。しかしながら、駆動回路、光量監視用受光素子等本来発光素子アレイの近くに配置させたい部材があり、四方にボンディングワイヤを打つのは困難な場合がある。特に、本実施の形態に係る発光装置23のような、発光素子アレイ11から出射される光を拡散する光拡散板33等を設けた構成において、発光素子アレイ11から出射される光の光量を光量監視用受光素子30で検知するためには、発光素子アレイ11と光量監視用受光素子30とを近接して配置することが好ましい。
 以上の背景下、図4に示すような構成、すなわち発光素子アレイ11の2方向からボンディングワイヤWを接続する構成を採用することによって、本実施の形態に係る発光装置23は、発光素子アレイ11を駆動する回路のインダクタンスの低減と、発光素子アレイ11と光量監視用受光素子30との近接配置とを両立しやすい構成の発光装置23を実現している。以下、図5を参照してその理由について説明する。
 図5の(a)は第1の比較例に係る発光装置60Aの平面図を、図5の(b)は第2の比較例に係る発光装置60Bを示している。また、図5の(c)は本実施の形態に係る発光装置23における発光素子アレイ11と配線基板27との間のインダクタンス(すなわち、回路インダクタンス)を比較例に係る発光装置60A、60Bと比較して示した図である。なお、以下の説明では、図5において発光装置23と同様の構成には同じ符号を付し、詳細な説明を省略する。
 図5の(a)に示すように、比較例に係る発光装置60Aでは配線基板27上に導電パターン47、48が形成され、発光素子アレイ11、駆動素子12、光量監視用受光素子30、およびキャパシタ72が配置されている。導電パターン47は発光素子アレイ11の第3の側面S3と対向し、発光素子アレイ11のアノードパターン50と導電パターン47との間にボンディングワイヤWが接続されている。また、光量監視用受光素子30は第4の側面S4と対向する位置に実装されている。また、導電パターン47と48との間にキャパシタ72が接続されている。すなわち、発光装置60Aにおける電流ループは電流ループL3のひとつとなっている。
 一方、図5の(b)に示すように、比較例に係る発光装置60Bでは配線基板27上に導電パターン45、46-1、46-2が形成され、発光素子アレイ11、駆動素子12、光量監視用受光素子30、およびキャパシタ72-1、72-2が配置されている。導電パターン45は発光素子アレイ11の第2の側面S2、第3の側面S3、第4の側面S4の3面と対向している。従って、発光素子アレイ11のアノードパターン50と導電パターン45との間のボンディングワイヤWは3方向から接続されている。また、光量監視用受光素子30は第2の側面S2側に実装されている。また、導電パターン45と46-1との間にキャパシタ72-1が接続され、導電パターン45と46-2との間にキャパシタ72-2が接続されている。すなわち、発光装置60Bにおける電流ループは電流ループL4、およびL5の2つとなっている。
 図5の(c)を参照して、発光装置23、60A、および60Bの各々の回路のインダクタンスについて検討する。すなわち、比較例に係る発光装置60Aでは、発光素子アレイ11と光量監視用受光素子30とを近接配置できるが、ワイヤーボンディングが一方向だけなので回路のインダクタンスが大きい。一方比較例に係る発光装置60Bでは3方向からボンディングワイヤWを接続できるため、回路のインダクタンスは下がる。しかしながら、発光装置60Bでは、発光素子アレイ11と光量監視用受光素子30とを近接して配置することができない。
 そこで本実施の形態では、発光素子アレイ11、駆動素子12、キャパシタ72(72-1、72-2)が互いに近接している構成においては、第2の側面S2側のボンディングワイヤWは回路のインダクタンス低減にあまり寄与せず、第3の側面S3および第4の側面S4のボンディングワイヤWが回路のインダクタンス低減に大きく寄与する点に着目している。図5の(c)は、発光装置23、60A、および60Bの回路のインダクタンスを示している。図5の(c)に示すように、発光装置60A、23、60Bの順で回路のインダクタンスが小さくなるが、発光装置60Aの回路のインダクタンスと発光装置23の回路のインダクタンスとの差分と比較して、発光装置23の回路のインダクタンスと発光装置60Bの回路のインダクタンスとの差分の方が小さい。これは、第3の側面S3、第4の側面S4と比較して、第2の側面S2が電流ループL4、L5から遠いことに起因している。すなわち、第2の側面S2は元々発光素子アレイ11、駆動素子12、キャパシタ72(72-1、72-2)が形成する電流ループから離間していることから、第2の側面S2側に接続されたボンディングワイヤWに起因するインダクタンス成分の影響が小さいからである。従って、第2の側面S2側に接続されたボンディングワイヤWを削除してもインダクタンス成分の増加は比較的小さい。
 そこで、比較例に係る発光装置60A、60Bに対して、本実施の形態に係る発光装置23では、第2の側面S2側にはボンディングワイヤWを接続せず、その位置に光量監視用受光素子30を配置した。このことにより、回路のインダクタンス成分の増加を抑制しつつ、発光素子アレイと受光素子との近接配置が実現される。以下、発光装置23の特徴についてより詳細に説明する。
 キャパシタ72-1および72-1の少なくとも一方は、第2の側面S2よりも駆動素子12に近い側に設けてもよい。これにより、キャパシタ72-1、72-2を第2の側面S2よりも駆動素子12から遠い側に設ける場合と比較して、電源がより安定化される。
 キャパシタ72-1および72-2の少なくとも一方を、駆動素子12を構成する端面のうち発光素子アレイ11から最も遠い端面の位置よりも、発光素子アレイ11に近い側に設けてもよい。このことにより、キャパシタ72-1、72-2を駆動素子12を構成する端面のうち発光素子アレイ11から最も遠い端面よりも遠い側に設ける場合と比較し、発光素子アレイ11を駆動する電流経路(電流ループ)を短くしやすくなる、という効果を奏する。
 キャパシタ72-1および72-2の各々は、図4に示すように、発光素子アレイ11の中心と駆動素子12の中心とを結ぶ直線に対し、第3の側面S3側と第4の側面S4側とに分けて配置してもよい。このことにより、一方の側面側にのみ配置されている構成と比較し、第3の側面S3側の配線部材を介する電流の経路長と、第4の側面S4側の配線部材を介する電流の経路長とを均等にしやすい。
 第2の側面S2と光量監視用受光素子30との距離を、第1の側面S1と第2の側面S2との間の距離よりも短くしてもよい。このことにより、第1の側面S1と第2の側面S2との間の距離よりも長い場合と比較し、発光素子アレイ11の光出射経路に光拡散部材が設けられた場合に、光量監視用受光素子30の受光量が増加する。
 第2の側面S2と光量監視用受光素子30との距離を、ボンディングワイヤWの長さに相当する長さよりも短くしてもよい。このことにより、ボンディングワイヤWの長さに相当する距離よりも遠い場合と比較し、発光素子アレイ11と光量監視用受光素子30の距離が近づくので、発光素子アレイ11の光出射経路に光拡散部材が設けられた場合に、受光素子の受光量が増加する。
 第1の側面S1と駆動素子12との間には、発光素子アレイ11のアノードパターン50から発光素子アレイ11の外側に向けて延びるボンディングワイヤを設けないことが好ましい。このことにより、第1の側面S1と駆動素子12との問にボンディングワイヤが設けられている構成と比較し、発光素子アレイ11を駆動する電流経路を短くしやすい。
 発光素子アレイ11内において複数のVCSEL26が配列されている領域の形状は、第3の側面S3および第4の側面S4に沿った方向の長さよりも、第1の側面S1および第2の側面S2に沿った長さの方を短くしてもよい。このことにより、第1の側面S1および第2の側面S2に沿った長さの方が長い場合と比較し、第2の側面S2側にボンディングワイヤWを設けないことによるインダクタンスの増加が抑制される。
 光拡散板33は、平面視において光量監視用受光素子30と重なる位置に設けてもよい。このことにより、光量監視用受光素子30と重なる位置に設けられていない場合と比較し、発光素子アレイ11から出射されて光拡散板33で反射した光に対する光量監視用受光素子30での受光量が増加する。
 なお、本実施の形態においては、発光素子アレイ11、光量監視用受光素子30、および駆動素子12の各素子が配線基板27上に直接配置されている形態を開示したが、必ずしも配線基板27上に直接配置されている必要はない。例えば、配線基板27上に放熱用の基材等を配置し、この放熱用の基材上に各素子を配置してよい。すなわち、間接的に配線基板27上に配置してもよい。更には、各素子の一部は直接配線基板27上に配置し、残りの素子は放熱用の基材上に配置してもよい。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2019年2月6日出願の日本特許出願である特願2019-019975に基づくものであり、それらの内容はここに参照として取り込まれる。
10   情報処理装置
11   発光素子アレイ
12   駆動素子
13   3次元センサ
14   光学装置制御部
15   形状特定部
16   システム制御部
17   認証処理部
18   ROM
19   RAM
20   UI部
21   スピーカ
22   2次元カメラ
23   発光装置
24   光学装置
25   バス
26   VCSEL
27   配線基板
30   光量監視用受光素子
32   スペーサ
33   光拡散板
35、35-1、35-2 キャパシタ
36   電源
38   抵抗
39   凹凸部材
42-1、42-2、43-1、43-2、45、46-1、46-2、47、48 導電パターン
50 アノードパターン、52 光出射口、54 カソードパターン
60A、60B 発光装置
72、72-1、72-2 キャパシタ
id 駆動電流、im モニタ電流
L1、L2、L3、L4、L5 電流ループ
S1 第1の側面、S2 第2の側面、S3 第3の側面、S4 第4の側面
Vpd  モニタ電圧
W    ボンディングワイヤ
L 出射光、θ1、θ2 出射角

Claims (15)

  1.  基板と、
     互いに対向する第1および第2の側面と、当該第1および第2の側面とを接続する、互いに対向する第3および第4の側面とを有し、前記基板上に設けられた発光素子アレイと、
     前記第1の側面側の前記基板上に設けられ、前記発光素子アレイを駆動する駆動素子と、
     前記第2の側面側の前記基板上に設けられ、前記発光素子アレイから出射される光を受光する受光素子と、
     前記第3および第4の側面側に設けられ、前記発光素子アレイの上面電極から前記発光素子アレイの外側に向けて延びる配線部材と、
     を備えた発光装置。
  2.  前記第2の側面よりも前記駆動素子に近い側に設けられ、前記発光素子アレイに電流を供給するキャパシタをさらに備えた
     請求項1に記載の発光装置。
  3.  前記キャパシタは、前記駆動素子を構成する端面のうち前記発光素子アレイから最も遠い端面の位置よりも、前記発光素子アレイに近い側に設けられている
     請求項2に記載の発光装置。
  4.  前記キャパシタを複数備え、
     複数の前記キャパシタの各々は、前記発光素子アレイの中心と前記駆動素子の中心とを結ぶ直線に対し、前記第3の側面側と前記第4の側面側とに分かれて配置されている
     請求項2または請求項3に記載の発光装置。
  5.  前記第2の側面と前記受光素子との間には、前記発光素子アレイの上面電極から前記受光素子に向けて延びる配線部材が設けられていない
     請求項1から請求項4のいずれか1項に記載の発光装置。
  6.  前記第2の側面と前記受光素子との距離は、前記第1の側面と前記第2の側面との間の距離よりも短い
     請求項1から請求項5のいずれか1項に記載の発光装置。
  7.  前記第2の側面と前記受光素子との距離は、前記配線部材の長さに相当する長さよりも短い
     請求項1から請求項6のいずれか1項に記載の発光装置。
  8.  前記第1の側面と前記駆動素子との間には、前記発光素子アレイの上面電極から前記発光素子アレイの外側に向けて延びる配線部材が設けられていない
     請求項1から請求項7のいずれか1項に記載の発光装置。
  9.  前記発光素子アレイは複数の発光素子を有し、
     前記発光素子アレイ内において前記複数の発光素子が配列されている領域の形状は、前記第3および第4の側面に沿った方向の長さよりも、前記第1および第2の側面に沿った長さの方が短い
     請求項1から請求項8のいずれか1項に記載の発光装置。
  10.  前記複数の発光素子は、互いに並列に接続された
     請求項9に記載の発光装置。
  11.  前記発光素子アレイの光出射経路上に配置された、前記発光素子アレイから出射された光を外部に向けて拡散する光拡散部材をさらに備えた
     請求項1から請求項9のいずれか1項に記載の発光装置。
  12.  前記光拡散部材は、平面視において前記受光素子と重なる位置に設けられている
     請求項11に記載の発光装置。
  13.  請求項1から請求項12のいずれか1項に記載の発光装置と、
     前記発光装置が備える前記発光素子アレイから出射され被測定物で反射された反射光を受光する三次元センサと、を備え、
     前記三次元センサは、前記発光素子アレイから光が出射されてから当該三次元センサで受光されるまでの時間に相当する信号を出力する光学装置。
  14.  請求項13に記載の光学装置と、
     前記光学装置が備える前記発光素子アレイから出射され被測定物で反射され、当該光学装置が備える三次元センサで受光された反射光に基づき、当該被測定物の三次元形状を特定する形状特定部と、
     を備える情報処理装置。
  15.  前記形状特定部での特定結果に基づき、自装置の使用に関する認証処理を行う認証処理部を備える
     請求項14に記載の情報処理装置。
     
PCT/JP2019/024547 2019-02-06 2019-06-20 発光装置、光学装置および情報処理装置 WO2020161932A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980088650.7A CN113273041B (zh) 2019-02-06 2019-06-20 发光装置、光学装置以及信息处理装置
US17/341,595 US20210293966A1 (en) 2019-02-06 2021-06-08 Light emitting device, optical device, and information processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-019975 2019-02-06
JP2019019975A JP7293697B2 (ja) 2019-02-06 2019-02-06 発光装置、光学装置および情報処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/341,595 Continuation US20210293966A1 (en) 2019-02-06 2021-06-08 Light emitting device, optical device, and information processing apparatus

Publications (1)

Publication Number Publication Date
WO2020161932A1 true WO2020161932A1 (ja) 2020-08-13

Family

ID=71946949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024547 WO2020161932A1 (ja) 2019-02-06 2019-06-20 発光装置、光学装置および情報処理装置

Country Status (4)

Country Link
US (1) US20210293966A1 (ja)
JP (1) JP7293697B2 (ja)
CN (1) CN113273041B (ja)
WO (1) WO2020161932A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114152929A (zh) * 2021-10-15 2022-03-08 探维科技(北京)有限公司 激光发射器、激光雷达和确定特征信息的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113615107A (zh) * 2019-01-16 2021-11-05 亮锐控股有限公司 用于调频发射的照明设备
JP2022085542A (ja) * 2020-11-27 2022-06-08 セイコーエプソン株式会社 画像処理装置
DE112022000325T5 (de) 2021-01-29 2023-09-07 Murata Manufacturing Co., Ltd. Leuchtvorrichtung
CN116711039A (zh) * 2021-02-09 2023-09-05 三星电子株式会社 包括用于使金属材料的影响最小化的结构的线圈以及包括该线圈的谐振电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134173A (ja) * 2011-12-27 2013-07-08 Honda Motor Co Ltd 測距システム及び測距方法
US20150069113A1 (en) * 2013-09-11 2015-03-12 Princeton Optronics Inc. VCSEL Packaging
US20150229912A1 (en) * 2014-02-10 2015-08-13 Microsoft Corporation Vcsel array for a depth camera
JP2018018887A (ja) * 2016-07-26 2018-02-01 新光電気工業株式会社 光半導体装置
JP2018508122A (ja) * 2015-04-10 2018-03-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光センシング応用のための安全なレーザデバイス
CN108828562A (zh) * 2018-08-22 2018-11-16 Oppo广东移动通信有限公司 激光投射模组及控制方法、深度图像获取设备和电子装置
JP2018185342A (ja) * 2013-11-20 2018-11-22 パナソニックIpマネジメント株式会社 測距撮像システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114096A (ja) * 2004-10-13 2006-04-27 Matsushita Electric Ind Co Ltd 半導体レーザユニットおよびそれを備えた光ピックアップ装置
JP4810393B2 (ja) * 2006-10-27 2011-11-09 富士通株式会社 光モジュール製造方法及び製造装置
JP2008244226A (ja) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd 半導体レーザ装置
US8675706B2 (en) * 2011-12-24 2014-03-18 Princeton Optronics Inc. Optical illuminator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013134173A (ja) * 2011-12-27 2013-07-08 Honda Motor Co Ltd 測距システム及び測距方法
US20150069113A1 (en) * 2013-09-11 2015-03-12 Princeton Optronics Inc. VCSEL Packaging
JP2018185342A (ja) * 2013-11-20 2018-11-22 パナソニックIpマネジメント株式会社 測距撮像システム
US20150229912A1 (en) * 2014-02-10 2015-08-13 Microsoft Corporation Vcsel array for a depth camera
JP2018508122A (ja) * 2015-04-10 2018-03-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光センシング応用のための安全なレーザデバイス
JP2018018887A (ja) * 2016-07-26 2018-02-01 新光電気工業株式会社 光半導体装置
CN108828562A (zh) * 2018-08-22 2018-11-16 Oppo广东移动通信有限公司 激光投射模组及控制方法、深度图像获取设备和电子装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114152929A (zh) * 2021-10-15 2022-03-08 探维科技(北京)有限公司 激光发射器、激光雷达和确定特征信息的方法

Also Published As

Publication number Publication date
CN113273041B (zh) 2024-08-27
JP7293697B2 (ja) 2023-06-20
CN113273041A (zh) 2021-08-17
JP2020126979A (ja) 2020-08-20
US20210293966A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
WO2020161932A1 (ja) 発光装置、光学装置および情報処理装置
CN109478767B (zh) Vcsel照明器封装
US20130163627A1 (en) Laser Illuminator System
JP7275616B2 (ja) 発光装置、光学装置および情報処理装置
US20200274320A1 (en) Light emitter, light emitting device, optical device, and information processing apparatus
WO2021024508A1 (ja) 発光装置、光学装置及び情報処理装置
TW202108934A (zh) 結合增強安全特徵及熱管理之發光模組
US20230252122A1 (en) Light emitter, light emitting device, optical device, and information processing apparatus
JP2020145275A (ja) 発光装置、光学装置および情報処理装置
CN111665511A (zh) 测距装置
CN113314944A (zh) 发光装置、光学装置以及信息处理装置
JP2020145274A (ja) 発光装置、光学装置および情報処理装置
US20220115836A1 (en) Light-emitting device, optical device, and information processing device
WO2021256053A1 (ja) 発光装置および距離測定装置
JP2020174097A (ja) 発光装置、光学装置及び情報処理装置
KR102548859B1 (ko) 눈 보호 기능을 제공하는 빔프로젝터모듈
WO2020202592A1 (ja) 発光装置、光学装置及び情報処理装置
CN113314943A (zh) 发光装置、光学装置以及信息处理装置
WO2021181862A1 (ja) 半導体レーザ駆動装置
WO2021024506A1 (ja) 発光装置、光学装置及び情報処理装置
WO2020194773A1 (ja) 発光素子アレイチップ、発光装置、光学装置および情報処理装置
WO2020194774A1 (ja) 発光装置、光学装置及び情報処理装置
JP2020174096A (ja) 発光装置、光学装置及び情報処理装置
US20210313762A1 (en) Light-emitting device, optical device, and information processing device
WO2022085381A1 (ja) 発光装置および測距システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914526

Country of ref document: EP

Kind code of ref document: A1