WO2020161833A1 - Sulfur chemiluminescence detector - Google Patents

Sulfur chemiluminescence detector Download PDF

Info

Publication number
WO2020161833A1
WO2020161833A1 PCT/JP2019/004269 JP2019004269W WO2020161833A1 WO 2020161833 A1 WO2020161833 A1 WO 2020161833A1 JP 2019004269 W JP2019004269 W JP 2019004269W WO 2020161833 A1 WO2020161833 A1 WO 2020161833A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
reaction cell
photomultiplier tube
heating furnace
power supply
Prior art date
Application number
PCT/JP2019/004269
Other languages
French (fr)
Japanese (ja)
Inventor
雅史 山根
茂暢 中野
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2019/004269 priority Critical patent/WO2020161833A1/en
Priority to JP2020570268A priority patent/JP7143902B2/en
Priority to CN201980076191.0A priority patent/CN113056667A/en
Publication of WO2020161833A1 publication Critical patent/WO2020161833A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence

Definitions

  • the present invention relates to a chemiluminescence sulfur detector (Sulfur Chemiluminescence Detector).
  • a chemiluminescent sulfur detector is a detector that can detect a sulfur compound in a sample with high sensitivity by using chemiluminescence, and is usually used in combination with a gas chromatograph (GC) (for example, patents). Reference 1).
  • GC gas chromatograph
  • the gas containing the sample components (sample gas) separated by the GC column is introduced into the heating furnace provided in the SCD.
  • the heating furnace includes a combustion tube and a heater that heats the combustion tube.
  • the sample gas is oxidized in the process of passing through the inside of the combustion tube, and sulfur dioxide (SO 2 ) is converted from a sulfur compound in the sample gas. Is generated. Further, this SO 2 is reduced in the process of passing through the inside of the combustion tube, and sulfur monoxide (SO) is generated from SO 2 .
  • This SO is introduced into a reaction cell provided in the latter stage of the heating furnace and mixed with ozone (O 3 ) in the reaction cell. As a result, the excited species of sulfur dioxide (SO 2 * ) is generated by the reaction between SO and O 3 .
  • the emission intensity when this SO 2 * returns to the ground state via chemiluminescence is detected by a photodetector, and the sulfur compound contained in the sample gas is quantified from the emission intensity.
  • connection failure part The piping of the SCD may be removed during maintenance work, etc.
  • the removed pipes are reassembled after the completion of maintenance work, etc., but at that time, there may be a part where the connection part of the pipe is insufficiently tightened (hereinafter referred to as a “connection failure part”). If the SCD is started without noticing such a defective connection, the expected performance may not be obtained or the parts may be damaged.
  • the light generated by the chemiluminescence in the reaction cell of the SCD enters the photomultiplier tube through the optical filter, but if there is a connection failure part in the pipe or the like that constitutes the path of this light, it will leak from that part.
  • the extraneous light that enters may enter the photomultiplier tube, and a large current may flow into the photomultiplier tube, resulting in damage.
  • the SCD has a gas flow path from the combustion tube of the heating furnace through the reaction cell to the vacuum pump, and the gas in the flow path is sucked by the vacuum pump when the SCD operates.
  • the outside air leaks into the flow path from the location and the reaction in the heating furnace or reaction cell is hindered, and the desired performance cannot be achieved. There is.
  • the present invention has been made in view of the above points, and an object of the present invention is to allow a user to easily know whether or not there is a defective connection portion in a pipe or the like included in an SCD. Especially.
  • a chemiluminescent sulfur detector (SCD) made to solve the above problems is Heating furnace, A reaction cell for reacting the gas passing through the heating furnace with ozone, A photomultiplier tube for detecting light from the reaction cell, A power supply for generating a driving voltage applied to the photomultiplier tube, The power supply is controlled, and a normal mode for generating a first drive voltage applied to sample analysis and a second drive voltage lower than the first drive voltage are used as start-up modes of the power supply.
  • a voltage control means having an abnormality detection mode to be generated, When the power supply is started in the abnormality detection mode, based on the output signal of the photomultiplier tube, connected between the reaction cell and the photomultiplier tube, or the reaction cell and the reaction cell Determination means for determining whether or not there is a poor connection with any one of the pipes or the plurality of pipes; When the determination unit determines that there is a poor connection, a notification unit that notifies the user of that fact, It is characterized by having.
  • the presence or absence of poor connection of the pipe is determined based on the output signal of the photomultiplier tube.
  • the photomultiplier tube may be damaged by a large current flowing inside when excessive light is incident, but the chemiluminescent sulfur detector according to the first aspect of the present invention uses the photomultiplier to prevent this. It has an anomaly detection mode in which the drive voltage applied to the tube is suppressed compared to when the sample is analyzed. In the abnormality detection mode, since the current amplification factor in the photomultiplier tube becomes small, it is possible to prevent a large current from flowing through the photomultiplier tube even when excessive light is incident. Therefore, according to the chemiluminescent sulfur detector according to the first aspect of the present invention, the above determination is performed without damaging the photomultiplier tube even when external light is leaking due to poor connection. be able to.
  • the first voltage is 500V or more and the second voltage is less than 500V.
  • the program according to the first aspect of the present invention is Heating furnace, A reaction cell for reacting the gas passing through the heating furnace with ozone, A photomultiplier tube for detecting light from the reaction cell, A power supply for generating a driving voltage applied to the photomultiplier tube, A program for controlling a chemiluminescent sulfur detector having: Computer, The power supply is controlled, and as a start-up mode of the power supply, a normal mode for generating a first drive voltage applied to sample analysis and a second drive voltage lower than the first drive voltage are generated.
  • a voltage control means having an abnormality detection mode, When the power supply is started in the abnormality detection mode, based on the output signal of the photomultiplier tube, connected between the reaction cell and the photomultiplier tube, or the reaction cell and the reaction cell.
  • the determination unit determines whether there is a connection failure with one or a plurality of pipes, and the determination unit determines that there is a connection failure, the user is notified of that fact.
  • Notification means It is characterized by functioning as.
  • a heating furnace provided with a first pipe and a heating means for heating the first pipe;
  • a reaction cell connected to the heating furnace by a second pipe,
  • a vacuum pump connected to the reaction cell by a third pipe;
  • a fourth pipe for introducing gas into the first pipe;
  • Pressure measuring means for measuring the pressure inside at least one of the second pipe, the third pipe, and the fourth pipe;
  • Pump control means for controlling the vacuum pump, Based on the measured value of the pressure measuring means in a state where the vacuum pump is operated by the pump control means, the first pipe, the reaction cell, or a plurality of pipes connected to the first pipe or the reaction cell.
  • the “plurality of pipes connected to the first pipe or the reaction cell” means a pipe directly connected to the first pipe or the reaction cell (for example, the second pipe, the third pipe). , And the fourth pipe), and a pipe indirectly connected to the first pipe or the reaction cell via another pipe.
  • the chemiluminescent sulfur detector if it is operated for a long time, a part of the first pipe (an internal combustion pipe described later) may be deformed and blocked, and in that case, a gas flow path from the heating furnace to the vacuum pump In, the pressure difference between the upstream region of the heating furnace and the downstream region of the heating furnace becomes large. Therefore, it is desirable that the chemiluminescent sulfur detector according to the second aspect of the present invention further determine whether or not the first pipe is blocked based on such a pressure difference. ..
  • the chemiluminescent sulfur detector according to the second aspect of the present invention is The pressure measuring means further measures a pressure difference between the inside of the second pipe or the third pipe and the inside of the fourth pipe, It is desirable that the determination means further determine whether or not the first pipe is closed based on the difference.
  • the program according to the second aspect of the present invention is A heating furnace provided with a first pipe and a heating means for heating the first pipe; A reaction cell connected to the heating furnace by a second pipe, A vacuum pump connected to the reaction cell by a third pipe; A fourth pipe for introducing gas into the first pipe; Pressure measuring means for measuring the pressure inside at least one of the second pipe, the third pipe, and the fourth pipe; Pump control means for controlling the vacuum pump, A program for controlling a chemiluminescent sulfur detector having: Computer, Based on the measured value of the pressure measuring means in a state where the vacuum pump is operated by the pump control means, the first pipe, the reaction cell, or a plurality of pipes connected to the first pipe or the reaction cell. Any of the piping of, the determination means for determining whether there is a connection failure location, and the notification means for notifying the user to that effect when it is determined by the determination means that there is a connection failure location, It is characterized by functioning as.
  • the presence or absence of a connection failure of the pipe or the like is automatically determined based on the output signal from the photomultiplier tube or the measurement value of the pressure measuring means. ..
  • the user can easily know whether or not there is a connection failure in the piping, etc., so that the chemiluminescent sulfur detector is normally activated without noticing the connection failure, and the component is damaged or desired. It is possible to prevent that the performance of is not obtained.
  • FIG. 1 is a front view showing the appearance of a GC system including an SCD according to an embodiment of the present invention.
  • the figure which shows the principal part structure of said SCD.
  • the front view which shows typically the internal structure of the GC system containing the said SCD.
  • the top view which shows the internal structure of the said GC system typically.
  • Sectional drawing which shows the structure of the said SCD heating furnace vicinity.
  • the flowchart which shows the operation
  • the schematic diagram which shows another structural example of the GC system containing the SCD of this invention.
  • the schematic diagram which shows another structural example of GC system containing SCD of this invention.
  • FIG. 1 is a front view showing the external appearance of a gas chromatograph system (GC system) including a chemiluminescent sulfur detector (SCD) according to this embodiment.
  • FIG. 2 is a diagram showing a main part configuration of the SCD according to the present embodiment.
  • 3 and 4 are schematic diagrams showing the internal structure of the GC system, FIG. 3 is a front view, and FIG. 4 is a top view.
  • FIG. 5 is a cross-sectional view showing a structure near the heating furnace of the SCD.
  • the GC 100 includes a sample introduction unit 110, a column oven 120 that accommodates and heats a column 140, and a control substrate accommodation unit 130 that accommodates a control substrate (not shown) and the like.
  • a front surface of the column oven 120 is a door 121 that can be opened and closed, and a front surface of the control board housing unit 130 is provided with an operation panel 131 including a touch panel 132 and operation buttons 133.
  • sample gas a gas containing each separated sample component
  • the SCD 200 is connected to a heating furnace 210 for oxidizing and reducing a sample gas at a high temperature, a reaction cell 231 for reacting the gas passing through the heating furnace 210 with ozone, and a reaction cell 231.
  • An ozone generator 234 for controlling, a vacuum pump 236 for evacuating the reaction cell 231 and the heating furnace 210, an ozone scrubber 235 for removing ozone from the exhaust of the reaction cell 231, a flow controller 237, and a control/processing unit 300. , And a housing 240 (see FIG. 1) for housing these.
  • a vacuum gauge (hereinafter referred to as “first vacuum gauge 238”) is provided in the pipe 281 between the reaction cell 231 and the ozone scrubber 235.
  • a vacuum gauge hereinafter referred to as “second vacuum gauge 239”) is also provided on the inert gas flow path 264 described later.
  • the first vacuum gauge 238 and the second vacuum gauge 239 correspond to the “pressure measuring means” in the present invention.
  • the SCD 200 is provided at the boundary with the GC 100 and includes an interface 250 for connecting the GC 100 and the SCD 200.
  • the second vacuum gauge 239 is made up of an absolute pressure sensor
  • the first vacuum gauge 238 is made up of a differential pressure sensor.
  • the first vacuum gauge 238, which is a differential pressure sensor, has a pressure at a position where it is provided (that is, a pressure downstream of the reaction cell 231) and a pressure at a position where the second vacuum gauge 239 is provided (that is, the heating furnace 210). The pressure at the upstream side) is output as a measured value.
  • the heating furnace 210 is housed in the upper front side of the housing 240 of the SCD 200, and the reaction cell 231 and other components (not shown in FIGS. 3 and 4) are It is housed in the remaining space inside the housing 240 (for example, below or behind the heating furnace 210).
  • the upper surface of the space in which the heating furnace 210 is housed in the housing 240 of the SCD 200 is a removable top plate 241 (see FIG. 1).
  • the heating furnace 210 includes an external combustion pipe 211, an internal combustion pipe 212, an oxidant supply pipe 213, an inert gas introduction pipe 214, and a heater 215 (in the “heating means” of the present invention). Equivalent) and a housing 216 that houses them.
  • the external combustion pipe 211, the internal combustion pipe 212, the oxidant supply pipe 213, and the inert gas introduction pipe 214 correspond to the “first pipe” in the present invention.
  • the respective conduits shown in FIG. 5, that is, the outer combustion pipe 211, the inner combustion pipe 212, the oxidant supply pipe 213, the inert gas introduction pipe 214, and the pipe 251 (described later) are located on the left side in the drawing. The end that is located is called the “left end” of each conduit, and the end located on the right side in the figure is called the “right end” of each conduit.
  • the external combustion pipe 211 is arranged inside the oxidant supply pipe 213 coaxially with the oxidant supply pipe 213, and the left end of the inert gas introduction pipe 214 is inserted into the right end of the external combustion pipe 211. ..
  • the right end of the internal combustion pipe 212 is inserted into the left end of the external combustion pipe 211.
  • the external combustion pipe 211, the internal combustion pipe 212, the oxidant supply pipe 213, and the inert gas introduction pipe 214 are all made of ceramic such as alumina.
  • a connector 217 is attached to the right ends of the oxidant supply pipe 213 and the external combustion pipe 211, and the inert gas introduction pipe 214 is inserted into this connector 217.
  • the right end openings of the oxidant supply pipe 213 and the external combustion pipe 211 are closed by a connector 217, but a groove is cut on the left end surface of the connector 217, and the oxidant supply pipe is inserted through the groove. Gas can flow between 213 and the external combustion pipe 211.
  • the right end of the inert gas introduction pipe 214 projects from the housing 216 of the heating furnace 210, and is connected to the left end of the pipe 251 provided inside the interface 250 arranged at the boundary between the GC 100 and the SCD 200.
  • the interface 250 includes, in addition to the pipe 251, a heater 252 for heating the pipe 251 and a housing 253 that houses the pipe 251 and the heater 252, and is provided on the right side wall 242 of the housing 240 of the SCD 200.
  • the opening 242a and the opening 122a provided in the left side wall 122 of the housing of the GC 100 are inserted.
  • the right end of the pipe 251 projects from the housing 253 of the interface 250, and the first joint 221 is attached to the right end.
  • An inert gas flow path 264 (corresponding to the “fourth pipe” in the present invention) for supplying an inert gas (here, nitrogen) to the inert gas introduction pipe 214 is connected to the first joint 221. ing.
  • the first joint 221 is provided with a hole (not shown) for inserting the column 140 of the GC 100.
  • the end on the outlet side of the column 140 is inserted into the first joint 221 through this hole, and is inserted into the inside of the heating furnace 210, specifically, the inside of the inert gas introducing pipe 214 via the pipe 251 in the interface 250. Be done.
  • the outlet end of the column 140 is arranged at a position slightly retracted from the front end of the inert gas introduction pipe 214.
  • the left ends of the oxidant supply pipe 213, the external combustion pipe 211, and the internal combustion pipe 212 project from the housing 216 of the heating furnace 210, and further to the outside through an opening 243a provided in the left side wall 243 of the housing 240 of the SCD 200. It is protruding.
  • a second joint 222 is attached to the left end of the oxidant supply pipe 213 outside the housing 240.
  • the second joint 222 supplies the oxidant (here, oxygen) to the oxidant supply pipe 213.
  • An oxidant flow channel 265 is connected to this.
  • the external combustion pipe 211 is inserted through the second joint 222, and the third joint 223 is attached to the left end thereof.
  • a reducing agent flow passage 266 for supplying a reducing agent (here, hydrogen) to the external combustion pipe 211 is connected to the third joint 223.
  • the internal combustion pipe 212 is inserted through the third joint 223, and the left end thereof is connected to the transfer pipe 270 leading to the reaction cell 231.
  • This transfer pipe 270 is a feature that corresponds to the "second pipe" according to this invention.
  • the transfer tube 270 is made of a flexible tube, and is folded back outside the housing 240 of the SCD 200 and is opened again from another opening 243b (see FIG. 4) provided in the left side wall 243 of the housing 240. It enters the inside of the body 240 and is connected to the reaction cell 231 in the housing 240.
  • a cover 271 that can be opened and closed is provided on the outer surface of the left side wall 243 of the SCD 200 so as to cover the openings 243a and 243b.
  • the inert gas flow channel 264, the oxidant flow channel 265, and the reducing agent flow channel 266 are all connected to the flow controller 237.
  • the flow controller 237 allows the inert gas supply source 261 and the oxidant supply source 262.
  • the reducing agent supply source 263 respectively control the flow rates of the gases supplied to the inert gas passage 264, the oxidizing agent passage 265, and the reducing agent passage 266.
  • the inert gas supply source 261, the oxidant supply source 262, and the reducing agent supply source 263 may be, for example, gas cylinders filled with nitrogen, oxygen, and hydrogen, or the like.
  • the inside of the introduction pipe 214 advances from the right end to the left end.
  • nitrogen is used as the inert gas, but other inert gas (for example, helium) can be used.
  • oxygen is used as the oxidizing agent, but air can be used as the oxidizing agent.
  • the hydrogen that has reached the vicinity of the right end of the internal combustion pipe 212 is drawn into the internal combustion pipe 212 from there, and travels leftward inside the internal combustion pipe 212.
  • the sample gas introduced into the heating furnace 210 from the outlet end of the column 140 of the GC 100 is mixed with oxygen at the right end of the external combustion tube 211, and travels inside the external combustion tube 211 to the left while reaching a high temperature. It is decomposed by oxidation. At this time, when the sample component is a sulfur compound, sulfur dioxide is produced.
  • the gas containing the oxidatively decomposed sample component is drawn into the internal combustion pipe 212 together with hydrogen introduced from the vicinity of the left end of the external combustion pipe 211.
  • the oxidatively decomposed sample component contains sulfur dioxide, the sulfur dioxide reacts with hydrogen and is reduced to sulfur monoxide.
  • the inside of the heating furnace 210 is heated to 500° C. or higher (desirably 700° C. to 1200° C.) by the heater 215.
  • the gas that has passed through the internal combustion pipe 212 is introduced into the reaction cell 231 through the transfer pipe 270.
  • nitrogen is supplied from the inert gas introducing pipe 214 around the outlet end of the column 140. This nitrogen has an effect of preventing detector contamination due to deterioration of the column 140 and an effect of promoting the redox reaction in the heating furnace 210.
  • the gas sent from the transfer pipe 270 to the reaction cell 231 is mixed with ozone in the reaction cell 231.
  • chemiluminescence generated by the reaction of sulfur monoxide and ozone is detected by the photomultiplier tube 233 via the optical filter 232.
  • the ozone is generated in the ozone generator 234 using oxygen supplied from the oxidant supply source 262 via the oxygen flow path 267, and is supplied to the reaction cell 231 via the pipe 268.
  • the flow controller 237 also controls the flow rate of oxygen supplied to the ozone generator 234 via the oxygen flow path 267.
  • An ozone scrubber 235 and a vacuum pump 236 are provided downstream of the reaction cell 231, and the gas in the reaction cell 231 sucked by the vacuum pump 236 has ozone removed by the ozone scrubber 235 and is then exhausted. It is discharged to the outside.
  • the pipe 281 between the reaction cell 231 and the ozone scrubber 235 and the pipe 282 between the ozone scrubber 235 and the vacuum pump 236 correspond to the “third pipe” in the present invention.
  • the transfer pipe 270, the pipe 268, and the pipe 281 in the present embodiment correspond to “one or a plurality of pipes connected to the reaction cell” in the present invention.
  • the inert gas channel 264, the oxidant channel 265, the reducing agent channel 266, the oxygen channel 267, the pipe 268, the transfer pipe 270, the pipe 281, the pipe 282, the pipe 251, and the column 140 in the present embodiment are provided.
  • the “plurality of pipes connected to the first pipe or the reaction cell” in the present invention corresponds to the “plurality of pipes connected to the first pipe or the reaction cell” in the present invention.
  • the output signal from the photomultiplier tube 233 is sent to the control/processing unit 300, and the control/processing unit 300 determines the concentration of the sulfur compound in the sample gas based on the output signal.
  • the substance of the control/processing unit 300 is a microcomputer including a CPU, a ROM, a RAM, an input/output circuit for communicating with external peripheral devices, and the like.
  • the control program and the control parameters stored in the ROM are stored in the microcomputer.
  • processing of the output signal and operation control of each part specifically, the heater 215 of the heating furnace 210, the heater 252 of the interface 250, the high-voltage power supply 291, the ozone.
  • Control of the generator 234, the vacuum pump 236, the flow controller 237, etc. is performed.
  • the control/processing unit 300 is connected to an input device 320 including a keyboard, a mouse, a touch panel, or an operation button for inputting a user's instruction, and an output device 330 including a monitor or a speaker.
  • the voltage control unit 311, the pump control unit 312, the determination unit 313, and the notification unit 314 are shown so as to relate to the control/processing unit 300. These are functional means for realizing the characteristic operation of the SCD according to the present embodiment, and both are software-based by the CPU of the control/processing unit executing the program installed in the control/processing unit 300. Will be realized.
  • the voltage control unit 311 controls a high voltage power supply 291 that generates a drive voltage applied to the photomultiplier tube, and generates a first drive voltage (for example, 850V) applied to sample analysis as a control mode. It has a normal mode and an abnormality detection mode for generating a second drive voltage (for example, 460 V) lower than the first drive voltage.
  • the user turns off the power of the SCD and performs maintenance work, and then inputs an instruction to execute a pipe connection check from the input device 320 to the control/processing unit 300.
  • this instruction is input to the control/processing unit 300 (step 11)
  • the high voltage power supply 291 is activated in the abnormality detection mode under the control of the voltage control unit 311 (step 12).
  • the photomultiplier tube 233 is in a state in which a voltage (second drive voltage) lower than the voltage (first drive voltage) applied during sample analysis is applied.
  • the output signal of the photomultiplier tube 233 at this time is input to the control/processing unit 300, and the determination unit 313 determines whether or not the output signal is equal to or more than a predetermined threshold value (step). 13).
  • the notification unit 314 controls the output device 330 to cause a poor connection between the photomultiplier tube 233 and the reaction cell 231 or between the reaction cell 231 and the transfer tube 270, the pipe 268, or the pipe 281. This is notified to the user (step 14).
  • a notification method at this time for example, a character string for notifying the poor connection may be displayed on a monitor, or a voice for notifying the poor connection may be generated from a speaker.
  • step 13 If it is determined in step 13 that the output signal of the photomultiplier tube 233 is less than the threshold value (that is, No in the same step), it is determined in step 13 that the output signal of the photomultiplier tube 233 is greater than or equal to the threshold value. (That is, Yes at the same step)
  • the vacuum pump 236 is activated by the pump control unit 312 (step 15).
  • the inside of the reaction cell 231 and various pipes for example, the internal combustion pipe 212, the external combustion pipe 211, and the inert gas introduction pipe 214) provided in the heating furnace 210 are evacuated.
  • the output signals of the first vacuum gauge 238 and the second vacuum gauge 239 are captured by the determination unit 313, and the output signals are output. Is determined to be equal to or greater than a predetermined threshold value for each. Specifically, first, it is determined whether or not the absolute pressure measured by the second vacuum gauge 239 is equal to or higher than a predetermined first threshold value (step 17), and then the first vacuum gauge 239 measures the absolute pressure. It is determined whether the determined differential pressure is equal to or more than a second threshold value set in advance (step 19).
  • step 17 When it is determined in step 17 that the absolute pressure is equal to or higher than the first threshold value (Yes in step 17 ), it is considered that there is a defective connection point in the gas flow path, and therefore the notification unit 314 causes the output device The user is notified of this via 330 (step 18). Further, when it is determined in step 19 that the differential pressure is equal to or higher than the second threshold value (Yes in step 19 ), it is considered that the internal combustion pipe 212 is blocked, so the notification unit 314 outputs The user is notified via the device 330 (step 20). Note that step 17 and step 19 may be executed in reverse order.
  • the first vacuum gauge 238 is composed of a differential pressure sensor and the second vacuum gauge 239 is composed of an absolute pressure sensor.
  • both the first vacuum gauge 238 and the second vacuum gauge 239 are included. May be an absolute pressure sensor, and the difference between the output signal of the second vacuum gauge 239 and the output signal of the first vacuum gauge 238 may be used for the determination in step 19.
  • step 15 After the output signal of the photomultiplier tube 233 is determined to be the threshold value or more in step 13 and the user is notified in step 14, the process proceeds to step 15.
  • the series of check operations may be terminated at the time when the notification is issued.
  • the poor pipe connection and the closed pipes based on the outputs of the vacuum gauges 238 and 239 are detected.
  • the check and the notification steps 15 to 20 are performed, both may be performed in the reverse order, or only one of the two may be performed in response to a user's instruction.
  • the program for realizing the voltage control unit 311, the pump control unit 312, the determination unit 313, and the notification unit 314 is installed in the microcomputer (control/processing unit 300) built in the SCD.
  • the program may be installed in the microcomputer in the GC 100 connected to the SCD 200 (FIG. 7).
  • the PC 400 may be connected to the SCD 200 via the GC 100 as shown in FIG. 7, or may be directly connected to the SCD 200 as shown in FIG. 8.
  • the output device 330 provided in the SCD 200 is used.
  • the present invention is not limited to this, and the user can use the touch panel 132 or the operation button 133 provided on the operation panel 131 of the GC 100 or the input device 520 such as a keyboard or a mouse connected to the PC 400.
  • a display device such as a speaker (not shown) provided in the GC 100 or a liquid crystal panel included in the touch panel 132, or an output device 530 such as a liquid crystal display or a speaker provided in the PC 400 is used to inform the user.
  • the above notification may be performed.
  • the program according to the present invention is not necessarily a single program, and may be, for example, a program for controlling the SCD 200 or a part of a program for controlling the GC 100. ..
  • the present invention is applied to the SCD including the horizontal heating furnace (that is, the heating furnace including the combustion tube extending in the horizontal direction) is shown, but the invention is not limited to this, and Patent Document 2
  • the present invention can be similarly applied to an SCD including a vertical heating furnace as described in 1 (that is, a heating furnace including a combustion tube extending in the vertical direction).
  • Gas chromatograph 200 Chemiluminescent sulfur detector 210... Heating furnace 211... External combustion pipe 212... Internal combustion pipe 213... Oxidizing agent supply pipe 214... Inert gas introduction pipe 215... Heater 216... Housing 231... Reaction cell 233... Photomultiplier tube 291... High-voltage power supply 234... Ozone generator 235... Ozone scrubber 236... Vacuum pump 238... First vacuum gauge 239... Second vacuum gauge 268, 281... Piping 270... Transfer tube 300... Control/processing section 311... Voltage control unit 312... Pump control unit 313... Judgment unit 314... Notification unit 400... Personal computer

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

This sulfur chemiluminescence detector is characterized by having: a heating furnace 210; a reaction cell 231 that causes a gas passed through the heating furnace to react with ozone; a photomultiplier tube 233 that detects light from the reaction cell; a high-voltage power source 291 that generates a driving voltage to be applied to the photomultiplier tube; a voltage control unit 311 that controls the high-voltage power source and that has, as an activation mode for the high-voltage power source, a normal mode for generating a first driving voltage to be applied to sample analysis and an abnormality detection mode for generating a second driving voltage lower than the first driving voltage; a determination means 313 for determining whether there is a connection failure between the reaction cell and the photomultiplier tube or between the reaction cell and one or more pipes connected to the reaction cell, on the basis of an output signal of the photomultiplier tube when the high-voltage power source is activated in the abnormality detection mode; and a notification means 314 for giving, when the determination means determines that there is a connection failure, a notification to that effect to a user.

Description

化学発光硫黄検出器Chemiluminescent sulfur detector
 本発明は、化学発光硫黄検出器(Sulfur Chemiluminescence Detector)に関する。 The present invention relates to a chemiluminescence sulfur detector (Sulfur Chemiluminescence Detector).
 化学発光硫黄検出器(SCD)は、化学発光を利用して試料中の硫黄化合物を高感度に検出可能な検出器であり、通常、ガスクロマトグラフ(GC)と組み合わせて使用される(例えば、特許文献1を参照)。 A chemiluminescent sulfur detector (SCD) is a detector that can detect a sulfur compound in a sample with high sensitivity by using chemiluminescence, and is usually used in combination with a gas chromatograph (GC) (for example, patents). Reference 1).
 GCのカラムで分離された試料成分を含むガス(試料ガス)は、SCDに設けられた加熱炉に導入される。加熱炉は、燃焼管と該燃焼管を加熱するヒータとを備えており、試料ガスが前記燃焼管の内部を通過する過程で酸化され、該試料ガス中の硫黄化合物から二酸化硫黄(SO)が生成される。更に、このSOが前記燃焼管の内部を通過する過程で還元されてSOから一酸化硫黄(SO)が生成される。このSOは、加熱炉の後段に設けられた反応セルに導入され、該反応セル内でオゾン(O)と混合される。その結果、SOとOの反応によって二酸化硫黄の励起種(SO )が生成される。このSO が化学発光を経て基底状態に戻る際の発光強度が、光検出器によって検出され、該発光強度から前記試料ガス中に含まれる硫黄化合物が定量される。 The gas containing the sample components (sample gas) separated by the GC column is introduced into the heating furnace provided in the SCD. The heating furnace includes a combustion tube and a heater that heats the combustion tube. The sample gas is oxidized in the process of passing through the inside of the combustion tube, and sulfur dioxide (SO 2 ) is converted from a sulfur compound in the sample gas. Is generated. Further, this SO 2 is reduced in the process of passing through the inside of the combustion tube, and sulfur monoxide (SO) is generated from SO 2 . This SO is introduced into a reaction cell provided in the latter stage of the heating furnace and mixed with ozone (O 3 ) in the reaction cell. As a result, the excited species of sulfur dioxide (SO 2 * ) is generated by the reaction between SO and O 3 . The emission intensity when this SO 2 * returns to the ground state via chemiluminescence is detected by a photodetector, and the sulfur compound contained in the sample gas is quantified from the emission intensity.
特開2015-59876号公報JP 2015-59876 JP
 SCDは、メンテナンス作業の際などに、配管類が取り外されることがある。取り外した配管類はメンテナンス作業等の終了後に、元通り組み付けられるが、その際、配管の接続部の締め付けが不十分な箇所(以下、「接続不良箇所」とよぶ)が生じる場合がある。このような接続不良箇所に気付かずにSCDを起動させると、想定している性能が得られなかったり、部品が損傷したりするおそれがある。 The piping of the SCD may be removed during maintenance work, etc. The removed pipes are reassembled after the completion of maintenance work, etc., but at that time, there may be a part where the connection part of the pipe is insufficiently tightened (hereinafter referred to as a “connection failure part”). If the SCD is started without noticing such a defective connection, the expected performance may not be obtained or the parts may be damaged.
 例えば、SCDの反応セルでの化学発光で生じた光は、光学フィルタを経て光電子増倍管に入射するが、この光の進路を構成する配管等に接続不良箇所があると、当該箇所から漏れ込んだ外光が光電子増倍管に入射し、光電子増倍管内に大電流が流れて破損するおそれがある。 For example, the light generated by the chemiluminescence in the reaction cell of the SCD enters the photomultiplier tube through the optical filter, but if there is a connection failure part in the pipe or the like that constitutes the path of this light, it will leak from that part. The extraneous light that enters may enter the photomultiplier tube, and a large current may flow into the photomultiplier tube, resulting in damage.
 また、SCDには、上記加熱炉の燃焼管から反応セルを経て真空ポンプに至るガスの流路があり、SCDの作動時には、真空ポンプによって該流路中のガスが吸引されている。こうしたガスの流路を構成する配管に接続不良箇所があると、当該箇所から外気が流路中に漏れ込んで加熱炉や反応セル内での反応が妨げられ、所望の性能が達成できなくなる場合がある。 In addition, the SCD has a gas flow path from the combustion tube of the heating furnace through the reaction cell to the vacuum pump, and the gas in the flow path is sucked by the vacuum pump when the SCD operates. When there is a poor connection in the piping that constitutes the flow path of such gas, the outside air leaks into the flow path from the location and the reaction in the heating furnace or reaction cell is hindered, and the desired performance cannot be achieved. There is.
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、SCDに含まれる配管等に接続不良箇所があるか否かをユーザが容易に知ることができるようにすることにある。 The present invention has been made in view of the above points, and an object of the present invention is to allow a user to easily know whether or not there is a defective connection portion in a pipe or the like included in an SCD. Especially.
 上記課題を解決するために成された本発明の第1の態様に係る化学発光硫黄検出器(SCD)は、
 加熱炉と、
 前記加熱炉を通過したガスをオゾンと反応させる反応セルと、
 前記反応セルからの光を検出する光電子増倍管と、
 前記光電子増倍管に印加する駆動電圧を発生する電源と、
 前記電源を制御するものであって、該電源の起動モードとして、試料分析に適用される第1の駆動電圧を発生させる通常モードと、前記第1の駆動電圧よりも低い第2の駆動電圧を発生させる異常検知モードとを有する電圧制御手段と、
 前記電源を前記異常検知モードで起動させた際における、前記光電子増倍管の出力信号に基づいて、前記反応セルと前記光電子増倍管との間、又は前記反応セルと該反応セルに接続された1つ若しくは複数の配管のいずれかとの間に接続不良があるか否かを判定する判定手段と、
 前記判定手段により前記接続不良があると判定された場合に、その旨をユーザに通知する通知手段と、
を有することを特徴としている。
A chemiluminescent sulfur detector (SCD) according to a first aspect of the present invention made to solve the above problems is
Heating furnace,
A reaction cell for reacting the gas passing through the heating furnace with ozone,
A photomultiplier tube for detecting light from the reaction cell,
A power supply for generating a driving voltage applied to the photomultiplier tube,
The power supply is controlled, and a normal mode for generating a first drive voltage applied to sample analysis and a second drive voltage lower than the first drive voltage are used as start-up modes of the power supply. A voltage control means having an abnormality detection mode to be generated,
When the power supply is started in the abnormality detection mode, based on the output signal of the photomultiplier tube, connected between the reaction cell and the photomultiplier tube, or the reaction cell and the reaction cell Determination means for determining whether or not there is a poor connection with any one of the pipes or the plurality of pipes;
When the determination unit determines that there is a poor connection, a notification unit that notifies the user of that fact,
It is characterized by having.
 上記の通り、本発明の第1の態様に係る化学発光硫黄検出器では、光電子増倍管の出力信号に基づいて配管の接続不良の有無が判定される。光電子増倍管は、過大な光が入射すると内部に大電流が流れて破損するおそれがあるが、本発明の第1の態様に係る化学発光硫黄検出器は、これを防ぐために、光電子増倍管に印加する駆動電圧を試料の分析時よりも抑えた異常検知モードを有している。異常検知モードでは、光電子増倍管における電流増幅率が小さくなるため、過大な光が入射した場合でも光電子増倍管に大電流が流れるのを防止できる。そのため、上記本発明の第1の態様に係る化学発光硫黄検出器によれば、接続不良によって外光が漏れ込んでいる場合であっても光電子増倍管に損傷を与えることなく上記判定を行うことができる。 As described above, in the chemiluminescent sulfur detector according to the first aspect of the present invention, the presence or absence of poor connection of the pipe is determined based on the output signal of the photomultiplier tube. The photomultiplier tube may be damaged by a large current flowing inside when excessive light is incident, but the chemiluminescent sulfur detector according to the first aspect of the present invention uses the photomultiplier to prevent this. It has an anomaly detection mode in which the drive voltage applied to the tube is suppressed compared to when the sample is analyzed. In the abnormality detection mode, since the current amplification factor in the photomultiplier tube becomes small, it is possible to prevent a large current from flowing through the photomultiplier tube even when excessive light is incident. Therefore, according to the chemiluminescent sulfur detector according to the first aspect of the present invention, the above determination is performed without damaging the photomultiplier tube even when external light is leaking due to poor connection. be able to.
 なお、前記第1の電圧は500V以上とし、前記第2の電圧は500V未満とすることが望ましい。 Note that it is desirable that the first voltage is 500V or more and the second voltage is less than 500V.
 また、本発明の第1の態様に係るプログラムは、
 加熱炉と、
 前記加熱炉を通過したガスをオゾンと反応させる反応セルと、
 前記反応セルからの光を検出する光電子増倍管と、
 前記光電子増倍管に印加する駆動電圧を発生する電源と、
 を有する化学発光硫黄検出器を制御するプログラムであって、
 コンピュータを、
 前記電源を制御するものであり、該電源の起動モードとして、試料分析に適用される第1の駆動電圧を発生させる通常モードと、前記第1の駆動電圧よりも低い第2の駆動電圧を発生させる異常検知モードとを有する電圧制御手段、
 前記電源を前記異常検知モードで起動させた際における、前記光電子増倍管の出力信号に基づいて、前記反応セルと前記光電子増倍管との間、又は前記反応セルと該反応セルに接続された1つ若しくは複数の配管のいずれかとの間に接続不良があるか否かを判定する判定手段、及び
 前記判定手段により前記接続不良があると判定された場合に、その旨をユーザに通知する通知手段、
 として機能させることを特徴としている。
Further, the program according to the first aspect of the present invention is
Heating furnace,
A reaction cell for reacting the gas passing through the heating furnace with ozone,
A photomultiplier tube for detecting light from the reaction cell,
A power supply for generating a driving voltage applied to the photomultiplier tube,
A program for controlling a chemiluminescent sulfur detector having:
Computer,
The power supply is controlled, and as a start-up mode of the power supply, a normal mode for generating a first drive voltage applied to sample analysis and a second drive voltage lower than the first drive voltage are generated. A voltage control means having an abnormality detection mode,
When the power supply is started in the abnormality detection mode, based on the output signal of the photomultiplier tube, connected between the reaction cell and the photomultiplier tube, or the reaction cell and the reaction cell In addition, when the determination unit determines whether there is a connection failure with one or a plurality of pipes, and the determination unit determines that there is a connection failure, the user is notified of that fact. Notification means,
It is characterized by functioning as.
 また、上記課題を解決するために成された本発明の第2の態様に係る化学発光硫黄検出器は、
 第1の配管及び該第1の配管を加熱する加熱手段を備えた加熱炉と、
 前記加熱炉と第2の配管によって接続された反応セルと、
 前記反応セルと第3の配管によって接続された真空ポンプと、
 前記第1の配管にガスを導入する第4の配管と、
 前記第2の配管、前記第3の配管、又は前記第4の配管の少なくともいずれかの内部における圧力を測定する圧力測定手段と、
 前記真空ポンプを制御するポンプ制御手段と、
 前記ポンプ制御手段によって前記真空ポンプを稼働させた状態における前記圧力測定手段の測定値に基づいて、前記第1の配管、前記反応セル、又は前記第1の配管若しくは前記反応セルに接続された複数の配管のいずれか、に接続不良箇所があるか否かを判定する判定手段と、
 前記判定手段により前記接続不良箇所があると判定された場合にその旨をユーザに通知する通知手段と、
 を有することを特徴としている。
Further, a chemiluminescent sulfur detector according to a second aspect of the present invention made to solve the above-mentioned problems,
A heating furnace provided with a first pipe and a heating means for heating the first pipe;
A reaction cell connected to the heating furnace by a second pipe,
A vacuum pump connected to the reaction cell by a third pipe;
A fourth pipe for introducing gas into the first pipe;
Pressure measuring means for measuring the pressure inside at least one of the second pipe, the third pipe, and the fourth pipe;
Pump control means for controlling the vacuum pump,
Based on the measured value of the pressure measuring means in a state where the vacuum pump is operated by the pump control means, the first pipe, the reaction cell, or a plurality of pipes connected to the first pipe or the reaction cell. Any of the piping of, the determination means for determining whether there is a defective connection point,
When the determination unit determines that there is the defective connection portion, a notification unit that notifies the user of that fact,
It is characterized by having.
 ここで、「前記第1の配管若しくは前記反応セルに接続された複数の配管」には、第1の配管若しくは反応セルに直接接続された配管(例えば前記第2の配管、前記第3の配管、及び第4の配管)だけでなく、他の配管を介して間接的に第1の配管若しくは反応セルに接続された配管も含まれる。 Here, the “plurality of pipes connected to the first pipe or the reaction cell” means a pipe directly connected to the first pipe or the reaction cell (for example, the second pipe, the third pipe). , And the fourth pipe), and a pipe indirectly connected to the first pipe or the reaction cell via another pipe.
 化学発光硫黄検出器では、長時間稼動させると前記第1の配管の一部(後述する内部燃焼管)が変形して閉塞する場合があり、その場合は加熱炉から真空ポンプに至るガス流路において、加熱炉の上流側の領域と加熱炉の下流側の領域との圧力差が大きくなる。そこで、前記本発明の第2の態様に係る化学発光硫黄検出器は、更に、このような圧力差に基づいて前記第1の配管が閉塞しているか否かを判定するものとすることが望ましい。 In the chemiluminescent sulfur detector, if it is operated for a long time, a part of the first pipe (an internal combustion pipe described later) may be deformed and blocked, and in that case, a gas flow path from the heating furnace to the vacuum pump In, the pressure difference between the upstream region of the heating furnace and the downstream region of the heating furnace becomes large. Therefore, it is desirable that the chemiluminescent sulfur detector according to the second aspect of the present invention further determine whether or not the first pipe is blocked based on such a pressure difference. ..
 すなわち、前記本発明の第2の態様に係る化学発光硫黄検出器は、
 前記圧力測定手段が、更に、前記第2の配管又は前記第3の配管の内部と、前記第4の配管の内部とにおける圧力の差を測定するものであって、
 前記判定手段が、更に、前記差に基づいて前記第1の配管が閉塞しているか否かを判定するものであることが望ましい。
That is, the chemiluminescent sulfur detector according to the second aspect of the present invention is
The pressure measuring means further measures a pressure difference between the inside of the second pipe or the third pipe and the inside of the fourth pipe,
It is desirable that the determination means further determine whether or not the first pipe is closed based on the difference.
 また、本発明の第2の態様に係るプログラムは、
 第1の配管及び該第1の配管を加熱する加熱手段を備えた加熱炉と、
 前記加熱炉と第2の配管によって接続された反応セルと、
 前記反応セルと第3の配管によって接続された真空ポンプと、
 前記第1の配管にガスを導入する第4の配管と、
 前記第2の配管、前記第3の配管、又は前記第4の配管の少なくともいずれかの内部における圧力を測定する圧力測定手段と、
 前記真空ポンプを制御するポンプ制御手段と、
 を有する化学発光硫黄検出器を制御するプログラムであって、
 コンピュータを、
 前記ポンプ制御手段によって前記真空ポンプを稼働させた状態における前記圧力測定手段の測定値に基づいて、前記第1の配管、前記反応セル、又は前記第1の配管若しくは前記反応セルに接続された複数の配管のいずれか、に接続不良箇所があるか否かを判定する判定手段、及び
 前記判定手段により前記接続不良箇所があると判定された場合にその旨をユーザに通知する通知手段、
 として機能させることを特徴としている。
The program according to the second aspect of the present invention is
A heating furnace provided with a first pipe and a heating means for heating the first pipe;
A reaction cell connected to the heating furnace by a second pipe,
A vacuum pump connected to the reaction cell by a third pipe;
A fourth pipe for introducing gas into the first pipe;
Pressure measuring means for measuring the pressure inside at least one of the second pipe, the third pipe, and the fourth pipe;
Pump control means for controlling the vacuum pump,
A program for controlling a chemiluminescent sulfur detector having:
Computer,
Based on the measured value of the pressure measuring means in a state where the vacuum pump is operated by the pump control means, the first pipe, the reaction cell, or a plurality of pipes connected to the first pipe or the reaction cell. Any of the piping of, the determination means for determining whether there is a connection failure location, and the notification means for notifying the user to that effect when it is determined by the determination means that there is a connection failure location,
It is characterized by functioning as.
 以上の通り、本発明に係る化学発光硫黄検出器によれば、光電子増倍管からの出力信号又は圧力測定手段の測定値に基づいて、配管等の接続不良の有無が自動的に判定される。これにより、配管等に接続不良があるか否かをユーザが容易に知ることができるため、当該接続不良に気づかずに化学発光硫黄検出器を通常起動させてしまい、部品を損傷させたり、所望の性能が得られなかったりするのを防ぐことができる。 As described above, according to the chemiluminescent sulfur detector of the present invention, the presence or absence of a connection failure of the pipe or the like is automatically determined based on the output signal from the photomultiplier tube or the measurement value of the pressure measuring means. .. As a result, the user can easily know whether or not there is a connection failure in the piping, etc., so that the chemiluminescent sulfur detector is normally activated without noticing the connection failure, and the component is damaged or desired. It is possible to prevent that the performance of is not obtained.
本発明の一実施形態によるSCDを備えたGCシステムの外観を示す正面図。1 is a front view showing the appearance of a GC system including an SCD according to an embodiment of the present invention. 上記SCDの要部構成を示す図。The figure which shows the principal part structure of said SCD. 前記SCDを含んだGCシステムの内部構成を模式的に示す正面図。The front view which shows typically the internal structure of the GC system containing the said SCD. 前記GCシステムの内部構成を模式的に示す上面図。The top view which shows the internal structure of the said GC system typically. 前記SCDの加熱炉付近の構成を示す断面図。Sectional drawing which shows the structure of the said SCD heating furnace vicinity. 上記SCDによる接続不良チェック時の動作を示すフローチャート。The flowchart which shows the operation|movement at the time of the connection failure check by said SCD. 本発明のSCDを含んだGCシステムの別の構成例を示す模式図。The schematic diagram which shows another structural example of the GC system containing the SCD of this invention. 本発明のSCDを含んだGCシステムの更に別の構成例を示す模式図。The schematic diagram which shows another structural example of GC system containing SCD of this invention.
 以下、本発明を実施するための構成について図面を参照しつつ説明する。図1は、本実施形態による化学発光硫黄検出器(SCD)を備えたガスクロマトグラフシステム(GCシステム)の外観を示す正面図である。図2は、本実施形態によるSCDの要部構成を示す図である。図3及び図4は、前記GCシステムの内部構造を示す模式図であり、図3は正面図、図4は上面図である。図5は、前記SCDの加熱炉付近の構成を示す断面図である。 A configuration for implementing the present invention will be described below with reference to the drawings. FIG. 1 is a front view showing the external appearance of a gas chromatograph system (GC system) including a chemiluminescent sulfur detector (SCD) according to this embodiment. FIG. 2 is a diagram showing a main part configuration of the SCD according to the present embodiment. 3 and 4 are schematic diagrams showing the internal structure of the GC system, FIG. 3 is a front view, and FIG. 4 is a top view. FIG. 5 is a cross-sectional view showing a structure near the heating furnace of the SCD.
 GC100は、試料導入部110と、カラム140を収容して加熱するカラムオーブン120と、制御基板(図示略)等が収容された制御基板収容部130とを備えている。カラムオーブン120の前面は開閉可能な扉121となっており、制御基板収容部130の前面にはタッチパネル132及び操作ボタン133を備えた操作パネル131が設けられている。 The GC 100 includes a sample introduction unit 110, a column oven 120 that accommodates and heats a column 140, and a control substrate accommodation unit 130 that accommodates a control substrate (not shown) and the like. A front surface of the column oven 120 is a door 121 that can be opened and closed, and a front surface of the control board housing unit 130 is provided with an operation panel 131 including a touch panel 132 and operation buttons 133.
 GC100では、試料導入部110においてキャリアガスの流れに試料が導入され、該試料を含むキャリアガスが、カラムオーブン120に収容されたカラム140の入口端に導入される。前記試料は、カラム140を通過する過程で成分毎に分離され、分離された各試料成分を含むガス(以下「試料ガス」とよぶ)が順次カラム140の出口端から溶出する。 In the GC 100, the sample is introduced into the flow of the carrier gas in the sample introduction unit 110, and the carrier gas containing the sample is introduced into the inlet end of the column 140 housed in the column oven 120. The sample is separated into components as it passes through the column 140, and a gas containing each separated sample component (hereinafter referred to as “sample gas”) is sequentially eluted from the outlet end of the column 140.
 SCD200は、図2に示すように、高温下で試料ガスを酸化還元反応させるための加熱炉210と、加熱炉210を通過したガスをオゾンと反応させる反応セル231と、反応セル231に接続され、反応セル231内での反応による化学発光を検出するための光電子増倍管233と、光電子増倍管233に印加する駆動電圧を発生する高圧電源291と、反応セル231に供給するオゾンを生成するオゾン発生器234と、反応セル231及び加熱炉210内を真空引きする真空ポンプ236と、反応セル231の排気からオゾンを除去するオゾンスクラバ235と、フローコントローラ237と、制御/処理部300と、これらを収容する筐体240(図1参照)とを備えている。なお、反応セル231とオゾンスクラバ235との間の配管281には真空計(以下「第1真空計238」とよぶ)が設けられている。また、後述する不活性ガス流路264上にも真空計(以下「第2真空計239」とよぶ)が設けられている。なお、これらの第1真空計238及び第2真空計239が本発明における「圧力測定手段」に相当する。更に、SCD200は、GC100との境界に配置されて、GC100とSCD200とを連結するためのインターフェース250を備えている。 As shown in FIG. 2, the SCD 200 is connected to a heating furnace 210 for oxidizing and reducing a sample gas at a high temperature, a reaction cell 231 for reacting the gas passing through the heating furnace 210 with ozone, and a reaction cell 231. , A photomultiplier tube 233 for detecting chemiluminescence due to a reaction in the reaction cell 231, a high-voltage power source 291 for generating a driving voltage applied to the photomultiplier tube 233, and ozone for supplying to the reaction cell 231. An ozone generator 234 for controlling, a vacuum pump 236 for evacuating the reaction cell 231 and the heating furnace 210, an ozone scrubber 235 for removing ozone from the exhaust of the reaction cell 231, a flow controller 237, and a control/processing unit 300. , And a housing 240 (see FIG. 1) for housing these. A vacuum gauge (hereinafter referred to as “first vacuum gauge 238”) is provided in the pipe 281 between the reaction cell 231 and the ozone scrubber 235. Further, a vacuum gauge (hereinafter referred to as “second vacuum gauge 239”) is also provided on the inert gas flow path 264 described later. The first vacuum gauge 238 and the second vacuum gauge 239 correspond to the “pressure measuring means” in the present invention. Further, the SCD 200 is provided at the boundary with the GC 100 and includes an interface 250 for connecting the GC 100 and the SCD 200.
 なお、本実施形態では、第2真空計239を絶対圧センサから成るものとし、第1真空計238を差圧センサから成るものとする。なお、差圧センサである第1真空計238は、自身が設けられた位置における圧力(すなわち反応セル231の下流における圧力)と第2真空計239が設けられた位置における圧力(すなわち加熱炉210の上流における圧力)との差を測定値として出力する。 In the present embodiment, the second vacuum gauge 239 is made up of an absolute pressure sensor, and the first vacuum gauge 238 is made up of a differential pressure sensor. The first vacuum gauge 238, which is a differential pressure sensor, has a pressure at a position where it is provided (that is, a pressure downstream of the reaction cell 231) and a pressure at a position where the second vacuum gauge 239 is provided (that is, the heating furnace 210). The pressure at the upstream side) is output as a measured value.
 図3及び図4に示すように、SCD200において加熱炉210は、SCD200の筐体240の上部前側に収容されており、反応セル231及びその他の構成要素(図3及び図4では省略)は、筐体240内部の残りの空間(例えば加熱炉210の下方や後方)に収容されている。なお、SCD200の筐体240のうち、加熱炉210が収容されている空間の上面は取外し可能な天板241(図1参照)となっている。 As shown in FIGS. 3 and 4, in the SCD 200, the heating furnace 210 is housed in the upper front side of the housing 240 of the SCD 200, and the reaction cell 231 and other components (not shown in FIGS. 3 and 4) are It is housed in the remaining space inside the housing 240 (for example, below or behind the heating furnace 210). The upper surface of the space in which the heating furnace 210 is housed in the housing 240 of the SCD 200 is a removable top plate 241 (see FIG. 1).
 加熱炉210は、図5に示すように、外部燃焼管211と、内部燃焼管212と、酸化剤供給管213と、不活性ガス導入管214と、ヒータ215(本発明における「加熱手段」に相当)と、これらを収容するハウジング216とを備えている。なお、これらの外部燃焼管211、内部燃焼管212、酸化剤供給管213、及び不活性ガス導入管214が本発明における「第1の配管」に相当する。以下、図5に示された各管路、すなわち外部燃焼管211、内部燃焼管212、酸化剤供給管213、不活性ガス導入管214、及び配管251(後述)の、図中の左側に位置する端部を各管路の「左端」とよび、図中右側に位置する端部を各管路の「右端」とよぶ。 As shown in FIG. 5, the heating furnace 210 includes an external combustion pipe 211, an internal combustion pipe 212, an oxidant supply pipe 213, an inert gas introduction pipe 214, and a heater 215 (in the “heating means” of the present invention). Equivalent) and a housing 216 that houses them. The external combustion pipe 211, the internal combustion pipe 212, the oxidant supply pipe 213, and the inert gas introduction pipe 214 correspond to the “first pipe” in the present invention. Hereinafter, the respective conduits shown in FIG. 5, that is, the outer combustion pipe 211, the inner combustion pipe 212, the oxidant supply pipe 213, the inert gas introduction pipe 214, and the pipe 251 (described later) are located on the left side in the drawing. The end that is located is called the “left end” of each conduit, and the end located on the right side in the figure is called the “right end” of each conduit.
 外部燃焼管211は、酸化剤供給管213の内部に、酸化剤供給管213と同軸に配置されており、不活性ガス導入管214は、その左端が外部燃焼管211の右端に挿入されている。また、内部燃焼管212は、その右端が外部燃焼管211の左端に挿入されている。なお、外部燃焼管211、内部燃焼管212、酸化剤供給管213、及び不活性ガス導入管214は、いずれもアルミナなどのセラミックで構成されている。 The external combustion pipe 211 is arranged inside the oxidant supply pipe 213 coaxially with the oxidant supply pipe 213, and the left end of the inert gas introduction pipe 214 is inserted into the right end of the external combustion pipe 211. .. The right end of the internal combustion pipe 212 is inserted into the left end of the external combustion pipe 211. The external combustion pipe 211, the internal combustion pipe 212, the oxidant supply pipe 213, and the inert gas introduction pipe 214 are all made of ceramic such as alumina.
 酸化剤供給管213及び外部燃焼管211の右端には、コネクタ217が取り付けられ、不活性ガス導入管214はこのコネクタ217に挿通されている。なお、酸化剤供給管213及び外部燃焼管211の右端の開口部はコネクタ217によって閉鎖されているが、コネクタ217の左端面には溝が切られており、該溝を介して酸化剤供給管213と外部燃焼管211の間で気体の流通が可能となっている。不活性ガス導入管214の右端は加熱炉210のハウジング216から突出しており、GC100とSCD200の境界に配置されたインターフェース250の内部に設けられた配管251の左端に接続されている。なお、インターフェース250は、配管251に加えて、これを加熱するためのヒータ252と、配管251及びヒータ252を収容するハウジング253を備えており、SCD200の筐体240の右側壁242に設けられた開口242a及びGC100の筐体の左側壁122に設けられた開口122aに挿通されている。配管251の右端はインターフェース250のハウジング253から突出しており、該右端には第1ジョイント221が取り付けられている。この第1ジョイント221には、不活性ガス導入管214に不活性ガス(ここでは窒素)を供給するための不活性ガス流路264(本発明における「第4の配管」に相当)が接続されている。なお、第1ジョイント221には、GC100のカラム140を挿通するための孔(図示略)が設けられている。カラム140の出口側の端部は、この孔から第1ジョイント221に挿通され、インターフェース250内の配管251を経て加熱炉210の内部、具体的には、不活性ガス導入管214の内部に差し込まれる。このとき、カラム140の出口端は、不活性ガス導入管214の前端よりも僅かに後退した位置に配置される。 A connector 217 is attached to the right ends of the oxidant supply pipe 213 and the external combustion pipe 211, and the inert gas introduction pipe 214 is inserted into this connector 217. The right end openings of the oxidant supply pipe 213 and the external combustion pipe 211 are closed by a connector 217, but a groove is cut on the left end surface of the connector 217, and the oxidant supply pipe is inserted through the groove. Gas can flow between 213 and the external combustion pipe 211. The right end of the inert gas introduction pipe 214 projects from the housing 216 of the heating furnace 210, and is connected to the left end of the pipe 251 provided inside the interface 250 arranged at the boundary between the GC 100 and the SCD 200. The interface 250 includes, in addition to the pipe 251, a heater 252 for heating the pipe 251 and a housing 253 that houses the pipe 251 and the heater 252, and is provided on the right side wall 242 of the housing 240 of the SCD 200. The opening 242a and the opening 122a provided in the left side wall 122 of the housing of the GC 100 are inserted. The right end of the pipe 251 projects from the housing 253 of the interface 250, and the first joint 221 is attached to the right end. An inert gas flow path 264 (corresponding to the “fourth pipe” in the present invention) for supplying an inert gas (here, nitrogen) to the inert gas introduction pipe 214 is connected to the first joint 221. ing. Note that the first joint 221 is provided with a hole (not shown) for inserting the column 140 of the GC 100. The end on the outlet side of the column 140 is inserted into the first joint 221 through this hole, and is inserted into the inside of the heating furnace 210, specifically, the inside of the inert gas introducing pipe 214 via the pipe 251 in the interface 250. Be done. At this time, the outlet end of the column 140 is arranged at a position slightly retracted from the front end of the inert gas introduction pipe 214.
 一方、酸化剤供給管213、外部燃焼管211、及び内部燃焼管212の左端は、加熱炉210のハウジング216から突出し、更にSCD200の筐体240の左側壁243に設けられた開口243aから外部に突出している。筐体240の外部において、酸化剤供給管213の左端には、第2ジョイント222が取り付けられており、この第2ジョイント222には、酸化剤供給管213に酸化剤(ここでは酸素)を供給するための酸化剤流路265が接続されている。外部燃焼管211は、この第2ジョイント222に挿通されており、その左端には第3ジョイント223が取り付けられている。この第3ジョイント223には、外部燃焼管211に還元剤(ここでは水素)を供給するための還元剤流路266が接続されている。内部燃焼管212は、この第3ジョイント223に挿通されており、その左端は反応セル231に至る移送管270に接続されている。この移送管270が本発明における「第2の配管」に相当する。 On the other hand, the left ends of the oxidant supply pipe 213, the external combustion pipe 211, and the internal combustion pipe 212 project from the housing 216 of the heating furnace 210, and further to the outside through an opening 243a provided in the left side wall 243 of the housing 240 of the SCD 200. It is protruding. A second joint 222 is attached to the left end of the oxidant supply pipe 213 outside the housing 240. The second joint 222 supplies the oxidant (here, oxygen) to the oxidant supply pipe 213. An oxidant flow channel 265 is connected to this. The external combustion pipe 211 is inserted through the second joint 222, and the third joint 223 is attached to the left end thereof. A reducing agent flow passage 266 for supplying a reducing agent (here, hydrogen) to the external combustion pipe 211 is connected to the third joint 223. The internal combustion pipe 212 is inserted through the third joint 223, and the left end thereof is connected to the transfer pipe 270 leading to the reaction cell 231. This transfer pipe 270 is a feature that corresponds to the "second pipe" according to this invention.
 なお、移送管270は可撓性のチューブで構成されており、SCD200の筐体240の外部で折り返して筐体240の左側壁243に設けられた別の開口243b(図4参照)から再び筐体240の内部に進入し、筐体240内の反応セル231に接続されている。なお、図5では図示を省略しているが、SCD200の左側壁243の外面には、開口243a、243bを覆う位置に開閉可能なカバー271が設けられている。 The transfer tube 270 is made of a flexible tube, and is folded back outside the housing 240 of the SCD 200 and is opened again from another opening 243b (see FIG. 4) provided in the left side wall 243 of the housing 240. It enters the inside of the body 240 and is connected to the reaction cell 231 in the housing 240. Although not shown in FIG. 5, a cover 271 that can be opened and closed is provided on the outer surface of the left side wall 243 of the SCD 200 so as to cover the openings 243a and 243b.
 不活性ガス流路264、酸化剤流路265、及び還元剤流路266は、いずれもフローコントローラ237に接続されており、このフローコントローラ237によって、不活性ガス供給源261、酸化剤供給源262、及び還元剤供給源263からそれぞれ不活性ガス流路264、酸化剤流路265、及び還元剤流路266に供給されるガスの流量が制御される。なお、不活性ガス供給源261、酸化剤供給源262、及び還元剤供給源263は、例えば、それぞれ窒素、酸素、及び水素を充填したガスボンベ等から成るものとすることができる。 The inert gas flow channel 264, the oxidant flow channel 265, and the reducing agent flow channel 266 are all connected to the flow controller 237. The flow controller 237 allows the inert gas supply source 261 and the oxidant supply source 262. , And the reducing agent supply source 263 respectively control the flow rates of the gases supplied to the inert gas passage 264, the oxidizing agent passage 265, and the reducing agent passage 266. The inert gas supply source 261, the oxidant supply source 262, and the reducing agent supply source 263 may be, for example, gas cylinders filled with nitrogen, oxygen, and hydrogen, or the like.
 不活性ガス供給源261からフローコントローラ237を経て不活性ガス流路264に供給された窒素は、第1ジョイント221、及び配管251を経て不活性ガス導入管214の右端に流入し、不活性ガス導入管214の内部を右端から左端に向かって進行する。なお、本実施例では不活性ガスとして窒素を使用するが、その他の不活性ガス(例えばヘリウム)を使用することも可能である。 Nitrogen supplied from the inert gas supply source 261 to the inert gas flow path 264 via the flow controller 237 flows into the right end of the inert gas introduction pipe 214 via the first joint 221 and the pipe 251 and is supplied with the inert gas. The inside of the introduction pipe 214 advances from the right end to the left end. In this embodiment, nitrogen is used as the inert gas, but other inert gas (for example, helium) can be used.
 酸化剤供給源262からフローコントローラ237を経て酸化剤流路265に供給された酸素は、第2ジョイント222を介して酸化剤供給管213の左端に流入し、酸化剤供給管213の内壁と外部燃焼管211の外壁との間の空間を右方に向かって進行する。酸化剤供給管213の右端に達した酸素は、コネクタ217の左端面に形成された溝(上述)から外部燃焼管211の内部に流入し、外部燃焼管211内を左方に向かって進行する。なお、本実施形態では、酸化剤として酸素を使用するものとするが、酸化剤として空気を使用することもできる。 Oxygen supplied from the oxidant supply source 262 to the oxidant flow path 265 via the flow controller 237 flows into the left end of the oxidant supply pipe 213 via the second joint 222, and the inner wall of the oxidant supply pipe 213 and the outside Proceed to the right in the space between the outer wall of the combustion tube 211. The oxygen reaching the right end of the oxidant supply pipe 213 flows into the inside of the external combustion pipe 211 from the groove (described above) formed in the left end surface of the connector 217, and travels leftward in the external combustion pipe 211. .. In this embodiment, oxygen is used as the oxidizing agent, but air can be used as the oxidizing agent.
 還元剤供給源263からフローコントローラ237を経て還元剤流路266に供給された水素は、第3ジョイント223を経て外部燃焼管211の左端に流入し、外部燃焼管211の内壁と内部燃焼管212の外壁との間の空間を右方に向かって進行する。内部燃焼管212の右端付近まで到達した水素は、そこから内部燃焼管212の中に引き込まれ、内部燃焼管212の内部を左方に向かって進行する。 Hydrogen supplied from the reducing agent supply source 263 to the reducing agent flow path 266 via the flow controller 237 flows into the left end of the external combustion pipe 211 via the third joint 223, and the inner wall of the external combustion pipe 211 and the internal combustion pipe 212 Proceed to the right in the space between the outer wall of the. The hydrogen that has reached the vicinity of the right end of the internal combustion pipe 212 is drawn into the internal combustion pipe 212 from there, and travels leftward inside the internal combustion pipe 212.
 GC100のカラム140の出口端から加熱炉210の内部に導入された試料ガスは、外部燃焼管211の右端にて酸素と混合され、外部燃焼管211の内部を左に向かって進行しつつ、高温で酸化分解される。このとき、試料成分が硫黄化合物である場合には、二酸化硫黄が生成される。酸化分解された試料成分を含むガスは、外部燃焼管211の左端付近から導入される水素と共に内部燃焼管212に引き込まれる。前記酸化分解された試料成分に二酸化硫黄が含まれる場合は、ここで二酸化硫黄が水素と反応して一酸化硫黄に還元される。以上の酸化還元反応を促進するため、加熱炉210の内部は、ヒータ215によって500℃以上(望ましくは700℃~1200℃)に加熱される。内部燃焼管212を通過したガスは、移送管270を通じて反応セル231に導入される。 The sample gas introduced into the heating furnace 210 from the outlet end of the column 140 of the GC 100 is mixed with oxygen at the right end of the external combustion tube 211, and travels inside the external combustion tube 211 to the left while reaching a high temperature. It is decomposed by oxidation. At this time, when the sample component is a sulfur compound, sulfur dioxide is produced. The gas containing the oxidatively decomposed sample component is drawn into the internal combustion pipe 212 together with hydrogen introduced from the vicinity of the left end of the external combustion pipe 211. When the oxidatively decomposed sample component contains sulfur dioxide, the sulfur dioxide reacts with hydrogen and is reduced to sulfur monoxide. In order to accelerate the above redox reaction, the inside of the heating furnace 210 is heated to 500° C. or higher (desirably 700° C. to 1200° C.) by the heater 215. The gas that has passed through the internal combustion pipe 212 is introduced into the reaction cell 231 through the transfer pipe 270.
 なお、加熱炉210の内部において、カラム140の出口端の周囲には不活性ガス導入管214から窒素が供給される。この窒素は、カラム140の劣化による検出器汚染を防止する効果、及び加熱炉210内での酸化還元反応を促進する効果を有している。 Inside the heating furnace 210, nitrogen is supplied from the inert gas introducing pipe 214 around the outlet end of the column 140. This nitrogen has an effect of preventing detector contamination due to deterioration of the column 140 and an effect of promoting the redox reaction in the heating furnace 210.
 移送管270から反応セル231に送られたガスは、反応セル231内でオゾンと混合される。このとき、一酸化硫黄とオゾンの反応によって生じる化学発光が光学フィルタ232を介して光電子増倍管233で検出される。なお、前記オゾンは、酸化剤供給源262から酸素流路267を経て供給される酸素を用いてオゾン発生器234で生成され、配管268を経て反応セル231に供給される。このとき、酸素流路267を経てオゾン発生器234に供給される酸素の流量もフローコントローラ237によって制御される。反応セル231の下流には、オゾンスクラバ235と真空ポンプ236が設けられており、真空ポンプ236によって吸引された反応セル231内のガスは、オゾンスクラバ235によってオゾンを除去された上で、排気として外部に排出される。なお、反応セル231とオゾンスクラバ235の間の配管281、及びオゾンスクラバ235と真空ポンプ236の間の配管282が本発明における「第3の配管」に相当する。更に、本実施形態における移送管270、配管268、及び配管281が、本発明における「反応セルに接続された1つ若しくは複数の配管」に相当する。また、本実施形態における不活性ガス流路264、酸化剤流路265、還元剤流路266、酸素流路267、配管268、移送管270、配管281、配管282、配管251、及びカラム140が、本発明における「前記第1の配管若しくは前記反応セルに接続された複数の配管」に相当する。 The gas sent from the transfer pipe 270 to the reaction cell 231 is mixed with ozone in the reaction cell 231. At this time, chemiluminescence generated by the reaction of sulfur monoxide and ozone is detected by the photomultiplier tube 233 via the optical filter 232. The ozone is generated in the ozone generator 234 using oxygen supplied from the oxidant supply source 262 via the oxygen flow path 267, and is supplied to the reaction cell 231 via the pipe 268. At this time, the flow controller 237 also controls the flow rate of oxygen supplied to the ozone generator 234 via the oxygen flow path 267. An ozone scrubber 235 and a vacuum pump 236 are provided downstream of the reaction cell 231, and the gas in the reaction cell 231 sucked by the vacuum pump 236 has ozone removed by the ozone scrubber 235 and is then exhausted. It is discharged to the outside. The pipe 281 between the reaction cell 231 and the ozone scrubber 235 and the pipe 282 between the ozone scrubber 235 and the vacuum pump 236 correspond to the “third pipe” in the present invention. Further, the transfer pipe 270, the pipe 268, and the pipe 281 in the present embodiment correspond to “one or a plurality of pipes connected to the reaction cell” in the present invention. Further, the inert gas channel 264, the oxidant channel 265, the reducing agent channel 266, the oxygen channel 267, the pipe 268, the transfer pipe 270, the pipe 281, the pipe 282, the pipe 251, and the column 140 in the present embodiment are provided. Corresponds to the “plurality of pipes connected to the first pipe or the reaction cell” in the present invention.
 光電子増倍管233からの出力信号は制御/処理部300に送られ、制御/処理部300にて該出力信号に基づいて試料ガス中の硫黄化合物の濃度が求められる。 The output signal from the photomultiplier tube 233 is sent to the control/processing unit 300, and the control/processing unit 300 determines the concentration of the sulfur compound in the sample gas based on the output signal.
 制御/処理部300の実体は、CPU、ROM、RAM、及び外部周辺機器などと通信するための入出力回路などを備えたマイクロコンピュータであり、例えばROMに格納された制御プログラムや制御用パラメータに従った演算処理を、CPUを中心に実行することによって、前記出力信号の処理や、各部の動作制御、具体的には、加熱炉210のヒータ215、インターフェース250のヒータ252、高圧電源291、オゾン発生器234、真空ポンプ236、及びフローコントローラ237等の制御が行われる。また、制御/処理部300には、ユーザの指示を入力するためのキーボード、マウス、タッチパネル、又は操作ボタンなどから成る入力装置320と、モニタ又はスピーカーなどから成る出力装置330が接続されている。 The substance of the control/processing unit 300 is a microcomputer including a CPU, a ROM, a RAM, an input/output circuit for communicating with external peripheral devices, and the like. For example, the control program and the control parameters stored in the ROM are stored in the microcomputer. By executing the following arithmetic processing mainly by the CPU, processing of the output signal and operation control of each part, specifically, the heater 215 of the heating furnace 210, the heater 252 of the interface 250, the high-voltage power supply 291, the ozone. Control of the generator 234, the vacuum pump 236, the flow controller 237, etc. is performed. Further, the control/processing unit 300 is connected to an input device 320 including a keyboard, a mouse, a touch panel, or an operation button for inputting a user's instruction, and an output device 330 including a monitor or a speaker.
 なお、図2では、制御/処理部300に係るように電圧制御部311、ポンプ制御部312、判定部313、及び通知部314が示されている。これらは、本実施形態に係るSCDの特徴的な動作を実現するための機能手段であり、いずれも制御/処理部300に搭載されたプログラムを制御/処理部のCPUが実行することによりソフトウェア的に実現される。電圧制御部311は、光電子増倍管に印加する駆動電圧を発生させる高圧電源291を制御するものであり、制御モードとして、試料分析に適用される第1の駆動電圧(例えば850V)を発生させる通常モードと、前記第1の駆動電圧よりも低い第2の駆動電圧(例えば460V)を発生させる異常検知モードとを有している。 Note that, in FIG. 2, the voltage control unit 311, the pump control unit 312, the determination unit 313, and the notification unit 314 are shown so as to relate to the control/processing unit 300. These are functional means for realizing the characteristic operation of the SCD according to the present embodiment, and both are software-based by the CPU of the control/processing unit executing the program installed in the control/processing unit 300. Will be realized. The voltage control unit 311 controls a high voltage power supply 291 that generates a drive voltage applied to the photomultiplier tube, and generates a first drive voltage (for example, 850V) applied to sample analysis as a control mode. It has a normal mode and an abnormality detection mode for generating a second drive voltage (for example, 460 V) lower than the first drive voltage.
 以下、上記の機能手段によって実現される配管接続チェックの手順について図6のフローチャートを参照しつつ説明を行う。 The procedure of the pipe connection check realized by the above functional means will be described below with reference to the flowchart of FIG.
 まず、ユーザがSCDの電源を落としてメンテナンス作業等を行った後、入力装置320から制御/処理部300へ配管接続チェックの実行指示を入力する。この指示が、制御/処理部300に入力されると(ステップ11)、まず、電圧制御部311の制御の下に高圧電源291が異常検知モードで起動させる(ステップ12)。これにより、光電子増倍管233は、試料分析時に印加される電圧(第1の駆動電圧)よりも低い電圧(第2の駆動電圧)が印加された状態となる。続いて、このときの光電子増倍管233の出力信号が制御/処理部300に入力され、判定部313にて該出力信号が予め定められた閾値以上であるか否かが判定される(ステップ13)。ここで、前記出力信号が閾値以上であると判定された場合(ステップ13でYes)、すなわち光電子増倍管233で検出された光量が予め定められた値以上であると判定された場合には、通知部314が、出力装置330を制御して、光電子増倍管233と反応セル231との間、又は反応セル231と移送管270、配管268、若しくは配管281との間に接続不良がある旨をユーザに通知する(ステップ14)。このときの通知方法としては、例えば、前記接続不良を知らせる文字列をモニタに表示させたり、該接続不良を知らせる音声をスピーカーから発生させたりすることが考えられる。 First, the user turns off the power of the SCD and performs maintenance work, and then inputs an instruction to execute a pipe connection check from the input device 320 to the control/processing unit 300. When this instruction is input to the control/processing unit 300 (step 11), first, the high voltage power supply 291 is activated in the abnormality detection mode under the control of the voltage control unit 311 (step 12). As a result, the photomultiplier tube 233 is in a state in which a voltage (second drive voltage) lower than the voltage (first drive voltage) applied during sample analysis is applied. Then, the output signal of the photomultiplier tube 233 at this time is input to the control/processing unit 300, and the determination unit 313 determines whether or not the output signal is equal to or more than a predetermined threshold value (step). 13). Here, when it is determined that the output signal is equal to or more than the threshold value (Yes in step 13), that is, when it is determined that the light amount detected by the photomultiplier tube 233 is equal to or more than a predetermined value. The notification unit 314 controls the output device 330 to cause a poor connection between the photomultiplier tube 233 and the reaction cell 231 or between the reaction cell 231 and the transfer tube 270, the pipe 268, or the pipe 281. This is notified to the user (step 14). As a notification method at this time, for example, a character string for notifying the poor connection may be displayed on a monitor, or a voice for notifying the poor connection may be generated from a speaker.
 ステップ13で光電子増倍管233の出力信号が閾値未満であると判定された場合(すなわち同ステップでNo)、及び上記ステップ13で光電子増倍管233の出力信号が閾値以上であると判定され(すなわち同ステップでYes)、上記ユーザへの通知(ステップ14)を行った後には、ポンプ制御部312によって真空ポンプ236が起動される(ステップ15)。これにより、反応セル231や、加熱炉210に設けられた各種配管(例えば、内部燃焼管212、外部燃焼管211、及び不活性ガス導入管214)内部の真空引きが開始される。その後、真空ポンプ236の起動から予め定められた時間が経過した時点(ステップ16でYes)で、第1真空計238及び第2真空計239の出力信号が判定部313に取り込まれ、各出力信号が、それぞれについて予め定められた閾値以上であるか否かが判定される。具体的には、まず第2真空計239で測定された絶対圧が予め定められた第1の閾値以上であるか否かが判定され(ステップ17)、続いて、第1真空計239で測定された差圧が予め定められた第2の閾値以上であるか否かが判定される(ステップ19)。ステップ17において前記絶対圧が前記第1の閾値以上であると判定された場合(ステップ17でYes)には、ガスの流路上に接続不良箇所があると考えられるため、通知部314が出力装置330を介してユーザにその旨を通知する(ステップ18)。また、ステップ19において前記差圧が前記第2の閾値以上であると判定された場合(ステップ19でYes)には、内部燃焼管212が閉塞していると考えられるため、通知部314が出力装置330を介してユーザにその旨を通知する(ステップ20)。なお、ステップ17とステップ19は逆の順番で実行してもよい。 If it is determined in step 13 that the output signal of the photomultiplier tube 233 is less than the threshold value (that is, No in the same step), it is determined in step 13 that the output signal of the photomultiplier tube 233 is greater than or equal to the threshold value. (That is, Yes at the same step) After the notification to the user (step 14), the vacuum pump 236 is activated by the pump control unit 312 (step 15). As a result, the inside of the reaction cell 231 and various pipes (for example, the internal combustion pipe 212, the external combustion pipe 211, and the inert gas introduction pipe 214) provided in the heating furnace 210 are evacuated. After that, when a predetermined time has elapsed since the vacuum pump 236 was started (Yes in step 16), the output signals of the first vacuum gauge 238 and the second vacuum gauge 239 are captured by the determination unit 313, and the output signals are output. Is determined to be equal to or greater than a predetermined threshold value for each. Specifically, first, it is determined whether or not the absolute pressure measured by the second vacuum gauge 239 is equal to or higher than a predetermined first threshold value (step 17), and then the first vacuum gauge 239 measures the absolute pressure. It is determined whether the determined differential pressure is equal to or more than a second threshold value set in advance (step 19). When it is determined in step 17 that the absolute pressure is equal to or higher than the first threshold value (Yes in step 17 ), it is considered that there is a defective connection point in the gas flow path, and therefore the notification unit 314 causes the output device The user is notified of this via 330 (step 18). Further, when it is determined in step 19 that the differential pressure is equal to or higher than the second threshold value (Yes in step 19 ), it is considered that the internal combustion pipe 212 is blocked, so the notification unit 314 outputs The user is notified via the device 330 (step 20). Note that step 17 and step 19 may be executed in reverse order.
 以上、本発明を実施するための形態について具体例を挙げて説明を行ったが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲で適宜変更が許容される。例えば、上記実施形態では、第1真空計238を差圧センサから成るものとし、第2真空計239を絶対圧センサから成るものとしたが、第1真空計238と第2真空計239の両方を絶対圧センサから成るものとし、第2真空計239の出力信号と第1真空計238の出力信号の差分をステップ19での判定に使用するものとしてもよい。また、上記実施例では、ステップ13で光電子増倍管233の出力信号が閾値以上であると判定されてステップ14でユーザへの通知を行った後に、ステップ15に進むものとしたが、ステップ14での通知を行った時点で一連のチェック動作を終了するものとしてもよい。 Although the embodiments for carrying out the present invention have been described above with reference to specific examples, the present invention is not limited to the above embodiments, and modifications can be appropriately made within the scope of the gist of the present invention. For example, in the above embodiment, the first vacuum gauge 238 is composed of a differential pressure sensor and the second vacuum gauge 239 is composed of an absolute pressure sensor. However, both the first vacuum gauge 238 and the second vacuum gauge 239 are included. May be an absolute pressure sensor, and the difference between the output signal of the second vacuum gauge 239 and the output signal of the first vacuum gauge 238 may be used for the determination in step 19. Further, in the above-described embodiment, after the output signal of the photomultiplier tube 233 is determined to be the threshold value or more in step 13 and the user is notified in step 14, the process proceeds to step 15. The series of check operations may be terminated at the time when the notification is issued.
 また、上記実施形態では、光電子増倍管233の出力に基づく配管接続不良のチェック及び通知(ステップ12~14)を行った後、真空計238、239の出力に基づく配管接続不良及び配管閉塞のチェック及び通知(ステップ15~20)を行うものとしたが、両者を逆の順序で実行したり、ユーザの指示に応じて両者のうちいずれか一方のみを実行したりするものとしてもよい。 Further, in the above-described embodiment, after checking and notifying the poor pipe connection based on the output of the photomultiplier tube 233 (steps 12 to 14), the poor pipe connection and the closed pipes based on the outputs of the vacuum gauges 238 and 239 are detected. Although the check and the notification (steps 15 to 20) are performed, both may be performed in the reverse order, or only one of the two may be performed in response to a user's instruction.
 また、上記実施形態では、電圧制御部311、ポンプ制御部312、判定部313、及び通知部314を実現するためのプログラムをSCDに内蔵されたマイクロコンピュータ(制御/処理部300)に搭載するものとしたが、上記プログラムは、SCD200に接続されたGC100内のマイクロコンピュータに搭載されるもの(図7)としてもよい。なお、PC400は、図7に示すように、GC100を介してSCD200に接続されたものであってもよく、図8に示すように、SCD200に直接接続されたものであってもよい。 Further, in the above embodiment, the program for realizing the voltage control unit 311, the pump control unit 312, the determination unit 313, and the notification unit 314 is installed in the microcomputer (control/processing unit 300) built in the SCD. However, the program may be installed in the microcomputer in the GC 100 connected to the SCD 200 (FIG. 7). The PC 400 may be connected to the SCD 200 via the GC 100 as shown in FIG. 7, or may be directly connected to the SCD 200 as shown in FIG. 8.
 また、上記実施形態では、SCD200に設けられた入力装置320からユーザが配管接続等のチェック実行を指示し、配管に接続不良等があった場合は、SCD200に設けられた出力装置330を用いてユーザにその旨を通知するものとしたが、これに限らず、ユーザがGC100の操作パネル131に設けられたタッチパネル132若しくは操作ボタン133、又はPC400に接続されたキーボードやマウス等の入力装置520から前記チェックの実行指示を行ったり、GC100に設けられたスピーカー(図示略)若しくはタッチパネル132に含まれる液晶パネル等の表示装置、又はPC400に設けられた液晶ディスプレイやスピーカーなどの出力装置530によってユーザへの前記通知を行ったりするものとしてもよい。また、本発明に係るプログラムは、必ずしも単体のプログラムである必要はなく、例えば、SCD200を制御するためのプログラムや、GC100を制御するためのプログラムの一部に組み込まれたものであってもよい。 Further, in the above-described embodiment, when the user gives an instruction to check the pipe connection or the like from the input device 320 provided in the SCD 200 and there is a connection failure in the pipe, the output device 330 provided in the SCD 200 is used. Although the user is notified of that fact, the present invention is not limited to this, and the user can use the touch panel 132 or the operation button 133 provided on the operation panel 131 of the GC 100 or the input device 520 such as a keyboard or a mouse connected to the PC 400. The user is instructed to perform the check, or a display device such as a speaker (not shown) provided in the GC 100 or a liquid crystal panel included in the touch panel 132, or an output device 530 such as a liquid crystal display or a speaker provided in the PC 400 is used to inform the user. The above notification may be performed. Further, the program according to the present invention is not necessarily a single program, and may be, for example, a program for controlling the SCD 200 or a part of a program for controlling the GC 100. ..
 また、上記実施形態では、横型の加熱炉(すなわち水平方向に延在する燃焼管を内蔵した加熱炉)を備えたSCDに本発明を適用する例を示したが、これに限らず、特許文献1に記載のような縦型の加熱炉(すなわち鉛直方向に延在する燃焼管を内蔵した加熱炉)を備えたSCDにも本発明を同様に適用することができる。 Further, in the above-described embodiment, the example in which the present invention is applied to the SCD including the horizontal heating furnace (that is, the heating furnace including the combustion tube extending in the horizontal direction) is shown, but the invention is not limited to this, and Patent Document 2 The present invention can be similarly applied to an SCD including a vertical heating furnace as described in 1 (that is, a heating furnace including a combustion tube extending in the vertical direction).
100…ガスクロマトグラフ
200…化学発光硫黄検出器
 210…加熱炉
  211…外部燃焼管
  212…内部燃焼管
  213…酸化剤供給管
  214…不活性ガス導入管
  215…ヒータ
  216…ハウジング
 231…反応セル
 233…光電子増倍管
 291…高圧電源
 234…オゾン発生器
 235…オゾンスクラバ
 236…真空ポンプ
 238…第1真空計
 239…第2真空計
 268、281…配管
 270…移送管
 300…制御/処理部
  311…電圧制御部
  312…ポンプ制御部
  313…判定部
  314…通知部
400…パーソナルコンピュータ
100... Gas chromatograph 200... Chemiluminescent sulfur detector 210... Heating furnace 211... External combustion pipe 212... Internal combustion pipe 213... Oxidizing agent supply pipe 214... Inert gas introduction pipe 215... Heater 216... Housing 231... Reaction cell 233... Photomultiplier tube 291... High-voltage power supply 234... Ozone generator 235... Ozone scrubber 236... Vacuum pump 238... First vacuum gauge 239... Second vacuum gauge 268, 281... Piping 270... Transfer tube 300... Control/processing section 311... Voltage control unit 312... Pump control unit 313... Judgment unit 314... Notification unit 400... Personal computer

Claims (7)

  1.  加熱炉と、
     前記加熱炉を通過したガスをオゾンと反応させる反応セルと、
     前記反応セルからの光を検出する光電子増倍管と、
     前記光電子増倍管に印加する駆動電圧を発生する電源と、
     前記電源を制御するものであって、該電源の起動モードとして、試料分析に適用される第1の駆動電圧を発生させる通常モードと、前記第1の駆動電圧よりも低い第2の駆動電圧を発生させる異常検知モードとを有する電圧制御手段と、
     前記電源を前記異常検知モードで起動させた際における、前記光電子増倍管の出力信号に基づいて、前記反応セルと前記光電子増倍管との間、又は前記反応セルと該反応セルに接続された1つ若しくは複数の配管のいずれかとの間に接続不良があるか否かを判定する判定手段と、
     前記判定手段により前記接続不良があると判定された場合に、その旨をユーザに通知する通知手段と、
    を有することを特徴とする化学発光硫黄検出器。
    Heating furnace,
    A reaction cell for reacting the gas passing through the heating furnace with ozone,
    A photomultiplier tube for detecting light from the reaction cell,
    A power supply for generating a driving voltage applied to the photomultiplier tube,
    The power supply is controlled, and a normal mode for generating a first drive voltage applied to sample analysis and a second drive voltage lower than the first drive voltage are used as start-up modes of the power supply. A voltage control means having an abnormality detection mode to be generated,
    When the power supply is started in the abnormality detection mode, based on the output signal of the photomultiplier tube, connected between the reaction cell and the photomultiplier tube, or the reaction cell and the reaction cell Determination means for determining whether or not there is a poor connection with any one of the pipes or the plurality of pipes;
    When the determination unit determines that there is a poor connection, a notification unit that notifies the user of that fact,
    A chemiluminescent sulfur detector comprising:
  2.  前記第2の駆動電圧が500V未満であることを特徴とする請求項1に記載の化学発光硫黄検出器。 The chemiluminescent sulfur detector according to claim 1, wherein the second drive voltage is less than 500V.
  3.  加熱炉と、
     前記加熱炉を通過したガスをオゾンと反応させる反応セルと、
     前記反応セルからの光を検出する光電子増倍管と、
     前記光電子増倍管に印加する駆動電圧を発生する電源と、
     を有する化学発光硫黄検出器を制御するプログラムであって、
     コンピュータを、
     前記電源を制御するものであり、該電源の起動モードとして、試料分析に適用される第1の駆動電圧を発生させる通常モードと、前記第1の駆動電圧よりも低い第2の駆動電圧を発生させる異常検知モードとを有する電圧制御手段、
     前記電源を前記異常検知モードで起動させた際における、前記光電子増倍管の出力信号に基づいて、前記反応セルと前記光電子増倍管との間、又は前記反応セルと該反応セルに接続された1つ若しくは複数の配管のいずれかとの間に接続不良があるか否かを判定する判定手段、及び
     前記判定手段により前記接続不良があると判定された場合に、その旨をユーザに通知する通知手段、
     として機能させることを特徴とするプログラム。
    Heating furnace,
    A reaction cell for reacting the gas passing through the heating furnace with ozone,
    A photomultiplier tube for detecting light from the reaction cell,
    A power supply for generating a driving voltage applied to the photomultiplier tube,
    A program for controlling a chemiluminescent sulfur detector having:
    Computer,
    The power supply is controlled, and as a start-up mode of the power supply, a normal mode for generating a first drive voltage applied to sample analysis and a second drive voltage lower than the first drive voltage are generated. A voltage control means having an abnormality detection mode,
    When the power supply is started in the abnormality detection mode, based on the output signal of the photomultiplier tube, connected between the reaction cell and the photomultiplier tube, or the reaction cell and the reaction cell In addition, when the determination unit determines whether there is a connection failure with one or a plurality of pipes, and the determination unit determines that there is a connection failure, the user is notified of that fact. Notification means,
    A program characterized by making it function as.
  4.  第1の配管及び該第1の配管を加熱する加熱手段を備えた加熱炉と、
     前記加熱炉と第2の配管によって接続された反応セルと、
     前記反応セルと第3の配管によって接続された真空ポンプと、
     前記第1の配管にガスを導入する第4の配管と、
     前記第2の配管、前記第3の配管、又は前記第4の配管の少なくともいずれかの内部における圧力を測定する圧力測定手段と、
     前記真空ポンプを制御するポンプ制御手段と、
     前記ポンプ制御手段によって前記真空ポンプを稼働させた状態における前記圧力測定手段の測定値に基づいて、前記第1の配管、前記反応セル、又は前記第1の配管若しくは前記反応セルに接続された複数の配管のいずれか、に接続不良箇所があるか否かを判定する判定手段と、
     前記判定手段により前記接続不良箇所があると判定された場合にその旨をユーザに通知する通知手段と、
    を有することを特徴とする化学発光硫黄検出器。
    A heating furnace provided with a first pipe and a heating means for heating the first pipe;
    A reaction cell connected to the heating furnace by a second pipe,
    A vacuum pump connected to the reaction cell by a third pipe;
    A fourth pipe for introducing gas into the first pipe;
    Pressure measuring means for measuring the pressure inside at least one of the second pipe, the third pipe, and the fourth pipe;
    Pump control means for controlling the vacuum pump,
    Based on the measured value of the pressure measuring means in a state where the vacuum pump is operated by the pump control means, the first pipe, the reaction cell, or a plurality of pipes connected to the first pipe or the reaction cell. Any of the piping of, the determination means for determining whether there is a defective connection point,
    When the determination unit determines that there is the defective connection portion, a notification unit that notifies the user of that fact,
    A chemiluminescent sulfur detector comprising:
  5.  前記圧力測定手段が、更に、前記第2の配管又は前記第3の配管の内部と、前記第4の配管の内部とにおける圧力の差を測定するものであって、
     前記判定手段が、更に、前記差に基づいて前記第1の配管が閉塞しているか否かを判定するものであることを特徴とする請求項4に記載の化学発光硫黄検出器。
    The pressure measuring means further measures a pressure difference between the inside of the second pipe or the third pipe and the inside of the fourth pipe,
    The chemiluminescent sulfur detector according to claim 4, wherein the determination means further determines whether or not the first pipe is closed based on the difference.
  6.  第1の配管及び該第1の配管を加熱する加熱手段を備えた加熱炉と、
     前記加熱炉と第2の配管によって接続された反応セルと、
     前記反応セルと第3の配管によって接続された真空ポンプと、
     前記第1の配管にガスを導入する第4の配管と、
     前記第2の配管、前記第3の配管、又は前記第4の配管の少なくともいずれかの内部における圧力を測定する圧力測定手段と、
     前記真空ポンプを制御するポンプ制御手段と、
     を有する化学発光硫黄検出器を制御するプログラムであって、
     コンピュータを、
     前記ポンプ制御手段によって前記真空ポンプを稼働させた状態における前記圧力測定手段の測定値に基づいて、前記第1の配管、前記反応セル、又は前記第1の配管若しくは前記反応セルに接続された複数の配管のいずれか、に接続不良箇所があるか否かを判定する判定手段、及び
     前記判定手段により前記接続不良箇所があると判定された場合にその旨をユーザに通知する通知手段、
     として機能させることを特徴とするプログラム。
    A heating furnace provided with a first pipe and a heating means for heating the first pipe;
    A reaction cell connected to the heating furnace by a second pipe,
    A vacuum pump connected to the reaction cell by a third pipe;
    A fourth pipe for introducing gas into the first pipe;
    Pressure measuring means for measuring the pressure inside at least one of the second pipe, the third pipe, and the fourth pipe;
    Pump control means for controlling the vacuum pump,
    A program for controlling a chemiluminescent sulfur detector having:
    Computer,
    Based on the measured value of the pressure measuring means in a state where the vacuum pump is operated by the pump control means, the first pipe, the reaction cell, or a plurality of pipes connected to the first pipe or the reaction cell. Any of the piping of, the determination means for determining whether there is a connection failure location, and the notification means for notifying the user to that effect when it is determined by the determination means that there is a connection failure location,
    A program characterized by making it function as.
  7.  前記圧力測定手段が、更に、前記第2の配管又は前記第3の配管の内部と、前記第4の配管の内部とにおける圧力の差を測定するものであって、
     前記判定手段が、更に、前記差に基づいて前記第1の配管が閉塞しているか否かを判定するものであることを特徴とする請求項6に記載のプログラム。
    The pressure measuring means further measures a pressure difference between the inside of the second pipe or the third pipe and the inside of the fourth pipe,
    7. The program according to claim 6, wherein the determination means further determines whether or not the first pipe is closed based on the difference.
PCT/JP2019/004269 2019-02-06 2019-02-06 Sulfur chemiluminescence detector WO2020161833A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/004269 WO2020161833A1 (en) 2019-02-06 2019-02-06 Sulfur chemiluminescence detector
JP2020570268A JP7143902B2 (en) 2019-02-06 2019-02-06 Chemiluminescence sulfur detector
CN201980076191.0A CN113056667A (en) 2019-02-06 2019-02-06 Sulfur chemiluminescence detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004269 WO2020161833A1 (en) 2019-02-06 2019-02-06 Sulfur chemiluminescence detector

Publications (1)

Publication Number Publication Date
WO2020161833A1 true WO2020161833A1 (en) 2020-08-13

Family

ID=71947759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004269 WO2020161833A1 (en) 2019-02-06 2019-02-06 Sulfur chemiluminescence detector

Country Status (3)

Country Link
JP (1) JP7143902B2 (en)
CN (1) CN113056667A (en)
WO (1) WO2020161833A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071111A1 (en) * 2020-09-30 2022-04-07 ホリバ トカデロ ゲーエムベーハー Total organic carbon meter, and combustion reaction unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357487A (en) * 1999-06-14 2000-12-26 Shimadzu Corp Mass-spectrometric device
JP2014227123A (en) * 2013-05-24 2014-12-08 株式会社デンソー Abnormality diagnosis system
JP2015206604A (en) * 2014-04-17 2015-11-19 新日本無線株式会社 Electrochemical measurement device
WO2018168599A1 (en) * 2017-03-15 2018-09-20 株式会社島津製作所 Reaction device for chemiluminescence detector, chemiluminescence detector equipped with same, and chemiluminescence detection method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990006508A1 (en) * 1988-11-25 1990-06-14 Benner Richard L Process and apparatus for the detection of sulfur
US6130095A (en) * 1992-01-23 2000-10-10 Sievers Instruments, Inc. Method for the measurement of sulfur compounds
US5702954A (en) * 1995-09-29 1997-12-30 Colorado Seminary Method to detect phosphorus
JP2000009644A (en) * 1998-06-19 2000-01-14 Hitachi Ltd Fluorometer
CN201063436Y (en) * 2007-04-28 2008-05-21 河南农大迅捷测试技术有限公司 Protector for photomultiplier tube
JP5251729B2 (en) * 2008-06-20 2013-07-31 株式会社島津製作所 Spectrophotometer
CN101761780B (en) * 2010-01-11 2012-12-26 中国石油大学(华东) Gas pipeline leakage detecting and positioning device and method thereof
JP2015059876A (en) * 2013-09-20 2015-03-30 株式会社島津製作所 Oxidation device, chemiluminescence detector, and gas chromatograph

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357487A (en) * 1999-06-14 2000-12-26 Shimadzu Corp Mass-spectrometric device
JP2014227123A (en) * 2013-05-24 2014-12-08 株式会社デンソー Abnormality diagnosis system
JP2015206604A (en) * 2014-04-17 2015-11-19 新日本無線株式会社 Electrochemical measurement device
WO2018168599A1 (en) * 2017-03-15 2018-09-20 株式会社島津製作所 Reaction device for chemiluminescence detector, chemiluminescence detector equipped with same, and chemiluminescence detection method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AGILENT TECHNOLOGIES, INC.: "Agilent 8355 / Agilent 8255", vol. 3, December 2015 (2015-12-01), pages 35 - 60, XP055717832, Retrieved from the Internet <URL:https://www.agilent.com/cs/library/usermanuals/public/Copy(4)%20of%20UserManual.pdf> [retrieved on 20190225] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071111A1 (en) * 2020-09-30 2022-04-07 ホリバ トカデロ ゲーエムベーハー Total organic carbon meter, and combustion reaction unit
WO2022071485A1 (en) * 2020-09-30 2022-04-07 ホリバ トカデロ ゲーエムベーハー Total organic carbon meter, and total organic carbon measurement method

Also Published As

Publication number Publication date
JPWO2020161833A1 (en) 2021-10-28
JP7143902B2 (en) 2022-09-29
CN113056667A (en) 2021-06-29

Similar Documents

Publication Publication Date Title
US11262313B2 (en) Sulfur chemiluminescence detector
JP2020125922A5 (en)
WO2020161833A1 (en) Sulfur chemiluminescence detector
EP1521325A2 (en) Fuel cell system with gas detector
US20130299718A1 (en) Stack Gas Measurement Device and Method Thereof
JP7400935B2 (en) Component analysis system and component detection device
JP7070703B2 (en) Gas chromatograph system
JP7156406B2 (en) Chemiluminescence sulfur detector
EP1710569A1 (en) Gas analyzer and method for controlling hydrogen flame ionization detector
WO2020129216A1 (en) Sulfur chemiluminescence detector
JP4158930B2 (en) Electrochemical gas concentration measuring device
JP4732723B2 (en) Fuel cell power generation system
JP3127573U (en) Gas chromatograph
JPH0645883Y2 (en) Carbon content measuring device
JP2000298097A (en) Chemoluminescence type nitrogen oxide meter
KR20020018477A (en) Apparatus for controlling a fluid flow in semiconductor processing
JP2020106278A (en) Combustion type carbon analysis device and carbon analysis method
JP2020063998A (en) Water analyzer and method for determining deterioration of ultraviolet lamp
JP2007078370A (en) Spectrophotometer
JPS63315945A (en) Instrument for measuring carbon content
JP2001153856A (en) Measuring method and measuring device for nitrogen compound
JPH04203963A (en) Device for measuring amount of carbon
KR20140060728A (en) Substrate treating apparatus including exhaust line for sensing oxygen
JPH01318954A (en) Carbon-quantity measuring apparatus
JPS63315946A (en) Instrument for measuring carbon content

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020570268

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914255

Country of ref document: EP

Kind code of ref document: A1