JP2000298097A - Chemoluminescence type nitrogen oxide meter - Google Patents

Chemoluminescence type nitrogen oxide meter

Info

Publication number
JP2000298097A
JP2000298097A JP11108806A JP10880699A JP2000298097A JP 2000298097 A JP2000298097 A JP 2000298097A JP 11108806 A JP11108806 A JP 11108806A JP 10880699 A JP10880699 A JP 10880699A JP 2000298097 A JP2000298097 A JP 2000298097A
Authority
JP
Japan
Prior art keywords
flow path
reaction tank
measurement gas
gas
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11108806A
Other languages
Japanese (ja)
Other versions
JP3582399B2 (en
Inventor
Shingo Sumi
心吾 角
Masaru Kozakura
優 小櫻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP10880699A priority Critical patent/JP3582399B2/en
Publication of JP2000298097A publication Critical patent/JP2000298097A/en
Application granted granted Critical
Publication of JP3582399B2 publication Critical patent/JP3582399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform measurement reduce in error by rapidly stabilizing an indication value after the changeover of a flow channel passing through an NO2/NO converter and a flow channel not passing therethrough. SOLUTION: When a pump 32 is operated, measuring gas is sucked from a measuring gas inlet 2 and sucked toward a reaction tank 16 while dust in the gas is removed by a filter 4, and moisture in the gas is removed by a duhumidifier 6. The measuring gas is guided to a reaction tank 14 through a converter 8 when a flow channel changeover device 10 is connected to a flow channel 9a, and guided thereto through a resistance pipe 38 without being passed through the converter 8 when the flow channel changeover device 10 is connected to a flow channel 9b. At this time, though the flow channel changeover device 10 is connected to either one of the flow channels 9a, 9b, the measuring gas passed through the converter 8 is sucked to a branched flow channel 9d. By this constitution, the measuring gas always flows through the converter 8. The measuring gas sucked to the branched flow channel 9d is guided to an ozone generator 24 through an activated carbon column 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、測定ガスを検出器
の反応槽に導いて、オゾンと一酸化窒素との化学反応の
際に生じる化学発光の強度から一酸化窒素濃度を定量す
るとともに、測定ガスをその反応槽に導く流路を、流路
切換器により、二酸化窒素還元触媒を通る還元流路と、
二酸化窒素還元触媒を通らないバイパス流路とに切り換
えて測定ガスを反応槽に導くことにより二酸化窒素濃度
も定量できるようにした化学発光式窒素酸化物計に関す
るものである。化学発光式窒素酸化物計は、例えば大気
中や煙道排ガス中の窒素酸化物濃度の測定若しくは監
視、医療診断用の窒素酸化物濃度測定、又はこれらに関
係した試験分野などに利用される。
The present invention relates to a method for measuring a concentration of nitric oxide based on the intensity of chemiluminescence generated during a chemical reaction between ozone and nitric oxide by introducing a measurement gas into a reaction tank of a detector. A flow path for guiding the measurement gas to the reaction vessel, a flow path changer, a reduction flow path passing through the nitrogen dioxide reduction catalyst,
The present invention relates to a chemiluminescent nitrogen oxide meter capable of quantifying the concentration of nitrogen dioxide by introducing a measurement gas into a reaction tank by switching to a bypass flow path not passing through a nitrogen dioxide reduction catalyst. The chemiluminescent nitrogen oxide meter is used, for example, for measuring or monitoring the concentration of nitrogen oxide in the atmosphere or flue gas, measuring the concentration of nitrogen oxide for medical diagnosis, or a test field related thereto.

【0002】[0002]

【従来の技術】工場の燃焼炉や自動車のエンジンからの
排ガスなどに含まれる人体に有害な窒素酸化物(NO
x)が問題になっているなか、大気中や排気ガス中の窒
素酸化物濃度を測定する装置の一つに、化学発光式窒素
酸化物計がある。これは、測定ガスとオゾンガス
(O3)とを測定装置の反応槽内で接触させ、測定ガス
中の一酸化窒素(NO)とO3とが化学反応を起こす際
に発生する化学発光の強度を光電測定部で検出すること
により測定ガス中のNO含有量を定量測定するものであ
る。化学発光式窒素酸化物計では、測定原理上、NOの
みしか測定できないので、二酸化窒素(NO2)を測定
する際には、NO2をNOに還元する触媒を通し、その
時の指示値と触媒を通さない場合の指示値との差からN
2濃度を換算する。
2. Description of the Related Art Nitrogen oxides (NO) that are harmful to the human body and are contained in exhaust gas from combustion furnaces of factories and automobile engines.
While x) is a problem, one of the devices for measuring the concentration of nitrogen oxides in the atmosphere or exhaust gas is a chemiluminescent nitrogen oxide meter. The intensity of chemiluminescence generated when a measurement gas and an ozone gas (O 3 ) are brought into contact with each other in a reaction tank of a measurement device and a chemical reaction occurs between nitrogen monoxide (NO) and O 3 in the measurement gas. Is quantitatively measured by detecting the NO content in the measurement gas by detecting the NO. In a chemiluminescent nitrogen oxide meter, only NO can be measured due to the measurement principle. Therefore, when measuring nitrogen dioxide (NO 2 ), a catalyst for reducing NO 2 to NO is passed through, and the indicated value and catalyst at that time are passed. N from the indicated value when not passing
Convert the O 2 concentration.

【0003】図1は、従来の化学発光式窒素酸化物計を
表す概略流路構成図である。測定ガスを供給する測定ガ
ス入口2からの流路は、測定ガス中のほこりなどを除去
するフィルタ4を介して、水分を除去する除湿器6に接
続されている。除湿器6からの流路は2つの流路に分岐
され、一方の流路9aは測定ガス中のNO2をNOに変
換するNO2/NOコンバータ8を介して、他方の流路
9bはコンバータ8を介さずに、三方電磁弁からなる流
路切換器10に接続されている。流路切換器10の共通
出口は、抵抗管12を介して、NOとO3との反応によ
り化学発光を生じさせる反応槽14に接続されている。
流路切換器10の切換えにより、測定ガスは、コンバー
タ8を介して、又は介さずに、反応槽14に送られる。
反応槽14には、反応槽14で発生した化学発光を検出
する光電測定部28が組み合わされている。
FIG. 1 is a schematic flow chart showing a conventional chemiluminescent nitrogen oxide meter. The flow path from the measurement gas inlet 2 that supplies the measurement gas is connected to a dehumidifier 6 that removes moisture via a filter 4 that removes dust and the like in the measurement gas. The flow path from the dehumidifier 6 is branched into two flow paths, one flow path 9a is via a NO 2 / NO converter 8 for converting NO 2 in the measurement gas into NO, and the other flow path 9b is a converter. It is connected to a flow path switching device 10 composed of a three-way solenoid valve without passing through the same. A common outlet of the flow path switching device 10 is connected via a resistance tube 12 to a reaction tank 14 for generating chemiluminescence by a reaction between NO and O 3 .
By switching the flow path switching device 10, the measurement gas is sent to the reaction tank 14 via the converter 8 or not.
The reaction tank 14 is combined with a photoelectric measurement unit 28 that detects chemiluminescence generated in the reaction tank 14.

【0004】オゾン源ガスとして空気を供給する空気入
口16からの流路は、空気中のほこりなどを除去するフ
ィルタ18、水分を除去する除湿器20、例えば高濃度
の硫黄酸化物や有機溶剤などのオゾン生成を妨害する物
質を取り除く活性炭カラム22を介して、空気中の酸素
からO3を生成するオゾン発生器24に接続されてい
る。オゾン発生器24からの流路は、抵抗管26を介し
て、反応槽14に接続されている。反応槽14からの流
路は、O3を分解するオゾン分解器30を介して、吸引
ポンプ32に接続されている。ポンプ32の排気側は、
窒素酸化物を吸収するNOx吸着器34を介して、排気
口36に導かれている。
A flow path from an air inlet 16 for supplying air as an ozone source gas includes a filter 18 for removing dust and the like in the air, a dehumidifier 20 for removing moisture, for example, a high-concentration sulfur oxide and an organic solvent. Is connected to an ozone generator 24 that generates O 3 from oxygen in the air via an activated carbon column 22 that removes substances that interfere with ozone generation. The flow path from the ozone generator 24 is connected to the reaction tank 14 via a resistance tube 26. The flow path from the reaction tank 14 is connected to a suction pump 32 via an ozone decomposer 30 for decomposing O 3 . The exhaust side of the pump 32
The gas is led to an exhaust port 36 via a NOx adsorber 34 that absorbs nitrogen oxides.

【0005】測定ガスのNO濃度を測定する場合は、流
路切換器12により流路9bを反応槽14に接続してコ
ンバータ8を通さずに測定ガスを反応槽14に導く。N
2濃度を測定する場合は、流路切換器12により流路
9aを反応槽14に接続してコンバータ8により測定ガ
ス中のNO2をNOに変換した後、その測定ガスを反応
槽14に導く。その測定ガスにはNO2に起因するNO
と元々存在するNOとが含まれ、それらのNO濃度の合
計はNOx濃度に相当する。そして、NOx濃度とNO
濃度の差を求めることによりNO2濃度が計算される。
この従来例の運転時には、流路切換器10により、例え
ば15秒毎に流路9aと9bが交互に切り換えられて反
応槽14に接続される。
When the NO concentration of the measurement gas is measured, the flow path 9 b is connected to the reaction tank 14 by the flow path switch 12, and the measurement gas is led to the reaction tank 14 without passing through the converter 8. N
When measuring the O 2 concentration, the flow path 9 a is connected to the reaction vessel 14 by the flow path switching device 12, NO 2 in the measurement gas is converted into NO by the converter 8, and then the measurement gas is supplied to the reaction vessel 14. Lead. The measurement gas contains NO due to NO 2
And NO originally present, and the total of those NO concentrations corresponds to the NOx concentration. Then, NOx concentration and NO
The NO 2 concentration is calculated by calculating the difference between the concentrations.
During the operation of this conventional example, the flow passages 9a and 9b are alternately switched every 15 seconds, for example, by the flow passage switching device 10 and connected to the reaction tank 14.

【0006】[0006]

【発明が解決しようとする課題】NO2/NOコンバー
タ8を通る流路9aと、通らない流路9bとが交互に切
り換えられるため、流路9bが反応槽14に接続されて
いるときに、コンバータ8に測定ガスがたまったままに
なる状態が存在する。そのため、流路9a側に切り換え
られた直後に反応槽14に送られる測定ガスは前回の流
路9a側接続時に流れた測定ガスであり、特に測定ガス
のNO2濃度変化が大きい場合、流路9aが反応槽14
に接続されて測定ガスがコンバータ8から反応槽14に
送られるようになっても指示値の安定が遅れ、測定誤差
を生じる場合があった。
Since the flow path 9a passing through the NO 2 / NO converter 8 and the flow path 9b not passing through are alternately switched, when the flow path 9b is connected to the reaction tank 14, There is a state in which the measurement gas remains in the converter 8. Therefore, the measurement gas delivered to the reaction vessel 14 immediately after being switched to the channel 9a side is the measured gas flowing during the previous flow path 9a-side connection, particularly if NO 2 concentration changes in the measured gas large, the flow path 9a is the reaction tank 14
And the measurement gas is sent from the converter 8 to the reaction tank 14, the stability of the indicated value is delayed, and a measurement error may occur.

【0007】そこで本発明は、NO2/NOコンバータ
を通る流路と通らない流路の切換え後の指示値の安定を
迅速にして、誤差の少ない測定を行なうことができる化
学発光式窒素酸化物計を提供することを目的とするもの
である。
Accordingly, the present invention provides a chemiluminescent nitrogen oxide capable of quickly stabilizing an indicated value after switching between a flow path that passes through a NO 2 / NO converter and a flow path that does not pass, and performing measurement with less error. The purpose is to provide a total.

【0008】[0008]

【課題を解決するための手段】本発明は、測定ガスを検
出器の反応槽に導いて、オゾンと一酸化窒素との化学反
応の際に生じる化学発光の強度から一酸化窒素濃度を定
量するとともに、測定ガスをその反応槽に導く流路を、
流路切換器により、二酸化窒素還元触媒を通る還元流路
と、二酸化窒素還元触媒を通らないバイパス流路とに切
り換えて測定ガスを反応槽に導くことにより二酸化窒素
濃度も定量できるようにした化学発光式窒素酸化物計で
あって、流路切換器を二酸化窒素還元触媒の下流に配置
し、二酸化窒素還元触媒と流路切換器との間の流路に分
岐流路を設け、流路切換器がバイパス流路を反応槽に接
続しているときであっても、二酸化窒素還元触媒に常時
測定ガスが流れるようにしたものである。
According to the present invention, a measurement gas is introduced into a reaction vessel of a detector, and the concentration of nitric oxide is determined from the intensity of chemiluminescence generated during a chemical reaction between ozone and nitric oxide. At the same time, the flow path that leads the measurement gas to the reaction tank is
The flow path switcher switches between a reduction flow path that passes through the nitrogen dioxide reduction catalyst and a bypass flow path that does not pass through the nitrogen dioxide reduction catalyst, and guides the measurement gas to the reaction tank so that the concentration of nitrogen dioxide can be determined. A light-emitting nitrogen oxide meter, wherein a flow path switching device is disposed downstream of the nitrogen dioxide reduction catalyst, and a branch flow path is provided in a flow path between the nitrogen dioxide reduction catalyst and the flow path switching device; The measurement gas always flows through the nitrogen dioxide reduction catalyst even when the device is connected to the bypass flow path to the reaction tank.

【0009】流路切換器によりバイパス流路を反応槽に
接続しているときであっても、分岐流路を通して二酸化
窒素還元触媒から測定ガスを排出することにより、測定
ガスが二酸化窒素還元触媒内を常時流れるので、二酸化
窒素還元触媒内に測定ガスが留まることがなくなり、流
路切換器を還元流路側に接続した後の指示値を迅速に安
定させることができる。
Even when the bypass flow path is connected to the reaction tank by the flow path switching device, the measurement gas is discharged from the nitrogen dioxide reduction catalyst through the branch flow path, so that the measurement gas is stored in the nitrogen dioxide reduction catalyst. , The measurement gas does not remain in the nitrogen dioxide reduction catalyst, and the indicated value after the flow path switch is connected to the reduction flow path side can be quickly stabilized.

【0010】[0010]

【発明の実施の形態】測定ガスを二酸化窒素還元触媒に
供給する前に測定ガス中のほこりや水分を除去する。ま
た、酸素からオゾンを生成するオゾン発生器にオゾン源
ガスを供給する前には、オゾン源ガス中のほこりや水分
を除去する。そこで、本発明の他の態様は、上記分岐流
路をオゾン発生器につながる流路に接続し、その分岐流
路から流出される測定ガスをオゾン源ガスとして用いる
ことが好ましい。その結果、オゾン源ガスとして供給さ
れる測定ガス中のほこりや水分は除去されており、オゾ
ン源ガス中のほこりや水分を除去するための装置を別途
設けることを省略することができる。また、流路構成を
簡単にすることもできる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Before supplying a measurement gas to a nitrogen dioxide reduction catalyst, dust and moisture in the measurement gas are removed. Before supplying an ozone source gas to an ozone generator that generates ozone from oxygen, dust and moisture in the ozone source gas are removed. Therefore, in another aspect of the present invention, it is preferable that the branch channel is connected to a channel connected to an ozone generator, and the measurement gas flowing out of the branch channel is used as an ozone source gas. As a result, dust and moisture in the measurement gas supplied as the ozone source gas have been removed, and it is possible to omit a separate device for removing dust and moisture in the ozone source gas. Further, the flow path configuration can be simplified.

【0011】[0011]

【実施例】図2は、本発明を適用した化学発光式窒素酸
化物計の一実施例を表す概略流路図である。図1と同じ
部分には同じ符号を付して詳しい説明は省略する。測定
ガスを供給する測定ガス入口2からの流路はフィルタ4
を介して除湿器6に接続され、除湿器6からの流路は2
つの流路に分岐され、一方の流路9aはNO2/NOコ
ンバータ8を介して、他方の流路9bはコンバータ8を
介さずに、流路切換器10に接続され、流路切換器10
の共通出口は抵抗管12を介して反応槽14に接続され
ている。反応槽14には光電測定部28が組み合わされ
ている。空気入口16からの流路はフィルタ18、除湿
器20及び活性炭カラム22を介してオゾン発生器24
に接続されており、オゾン発生器24からの流路は抵抗
管26を介して反応槽14に接続されている。反応槽1
4からの流路はオゾン分解器30を介して吸引ポンプ3
2に接続され、ポンプ32の排気側はNOx吸着器34
を介して排気口36に導かれている。ここまでの構成は
図1のものと同じである。この実施例では、コンバータ
8と流路切換器10との間の流路に、抵抗管38を備え
た分岐流路9cが接続されており、分岐流路9cはオゾ
ン分解器30とポンプ32との間の流路に導かれて、常
時吸引されるようになっている。
FIG. 2 is a schematic flow chart showing one embodiment of a chemiluminescent nitrogen oxide meter to which the present invention is applied. The same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description is omitted. The flow path from the measurement gas inlet 2 for supplying the measurement gas is a filter 4
Is connected to the dehumidifier 6 via the
The flow path is branched into two flow paths, one flow path 9a is connected via a NO 2 / NO converter 8 and the other flow path 9b is connected to a flow path switching device 10 without passing through a converter 8, and the flow path switching device 10
Are connected to a reaction tank 14 via a resistance tube 12. The reaction tank 14 is combined with a photoelectric measurement unit 28. The flow path from the air inlet 16 passes through a filter 18, a dehumidifier 20, and an activated carbon column 22 through an ozone generator 24.
The flow path from the ozone generator 24 is connected to the reaction tank 14 via a resistance tube 26. Reaction tank 1
The flow path from the suction pump 3 through the ozone decomposer 30
2 and the exhaust side of the pump 32 is connected to the NOx adsorber 34
Through the exhaust port 36. The configuration so far is the same as that of FIG. In this embodiment, a branch channel 9c provided with a resistance tube 38 is connected to a channel between the converter 8 and the channel switch 10, and the branch channel 9c is connected to the ozone decomposer 30 and the pump 32. And is always sucked.

【0012】ポンプ32を作動させると、測定ガス入口
2から測定ガスが吸引され、空気入口16から空気が吸
引される。測定ガス入口2から吸引された測定ガスは、
フィルタ4により除塵され、除湿器6により除湿された
後、反応槽16側に吸引される。その測定ガスは、流路
切換器10が流路9a側に接続されているときにはコン
バータ8を介して、流路9b側に接続されているときに
はコンバータ8を介さずに、さらに抵抗管38を介し
て、反応槽14に導かれる。このとき、流路切換器10
がいずれの流路9a,9bに接続されているに拘らず、
コンバータ8を通過した測定ガスが分岐流路9c側に吸
引される。これにより、流路切換器10がいずれの流路
9a,9bに接続されていてもコンバータ8内に測定ガ
スを流しつづけて、古い測定ガスが滞留することを防い
で、コンバータ8内を新しい測定ガスに置換していく。
流路切換器10が切り換えられてコンバータ8が反応槽
14に接続されたときには、測定すべき測定ガスが直ち
に反応槽14に導入される。
When the pump 32 is operated, the measurement gas is sucked from the measurement gas inlet 2 and the air is sucked from the air inlet 16. The measurement gas sucked from the measurement gas inlet 2 is
After being dust-removed by the filter 4 and dehumidified by the dehumidifier 6, it is sucked into the reaction tank 16 side. When the flow path switch 10 is connected to the flow path 9a side, the measurement gas passes through the converter 8, and when the flow path switch 10 is connected to the flow path 9b side, without passing through the converter 8, the measurement gas further flows through the resistance tube 38. Then, it is led to the reaction tank 14. At this time, the flow path switch 10
Is connected to either of the flow paths 9a and 9b,
The measurement gas that has passed through the converter 8 is sucked into the branch channel 9c. Thus, no matter which flow path 9a or 9b the flow path switching device 10 is connected to, the measurement gas continues to flow into the converter 8 to prevent the old measurement gas from staying therein and to perform a new measurement in the converter 8. Replace with gas.
When the flow path switch 10 is switched and the converter 8 is connected to the reaction tank 14, the measurement gas to be measured is immediately introduced into the reaction tank 14.

【0013】他方、空気入口16から吸引された空気
は、フィルタ18により除塵され、除湿器20により除
湿され、さらに活性炭カラム22によりオゾン生成妨害
物質が除去された後、オゾン発生器24に導かれる。オ
ゾン発生器24では、空気中の酸素からO3が生成され
る。オゾン発生器24からのO3を含む空気は、抵抗管
26を介して、反応槽14に導かれる。反応槽14にそ
れぞれ導かれた測定ガスとO3を含む空気が混合され、
生じた化学発光が光電測定部8により検出され、その検
出強度に基づいてNO濃度が算出される。その後、反応
槽14内の測定ガスとO3を含む空気の混合ガスは、オ
ゾン分解器30に導かれてO3が分解された後、分岐流
路9cからの測定ガスと合流してポンプ32に吸引され
る。ポンプ32から排出される混合ガスは、NOx吸着
器34により窒素酸化物が除去された後、排気口36か
ら排出される。
On the other hand, the air sucked from the air inlet 16 is dust-removed by the filter 18, dehumidified by the dehumidifier 20, and the ozone generation obstructing substance is removed by the activated carbon column 22, and then guided to the ozone generator 24. . In the ozone generator 24, O 3 is generated from oxygen in the air. The air containing O 3 from the ozone generator 24 is led to the reaction tank 14 via the resistance tube 26. The measurement gas introduced into the reaction tank 14 and the air containing O 3 are mixed,
The generated chemiluminescence is detected by the photoelectric measurement unit 8, and the NO concentration is calculated based on the detected intensity. Thereafter, the mixed gas of the measurement gas and the air containing O 3 in the reaction tank 14 is guided to the ozone decomposer 30 to decompose O 3 , and then merges with the measurement gas from the branch channel 9 c to form the pump 32. Is sucked. The mixed gas discharged from the pump 32 is discharged from the exhaust port 36 after nitrogen oxides are removed by the NOx adsorber 34.

【0014】図3は、他の実施例を表す概略流路図であ
る。試料ガス入口2からの流路はフィルタ4を介して除
湿器6に接続されており、除湿器6からの流路は2つの
流路9a,9bに分岐され、一方の流路9aはNO 2
NOコンバータ8を介して、他方の流路9bはコンバー
タ8を介さずに、流路切換器10に接続されており、流
路切換器10の共通出口は抵抗管12を介して反応槽1
4に接続されている。反応槽14には光電測定部28が
組み合わされている。反応槽14からの流路はオゾン分
解器30を介して吸引ポンプ32に接続され、ポンプ3
2の排気側はNOx吸着器34を介して排気口36に導
かれている。以上の構成は図2の実施例と同じである。
FIG. 3 is a schematic flow chart showing another embodiment.
You. The flow path from the sample gas inlet 2 is removed via the filter 4.
The dehumidifier 6 is connected to the humidifier 6 and has two flow paths.
The flow paths 9a and 9b are branched, and one of the flow paths 9a is NO. Two/
Via the NO converter 8, the other flow path 9b is converted
Connected to the flow path switching device 10 without passing through the
The common outlet of the path changer 10 is connected to the reaction vessel 1 through the resistance tube 12.
4 is connected. A photoelectric measurement unit 28 is provided in the reaction tank 14.
Are combined. The flow path from the reaction tank 14 has an ozone
Connected to a suction pump 32 through a dissociator 30;
The exhaust side 2 is led to an exhaust port 36 via a NOx adsorber 34.
Have been. The above configuration is the same as the embodiment of FIG.

【0015】図2の実施例ではオゾン生成用の空気入口
16を別途設けているのに対し、この実施例では、コン
バータ8と流路切換器10との間の流路に、分岐流路9
dが接続されており、分岐流路9cは活性炭カラム22
を介してオゾン発生器24に導かれている。オゾン発生
器24からの流路は抵抗管40を介して反応槽14に接
続されている。また、フィルタ4、除湿器6間の流路
は、調圧器42を介して、反応槽14、オゾン分解器3
0間の流路に接続されており、調圧器42によりポンプ
32による反応槽14内の減圧の大きさを調整するよう
になっている。なお、図2には、この調圧器42を備え
る流路は設けられていないが、同様に設けてもよい。
In the embodiment shown in FIG. 2, an air inlet 16 for generating ozone is separately provided, whereas in this embodiment, a branch passage 9 is provided in a passage between the converter 8 and the passage switch 10.
d is connected, and the branch flow path 9c is connected to the activated carbon column 22.
Through the ozone generator 24. The flow path from the ozone generator 24 is connected to the reaction tank 14 via a resistance tube 40. The flow path between the filter 4 and the dehumidifier 6 is connected to the reaction tank 14 and the ozone decomposer 3 through a pressure regulator 42.
It is connected to a flow path between zero and the pressure regulator 42 adjusts the degree of pressure reduction in the reaction tank 14 by the pump 32. Although the flow path including the pressure regulator 42 is not provided in FIG. 2, it may be provided similarly.

【0016】ポンプ32を作動させると、測定ガス入口
2から測定ガスが吸引される。測定ガス入口2から吸引
された測定ガスは、フィルタ4により除塵され、除湿器
6により除湿された後、反応槽16側に吸引される。そ
の測定ガスは、流路切換器10が流路9a側に接続され
ているときにはコンバータ8を介して、流路9b側に接
続されているときにはコンバータ8を介さずに、さらに
抵抗管38を介して、反応槽14に導かれる。このと
き、流路切換器10がいずれの流路9a,9bに接続さ
れているに拘らず、コンバータ8を通過した測定ガスが
分岐流路9d側に吸引される。そして、その測定ガス
は、活性炭カラム22を介して、オゾン発生器24に導
かれる。オゾン発生器24からのO3を含む空気は、抵
抗管26を介して、反応槽14に導かれる。
When the pump 32 is operated, the measurement gas is sucked from the measurement gas inlet 2. The measurement gas sucked from the measurement gas inlet 2 is dust-removed by the filter 4, dehumidified by the dehumidifier 6, and then sucked into the reaction tank 16. When the flow path switch 10 is connected to the flow path 9a side, the measurement gas passes through the converter 8, and when the flow path switch 10 is connected to the flow path 9b side, without passing through the converter 8, the measurement gas further flows through the resistance tube 38. Then, it is led to the reaction tank 14. At this time, regardless of which of the flow paths 9a and 9b the flow path switch 10 is connected to, the measurement gas that has passed through the converter 8 is sucked into the branch flow path 9d. Then, the measurement gas is led to the ozone generator 24 via the activated carbon column 22. The air containing O 3 from the ozone generator 24 is led to the reaction tank 14 via the resistance tube 26.

【0017】この実施例では、コンバータ8に常時測定
ガスを流すための分岐流路9dに導かれる測定ガスをオ
ゾン源ガスとしてオゾン発生器24に供給している。分
岐流路9dに導かれる測定ガスは、フィルタ4により除
塵され、除湿器6により除湿されているので、オゾン源
ガス中のほこりや水分を除去するための装置を別途設け
るのを省略することができる。また、流路構成を簡単に
することもできる。
In this embodiment, a measurement gas guided to a branch passage 9d for constantly flowing a measurement gas to the converter 8 is supplied to the ozone generator 24 as an ozone source gas. Since the measurement gas guided to the branch channel 9d is dedusted by the filter 4 and dehumidified by the dehumidifier 6, it is not necessary to separately provide a device for removing dust and moisture in the ozone source gas. it can. Further, the flow path configuration can be simplified.

【0018】[0018]

【発明の効果】本発明の化学発光式窒素酸化物計では、
流路切換器を二酸化窒素還元触媒の下流に配置し、二酸
化窒素還元触媒と流路切換器との間の流路に分岐流路を
設け、流路切換器が二酸化窒素還元触媒を通らない流路
を反応槽に接続しているときであっても、二酸化窒素還
元触媒に常時測定ガスが流れるようにしたので、二酸化
窒素還元触媒内に測定ガスが留まることがなくなり、流
路切換器を還元流路側に接続した後の指示値を迅速に安
定させることができ、誤差の少ない測定を行なうことが
できる。さらに、分岐流路をオゾン発生器につながる流
路に接続し、分岐流路から流出される測定ガスをオゾン
源ガスとして用いると、オゾン源ガスとして供給される
測定ガス中のほこりや水分は除去されているので、オゾ
ン源ガス中のほこりや水分を除去するための装置を別途
設けることを省略することができ、流路構成を簡単にす
ることもできる。
According to the chemiluminescent nitrogen oxide meter of the present invention,
A flow path switch is arranged downstream of the nitrogen dioxide reduction catalyst, a branch flow path is provided in a flow path between the nitrogen dioxide reduction catalyst and the flow path switch, and a flow path in which the flow path switch does not pass through the nitrogen dioxide reduction catalyst. Even when the flow path is connected to the reaction tank, the measurement gas is made to always flow through the nitrogen dioxide reduction catalyst, so that the measurement gas does not remain in the nitrogen dioxide reduction catalyst, and the flow path switch is reduced. The indication value after connection to the flow path side can be quickly stabilized, and measurement with less error can be performed. Furthermore, by connecting the branch flow path to a flow path leading to the ozone generator and using the measurement gas flowing out of the branch flow path as an ozone source gas, dust and moisture in the measurement gas supplied as the ozone source gas are removed. Therefore, it is not necessary to separately provide a device for removing dust and moisture in the ozone source gas, and the flow path configuration can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の化学発光式窒素酸化物計を表す概略流
路構成図である。
FIG. 1 is a schematic flow path configuration diagram showing a conventional chemiluminescent nitrogen oxide meter.

【図2】 一実施例を表す概略流路図である。FIG. 2 is a schematic flow chart showing one embodiment.

【図3】 他の実施例を表わす概略流路図である。FIG. 3 is a schematic flow chart showing another embodiment.

【符号の説明】[Explanation of symbols]

2 試料ガス入口 4,18 フィルタ 6,20 除湿器 8 NO2/NOコンバータ 9a 還元流路 9b バイパス流路 9c,9d 分岐流路 10 流路切換器 12,26,38,40 抵抗管 14 反応槽 16 空気入口 22 活性炭カラム 24 オゾン発生器 28 光電測定部 30 オゾン分解器 32 吸引ポンプ 34 NOx吸着器 36 排気口 42 調圧器2 Sample gas inlet 4,18 filter 6,20 dehumidifier 8 NO 2 / NO converter 9a reduction passage 9b bypass passage 9c, 9d branch channel 10 the channel changer 12,26,38,40 resistance tube 14 reaction vessel Reference Signs List 16 air inlet 22 activated carbon column 24 ozone generator 28 photoelectric measurement unit 30 ozone decomposer 32 suction pump 34 NOx adsorber 36 exhaust port 42 pressure regulator

フロントページの続き Fターム(参考) 2G042 AA01 BB07 CA01 CB01 DA03 DA09 FA09 FA11 2G054 AA01 CA06 CE01 CE08 EA01 FA10 FA50 Continued on the front page F term (reference) 2G042 AA01 BB07 CA01 CB01 DA03 DA09 FA09 FA11 2G054 AA01 CA06 CE01 CE08 EA01 FA10 FA50

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 測定ガスを検出器の反応槽に導いて、オ
ゾンと一酸化窒素との化学反応の際に生じる化学発光の
強度から一酸化窒素濃度を定量するとともに、測定ガス
をその前記反応槽に導く流路を、流路切換器により、二
酸化窒素還元触媒を通る還元流路と、二酸化窒素還元触
媒を通らないバイパス流路とに切り換えて測定ガスを前
記反応槽に導くことにより二酸化窒素濃度も定量できる
ようにした化学発光式窒素酸化物計において、 前記流路切換器を前記二酸化窒素還元触媒の下流に配置
し、前記二酸化窒素還元触媒と前記流路切換器との間の
流路に分岐流路を設け、前記流路切換器が前記バイパス
流路を前記反応槽に接続しているときであっても、前記
二酸化窒素還元触媒に常時測定ガスが流れるようにした
ことを特徴とする化学発光式窒素酸化物計。
1. A measuring gas is introduced into a reaction tank of a detector to determine a concentration of nitric oxide from the intensity of chemiluminescence generated during a chemical reaction between ozone and nitric oxide. The flow path leading to the tank is switched by a flow path switch between a reduction flow path passing through the nitrogen dioxide reduction catalyst and a bypass flow path not passing through the nitrogen dioxide reduction catalyst, and the measurement gas is led to the reaction tank. In a chemiluminescent nitrogen oxide meter that can also determine the concentration, the flow path switching device is disposed downstream of the nitrogen dioxide reduction catalyst, and a flow path between the nitrogen dioxide reduction catalyst and the flow path switching device. A branch flow path is provided, and even when the flow path switch connects the bypass flow path to the reaction tank, the measurement gas always flows through the nitrogen dioxide reduction catalyst. Chemiluminescence Nitrogen oxides meter.
【請求項2】 前記分岐流路をオゾン発生器につながる
流路に接続し、前記分岐流路から流出される測定ガスを
オゾン源ガスとして用いる請求項1に記載の化学発光式
窒素酸化物計。
2. The chemiluminescent nitrogen oxide meter according to claim 1, wherein the branch channel is connected to a channel connected to an ozone generator, and a measurement gas flowing out of the branch channel is used as an ozone source gas. .
JP10880699A 1999-04-16 1999-04-16 Chemiluminescent nitrogen oxide meter Expired - Fee Related JP3582399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10880699A JP3582399B2 (en) 1999-04-16 1999-04-16 Chemiluminescent nitrogen oxide meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10880699A JP3582399B2 (en) 1999-04-16 1999-04-16 Chemiluminescent nitrogen oxide meter

Publications (2)

Publication Number Publication Date
JP2000298097A true JP2000298097A (en) 2000-10-24
JP3582399B2 JP3582399B2 (en) 2004-10-27

Family

ID=14493967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10880699A Expired - Fee Related JP3582399B2 (en) 1999-04-16 1999-04-16 Chemiluminescent nitrogen oxide meter

Country Status (1)

Country Link
JP (1) JP3582399B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292220A (en) * 2007-05-23 2008-12-04 Tokyo Metropolitan Univ Method and apparatus for measuring concentration of atmospheric nitrogen oxide by using laser-induced fluorescence method
JP2009503437A (en) * 2005-05-02 2009-01-29 サーモ エレクトロン コーポレーション Method and apparatus for monitoring mercury in a gas sample
JP2020176910A (en) * 2019-04-17 2020-10-29 紀本電子工業株式会社 Nitrogen oxide measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503437A (en) * 2005-05-02 2009-01-29 サーモ エレクトロン コーポレーション Method and apparatus for monitoring mercury in a gas sample
JP2008292220A (en) * 2007-05-23 2008-12-04 Tokyo Metropolitan Univ Method and apparatus for measuring concentration of atmospheric nitrogen oxide by using laser-induced fluorescence method
JP2020176910A (en) * 2019-04-17 2020-10-29 紀本電子工業株式会社 Nitrogen oxide measuring device
JP7283963B2 (en) 2019-04-17 2023-05-30 紀本電子工業株式会社 Nitrogen oxide measuring device

Also Published As

Publication number Publication date
JP3582399B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
JP4413160B2 (en) Exhaust gas component analyzer
JP5182257B2 (en) Total organic carbon measuring device
JP3582399B2 (en) Chemiluminescent nitrogen oxide meter
EP1710569A1 (en) Gas analyzer and method for controlling hydrogen flame ionization detector
JP2000180364A (en) Gas analyser
JP4314737B2 (en) Chemiluminescent nitrogen oxide concentration meter
JP3406968B2 (en) Adsorption tube for nitrogen oxides in gas, collection / recovery method using the same, and measurement method and apparatus using the same
JP4247985B2 (en) Flow path switching analyzer and measuring apparatus using the same
JP4319471B2 (en) Sample gas concentration meter
JP2005207956A (en) Suspended particulate matter measuring device
CN105388238A (en) Detection apparatus
JPH08233706A (en) Automatic measuring system of acid or basic gas
JP4165341B2 (en) Infrared gas analyzer
JP4100607B2 (en) Gas analyzer and gas analysis method
JP3129841U (en) Volatile organic compound measuring device
JP2004195386A (en) Apparatus and method for testing catalytic activity
JP2006064484A (en) Method and system for measuring isotope presence ratio of gas
JP7283963B2 (en) Nitrogen oxide measuring device
JP4614237B2 (en) Sample gas analyzer
JPH0921753A (en) Chemiluminescent gas analyzer
JP2004226098A (en) Fluid modulation type measuring apparatus
JPH07120389A (en) Gas analyzer
JPH0134112Y2 (en)
JPH1151869A (en) Total organic carbon/total nitrogen meter
JPH039016Y2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees