JP4319471B2 - Sample gas concentration meter - Google Patents

Sample gas concentration meter Download PDF

Info

Publication number
JP4319471B2
JP4319471B2 JP2003166002A JP2003166002A JP4319471B2 JP 4319471 B2 JP4319471 B2 JP 4319471B2 JP 2003166002 A JP2003166002 A JP 2003166002A JP 2003166002 A JP2003166002 A JP 2003166002A JP 4319471 B2 JP4319471 B2 JP 4319471B2
Authority
JP
Japan
Prior art keywords
gas
sample gas
sample
flow rate
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003166002A
Other languages
Japanese (ja)
Other versions
JP2004340905A (en
Inventor
憲和 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2003166002A priority Critical patent/JP4319471B2/en
Publication of JP2004340905A publication Critical patent/JP2004340905A/en
Application granted granted Critical
Publication of JP4319471B2 publication Critical patent/JP4319471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、各種ガス中の複数の成分あるいは濃度変化の大きい成分の濃度を測定する試料ガス濃度計に関するもので、特に大気中の特定物質(成分)測定装置や自動車排気ガス中の特定物質測定装置に用いられる試料ガス濃度計に適用することが有用である。
【0002】
【従来の技術】
近年、大気の汚染状態を監視すべく、大気中の一酸化炭素(CO)、硫黄酸化物(SOx)、窒素酸化物(NOx)、炭化水素(HC)、オキシダント(Ox)およびダストの濃度が管理対象として連続的に測定され、大気中の特定物質測定装置や自動車排気ガス中の特定物質測定装置など、多くの測定装置が稼動している。こうした測定物質の内、NOxとは、一般に一酸化窒素(NO)と二酸化窒素(NO2 )の混合物をいい、通常、図4に示すように、試料Gを2分し、 一方を絞り1および電磁弁2を介して検出器3に導入する(流体A)とともに、他方をNO2 −NOコンバータ10、電磁弁2を介して検出器3に導入する( 流体B)。電磁弁2、2の稼動を切換えて、流体AとBを交互に検出器3に導入し、NOx、NOおよび両者の差から算出されるNO2 を検出する。このとき 、検出器には、従来から、非分散赤外線吸収法(NDIR)や非分散紫外線吸収法(NDUV)とともに、化学発光法(CLD)が多く用いられている。
【0003】
CLDは、精製器11によって精製された空気Dをオゾン発生器12に導入する(オゾン流体)と、検出器内の反応槽にて試料中のNOと以下の反応が起こり、このとき生じる光(hν)を測定することで、試料中のNO成分を検出することができるものである。
NO + O3 → NO2 * + O2
NO2 * → NO2 + hν
上記試料流体あるいはオゾン流体の検出器への導入は、各流路に圧送用のポンプを設ける方法や、図4のように、検出器3の後段に設けられた吸引ポンプ6を用いた吸引方法によることも可能である。吸引方法の場合、フィルタ4から空気を吸引しつつ圧力調整器5によって、検出器3の内部圧力を一定に調整し、安定な指示を確保する。
【0004】
ここで、一般には、直線性を確保し、あるいは共存する成分、特に二酸化炭素(CO2 )や水分(H2 O)などによる影響を防止するために、図4に示すように、精製器11によって精製された空気Dによって希釈した試料を検出器3に導入する構成が採られる(例えば特許文献1または2参照)。つまり、前者については、高濃度の試料をそのまま検出器内反応槽に導入すると、層内では反応が完結せず、系外発光による直線性の悪化を生じる。後者については、励起状態にあるNO2 * がCO2 などの分子との衝突によってエネルギーが奪われる、いわゆる消光現象による影響である。このため、試料を希釈することで応答性を損なわずに、試料、つまりNOやCO2 などを適切な条件で反応槽内に導入することができる。
【0005】
さらに、こうしたCLDの安定性の向上を図るために、図5に示すような流体切換手段13を用いて試料流体Gと基準(比較)流体Rを一定周期で切換えて変調させ、検出器内の発光量の変化分のみを交流信号として取り出す流体変調式が知られている。基準流体Rは上記精製空気の一部を絞り14を介して導入することで安定した基準を形成することができる。
【0006】
【特許文献1】
特開平7−301603号公報
【特許文献2】
特開平10−142120号公報
【0007】
【発明が解決しようとする課題】
しかしながら、従来技術で述べた測定装置では、以下のような課題が生じることがある。
つまり、例えば自動車の排気ガスのように、試料流体中のNOx濃度が大幅に変化する場合、特に高濃度NOxが発生する場合にあっては、希釈後の試料であっても、上述のようなCLDの検出部の最適範囲を超えることがあり、希釈率を上げることが必要となることがある。
【0008】
通常、希釈率を上げる方法としては希釈流体の流量を増加する方法が考えられるが、検出器への流量増加に伴う系外発光の発生のおそれがある。このとき、希釈流体との混合後の試料流体の一部をバイパスに放出する方法もあるが、流路の複雑化を招くおそれがある。また、希釈流体の流量の増加は、希釈流体作製用の精製器の負荷が増大するおそれがあり、しいては、精製器の効率確認や交換など、装置の保守において専門的な作業を伴う場合があり、精製器自体の保守も必要となり作業負荷がかかることとなる。
【0009】
また、導入する試料流量を低下する方法を採った場合、切換時の過渡的な現象が生じ、測定値に悪影響を及ぼすおそれがある。
具体的には、図4のような切換弁2、2によるライン切換において、切換直後の弁2とライン結合部aあるいはb間の配管での滞留や吸着等による残留物との混合によるオーバーシュートあるいはアンダーシュートが無視できない場合がある。図6(A)あるいは(B)に示すハンチィング部分が該当する。また、図5のような流体変調式の場合にあっても、弁13とライン結合部b間の配管において同様の現象が生じるおそれがある。図6(C)あるいは(D)に示すハンチィング部分が該当する。このような波形の乱れは、濃度計の最終指示として、リップル現象が生じるおそれがある。
【0010】
そこで、本発明の目的は、上記のような問題点を解決し、測定成分の濃度変化が大きな試料ガスの測定において、測定値の安定性・信頼性および測定精度の高い濃度計およびこれを用いた測定装置を提供することにある。また、流体変調式の場合において、測定値に悪影響を及ぼすおそれがある切換時の過渡的な現象を防止することにある。
【0011】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために、鋭意研究を重ねた結果、以下に示す濃度計およびこれを用いた測定装置により上記目的を達成できることを見出し、本発明を完成するに到った。
【0012】
試料ガスと基準(比較)ガスを一定周期で切換えて検出器に導入して変調させ、その変化分を交流信号として取り出す流体変調式の試料ガス濃度計であって、試料ガスの導入および停止を制御する切換手段および希釈ガスを該切換手段の前後両方に注入する希釈手段を有するとともに、試料ガスの導入時において、前記試料ガスを導入する流量に応じて前記切換手段の前段で注入され希釈ガスによって第1段目に希釈された試料ガスの流量を増加させ、さらにその後段で注入された希釈ガスによって第2段目に希釈されて検出器に導入され、試料ガスの停止時において、前記切換手段の後段から注入された希釈ガスが前記基準ガスとして検出器に導入され、検出器に導入される流量の総和をほぼ一定とすることを特徴とする。こうした構成によって、切換時の過渡現象の発生のない、測定値の安定性・信頼性および測定精度の高い濃度計およびこれを用いた測定装置を提供することができる。
【0013】
上記濃度計であって、成分濃度が大きく変化する試料ガスの場合、前記切換手段の前段に複数流路を設け、濃度範囲をいくつかに分けて各々検出器に適した試料ガス流量を設定し、成分濃度に応じて流路の切換えを可能とするとともに、該切換後、さらに前記切換手段の前段で注入される希釈ガスによって第1段目に希釈された試料ガスの流量を増加させることが好適である。こうした構成によって、成分濃度が大きく変化する試料であっても、検出器に適した試料流量に切換え、かつ、上述の切換時の過渡現象の発生のない、測定値の安定性・信頼性および測定精度の高い濃度計およびこれを用いた測定装置を提供することができる。また、前記設定された試料ガス流量、第1段目の希釈ガス流量および第2段目の希釈ガス流量の総和をほぼ一定とすることが好適である。こうした構成によって、切換に伴う過渡現象の発生がなく、測定成分の濃度変化に伴う変動要素がなくなることによって、検出器に適した試料流量に切換え、かつ、安定性・信頼性および測定精度の高い測定値を得ることができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
本発明は、試料ガスあるいは基準ガスが流れる複数の流路、該流路の切換手段、および測定試料の希釈手段を有する試料ガス濃度計であって、希釈ガスを切換手段の前後両方に注入可能とすることを特徴とする。つまり、本発明者は、流路切換手段を通過するガスの流量を大きく変化しないようにすることで、流路切換手段の切換時の過渡現象は生じないようにすることができることを見出したもので、複数の採取点からの試料の切換や同一試料を分割して異なった処理がされた試料の切換を行った後、単一検出器によって測定する場合に非常に有効となる。こうした構成によって、切換時の過渡現象の発生のない、測定値の安定性・信頼性および測定精度の高い試料ガス濃度計およびこれを用いた測定装置を提供することができる。
【0015】
本発明の実施形態の一例として、複数の採取点からの試料流体を測定する構成例を、図1に示す。試料流体G1 、G2 、・・Gn を、絞り1(C1 、C2 、・・Cn )および流路切換手段である電磁弁2(V1 、V2 、・・Vn )を介して検出器1に導入するとともに、絞り1と電磁弁2との間に精製流体Dを絞り7(D1 、D2 、・・Dn )を介して添加・混合することで第1段目の希釈を行い、さらに電磁弁2と検出器3の間に絞り8を介して精製流体Dを添加・混合することで第2段目の希釈を行う構成をとる。電磁弁2を順にONすることで、試料流体G1 、G2 、・・Gn が順に検出器に導入される。
【0016】
このとき、試料の濃度に応じて試料採取流量を絞り1で調整し、希釈率を絞り7で調整することが可能である。つまり、試料G1 の濃度がG2 の濃度の約5倍程度であった場合、絞りC1 によってG1 の流量をG2 の流量の約5分の1程度にし、減少した流量分を絞りD1 によって希釈流体の流量を増加させることで、電磁弁V1 を通過する流量は、試料G2 が電磁弁V2 を通過する流量とほぼ同じにすることができる。従って、各ラインの切換に伴う変動要素がなくなり、本発明の目的である、検出器に適した試料流量に切換え、かつ、安定性・信頼性および測定精度の高い測定値を得ることができる。上記は、全く異なる試料、例えば、複数の基点から採取した作業環境測定用の作業雰囲気を測定する場合、あるいは工場の製品漏洩監視用の多点測定などにも適用可能である。
【0017】
また、本発明は、複数の採取点からの試料ではなく、1つの試料を2分し、異なる処理方法によって得られる2種類の流体を測定する場合についても適用が可能で、例えば、従来技術で挙げたNOx測定装置における流体Aと流体Bを切換え、安定性・信頼性の高いNOx、NO、NO2 測定値を得ることができる。あるいは、試料流体と基準流体とを一定周期で切換える、流体変調方式についても同様の効果を得ることができる。なお、精製流体Dは、精製手段(例えば、活性炭や除湿器等、除去手段は問わない)を用いて、空気中の測定成分(例えば、NOxなど)や水分等を除去したものが好ましい。
【0018】
また、本発明は、試料流体の導入および停止を制御する切換手段および測定試料の希釈手段を有する濃度計であって、希釈流体を前記切換手段の前後両方に注入可能とすることを特徴とする。例えば、上述のような流体変調式の濃度計においては、濃度計のゼロの状態として、基準流体を検出する場合だけでなく、検出器への試料導入を停止した場合も含まれる。本発明者はこの機能を有する濃度計においても、本発明が有効であることを見出したものである。こうした構成によって、流体変調式特有の指示の安定性に加え、切換時の過渡現象の発生のない、測定値の信頼性および測定精度の高い濃度計およびこれを用いた測定装置を提供することができる。
【0019】
図2に、本発明の実施形態の一構成例を示す。
具体的には、従来技術において説明した図5の構成に、絞り1と電磁弁2の間に精製流体Dを絞り7を介して導入したものである。発明者の知見によれば、例えば、CLDを用いたNOx計において、低濃度(例えば、10〜100ppm)測定時には、試料流量20〜30ml/min、希釈空気流量約100ml/min、オゾン流体流量約400ml/min、検出器吸引圧力約(−)10kPaが好適な条件であるとすれば、高濃度(例えば、200〜2000ppm)測定時の場合、試料流量を5〜10ml/min、第1段の希釈空気流量約20ml/min、第2段の希釈空気流量約80ml/min、オゾン流体および吸引圧力は上記と同じとすることで、切換に伴う過渡現象の発生がないことが確認されている。
【0020】
また、上記では、CLDを用いた場合について述べたが、他の測定原理にも適用することが可能である。例えば、FIDに適用した場合には、補助流体として燃料ガス(水素を含むガス)および助燃ガス(酸素を含むガス)を試料ガスとともに導入し、以下の反応によって生じるC+ イオンを測定することで試料中の炭化水素を検出することができるが、試料の導入を停止すると検出器にゼロガスを導入する場合と同様、ゼロ状態を作り出すことができる。従って、本発明の条件を満たし、本発明の適用効果を得ることができる。
CmH2 n + n/2O2 → mC+ + nH2
その他、上記条件を満たす濃度計にあっては、同様に本発明の適用が可能となることはいうまでもない。
【0021】
上記濃度計であって、前記切換手段の前段において、試料流量の切換機能を有することが好適である。成分濃度が大きく変化する試料の場合、濃度範囲をいくつかに分け、各々検出器に適した試料流量を設定し、等差圧の複数流路に絞り部および切換弁を各々設けて、成分濃度に応じて検出器に接続する流路を切換えるものである(流量切換弁)。このとき、流量切換弁と流路切換手段の間に希釈用の精製流体を導入可能とすることで、測定値の安定性・信頼性および測定精度の高い濃度計およびこれを用いた測定装置を提供することができる。
【0022】
本発明の実施形態の一の構成例を図3に示す。絞り1(C1 、C2 、・・Cn )および流量切換弁9(V1 、V2 、・・Vn )を有する複数の流路のいずれか1または2以上の流路、次に流路切換手段である電磁弁2を介して試料流体Gを検出器1に導入するとともに、絞り1と電磁弁2との間に精製流体Dを絞り7を介して添加・混合することで第1段目の希釈を行い、さらに電磁弁2と検出器3の間に絞り8を介して精製流体Dを添加・混合することで第2段目の希釈を行う構成をとる。電磁弁2を一定周期でON−OFFすることで、該周期の流体変調が可能となるとともに、電磁弁2の動作に伴う過渡的な影響を防ぐことができる。
【0023】
図3では、さらに、試料流量によって、第1段目の希釈の有無を選択できる構成を示している。例えば、CLDを用いたNOx計において、C1 を5ml/min用の絞り、C2 を10ml/min用の絞り、C3 を20ml/min用の絞り、・・Cn をNml/min用の絞りとして構成した場合、高濃度(例えば、200〜2000ppm)測定時の場合、V1 をONにしてC1 を介して試料流量を約5ml/minとし、第1段の希釈空気流量約20ml/min、第2段の希釈空気流量約80ml/minで混合・希釈する。一方、低濃度(例えば、10〜100ppm)測定時には、V1 とV3 をONにして試料流量を約25ml/minとし、第1段の希釈を停止して希釈空気流量約80ml/minとすることで、切換に伴う過渡現象の発生がない。このように、測定成分の濃度変化に伴う変動要素がなくなり、本発明の目的である、検出器に適した試料流量に切換え、かつ、安定性・信頼性および測定精度の高い測定値を得ることができる。
【0024】
ここで、前記試料流量の切換を、装置外部からの指示あるいは測定値に基づき、任意に作動可能とすることが好適である。近年、上記のように観測装置あるいは測定装置のように長期間自動運転を行う装置については、遠隔操作あるいは遠隔制御を行うことが一般的になってきており、さらには遠隔保守(リモートメンテナンス)の要望も強くなってきている。また、例えば自動車での触媒装置の有無あるいは過酷な条件下での走行試験における排気ガス測定等々、測定装置が用いられる範囲の拡大に伴い、成分濃度の変化幅も拡大する方向にある。本発明における自動流路切換機能はこうした要望に答えることができる手段として非常に有効であり、装置内部の機能によって切換を可能とするとともに、ユーザーインタフェイスからの任意の切換を行うことができる。
【0025】
以上は、主として大気中のNOxあるいはHC測定装置あるいは自動車排気ガスの測定装置について述べたが、本発明の技術はこうした適用範囲に限定されるものではなく、例えば、半導体製造装置等に用いられる特定物質測定装置など各種プロセスにおける特定物質の濃度測定装置を含む広い範囲においても応用が可能であり、広い汎用性を有する技術であるといえる。
【0026】
【発明の効果】
本発明は、試料流体あるいは基準流体が流れる複数の流路を有する濃度計や試料流体の導入および停止を制御する切換手段を有する濃度計において、切換時の過渡現象の発生のない、測定値の安定性・信頼性および測定精度の高い濃度計およびこれを用いた測定装置を提供することができる。
【0027】
また、上記濃度計であって、前記切換手段の前段において、試料流量の切換機能を有することによって、成分濃度が大きく変化する試料であっても、検出器に適した試料流量に切換え、かつ、上述の切換測定値の安定性・信頼性および測定精度の高い濃度計を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る濃度計の第1の構成例を示す説明図である。
【図2】本発明に係る濃度計の第2の構成例を示す説明図である。
【図3】本発明に係る濃度計の第3の構成例を示す説明図である。
【図4】従来の濃度計の1の構成例を示す説明図である。
【図5】従来の濃度計の他の構成例を示す説明図である。
【図6】従来の濃度計の動作の一例を示す説明図である。
【符号の説明】
1、7、8、14 絞り
2 電磁弁
3 検出器
5 圧力調整器
6 吸引ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sample gas concentration meter for measuring the concentration of a plurality of components in various gases or a component having a large concentration change, and in particular, a specified substance (component) measuring device in the atmosphere or measuring a specified substance in an automobile exhaust gas. It is useful to apply to a sample gas concentration meter used in the apparatus.
[0002]
[Prior art]
In recent years, the concentration of carbon monoxide (CO), sulfur oxides (SOx), nitrogen oxides (NOx), hydrocarbons (HC), oxidants (Ox) and dust in the atmosphere has been monitored to monitor air pollution. Many measuring devices are in operation, such as a specific substance measuring device in the atmosphere and a specific substance measuring device in automobile exhaust gas, which are continuously measured as management targets. Of these substances to be measured, NOx generally refers to a mixture of nitric oxide (NO) and nitrogen dioxide (NO 2 ). Usually, as shown in FIG. While introducing into the detector 3 via the electromagnetic valve 2 (fluid A), the other is introduced into the detector 3 via the NO 2 -NO converter 10 and the electromagnetic valve 2 (fluid B). The operation of the solenoid valves 2 and 2 is switched, and the fluids A and B are alternately introduced into the detector 3 to detect NOx, NO and NO2 calculated from the difference between the two . At this time, a chemiluminescence method (CLD) is often used as a detector in addition to the non-dispersion infrared absorption method (NDIR) and the non-dispersion ultraviolet absorption method (NDUV).
[0003]
When the air D purified by the purifier 11 is introduced into the ozone generator 12 (ozone fluid), the CLD undergoes the following reaction with NO in the sample in the reaction tank in the detector, and the light generated at this time ( By measuring hν), the NO component in the sample can be detected.
NO + O 3 → NO 2 * + O 2
NO 2 * → NO 2 + hν
The sample fluid or the ozone fluid is introduced into the detector by a method of providing a pump for pumping in each flow path, or by a suction method using a suction pump 6 provided at the subsequent stage of the detector 3 as shown in FIG. It is also possible to. In the case of the suction method, the pressure regulator 5 adjusts the internal pressure of the detector 3 to be constant while sucking air from the filter 4 to ensure a stable instruction.
[0004]
Here, in general, in order to ensure linearity or prevent the influence of coexisting components, particularly carbon dioxide (CO 2 ), moisture (H 2 O), etc., as shown in FIG. The structure which introduce | transduces into the detector 3 the sample diluted with the air D refine | purified by is taken (for example, refer patent document 1 or 2). That is, for the former, when a high-concentration sample is directly introduced into the in-detector reaction tank, the reaction is not completed in the layer, and linearity is deteriorated due to out-of-system light emission. The latter is in an excited state NO 2 * is deprived of energy by collisions with molecules such as CO 2, it is affected by so-called quenching phenomenon. For this reason, the sample, that is, NO, CO 2 or the like can be introduced into the reaction vessel under appropriate conditions without diminishing the responsiveness by diluting the sample.
[0005]
Further, in order to improve the stability of the CLD, the fluid switching means 13 as shown in FIG. 5 is used to modulate the sample fluid G and the reference (comparison) fluid R by switching them at a constant period, and thereby in the detector. There is known a fluid modulation type in which only a change in light emission amount is taken out as an AC signal. The reference fluid R can form a stable reference by introducing a part of the purified air through the throttle 14.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-301603 [Patent Document 2]
Japanese Patent Laid-Open No. 10-142120
[Problems to be solved by the invention]
However, the following problems may occur in the measuring apparatus described in the related art.
In other words, for example, when the NOx concentration in the sample fluid changes significantly, such as automobile exhaust gas, particularly when high concentration NOx is generated, the diluted sample may be as described above. It may exceed the optimum range of the detection part of CLD, and it may be necessary to increase the dilution rate.
[0008]
Usually, as a method of increasing the dilution rate, a method of increasing the flow rate of the diluted fluid is conceivable. However, there is a possibility that the out-of-system light emission may occur with the increase of the flow rate to the detector. At this time, there is a method of discharging a part of the sample fluid after mixing with the dilution fluid to the bypass, but there is a possibility that the flow path becomes complicated. Also, an increase in the flow rate of the dilution fluid may increase the load on the purifier used to make the diluted fluid, and it may involve specialized work in equipment maintenance, such as checking and replacing the efficiency of the purifier. There is a need for maintenance of the purifier itself, and the work load is increased.
[0009]
In addition, when a method of reducing the sample flow rate to be introduced is adopted, a transient phenomenon at the time of switching occurs, which may adversely affect the measured value.
Specifically, in the line switching by the switching valves 2 and 2 as shown in FIG. 4, overshoot due to mixing with residues due to stagnation or adsorption in the piping between the valve 2 immediately after switching and the line coupling part a or b. Or undershoot may not be negligible. This corresponds to the hunting portion shown in FIG. 6 (A) or (B). Even in the case of the fluid modulation type as shown in FIG. 5, the same phenomenon may occur in the piping between the valve 13 and the line coupling part b. This corresponds to the hunting portion shown in FIG. 6 (C) or (D). Such a waveform disturbance may cause a ripple phenomenon as a final instruction of the densitometer.
[0010]
Accordingly, an object of the present invention is to solve the above-mentioned problems and to use a concentration meter having high stability and reliability of measurement values and high measurement accuracy in measurement of a sample gas in which the concentration change of the measurement component is large. It is to provide a measuring device. Further, in the case of the fluid modulation type, it is to prevent a transient phenomenon at the time of switching that may adversely affect the measured value.
[0011]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by the following densitometer and a measuring apparatus using the same, and have completed the present invention. It was.
[0012]
This is a fluid modulation type sample gas concentration meter that switches the sample gas and the reference (comparison) gas at a fixed period and introduces them into the detector for modulation, and extracts the change as an AC signal. diluted with a dilution means for injecting both before and after said changeover switching means switching means and the dilution gas is controlled, during the introduction of the sample gas, Ru is injected at the preceding stage of said switching means in accordance with the flow rate of introducing the sample gas The flow rate of the sample gas diluted in the first stage with the gas is increased, and further diluted in the second stage with the diluent gas injected in the subsequent stage and introduced into the detector, and when the sample gas is stopped, The dilution gas injected from the subsequent stage of the switching means is introduced into the detector as the reference gas, and the sum of the flow rates introduced into the detector is made substantially constant . With such a configuration, it is possible to provide a densitometer having high stability and reliability of measurement values and high measurement accuracy without causing a transient phenomenon at the time of switching, and a measurement apparatus using the same.
[0013]
In the case of the above-mentioned concentration meter, which is a sample gas whose component concentration varies greatly, a plurality of flow paths are provided in front of the switching means, and the concentration range is divided into several, and a sample gas flow rate suitable for each detector is set. The flow path can be switched according to the component concentration, and after the switching, the flow rate of the sample gas diluted in the first stage can be increased by the dilution gas injected in the previous stage of the switching means. Is preferred. With such a configuration, even if the sample concentration varies greatly, the sample flow rate is switched to a suitable one for the detector, and the measured values are stable and reliable without the occurrence of transients during switching. A highly accurate densitometer and a measurement apparatus using the same can be provided. Further, it is preferable that the sum of the set sample gas flow rate, the first-stage dilution gas flow rate, and the second-stage dilution gas flow rate is substantially constant. With such a configuration, there is no occurrence of a transient phenomenon due to switching, and there is no fluctuation factor due to a change in the concentration of the measurement component, so that the sample flow rate suitable for the detector is switched, and stability, reliability, and measurement accuracy are high. Measurements can be obtained.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
The present invention is a sample gas concentration meter having a plurality of flow paths through which a sample gas or a reference gas flows, a switching means for the flow paths, and a dilution means for the measurement sample, and the dilution gas can be injected both before and after the switching means. It is characterized by. That is, the present inventor has found that a transient phenomenon at the time of switching of the flow path switching means can be prevented by preventing the flow rate of the gas passing through the flow path switching means from changing greatly. Thus, it is very effective when measurement is performed by a single detector after switching samples from a plurality of sampling points or switching samples subjected to different processing by dividing the same sample. With such a configuration, it is possible to provide a sample gas concentration meter that does not cause a transient phenomenon at the time of switching and has high stability and reliability of measurement values and high measurement accuracy, and a measurement apparatus using the sample gas concentration meter.
[0015]
As an example of an embodiment of the present invention, a configuration example for measuring sample fluids from a plurality of sampling points is shown in FIG. Sample fluid G 1, G 2, the · · G n, diaphragm 1 (C 1, C 2, ·· C n) and the channel switching means electromagnetic valve 2 is (V 1, V 2, ·· V n) It is introduced into the detector 1 through the diaphragm 1 and the purified fluid squeezed D 7 between the electromagnetic valve 2 (D 1, D 2, ·· D n) first by the addition and mixing via The second-stage dilution is performed by performing the second-stage dilution and adding and mixing the purified fluid D between the solenoid valve 2 and the detector 3 via the throttle 8. By turning ON the solenoid valve 2 in order, the sample fluids G 1 , G 2 ,... G n are sequentially introduced into the detector.
[0016]
At this time, it is possible to adjust the sampling flow rate with the throttle 1 and the dilution rate with the throttle 7 according to the concentration of the sample. That is, if the concentration of the sample G 1 was about 5 times the concentration of G 2, stop the flow in G 1 to about 5 minutes about one of the flow rate of G 2 by C 1, squeezing the reduced flow amount By increasing the flow rate of the diluted fluid by D 1 , the flow rate that passes through the electromagnetic valve V 1 can be made substantially the same as the flow rate that the sample G 2 passes through the electromagnetic valve V 2 . Therefore, there are no fluctuation factors associated with the switching of each line, the sample flow rate suitable for the detector, which is the object of the present invention, can be obtained, and a measurement value with high stability, reliability and measurement accuracy can be obtained. The above can be applied to a completely different sample, for example, when measuring a working atmosphere for measuring a working environment collected from a plurality of base points, or to multi-point measurement for monitoring product leakage in a factory.
[0017]
The present invention can also be applied to a case where two types of fluids obtained by different processing methods are measured by dividing one sample into two parts instead of samples from a plurality of sampling points. switched fluids a and B in the NOx measuring device mentioned can be obtained with high stability and reliability NOx, NO, the NO 2 measurements. Or the same effect can be acquired also about the fluid modulation system which switches a sample fluid and a reference | standard fluid with a fixed period. The purified fluid D is preferably a fluid obtained by removing a measurement component (for example, NOx) in the air, moisture, or the like using a purification means (for example, activated carbon, a dehumidifier, or any other removal means).
[0018]
Further, the present invention is a concentration meter having switching means for controlling introduction and stop of the sample fluid and dilution means for the measurement sample, wherein the diluted fluid can be injected both before and after the switching means. . For example, in the fluid modulation type concentration meter as described above, not only the case where the reference fluid is detected but also the case where the sample introduction to the detector is stopped is included as the state of the concentration meter being zero. The present inventor has found that the present invention is effective even in a densitometer having this function. With such a configuration, it is possible to provide a densitometer having high reliability of measurement values and high measurement accuracy, and a measuring device using the same, in addition to the stability of the indication specific to the fluid modulation type, and without the occurrence of a transient phenomenon at the time of switching. it can.
[0019]
FIG. 2 shows an example of the configuration of the embodiment of the present invention.
Specifically, the purified fluid D is introduced between the throttle 1 and the electromagnetic valve 2 through the throttle 7 in the configuration of FIG. According to the inventor's knowledge, for example, in a NOx meter using CLD, when measuring a low concentration (for example, 10 to 100 ppm), the sample flow rate is 20 to 30 ml / min, the dilution air flow rate is about 100 ml / min, and the ozone fluid flow rate is about. Assuming that 400 ml / min and a detector suction pressure of about (−) 10 kPa are suitable conditions, when measuring a high concentration (for example, 200 to 2000 ppm), the sample flow rate is 5 to 10 ml / min, It has been confirmed that the dilution air flow rate is about 20 ml / min, the second stage dilution air flow rate is about 80 ml / min, the ozone fluid and the suction pressure are the same as described above, so that there is no occurrence of a transient phenomenon due to switching.
[0020]
Moreover, although the case where CLD was used was described above, it can be applied to other measurement principles. For example, when applied to FID, a fuel gas (a gas containing hydrogen) and an auxiliary combustion gas (a gas containing oxygen) are introduced as an auxiliary fluid together with a sample gas, and C + ions generated by the following reaction are measured. Hydrocarbons in the sample can be detected, but when the introduction of the sample is stopped, a zero state can be created as in the case of introducing zero gas into the detector. Therefore, the conditions of the present invention can be satisfied and the application effect of the present invention can be obtained.
CmH 2 n + n / 2 O 2 → mC + + nH 2 O
In addition, it goes without saying that the present invention can be similarly applied to a densitometer that satisfies the above conditions.
[0021]
It is preferable that the densitometer has a sample flow rate switching function before the switching unit. For a sample whose component concentration varies greatly , divide the concentration range into several parts, set the sample flow rate suitable for each detector, and provide a restrictor and a switching valve in multiple channels of equal differential pressure. The flow path connected to the detector is switched in accordance with (flow rate switching valve). At this time, a purified fluid for dilution can be introduced between the flow rate switching valve and the flow path switching means, so that a concentration meter with high stability and reliability of measurement values and high measurement accuracy and a measuring apparatus using the same can be obtained. Can be provided.
[0022]
One configuration example of the embodiment of the present invention is shown in FIG. Diaphragm 1 (C 1, C 2, ·· C n) and a flow switching valve 9 (V 1, V 2, ·· V n) any one or more of the flow path of the plurality of channels having, then The sample fluid G is introduced into the detector 1 through the electromagnetic valve 2 which is a flow path switching means, and the purified fluid D is added and mixed between the throttle 1 and the electromagnetic valve 2 through the throttle 7 to thereby achieve the first. The first-stage dilution is performed, and the second-stage dilution is performed by adding and mixing the purified fluid D between the solenoid valve 2 and the detector 3 via the throttle 8. By turning the solenoid valve 2 on and off at a constant cycle, fluid modulation of the cycle can be performed, and transient effects associated with the operation of the solenoid valve 2 can be prevented.
[0023]
FIG. 3 further shows a configuration in which the presence or absence of the first stage dilution can be selected depending on the sample flow rate. For example, in a NOx meter using CLD, C 1 is for 5 ml / min, C 2 is for 10 ml / min, C 3 is for 20 ml / min, and C n is for N ml / min. When configured as a diaphragm, when measuring a high concentration (for example, 200 to 2000 ppm), V 1 is turned on, the sample flow rate is about 5 ml / min via C 1 , and the first stage dilution air flow rate is about 20 ml / min. Min, mix and dilute at the second stage dilution air flow rate of about 80 ml / min. On the other hand, when measuring a low concentration (for example, 10 to 100 ppm), V 1 and V 3 are turned on to set the sample flow rate to about 25 ml / min, and the first stage dilution is stopped to make the diluted air flow rate about 80 ml / min. Thus, there is no occurrence of a transient phenomenon due to switching. In this way, there are no fluctuation factors associated with changes in the concentration of the measurement component, and the sample flow rate suitable for the detector, which is the object of the present invention, is obtained, and measurement values with high stability, reliability, and measurement accuracy are obtained. Can do.
[0024]
Here, it is preferable that the switching of the sample flow rate is arbitrarily operable based on an instruction from the outside of the apparatus or a measured value. In recent years, it has become common to perform remote operation or remote control for devices that perform automatic operation for a long period of time, such as observation devices or measurement devices, as described above, and further remote maintenance (remote maintenance). Requests are getting stronger. In addition, for example, the range of change in the component concentration tends to increase with the expansion of the range in which the measuring device is used, such as the presence or absence of a catalyst device in an automobile or the measurement of exhaust gas in a running test under severe conditions. The automatic flow path switching function in the present invention is very effective as a means for answering such a demand, and can be switched by a function inside the apparatus and can be arbitrarily switched from the user interface.
[0025]
The above has mainly described the measurement device for NOx or HC in the atmosphere or the measurement device for automobile exhaust gas, but the technology of the present invention is not limited to such an application range. It can be applied in a wide range including a concentration measuring device for a specific substance in various processes such as a material measuring device, and can be said to be a technology having wide versatility.
[0026]
【The invention's effect】
The present invention relates to a concentration meter having a plurality of flow paths through which a sample fluid or a reference fluid flows and a concentration meter having a switching means for controlling the introduction and stop of the sample fluid. It is possible to provide a densitometer having high stability / reliability and measurement accuracy, and a measuring apparatus using the same.
[0027]
Further, the concentration meter has a function of switching the sample flow rate in the previous stage of the switching means, so that even a sample whose component concentration greatly changes is switched to a sample flow rate suitable for the detector, and It is possible to provide a densitometer having high stability and reliability of the above-described switching measurement value and high measurement accuracy.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a first configuration example of a densitometer according to the present invention.
FIG. 2 is an explanatory diagram showing a second configuration example of the densitometer according to the present invention.
FIG. 3 is an explanatory diagram showing a third configuration example of the densitometer according to the present invention.
FIG. 4 is an explanatory diagram showing a configuration example of a conventional densitometer 1;
FIG. 5 is an explanatory diagram showing another configuration example of a conventional densitometer.
FIG. 6 is an explanatory diagram showing an example of the operation of a conventional densitometer.
[Explanation of symbols]
1, 7, 8, 14 Aperture 2 Solenoid valve 3 Detector 5 Pressure regulator 6 Suction pump

Claims (3)

試料ガスと基準(比較)ガスを一定周期で切換えて検出器に導入して変調させ、その変化分を交流信号として取り出す流体変調式の試料ガス濃度計であって、
試料ガスの導入および停止を制御する切換手段および希釈ガスを該切換手段の前後両方に注入する希釈手段を有するとともに、
試料ガスの導入時において、前記試料ガスを導入する流量に応じて前記切換手段の前段で注入され希釈ガスによって第1段目に希釈された試料ガスの流量を増加させ、さらにその後段で注入された希釈ガスによって第2段目に希釈されて検出器に導入され、
試料ガスの停止時において、前記切換手段の後段から注入された希釈ガスが前記基準ガスとして検出器に導入され、
検出器に導入される流量の総和をほぼ一定とすることを特徴とする試料ガス濃度計。
A fluid modulation type sample gas concentration meter that switches between a sample gas and a reference (comparison) gas at a fixed period, introduces it into a detector, modulates it, and extracts the change as an AC signal,
A switching means for controlling the introduction and stop of the sample gas and a dilution means for injecting a dilution gas both before and after the switching means;
During the introduction of the sample gas, increasing the flow rate of the diluted sample gas to the first stage by the preceding stage in injected Ru diluent gas of said switching means in accordance with the flow rate of introducing the sample gas, further injected in a subsequent stage Diluted to the second stage with the diluted gas and introduced into the detector,
When the sample gas is stopped, the dilution gas injected from the subsequent stage of the switching means is introduced into the detector as the reference gas,
A sample gas concentration meter, characterized in that the sum of the flow rates introduced into the detector is substantially constant .
成分濃度が大きく変化する試料ガスの場合、前記切換手段の前段に複数流路を設け、濃度範囲をいくつかに分けて各々検出器に適した試料ガス流量を設定し、成分濃度に応じて流路の切換えを可能とするとともに、当該切換後、さらに前記切換手段の前段で注入される希釈ガスによって第1段目に希釈された試料ガスの流量を増加させることを特徴とする請求項1記載の試料ガス濃度計。In the case of a sample gas whose component concentration varies greatly, a plurality of flow paths are provided in front of the switching means, the concentration range is divided into several parts, and a sample gas flow rate suitable for each detector is set. 2. The flow path of the sample gas diluted in the first stage by the dilution gas injected in the previous stage of the switching means is further increased after the switching, and the flow rate of the sample gas diluted in the first stage is increased. Sample gas concentration meter. 前記設定された試料ガス流量、第1段目の希釈ガス流量および第2段目の希釈ガス流量の総和をほぼ一定とすることを特徴とする請求項2記載の試料ガス濃度計。3. The sample gas concentration meter according to claim 2, wherein the sum of the set sample gas flow rate, the first-stage dilution gas flow rate, and the second-stage dilution gas flow rate is substantially constant.
JP2003166002A 2003-03-20 2003-06-11 Sample gas concentration meter Expired - Fee Related JP4319471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166002A JP4319471B2 (en) 2003-03-20 2003-06-11 Sample gas concentration meter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003077856 2003-03-20
JP2003166002A JP4319471B2 (en) 2003-03-20 2003-06-11 Sample gas concentration meter

Publications (2)

Publication Number Publication Date
JP2004340905A JP2004340905A (en) 2004-12-02
JP4319471B2 true JP4319471B2 (en) 2009-08-26

Family

ID=33542981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166002A Expired - Fee Related JP4319471B2 (en) 2003-03-20 2003-06-11 Sample gas concentration meter

Country Status (1)

Country Link
JP (1) JP4319471B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006015535A1 (en) * 2006-03-31 2007-10-04 Thermo Electron (Bremen) Gmbh Sample isotope ratio analysis, involves supplying sample gas and reference gas to analyzer over coupling, and regulating concentration of sample gas and/or reference gas through electronic flow regulation of carrier gas
JP6320748B2 (en) * 2013-12-27 2018-05-09 株式会社堀場製作所 Gas analyzer

Also Published As

Publication number Publication date
JP2004340905A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP4246867B2 (en) Exhaust gas analysis system
US20060039826A1 (en) Concentration monitor of fluid samples
GB2119088A (en) An apparatus for measuring or controlling the separation ratio of a gas
CN108226268B (en) Gas analysis device, gas sampling device, and gas analysis method
JP7001616B2 (en) Gas analyzer and gas analysis method
US20030136176A1 (en) Gas pressure/flow control and recovery system
JPH05118453A (en) Countercurrent valve
JP4319471B2 (en) Sample gas concentration meter
EP1710569A1 (en) Gas analyzer and method for controlling hydrogen flame ionization detector
JP2010013989A (en) Evaluation device for exhaust gas after-treatment device
JP2000180364A (en) Gas analyser
JPH0474963A (en) Gas analyzer
JP3244415B2 (en) Conversion efficiency inspection device in the converter from sulfur oxides to sulfur dioxide gas
JP4247985B2 (en) Flow path switching analyzer and measuring apparatus using the same
JP2001159587A (en) Gas analyzer
JP4300350B2 (en) Exhaust gas measuring device and exhaust gas measuring method
JP2001264223A (en) Sampling device for exhaust gas
JP2004045297A (en) Measuring apparatus
JP7283963B2 (en) Nitrogen oxide measuring device
JP3582399B2 (en) Chemiluminescent nitrogen oxide meter
WO2021014740A1 (en) Exhaust gas analyzing device, gas supply method, and exhaust gas sampling device
SU1308863A1 (en) Gas analyzing system
JPS6311656Y2 (en)
SU981863A1 (en) Plant for producing reference gases
JPH01174932A (en) Multi-point simultaneous monitor system of component in fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees