JPS6311656Y2 - - Google Patents

Info

Publication number
JPS6311656Y2
JPS6311656Y2 JP1980094679U JP9467980U JPS6311656Y2 JP S6311656 Y2 JPS6311656 Y2 JP S6311656Y2 JP 1980094679 U JP1980094679 U JP 1980094679U JP 9467980 U JP9467980 U JP 9467980U JP S6311656 Y2 JPS6311656 Y2 JP S6311656Y2
Authority
JP
Japan
Prior art keywords
gas
span
zero
switching valve
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980094679U
Other languages
Japanese (ja)
Other versions
JPS5719460U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980094679U priority Critical patent/JPS6311656Y2/ja
Publication of JPS5719460U publication Critical patent/JPS5719460U/ja
Application granted granted Critical
Publication of JPS6311656Y2 publication Critical patent/JPS6311656Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、ガス分析計に供給するゼロガスを、
採取されたサンプルガスから酸化触媒にて精製す
るという構成を採用したガス分析装置に関する。
[Detailed explanation of the invention] [Industrial application field] The invention is based on
The present invention relates to a gas analyzer that employs a configuration in which sample gas is purified using an oxidation catalyst.

〔従来の技術〕[Conventional technology]

上記ガス分析計としては、例えばサンプルガス
とゼロガスとを適当な周期で切り替えて交互にセ
ルに供給する、所謂流体変調方式のガス分析計
や、サンプルガスをセルに供給すると共に、サン
プルガスから測定対象成分を除去して作り出した
ゼロガスを比較セルに連続的に供給して測定す
る、所謂比較法ガス分析計等がある。
Examples of the gas analyzer mentioned above include a so-called fluid modulation type gas analyzer that switches sample gas and zero gas at appropriate intervals and supplies them alternately to the cell, and a gas analyzer that supplies sample gas to the cell and performs measurements from the sample gas. There is a so-called comparison method gas analyzer, etc., which continuously supplies zero gas created by removing target components to a comparison cell for measurement.

そして、これらのガス分析計をスパン校正する
場合、スパンガスが残素ベースのものはコスト高
でしかもその濃度の安定性に問題があるため、現
在では窒素ガスベース(以下、N2ベースという)
のスパンガスが広く使用されている。ところが、
N2ベースのスパンガスであると、それをゼロガ
スラインに流した場合、酸化触媒が効率劣化を来
たし、又、その寿命にも大きく影響を及ぼすとい
う欠点があつた。
When performing span calibration on these gas analyzers, residual gases are costly and have problems with concentration stability, so currently nitrogen gas-based (hereinafter referred to as N2 - based) span gases are used.
span gas is widely used. However,
N 2 -based span gas has the disadvantage that when it is passed through the zero gas line, the efficiency of the oxidation catalyst deteriorates and its life is significantly affected.

そこで、第2図に示すように、サンプルガスラ
イン1に切換弁2を設け、スパン校正の際この切
換弁2を通じてN2ベースのスパンガスをガス分
析計3に導入し、ゼロガスライン4にはスパンガ
スを流さないようにしている。
Therefore, as shown in Fig. 2, a switching valve 2 is provided in the sample gas line 1, and during span calibration, a N2 - based span gas is introduced into the gas analyzer 3 through this switching valve 2, and a span gas is introduced into the zero gas line 4. I try not to let it flow.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、上記構成におけるスパン校正で
あると、ゼロガスライン4に設けられた酸化触媒
5の触媒性能のチエツクができないという欠点
や、酸化触媒5に吸着された干渉成分の除去がで
きないために校正後の測定時においても干渉成分
による影響がでるという欠点や、更にはこれらの
欠点に起因して測定値の信頼性に問題が生ずると
いう欠点がある。
However, span calibration with the above configuration has disadvantages in that it is not possible to check the catalytic performance of the oxidation catalyst 5 installed in the zero gas line 4, and inability to remove interference components adsorbed on the oxidation catalyst 5. There are disadvantages in that the influence of interference components occurs even during measurement, and furthermore, problems arise in the reliability of measured values due to these disadvantages.

本考案は、上述の事柄に留意してなされたもの
で、その目的とするところは、ゼロガス精製器を
有するガスラインにN2ベースのスパンガスを流
せないという技術的困難を克服し、しかも、ゼロ
ガスライン及び酸化触媒に手を加えたり、改造・
改変したりすることなく、上記技術的困難を克服
し、同時に前述した従来構成の各種欠点を悉く解
決した、極めて優れた有用なガス分析装置を提供
することにある。
The present invention has been made with the above in mind, and its purpose is to overcome the technical difficulty of being unable to flow N2 - based span gas into a gas line having a zero gas purifier, and to make it possible to carry out the process without modifying, altering, or otherwise altering the zero gas line and the oxidation catalyst.
The object of the present invention is to provide an extremely excellent and useful gas analyzer which overcomes the above technical difficulties without modification and at the same time completely solves the various drawbacks of the conventional configurations mentioned above.

〔問題点を解決するための手段〕[Means for solving problems]

上述の目的を達成するため、本考案に係るガス
分析装置は、サンプリング流路に、切換弁を介し
てスパンガス供給路を接続すると共に、前記切換
弁を跨ぐようにバイパス流路を接続し、このバイ
パス流路に流量絞りを設けた点に特徴がある。
In order to achieve the above object, the gas analyzer according to the present invention connects a span gas supply channel to the sampling channel via a switching valve, and connects a bypass channel so as to straddle the switching valve. The feature is that a flow restriction is provided in the bypass flow path.

〔作用〕[Effect]

上記特徴的構成を有するガス分析装置におい
て、N2ベースのスパンガスを流してスパン校正
を行う場合、微量の酸素がサンプルガスラインと
ゼロガスラインとの分岐点よりも上流側でスパン
ガスに添加される。
In the gas analyzer having the above characteristic configuration, when performing span calibration by flowing an N 2 -based span gas, a trace amount of oxygen is added to the span gas upstream of the branch point between the sample gas line and the zero gas line.

そして、前記微量酸素の量は、その上限は、ス
パンガス濃度に影響を及ぼさない程度の量で、
又、下限は酸化触媒が必要とする酸素量でそれぞ
れ決められる。
The upper limit of the amount of trace oxygen is such that it does not affect the span gas concentration,
Further, the lower limit is determined by the amount of oxygen required by the oxidation catalyst.

一般に、酸化触媒の必要酸素量は触媒の加熱温
度を適当に選ぶことにより略理論計算量でよい。
例えばCOの場合を示すと、スパンガスとして
100ppmCO(N2ベース)を10流すと、CO量と
して1mlであるから必要酸素量は0.5mlとなる。
この場合、空気(必要に応じて精製空気)を使用
するなら、空気中に酸素が1/5含まれているとし
て、必要空気量は約2.5mlとなり、スパンガス量
に対する割合は0.025%となる。これが微量酸素
の量(空気量)の下限であり、上限は酸化触媒の
容量,能力等によつて一概に規定できないが、上
述したように、スパンガス濃度に影響を及ぼさな
い。即ち、量的にも割合からいつても無視できる
程度というのが一応の目安となる。前述の例であ
れば、必要空気量はスパンガス量に対して0.025
%より若干多い程度である。
In general, the amount of oxygen required for the oxidation catalyst can be approximately the theoretically calculated amount by appropriately selecting the heating temperature of the catalyst.
For example, in the case of CO, as a span gas
If 100 ppm CO (N 2 base) is flowed 10 times, the amount of CO is 1 ml, so the required amount of oxygen is 0.5 ml.
In this case, if air (purified air if necessary) is used, assuming that air contains 1/5 oxygen, the required air amount will be approximately 2.5 ml, and the ratio to the span gas amount will be 0.025%. This is the lower limit of the amount of trace oxygen (air amount), and the upper limit cannot be absolutely defined depending on the capacity, capacity, etc. of the oxidation catalyst, but as described above, it does not affect the span gas concentration. In other words, the basic rule of thumb is that it is negligible both in terms of quantity and proportion. In the above example, the required air amount is 0.025 relative to the span gas amount.
%.

〔実施例〕〔Example〕

以下、本考案の一実施例を、図面に基づいて説
明する。
Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本考案に係るガス分析装置の一例を示
し、同図において、aはフイルタF1とポンプP1
とを設けたサンプリング流路で、空気供給路も兼
ねている。b,cはそれぞれサンプリング流路a
から分岐されたゼロガスライン,サンプルガスラ
インである。そして、ゼロガスラインbには酸化
触媒が充填されたゼロガス精製器21が介在させ
てあり、サンプルガスをゼロガスに精製して例え
ば流体変調方式ガス分析計又は比較法ガス分析計
等の大気用ガス分析計22に供給するようにして
ある。又、サンプルガスラインcはサンプリング
流路aを通じて採取されたサンプルガスを未処理
のまま大気用ガス分析計22に供給するようにし
てある。
FIG. 1 shows an example of a gas analyzer according to the present invention, in which a represents a filter F 1 and a pump P 1
This sampling flow path also serves as an air supply path. b and c are sampling channels a, respectively.
The zero gas line and sample gas line are branched from. A zero gas purifier 21 filled with an oxidation catalyst is interposed in the zero gas line b, and the sample gas is purified to zero gas for atmospheric gas analysis such as a fluid modulation type gas analyzer or a comparative method gas analyzer. A total of 22 units are supplied. Further, the sample gas line c is configured to supply the sample gas sampled through the sampling channel a to the atmospheric gas analyzer 22 in an unprocessed state.

23はサンプリング流路a中に、一方の入口2
3a,出口23bがそれぞれ接続されるように挿
入された切換弁で、この切換弁23の他方の入口
23cにN2ベースのスパンガスの供給路dが接
続してある。又、サンプリング流路aには切換弁
23を跨ぐように、即ち、切換弁23の一方の入
口23aと出口23bとにそれぞれ端部が接続さ
れた状態で、バイパス流路eが設けられ、このバ
イパス流路eに流量絞りとしてのキヤピラリ24
が設けてある。
23 is one inlet 2 in the sampling flow path a.
The switching valve 23 is inserted so that the switching valve 3a and the outlet 23b are connected to each other, and the other inlet 23c of the switching valve 23 is connected to a supply path d for N2 - based span gas. In addition, a bypass flow path e is provided in the sampling flow path a so as to straddle the switching valve 23, that is, its ends are connected to one inlet 23a and one outlet 23b of the switching valve 23, respectively. A capillary 24 as a flow restrictor is provided in the bypass flow path e.
is provided.

上述のように構成したガス分析装置において、
大気用ガス分析計22を校正する際は、切換弁2
3を切り替え操作して一方の入口23aを閉じ、
他方の入口23cを開くようにする。この状態に
おいては、スパンガス供給路dからのスパンガス
が切換弁23の他方の入口23cを介してサンプ
リング流路a内に流入し、このスパンガスはポン
プP1を経てゼロガスラインb,サンプルガスラ
インcにそれぞれ流れる。
In the gas analyzer configured as described above,
When calibrating the atmospheric gas analyzer 22, use the switching valve 2.
3 to close one entrance 23a,
The other entrance 23c is opened. In this state, the span gas from the span gas supply path d flows into the sampling flow path a through the other inlet 23c of the switching valve 23, and this span gas passes through the pump P1 to the zero gas line b and the sample gas line c. Each flows.

従つて、大気用ガス分析計22の指示値の差、
即ち、ゼロガスラインbにスパンガスが流れてい
る場合の指示値と、サンプルガスラインcにスパ
ンガスが流れている場合の指示値との差を読み取
ることによつて、ゼロガス精製器21、つまり、
酸化触媒の触媒性能のチエツクを行うことができ
る。そして、前記指示値の差に基づいてゼロガス
精製器21を含めた分析系の総合的な校正を行う
ことができる。又、スパンガスがゼロガスライン
bに流れるので、ゼロガス精製器21内の酸化触
媒に吸着された干渉成分が前記スパンガスによつ
て除去される。
Therefore, the difference between the readings of the atmospheric gas analyzer 22,
That is, by reading the difference between the indicated value when the span gas is flowing in the zero gas line b and the indicated value when the span gas is flowing in the sample gas line c, the zero gas purifier 21, that is,
The catalytic performance of the oxidation catalyst can be checked. Then, comprehensive calibration of the analysis system including the zero gas purifier 21 can be performed based on the difference between the indicated values. Furthermore, since the span gas flows into the zero gas line b, the interfering components adsorbed on the oxidation catalyst in the zero gas purifier 21 are removed by the span gas.

一方、上述のようにスパンガスが切換弁23を
介してサンプリング流路a内に流入するとき、切
換弁23においては圧力損失が生じ、この圧力損
失によつて切換弁23とポンプP1との間に負圧
が生じ、この負圧によつて、第1図において矢印
で示すように、バイパス流路eを介して空気ベー
スのサンプルガスがキヤピラリ24によつて定め
られる適当微量だけ吸引され、前記スパンガスに
微量の空気(酸素)が添加される。このスパンガ
スに添加される酸素は酸化触媒の必要酸素量より
多く、かつ、スパンガスに影響を及ぼさない程度
に微量であるため、ゼロガス精製器21の効率,
寿命が保障される。尚、このスパンガスに微量の
空気が添加されることによつて、スパン校正に支
障を来たしたり測定誤差を生じるというような事
態を回避できる。
On the other hand, as described above, when the span gas flows into the sampling channel a through the switching valve 23, a pressure loss occurs in the switching valve 23, and this pressure loss causes a gap between the switching valve 23 and the pump P1 . A negative pressure is created in the air which causes the air-based sample gas to be drawn in a suitable small amount defined by the capillary 24 through the bypass channel e, as indicated by the arrow in FIG. A small amount of air (oxygen) is added to the span gas. Since the amount of oxygen added to this span gas is larger than the amount of oxygen required by the oxidation catalyst and is so small that it does not affect the span gas, the efficiency of the zero gas purifier 21 is
Lifespan is guaranteed. Incidentally, by adding a small amount of air to the span gas, it is possible to avoid a situation in which span calibration is hindered or measurement errors are caused.

〔考案の効果〕[Effect of idea]

以上説明したように、本考案に係るガス分析装
置は、サンプリング流路に、切換弁を介してスパ
ンガス供給路を接続すると共に、前記切換弁を跨
ぐようにバイパス流路を接続し、このバイパス流
路に流量絞りを設けているので、ゼロガスライ
ン,酸化触媒を改造・改変しなくてもN2ベース
のスパンガスを流すことができ、酸化触媒の効
率,寿命を保障することができると共に、スパン
校正時に同時に酸化触媒の触媒性能をチエツクす
ることができ、更に、酸化触媒を含めた分析系の
総合的な校正を行えるといつた優れた効果を奏す
る。そして、酸化触媒に付着した干渉成分を除去
することができるので、前記利点とあいまつて測
定値の信頼性が大幅に向上する。
As explained above, in the gas analyzer according to the present invention, a span gas supply channel is connected to the sampling channel via a switching valve, and a bypass channel is connected so as to straddle the switching valve. Since a flow restriction is installed in the channel, N2- based span gas can be flowed without modifying or altering the zero gas line or oxidation catalyst, ensuring the efficiency and life of the oxidation catalyst, as well as span calibration. It is possible to check the catalytic performance of the oxidation catalyst at the same time, and furthermore, it has excellent effects such as being able to comprehensively calibrate the analysis system including the oxidation catalyst. Furthermore, since interfering components adhering to the oxidation catalyst can be removed, the reliability of the measured values is greatly improved in conjunction with the above advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係るガス分析装置の一例を示
す構成図、第2図は従来装置を示す構成図であ
る。 21……ゼロガス精製器(酸化触媒)、22…
…ガス分析計、23……切換弁、24……流量絞
り、a……サンプリング流路、b……ゼロガスラ
イン、c……サンプルガスライン、d……スパン
ガス供給路、e……バイパス流路。
FIG. 1 is a block diagram showing an example of a gas analyzer according to the present invention, and FIG. 2 is a block diagram showing a conventional device. 21... Zero gas purifier (oxidation catalyst), 22...
...Gas analyzer, 23...Switching valve, 24...Flow rate restrictor, a...Sampling channel, b...Zero gas line, c...Sample gas line, d...Span gas supply channel, e...Bypass channel .

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] サンプルガス採取用のサンプリング流路を、酸
化触媒を介在させて前記サンプルガスをゼロガス
に精製してガス分析計に供給するゼロガスライン
と、採取されたサンプルガスを未処理のまま前記
ガス分析計に供給するサンプルガスラインとに分
岐してなるガス分析装置において、前記サンプリ
ング流路に、切換弁を介してスパンガス供給路を
接続すると共に、前記切換弁を跨ぐようにバイパ
ス流路を接続し、このバイパス流路に流量絞りを
設けたことを特徴とするガス分析装置。
A sampling flow path for sample gas collection includes a zero gas line that purifies the sample gas to zero gas using an oxidation catalyst and supplies it to the gas analyzer, and a zero gas line that supplies the sample gas to the gas analyzer without being processed. In a gas analyzer having a branched gas supply line and a sample gas line, a span gas supply line is connected to the sampling flow path via a switching valve, and a bypass flow path is connected to the sampling flow path so as to straddle the switching valve. A gas analyzer characterized in that a flow restriction is provided in a bypass flow path.
JP1980094679U 1980-07-05 1980-07-05 Expired JPS6311656Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980094679U JPS6311656Y2 (en) 1980-07-05 1980-07-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980094679U JPS6311656Y2 (en) 1980-07-05 1980-07-05

Publications (2)

Publication Number Publication Date
JPS5719460U JPS5719460U (en) 1982-02-01
JPS6311656Y2 true JPS6311656Y2 (en) 1988-04-05

Family

ID=29456602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980094679U Expired JPS6311656Y2 (en) 1980-07-05 1980-07-05

Country Status (1)

Country Link
JP (1) JPS6311656Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751318Y2 (en) * 1978-10-30 1982-11-09

Also Published As

Publication number Publication date
JPS5719460U (en) 1982-02-01

Similar Documents

Publication Publication Date Title
TW421843B (en) Protection of semiconductor fabrication and similar sensitive processes
CN106461592B (en) Gas component concentration measuring apparatus and method for measuring gas component concentration
US20030082821A1 (en) Method and system for monitoring combustion source emissions
US20040151622A1 (en) Ultra-trace automatic mercury species analyzer
GB2119088A (en) An apparatus for measuring or controlling the separation ratio of a gas
JPS6311656Y2 (en)
Frenzel Permeation denuder for sampling and continuous analysis of gases Part 1. System configuration, basic studies and application to atmospheric ammonia and sulfur dioxide
JPH06317508A (en) System for air-sample picking and analysis
JP2010013989A (en) Evaluation device for exhaust gas after-treatment device
Buttini et al. Coupling of denuder and ion chromatographic techniques for NO2 trace level determination in air
Hochheiser Methods of measuring and monitoring atmospheric sulfur dioxide
JP4188096B2 (en) measuring device
Campbell et al. Effect of water and carbon dioxide in chemiluminescent measurement of oxides of nitrogen
JP7029252B2 (en) Hydrogen gas analysis kit, hydrogen gas analysis method and hydrogen gas quality control method
JP4319471B2 (en) Sample gas concentration meter
JPH0961361A (en) Continuous ammonia concentration measuring device
CN215866549U (en) Sulfur content analytical equipment in gas
JP2001349812A (en) Method for reducing interference effect of gas analyser
JP7283963B2 (en) Nitrogen oxide measuring device
JP3244415B2 (en) Conversion efficiency inspection device in the converter from sulfur oxides to sulfur dioxide gas
JP2001264223A (en) Sampling device for exhaust gas
CN219496302U (en) Device for measuring water and oxygen in gas
KR820001256Y1 (en) Continuation analysis device of nitrogen oxide
JPS626532Y2 (en)
JP2567655B2 (en) Gas analyzer