WO2020158741A1 - Photosensitive resin composition, polymer, pattern, color filter, black matrix, display device and imaging element - Google Patents

Photosensitive resin composition, polymer, pattern, color filter, black matrix, display device and imaging element Download PDF

Info

Publication number
WO2020158741A1
WO2020158741A1 PCT/JP2020/003004 JP2020003004W WO2020158741A1 WO 2020158741 A1 WO2020158741 A1 WO 2020158741A1 JP 2020003004 W JP2020003004 W JP 2020003004W WO 2020158741 A1 WO2020158741 A1 WO 2020158741A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
group
photosensitive resin
resin composition
structural unit
Prior art date
Application number
PCT/JP2020/003004
Other languages
French (fr)
Japanese (ja)
Inventor
潤壱 田邊
俊治 久保山
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN202080011609.2A priority Critical patent/CN113366029B/en
Priority to JP2020544958A priority patent/JPWO2020158741A1/en
Priority to KR1020217027408A priority patent/KR20210121169A/en
Publication of WO2020158741A1 publication Critical patent/WO2020158741A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/08Anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images

Definitions

  • the present invention relates to a photosensitive resin composition, a polymer, a pattern, a color filter, a black matrix, a display device and an image sensor.
  • a display device liquid crystal display or the like
  • an image pickup device CCD, CMOS or the like
  • a photosensitive resin composition is often used for forming a color filter or a black matrix.
  • a photosensitive resin film is formed on a substrate by a photocurable photosensitive resin composition, and the film is exposed and developed to form a pattern such as a color filter or a black matrix on the substrate.
  • Patent Document 1 discloses that an acid group, a polymerizable unsaturated group and a block isocyanato group are contained in the molecule, an acid value is 20 to 300 mgKOH/g, and an unsaturated group equivalent is 100 to 4,000 g/mol. And a curable polymer having a block isocyanato group equivalent of 400 to 6,000 g/mol is described. It is also described that a color filter is formed using this curable polymer.
  • Patent Document 2 describes that a black matrix is formed by using a binder resin having a weight average molecular weight of 1000 to 6000, an acid value of 80 to 200 mgKOH/g, and an ethylenically unsaturated bond equivalent of 500 or less. ..
  • Patent Document 3 discloses a copolymer obtained by radically polymerizing an ethylenically unsaturated monomer having a carboxyl group and having a formula weight of 70 to 120, and an ethylenically unsaturated monomer containing a carboxyl group-containing ethylenically unsaturated monomer.
  • a photosensitive resin obtained by reacting 0.2 to 0.9 mol of an epoxy group in an epoxy group-containing ethylenically unsaturated monomer with 1 mol of a carboxyl group is described. Further, a photosensitive composition containing the photosensitive resin is described. Further, it is described that a color filter is formed using this photosensitive composition.
  • the acid value of the photosensitive resin is preferably 20 to 200 mgKOH/g.
  • the double bond equivalent of the photosensitive resin is preferably described as 300 to 1000.
  • Patent Document 4 discloses that a carboxyl group-containing polymer represented by a specific general formula is reacted with (i) a compound having a group reactive with carboxylic acid and an ethylenically unsaturated group, or (ii) reacted with carboxylic acid.
  • An alkali-soluble resin obtained by reacting a compound having a group with a silicon-based functional group, and a photosensitive resin composition containing the alkali-soluble resin are described. Further, it is described that a color filter is formed using this photosensitive resin composition.
  • Patent Document 4 describes that the acid value of the alkali-soluble resin is preferably 25 to 100 mgKOH/g and the ethylenically unsaturated group equivalent is preferably 50 to 400.
  • the present inventors have conducted a study this time with the aim of providing a photosensitive resin composition having both sensitivity and developability.
  • the present inventors have completed the inventions provided below as a result of intensive studies.
  • a photosensitive resin composition comprising a polymer having a first structural unit represented by the following general formula (1), an acid value of 70 to 300 mgKOH/g, and a double bond equivalent of 100 to 500 g/mol. ..
  • R D is a group containing a polymerizable carbon-carbon double bond.
  • the photosensitive resin composition according to, The first structural unit is a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds, and a structure in which R D is a group containing only one polymerizable carbon-carbon double bond.
  • a photosensitive resin composition comprising a unit. 4. 1. ⁇ 3.
  • a photosensitive resin composition containing a light shielding agent 10.
  • R D is a group containing a polymerizable carbon-carbon double bond.
  • the polymer according to The first structural unit is a polymer containing a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds. 12. 10. Or 11. The polymer according to The first structural unit is a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds, and a structure in which R D is a group containing only one polymerizable carbon-carbon double bond. A polymer containing units. 13. 10. ⁇ 12. The photosensitive resin composition according to any one of Further, a polymer containing a second structural unit represented by the following formula (MA). 14. 10. ⁇ 13.
  • 8. A color filter obtained by using the photosensitive resin composition as described in 1. 19.
  • a photosensitive resin composition having both sensitivity and developability is provided. Further, a polymer suitable for producing such a photosensitive resin composition is provided.
  • the "double bond” of “double bond equivalent” means a polymerizable carbon-carbon double bond.
  • the term “substantially” indicates a range including a manufacturing tolerance, a variation in assembly, and the like, unless otherwise specified.
  • the notation “a to b” in the description of the numerical range means a or more and b or less unless otherwise specified.
  • “1 to 5 mass%” means “1 mass% or more and 5 mass% or less”.
  • a description not indicating whether it is substituted or unsubstituted includes both a group having no substituent and a group having a substituent.
  • an “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the expression "(meth)acrylic” in the present specification represents a concept including both acrylic and methacrylic. The same applies to similar notations such as “(meth)acrylate”.
  • the term "organic group” in the present specification means an atomic group obtained by removing one or more hydrogen atoms from an organic compound.
  • “monovalent organic group” refers to an atomic group obtained by removing one hydrogen atom from any organic compound.
  • the photosensitive resin composition of the present embodiment has the first structural unit represented by the following general formula (1), has an acid value of 70 to 300 mgKOH/g, and has a double bond equivalent of 100 to 500 g/mol.
  • R D is a group containing a polymerizable carbon-carbon double bond.
  • the structural unit represented by the general formula (1) contains “both” of a group containing a polymerizable carbon-carbon double bond (R D in the general formula) and a carboxy group in one structural unit. I'm out. Since the polymerizable group and the carboxy group are in the same structural unit, it is easy to design both the amount of the polymerizable group and the amount of the carboxy group in the polymer to be large values (other than (meth)acrylic resin etc. It is thought that such a design is difficult with the resin of. This is advantageous in that it enhances the developability as well as the sensitivity.
  • both sensitivity and developability can be achieved at a high level. That is, when the acid value of the polymer is 70 mgKOH/g or more, good developability can be obtained. Further, when the double bond equivalent is 500 g/mol or less, the sensitivity of the composition can be increased.
  • the upper limit of the acid value is 300 mgKOH/g. If the double bond equivalent is too small (that is, if the density of double bonds in the polymer is too high), unexposed areas and low-exposed areas tend to be difficult to dissolve during development with an alkaline developer. However, a residual film tends to be generated during development. Further, if the double bond equivalent is too small, the molecular weight is excessively increased due to crosslinking, and there is a concern that the solubility may be excessively lowered. Therefore, in this embodiment, the lower limit of the double bond equivalent is 100 g/mol.
  • the acid value of the polymer is 70 to 300 mgKOH/g, preferably 80 to 200 mgKOH/g.
  • the double bond equivalent weight of the polymer is 100 to 500 g/mol, preferably 200 to 470 g/mol.
  • the acid value and the double bond equivalent can be obtained by measuring the spectrum. For example, it can be determined by the following procedure (more specifically, see the example).
  • the amount of the carboxy group obtained in (2) is converted into an acid value (mgKOH/g). Further, the amount of the polymerizable carbon-carbon double bond obtained in (2) is converted into the double bond equivalent (g/mol).
  • the acid value and double bond equivalent of the polymer can be set to appropriate values.
  • the photosensitive resin composition of the present embodiment has the first structural unit represented by the general formula (1), has an acid value of 70 to 300 mgKOH/g, and has a double bond equivalent of 100. Includes polymers that are ⁇ 500 g/mol.
  • R D can be any group as long as it is a group containing a polymerizable carbon-carbon double bond.
  • the first structural unit preferably contains a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds.
  • R D is a group containing two or more polymerizable carbon-carbon double bonds.
  • part or all of R D of the structural unit represented by the general formula (1) in the polymer is preferably a group containing two or more polymerizable carbon-carbon double bonds.
  • the number of polymerizable carbon-carbon double bonds in R D is preferably 2 to 6, more preferably 2 to 5, and further preferably It is 3 to 5.
  • R D contains two or more polymerizable carbon-carbon double bonds, preferably at least one (more preferably all) of the two or more polymerizable double bonds is present at the end of R D.
  • the polymerizable double bond easily reacts with the active chemical species generated from the photopolymerization initiator. Therefore, the sensitivity can be further improved.
  • R D contains two or more polymerizable carbon-carbon double bonds
  • R D contains two or more (meth)acryloyl groups. More specifically, R D comprises 2-6, preferably 2-5, more preferably 3-5 (meth)acryloyl groups.
  • the (meth)acryloyl group is preferably an acryloyl group. This is because the acryloyl group not substituted with a methyl group is more likely to react with the active chemical species generated from the photopolymerization initiator than the methacryloyl group.
  • R D contains two or more (meth)acryloyl groups
  • R D can be, for example, a group represented by the following general formula (1b) or (1c).
  • k is 2 or 3
  • R is a hydrogen atom or a methyl group
  • plural Rs may be the same or different
  • X 1 is a single bond, an alkylene group having 1 to 6 carbon atoms or a group represented by —Z—X— (Z is —O— or —OCO—)
  • X is an alkylene group having 1 to 6 carbon atoms.
  • a plurality of X 1's may be the same or different, X 1 'is a single bond, an alkylene group or a group represented by -X'-Z'- having 1 to 6 carbon atoms (X' is an alkylene group having 1 to 6 carbon atoms, Z 'is -O- or -COO-), X 2 is a k+1 valent organic group having 1 to 12 carbon atoms.
  • R is preferably a hydrogen atom from the viewpoint of further improving the sensitivity (ease of polymerization).
  • k may be 2 or 3, but is preferably 3 from the viewpoints of availability of raw materials and further improvement of sensitivity.
  • X 1 is an alkylene group having 1 to 6 carbon atoms
  • the alkylene group may be linear or branched.
  • X 1 is preferably a linear alkylene group, more preferably a linear alkylene group having 1 to 3 carbon atoms, and further preferably —CH. 2- (methylene group).
  • X 1 is a group represented by —Z—X— (Z is —O— or —OCO—, and X is an alkylene group having 1 to 6 carbon atoms), an alkylene group having 1 to 6 carbon atoms. May be linear or branched.
  • the alkylene group having 1 to 6 carbon atoms of X is preferably a linear alkylene group, more preferably a linear alkylene group having 1 to 3 carbon atoms, and further preferably —CH 2 —CH 2 —( Ethylene group) or —CH 2 —CH(CH 3 )—.
  • X 1 ′ is an alkylene group having 1 to 6 carbon atoms
  • its specific embodiment is the same as X 1 .
  • 'If is a group represented by the -X'-Z'-
  • X' X 1 specific aspect is the same as the above X.
  • Examples of the k+1-valent organic group having 1 to 12 carbon atoms of X 2 include any group obtained by removing k+1 hydrogen atoms from any organic compound.
  • the “arbitrary organic compound” here is, for example, an organic compound having a molecular weight of 300 or less, preferably 200 or less, more preferably 100 or less.
  • X 2 is, for example, a group obtained by removing k+1 hydrogen atoms from a linear or branched hydrocarbon having 1 to 12 carbons (preferably 1 to 6 carbons). More preferably, it is a group obtained by removing k+1 hydrogen atoms from a linear hydrocarbon having 1 to 3 carbon atoms.
  • the hydrocarbon here may contain an oxygen atom (for example, an ether bond or a hydroxy group).
  • hydrocarbon is preferably a saturated hydrocarbon.
  • X 2 may be a group containing a cyclic structure.
  • the group containing a cyclic structure include a group containing an alicyclic structure and a group containing a heterocyclic structure (for example, an isocyanuric acid structure).
  • k, R, X 1 and X 2 have the same meanings as R, k, X 1 and X 2 in formula (1b), and a plurality of Rs may be the same or different from each other.
  • X 1's may be the same or different from each other,
  • X 3 is a divalent organic group having 1 to 6 carbon atoms,
  • X 4 and X 5 are each independently a single bond or a divalent organic group having 1 to 6 carbon atoms,
  • X 6 is a divalent organic group having 1 to 6 carbon atoms.
  • R, k, X 1 and X 2 are the same as those described in the general formula (1b).
  • Examples of the divalent organic group having 1 to 6 carbon atoms of X 3 and X 6 include a group in which 2 hydrogen atoms have been removed from a linear or branched hydrocarbon having 1 to 6 carbon atoms. You can The hydrocarbon here may contain an oxygen atom (for example, an ether bond or a hydroxy group). Further, the hydrocarbon is preferably a saturated hydrocarbon.
  • Examples of the divalent organic group having 1 to 6 carbon atoms for X 4 and X 5 include a linear or branched alkylene group. The linear or branched alkylene group preferably has 1 to 3 carbon atoms.
  • the first structural unit is a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds, and a structural unit in which R D is a group containing only one polymerizable carbon-carbon double bond. It is preferable to include and. In other words, preferably, R D in some of the structural units represented by the general formula (1) in the polymer is a group containing two or more polymerizable carbon-carbon double bonds. Of the structural units represented by the general formula (1) in the polymer, R D in the remaining structural units is a group containing only one polymerizable carbon-carbon double bond.
  • R D is a group containing two or more polymerizable carbon-carbon double bonds
  • R D is a group containing a polymerizable carbon-carbon double bond having only one
  • the polymerizable double bond is preferably present at the end of R D.
  • RD contains one (meth)acryloyl group as one aspect
  • the (meth)acryloyl group is preferably an acryloyl group.
  • R D can be a group represented by general formula (2a) below.
  • X 10 is a divalent organic group, and R is a hydrogen atom or a methyl group.
  • the total carbon number of X 10 is preferably 1 to 30, more preferably 1 to 20, and further preferably 1 to 10.
  • an alkylene group is preferable.
  • a part of —CH 2 — in this alkylene group may be an ether group (—O—).
  • the alkylene group may be linear or branched, but is preferably linear.
  • the divalent organic group for X 10 is more preferably a linear alkylene group having 3 to 6 carbon atoms in total.
  • X 10 carbon atoms (corresponding to the "length" of X 10) to the appropriate selection, comprising a group represented by the general formula (2a) is likely even to participate in the curing reaction. Therefore, the sensitivity can be further increased.
  • the divalent organic group of X 10 may be substituted with any substituent.
  • substituent include an alkyl group, an aryl group, an alkoxy group, an aryloxy group and the like.
  • the divalent organic group of X 10 may be any group other than an alkylene group.
  • it may be a divalent group constituted by linking one or more groups selected from an alkylene group, a cycloalkylene group, an arylene group, an ether group, a carbonyl group, a carboxy group and the like.
  • the proportion of the first structural unit in all the structural units of the polymer is preferably 10 to 40 mol%, more preferably 15 to 35 mol%.
  • the polymer is, as a first structural unit, R D is 2 or more polymerizable carbon - carbon double bond - a structural unit is a group containing a carbon double bond polymerizable carbon of R D is only one
  • the molar ratio of the former to the latter is preferably 5:95 to 50:50, more preferably 10:90 to 40:60. By appropriately adjusting this ratio, it is easy to achieve both high sensitivity and developability.
  • the molar ratio of the former to the latter can be determined as follows, for example.
  • the former amount is X 1 (mol/g)
  • the latter amount is X 2 (mol/g)
  • the amount of carboxyl group is C (mol/g)
  • the amount of polymerizable carbon-carbon double bond Is D (mol/g).
  • C and D can be known from the peak area obtained by NMR measurement. Further, n is determined by the chemical structure of the raw material. Therefore, by solving these two mathematical expressions as simultaneous equations for unknowns X 1 and X 2 , the former:latter molar ratio can be obtained. Furthermore, from the sum of X 1 and X 2, the number of moles (mol/g) of each structural unit contained in the raw material polymer (described later), and the molecular weight of a monomer that is a base of each structural unit contained in the raw material polymer, The ratio of the first structural unit (or the total of the plural first structural units, if any) in all the structural units of the polymer can be determined.
  • the polymer preferably further contains a second structural unit represented by the following formula (MA).
  • the second structural unit can be opened by an alkaline developer. It is considered that when the ring is opened, two carboxyl groups are generated, and therefore the developability is further improved.
  • the proportion of the structural unit represented by the formula (MA) in all the structural units of the polymer is preferably 1 to 25 mol%, more preferably 3 to It is 20 mol%.
  • the polymer may include one or more of the structural units represented by the following general formula (a2-1), (a2-2) or (a2-3). By including such a structural unit in the polymer, it is possible to adjust the solubility in developing property and the solubility in organic solvent.
  • R 14 , R 15 and R 16 are each independently an organic group having 1 to 30 carbon atoms.
  • the organic group having 1 to 30 carbon atoms which constitutes R 14 , R 15 and R 16 may include any one or more of O, N, S, P and Si in its structure. Further, the organic groups forming R 14 , R 15 and R 16 may be those containing no acidic functional group. This makes it easy to control the acid value.
  • Examples of the organic group constituting R 14 , R 15 and R 16 include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group, an alkaryl group, a cycloalkyl group and a heterocyclic group.
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group and a heptyl group. , Octyl group, nonyl group, decyl group and the like.
  • alkenyl group examples include an allyl group, a pentenyl group, a vinyl group and the like.
  • alkynyl group examples include an ethynyl group and the like.
  • Examples of the alkylidene group include a methylidene group and an ethylidene group.
  • Examples of the aryl group include a phenyl group, a naphthyl group, an anthracenyl group and the like.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the alkaryl group include a tolyl group and a xylyl group.
  • Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group and the like.
  • Examples of the heterocyclic group include an epoxy group and an oxetanyl group.
  • one or more hydrogen atoms may be substituted with a halogen atom.
  • Halogen atoms include fluorine, chlorine, bromine, and iodine. Of these, a haloalkyl group in which one or more hydrogen atoms of the alkyl group are substituted with a halogen atom is preferable.
  • the polymer preferably contains a structural unit having a cyclic hydrocarbon skeleton. Due to the rigid structure of the cyclic hydrocarbon skeleton, for example, the heat resistance and mechanical properties of the cured film when the photosensitive resin composition is cured can be improved.
  • a structural unit having a cyclic hydrocarbon skeleton is derived from the following monomers.
  • Cycloolefin monomer Specifically, norbornene, norbornadiene, bicyclo[2.2.1]-hept-2-ene (common name: 2-norbornene), 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5- Butyl-2-norbornene, 5-hexyl-2-norbornene, 5-decyl-2-norbornene, 5-allyl-2-norbornene, 5-(2-propenyl)-2-norbornene, 5-(1-methyl-4) -Pentenyl)-2-norbornene, 5-ethylidene-2norbornene, 5-benzyl-2-norbornene, 5-phenethyl-2-norbornene, and other monomers having a norbornene skeleton or norbornadiene skeleton.
  • 2-norbornene commonly name: 2-norbornene
  • 5-methyl-2-norbornene 5-eth
  • a monomer having an indene skeleton or an acenaphthylene skeleton such as indene, 2-methylindene, 3-methylindene, and acenaphthylene.
  • Monomers having a triene structure such as 5,9-cyclododecatriene and cis-cis-cis-1,5,9-cyclododecatriene.
  • Monomers having a styrene skeleton such as styrene, vinyltoluene, hydroxystyrene, acetoxystyrene, ⁇ -methylstyrene.
  • N-cycloalkylmaleimides such as N-cyclohexylmaleimide, N-cyclopentylmaleimide, N-norbornylmaleimide, N-cyclohexylmethylmaleimide and N-cyclopentylmethylmaleimide.
  • N-arylmaleimides such as N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-naphthylmaleimide, N-hydroxyphenylmaleimide, N-methoxyphenylmaleimide, N-carboxyphenylmaleimide, N-nitrophenylmaleimide .
  • the structural unit having a cyclic hydrocarbon skeleton is preferably a structural unit derived from a cyclic olefin monomer, and more preferably a structural unit derived from a monomer having a norbornene skeleton or a norbornadiene skeleton. More specifically, the structural unit having a cyclic hydrocarbon skeleton is preferably represented by the following general formula (NB).
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or an organic group having 1 to 30 carbon atoms, a 1 is 0, 1 or 2.
  • Examples of the organic group having 1 to 30 carbon atoms represented by R 1 , R 2 , R 3 and R 4 in the general formula (NB) include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group and an alkaryl group. , A cycloalkyl group, an alkoxy group, a heterocyclic group, a carboxyl group and the like.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, Examples thereof include an octyl group, a nonyl group and a decyl group.
  • alkenyl group examples include allyl group, pentenyl group, vinyl group and the like.
  • alkynyl group examples include ethynyl group and the like.
  • Examples of the alkylidene group include a methylidene group and an ethylidene group.
  • Examples of the aryl group include a tolyl group, a xylyl group, a phenyl group, a naphthyl group, and an anthracenyl group.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the alkaryl group include a tolyl group and a xylyl group.
  • Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group and a cyclooctyl group.
  • alkoxy group examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, isobutoxy group, tert-butoxy group, n-pentyloxy group, neopentyloxy group. , N-hexyloxy group and the like.
  • heterocyclic group examples include an epoxy group and an oxetanyl group.
  • R 1 , R 2 , R 3 and R 4 in the general formula (NB) hydrogen or an alkyl group is preferable, and hydrogen is more preferable.
  • the hydrogen atom in the organic group having 1 to 30 carbon atoms of R 1 , R 2 , R 3 and R 4 may be substituted with any atomic group. For example, it may be substituted with a fluorine atom, a hydroxyl group, a carboxyl group or the like. More specifically, a fluorinated alkyl group or the like may be selected as the organic group having 1 to 30 carbon atoms for R 1 , R 2 , R 3 and R 4 .
  • a 1 is preferably 0 or 1, and more preferably 0.
  • the amount thereof is preferably 10 to 90 mol%, more preferably 30 to 70 mol%, and further preferably 40 to 60 mol% in the total structural units of the polymer.
  • the polymer is different from the first structural unit as an essential structural unit, and the second structural unit as an optional structural unit and a structural unit having a cyclic hydrocarbon skeleton. It is preferable that the "other structural unit” is not included, or even if it is included in a small amount.
  • the ratio of "other structural units" in the polymer is preferably 0 to 20 mol%, more preferably 0 to 10 mol%.
  • the weight average molecular weight of the polymer is preferably 6,000 to 25,000, more preferably 7,000 to 20,000.
  • the dispersity of the polymer is preferably 1.0 to 5.0, more preferably 1.0 to 4.0, and further preferably 1.0 to 3.0. ..
  • the physical properties of the polymer can be made uniform, which is preferable. These values can be determined by gel permeation chromatography (GPC) measurement using polystyrene as a standard substance.
  • the polymer may be produced (synthesized) by any method.
  • the polymer can be produced by the reaction step of reacting the raw material polymer with a compound having a hydroxy group and a polymerizable carbon-carbon double bond in the presence of a basic catalyst.
  • the method for producing (synthesizing) a polymer by the above-mentioned preparation step and reaction step will be described more specifically below.
  • the description will be given by exemplifying the synthesis of a polymer containing the structural unit represented by the general formula (1) and the structural unit represented by the general formula (NB), but this loses the generality of the polymer production method. Not a thing.
  • a polymer containing a structural unit represented by the general formula (1) and a structural unit (copolymerization unit) other than the general formula (NB) can be synthesized by a procedure similar to the following description.
  • the raw material polymer can be obtained, for example, by polymerizing (addition polymerization) a monomer represented by the following general formula (NB-m) and maleic anhydride.
  • NB-m addition polymerization
  • the definitions of R 1 , R 2 , R 3 and R 4 and a 1 in the general formula (NB-m) are the same as those in the general formula (NB). The same applies to the preferred embodiment.
  • Examples of the monomer represented by the general formula (NB-m) include bicyclo[2.2.1]-hept-2-ene (common name: 2-norbornene), 5-methyl-2-norbornene, 5- Ethyl-2-norbornene, 5-butyl-2-norbornene, 5-hexyl-2-norbornene, 5-decyl-2-norbornene, 5-allyl-2-norbornene, 5-(2-propenyl)-2-norbornene, 5-(1-methyl-4-pentenyl)-2-norbornene, 5-ethynyl-2-norbornene, 5-benzyl-2-norbornene, 5-phenethyl-2-norbornene, 2-acetyl-5-norbornene, 5- Examples thereof include methyl norbornene-2-carboxylate, 5-norbornene-2,3-dicarboxylic acid anhydride and norbornadiene.
  • the method of polymerization is not limited, but radical polymerization using a radical polymerization initiator is preferred.
  • a radical polymerization initiator for example, an azo compound, an organic peroxide or the like can be used.
  • the azo compound include azobisisobutyronitrile (AIBN), dimethyl-2,2′-azobis(2-methylpropionate), 1,1′-azobis(cyclohexanecarbonitrile) (ABCN) and the like.
  • the organic peroxide include hydrogen peroxide, di-tert-butyl peroxide (DTBP), benzoyl peroxide (benzoyl peroxide, BPO), and methyl ethyl ketone peroxide (MEKP).
  • DTBP di-tert-butyl peroxide
  • BPO benzoyl peroxide
  • MEKP methyl ethyl ketone peroxide
  • polymerization solvent for example, organic solvents such as diethyl ether, tetrahydrofuran, toluene, methyl ethyl ketone and the like can be used.
  • the polymerization solvent may be a single solvent or a mixed solvent.
  • the monomer represented by the general formula (NB-m), maleic anhydride and a polymerization initiator are dissolved in a solvent and charged in a reaction vessel, and then heated to promote addition polymerization.
  • the heating temperature is, for example, 50 to 80° C.
  • the heating time is, for example, 5 to 20 hours.
  • the molar ratio of the monomer represented by the general formula (NB-m) to maleic anhydride when charged in a reaction vessel is preferably 0.5:1 to 1:0.5. From the viewpoint of controlling the molecular structure, the molar ratio is preferably 1:1.
  • the "raw material polymer" can be obtained by the steps described above.
  • the raw material polymer may be any of a random copolymer, an alternating copolymer, a block copolymer, a periodic copolymer and the like. It is typically a random or alternating copolymer (maleic anhydride is generally known as a monomer with strong alternating copolymerization).
  • a step of removing low molecular weight components such as unreacted monomers, oligomers, and remaining polymerization initiator may be performed.
  • the organic layer containing the synthesized raw material polymer and the low molecular weight component is concentrated and then mixed with an organic solvent such as tetrahydrofuran (THF) to obtain a solution.
  • an organic solvent such as tetrahydrofuran (THF)
  • this solution is mixed with a poor solvent such as methanol to precipitate the monomer.
  • the purity of the raw material polymer can be increased by filtering this precipitate and drying it.
  • a polymer solution in which a raw material polymer is dissolved in an appropriate organic solvent is prepared.
  • organic solvents include single solvents such as methyl ethyl ketone (MEK), propylene glycol monomethyl ether acetate (PGMEA), dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), and tetrahydrofuran (THF), or mixed solvents.
  • MEK methyl ethyl ketone
  • PMEA propylene glycol monomethyl ether acetate
  • DMAc dimethylacetamide
  • NMP N-methylpyrrolidone
  • THF tetrahydrofuran
  • the solvent is not limited to these, and various organic solvents used in the synthesis of organic compounds and polymers can be used.
  • a compound having a hydroxy group and a polymerizable carbon-carbon double bond is added to this polymer solution.
  • a basic catalyst is added. Then, they are appropriately mixed to form a uniform solution.
  • Examples of the compound having a hydroxy group and a polymerizable carbon-carbon double bond include a compound containing one or more (meth)acryloyl groups and a hydroxy group.
  • a compound (polyfunctional compound) containing two or more (meth)acryloyl groups and a hydroxy group a polymerizable carbon-carbon double bond having R D of 2 or more in the general formula (1) is used in the polymer.
  • a structural unit which is a group containing can be introduced.
  • a monofunctional compound tends to react with a polymer more easily than a polyfunctional compound, so in the reaction step, the monofunctional compound is not charged into the reaction system from the beginning, but “addition” is added. Preferably.
  • examples of the "compound containing only one (meth)acryloyl group and a hydroxy group” include compounds represented by the following general formula (2a-m).
  • general formula (2a-m) the definitions and specific embodiments of X 10 and R are the same as in general formula (2a).
  • Specific examples of the compound represented by the general formula (2a-m) include 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 1,4-cyclohexanedimethanol mono (meth)acrylate, and 2 -Hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, 2-(meth)acryloyloxyethyl-2-hydroxyethylphthalic acid, etc. You can
  • reaction step After the reaction step, the reaction is stopped by diluting the reaction solution with an organic solvent and/or adding an acid for neutralizing the basic catalyst.
  • a polymer can be obtained by the above steps.
  • the maleic anhydride structure in the raw material polymer is not all ring-opened,
  • the structure of formula (MA) will be contained in the conventional polymer.
  • the maleic anhydride structure in the raw material polymer is reacted with water, alcohol, or another appropriate substance to give a compound represented by the general formula (a2-1), (a2-2) or (a2-3).
  • the structural unit represented by can be introduced into the polymer.
  • reaction solution diluted with an organic solvent and added with an acid for example, formic acid
  • an acid for example, formic acid
  • the mixture is allowed to stand for 30 minutes or longer to separate an organic phase and an aqueous phase, and the aqueous phase is removed. In this way an organic solution of the polymer is obtained.
  • a polymer of high purity can be obtained by drying the polymer powder after washing with ion-exchanged water, for example, at 30 to 60° C. for 16 hours or more.
  • the photosensitive resin composition of the present embodiment preferably contains a photopolymerization initiator.
  • Any photopolymerization initiator can be used as long as the component generated by light irradiation reacts with the polymerizable double bond contained in the structural unit of the general formula (1) of the polymer.
  • the photopolymerization initiator can be, for example, a photoradical polymerization initiator, a photocationic polymerization initiator, a photoanionic polymerization initiator, or the like.
  • the photopolymerization initiator typically generates active chemical species upon irradiation with ultraviolet light, more specifically g-line or i-line.
  • the photopolymerization initiator is preferably a photoradical polymerization initiator.
  • the photoradical polymerization initiator is not particularly limited, and known ones can be appropriately used. For example, the following can be mentioned.
  • Benzophenone compounds such as benzophenone, 4,4′-bis(dimethylamino)benzophenone and 2-carboxybenzophenone.
  • Benzoin compounds such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutylate.
  • Thioxanthone compounds such as thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone and 2,4-diethylthioxanthone.
  • a titanocene-based compound such as bis( ⁇ 5-2,4-cyclopentadiene-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl)titanium.
  • Benzoic acid ester compounds such as p-dimethylaminobenzoic acid and p-diethylaminobenzoic acid.
  • Acridine compounds such as 9-phenylacridine.
  • the photosensitive resin composition may include only one type of photopolymerization initiator, or may include two or more types thereof.
  • the amount of the photopolymerization initiator used is, for example, 1 to 20 parts by mass, preferably 3 to 10 parts by mass, relative to 100 parts by mass of the polymer.
  • the photosensitive resin composition of this embodiment typically contains a solvent. As a result, a uniform photosensitive resin film can be formed on the surface of various substrates.
  • An organic solvent is preferably used as the solvent. Specifically, one or more of ketone solvents, ester solvents, ether solvents, alcohol solvents, lactone solvents, carbonate solvents and the like can be used.
  • solvent examples include propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), ethyl lactate, methyl isobutyl carbinol (MIBC), gamma butyrolactone (GBL), N-methylpyrrolidone (NMP), methyl- Mention may be made of n-amyl ketone (MAK), diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, cyclohexanone, or mixtures thereof.
  • PGME propylene glycol monomethyl ether
  • PMEA propylene glycol monomethyl ether acetate
  • MIBC methyl isobutyl carbinol
  • GBL gamma butyrolactone
  • NMP N-methylpyrrolidone
  • MAK n-amyl ketone
  • diethylene glycol monomethyl ether diethylene glycol dimethyl ether
  • the amount of solvent used is not particularly limited.
  • it is used in such an amount that the concentration of the non-volatile component is, for example, 10 to 70% by mass, preferably 15 to 60% by mass.
  • the photosensitive resin composition of this embodiment may contain a crosslinking agent.
  • the cross-linking agent is not particularly limited as long as it can cross-link the polymer by the action of the active chemical species generated from the photopolymerization initiator (that can chemically bond with the polymer).
  • the cross-linking agent may not only chemically bond with the polymer but may react with each other to form a bond.
  • the cross-linking agent is preferably, for example, a polyfunctional compound having two or more polymerizable double bonds in one molecule, and a polyfunctional (meth)acrylic compound having two or more (meth)acryloyl groups in one molecule. Is more preferable (however, the crosslinking agent does not correspond to the above-mentioned polymer). It is preferable to use a cross-linking agent having a cross-linking group of the same kind as the cross-linking group (polymerizable double bond) of the polymer in terms of uniform curability and further improvement in sensitivity.
  • the upper limit of the number of functional groups (the number of polymerizable double bonds) per molecule of the crosslinking agent is not particularly limited, but is, for example, 8 or less, preferably 6 or less.
  • cross-linking agent examples include the following.
  • Ethylene glycol di(meth)acrylate diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, hexanediol di(meth)acrylate, cyclohexanedimethanol Di(meth)acrylate, bisphenol A alkylene oxide di(meth)acrylate, bisphenol F alkylene oxide di(meth)acrylate, trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, glycerin tri(meth)acrylate , Pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, ethylene oxide-added trimethylolpropane tri(meth)acryl
  • Ethylene glycol divinyl ether diethylene glycol divinyl ether, polyethylene glycol divinyl ether, propylene glycol divinyl ether, butylene glycol divinyl ether, hexanediol divinyl ether, bisphenol A alkylene oxide divinyl ether, bisphenol F alkylene oxide divinyl ether, trimethylolpropane trivinyl ether, ditril Methylolpropane tetravinyl ether, glycerin trivinyl ether, pentaerythritol tetravinyl ether, dipentaerythritol pentavinyl ether, dipentaerythritol hexavinyl ether, ethylene oxide-added trimethylolpropane trivinyl ether, ethylene oxide-added ditrimethylolpropane tetravinyl ether, ethylene oxide-added pentaerythr
  • Ethylene glycol diallyl ether diethylene glycol diallyl ether, polyethylene glycol diallyl ether, propylene glycol diallyl ether, butylene glycol diallyl ether, hexanediol diallyl ether, bisphenol A alkylene oxide diallyl ether, bisphenol F alkylene oxide diallyl ether, trimethylolpropane triallyl ether, Ditrimethylolpropane tetraallyl ether, glycerin triallyl ether, pentaerythritol tetraallyl ether, dipentaerythritol pentaallyl ether, dipentaerythritol hexaallyl ether, ethylene oxide-added trimethylolpropane triallyl ether, ethylene oxide-added ditrimethylolpropane tetraallyl ether, Polyfunctional allyl ethers such as ethylene oxide-added pentaerythrito
  • Allyl group-containing (meth)acrylic acid esters such as allyl (meth)acrylate.
  • Multifunctional (meth)acryloyl such as tri(acryloyloxyethyl) isocyanurate, tri(methacryloyloxyethyl) isocyanurate, alkylene oxide-added tri(acryloyloxyethyl) isocyanurate, alkylene oxide-added tri(methacryloyloxyethyl) isocyanurate
  • Group-containing isocyanurates Polyfunctional allyl group-containing isocyanurates such as triallyl isocyanurate.
  • polyfunctional isocyanates such as tolylene diisocyanate, isophorone diisocyanate and xylylene diisocyanate with hydroxyl group-containing (meth)acrylic acid esters such as 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate
  • polyfunctional urethane (meth)acrylates obtained in.
  • Polyfunctional aromatic vinyls such as divinylbenzene.
  • trifunctional (meth)acrylates such as trimethylolpropane tri(meth)acrylate and pentaerythritol tri(meth)acrylate
  • tetrafunctional (meth)acrylates such as pentaerythritol tetra(meth)acrylate and ditrimethylolpropane tetra(meth)acrylate.
  • Hexafunctional (meth)acrylates such as acrylate and dipentaerythritol hexa(meth)acrylate are preferred.
  • the photosensitive resin composition may contain only one type of crosslinking agent or two or more types of crosslinking agent.
  • the amount thereof may be appropriately set depending on the purpose and application.
  • the amount of the cross-linking agent can be usually 30 to 70 parts by weight, preferably 40 to 60 parts by weight, based on 100 parts by weight of the polymer.
  • the photosensitive resin composition of this embodiment may contain a colorant.
  • a colorant When the composition contains a colorant, it can be preferably used as a material for forming a color filter of a display device or an image pickup device.
  • the colorant various pigments or dyes can be used.
  • an organic pigment or an inorganic pigment can be used as the pigment.
  • organic pigments include azo pigments, phthalocyanine pigments, quinacridone pigments, perylene pigments, perinone pigments, isoindolinone pigments, isoindoline pigments, dioxazine pigments, thioindigo pigments, anthraquinone pigments, and quinophthalone pigments.
  • Pigments, metal complex pigments, diketopyrrolopyrrole pigments, xanthene pigments, pyrromethene pigments, dye lake pigments and the like can be used.
  • Inorganic pigments include white and extender pigments (titanium oxide, zinc oxide, zinc sulfide, clay, talc, barium sulfate, calcium carbonate, etc.), chromatic pigments (yellow lead, cadmium, chrome vermillion, nickel titanium, chromium titanium) , Yellow iron oxide, red iron oxide, zinc chromate, red lead, ultramarine blue, dark blue, cobalt blue, chrome green, chromium oxide, bismuth vanadate, etc.), luster pigments (pearl pigment, aluminum pigment, bronze pigment, etc.), fluorescent pigment ( Zinc sulfide, strontium sulfide, strontium aluminate, etc.) can be used.
  • white and extender pigments titanium oxide, zinc oxide, zinc sulfide, clay, talc, barium sulfate, calcium carbonate, etc.
  • chromatic pigments yellow iron oxide, red iron oxide, zinc chromate, red lead, ultramarine blue, dark
  • dye for example, known dyes described in JP-A-2003-270428, JP-A-9-171108 and JP-A-2008-50599 can be used.
  • the colorant particularly pigment
  • one having an appropriate average particle diameter can be used depending on the purpose and application. Especially when transparency such as a color filter is required, a small average particle diameter of 0.1 ⁇ m or less is preferable. On the other hand, when the hiding property of paints is required, a large average particle size of 0.5 ⁇ m or more is preferable.
  • the colorant may be subjected to surface treatment such as rosin treatment, surfactant treatment, resin-based dispersant treatment, pigment derivative treatment, oxide film treatment, silica coating, wax coating and the like, depending on the purpose and use.
  • the photosensitive resin composition may contain only one type of colorant or two or more types of colorant.
  • the amount thereof may be appropriately set according to the purpose and application, but from the viewpoint of compatibility between the color density and the dispersion stability of the colorant, the nonvolatile content of the photosensitive resin composition It is preferably from 3 to 70% by mass, more preferably from 5 to 60% by mass, and further preferably from 10 to 50% by mass, based on the entire components (components excluding the solvent).
  • the photosensitive resin composition of this embodiment may include a light shielding agent.
  • a light-shielding agent When the composition contains a light-shielding agent, it can be preferably used as a material for forming a black matrix of a display device or an image pickup device.
  • the light-shielding agent a known light-shielding agent can be used without particular limitation.
  • black pigments such as carbon black, bone black, graphite, iron black and titanium black can be used as the light shielding agent.
  • the amount thereof may be appropriately set according to the purpose and application, but from the viewpoint of compatibility between the light-shielding performance and the dispersion stability of the light-shielding agent, the nonvolatile content of the photosensitive resin composition It is preferably from 3 to 70% by mass, more preferably from 5 to 60% by mass, and further preferably from 10 to 50% by mass, based on the entire components (components excluding the solvent).
  • the photosensitive resin composition of the present embodiment may contain components other than the above depending on various purposes and required characteristics.
  • components that may be included include fillers, binder resins other than the above polymers, polyfunctional (meth)acrylate compounds, acid generators, heat resistance improvers, development aids, plasticizers, polymerization inhibitors, and ultraviolet absorbers.
  • a film can be formed by using the above-mentioned photosensitive resin composition, and the film can be exposed and developed to form a pattern.
  • This pattern is applied to, for example, a color filter or a black matrix.
  • a color filter can be obtained by forming a pattern using a photosensitive resin composition containing a colorant.
  • a black matrix can be obtained by forming a pattern using a photosensitive resin composition containing a light shielding agent.
  • a display device typically a liquid crystal display device
  • an imaging device typically a solid-state imaging device
  • the photosensitive resin composition of the present embodiment is applied onto an arbitrary substrate and dried as necessary. Thereby, first, a photosensitive resin film is obtained.
  • the substrate is not particularly limited.
  • a glass substrate, a silicon wafer, a ceramic substrate, an aluminum substrate, a SiC wafer, a GaN wafer, a copper clad laminate, etc. can be mentioned.
  • the substrate may be an unprocessed substrate or a substrate having electrodes or elements formed on the surface.
  • the substrate may be surface treated to improve adhesion.
  • the method for applying the photosensitive resin composition is not particularly limited.
  • the coating can be performed by spin coating using a spinner, spray coating using a spray coater, dipping, printing, roll coating, an inkjet method, or the like.
  • the drying of the photosensitive resin composition applied on the substrate is typically performed by heat treatment with a hot plate, hot air, oven or the like.
  • the heating temperature is usually 80 to 140°C, preferably 90 to 120°C.
  • the heating time is usually 30 to 600 seconds, preferably 30 to 300 seconds.
  • the film thickness of the photosensitive resin film is not particularly limited and may be appropriately adjusted according to the pattern to be finally obtained.
  • the film thickness is usually 0.5 to 10 ⁇ m, preferably 1 to 5 ⁇ m.
  • the film thickness can be adjusted by the content of the solvent in the photosensitive resin composition and the coating method.
  • -Exposure Exposure is typically performed by exposing the photosensitive resin film to actinic rays through a suitable photomask.
  • actinic rays include X-rays, electron rays, ultraviolet rays, and visible rays. In terms of wavelength, light of 200 to 500 nm is preferable.
  • the light source is preferably a g-line, h-line or i-line of a mercury lamp, and particularly preferably i-line. Further, two or more light rays may be mixed and used.
  • a contact aligner, a mirror projection or a stepper is preferable.
  • the light amount of exposure may be appropriately adjusted depending on the amount of the photopolymerization initiator in the photosensitive resin film, the film thickness of the photosensitive resin film, and the like.
  • the exposure light amount is, for example, about 100 to 500 mJ/cm 2 .
  • the photosensitive resin film may be heated again if necessary (post-exposure heating: Post Exposure Bake).
  • the heating temperature here is, for example, 70 to 150° C., preferably 90 to 120° C.
  • the heating time is, for example, 30 to 600 seconds, preferably 30 to 300 seconds.
  • a pattern By developing the exposed photosensitive resin film with a suitable developing solution, a pattern can be obtained and a substrate having a pattern can be manufactured.
  • development can be carried out by using a suitable developing solution, for example, a method such as a dipping method, a paddle method or a rotary spray method.
  • a suitable developing solution for example, a method such as a dipping method, a paddle method or a rotary spray method.
  • the exposed portion (in the case of positive type) or the unexposed portion (in the case of negative type) of the photosensitive resin film is eluted and removed to obtain a pattern.
  • a negative pattern is usually obtained.
  • the developer that can be used is not particularly limited.
  • an alkaline aqueous solution or an organic solvent can be used.
  • Specific examples of the alkaline aqueous solution include (i) an inorganic alkaline aqueous solution such as sodium hydroxide, sodium carbonate, sodium silicate, and ammonia, (ii) an organic amine aqueous solution such as ethylamine, diethylamine, triethylamine, and triethanolamine, (iii) Examples thereof include aqueous solutions of quaternary ammonium hydroxide such as tetramethylammonium hydroxide and tetrabutylammonium hydroxide.
  • organic solvent examples include ketone solvents such as cyclopentanone, ester solvents such as propylene glycol monomethyl ether acetate (PGMEA) and butyl acetate, ether solvents such as propylene glycol monomethyl ether, and the like.
  • the developer may contain a water-soluble organic solvent such as methanol or ethanol, or an additive such as a surfactant.
  • an alkaline aqueous solution as the developing solution, and it is more preferable to use an aqueous solution of tetramethylammonium hydroxide or sodium carbonate.
  • concentration of the alkaline aqueous solution is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass.
  • the pattern and/or substrate may be washed with a rinse after development.
  • the rinse liquid include distilled water, methanol, ethanol, isopropanol, propylene glycol monomethyl ether and the like. These may be used alone or in combination of two or more.
  • the obtained pattern may be heated to be sufficiently cured.
  • the heating temperature is typically 150 to 400°C, preferably 160 to 300°C, more preferably 200 to 250°C.
  • the heating time is not particularly limited, but is within a range of 15 to 300 minutes, for example.
  • This heat treatment can be performed using a hot plate, an oven, a temperature rising oven that can set a temperature program, or the like.
  • the atmosphere gas used for the heat treatment may be air or an inert gas such as nitrogen or argon. Moreover, you may heat under reduced pressure.
  • a color filter can be obtained using a photosensitive resin composition containing a colorant.
  • a black matrix can be obtained by using a photosensitive resin composition containing a light shielding agent.
  • a display device typically a liquid crystal display device
  • an image pickup device typically a solid-state image pickup device
  • FIG. 1 An example of the structure of a display device and/or an image sensor including a color filter and/or a black matrix is schematically shown in FIG.
  • a black matrix 11 and a color filter 12 are formed on the substrate 10.
  • a protective film 13 and a transparent electrode layer 14 are provided on the black matrix 11 and the color filter 12.
  • the substrate 10 is usually made of a material that transmits light. For example, it is made of any one of glass, polyester, polycarbonate, polyolefin, polysulfone, and a polymer of cyclic olefin.
  • the substrate 10 may have been subjected to corona discharge treatment, ozone treatment, chemical treatment, or the like.
  • the substrate 10 is made of glass, for example.
  • the black matrix 11 is usually a cured product of a photosensitive resin composition containing a light shielding agent.
  • the color filter 12 usually has three colors of red, green and blue.
  • the color filter 12 is usually a cured product of a photosensitive resin composition containing a colorant corresponding to each color.
  • Embodiments of the present invention will be described in detail based on examples and comparative examples.
  • the present invention is not limited to the embodiments.
  • the compounds used in the examples may be represented by the following abbreviations or trade names.
  • MA maleic anhydride NB: 2-norbornene
  • MEK methyl ethyl ketone
  • BHEA 2-hydroxyethyl acrylate
  • 4-HBA 4-hydroxybutyl acrylate
  • A-TMM-3L a mixture of the following two compounds, the amount of the compound on the left in the mixture based on gas chromatographic measurement is about 55% (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • A-TMM-3LM-N a mixture of the following two compounds, the amount of the compound on the left in the mixture based on gas chromatographic measurement is about 57% (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • A-9550 A mixture of the following two compounds, the amount of the compound on the left in the mixture estimated from the hydroxyl value is about 50% (Shin-Nakamura Chemical Co., Ltd.)
  • the aqueous phase was removed from the reaction solution by treating the prepared reaction solution with a formic acid aqueous solution. Then, the polymer was purified by the following procedure. -Reprecipitate the polymer with excess toluene. The operation of washing the polymer powder obtained by reprecipitation with an excess amount of toluene was repeated twice. The operation of washing the above-mentioned polymer powder after washing twice with an excess amount of water was performed three times.
  • the aqueous phase was removed from the reaction solution by treating the obtained reaction solution with an aqueous formic acid solution. Then, the solution was poured into a large amount of pure water to precipitate a polymer. The obtained polymer was collected by filtration and washed with pure water. As a result, 27.21 g of a polymer was obtained in which the structural unit derived from maleic anhydride in the raw material polymer was ring-opened only with BHEA.
  • the aqueous phase was removed from the reaction solution by treating the obtained reaction solution with an aqueous formic acid solution. Then, the solution was poured into a large amount of pure water to precipitate a polymer. The obtained polymer was collected by filtration and washed with pure water. As a result, 26.54 g of a polymer obtained by ring-opening the structural unit derived from maleic anhydride in the starting polymer with 4-HBA was obtained.
  • the weight average molecular weight and the dispersity were determined by GPC measurement using polystyrene as a standard substance.
  • the disappearance of the peaks of the acrylate compounds (BHEA, 4-HBA, A-TMM-3L, A-TMM-3LM-N, A-9550) was confirmed by GPC measurement. That is, in the polymers of each synthesis example and comparative synthesis example, it is confirmed that the MA unit of the raw material polymer and the unreacted acrylate and the acrylate compound that does not react with the MA unit (acrylate not containing a hydroxyl group) are sufficiently removed. confirmed.
  • Table 1 shows the acrylate compound used in the synthesis, the weight average molecular weight of the polymer, the dispersity, the acid value, and the double bond equivalent of the polymers of each synthesis example and comparative synthesis example.
  • R D is 2 or more polymerizable carbon - the ratio of the structural unit is a group containing a carbon double bond, of the first structural unit, polymerizable R D is only one
  • ratio in the total structural units of the polymer is also shown in Table 1. These ratios are obtained by solving the “simultaneous equations” as described above, assuming that the ratio of the norbornene structural unit:maleic anhydride structural unit in the starting polymer 1 or 2 is 50:50 (molar ratio). I asked. Note that in each polymer, the sum of these two ratios is less than 50 mol %. From this, it can be said that all of the maleic anhydride structural units in the polymer do not undergo ring opening, and some of them remain the structure represented by the formula (MA).
  • the polymers of Synthesis Examples 1 to 10 have the structural unit represented by the general formula (1) and R D is 2 or more. It is supported to include those that are groups containing a polymerizable carbon-carbon double bond. This will be described below.
  • the compound having a hydroxy group and a polymerizable carbon-carbon double bond is a polyfunctional compound such as A-TMM-3L or A-9550
  • the carboxyl group is converted to a carboxyl group by ring opening of one MA unit.
  • the polymer obtained by ring-opening the MA unit with the polyfunctional compound is the monofunctional compound with the MA unit.
  • the double bond equivalent is smaller than that of the polymer obtained by ring-opening.
  • This resin film was immersed in a 2.38 mass% tetramethylammonium hydroxide (TMAH) aqueous solution at a temperature of 23° C., and the dissolution rate of the resin film was measured.
  • the dissolution rate was calculated by visually observing the immersed wafer, measuring the time until the resin film was dissolved and the interference pattern disappeared, and dividing the film thickness by the time.
  • TMAH tetramethylammonium hydroxide
  • the developability was evaluated according to the following criteria. Good (good): Dissolution rate of 500 nm/s or more Poor (bad): Dissolution rate of less than 500 nm/s
  • a photosensitive resin composition was obtained by dissolving the following components in propylene glycol monomethyl ether acetate (PGMEA) so that the total solid content concentration was 30% by mass.
  • PGMEA propylene glycol monomethyl ether acetate
  • Polymer (Synthesis Examples 1 to 10 or Comparative Synthesis Examples 1 to 3): 100 parts by mass Polyfunctional acrylate (dipentaerythritol oxaacrylate): 50 parts by mass Photopolymerization initiator (BASF Ingacure OXE01) : 5 parts by mass-Adhesion auxiliary agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403): 1 part by mass-Surfactant (manufactured by DIC Corporation, F-556): 0.5 parts by mass
  • the obtained resin composition was spin-coated on a HMDS (Hexamethyldisilane)-treated 3 inch silicon wafer and baked on a hot plate at 100° C. for 120 seconds to give a thin film having a thickness of about 3.0 ⁇ m ( ⁇ 0.3 ⁇ m).
  • HMDS Hexamethyldisilane
  • This thin film A was exposed to g+h+i rays with an exposure dose of 100 mJ/cm 2 using a g+h+i ray mask aligner (PLA-501F) manufactured by Canon Inc. through a photomask having a gradation of a light blocking rate of 1 to 100%.
  • the thin film was developed (dipping the whole wafer) with a 2.0% by mass sodium carbonate aqueous solution at 23° C. for 60 seconds to obtain a thin film B exposed and developed at each exposure amount of 1 to 100 mJ/cm 2 . ..
  • the residual film rate was calculated by the following formula.
  • Remaining film ratio (%) (film thickness of thin film B at each exposure amount/film thickness of thin film A) ⁇ 100 Then, the exposure amount at which the residual film ratio was 95% or more was evaluated as the sensitivity of each photosensitive resin composition according to the following criteria. ⁇ (very good sensitivity): 20 mJ/cm 2 or less ⁇ (good sensitivity): 21 to 50 mJ/cm 2 X (poor sensitivity): 51 mJ/cm 2 or more
  • Pigment dispersion NX-061 manufactured by Dainichiseika Kogyo KK, green was added to the photosensitive resin composition prepared in [Sensitivity evaluation] containing the polymer of Synthesis Example 1 in an appropriate amount for coloring.
  • a photosensitive resin composition was prepared.
  • a green color filter could be formed by forming a film on the substrate and performing exposure, alkali development treatment and the like.
  • the pigment dispersion liquid NX-053 (blue), NX-032 (red) manufactured by the same company was used instead of NX-061, and a blue or red color filter could be formed.
  • these color filters had sufficient resistance to high temperatures that could be exposed during the device manufacturing process. It is believed that this is related to the fact that the polymer contains structural units having a cyclic hydrocarbon skeleton.
  • Black photosensitive material obtained by adding an appropriate amount of carbon black dispersion NX-595 (manufactured by Dainichiseika Kogyo Co., Ltd.) to the photosensitive resin composition prepared in [Sensitivity evaluation] containing the polymer of Synthesis Example 1.
  • a resin composition was prepared.
  • a black matrix could be formed by forming a film on the substrate and performing exposure, alkali development treatment and the like. Incidentally, this black matrix had sufficient resistance to the high temperatures that can be exposed during the device manufacturing process. It is believed that this is related to the fact that the polymer contains structural units having a cyclic hydrocarbon skeleton.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Filters (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Liquid Crystal (AREA)

Abstract

The invention provides a photosensitive resin composition containing a polymer having a first structural unit represented by general formula (1), and having an acid value of 70 to 300 mg KOH/g and a double bond equivalent of 100 to 500 g/mol. In addition, the invention provides a polymer having a first structural unit represented by general formula (1), and having an acid value of 70 to 300 mg KOH/g and a double bond equivalent of 100 to 500 g/mol. In general formula (1), RD represents a group containing a polymeric carbon-carbon double bond.

Description

感光性樹脂組成物、ポリマー、パターン、カラーフィルタ、ブラックマトリクス、表示装置および撮像素子Photosensitive resin composition, polymer, pattern, color filter, black matrix, display device and image sensor
 本発明は、感光性樹脂組成物、ポリマー、パターン、カラーフィルタ、ブラックマトリクス、表示装置および撮像素子に関する。 The present invention relates to a photosensitive resin composition, a polymer, a pattern, a color filter, a black matrix, a display device and an image sensor.
 表示装置(液晶ディスプレイ等)や撮像素子(CCD、CMOS等)は、通常、カラーフィルタやブラックマトリクスを備えている。
 カラーフィルタやブラックマトリクスの形成には、感光性樹脂組成物が用いられることが多い。具体的には、光硬化性の感光性樹脂組成物により基板上に感光性樹脂膜を形成し、その膜を露光・現像することで、カラーフィルタやブラックマトリクス等のパターンが基板上に形成される。
A display device (liquid crystal display or the like) and an image pickup device (CCD, CMOS or the like) usually include a color filter and a black matrix.
A photosensitive resin composition is often used for forming a color filter or a black matrix. Specifically, a photosensitive resin film is formed on a substrate by a photocurable photosensitive resin composition, and the film is exposed and developed to form a pattern such as a color filter or a black matrix on the substrate. It
 特許文献1には、酸基、重合性不飽和基およびブロックイソシアナト基を分子中に含有し、酸価が20~300mgKOH/gであり、不飽和基当量が100~4,000g/molであり、ブロックイソシアナト基当量が400~6,000g/molである硬化性ポリマーが記載されている。また、この硬化性ポリマーを用いてカラーフィルタを形成することが記載されている。 Patent Document 1 discloses that an acid group, a polymerizable unsaturated group and a block isocyanato group are contained in the molecule, an acid value is 20 to 300 mgKOH/g, and an unsaturated group equivalent is 100 to 4,000 g/mol. And a curable polymer having a block isocyanato group equivalent of 400 to 6,000 g/mol is described. It is also described that a color filter is formed using this curable polymer.
 特許文献2には、重量平均分子量が1000~6000、酸価が80~200mgKOH/g、エチレン性不飽和結合当量が500以下のバインダー樹脂を用いて、ブラックマトリクスを形成することが記載されている。 Patent Document 2 describes that a black matrix is formed by using a binder resin having a weight average molecular weight of 1000 to 6000, an acid value of 80 to 200 mgKOH/g, and an ethylenically unsaturated bond equivalent of 500 or less. ..
 特許文献3には、カルボキシル基を有しない式量70~120のエチレン性不飽和モノマーと、カルボキシル基含有エチレン性不飽和モノマーを含むエチレン性不飽和モノマーをラジカル重合してなる共重合体中のカルボキシル基1molに対し、エポキシ基含有エチレン性不飽和モノマー中のエポキシ基を0.2~0.9mol反応させて得られた感光性樹脂が記載されている。また、その感光性樹脂を含有する感光性組成物が記載されている。さらに、この感光性組成物を用いてカラーフィルタを形成することが記載されている。
 特許文献3において、感光性樹脂の酸価は、好ましくは20~200mgKOH/gと記載されている。また、感光性樹脂の二重結合当量は、好ましくは300~1000と記載されている。
Patent Document 3 discloses a copolymer obtained by radically polymerizing an ethylenically unsaturated monomer having a carboxyl group and having a formula weight of 70 to 120, and an ethylenically unsaturated monomer containing a carboxyl group-containing ethylenically unsaturated monomer. A photosensitive resin obtained by reacting 0.2 to 0.9 mol of an epoxy group in an epoxy group-containing ethylenically unsaturated monomer with 1 mol of a carboxyl group is described. Further, a photosensitive composition containing the photosensitive resin is described. Further, it is described that a color filter is formed using this photosensitive composition.
In Patent Document 3, it is described that the acid value of the photosensitive resin is preferably 20 to 200 mgKOH/g. In addition, the double bond equivalent of the photosensitive resin is preferably described as 300 to 1000.
 特許文献4には、特定の一般式で表されるカルボキシル基含有重合体に、(i)カルボン酸と反応する基とエチレン性不飽和基を有する化合物、または、(ii)カルボン酸と反応する基と珪素系官能基を有する化合物を、反応させて得られるアルカリ可溶性樹脂、また、そのアルカリ可溶性樹脂を含有する感光性樹脂組成物が記載されている。また、この感光性樹脂組成物を用いてカラーフィルタを形成することが記載されている。
 特許文献4において、アルカリ可溶性樹脂の酸価は好ましくは25~100mgKOH/g、エチレン性不飽和基当量は好ましくは50~400と記載されている。
Patent Document 4 discloses that a carboxyl group-containing polymer represented by a specific general formula is reacted with (i) a compound having a group reactive with carboxylic acid and an ethylenically unsaturated group, or (ii) reacted with carboxylic acid. An alkali-soluble resin obtained by reacting a compound having a group with a silicon-based functional group, and a photosensitive resin composition containing the alkali-soluble resin are described. Further, it is described that a color filter is formed using this photosensitive resin composition.
Patent Document 4 describes that the acid value of the alkali-soluble resin is preferably 25 to 100 mgKOH/g and the ethylenically unsaturated group equivalent is preferably 50 to 400.
国際公開第2014/141731号International Publication No. 2014/141731 特開2015-197619号公報JP, 2005-197619, A 特開2011-33951号公報JP, 2011-33951, A 特開2007-264433号公報JP, 2007-264433, A
 感光性樹脂組成物、特にネガ型の感光性樹脂組成物を用いてパターンを形成する場合、露光部の光硬化のしやすさ(すなわち感度)と、未露光部の現像液に対する溶解のしやすさ(現像性)とは、トレードオフの関係となりがちである。
 特に最近、液晶表示装置や固体撮像素子のさらなる複雑化、微細化等を背景として、感度と現像性を高いレベルで両立させることが求められている。
When a pattern is formed by using a photosensitive resin composition, particularly a negative photosensitive resin composition, the photocurability of the exposed area (that is, sensitivity) and the solubility of the unexposed area in a developing solution The tendency (developability) tends to have a trade-off relationship.
In particular, recently, with the background of further complication and miniaturization of liquid crystal display devices and solid-state imaging devices, it has been required to achieve both high sensitivity and high developability.
 本発明者らは、今回、感度と現像性が両立された感光性樹脂組成物を提供することを目的の1つとして、検討を行った。 The present inventors have conducted a study this time with the aim of providing a photosensitive resin composition having both sensitivity and developability.
 本発明者らは、鋭意検討の結果、以下に提供される発明を完成させた。 The present inventors have completed the inventions provided below as a result of intensive studies.
 本発明によれば、以下が提供される。 According to the present invention, the following is provided.
1.
 以下一般式(1)で表される第一構造単位を有し、酸価が70~300mgKOH/gであり、二重結合当量が100~500g/molであるポリマーを含む、感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中、Rは、重合性炭素-炭素二重結合を含む基である。
2.
 1.に記載の感光性樹脂組成物であって、
 前記第一構造単位は、Rが2以上の重合性炭素-炭素二重結合を含む基である構造単位を含む、感光性樹脂組成物。
3.
 1.または2.に記載の感光性樹脂組成物であって、
 前記第一構造単位は、Rが2以上の重合性炭素-炭素二重結合を含む基である構造単位と、Rが1のみの重合性炭素-炭素二重結合を含む基である構造単位とを含む、感光性樹脂組成物。
4.
 1.~3.のいずれか1つに記載の感光性樹脂組成物であって、
 前記ポリマーが、さらに、以下式(MA)で表される第二構造単位を含む、感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000006
5.
 1.~4.のいずれか1つに記載の感光性樹脂組成物であって、
 前記ポリマーが、さらに、環状炭化水素骨格を有する構造単位を含む、感光性樹脂組成物。
6.
 1.~5.のいずれか1つに記載の感光性樹脂組成物であって、
 前記ポリマーの全構造単位中の前記第一構造単位の比率が、10~40mol%である、感光性樹脂組成物。
7.
 1.~6.のいずれか1つに記載の感光性樹脂組成物であって、
 前記ポリマーの重量平均分子量が、6,000~25,000である、感光性樹脂組成物。
8.
 1.~7.のいずれか1つに記載の感光性樹脂組成物であって、
 さらに着色剤を含む感光性樹脂組成物。
9.
 1.~7.のいずれか1つに記載の感光性樹脂組成物であって、
 さらに遮光剤を含む感光性樹脂組成物。
10.
 以下一般式(1)で表される第一構造単位を有し、酸価が70~300mgKOH/gであり、二重結合当量が100~500g/molであるポリマー。
Figure JPOXMLDOC01-appb-C000007
 一般式(1)中、Rは、重合性炭素-炭素二重結合を含む基である。
11.
 10.に記載のポリマーであって、
 前記第一構造単位は、Rが2以上の重合性炭素-炭素二重結合を含む基である構造単位を含むポリマー。
12.
 10.または11.に記載のポリマーであって、
 前記第一構造単位は、Rが2以上の重合性炭素-炭素二重結合を含む基である構造単位と、Rが1のみの重合性炭素-炭素二重結合を含む基である構造単位とを含むポリマー。
13.
 10.~12.のいずれか1つに記載の感光性樹脂組成物であって、
 さらに、以下式(MA)で表される第二構造単位を含むポリマー。
Figure JPOXMLDOC01-appb-C000008
14.
 10.~13.のいずれか1つに記載のポリマーであって、
 さらに、環状炭化水素骨格を有する構造単位を含むポリマー。
15.
 10.~14.のいずれか1つに記載のポリマーであって、
 全構造単位中の前記第一構造単位の比率が、10~40mol%であるポリマー。
16.
 10.~15.のいずれか1つに記載のポリマーであって、
 重量平均分子量が、6,000~25,000であるポリマー。
17.
 1.~7.のいずれか1つに記載の感光性樹脂組成物を用いて得られるパターン。
18.
 8.に記載の感光性樹脂組成物を用いて得られるカラーフィルタ。
19.
 18.に記載のカラーフィルタを備える表示装置。
20.
 18.に記載のカラーフィルタを備える撮像素子。
21.
 9.に記載の感光性樹脂組成物を用いて得られるブラックマトリクス。
22.
 21.に記載のブラックマトリクスを備える表示装置。
23.
 21.に記載のブラックマトリクスを備える撮像素子。
1.
A photosensitive resin composition comprising a polymer having a first structural unit represented by the following general formula (1), an acid value of 70 to 300 mgKOH/g, and a double bond equivalent of 100 to 500 g/mol. ..
Figure JPOXMLDOC01-appb-C000005
In the general formula (1), R D is a group containing a polymerizable carbon-carbon double bond.
2.
1. The photosensitive resin composition according to,
The photosensitive resin composition, wherein the first structural unit includes a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds.
3.
1. Or 2. The photosensitive resin composition according to,
The first structural unit is a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds, and a structure in which R D is a group containing only one polymerizable carbon-carbon double bond. A photosensitive resin composition comprising a unit.
4.
1. ~3. The photosensitive resin composition according to any one of
The photosensitive resin composition, wherein the polymer further contains a second structural unit represented by the following formula (MA).
Figure JPOXMLDOC01-appb-C000006
5.
1. ~ 4. The photosensitive resin composition according to any one of
The photosensitive resin composition, wherein the polymer further contains a structural unit having a cyclic hydrocarbon skeleton.
6.
1. ~ 5. The photosensitive resin composition according to any one of
The photosensitive resin composition, wherein the ratio of the first structural unit in all structural units of the polymer is 10 to 40 mol %.
7.
1. ~6. The photosensitive resin composition according to any one of
The photosensitive resin composition, wherein the polymer has a weight average molecular weight of 6,000 to 25,000.
8.
1. ~ 7. The photosensitive resin composition according to any one of
A photosensitive resin composition further containing a colorant.
9.
1. ~ 7. The photosensitive resin composition according to any one of
Further, a photosensitive resin composition containing a light shielding agent.
10.
A polymer having the first structural unit represented by the following general formula (1), having an acid value of 70 to 300 mgKOH/g, and having a double bond equivalent of 100 to 500 g/mol.
Figure JPOXMLDOC01-appb-C000007
In the general formula (1), R D is a group containing a polymerizable carbon-carbon double bond.
11.
10. The polymer according to
The first structural unit is a polymer containing a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds.
12.
10. Or 11. The polymer according to
The first structural unit is a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds, and a structure in which R D is a group containing only one polymerizable carbon-carbon double bond. A polymer containing units.
13.
10. ~12. The photosensitive resin composition according to any one of
Further, a polymer containing a second structural unit represented by the following formula (MA).
Figure JPOXMLDOC01-appb-C000008
14.
10. ~13. The polymer of any one of:
Further, a polymer containing a structural unit having a cyclic hydrocarbon skeleton.
15.
10. ~14. The polymer of any one of:
A polymer in which the ratio of the first structural unit in all structural units is 10 to 40 mol %.
16.
10. ~15. The polymer of any one of:
A polymer having a weight average molecular weight of 6,000 to 25,000.
17.
1. ~ 7. A pattern obtained by using the photosensitive resin composition according to any one of 1.
18.
8. A color filter obtained by using the photosensitive resin composition as described in 1.
19.
18. A display device including the color filter according to item 1.
20.
18. An image sensor including the color filter according to item 1.
21.
9. A black matrix obtained by using the photosensitive resin composition as described in 1.
22.
21. A display device comprising the black matrix described in 1.
23.
21. An image sensor including the black matrix according to item 1.
 本発明によれば、感度と現像性が両立された感光性樹脂組成物が提供される。また、そのような感光性樹脂組成物の製造に好適なポリマーが提供される。 According to the present invention, a photosensitive resin composition having both sensitivity and developability is provided. Further, a polymer suitable for producing such a photosensitive resin composition is provided.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-mentioned object, other objects, features and advantages will be further clarified by the preferred embodiments described below and the following drawings accompanying it.
液晶表示装置および/または固体撮像素子の構造の一例を模式的に示す図(断面図)である。It is a figure (cross section) which shows typically an example of the structure of a liquid crystal display and/or a solid-state image sensing device.
 以下、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
 すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 煩雑さを避けるため、同一図面内に同一の構成要素が複数ある場合には、その1つのみに符号を付し、全てには符号を付さない場合がある。
 図面はあくまで説明用のものである。図面中の各部材の形状や寸法比などは、必ずしも現実の物品と対応しない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In all the drawings, the same reference numerals are given to the same components, and the description will be appropriately omitted.
In order to avoid complication, when there are a plurality of the same constituent elements in the same drawing, only one of them may be given a reference numeral, and all may not be given a reference numeral.
The drawings are for illustration purposes only. The shapes and dimensional ratios of the respective members in the drawings do not necessarily correspond to actual articles.
 本明細書中、「二重結合当量」の「二重結合」は、重合性炭素-炭素二重結合のことである。
 本明細書中、「略」という用語は、特に明示的な説明の無い限りは、製造上の公差や組立て上のばらつき等を考慮した範囲を含むことを表す。
 本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、a以上b以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。
In the present specification, the "double bond" of "double bond equivalent" means a polymerizable carbon-carbon double bond.
In the present specification, the term “substantially” indicates a range including a manufacturing tolerance, a variation in assembly, and the like, unless otherwise specified.
In the present specification, the notation “a to b” in the description of the numerical range means a or more and b or less unless otherwise specified. For example, "1 to 5 mass%" means "1 mass% or more and 5 mass% or less".
 本明細書における基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含するものである。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書における「(メタ)アクリル」との表記は、アクリルとメタクリルの両方を包含する概念を表す。「(メタ)アクリレート」等の類似の表記についても同様である。
 本明細書における「有機基」の語は、特に断りが無い限り、有機化合物から1つ以上の水素原子を除いた原子団のことを意味する。例えば、「1価の有機基」とは、任意の有機化合物から1つの水素原子を除いた原子団のことを表す。
In the description of a group (atomic group) in the present specification, a description not indicating whether it is substituted or unsubstituted includes both a group having no substituent and a group having a substituent. For example, an “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
The expression "(meth)acrylic" in the present specification represents a concept including both acrylic and methacrylic. The same applies to similar notations such as “(meth)acrylate”.
Unless otherwise specified, the term "organic group" in the present specification means an atomic group obtained by removing one or more hydrogen atoms from an organic compound. For example, “monovalent organic group” refers to an atomic group obtained by removing one hydrogen atom from any organic compound.
<感光性樹脂組成物>
 本実施形態の感光性樹脂組成物は、以下一般式(1)で表される第一構造単位を有し、酸価が70~300mgKOH/gであり、二重結合当量が100~500g/molであるポリマーを含む。
 一般式(1)中、Rは、重合性炭素-炭素二重結合を含む基である。
<Photosensitive resin composition>
The photosensitive resin composition of the present embodiment has the first structural unit represented by the following general formula (1), has an acid value of 70 to 300 mgKOH/g, and has a double bond equivalent of 100 to 500 g/mol. Including a polymer that is
In the general formula (1), R D is a group containing a polymerizable carbon-carbon double bond.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上述のポリマーを用いて感光性樹脂組成物を製造することで、感度と現像性が両立された感光性樹脂組成物を得ることができる。その理由については以下のように説明することができる。
 なお、以下説明により本発明が限定的に解釈されるものではない。
By manufacturing a photosensitive resin composition using the above-mentioned polymer, a photosensitive resin composition having both sensitivity and developability can be obtained. The reason can be explained as follows.
The present invention is not limitedly interpreted by the following description.
 一般式(1)で表される構造単位は、1つの構造単位中に、重合性炭素-炭素二重結合を含む基(一般式中のR)と、カルボキシ基との「両方」を含んでいる。
 重合性基とカルボキシ基が同一構造単位内にあることで、ポリマー中の重合性基の量とカルボキシ基の量の「両方」を大きな値に設計しやすい((メタ)アクリル系樹脂などの他の樹脂では、このような設計は難しいと考えられる)。このことは、感度を高めつつ、現像性も高める点で好都合である。
The structural unit represented by the general formula (1) contains “both” of a group containing a polymerizable carbon-carbon double bond (R D in the general formula) and a carboxy group in one structural unit. I'm out.
Since the polymerizable group and the carboxy group are in the same structural unit, it is easy to design both the amount of the polymerizable group and the amount of the carboxy group in the polymer to be large values (other than (meth)acrylic resin etc. It is thought that such a design is difficult with the resin of. This is advantageous in that it enhances the developability as well as the sensitivity.
 そして、ポリマー全体としては、酸価を70~300mgKOH/gに設計し、二重結合当量を100~500g/molに設計することで、高いレベルで感度と現像性を両立させることができる。
 すなわち、ポリマーの酸価が70mgKOH/g以上であることで、良好な現像性を得ることができる。また、二重結合当量が500g/mol以下であることで、組成物の感度を高くすることができる。
By designing the acid value of the polymer as a whole to 70 to 300 mgKOH/g and the double bond equivalent weight to 100 to 500 g/mol, both sensitivity and developability can be achieved at a high level.
That is, when the acid value of the polymer is 70 mgKOH/g or more, good developability can be obtained. Further, when the double bond equivalent is 500 g/mol or less, the sensitivity of the composition can be increased.
 なお、酸価が大きすぎると、アルカリ現像液での現像の際に、露光部分が溶解しやすくなり光硬化に必要な露光量が多くなってしまったり、パターン形状が不十分になったりする懸念がある。よって、本実施形態では、酸価の上限値を300mgKOH/gとしている。
 また、二重結合当量が小さすぎると(すなわち、ポリマー中の二重結合の密度が大きすぎると)、アルカリ現像液での現像時に、未露光部や低露光部が溶解しにくくなる傾向があり、現像時に残膜が発生しがちとなる。また、二重結合当量が小さすぎると、架橋により分子量が過度に増大し、溶解性の過度な低下などが懸念される。よって、本実施形態では、二重結合当量の下限値を100g/molとしている。
If the acid value is too large, the exposed portion is likely to be dissolved during development with an alkaline developer, and the exposure amount required for photocuring may be increased, or the pattern shape may be insufficient. There is. Therefore, in this embodiment, the upper limit of the acid value is 300 mgKOH/g.
If the double bond equivalent is too small (that is, if the density of double bonds in the polymer is too high), unexposed areas and low-exposed areas tend to be difficult to dissolve during development with an alkaline developer. However, a residual film tends to be generated during development. Further, if the double bond equivalent is too small, the molecular weight is excessively increased due to crosslinking, and there is a concern that the solubility may be excessively lowered. Therefore, in this embodiment, the lower limit of the double bond equivalent is 100 g/mol.
 ポリマーの酸価は、70~300mgKOH/g、好ましくは80~200mgKOH/gである。
 ポリマーの二重結合当量は、100~500g/mol、好ましくは200~470g/molである。
 ポリマーの酸価および/または二重結合当量を調整することで、より一層高いレベルで感度と現像性を両立させることができる。
The acid value of the polymer is 70 to 300 mgKOH/g, preferably 80 to 200 mgKOH/g.
The double bond equivalent weight of the polymer is 100 to 500 g/mol, preferably 200 to 470 g/mol.
By adjusting the acid value and/or double bond equivalent of the polymer, it is possible to achieve both higher sensitivity and developability at a higher level.
 念のため述べておくと、酸価および二重結合当量は、スペクトル測定などにより求めることができる。例えば、以下のような手順で求めることができる(より具体的には実施例を参照されたい)。
(1)ポリマーのH-NMRチャートから、カルボキシ基の水素原子や、重合性炭素-炭素二重結合近傍の水素原子に対応するピークの面積(積分値)を求める。
(2)(1)で求めた面積を、標準物質に由来するピークの面積から、カルボキシ基の量および炭素-炭素二重結合の量を求める。 
(3)(2)で求めたカルボキシ基の量を、酸価(mgKOH/g)に換算する。また、(2)で求めた重合性炭素-炭素二重結合の量を、二重結合当量(g/mol)に換算する。
Just in case, the acid value and the double bond equivalent can be obtained by measuring the spectrum. For example, it can be determined by the following procedure (more specifically, see the example).
(1) From the 1 H-NMR chart of the polymer, the area (integral value) of the peak corresponding to the hydrogen atom of the carboxy group and the hydrogen atom near the polymerizable carbon-carbon double bond is determined.
(2) From the area of the peak derived from the standard substance, the area determined in (1) is determined to determine the amount of carboxy group and the amount of carbon-carbon double bond.
(3) The amount of the carboxy group obtained in (2) is converted into an acid value (mgKOH/g). Further, the amount of the polymerizable carbon-carbon double bond obtained in (2) is converted into the double bond equivalent (g/mol).
 ポリマー中の一般式(1)で表される構造単位の比率、一般式(1)中のRの構造、Rが含む重合性炭素-炭素二重結合の数などを適切に設計することで、ポリマーの酸価や二重結合当量を適切な値とすることができる。 Properly designing the ratio of the structural unit represented by the general formula (1) in the polymer, the structure of R D in the general formula (1), the number of polymerizable carbon-carbon double bonds contained in R D , and the like. Thus, the acid value and double bond equivalent of the polymer can be set to appropriate values.
 本実施形態の感光性樹脂組成物が含むことができる成分などについて、以下説明する。 The components that can be contained in the photosensitive resin composition of the present embodiment will be described below.
(ポリマー)
 本実施形態の感光性樹脂組成物は、前述のように、一般式(1)で表される第一構造単位を有し、酸価が70~300mgKOH/gであり、二重結合当量が100~500g/molであるポリマーを含む。一般式(1)において、Rは、重合性炭素-炭素二重結合を含む基である限り、任意の基であることができる。
(polymer)
As described above, the photosensitive resin composition of the present embodiment has the first structural unit represented by the general formula (1), has an acid value of 70 to 300 mgKOH/g, and has a double bond equivalent of 100. Includes polymers that are ˜500 g/mol. In the general formula (1), R D can be any group as long as it is a group containing a polymerizable carbon-carbon double bond.
・第一構造単位
 第一構造単位は、Rが2以上の重合性炭素-炭素二重結合を含む基である構造単位を含むことが好ましい。換言すると、ポリマー中の一般式(1)で表される構造単位の一部または全部のRは、好ましくは、2以上の重合性炭素-炭素二重結合を含む基である。
 Rが2以上の重合性炭素-炭素二重結合を含む場合、R内の重合性炭素-炭素二重結合の数は、好ましくは2~6、より好ましくは2~5、さらに好ましくは3~5である。Rが含む重合性二重結合の数を調整することで、感度と現像性をより高いレベルで両立させることができる。
-First Structural Unit The first structural unit preferably contains a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds. In other words, part or all of R D of the structural unit represented by the general formula (1) in the polymer is preferably a group containing two or more polymerizable carbon-carbon double bonds.
When R D contains two or more polymerizable carbon-carbon double bonds, the number of polymerizable carbon-carbon double bonds in R D is preferably 2 to 6, more preferably 2 to 5, and further preferably It is 3 to 5. By adjusting the number of polymerizable double bonds contained in R D , both sensitivity and developability can be made compatible at a higher level.
 Rが2以上の重合性炭素-炭素二重結合を含む場合、好ましくは、2以上の重合性二重結合のうち少なくとも1つ(より好ましくは全て)は、Rの末端に存在する。このような構造とすることで、重合性二重結合は光重合開始剤から発生した活性化学種と反応しやすくなる。よって、感度を一層向上させることができる。 When R D contains two or more polymerizable carbon-carbon double bonds, preferably at least one (more preferably all) of the two or more polymerizable double bonds is present at the end of R D. With such a structure, the polymerizable double bond easily reacts with the active chemical species generated from the photopolymerization initiator. Therefore, the sensitivity can be further improved.
 Rが2以上の重合性炭素-炭素二重結合を含む場合、一例として、Rは、2以上の(メタ)アクリロイル基を含む。より具体的には、Rは、2~6、好ましくは2~5、より好ましくは3~5の(メタ)アクリロイル基を含む。なお、感度の一層の向上のためには、(メタ)アクリロイル基は、アクリロイル基であることが好ましい。メチル基で置換されていないアクリロイル基のほうが、メタクリロイル基に比べて、光重合開始剤から発生した活性化学種とより反応しやすくなるためである。 When R D contains two or more polymerizable carbon-carbon double bonds, by way of example, R D contains two or more (meth)acryloyl groups. More specifically, R D comprises 2-6, preferably 2-5, more preferably 3-5 (meth)acryloyl groups. In order to further improve the sensitivity, the (meth)acryloyl group is preferably an acryloyl group. This is because the acryloyl group not substituted with a methyl group is more likely to react with the active chemical species generated from the photopolymerization initiator than the methacryloyl group.
 Rが2以上の(メタ)アクリロイル基を含む場合、Rは、例えば、下記一般式(1b)または(1c)で表される基であることができる。 When R D contains two or more (meth)acryloyl groups, R D can be, for example, a group represented by the following general formula (1b) or (1c).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(1b)中、
 kは2または3であり、
 Rは水素原子またはメチル基であり、複数のRは同じでも異なっていてもよく、
 Xは単結合、炭素数1~6のアルキレン基または-Z-X-で表される基(Zは-O-または-OCO-であり、Xは炭素数1~6のアルキレン基である)であり、複数存在するXは同一であっても異なっていてもよく、
 X'は単結合、炭素数1~6のアルキレン基または-X'-Z'-で表される基(X'は炭素数1~6のアルキレン基であり、Z'は-O-または-COO-である)であり、
 Xは炭素数1~12のk+1価の有機基である。
In the general formula (1b),
k is 2 or 3,
R is a hydrogen atom or a methyl group, plural Rs may be the same or different,
X 1 is a single bond, an alkylene group having 1 to 6 carbon atoms or a group represented by —Z—X— (Z is —O— or —OCO—, and X is an alkylene group having 1 to 6 carbon atoms. ), a plurality of X 1's may be the same or different,
X 1 'is a single bond, an alkylene group or a group represented by -X'-Z'- having 1 to 6 carbon atoms (X' is an alkylene group having 1 to 6 carbon atoms, Z 'is -O- or -COO-),
X 2 is a k+1 valent organic group having 1 to 12 carbon atoms.
 Rは、感度の一層の向上(重合のしやすさ)などから、水素原子が好ましい。
 kは、2でも3でもよいが、原料の入手容易性や感度の一層の向上の点からは、好ましくは3である。
R is preferably a hydrogen atom from the viewpoint of further improving the sensitivity (ease of polymerization).
k may be 2 or 3, but is preferably 3 from the viewpoints of availability of raw materials and further improvement of sensitivity.
 Xが炭素数1~6のアルキレン基である場合、アルキレン基は直鎖状であっても分枝状であってもよい。
 Xが炭素数1~6のアルキレン基である場合、Xは好ましくは直鎖状アルキレン基であり、より好ましくは炭素数1~3の直鎖状アルキレン基であり、さらに好ましくは-CH-(メチレン基)である。
When X 1 is an alkylene group having 1 to 6 carbon atoms, the alkylene group may be linear or branched.
When X 1 is an alkylene group having 1 to 6 carbon atoms, X 1 is preferably a linear alkylene group, more preferably a linear alkylene group having 1 to 3 carbon atoms, and further preferably —CH. 2- (methylene group).
 Xが-Z-X-で表される基(Zは-O-または-OCO-、Xは炭素数1~6のアルキレン基)である場合の、Xの炭素数1~6のアルキレン基は、直鎖状であっても分枝状であってもよい。
 Xの炭素数1~6のアルキレン基は、好ましくは直鎖状アルキレン基であり、より好ましくは炭素数1~3の直鎖状アルキレン基であり、さらに好ましくは-CH-CH-(エチレン基)または-CH-CH(CH)-である。
When X 1 is a group represented by —Z—X— (Z is —O— or —OCO—, and X is an alkylene group having 1 to 6 carbon atoms), an alkylene group having 1 to 6 carbon atoms. May be linear or branched.
The alkylene group having 1 to 6 carbon atoms of X is preferably a linear alkylene group, more preferably a linear alkylene group having 1 to 3 carbon atoms, and further preferably —CH 2 —CH 2 —( Ethylene group) or —CH 2 —CH(CH 3 )—.
 X'が炭素数1~6のアルキレン基である場合、その具体的態様についてはXと同様である。
 X'が-X'-Z'-で表される基である場合、X'の具体的態様については上記Xと同様である。
When X 1 ′ is an alkylene group having 1 to 6 carbon atoms, its specific embodiment is the same as X 1 .
'If is a group represented by the -X'-Z'-, X' X 1 specific aspect is the same as the above X.
 Xの炭素数1~12のk+1価の有機基としては、任意の有機化合物からk+1個の水素原子を除いた任意の基を挙げることができる。ここでの「任意の有機化合物」としては、例えば分子量300以下、好ましくは200以下、より好ましくは100以下の有機化合物である。
 Xは、例えば、炭素数1~12(好ましくは炭素数1~6)の直鎖状または分枝状炭化水素からk+1個の水素原子を除いた基である。より好ましくは、炭素数1~3の直鎖状炭化水素からk+1個の水素原子を除いた基である。なお、ここでの炭化水素は、酸素原子(例えばエーテル結合やヒドロキシ基など)を含んでもよい。また、炭化水素は飽和炭化水素であることが好ましい。
 別の態様として、Xは、環状構造を含む基であってもよい。環状構造を含む基としては、脂環構造を含む基、複素環構造(例えば、イソシアヌル酸構造)を含む基などを挙げることができる。
Examples of the k+1-valent organic group having 1 to 12 carbon atoms of X 2 include any group obtained by removing k+1 hydrogen atoms from any organic compound. The “arbitrary organic compound” here is, for example, an organic compound having a molecular weight of 300 or less, preferably 200 or less, more preferably 100 or less.
X 2 is, for example, a group obtained by removing k+1 hydrogen atoms from a linear or branched hydrocarbon having 1 to 12 carbons (preferably 1 to 6 carbons). More preferably, it is a group obtained by removing k+1 hydrogen atoms from a linear hydrocarbon having 1 to 3 carbon atoms. The hydrocarbon here may contain an oxygen atom (for example, an ether bond or a hydroxy group). Further, the hydrocarbon is preferably a saturated hydrocarbon.
Alternatively, X 2 may be a group containing a cyclic structure. Examples of the group containing a cyclic structure include a group containing an alicyclic structure and a group containing a heterocyclic structure (for example, an isocyanuric acid structure).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(1c)中、
 k、R、XおよびXは、それぞれ、一般式(1b)におけるR、k、XおよびXと同義であり、複数のRは互いに同一であっても異なっていてもよく、複数のXは互いに同一であっても異なっていてもよく、
 Xは、炭素数1~6の2価の有機基であり、
 XおよびXは、それぞれ独立に、単結合または炭素数1~6の2価の有機基であり、
 Xは、炭素数1~6の2価の有機基である。
In the general formula (1c),
k, R, X 1 and X 2 have the same meanings as R, k, X 1 and X 2 in formula (1b), and a plurality of Rs may be the same or different from each other. X 1's may be the same or different from each other,
X 3 is a divalent organic group having 1 to 6 carbon atoms,
X 4 and X 5 are each independently a single bond or a divalent organic group having 1 to 6 carbon atoms,
X 6 is a divalent organic group having 1 to 6 carbon atoms.
 R、k、XおよびXの具体的態様、好ましい態様などについては、一般式(1b)で説明したものと同様である。
 XおよびXの炭素数1~6の2価の有機基としては、例えば、炭素数1~6の直鎖状または分枝状炭化水素から2個の水素原子を除いた基を挙げることができる。なお、ここでの炭化水素は、酸素原子(例えばエーテル結合やヒドロキシ基など)を含んでもよい。また、炭化水素は飽和炭化水素であることが好ましい。
 XおよびXの炭素数1~6の2価の有機基としては、直鎖状または分枝状アルキレン基を挙げることができる。直鎖状または分枝状アルキレン基の炭素数は好ましくは1~3である。
Specific aspects and preferable aspects of R, k, X 1 and X 2 are the same as those described in the general formula (1b).
Examples of the divalent organic group having 1 to 6 carbon atoms of X 3 and X 6 include a group in which 2 hydrogen atoms have been removed from a linear or branched hydrocarbon having 1 to 6 carbon atoms. You can The hydrocarbon here may contain an oxygen atom (for example, an ether bond or a hydroxy group). Further, the hydrocarbon is preferably a saturated hydrocarbon.
Examples of the divalent organic group having 1 to 6 carbon atoms for X 4 and X 5 include a linear or branched alkylene group. The linear or branched alkylene group preferably has 1 to 3 carbon atoms.
 第一構造単位は、Rが2以上の重合性炭素-炭素二重結合を含む基である構造単位と、Rが1のみの重合性炭素-炭素二重結合を含む基である構造単位とを含むことが好ましい。別の言い方として、好ましくは、ポリマー中の一般式(1)で表される構造単位のうち、一部の構造単位中のRは2以上の重合性炭素-炭素二重結合を含む基であり、ポリマー中の一般式(1)で表される構造単位のうち、残りの構造単位中のRは1のみの重合性炭素-炭素二重結合を含む基である。
 ポリマーをこのように設計することで、感度を高めつつ、一層良好な現像性を得やすくなる。
The first structural unit is a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds, and a structural unit in which R D is a group containing only one polymerizable carbon-carbon double bond. It is preferable to include and. In other words, preferably, R D in some of the structural units represented by the general formula (1) in the polymer is a group containing two or more polymerizable carbon-carbon double bonds. Of the structural units represented by the general formula (1) in the polymer, R D in the remaining structural units is a group containing only one polymerizable carbon-carbon double bond.
By designing the polymer in this way, it becomes easier to obtain better developability while increasing the sensitivity.
 「Rが2以上の重合性炭素-炭素二重結合を含む基である構造単位」の具体的態様については、上述のとおりである(一般式(1)において、Rが一般式(1b)または(1c)で表される基である場合など)。 Specific embodiments of “a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds” are as described above (in the general formula (1), R D is the general formula (1b). ) Or (1c) and the like).
 「Rが1のみの重合性炭素-炭素二重結合を含む基である構造単位」において、重合性二重結合は、好ましくは、Rの末端に存在する。また、Rは、一態様として、(メタ)アクリロイル基を1つ含む。感度の一層の向上の観点では、(メタ)アクリロイル基はアクリロイル基であることが好ましい。より具体的には、Rは、以下一般式(2a)で表される基であることができる。 In the “structural unit in which R D is a group containing a polymerizable carbon-carbon double bond having only one”, the polymerizable double bond is preferably present at the end of R D. Moreover, RD contains one (meth)acryloyl group as one aspect|mode. From the viewpoint of further improving the sensitivity, the (meth)acryloyl group is preferably an acryloyl group. More specifically, R D can be a group represented by general formula (2a) below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(2a)において、X10は2価の有機基であり、Rは水素原子またはメチル基である。
 X10の総炭素数は、好ましくは1~30、より好ましくは1~20、さらに好ましくは1~10である。
In formula (2a), X 10 is a divalent organic group, and R is a hydrogen atom or a methyl group.
The total carbon number of X 10 is preferably 1 to 30, more preferably 1 to 20, and further preferably 1 to 10.
 X10の2価の有機基としては、例えばアルキレン基が好ましい。このアルキレン基中の一部の-CH-はエーテル基(-O-)となっていてもよい。アルキレン基は、直鎖状でも分枝状でもよいが、直鎖状であることがより好ましい。 As the divalent organic group for X 10 , for example, an alkylene group is preferable. A part of —CH 2 — in this alkylene group may be an ether group (—O—). The alkylene group may be linear or branched, but is preferably linear.
 X10の2価の有機基としてより好ましくは、総炭素数3~6の直鎖状アルキレン基である。X10の炭素数(X10の「長さ」に相当)を適切に選択することで、一般式(2a)で表される基が硬化反応に一層関与しやすくなる。そのため、感度を一層高めることができる。 The divalent organic group for X 10 is more preferably a linear alkylene group having 3 to 6 carbon atoms in total. X 10 carbon atoms (corresponding to the "length" of X 10) to the appropriate selection, comprising a group represented by the general formula (2a) is likely even to participate in the curing reaction. Therefore, the sensitivity can be further increased.
 X10の2価の有機基(例えばアルキレン基)は、任意の置換基で置換されていてもよい。置換基としては、アルキル基、アリール基、アルコキシ基、アリールオキシ基などを挙げることができる。
 また、X10の2価の有機基は、アルキレン基以外の任意の基であってよい。例えば、アルキレン基、シクロアルキレン基、アリーレン基、エーテル基、カルボニル基、カルボキシ基等から選ばれる1種又は2種以上の基を連結して構成される2価の基であってもよい。
The divalent organic group of X 10 (for example, an alkylene group) may be substituted with any substituent. Examples of the substituent include an alkyl group, an aryl group, an alkoxy group, an aryloxy group and the like.
Further, the divalent organic group of X 10 may be any group other than an alkylene group. For example, it may be a divalent group constituted by linking one or more groups selected from an alkylene group, a cycloalkylene group, an arylene group, an ether group, a carbonyl group, a carboxy group and the like.
 ポリマーの全構造単位中の第一構造単位の比率は、好ましくは10~40mol%、より好ましくは15~35mol%である。
 また、ポリマーが、第一構造単位として、Rが2以上の重合性炭素-炭素二重結合を含む基である構造単位と、Rが1のみの重合性炭素-炭素二重結合を含む基である構造単位の両方を含む場合、前者:後者のモル比は、好ましくは5:95~50:50、より好ましくは10:90~40:60である。この比を適切に調整することで、感度と現像性とを一層高度に両立させやすい。
 ここで、前者:後者のモル比は、例えば、以下のように求めることができる。
 ポリマー中の、前者の量をX(mol/g)、後者の量をX(mol/g)、カルボキシル基の量をC(mol/g)、重合性炭素-炭素二重結合の量をD(mol/g)とする。また、前者は、n個の重合性炭素-炭素二重結合を含むとする。
 前者と後者は、ともに、カルボキシル基を1つ有する。よって、X+X=Cと書ける(ポリマーが、カルボキシル基を含む構造単位を他に含まないと仮定)。
 また、重合性炭素-炭素二重結合の量について、n・X+X=Dと書ける(ポリマーが、重合性二重結合を含む構造単位を他に含まないと仮定)。
 CやDは、NMR測定で得られるピーク面積などから知ることができる。また、nは原料の化学構造により定まる。よって、これら2つの数式を連立方程式として未知数XおよびXについて解くことを通じて、前者:後者のモル比を求めることができる。
 さらに、XとXの和、原料ポリマー(後述)中に含まれる各構造単位のモル数(mol/g)、原料ポリマー中に含まれる各構造単位の素となるモノマーの分子量などから、ポリマーの全構造単位中の第一構造単位(複数の第一構造単位がある場合は、合計)の比率を求めることができる。
The proportion of the first structural unit in all the structural units of the polymer is preferably 10 to 40 mol%, more preferably 15 to 35 mol%.
The polymer is, as a first structural unit, R D is 2 or more polymerizable carbon - carbon double bond - a structural unit is a group containing a carbon double bond polymerizable carbon of R D is only one When both structural units that are groups are included, the molar ratio of the former to the latter is preferably 5:95 to 50:50, more preferably 10:90 to 40:60. By appropriately adjusting this ratio, it is easy to achieve both high sensitivity and developability.
Here, the molar ratio of the former to the latter can be determined as follows, for example.
In the polymer, the former amount is X 1 (mol/g), the latter amount is X 2 (mol/g), the amount of carboxyl group is C (mol/g), and the amount of polymerizable carbon-carbon double bond. Is D (mol/g). The former is assumed to contain n polymerizable carbon-carbon double bonds.
Both the former and the latter have one carboxyl group. Therefore, it can be written that X 1 +X 2 =C (assuming that the polymer contains no other structural unit containing a carboxyl group).
Further, regarding the amount of the polymerizable carbon-carbon double bond, it can be written that n·X 1 +X 2 =D (assuming that the polymer contains no other structural unit containing the polymerizable double bond).
C and D can be known from the peak area obtained by NMR measurement. Further, n is determined by the chemical structure of the raw material. Therefore, by solving these two mathematical expressions as simultaneous equations for unknowns X 1 and X 2 , the former:latter molar ratio can be obtained.
Furthermore, from the sum of X 1 and X 2, the number of moles (mol/g) of each structural unit contained in the raw material polymer (described later), and the molecular weight of a monomer that is a base of each structural unit contained in the raw material polymer, The ratio of the first structural unit (or the total of the plural first structural units, if any) in all the structural units of the polymer can be determined.
・第二構造単位
 ポリマーは、さらに、以下式(MA)で表される第二構造単位を含むことが好ましい。
 第二構造単位は、アルカリ現像液により開環しうる。開環すると2つのカルボキシル基が生じるため、現像性の一層の向上が図られると考えられる。
-Second structural unit The polymer preferably further contains a second structural unit represented by the following formula (MA).
The second structural unit can be opened by an alkaline developer. It is considered that when the ring is opened, two carboxyl groups are generated, and therefore the developability is further improved.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 ポリマーが式(MA)で表される構造単位を含む場合、ポリマーの全構造単位中の、式(MA)で表される構造単位の割合は、好ましくは1~25mol%、より好ましくは3~20mol%である。 When the polymer includes the structural unit represented by the formula (MA), the proportion of the structural unit represented by the formula (MA) in all the structural units of the polymer is preferably 1 to 25 mol%, more preferably 3 to It is 20 mol%.
・溶解性調整構造単位
 ポリマーは、下記一般式(a2-1)、(a2-2)または(a2-3)により示される構造単位のうち、1または2以上を含んでもよい。ポリマーにこのような構造単位を含めることで、現像性への溶解性の調整、有機溶剤に対する溶解性の調整などが可能である。
 一般式(a2-1)および一般式(a2-2)中、R14、R15およびR16は、それぞれ独立して炭素数1~30の有機基である。
-Solubility adjusting structural unit The polymer may include one or more of the structural units represented by the following general formula (a2-1), (a2-2) or (a2-3). By including such a structural unit in the polymer, it is possible to adjust the solubility in developing property and the solubility in organic solvent.
In formulas (a2-1) and (a2-2), R 14 , R 15 and R 16 are each independently an organic group having 1 to 30 carbon atoms.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 R14、R15およびR16を構成する炭素数1~30の有機基は、その構造中にO、N、S、P、Siのいずれか1以上を含んでいてもよい。また、R14、R15およびR16を構成する有機基は、酸性官能基を含まないものとすることができる。これにより、酸価の制御を容易とすることができる。 The organic group having 1 to 30 carbon atoms which constitutes R 14 , R 15 and R 16 may include any one or more of O, N, S, P and Si in its structure. Further, the organic groups forming R 14 , R 15 and R 16 may be those containing no acidic functional group. This makes it easy to control the acid value.
 R14、R15およびR16を構成する有機基としては、たとえばアルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基、およびヘテロ環基が挙げられる。
 アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。
 アルケニル基としては、例えば、アリル基、ペンテニル基、ビニル基等が挙げられる。
 アルキニル基としては、例えば、エチニル基等が挙げられる。
 アルキリデン基としては、例えば、メチリデン基、エチリデン基等が挙げられる。
 アリール基としては、例えば、フェニル基、ナフチル基、アントラセニル基等が挙げられる。
 アラルキル基としては、例えば、ベンジル基、フェネチル基等が挙げられる。
 アルカリル基としては、例えば、トリル基、キシリル基等が挙げられる。
 シクロアルキル基としては、例えば、アダマンチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。
 ヘテロ環基としては、例えば、エポキシ基、オキセタニル基等が挙げられる。
Examples of the organic group constituting R 14 , R 15 and R 16 include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group, an alkaryl group, a cycloalkyl group and a heterocyclic group.
Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group and a heptyl group. , Octyl group, nonyl group, decyl group and the like.
Examples of the alkenyl group include an allyl group, a pentenyl group, a vinyl group and the like.
Examples of the alkynyl group include an ethynyl group and the like.
Examples of the alkylidene group include a methylidene group and an ethylidene group.
Examples of the aryl group include a phenyl group, a naphthyl group, an anthracenyl group and the like.
Examples of the aralkyl group include a benzyl group and a phenethyl group.
Examples of the alkaryl group include a tolyl group and a xylyl group.
Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group and the like.
Examples of the heterocyclic group include an epoxy group and an oxetanyl group.
 これらアルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基、およびヘテロ環基は、1以上の水素原子が、ハロゲン原子により置換されていてもよい。ハロゲン原子としては、フッ素、塩素、臭素、およびヨウ素が挙げられる。なかでもアルキル基の1以上の水素原子が、ハロゲン原子に置換されたハロアルキル基が好ましい。 In these alkyl group, alkenyl group, alkynyl group, alkylidene group, aryl group, aralkyl group, alkaryl group, cycloalkyl group, and heterocyclic group, one or more hydrogen atoms may be substituted with a halogen atom. Halogen atoms include fluorine, chlorine, bromine, and iodine. Of these, a haloalkyl group in which one or more hydrogen atoms of the alkyl group are substituted with a halogen atom is preferable.
・環状炭化水素骨格を有する構造単位
 ポリマーは、好ましくは、環状炭化水素骨格を有する構造単位を含む。環状炭化水素骨格の剛直な構造により、例えば、感光性樹脂組成物を硬化させたときの硬化膜の耐熱性、機械物性などを高めることができる。
-Structural unit having a cyclic hydrocarbon skeleton The polymer preferably contains a structural unit having a cyclic hydrocarbon skeleton. Due to the rigid structure of the cyclic hydrocarbon skeleton, for example, the heat resistance and mechanical properties of the cured film when the photosensitive resin composition is cured can be improved.
 環状炭化水素骨格を有する構造単位は、例えば、以下モノマーに由来するものである。 A structural unit having a cyclic hydrocarbon skeleton, for example, is derived from the following monomers.
 環状オレフィンモノマー。具体的には、ノルボルネン、ノルボルナジエン、ビシクロ[2.2.1]-ヘプト-2-エン(慣用名:2-ノルボルネン)、5-メチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-ヘキシル-2-ノルボルネン、5-デシル-2-ノルボルネン、5-アリル-2-ノルボルネン、5-(2-プロペニル)-2-ノルボルネン、5-(1-メチル-4-ペンテニル)-2-ノルボルネン、5-エチリデン-2ノルボルネン、5-ベンジル-2-ノルボルネン、5-フェネチル-2-ノルボルネン等の、ノルボルネン骨格またはノルボルナジエン骨格を有するモノマー。 Cycloolefin monomer. Specifically, norbornene, norbornadiene, bicyclo[2.2.1]-hept-2-ene (common name: 2-norbornene), 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5- Butyl-2-norbornene, 5-hexyl-2-norbornene, 5-decyl-2-norbornene, 5-allyl-2-norbornene, 5-(2-propenyl)-2-norbornene, 5-(1-methyl-4) -Pentenyl)-2-norbornene, 5-ethylidene-2norbornene, 5-benzyl-2-norbornene, 5-phenethyl-2-norbornene, and other monomers having a norbornene skeleton or norbornadiene skeleton.
 インデン、2-メチルインデン、3-メチルインデン、アセナフチレン等の、インデン骨格またはアセナフチレン骨格を有するモノマー。
 1,5,9-シクロドデカトリエン、シス-トランス-トランス-1,5,9-シクロドデカトリエン、トランス-トランス-トランス-1,5,9-シクロドデカトリエン、トランス-シス-シス-1,5,9-シクロドデカトリエン、シス-シス-シス-1,5,9-シクロドデカトリエン等の、トリエン構造を有するモノマー。
 スチレン、ビニルトルエン、ヒドロキシスチレン、アセトキシスチレン、α-メチルスチレン等のスチレン骨格を有するモノマー。
A monomer having an indene skeleton or an acenaphthylene skeleton, such as indene, 2-methylindene, 3-methylindene, and acenaphthylene.
1,5,9-cyclododecatriene, cis-trans-trans-1,5,9-cyclododecatriene, trans-trans-trans-1,5,9-cyclododecatriene, trans-cis-cis-1, Monomers having a triene structure, such as 5,9-cyclododecatriene and cis-cis-cis-1,5,9-cyclododecatriene.
Monomers having a styrene skeleton such as styrene, vinyltoluene, hydroxystyrene, acetoxystyrene, α-methylstyrene.
 N-シクロヘキシルマレイミド、N-シクロペンチルマレイミド、N-ノルボルニルマレイミド、N-シクロヘキシルメチルマレイミド、N-シクロペンチルメチルマレイミド等のN-シクロアルキルマレイミド。
 N-フェニルマレイミド、N-クロロフェニルマレイミド、N-メチルフェニルマレイミド、N-ナフチルマレイミド、N-ヒドロキシフェニルマレイミド、N-メトキシフェニルマレイミド、N-カルボキシフェニルマレイミド、N-ニトロフェニルマレイミド等のN-アリールマレイミド。
N-cycloalkylmaleimides such as N-cyclohexylmaleimide, N-cyclopentylmaleimide, N-norbornylmaleimide, N-cyclohexylmethylmaleimide and N-cyclopentylmethylmaleimide.
N-arylmaleimides such as N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-naphthylmaleimide, N-hydroxyphenylmaleimide, N-methoxyphenylmaleimide, N-carboxyphenylmaleimide, N-nitrophenylmaleimide ..
 環状炭化水素骨格を有する構造単位としては、環状オレフィンモノマーに由来する構造単位が好ましく、ノルボルネン骨格またはノルボルナジエン骨格を有するモノマーに由来する構造単位がより好ましい。より具体的には、環状炭化水素骨格を有する構造単位は、以下一般式(NB)で表されるものであることが好ましい。 The structural unit having a cyclic hydrocarbon skeleton is preferably a structural unit derived from a cyclic olefin monomer, and more preferably a structural unit derived from a monomer having a norbornene skeleton or a norbornadiene skeleton. More specifically, the structural unit having a cyclic hydrocarbon skeleton is preferably represented by the following general formula (NB).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(NB)中、
 R、R、RおよびRは、それぞれ独立して、水素原子または炭素数1~30の有機基であり、
 aは0、1または2である。
In the general formula (NB),
R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or an organic group having 1 to 30 carbon atoms,
a 1 is 0, 1 or 2.
 一般式(NB)における、R、R、RおよびRの炭素数1~30の有機基としては、アルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基、アルコキシ基、ヘテロ環基、カルボキシル基などを挙げることができる。 Examples of the organic group having 1 to 30 carbon atoms represented by R 1 , R 2 , R 3 and R 4 in the general formula (NB) include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group and an alkaryl group. , A cycloalkyl group, an alkoxy group, a heterocyclic group, a carboxyl group and the like.
 アルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などが挙げられる。
 アルケニル基としては、例えばアリル基、ペンテニル基、ビニル基などが挙げられる。
 アルキニル基としては、例えばエチニル基などが挙げられる。
 アルキリデン基としては、例えばメチリデン基、エチリデン基などが挙げられる。
 アリール基としては、例えばトリル基、キシリル基、フェニル基、ナフチル基、アントラセニル基が挙げられる。
 アラルキル基としては、例えばベンジル基、フェネチル基などが挙げられる。
 アルカリル基としては、例えばトリル基、キシリル基などが挙げられる。
 シクロアルキル基としては、例えばアダマンチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基などが挙げられる。
 アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、イソブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基などが挙げられる。
 ヘテロ環基としては、例えばエポキシ基、オキセタニル基などが挙げられる。
Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, Examples thereof include an octyl group, a nonyl group and a decyl group.
Examples of the alkenyl group include allyl group, pentenyl group, vinyl group and the like.
Examples of the alkynyl group include ethynyl group and the like.
Examples of the alkylidene group include a methylidene group and an ethylidene group.
Examples of the aryl group include a tolyl group, a xylyl group, a phenyl group, a naphthyl group, and an anthracenyl group.
Examples of the aralkyl group include a benzyl group and a phenethyl group.
Examples of the alkaryl group include a tolyl group and a xylyl group.
Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group and a cyclooctyl group.
Examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, isobutoxy group, tert-butoxy group, n-pentyloxy group, neopentyloxy group. , N-hexyloxy group and the like.
Examples of the heterocyclic group include an epoxy group and an oxetanyl group.
 一般式(NB)におけるR、R、RおよびRとしては、水素またはアルキル基が好ましく、水素がより好ましい。
 R、R、RおよびRの炭素数1~30の有機基中の水素原子は、任意の原子団により置換されていてもよい。例えば、フッ素原子、ヒドロキシル基、カルボキシル基などで置換されていてもよい。より具体的には、R、R、RおよびRの炭素数1~30の有機基として、フッ化アルキル基などを選択してもよい。
 一般式(NB)において、aは好ましくは0または1、より好ましくは0である。
As R 1 , R 2 , R 3 and R 4 in the general formula (NB), hydrogen or an alkyl group is preferable, and hydrogen is more preferable.
The hydrogen atom in the organic group having 1 to 30 carbon atoms of R 1 , R 2 , R 3 and R 4 may be substituted with any atomic group. For example, it may be substituted with a fluorine atom, a hydroxyl group, a carboxyl group or the like. More specifically, a fluorinated alkyl group or the like may be selected as the organic group having 1 to 30 carbon atoms for R 1 , R 2 , R 3 and R 4 .
In general formula (NB), a 1 is preferably 0 or 1, and more preferably 0.
 ポリマーが環状炭化水素骨格を有する構造単位を含む場合、その量は、ポリマーの全構造単位中、好ましくは10~90mol%、より好ましくは30~70mol%、さらに好ましくは40~60mol%である。この割合を適切に調整することで、感度と現像性を両立させつつ、追加の効果(例えば硬化膜としたときの耐熱性向上や機械物性の向上)を得やすい。
 ちなみに、総合的な性能やコスト等の観点から、ポリマーは、必須構造単位としての第一構造単位、ならびに、任意の構造単位としての第二構造単位および環状炭化水素骨格を有する構造単位とは異なる「その他の構造単位」を含まないか、または含むとしても少量であることが好ましい。具体的には、ポリマー中の「その他の構造単位」の比率は、好ましくは0~20mol%、より好ましくは0~10mol%である。
When the polymer contains structural units having a cyclic hydrocarbon skeleton, the amount thereof is preferably 10 to 90 mol%, more preferably 30 to 70 mol%, and further preferably 40 to 60 mol% in the total structural units of the polymer. By appropriately adjusting this ratio, it is easy to obtain additional effects (for example, improvement of heat resistance and improvement of mechanical properties when forming a cured film) while achieving both sensitivity and developability.
Incidentally, from the viewpoint of overall performance and cost, the polymer is different from the first structural unit as an essential structural unit, and the second structural unit as an optional structural unit and a structural unit having a cyclic hydrocarbon skeleton. It is preferable that the "other structural unit" is not included, or even if it is included in a small amount. Specifically, the ratio of "other structural units" in the polymer is preferably 0 to 20 mol%, more preferably 0 to 10 mol%.
 ポリマーの重量平均分子量は、好ましくは6,000~25,000、より好ましくは7,000~20,000である。重量平均分子量を適切に調整することで、アルカリ現像液に対する溶解性や、有機溶剤に対する溶解性などを適切に調整することができる。
 ポリマーの分散度(重量平均分子量Mw/数平均分子量Mn)は、好ましくは1.0~5.0、より好ましくは1.0~4.0、さらに好ましくは1.0~3.0である。分散度を適切に調整することで、ポリマーの物性を均質にすることができ、好ましい。
 これらの値は、ポリスチレンを標準物質として用いたゲルパーミエーションクロマトグラフィー(GPC)測定により求めることができる。
The weight average molecular weight of the polymer is preferably 6,000 to 25,000, more preferably 7,000 to 20,000. By appropriately adjusting the weight average molecular weight, the solubility in an alkali developing solution, the solubility in an organic solvent and the like can be appropriately adjusted.
The dispersity of the polymer (weight average molecular weight Mw/number average molecular weight Mn) is preferably 1.0 to 5.0, more preferably 1.0 to 4.0, and further preferably 1.0 to 3.0. .. By properly adjusting the dispersity, the physical properties of the polymer can be made uniform, which is preferable.
These values can be determined by gel permeation chromatography (GPC) measurement using polystyrene as a standard substance.
 ポリマーは、任意の方法により製造(合成)してよい。例えば、
・少なくとも前述の式(MA)で表される構造単位を含む原料ポリマーを準備する準備工程と、
・塩基性触媒の存在下、その原料ポリマーと、ヒドロキシ基および重合性炭素-炭素二重結合を有する化合物とを反応させる反応工程と
により、ポリマーを製造することができる。
The polymer may be produced (synthesized) by any method. For example,
A preparatory step of preparing a raw material polymer containing at least the structural unit represented by the above formula (MA);
The polymer can be produced by the reaction step of reacting the raw material polymer with a compound having a hydroxy group and a polymerizable carbon-carbon double bond in the presence of a basic catalyst.
 以下、上述の準備工程および反応工程によりポリマーを製造(合成)する方法についてより具体的に説明する。説明は、一般式(1)で表される構造単位と、一般式(NB)で表される構造単位とを含むポリマーの合成を例として行うが、これによりポリマー製造方法の一般性が失われるものではない。例えば、一般式(1)で表される構造単位と、一般式(NB)ではない構造単位(共重合単位)とを含むポリマーも、以下説明と類似の手順で合成することができる。 The method for producing (synthesizing) a polymer by the above-mentioned preparation step and reaction step will be described more specifically below. The description will be given by exemplifying the synthesis of a polymer containing the structural unit represented by the general formula (1) and the structural unit represented by the general formula (NB), but this loses the generality of the polymer production method. Not a thing. For example, a polymer containing a structural unit represented by the general formula (1) and a structural unit (copolymerization unit) other than the general formula (NB) can be synthesized by a procedure similar to the following description.
・準備工程
 原料ポリマーは、例えば、下記一般式(NB-m)で表されるモノマーと、無水マレイン酸とを重合(付加重合)することで得ることができる。
 一般式(NB-m)のR、R、RおよびRならびにaの定義は、一般式(NB)のものと同様である。好ましい態様についても同様である。
Preparation Step The raw material polymer can be obtained, for example, by polymerizing (addition polymerization) a monomer represented by the following general formula (NB-m) and maleic anhydride.
The definitions of R 1 , R 2 , R 3 and R 4 and a 1 in the general formula (NB-m) are the same as those in the general formula (NB). The same applies to the preferred embodiment.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式(NB-m)で表されるモノマーとしては、例えば、ビシクロ[2.2.1]-ヘプト-2-エン(慣用名:2-ノルボルネン)、5-メチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-ヘキシル-2-ノルボルネン、5-デシル-2-ノルボルネン、5-アリル-2-ノルボルネン、5-(2-プロペニル)-2-ノルボルネン、5-(1-メチル-4-ペンテニル)-2-ノルボルネン、5-エチニル-2-ノルボルネン、5-ベンジル-2-ノルボルネン、5-フェネチル-2-ノルボルネン、2-アセチル-5-ノルボルネン、5-ノルボルネン-2-カルボン酸メチル、5-ノルボルネン-2,3-ジカルボン酸無水物、ノルボルナジエンなどが挙げられる。
 重合の際、一般式(NB-m)で表されるモノマーは、1種のみ用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the monomer represented by the general formula (NB-m) include bicyclo[2.2.1]-hept-2-ene (common name: 2-norbornene), 5-methyl-2-norbornene, 5- Ethyl-2-norbornene, 5-butyl-2-norbornene, 5-hexyl-2-norbornene, 5-decyl-2-norbornene, 5-allyl-2-norbornene, 5-(2-propenyl)-2-norbornene, 5-(1-methyl-4-pentenyl)-2-norbornene, 5-ethynyl-2-norbornene, 5-benzyl-2-norbornene, 5-phenethyl-2-norbornene, 2-acetyl-5-norbornene, 5- Examples thereof include methyl norbornene-2-carboxylate, 5-norbornene-2,3-dicarboxylic acid anhydride and norbornadiene.
In the polymerization, the monomer represented by the general formula (NB-m) may be used alone or in combination of two or more kinds.
 重合の方法については限定されないが、ラジカル重合開始剤を用いたラジカル重合が好ましい。
 重合開始剤としては、例えば、アゾ化合物、有機過酸化物などを使用できる。
 アゾ化合物として具体的には、アゾビスイソブチロニトリル(AIBN)、ジメチル-2,2'-アゾビス(2-メチルプロピオネート)、1,1'-アゾビス(シクロヘキサンカルボニトリル)(ABCN)などを挙げることができる。
 有機過酸化物としては、例えば、過酸化水素、ジ-tert-ブチルパーオキサイド(DTBP)、過酸化ベンゾイル(ベンゾイルパーオキサイド,BPO)および、メチルエチルケトンパーオキサイド(MEKP)などを挙げることができる。
 重合開始剤については、1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。
The method of polymerization is not limited, but radical polymerization using a radical polymerization initiator is preferred.
As the polymerization initiator, for example, an azo compound, an organic peroxide or the like can be used.
Specific examples of the azo compound include azobisisobutyronitrile (AIBN), dimethyl-2,2′-azobis(2-methylpropionate), 1,1′-azobis(cyclohexanecarbonitrile) (ABCN) and the like. Can be mentioned.
Examples of the organic peroxide include hydrogen peroxide, di-tert-butyl peroxide (DTBP), benzoyl peroxide (benzoyl peroxide, BPO), and methyl ethyl ketone peroxide (MEKP).
About a polymerization initiator, you may use only 1 type and may use it in combination of 2 or more type.
 重合溶媒としては、例えば、ジエチルエーテル、テトラヒドロフラン、トルエン、メチルエチルケトン等の有機溶剤を用いることができる。重合溶媒は単独溶剤でも混合溶剤でもよい。 As the polymerization solvent, for example, organic solvents such as diethyl ether, tetrahydrofuran, toluene, methyl ethyl ketone and the like can be used. The polymerization solvent may be a single solvent or a mixed solvent.
 一般式(NB-m)で表されるモノマー、無水マレイン酸および重合開始剤を溶媒に溶解させて反応容器に仕込み、その後、加熱することで、付加重合を進行させる。加熱温度は例えば50~80℃であり、加熱時間は例えば5~20時間である。
 反応容器に仕込む際の、一般式(NB-m)で表されるモノマーと、無水マレイン酸とのモル比は、0.5:1~1:0.5であることが好ましい。分子構造制御の観点から、モル比は1:1であることが好ましい。
 以上のような工程により、「原料ポリマー」を得ることができる。
 なお、原料ポリマーは、ランダム共重合体、交互共重合体、ブロック共重合体、周期共重合体などのいずれであってもよい。典型的にはランダム共重合体または交互共重合体である(一般に、無水マレイン酸は交互共重合性が強いモノマーとして知られている)。
The monomer represented by the general formula (NB-m), maleic anhydride and a polymerization initiator are dissolved in a solvent and charged in a reaction vessel, and then heated to promote addition polymerization. The heating temperature is, for example, 50 to 80° C., and the heating time is, for example, 5 to 20 hours.
The molar ratio of the monomer represented by the general formula (NB-m) to maleic anhydride when charged in a reaction vessel is preferably 0.5:1 to 1:0.5. From the viewpoint of controlling the molecular structure, the molar ratio is preferably 1:1.
The "raw material polymer" can be obtained by the steps described above.
The raw material polymer may be any of a random copolymer, an alternating copolymer, a block copolymer, a periodic copolymer and the like. It is typically a random or alternating copolymer (maleic anhydride is generally known as a monomer with strong alternating copolymerization).
 原料ポリマーの合成後に、未反応モノマー、オリゴマー、残存する重合開始剤などの低分子量成分を除去する工程を行ってもよい。
 具体的には、合成された原料ポリマーと低分子量成分とが含まれた有機層を濃縮し、その後、テトラヒドロフラン(THF)などの有機溶媒と混合して溶液を得る。そして、この溶液を、メタノールなどの貧溶媒と混合し、モノマーを沈殿させる。この沈殿物を濾取して乾燥させることで、原料ポリマーの純度を上げることができる。
After synthesizing the raw material polymer, a step of removing low molecular weight components such as unreacted monomers, oligomers, and remaining polymerization initiator may be performed.
Specifically, the organic layer containing the synthesized raw material polymer and the low molecular weight component is concentrated and then mixed with an organic solvent such as tetrahydrofuran (THF) to obtain a solution. Then, this solution is mixed with a poor solvent such as methanol to precipitate the monomer. The purity of the raw material polymer can be increased by filtering this precipitate and drying it.
・反応工程
 塩基性触媒の存在下、準備工程で得られた原料ポリマーと、ヒドロキシ基および重合性炭素-炭素二重結合を有する化合物とを反応させることで、原料ポリマー中に含まれる式(MA)の構造単位が開環する。これにより、一般式(1)の構造単位が形成される。
-Reaction Step By reacting the raw material polymer obtained in the preparatory step with a compound having a hydroxy group and a polymerizable carbon-carbon double bond in the presence of a basic catalyst, the formula (MA ) The structural unit is opened. Thereby, the structural unit represented by the general formula (1) is formed.
 より具体的には、まず、原料ポリマーを適当な有機溶剤に溶解させたポリマー溶液を準備する。
 ここで使用可能な有機溶媒としては、メチルエチルケトン(MEK)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)、テトラヒドロフラン(THF)などの単独溶剤または混合溶剤が挙げられる。もちろん、溶剤はこれらのみには限定されず、有機化合物や高分子の合成で用いられる種々の有機溶剤を用いることができる。
More specifically, first, a polymer solution in which a raw material polymer is dissolved in an appropriate organic solvent is prepared.
Examples of organic solvents that can be used here include single solvents such as methyl ethyl ketone (MEK), propylene glycol monomethyl ether acetate (PGMEA), dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), and tetrahydrofuran (THF), or mixed solvents. Can be mentioned. Of course, the solvent is not limited to these, and various organic solvents used in the synthesis of organic compounds and polymers can be used.
 次に、このポリマー溶液に、ヒドロキシ基および重合性炭素-炭素二重結合を有する化合物を加える。さらに、塩基性触媒を加える。そして適切に混合して均一な溶液とする。 Next, a compound having a hydroxy group and a polymerizable carbon-carbon double bond is added to this polymer solution. In addition, a basic catalyst is added. Then, they are appropriately mixed to form a uniform solution.
 ヒドロキシ基および重合性炭素-炭素二重結合を有する化合物としては、例えば、1または2以上の(メタ)アクリロイル基と、ヒドロキシ基とを含む化合物を挙げることができる。
 2以上の(メタ)アクリロイル基と、ヒドロキシ基とを含む化合物(多官能化合物)を用いることで、ポリマー中に、一般式(1)においてRが2以上の重合性炭素-炭素二重結合を含む基である構造単位を導入することができる。
 一方、1のみの(メタ)アクリロイル基と、ヒドロキシ基とを含む化合物(単官能化合物)を用いることで、ポリマー中に、一般式(1)においてRが1のみの重合性炭素-炭素二重結合を含む基である構造単位を導入することができる。
 これら多官能化合物と単官能化合物の両方を用いることで、第一構造単位として、Rが2以上の重合性炭素-炭素二重結合を含む基である構造単位と、Rが1のみの重合性炭素-炭素二重結合を含む基である構造単位との両方を、ポリマー中に導入することができる。ただし、立体障害の点で、単官能化合物のほうが多官能化合物よりもポリマーと反応しやすい傾向があるため、反応工程では、単官能化合物を最初から反応系中には仕込まず、「追添」することが好ましい。
Examples of the compound having a hydroxy group and a polymerizable carbon-carbon double bond include a compound containing one or more (meth)acryloyl groups and a hydroxy group.
By using a compound (polyfunctional compound) containing two or more (meth)acryloyl groups and a hydroxy group, a polymerizable carbon-carbon double bond having R D of 2 or more in the general formula (1) is used in the polymer. A structural unit which is a group containing can be introduced.
On the other hand, by using a compound (monofunctional compound) containing a (meth)acryloyl group of only 1 and a hydroxy group, a polymerizable carbon-carbon dicarboxylic acid in which R D is only 1 in the general formula (1) is used in the polymer. A structural unit, which is a group containing a heavy bond, can be introduced.
By using both of these polyfunctional compounds and monofunctional compounds, as a first structure unit, R D is 2 or more polymerizable carbon - a structural unit is a group containing a carbon double bond, R D is only one Both structural units, which are groups containing polymerizable carbon-carbon double bonds, can be introduced into the polymer. However, in terms of steric hindrance, a monofunctional compound tends to react with a polymer more easily than a polyfunctional compound, so in the reaction step, the monofunctional compound is not charged into the reaction system from the beginning, but “addition” is added. Preferably.
 「2以上の(メタ)アクリロイル基と、ヒドロキシ基とを含む化合物」として、具体的には、以下一般式(1b-m)で表される化合物または以下一般式(1c-m)で表される化合物を挙げることができる。
 一般式(1b-m)におけるk、R、X、X'およびXの定義および具体的態様は、一般式(1b)と同様である。
 一般式(1c-m)におけるk、R、X、X、X、X、XおよびXの定義および具体的態様は、一般式(1c)と同様である。
As the "compound containing two or more (meth)acryloyl groups and a hydroxy group", specifically, a compound represented by the following general formula (1b-m) or a compound represented by the following general formula (1c-m) Compounds can be mentioned.
Definitions and specific embodiments of the general formula (1b-m) in k, R, X 1, X 1 ' and X 2 are the same as in the general formula (1b).
The definitions and specific embodiments of k, R, X 1 , X 2 , X 3 , X 4 , X 5 and X 6 in the general formula (1c-m) are the same as those in the general formula (1c).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 2以上の(メタ)アクリロイル基と、ヒドロキシ基とを含む化合物として、好ましく使用可能なものを以下に示す。なお、以下に示される化合物のアクリロイル基の一部または全部を(メタ)アクリロイル基としたもの(またはその逆のもの)なども使用可能である。 As compounds containing two or more (meth)acryloyl groups and a hydroxy group, compounds that can be preferably used are shown below. In addition, it is also possible to use a compound in which some or all of the acryloyl groups of the compounds shown below are (meth)acryloyl groups (or vice versa).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 一方、「1のみの(メタ)アクリロイル基と、ヒドロキシ基とを含む化合物」としては、例えば以下一般式(2a-m)で表される化合物が挙げられる。
 一般式(2a-m)において、X10およびRの定義や具体的態様は一般式(2a)と同様である。
On the other hand, examples of the "compound containing only one (meth)acryloyl group and a hydroxy group" include compounds represented by the following general formula (2a-m).
In general formula (2a-m), the definitions and specific embodiments of X 10 and R are the same as in general formula (2a).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 一般式(2a-m)で表される化合物の具体例としては、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルフタル酸などを挙げることができる。 Specific examples of the compound represented by the general formula (2a-m) include 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 1,4-cyclohexanedimethanol mono (meth)acrylate, and 2 -Hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, 2-(meth)acryloyloxyethyl-2-hydroxyethylphthalic acid, etc. You can
 反応工程の後、有機溶剤で反応溶液を希釈し、かつ/または、塩基性触媒の中和のために酸を加えることで、反応を停止させる。
 以上の工程によりポリマーを得ることができる。
After the reaction step, the reaction is stopped by diluting the reaction solution with an organic solvent and/or adding an acid for neutralizing the basic catalyst.
A polymer can be obtained by the above steps.
 参考までに、反応工程において、ヒドロキシ基および重合性炭素-炭素二重結合を有する化合物の量を適切に調整すること等により、原料ポリマー中の無水マレイン酸構造が全ては開環せず、最終的なポリマー中に式(MA)の構造が含まれることとなる。
 また、反応工程において、原料ポリマー中の無水マレイン酸構造に対し、水、アルコール、その他適当な物質を反応させることで、一般式(a2-1)、(a2-2)または(a2-3)により示される構造単位をポリマー中に導入することができる。
For reference, in the reaction step, by appropriately adjusting the amount of the compound having a hydroxy group and a polymerizable carbon-carbon double bond, the maleic anhydride structure in the raw material polymer is not all ring-opened, The structure of formula (MA) will be contained in the conventional polymer.
In the reaction step, the maleic anhydride structure in the raw material polymer is reacted with water, alcohol, or another appropriate substance to give a compound represented by the general formula (a2-1), (a2-2) or (a2-3). The structural unit represented by can be introduced into the polymer.
 所望のポリマー以外の不要な成分の除去などのため、更に以下の工程を適宜行うことが好ましい。  In order to remove unnecessary components other than the desired polymer, it is preferable to perform the following steps as appropriate.
 まず、上記で、有機溶剤で希釈し、また、酸(例えばギ酸など)を加えた反応溶液を、分液漏斗で少なくとも3分間激しく攪拌する。これを30分以上静止して、有機相と水相に分け、水相を除去する。このようにしてポリマーの有機溶液を得る。 First, the reaction solution diluted with an organic solvent and added with an acid (for example, formic acid) is vigorously stirred for at least 3 minutes with a separating funnel. The mixture is allowed to stand for 30 minutes or longer to separate an organic phase and an aqueous phase, and the aqueous phase is removed. In this way an organic solution of the polymer is obtained.
 得られたポリマーの有機溶液に、過剰量のトルエンを加えてポリマーを再沈殿させる。また、再沈殿により得られたポリマー粉末をさらに数回トルエンで洗浄する。
 さらに、ギ酸や塩基性触媒の除去のため、得られたポリマー粉末を、イオン交換水で洗浄する操作を数回(3回程度)繰り返す。
 イオン交換水で洗浄後のポリマー粉末を、例えば30~60℃で16時間以上乾燥させることで、高純度のポリマーを得ることができる。
An excessive amount of toluene is added to the obtained organic solution of the polymer to reprecipitate the polymer. Further, the polymer powder obtained by reprecipitation is washed several times with toluene.
Furthermore, in order to remove the formic acid and the basic catalyst, the operation of washing the obtained polymer powder with ion-exchanged water is repeated several times (about three times).
A polymer of high purity can be obtained by drying the polymer powder after washing with ion-exchanged water, for example, at 30 to 60° C. for 16 hours or more.
(光重合開始剤)
 本実施形態の感光性樹脂組成物は、好ましくは、光重合開始剤を含む。
 光照射により発生する成分が、ポリマーの一般式(1)の構造単位に含まれる重合性二重結合を反応させるものである限り、光重合開始剤としては任意のものを用いることができる。光重合開始剤は、例えば、光ラジカル重合開始剤、光カチオン重合開始剤、光アニオン重合開始剤などでありうる。
 なお、光重合開始剤は、典型的には紫外光、より具体的はg線、i線などの照射により活性な化学種を発生する。
(Photopolymerization initiator)
The photosensitive resin composition of the present embodiment preferably contains a photopolymerization initiator.
Any photopolymerization initiator can be used as long as the component generated by light irradiation reacts with the polymerizable double bond contained in the structural unit of the general formula (1) of the polymer. The photopolymerization initiator can be, for example, a photoradical polymerization initiator, a photocationic polymerization initiator, a photoanionic polymerization initiator, or the like.
The photopolymerization initiator typically generates active chemical species upon irradiation with ultraviolet light, more specifically g-line or i-line.
 一層の高感度化等の観点から、光重合開始剤は、好ましくは、光ラジカル重合開始剤である。
 光ラジカル重合開始剤としては特に限定されず、公知のものを適宜用いることができる。例えば、以下のものを挙げることができる。
From the viewpoint of further increasing the sensitivity, the photopolymerization initiator is preferably a photoradical polymerization initiator.
The photoradical polymerization initiator is not particularly limited, and known ones can be appropriately used. For example, the following can be mentioned.
 2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-〔4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル〕フェニル}-2-メチルプロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ジメチルアミノ-2-〔(4-メチルフェニル)メチル〕-1-〔4-(4-モルホリニル)フェニル〕-1-ブタノン等のアルキルフェノン系化合物。 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2 -Hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1-{4-[4-(2-hydroxy-2-methylpropionyl)benzyl]phenyl}- 2-Methylpropan-1-one, 2-Methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)- Alkylphenone compounds such as butanone-1,2-dimethylamino-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone.
 ベンゾフェノン、4,4'-ビス(ジメチルアミノ)ベンゾフェノン、2-カルボキシベンゾフェノン等のベンゾフェノン系化合物。
 ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテ等のベンゾイン系化合物。
 チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン系化合物。
Benzophenone compounds such as benzophenone, 4,4′-bis(dimethylamino)benzophenone and 2-carboxybenzophenone.
Benzoin compounds such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutylate.
Thioxanthone compounds such as thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone and 2,4-diethylthioxanthone.
 2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシカルボキニルナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン等のハロメチル化トリアジン系化合物。
 2-トリクロロメチル-5-(2'-ベンゾフリル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-〔β-(2'-ベンゾフリル)ビニル〕-1,3,4-オキサジアゾール、4-オキサジアゾール、2-トリクロロメチル-5-フリル-1,3,4-オキサジアゾール等のハロメチル化オキサジアゾール系化合物。
2-(4-methoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-methoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4 Halomethylated triazine compounds such as -ethoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine and 2-(4-ethoxycarboquinylnaphthyl)-4,6-bis(trichloromethyl)-s-triazine ..
2-Trichloromethyl-5-(2'-benzofuryl)-1,3,4-oxadiazole, 2-trichloromethyl-5-[β-(2'-benzofuryl)vinyl]-1,3,4-oxa Halomethylated oxadiazole compounds such as diazole, 4-oxadiazole, 2-trichloromethyl-5-furyl-1,3,4-oxadiazole.
 2,2'-ビス(2-クロロフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール、2,2'-ビス(2,4-ジクロロフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール、2,2'-ビス(2,4,6-トリクロロフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール等のビイミダゾール系化合物。
 1,2-オクタンジオン,1-〔4-(フェニルチオ)-2-(O-ベンゾイルオキシム)〕、O-アセチル-1-[6-(2-メチルベンゾイル)-9-エチル-9H-カルバゾール-3-イル]エタノンオキシム等のオキシムエステル系化合物。
 ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等のチタノセン系化合物。
 p-ジメチルアミノ安息香酸、p-ジエチルアミノ安息香酸等の安息香酸エステル系化合物。
 9-フェニルアクリジン等のアクリジン系化合物。
2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis(2,4-dichlorophenyl)-4,4 ',5,5'-Tetraphenyl-1,2'-biimidazole, 2,2'-bis(2,4,6-trichlorophenyl)-4,4',5,5'-tetraphenyl-1, Biimidazole compounds such as 2'-biimidazole.
1,2-octanedione, 1-[4-(phenylthio)-2-(O-benzoyloxime)], O-acetyl-1-[6-(2-methylbenzoyl)-9-ethyl-9H-carbazole- 3-yl] oxime ester compounds such as ethanone oxime.
A titanocene-based compound such as bis(η5-2,4-cyclopentadiene-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl)titanium.
Benzoic acid ester compounds such as p-dimethylaminobenzoic acid and p-diethylaminobenzoic acid.
Acridine compounds such as 9-phenylacridine.
 感光性樹脂組成物は、光重合開始剤を1種のみ含んでもよいし、2種以上含んでもよい。
 光重合開始剤の使用量は、ポリマー100質量部に対し、例えば1~20質量部であり、好ましくは3~10質量部である。
The photosensitive resin composition may include only one type of photopolymerization initiator, or may include two or more types thereof.
The amount of the photopolymerization initiator used is, for example, 1 to 20 parts by mass, preferably 3 to 10 parts by mass, relative to 100 parts by mass of the polymer.
(溶剤)
 本実施形態の感光性樹脂組成物は、典型的には、溶剤を含む。これにより、各種の基板表面に均一な感光性樹脂膜を形成することができる。
 溶剤としては有機溶剤が好ましく用いられる。具体的には、ケトン系溶剤、エステル系溶剤、エーテル系溶剤、アルコール系溶剤、ラクトン系溶剤、カーボネート系溶剤などのうち1種または2種以上を用いることができる。
(solvent)
The photosensitive resin composition of this embodiment typically contains a solvent. As a result, a uniform photosensitive resin film can be formed on the surface of various substrates.
An organic solvent is preferably used as the solvent. Specifically, one or more of ketone solvents, ester solvents, ether solvents, alcohol solvents, lactone solvents, carbonate solvents and the like can be used.
 溶剤の例としては、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、乳酸エチル、メチルイソブチルカルビノール(MIBC)、ガンマブチロラクトン(GBL)、N-メチルピロリドン(NMP)、メチル-n-アミルケトン(MAK)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、シクロヘキサノン、又は、これらの混合物を挙げることができる。 Examples of the solvent include propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), ethyl lactate, methyl isobutyl carbinol (MIBC), gamma butyrolactone (GBL), N-methylpyrrolidone (NMP), methyl- Mention may be made of n-amyl ketone (MAK), diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, cyclohexanone, or mixtures thereof.
 溶剤の使用量は特に限定されない。例えば、不揮発成分の濃度が例えば10~70質量%、好ましくは15~60質量%となるような量で使用される。 The amount of solvent used is not particularly limited. For example, it is used in such an amount that the concentration of the non-volatile component is, for example, 10 to 70% by mass, preferably 15 to 60% by mass.
(架橋剤)
 本実施形態の感光性樹脂組成物は、架橋剤を含むことができる。
 架橋剤は、光重合開始剤から発生する活性化学種の作用によりポリマーを架橋可能なもの(ポリマーと化学結合することができるもの)であれば、特に限定されない。
 架橋剤は、ポリマーとのみ化学結合するのではなく、架橋剤同士で反応して結合形成してもよい。
(Crosslinking agent)
The photosensitive resin composition of this embodiment may contain a crosslinking agent.
The cross-linking agent is not particularly limited as long as it can cross-link the polymer by the action of the active chemical species generated from the photopolymerization initiator (that can chemically bond with the polymer).
The cross-linking agent may not only chemically bond with the polymer but may react with each other to form a bond.
 架橋剤は、例えば、一分子中に2以上の重合性二重結合を有する多官能化合物が好ましく、一分子中に2以上の(メタ)アクリロイル基を有する多官能(メタ)アクリル化合物であることがより好ましい(ただし、架橋剤は、前述のポリマーには該当しない)。ポリマーが有する架橋性基(重合性二重結合)と同種の架橋性基を有する架橋剤を用いることが、均一な硬化性、感度の更なる向上などの点で好ましい。
 架橋剤一分子あたりの官能数(重合性二重結合の数)の上限は特にないが、例えば8以下、好ましくは6以下である。
The cross-linking agent is preferably, for example, a polyfunctional compound having two or more polymerizable double bonds in one molecule, and a polyfunctional (meth)acrylic compound having two or more (meth)acryloyl groups in one molecule. Is more preferable (however, the crosslinking agent does not correspond to the above-mentioned polymer). It is preferable to use a cross-linking agent having a cross-linking group of the same kind as the cross-linking group (polymerizable double bond) of the polymer in terms of uniform curability and further improvement in sensitivity.
The upper limit of the number of functional groups (the number of polymerizable double bonds) per molecule of the crosslinking agent is not particularly limited, but is, for example, 8 or less, preferably 6 or less.
 架橋剤として具体的には、以下を挙げることができる。 Specific examples of the cross-linking agent include the following.
 エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、ビスフェノールAアルキレンオキシドジ(メタ)アクリレート、ビスフェノールFアルキレンオキシドジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加ジトリメチロールプロパンテトラ(メタ)アクリレート、エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、エチレンオキシド付加ジペンタエリスリトールヘキサ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加ジトリメチロールプロパンテトラ(メタ)アクリレート、プロピレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、プロピレンオキシド付加ジペンタエリスリトールヘキサ(メタ)アクリレート、ε-カプロラクトン付加トリメチロールプロパントリ(メタ)アクリレート、ε-カプロラクトン付加ジトリメチロールプロパンテトラ(メタ)アクリレート、ε-カプロラクトン付加ペンタエリスリトールテトラ(メタ)アクリレート、ε-カプロラクトン付加ジペンタエリスリトールヘキサ(メタ)アクリレート等の、多官能(メタ)アクリレート類。 Ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, hexanediol di(meth)acrylate, cyclohexanedimethanol Di(meth)acrylate, bisphenol A alkylene oxide di(meth)acrylate, bisphenol F alkylene oxide di(meth)acrylate, trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, glycerin tri(meth)acrylate , Pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, ethylene oxide-added trimethylolpropane tri(meth)acrylate, ethylene oxide-added ditrimethylolpropane tetra(meth)acrylate, ethylene oxide Addition pentaerythritol tetra(meth)acrylate, ethylene oxide addition dipentaerythritol hexa(meth)acrylate, propylene oxide addition trimethylolpropane tri(meth)acrylate, propylene oxide addition ditrimethylolpropane tetra(meth)acrylate, propylene oxide addition pentaerythritol tetra (Meth)acrylate, propylene oxide-added dipentaerythritol hexa(meth)acrylate, ε-caprolactone-added trimethylolpropane tri(meth)acrylate, ε-caprolactone-added ditrimethylolpropane tetra(meth)acrylate, ε-caprolactone-added pentaerythritol tetra Polyfunctional (meth)acrylates such as (meth)acrylate and ε-caprolactone-added dipentaerythritol hexa(meth)acrylate.
 エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ブチレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、ビスフェノールAアルキレンオキシドジビニルエーテル、ビスフェノールFアルキレンオキシドジビニルエーテル、トリメチロールプロパントリビニルエーテル、ジトリメチロールプロパンテトラビニルエーテル、グリセリントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ジペンタエリスリトールペンタビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル、エチレンオキシド付加トリメチロールプロパントリビニルエーテル、エチレンオキシド付加ジトリメチロールプロパンテトラビニルエーテル、エチレンオキシド付加ペンタエリスリトールテトラビニルエーテル、エチレンオキシド付加ジペンタエリスリトールヘキサビニルエーテル等の、多官能ビニルエーテル類。 Ethylene glycol divinyl ether, diethylene glycol divinyl ether, polyethylene glycol divinyl ether, propylene glycol divinyl ether, butylene glycol divinyl ether, hexanediol divinyl ether, bisphenol A alkylene oxide divinyl ether, bisphenol F alkylene oxide divinyl ether, trimethylolpropane trivinyl ether, ditril Methylolpropane tetravinyl ether, glycerin trivinyl ether, pentaerythritol tetravinyl ether, dipentaerythritol pentavinyl ether, dipentaerythritol hexavinyl ether, ethylene oxide-added trimethylolpropane trivinyl ether, ethylene oxide-added ditrimethylolpropane tetravinyl ether, ethylene oxide-added pentaerythritol tetravinyl ether, ethylene oxide Multifunctional vinyl ethers such as added dipentaerythritol hexavinyl ether.
 (メタ)アクリル酸2-ビニロキシエチル、(メタ)アクリル酸3-ビニロキシプロピル、(メタ)アクリル酸1-メチル-2-ビニロキシエチル、(メタ)アクリル酸2-ビニロキシプロピル、(メタ)アクリル酸4-ビニロキシブチル、(メタ)アクリル酸4-ビニロキシシクロヘキシル、(メタ)アクリル酸5-ビニロキシペンチル、(メタ)アクリル酸6-ビニロキシヘキシル、(メタ)アクリル酸4-ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸p-ビニロキシメチルフェニルメチル、(メタ)アクリル酸2-(ビニロキシエトキシ)エチル、(メタ)アクリル酸2-(ビニロキシエトキシエトキシエトキシ)エチル等の、ビニルエーテル基含有(メタ)アクリル酸エステル類。 2-Vinyloxyethyl (meth)acrylate, 3-vinyloxypropyl (meth)acrylate, 1-methyl-2-vinyloxyethyl (meth)acrylate, 2-vinyloxypropyl (meth)acrylate, (meth)acrylic acid 4 -Vinyloxybutyl, 4-vinyloxycyclohexyl (meth)acrylate, 5-vinyloxypentyl (meth)acrylate, 6-vinyloxyhexyl (meth)acrylate, 4-vinyloxymethylcyclohexylmethyl (meth)acrylate, ( Vinyl ether group-containing (meth) such as p-vinyloxymethylphenylmethyl (meth)acrylate, 2-(vinyloxyethoxy)ethyl (meth)acrylate, and 2-(vinyloxyethoxyethoxyethoxy)ethyl (meth)acrylate Acrylic esters.
 エチレングリコールジアリルエーテル、ジエチレングリコールジアリルエーテル、ポリエチレングリコールジアリルエーテル、プロピレングリコールジアリルエーテル、ブチレングリコールジアリルエーテル、ヘキサンジオールジアリルエーテル、ビスフェノールAアルキレンオキシドジアリルエーテル、ビスフェノールFアルキレンオキシドジアリルエーテル、トリメチロールプロパントリアリルエーテル、ジトリメチロールプロパンテトラアリルエーテル、グリセリントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、ジペンタエリスリトールペンタアリルエーテル、ジペンタエリスリトールヘキサアリルエーテル、エチレンオキシド付加トリメチロールプロパントリアリルエーテル、エチレンオキシド付加ジトリメチロールプロパンテトラアリルエーテル、エチレンオキシド付加ペンタエリスリトールテトラアリルエーテル、エチレンオキシド付加ジペンタエリスリトールヘキサアリルエーテル等の、多官能アリルエーテル類。 Ethylene glycol diallyl ether, diethylene glycol diallyl ether, polyethylene glycol diallyl ether, propylene glycol diallyl ether, butylene glycol diallyl ether, hexanediol diallyl ether, bisphenol A alkylene oxide diallyl ether, bisphenol F alkylene oxide diallyl ether, trimethylolpropane triallyl ether, Ditrimethylolpropane tetraallyl ether, glycerin triallyl ether, pentaerythritol tetraallyl ether, dipentaerythritol pentaallyl ether, dipentaerythritol hexaallyl ether, ethylene oxide-added trimethylolpropane triallyl ether, ethylene oxide-added ditrimethylolpropane tetraallyl ether, Polyfunctional allyl ethers such as ethylene oxide-added pentaerythritol tetraallyl ether and ethylene oxide-added dipentaerythritol hexaallyl ether.
 (メタ)アクリル酸アリル等の、アリル基含有(メタ)アクリル酸エステル類。
 トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(メタクリロイルオキシエチル)イソシアヌレート、アルキレンオキシド付加トリ(アクリロイルオキシエチル)イソシアヌレート、アルキレンオキシド付加トリ(メタクリロイルオキシエチル)イソシアヌレート等の、多官能(メタ)アクリロイル基含有イソシアヌレート類。
 トリアリルイソシアヌレート等の、多官能アリル基含有イソシアヌレート類。
 トリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート等の多官能イソシアネートと(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル等の、水酸基含有(メタ)アクリル酸エステル類との反応で得られる多官能ウレタン(メタ)アクリレート類。
 ジビニルベンゼン等の、多官能芳香族ビニル類。
Allyl group-containing (meth)acrylic acid esters such as allyl (meth)acrylate.
Multifunctional (meth)acryloyl such as tri(acryloyloxyethyl) isocyanurate, tri(methacryloyloxyethyl) isocyanurate, alkylene oxide-added tri(acryloyloxyethyl) isocyanurate, alkylene oxide-added tri(methacryloyloxyethyl) isocyanurate Group-containing isocyanurates.
Polyfunctional allyl group-containing isocyanurates such as triallyl isocyanurate.
Reaction of polyfunctional isocyanates such as tolylene diisocyanate, isophorone diisocyanate and xylylene diisocyanate with hydroxyl group-containing (meth)acrylic acid esters such as 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate Polyfunctional urethane (meth)acrylates obtained in.
Polyfunctional aromatic vinyls such as divinylbenzene.
 なかでも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の三官能(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の四官能(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の六官能(メタ)アクリレートが好ましい。 Among them, trifunctional (meth)acrylates such as trimethylolpropane tri(meth)acrylate and pentaerythritol tri(meth)acrylate, and tetrafunctional (meth)acrylates such as pentaerythritol tetra(meth)acrylate and ditrimethylolpropane tetra(meth)acrylate. ) Hexafunctional (meth)acrylates such as acrylate and dipentaerythritol hexa(meth)acrylate are preferred.
 感光性樹脂組成物が架橋剤を含む場合、感光性樹脂組成物は架橋剤を1種のみ含んでもよいし、2種以上含んでもよい。
 感光性樹脂組成物が架橋剤を含む場合、その量は目的や用途に応じて適宜設定すればよい。一例として、架橋剤の量は、ポリマー100質量部に対して通常30~70質量部、好ましくは40~60質量部とすることができる。
When the photosensitive resin composition contains a crosslinking agent, the photosensitive resin composition may contain only one type of crosslinking agent or two or more types of crosslinking agent.
When the photosensitive resin composition contains a crosslinking agent, the amount thereof may be appropriately set depending on the purpose and application. As an example, the amount of the cross-linking agent can be usually 30 to 70 parts by weight, preferably 40 to 60 parts by weight, based on 100 parts by weight of the polymer.
(着色剤)
 本実施形態の感光性樹脂組成物は、着色剤を含むことができる。組成物が着色剤を含むことで、表示装置や撮像素子のカラーフィルタの形成材料として好ましく用いることができる。
 着色剤としては、種々の顔料または染料を用いることができる。
(Colorant)
The photosensitive resin composition of this embodiment may contain a colorant. When the composition contains a colorant, it can be preferably used as a material for forming a color filter of a display device or an image pickup device.
As the colorant, various pigments or dyes can be used.
 顔料としては有機顔料や無機顔料を用いることができる。
 有機顔料としては、アゾ系顔料、フタロシアニン系顔料、キナクリドン系顔料、ペリレン系顔料、ペリノン系顔料、イソインドリノン系顔料、イソインドリン系顔料、ジオキサジン系顔料、チオインジゴ系顔料、アントラキノン系顔料、キノフタロン系顔料、金属錯体系顔料、ジケトピロロピロール系顔料、キサンテン系顔料、ピロメテン系顔料、染料レーキ系顔料等を使用することができる。
 無機顔料としては、白色・体質顔料(酸化チタン、酸化亜鉛、硫化亜鉛、クレー、タルク、硫酸バリウム、炭酸カルシウム等)、有彩顔料(黄鉛、カドミニウム系、クロムバーミリオン、ニッケルチタン、クロムチタン、黄色酸化鉄、ベンガラ、ジンククロメート、鉛丹、群青、紺青、コバルトブルー、クロムグリーン、酸化クロム、バナジン酸ビスマス等)、光輝材顔料(パール顔料、アルミ顔料、ブロンズ顔料等)、蛍光顔料(硫化亜鉛、硫化ストロンチウム、アルミン酸ストロンチウム等)などを使用することができる。
As the pigment, an organic pigment or an inorganic pigment can be used.
Examples of organic pigments include azo pigments, phthalocyanine pigments, quinacridone pigments, perylene pigments, perinone pigments, isoindolinone pigments, isoindoline pigments, dioxazine pigments, thioindigo pigments, anthraquinone pigments, and quinophthalone pigments. Pigments, metal complex pigments, diketopyrrolopyrrole pigments, xanthene pigments, pyrromethene pigments, dye lake pigments and the like can be used.
Inorganic pigments include white and extender pigments (titanium oxide, zinc oxide, zinc sulfide, clay, talc, barium sulfate, calcium carbonate, etc.), chromatic pigments (yellow lead, cadmium, chrome vermillion, nickel titanium, chromium titanium) , Yellow iron oxide, red iron oxide, zinc chromate, red lead, ultramarine blue, dark blue, cobalt blue, chrome green, chromium oxide, bismuth vanadate, etc.), luster pigments (pearl pigment, aluminum pigment, bronze pigment, etc.), fluorescent pigment ( Zinc sulfide, strontium sulfide, strontium aluminate, etc.) can be used.
 染料としては、例えば、特開2003-270428号公報、特開平9-171108号公報、特開2008-50599号公報などに記載されている公知の染料を使用することができる。 As the dye, for example, known dyes described in JP-A-2003-270428, JP-A-9-171108 and JP-A-2008-50599 can be used.
 着色剤(特に顔料)は、目的や用途に応じて、適切な平均粒子径を有するものを使用できる。特にカラーフィルタのような透明性が要求される場合は、0.1μm以下の小さい平均粒子径が好ましい。一方、塗料などの隠蔽性が必要とされる場合は、0.5μm以上の大きい平均粒子径が好ましい。
 着色剤は、目的や用途に応じて、ロジン処理、界面活性剤処理、樹脂系分散剤処理、顔料誘導体処理、酸化皮膜処理、シリカコーティング、ワックスコーティングなどの表面処理がなされていてもよい。
As the colorant (particularly pigment), one having an appropriate average particle diameter can be used depending on the purpose and application. Especially when transparency such as a color filter is required, a small average particle diameter of 0.1 μm or less is preferable. On the other hand, when the hiding property of paints is required, a large average particle size of 0.5 μm or more is preferable.
The colorant may be subjected to surface treatment such as rosin treatment, surfactant treatment, resin-based dispersant treatment, pigment derivative treatment, oxide film treatment, silica coating, wax coating and the like, depending on the purpose and use.
 感光性樹脂組成物が着色剤を含む場合、感光性樹脂組成物は着色剤を1種のみ含んでもよいし、2種以上含んでもよい。
 感光性樹脂組成物が着色剤を含む場合、その量は目的や用途に応じて適宜設定すればよいが、着色濃度と着色剤の分散安定性との両立などから、感光性樹脂組成物の不揮発成分(溶剤を除く成分)全体に対して、好ましくは3~70質量%であり、より好ましくは5~60質量%、さらに好ましくは10~50質量%である。
When the photosensitive resin composition contains a colorant, the photosensitive resin composition may contain only one type of colorant or two or more types of colorant.
When the photosensitive resin composition contains a colorant, the amount thereof may be appropriately set according to the purpose and application, but from the viewpoint of compatibility between the color density and the dispersion stability of the colorant, the nonvolatile content of the photosensitive resin composition It is preferably from 3 to 70% by mass, more preferably from 5 to 60% by mass, and further preferably from 10 to 50% by mass, based on the entire components (components excluding the solvent).
(遮光剤)
 本実施形態の感光性樹脂組成物は、遮光剤を含むことができる。組成物が遮光剤を含むことで、表示装置や撮像素子のブラックマトリクスの形成材料として好ましく用いることができる。
 遮光剤としては、公知の遮光剤を特に制限なく用いることができる。例えば、カーボンブラック、ボーンブラック、グラファイト、鉄黒、チタンブラック等の黒色顔料を遮光剤として用いることができる。
(Shading agent)
The photosensitive resin composition of this embodiment may include a light shielding agent. When the composition contains a light-shielding agent, it can be preferably used as a material for forming a black matrix of a display device or an image pickup device.
As the light-shielding agent, a known light-shielding agent can be used without particular limitation. For example, black pigments such as carbon black, bone black, graphite, iron black and titanium black can be used as the light shielding agent.
 感光性樹脂組成物が遮光剤を含む場合、その量は目的や用途に応じて適宜設定すればよいが、遮光性能と遮光剤の分散安定性との両立などから、感光性樹脂組成物の不揮発成分(溶剤を除く成分)全体に対して、好ましくは3~70質量%であり、より好ましくは5~60質量%、さらに好ましくは10~50質量%である。 When the photosensitive resin composition contains a light-shielding agent, the amount thereof may be appropriately set according to the purpose and application, but from the viewpoint of compatibility between the light-shielding performance and the dispersion stability of the light-shielding agent, the nonvolatile content of the photosensitive resin composition It is preferably from 3 to 70% by mass, more preferably from 5 to 60% by mass, and further preferably from 10 to 50% by mass, based on the entire components (components excluding the solvent).
(その他成分)
 本実施形態の感光性樹脂組成物は、各種目的や要求特性に応じて、上記以外の成分を含んでもよい。
 含んでもよい成分としては、例えば、フィラー、上述のポリマー以外のバインダー樹脂、多官能(メタ)アクリレート化合物、酸発生剤、耐熱向上剤、現像助剤、可塑剤、重合禁止剤、紫外線吸収剤、酸化防止剤、艶消し剤、消泡剤、レベリング剤、界面活性剤、帯電防止剤、分散剤、スリップ剤、表面改質剤、揺変剤、シランカップリング剤、多価フェノール化合物等が挙げられる。
(Other ingredients)
The photosensitive resin composition of the present embodiment may contain components other than the above depending on various purposes and required characteristics.
Examples of components that may be included include fillers, binder resins other than the above polymers, polyfunctional (meth)acrylate compounds, acid generators, heat resistance improvers, development aids, plasticizers, polymerization inhibitors, and ultraviolet absorbers. Antioxidants, matting agents, defoaming agents, leveling agents, surfactants, antistatic agents, dispersants, slip agents, surface modifiers, thixotropic agents, silane coupling agents, polyhydric phenol compounds, etc. To be
<パターン、カラーフィルタ、ブラックマトリクス、表示装置、撮像素子、および、表示装置または撮像素子の製造方法>
 上述の感光性樹脂組成物を用いて膜形成し、その膜を露光・現像してパターンを形成することができる。このパターンは、例えばカラーフィルタやブラックマトリクスなどに適用される。具体的には、着色剤を含む感光性樹脂組成物を用いてパターンを形成することで、カラーフィルタを得ることができる。また、遮光剤を含む感光性樹脂組成物を用いてパターンを形成することで、ブラックマトリックスを得ることができる。そして、カラーフィルタおよび/またはブラックマトリクスを備える表示装置(典型的には液晶表示装置)または撮像素子(典型的には固体撮像素子)を製造することができる。
<Pattern, color filter, black matrix, display device, image sensor, and method for manufacturing display device or image sensor>
A film can be formed by using the above-mentioned photosensitive resin composition, and the film can be exposed and developed to form a pattern. This pattern is applied to, for example, a color filter or a black matrix. Specifically, a color filter can be obtained by forming a pattern using a photosensitive resin composition containing a colorant. A black matrix can be obtained by forming a pattern using a photosensitive resin composition containing a light shielding agent. Then, a display device (typically a liquid crystal display device) or an imaging device (typically a solid-state imaging device) including a color filter and/or a black matrix can be manufactured.
 パターンを形成する典型的な手順を以下で説明する。 A typical procedure for forming a pattern is explained below.
・感光性樹脂膜の形成
 例えば、本実施形態の感光性樹脂組成物を、任意の基板上に塗布し、必要に応じて乾燥させる。これにより、まず、感光性樹脂膜を得る。
-Formation of photosensitive resin film For example, the photosensitive resin composition of the present embodiment is applied onto an arbitrary substrate and dried as necessary. Thereby, first, a photosensitive resin film is obtained.
 基板は特に限定されない。例えばガラス基板、シリコンウエハ、セラミック基板、アルミ基板、SiCウエハー、GaNウエハー、銅張積層板などを挙げることができる。
 基板は、未加工の基板であっても、電極や素子が表面に形成された基板であってもよい。基板は、接着性の向上のために表面処理さていてもよい。
 感光性樹脂組成物の塗布方法は特に限定されない。塗布は、スピナーを用いた回転塗布、スプレーコーターを用いた噴霧塗布、浸漬、印刷、ロールコーティング、インクジェット法などにより行うことができる。
The substrate is not particularly limited. For example, a glass substrate, a silicon wafer, a ceramic substrate, an aluminum substrate, a SiC wafer, a GaN wafer, a copper clad laminate, etc. can be mentioned.
The substrate may be an unprocessed substrate or a substrate having electrodes or elements formed on the surface. The substrate may be surface treated to improve adhesion.
The method for applying the photosensitive resin composition is not particularly limited. The coating can be performed by spin coating using a spinner, spray coating using a spray coater, dipping, printing, roll coating, an inkjet method, or the like.
 基板上に塗布した感光性樹脂組成物の乾燥は、典型的にはホットプレート、熱風、オーブン等で加熱処理することで行われる。加熱温度は、通常80~140℃、好ましくは90~120℃である。加熱時間は、通常30~600秒、好ましくは30~300秒程度である。 The drying of the photosensitive resin composition applied on the substrate is typically performed by heat treatment with a hot plate, hot air, oven or the like. The heating temperature is usually 80 to 140°C, preferably 90 to 120°C. The heating time is usually 30 to 600 seconds, preferably 30 to 300 seconds.
 感光性樹脂膜の膜厚は、特に限定されず、最終的に得ようとするパターンに応じて適宜調整すればよい。膜厚は、通常は0.5~10μm、好ましくは1~5μmである。なお、膜厚は、感光性樹脂組成物中の溶剤の含有量や塗布方法などにより調整可能である。 The film thickness of the photosensitive resin film is not particularly limited and may be appropriately adjusted according to the pattern to be finally obtained. The film thickness is usually 0.5 to 10 μm, preferably 1 to 5 μm. The film thickness can be adjusted by the content of the solvent in the photosensitive resin composition and the coating method.
・露光
 露光は、典型的には、適当なフォトマスクを介して活性光線を感光性樹脂膜に当てることで行う。
 活性光線としては、例えばX線、電子線、紫外線、可視光線などが挙げられる。波長でいうと200~500nmの光が好ましい。パターンの解像度や取り扱い性の点で、光源は水銀ランプのg線、h線又はi線であることが好ましく、特にi線が好ましい。また、2つ以上の光線を混合して用いてもよい。露光装置としては、コンタクトアライナー、ミラープロジェクションまたはステッパーが好ましい。
 露光の光量は、感光性樹脂膜中の光重合開始剤の量や、感光性樹脂膜の膜厚などにより適宜調整すればよい。露光の光量は例えば100~500mJ/cm程度である。
-Exposure Exposure is typically performed by exposing the photosensitive resin film to actinic rays through a suitable photomask.
Examples of actinic rays include X-rays, electron rays, ultraviolet rays, and visible rays. In terms of wavelength, light of 200 to 500 nm is preferable. From the viewpoint of pattern resolution and handleability, the light source is preferably a g-line, h-line or i-line of a mercury lamp, and particularly preferably i-line. Further, two or more light rays may be mixed and used. As the exposure device, a contact aligner, a mirror projection or a stepper is preferable.
The light amount of exposure may be appropriately adjusted depending on the amount of the photopolymerization initiator in the photosensitive resin film, the film thickness of the photosensitive resin film, and the like. The exposure light amount is, for example, about 100 to 500 mJ/cm 2 .
 露光後、必要に応じて、感光性樹脂膜を再度加熱してもよい(露光後加熱:Post Exposure Bake)。ここでの加熱温度は、例えば70~150℃、好ましくは90~120℃である。加熱時間は、例えば30~600秒、好ましくは30~300秒である。露光後加熱をすることで、光重合開始剤から発生した活性種による重合反応が促進され、硬化反応が一層促される。つまり、プロセス面から一層の高感度化を図ることができる。 After exposure, the photosensitive resin film may be heated again if necessary (post-exposure heating: Post Exposure Bake). The heating temperature here is, for example, 70 to 150° C., preferably 90 to 120° C. The heating time is, for example, 30 to 600 seconds, preferably 30 to 300 seconds. By heating after exposure, the polymerization reaction by the active species generated from the photopolymerization initiator is promoted, and the curing reaction is further promoted. That is, it is possible to further increase the sensitivity in terms of process.
・現像
 露光された感光性樹脂膜を、適当な現像液により現像することで、パターンを得ること、また、パターンを備えた基板を製造することができる。
 現像工程においては、適当な現像液を用いて、例えば浸漬法、パドル法、回転スプレー法などの方法を用いて現像を行うことができる。現像により、感光性樹脂膜の露光部(ポジ型の場合)又は未露光部(ネガ型の場合)が溶出除去され、パターンが得られる。本実施形態の感光性樹脂組成物を用いた場合には、通常、ネガ型パターンが得られる。
-Development By developing the exposed photosensitive resin film with a suitable developing solution, a pattern can be obtained and a substrate having a pattern can be manufactured.
In the developing step, development can be carried out by using a suitable developing solution, for example, a method such as a dipping method, a paddle method or a rotary spray method. By the development, the exposed portion (in the case of positive type) or the unexposed portion (in the case of negative type) of the photosensitive resin film is eluted and removed to obtain a pattern. When the photosensitive resin composition of this embodiment is used, a negative pattern is usually obtained.
 使用可能な現像液は特に限定されない。例えば、アルカリ水溶液や有機溶剤が使用可能である。
 アルカリ水溶液として具体的には、(i)水酸化ナトリウム、炭酸ナトリウム、ケイ酸ナトリウム、アンモニアなどの無機アルカリ水溶液、(ii)エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミンなどの有機アミン水溶液、(iii)テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドなどの4級アンモニウムヒドロキシドの水溶液などが挙げられる。
 有機溶剤として具体的には、シクロペンタノンなどのケトン系溶剤、プロピレングリコールモノメチルエーテルアセテート(PGMEA)や酢酸ブチルなどのエステル系溶剤、プロピレングリコールモノメチルエーテルなどのエーテル系溶剤、等が挙げられる。
 現像液は、例えばメタノール、エタノールなどの水溶性有機溶媒や、界面活性剤などの添加剤を含んでもよい。
The developer that can be used is not particularly limited. For example, an alkaline aqueous solution or an organic solvent can be used.
Specific examples of the alkaline aqueous solution include (i) an inorganic alkaline aqueous solution such as sodium hydroxide, sodium carbonate, sodium silicate, and ammonia, (ii) an organic amine aqueous solution such as ethylamine, diethylamine, triethylamine, and triethanolamine, (iii) Examples thereof include aqueous solutions of quaternary ammonium hydroxide such as tetramethylammonium hydroxide and tetrabutylammonium hydroxide.
Specific examples of the organic solvent include ketone solvents such as cyclopentanone, ester solvents such as propylene glycol monomethyl ether acetate (PGMEA) and butyl acetate, ether solvents such as propylene glycol monomethyl ether, and the like.
The developer may contain a water-soluble organic solvent such as methanol or ethanol, or an additive such as a surfactant.
 本実施形態においては、現像液としてアルカリ水溶液を用いることが好ましく、テトラメチルアンモニウムヒドロキシドまたは炭酸ナトリウムの水溶液を用いることがより好ましい。
 アルカリ水溶液の濃度は、好ましくは0.1~10質量%であり、更に好ましくは0.5~5質量%である。
In the present embodiment, it is preferable to use an alkaline aqueous solution as the developing solution, and it is more preferable to use an aqueous solution of tetramethylammonium hydroxide or sodium carbonate.
The concentration of the alkaline aqueous solution is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass.
 現像の後、さらに様々な処理を行ってもよい。
 例えば、現像の後、リンス液によりパターンおよび/または基板を洗浄してもよい。リンス液としては、例えば蒸留水、メタノール、エタノール、イソプロパノール、プロピレングリコールモノメチルエーテルなどが挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Various processes may be further performed after the development.
For example, the pattern and/or substrate may be washed with a rinse after development. Examples of the rinse liquid include distilled water, methanol, ethanol, isopropanol, propylene glycol monomethyl ether and the like. These may be used alone or in combination of two or more.
 また、得られたパターンを加熱して十分に硬化させるようにしてもよい。加熱温度は、典型的には150~400℃、好ましくは160~300℃、より好ましくは200~250℃である。加熱時間は特に限定されないが、例えば15~300分の範囲内である。この加熱処理は、ホットプレート、オーブン、温度プログラムを設定できる昇温式オーブンなどにより行うことができる。加熱処理を行う際の雰囲気気体としては、空気であっても、窒素やアルゴンなどの不活性ガスであってもよい。また、減圧下で加熱してもよい。 Alternatively, the obtained pattern may be heated to be sufficiently cured. The heating temperature is typically 150 to 400°C, preferably 160 to 300°C, more preferably 200 to 250°C. The heating time is not particularly limited, but is within a range of 15 to 300 minutes, for example. This heat treatment can be performed using a hot plate, an oven, a temperature rising oven that can set a temperature program, or the like. The atmosphere gas used for the heat treatment may be air or an inert gas such as nitrogen or argon. Moreover, you may heat under reduced pressure.
 以上の工程により、パターンを得ること/パターンを備えた基板を製造することができる。より具体的には、着色剤を含む感光性樹脂組成物を用いて、カラーフィルタを得ることができる。また、遮光剤を含む感光性樹脂組成物を用いて、ブラックマトリックスを得ることができる。さらには、カラーフィルタおよび/またはブラックマトリクスを備える表示装置(典型的には液晶表示装置)または撮像素子(典型的には固体撮像素子)を製造することができる。 By the above process, it is possible to obtain a pattern/manufacture a substrate having a pattern. More specifically, a color filter can be obtained using a photosensitive resin composition containing a colorant. Further, a black matrix can be obtained by using a photosensitive resin composition containing a light shielding agent. Further, a display device (typically a liquid crystal display device) or an image pickup device (typically a solid-state image pickup device) including a color filter and/or a black matrix can be manufactured.
 カラーフィルタおよび/またはブラックマトリクスを備える、表示装置および/または撮像素子の構造の一例について、図1に模式的に示す。
 基板10上には、ブラックマトリクス11とカラーフィルタ12が形成されている。また、このブラックマトリクス11とカラーフィルタ12の上部に保護膜13および透明電極層14が設けられている。
 基板10は、通常、光を通過する材料により構成されるものである。例えば、ガラス、ポリエステル、ポリカーボネート、ポリオレフィン、ポリスルホン、環状オレフィンの重合体などのいずれかにより構成される。
 基板10は、コロナ放電処理、オゾン処理、薬液処理等が施されたものであってもよい。
 基板10は、例えばガラスより構成される。
An example of the structure of a display device and/or an image sensor including a color filter and/or a black matrix is schematically shown in FIG.
A black matrix 11 and a color filter 12 are formed on the substrate 10. A protective film 13 and a transparent electrode layer 14 are provided on the black matrix 11 and the color filter 12.
The substrate 10 is usually made of a material that transmits light. For example, it is made of any one of glass, polyester, polycarbonate, polyolefin, polysulfone, and a polymer of cyclic olefin.
The substrate 10 may have been subjected to corona discharge treatment, ozone treatment, chemical treatment, or the like.
The substrate 10 is made of glass, for example.
 ブラックマトリクス11は、通常、遮光剤を含む感光性樹脂組成物の硬化物である。
 カラーフィルタ12としては、通常、赤、緑、青の三色が存在する。カラーフィルタ12は、通常、各色に応じた着色剤を含む感光性樹脂組成物の硬化物である。
The black matrix 11 is usually a cured product of a photosensitive resin composition containing a light shielding agent.
The color filter 12 usually has three colors of red, green and blue. The color filter 12 is usually a cured product of a photosensitive resin composition containing a colorant corresponding to each color.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 The embodiments of the present invention have been described above, but these are examples of the present invention, and various configurations other than the above can be adopted. Further, the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within the scope of achieving the object of the present invention are included in the present invention.
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。なお、本発明は実施例に限定されるものではない。 Embodiments of the present invention will be described in detail based on examples and comparative examples. The present invention is not limited to the embodiments.
 実施例中の使用化合物については、以下の略号または商品名で示す場合がある。
・MA:無水マレイン酸
・NB:2-ノルボルネン
・MEK:メチルエチルケトン
・BHEA:2-ヒドロキシエチルアクリレート
・4-HBA:4-ヒドロキシブチルアクリレート
The compounds used in the examples may be represented by the following abbreviations or trade names.
MA: maleic anhydride NB: 2-norbornene MEK: methyl ethyl ketone BHEA: 2-hydroxyethyl acrylate 4-HBA: 4-hydroxybutyl acrylate
・A-TMM-3L:以下2種の化合物の混合物、ガスクロマトグラフ測定に基づく混合物中の左の化合物の量は約55%(新中村化学工業株式会社製) A-TMM-3L: a mixture of the following two compounds, the amount of the compound on the left in the mixture based on gas chromatographic measurement is about 55% (manufactured by Shin-Nakamura Chemical Co., Ltd.)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
・A-TMM-3LM-N:以下2種の化合物の混合物、ガスクロマトグラフ測定に基づく混合物中の左の化合物の量は約57%(新中村化学工業株式会社製) A-TMM-3LM-N: a mixture of the following two compounds, the amount of the compound on the left in the mixture based on gas chromatographic measurement is about 57% (manufactured by Shin-Nakamura Chemical Co., Ltd.)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
・A-9550:以下2種の化合物の混合物、水酸基価から見積もった混合物中の左の化合物の量は約50%(新中村化学工業株式会社製) A-9550: A mixture of the following two compounds, the amount of the compound on the left in the mixture estimated from the hydroxyl value is about 50% (Shin-Nakamura Chemical Co., Ltd.)
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
<原料ポリマーの合成>
 まず、無水マレイン酸構造単位と、2-ノルボルネン構造単位とを含む原料ポリマーを合成した。詳細を以下に示す。
<Synthesis of raw material polymer>
First, a raw material polymer containing a maleic anhydride structural unit and a 2-norbornene structural unit was synthesized. Details are shown below.
(原料ポリマー1)
 撹拌機および冷却管を備えた適切なサイズの反応容器に、無水マレイン酸353.02g(3.6mol)と、2-ノルボルネン338.94g(3.6mol)と、ジメチル-2,2'-アゾビス(2-メチルプロピオネート)33.16g(0.144mol)とを計量して入れた。これらを、メチルエチルケトン1030.1gおよびトルエン113.0gからなる混合溶媒に溶解させ、溶解液を作製した。
 この溶解液に対して、30分間窒素を通気して酸素を除去し、次いで、撹拌しつつ温度65℃で1.5時間加熱し、さらにその後80℃で6時間加熱することで、無水マレイン酸と、2-ノルボルネンとを重合させ、重合溶液を作製した。
 上記で得られた重合溶液を、メタノール8519.9gに滴下することで白色固体を沈殿させた。得られた白色固体を、温度120℃で真空乾燥することにより、2-ノルボルネンに由来する構造単位と、無水マレイン酸に由来する構造単位とを備えるポリマー(原料ポリマー1)607.5gを得た。
 得られたポリマーをゲルパーミエーションクロマトグラフィー(GPC)を用いて測定した結果、重量平均分子量Mwは7000であり、多分散度(重量平均分子量Mw)/(数平均分子量Mn)は1.82であった。
(Raw polymer 1)
In an appropriately sized reaction vessel equipped with a stirrer and cooling tube, maleic anhydride 353.02 g (3.6 mol), 2-norbornene 338.94 g (3.6 mol) and dimethyl-2,2'-azobis 33.16 g (0.144 mol) of (2-methylpropionate) was weighed in. These were dissolved in a mixed solvent composed of 1030.1 g of methyl ethyl ketone and 113.0 g of toluene to prepare a solution.
Nitrogen was bubbled through this solution for 30 minutes to remove oxygen, and then the solution was heated with stirring at a temperature of 65° C. for 1.5 hours, and then at 80° C. for 6 hours to give maleic anhydride. And 2-norbornene were polymerized to prepare a polymerization solution.
The polymerization solution obtained above was added dropwise to 851.99.9 g of methanol to precipitate a white solid. The resulting white solid was vacuum dried at a temperature of 120° C. to obtain 607.5 g of a polymer (raw material polymer 1) having a structural unit derived from 2-norbornene and a structural unit derived from maleic anhydride. ..
As a result of measuring the obtained polymer using gel permeation chromatography (GPC), the weight average molecular weight Mw was 7,000, and the polydispersity (weight average molecular weight Mw)/(number average molecular weight Mn) was 1.82. there were.
(原料ポリマー2)
 撹拌機および冷却管を備えた適切なサイズの反応容器に、無水マレイン酸353.02g(3.6mol)と、2-ノルボルネン338.94g(3.6mol)と、ジメチル-2,2'-アゾビス(2-メチルプロピオネート)33.16g(0.144mol)とを計量して入れた。これらを、MEK2654.9gおよびトルエン113.0gからなる混合溶媒に溶解させ、溶解液を作製した。
 この溶解液に対して、30分間窒素を通気して酸素を除去し、次いで、撹拌しつつ温度65℃で1.5時間加熱し、さらにその後80℃で6時間加熱することで、無水マレイン酸と、2-ノルボルネンとを重合させ、重合溶液を作製した。
 上記で得られた重合溶液を、メタノール13972.1gに滴下することで白色固体を再沈殿させた。得られた白色固体を、温度120℃で真空乾燥することにより、2-ノルボルネンに由来する構造単位と、無水マレイン酸に由来する構造単位とを備えるポリマー(原料ポリマー2)569.1g得た。
 得られたポリマーをGPC測定した結果、重量平均分子量Mwは4300であり、多分散度(重量平均分子量Mw)/(数平均分子量Mn)は1.59であった。
(Raw polymer 2)
In a reaction vessel of appropriate size equipped with a stirrer and cooling tube, maleic anhydride 353.02 g (3.6 mol), 2-norbornene 338.94 g (3.6 mol), and dimethyl-2,2'-azobis 33.16 g (0.144 mol) of (2-methylpropionate) was weighed in. These were dissolved in a mixed solvent consisting of MEK2654.9 g and toluene 113.0 g to prepare a solution.
Nitrogen was bubbled through the solution for 30 minutes to remove oxygen, and then the solution was heated with stirring at a temperature of 65° C. for 1.5 hours and then at 80° C. for 6 hours to give maleic anhydride. And 2-norbornene were polymerized to prepare a polymerization solution.
The polymerization solution obtained above was added dropwise to 13972.1 g of methanol to reprecipitate a white solid. By vacuum-drying the obtained white solid at a temperature of 120° C., 569.1 g of a polymer (raw material polymer 2) having a structural unit derived from 2-norbornene and a structural unit derived from maleic anhydride was obtained.
As a result of GPC measurement of the obtained polymer, the weight average molecular weight Mw was 4,300, and the polydispersity (weight average molecular weight Mw)/(number average molecular weight Mn) was 1.59.
<ポリマーの合成(原料ポリマーのMA由来の構造単位の開環)>
(比較合成例1)
 原料ポリマー1のMA由来の構造単位(以下、単に「MA単位」とも記載する)を、水酸基含有の3官能アクリレートで開環したポリマーを作製した。以下、詳細を説明する。
 まず、原料ポリマー1 30g(MA換算0.156mol)に対して、MEK 64.15gを加えて、溶解液を作製した。次いで、この溶解液に対して、A-TMM-3L 96.85g(上記の2種混合物としての添加量、以下同様)を加え、その後、トリエチルアミン9.00g(0.089mol)を加え、温度70℃で6時間反応させ、反応溶液を作製した。
<Synthesis of polymer (ring opening of structural unit derived from MA of raw material polymer)>
(Comparative Synthesis Example 1)
A polymer in which a structural unit derived from MA of raw material polymer 1 (hereinafter, also simply referred to as “MA unit”) was opened with a trifunctional acrylate having a hydroxyl group was prepared. The details will be described below.
First, 64.15 g of MEK was added to 30 g of the raw material polymer 1 (0.156 mol in terms of MA) to prepare a solution. Next, to this solution, 96.85 g of A-TMM-3L (the amount added as the mixture of the above two kinds, the same applies below) was added, and then 9.00 g (0.089 mol) of triethylamine was added, and the temperature was adjusted to 70 A reaction solution was prepared by reacting at 6°C for 6 hours.
 作製された反応溶液をギ酸水溶液で処理することで、反応溶液から水相を除去した。その後、以下手順でポリマーを精製した。
・過剰量のトルエンでポリマーを再沈殿させた。
・再沈殿で得られたポリマー粉末を、過剰量のトルエンで洗浄する操作を2回繰り返した。
・上記の2回洗浄後のポリマー粉末を、過剰量の水で洗浄する操作を3回行った。
The aqueous phase was removed from the reaction solution by treating the prepared reaction solution with a formic acid aqueous solution. Then, the polymer was purified by the following procedure.
-Reprecipitate the polymer with excess toluene.
The operation of washing the polymer powder obtained by reprecipitation with an excess amount of toluene was repeated twice.
The operation of washing the above-mentioned polymer powder after washing twice with an excess amount of water was performed three times.
 以上により、原料ポリマー中の無水マレイン酸に由来する構造単位を、A-TMM-3Lで開環した、ポリマー23.39gを得た。 From the above, 23.39 g of a polymer was obtained in which the structural unit derived from maleic anhydride in the raw material polymer was ring-opened with A-TMM-3L.
(比較合成例2)
 原料ポリマー1のMA単位を、水酸基含有の単官能アクリレートのみで開環したポリマーを作製した。以下、詳細を説明する。
 まず、原料ポリマー1 30g(MA換算0.156mol)に対して、MEK 55.50gを加えて、溶解液を作製した。次いで、この溶解液に対して、BHEA 22.65g(0.195mol)を加え、その後、トリエチルアミン9.00g(0.089mol)を加え、そして温度70℃で6時間反応させ、反応溶液を作製した。
 得られた反応溶液をギ酸水溶液で処理することで、反応溶液から水相を除去した。その後、溶液を大量の純水に注ぎ、ポリマーを析出させた。得られたポリマーを濾取し、さらに純水で洗浄した。
 以上により、原料ポリマー中の無水マレイン酸に由来する構造単位を、BHEAのみで開環した、ポリマー27.21gを得た。
(Comparative Synthesis Example 2)
A polymer was prepared by ring-opening the MA unit of the raw material polymer 1 only with a hydroxyl group-containing monofunctional acrylate. The details will be described below.
First, 55.50 g of MEK was added to 30 g of the raw material polymer 1 (0.156 mol in terms of MA) to prepare a solution. Next, to this solution, 22.65 g (0.195 mol) of BHEA was added, then 9.00 g (0.089 mol) of triethylamine was added, and the mixture was reacted at a temperature of 70° C. for 6 hours to prepare a reaction solution. ..
The aqueous phase was removed from the reaction solution by treating the obtained reaction solution with an aqueous formic acid solution. Then, the solution was poured into a large amount of pure water to precipitate a polymer. The obtained polymer was collected by filtration and washed with pure water.
As a result, 27.21 g of a polymer was obtained in which the structural unit derived from maleic anhydride in the raw material polymer was ring-opened only with BHEA.
(比較合成例3)
 原料ポリマー1のMA単位を、水酸基含有の単官能アクリレートのみで開環したポリマーを作製した。以下、詳細を説明する。
 まず、原料ポリマー1 30g(MA換算0.156mol)に対して、MEK 55.5gを加えて、溶解液を作製した。次いで、この溶解液に対して、4-HBA 28.11g(0.195mol)を加え、その後、トリエチルアミン9.00g(0.089mol)を加え、そして温度70℃で6時間反応させ、反応溶液を作製した。
 得られた反応溶液をギ酸水溶液で処理することで、反応溶液から水相を除去した。その後、溶液を大量の純水に注ぎ、ポリマーを析出させた。得られたポリマーを濾取し、さらに純水で洗浄した。
 以上により、原料ポリマー中の無水マレイン酸に由来する構造単位を、4-HBAで開環した、ポリマー26.54gを得た。
(Comparative Synthesis Example 3)
A polymer was prepared by ring-opening the MA unit of the raw material polymer 1 only with a hydroxyl group-containing monofunctional acrylate. The details will be described below.
First, 55.5 g of MEK was added to 30 g of the raw material polymer 1 (0.156 mol in terms of MA) to prepare a solution. Next, to this solution, 28.11 g (0.195 mol) of 4-HBA was added, then 9.00 g (0.089 mol) of triethylamine was added, and the mixture was reacted at a temperature of 70° C. for 6 hours to give a reaction solution. It was made.
The aqueous phase was removed from the reaction solution by treating the obtained reaction solution with an aqueous formic acid solution. Then, the solution was poured into a large amount of pure water to precipitate a polymer. The obtained polymer was collected by filtration and washed with pure water.
As a result, 26.54 g of a polymer obtained by ring-opening the structural unit derived from maleic anhydride in the starting polymer with 4-HBA was obtained.
(合成例1)
 原料ポリマー1のMA単位を、水酸基含有の3官能アクリレートおよび水酸基含有の単官能アクリレートで開環したポリマーを作製した。以下、詳細を説明する。
 まず、原料ポリマー1 30g(MA換算0.156mol)に対して、MEK 67.72gを加えて、溶解液を作製した。次いで、この溶解液に対して、A-TMM-3L 58.12gを加え、その後、トリエチルアミン9.00g(0.089mol)を加え、温度70℃で2時間反応させた。さらにその後、BHEA 22.65g(0.195mol)を加え、温度70℃で4時間反応させ、反応溶液を作製した。
 作製された反応溶液を、比較合成例1と同様に、ギ酸水溶液、過剰量のトルエン、過剰量の水などを用いて精製した。
 以上により、原料ポリマー中の無水マレイン酸に由来する構造単位を、A-TMM-3LおよびBHEAで開環した、ポリマー22.21gを得た。
(Synthesis example 1)
A polymer was prepared by opening the MA unit of the raw material polymer 1 with a trifunctional acrylate containing a hydroxyl group and a monofunctional acrylate containing a hydroxyl group. The details will be described below.
First, 67.72 g of MEK was added to 30 g of the raw material polymer 1 (0.156 mol in terms of MA) to prepare a solution. Next, to this solution, 58.12 g of A-TMM-3L was added, and then 9.00 g (0.089 mol) of triethylamine was added, and the mixture was reacted at a temperature of 70° C. for 2 hours. After that, 22.65 g (0.195 mol) of BHEA was added and reacted at a temperature of 70° C. for 4 hours to prepare a reaction solution.
The prepared reaction solution was purified using an aqueous formic acid solution, an excess amount of toluene, an excess amount of water, and the like, as in Comparative Synthesis Example 1.
As a result, 22.21 g of a polymer was obtained in which the structural unit derived from maleic anhydride in the raw material polymer was ring-opened with A-TMM-3L and BHEA.
(合成例2)
 原料ポリマー1のMA単位を、水酸基含有の3官能アクリレートおよび水酸基含有の単官能アクリレートで開環したポリマーを作製した。以下、詳細を説明する。
 まず、原料ポリマー1 30g(MA換算0.156mol)に対して、MEK 49.41gを加えて、溶解液を作製した。次いで、この溶解液に対して、A-TMM-3L 19.37gを加え、その後、トリエチルアミン9.00g(0.089mol)を加え、温度70℃で2時間反応させた。さらにその後、BHEA 22.65g(0.195mol)を加え、温度70℃で4時間反応させ、反応溶液を作製した。
 作製された反応溶液を、比較合成例1と同様に、ギ酸水溶液、過剰量のトルエン、過剰量の水などを用いて精製した。
 以上により、原料ポリマー中の無水マレイン酸に由来する構造単位をA-TMM-3LおよびBHEAで開環した、ポリマー22.53gを得た。
(Synthesis example 2)
A polymer was prepared by opening the MA unit of the raw material polymer 1 with a trifunctional acrylate containing a hydroxyl group and a monofunctional acrylate containing a hydroxyl group. The details will be described below.
First, MEK 49.41g was added with respect to the raw material polymer 1 30g (0.156mol of MA conversion), and the solution was produced. Next, to this solution, 19.37 g of A-TMM-3L was added, and then 9.00 g (0.089 mol) of triethylamine was added, and the mixture was reacted at 70° C. for 2 hours. After that, 22.65 g (0.195 mol) of BHEA was added and reacted at a temperature of 70° C. for 4 hours to prepare a reaction solution.
The prepared reaction solution was purified using an aqueous formic acid solution, an excess amount of toluene, an excess amount of water, and the like, as in Comparative Synthesis Example 1.
As a result, 22.53 g of a polymer was obtained in which the structural unit derived from maleic anhydride in the raw material polymer was ring-opened with A-TMM-3L and BHEA.
(合成例3)
 原料ポリマー1のMA単位を、水酸基含有の3官能アクリレートおよび水酸基含有の単官能アクリレートで開環したポリマーを作製した。以下、詳細を説明する。
 まず、原料ポリマー1 30g(MA換算0.156mol)に対して、MEK 49.51gを加えて、溶解液を作製した。次いで、この溶解液に対して、A-TMM-3L 19.37gを加え、その後、トリエチルアミン18.00g(0.178mol)を加え、温度70℃で2時間反応させた。さらにその後、BHEA 22.65g(0.195mol)を加え、温度70℃で4時間反応させ、反応溶液を作製した。
 作製された反応溶液を、比較合成例1と同様に、ギ酸水溶液、過剰量のトルエン、過剰量の水などを用いて精製した。
 以上により、原料ポリマー中の無水マレイン酸に由来する構造単位を、A-TMM-3LおよびBHEAで開環した、ポリマー22.10gを得た。
(Synthesis example 3)
A polymer was prepared by opening the MA unit of the raw material polymer 1 with a trifunctional acrylate containing a hydroxyl group and a monofunctional acrylate containing a hydroxyl group. The details will be described below.
First, MEK 49.51g was added with respect to the raw material polymer 1 30g (0.156mol of MA conversion), and the solution was produced. Next, to this solution, 19.37 g of A-TMM-3L was added, and then 18.00 g (0.178 mol) of triethylamine was added, and the mixture was reacted at a temperature of 70° C. for 2 hours. After that, 22.65 g (0.195 mol) of BHEA was added and reacted at a temperature of 70° C. for 4 hours to prepare a reaction solution.
The prepared reaction solution was purified using an aqueous formic acid solution, an excess amount of toluene, an excess amount of water, and the like, as in Comparative Synthesis Example 1.
As described above, 22.10 g of a polymer was obtained in which the structural unit derived from maleic anhydride in the raw material polymer was ring-opened with A-TMM-3L and BHEA.
(合成例4)
 原料ポリマー1のMA単位を、水酸基含有の3官能アクリレートおよび水酸基含有の単官能アクリレートで開環したポリマーを作製した。以下、詳細を説明する。
 まず、原料ポリマー1 30g(MA換算0.156mol)に対して、MEK 49.86gを加えて、溶解液を作製した。次いで、この溶解液に対して、A-TMM-3L 19.37gを加え、その後、トリエチルアミン9.00g(0.089mol)を加え、温度70℃で2時間反応させた。さらにその後、4-HBA 28.13g(0.195mol)を加え、温度70℃で4時間反応させ、反応溶液を作製した。
 作製された反応溶液を、比較合成例1と同様に、ギ酸水溶液、過剰量のトルエン、過剰量の水などを用いて精製した。
 以上により、原料ポリマー中の無水マレイン酸に由来する構造単位を、A-TMM-3Lおよび4-HBAで開環した、ポリマー24.64gを得た。
(Synthesis example 4)
A polymer was prepared by opening the MA unit of the raw material polymer 1 with a trifunctional acrylate containing a hydroxyl group and a monofunctional acrylate containing a hydroxyl group. The details will be described below.
First, 49.86 g of MEK was added to 30 g of the raw material polymer 1 (0.156 mol in terms of MA) to prepare a solution. Next, to this solution, 19.37 g of A-TMM-3L was added, and then 9.00 g (0.089 mol) of triethylamine was added, and the mixture was reacted at 70° C. for 2 hours. After that, 28.13 g (0.195 mol) of 4-HBA was added and reacted at a temperature of 70° C. for 4 hours to prepare a reaction solution.
The prepared reaction solution was purified using an aqueous formic acid solution, an excess amount of toluene, an excess amount of water, and the like, as in Comparative Synthesis Example 1.
As a result, 24.64 g of a polymer was obtained in which the structural unit derived from maleic anhydride in the raw material polymer was ring-opened with A-TMM-3L and 4-HBA.
(合成例5)
 原料ポリマー1のMA単位を、水酸基含有の3官能アクリレートおよび水酸基含有の単官能アクリレートで開環したポリマーを作製した。以下、詳細を説明する。
 まず、原料ポリマー1 30g(MA換算0.156mol)に対して、MEK 47.35gを加えて、溶解液を作製した。次いで、この溶解液に対して、A-TMM-3L 19.37gを加え、その後、トリエチルアミン18.00g(0.178mol)を加え、温度70℃で2時間反応させた。さらにその後、4-HBA 28.13g(0.195mol)を加え、温度70℃で4時間反応させ、反応溶液を作製した。
 作製された反応溶液を、比較合成例1と同様に、ギ酸水溶液、過剰量のトルエン、過剰量の水などを用いて精製した。
 以上により、原料ポリマー中の無水マレイン酸に由来する構造単位を、A-TMM-3Lおよび4-HBAで開環した、ポリマー25.77gを得た。
(Synthesis example 5)
A polymer was prepared by opening the MA unit of the raw material polymer 1 with a trifunctional acrylate containing a hydroxyl group and a monofunctional acrylate containing a hydroxyl group. The details will be described below.
First, 47.35 g of MEK was added to 30 g of the raw material polymer 1 (0.156 mol in terms of MA) to prepare a solution. Next, to this solution, 19.37 g of A-TMM-3L was added, and then 18.00 g (0.178 mol) of triethylamine was added, and the mixture was reacted at a temperature of 70° C. for 2 hours. After that, 28.13 g (0.195 mol) of 4-HBA was added and reacted at a temperature of 70° C. for 4 hours to prepare a reaction solution.
The prepared reaction solution was purified using an aqueous formic acid solution, an excess amount of toluene, an excess amount of water, and the like, as in Comparative Synthesis Example 1.
As a result, 25.77 g of a polymer was obtained in which the structural unit derived from maleic anhydride in the raw material polymer was ring-opened with A-TMM-3L and 4-HBA.
(合成例6)
 原料ポリマー1のMA単位を、水酸基含有の5官能アクリレートおよび水酸基含有の単官能アクリレートで開環したポリマーを作製した。以下、詳細を説明する。
 まず、原料ポリマー1 30g(MA換算0.156mol)に対して、MEK 71.03gを加えて、溶解液を作製した。次いで、この溶解液に対して、A-9550 43.78gを加え、その後、トリエチルアミン9.00g(0.089mol)を加え、温度70℃で2時間反応させた。さらにその後、反応溶液にBHEA 22.65g(0.195mol)を加え、温度70℃で4時間反応させ、反応溶液を作製した。
 作製された反応溶液を、比較合成例1と同様に、ギ酸水溶液、過剰量のトルエン、過剰量の水などを用いて精製した。
 以上により、原料ポリマー中の無水マレイン酸に由来する構造単位を、A-9550およびBHEAで開環した、ポリマー25.51gを得た。
(Synthesis example 6)
A polymer was prepared by opening the MA unit of the raw material polymer 1 with a hydroxyl group-containing pentafunctional acrylate and a hydroxyl group-containing monofunctional acrylate. The details will be described below.
First, 71.03 g of MEK was added to 30 g of the raw material polymer 1 (0.156 mol in terms of MA) to prepare a solution. Next, to this solution, 43.78 g of A-9550 was added, and then 9.00 g (0.089 mol) of triethylamine was added, and the mixture was reacted at a temperature of 70° C. for 2 hours. After that, 22.65 g (0.195 mol) of BHEA was added to the reaction solution and reacted at a temperature of 70° C. for 4 hours to prepare a reaction solution.
The prepared reaction solution was purified using an aqueous formic acid solution, an excess amount of toluene, an excess amount of water, and the like, as in Comparative Synthesis Example 1.
As a result, 25.51 g of a polymer was obtained in which the structural unit derived from maleic anhydride in the raw material polymer was ring-opened with A-9550 and BHEA.
(合成例7)
 原料ポリマー2のMA単位を、水酸基含有の3官能アクリレートおよび水酸基含有の単官能アクリレートで開環したポリマーを作製した。以下、詳細を説明する。
 まず、原料ポリマー2 30g(MA換算0.156mol)に対して、MEK 49.41gを加えて、溶解液を作製した。次いで、この溶解液に対して、A-TMM-3LM-N 19.37gを加え、その後、トリエチルアミン9.00g(0.089mol)を加え、温度70℃で2時間反応させた。さらにその後、BHEA 22.65g(0.195mol)を加え、温度70℃で4時間反応させ、反応溶液を作製した。
 作製された反応溶液を、比較合成例1と同様に、ギ酸水溶液、過剰量のトルエン、過剰量の水などを用いて精製した。
 以上により、原料ポリマー中の無水マレイン酸に由来する構造単位を、A-TMM-3LおよびBHEAで開環した、ポリマー21.11gを得た。
(Synthesis example 7)
A polymer was prepared by opening the MA unit of the raw material polymer 2 with a trifunctional acrylate containing a hydroxyl group and a monofunctional acrylate containing a hydroxyl group. The details will be described below.
First, 49.41 g of MEK was added to 30 g of the raw material polymer 2 (0.156 mol in terms of MA) to prepare a solution. Next, to this solution, 19.37 g of A-TMM-3LM-N was added, and then 9.00 g (0.089 mol) of triethylamine was added, and the mixture was reacted at a temperature of 70° C. for 2 hours. After that, 22.65 g (0.195 mol) of BHEA was added and reacted at a temperature of 70° C. for 4 hours to prepare a reaction solution.
The prepared reaction solution was purified using an aqueous formic acid solution, an excess amount of toluene, an excess amount of water, and the like, as in Comparative Synthesis Example 1.
As a result, 21.11 g of a polymer was obtained in which the structural unit derived from maleic anhydride in the raw material polymer was ring-opened with A-TMM-3L and BHEA.
(合成例8)
 原料ポリマー1のMA単位を、水酸基含有の3官能アクリレートおよび水酸基含有の単官能アクリレートで開環したポリマーを作製した。以下、詳細を説明する。
 まず、原料ポリマー1 30g(MA換算0.156mol)に対して、MEK 50.60gを加えて、溶解液を作製した。次いで、この溶解液に対して、A-TMM-3LM-N 7.75gを加え、その後、トリエチルアミン9.00g(0.089mol)を加え、温度70℃で2時間反応させた。さらにその後、BHEA 22.65g(0.195mol)を加え、温度70℃で4時間反応させ、反応溶液を作製した。
 作製された反応溶液を、比較合成例1と同様に、ギ酸水溶液、過剰量のトルエン、過剰量の水などを用いて精製した。
 以上により、原料ポリマー中の無水マレイン酸に由来する構造単位をA-TMM-3LM-NおよびBHEAで開環した、ポリマー20.66gを得た。
(Synthesis example 8)
A polymer was prepared by opening the MA unit of the raw material polymer 1 with a trifunctional acrylate containing a hydroxyl group and a monofunctional acrylate containing a hydroxyl group. The details will be described below.
First, 50.60 g of MEK was added to 30 g of the raw material polymer 1 (0.156 mol in terms of MA) to prepare a solution. Next, 7.75 g of A-TMM-3LM-N was added to this solution, and then 9.00 g (0.089 mol) of triethylamine was added, and the mixture was reacted at a temperature of 70° C. for 2 hours. After that, 22.65 g (0.195 mol) of BHEA was added and reacted at a temperature of 70° C. for 4 hours to prepare a reaction solution.
The prepared reaction solution was purified using an aqueous formic acid solution, an excess amount of toluene, an excess amount of water, and the like, as in Comparative Synthesis Example 1.
As a result, 20.66 g of a polymer was obtained in which the structural unit derived from maleic anhydride in the raw material polymer was ring-opened with A-TMM-3LM-N and BHEA.
(合成例9)
 原料ポリマー1のMA単位を、水酸基含有の3官能アクリレートおよび水酸基含有の単官能アクリレートで開環したポリマーを作製した。以下、詳細を説明する。
 まず、原料ポリマー1 30g(MA換算0.156mol)に対して、MEK 46.60gを加えて、溶解液を作製した。次いで、この溶解液に対して、A-TMM-3L 7.75gを加え、その後、トリエチルアミン18.00g(0.178mol)を加え、温度70℃で2時間反応させた。さらにその後、BHEA 22.65g(0.195mol)を加え、温度70℃で4時間反応させ、反応溶液を作製した。
 作製された反応溶液を、比較合成例1と同様に、ギ酸水溶液、過剰量のトルエン、過剰量の水などを用いて精製した。
 以上により、原料ポリマー中の無水マレイン酸に由来する構造単位をA-TMM-3LおよびBHEAで開環した、ポリマー21.22gを得た。
(Synthesis example 9)
A polymer was prepared by opening the MA unit of the raw material polymer 1 with a trifunctional acrylate containing a hydroxyl group and a monofunctional acrylate containing a hydroxyl group. The details will be described below.
First, MEK (46.60 g) was added to the raw material polymer 1 (30 g, 0.156 mol in terms of MA) to prepare a solution. Then, to this solution, 7.75 g of A-TMM-3L was added, and then 18.00 g (0.178 mol) of triethylamine was added and reacted at a temperature of 70° C. for 2 hours. After that, 22.65 g (0.195 mol) of BHEA was added and reacted at a temperature of 70° C. for 4 hours to prepare a reaction solution.
The prepared reaction solution was purified using an aqueous formic acid solution, an excess amount of toluene, an excess amount of water, and the like, as in Comparative Synthesis Example 1.
As a result, 21.22 g of a polymer was obtained in which the structural unit derived from maleic anhydride in the raw material polymer was ring-opened with A-TMM-3L and BHEA.
(合成例10)
 原料ポリマー1のMA単位を、水酸基含有の3官能アクリレートおよび水酸基含有の単官能アクリレートで開環したポリマーを作製した。以下、詳細を説明する。
 まず、原料ポリマー1 30g(MA換算0.156mol)に対して、MEK 54.13gを加えて、溶解液を作製した。次いで、この溶解液に対して、A-TMM-3LM-N 29.06gを加え、その後、トリエチルアミン18.00g(0.178mol)を加え、温度70℃で2時間反応させた。さらにその後、BHEA 22.65g(0.195mol)を加え、温度70℃で4時間反応させ、反応溶液を作製した。
 作製された反応溶液を、比較合成例1と同様に、ギ酸水溶液、過剰量のトルエン、過剰量の水などを用いて精製した。
 以上により、原料ポリマー中の無水マレイン酸に由来する構造単位を、A-TMM-3LM-NおよびBHEAで開環した、ポリマー24.54gを得た。
(Synthesis example 10)
A polymer was prepared by opening the MA unit of the raw material polymer 1 with a trifunctional acrylate containing a hydroxyl group and a monofunctional acrylate containing a hydroxyl group. The details will be described below.
First, 54.13 g of MEK was added to 30 g of the raw material polymer 1 (0.156 mol in terms of MA) to prepare a solution. Next, to this solution, 29.06 g of A-TMM-3LM-N was added, and then 18.00 g (0.178 mol) of triethylamine was added, and the mixture was reacted at a temperature of 70° C. for 2 hours. After that, 22.65 g (0.195 mol) of BHEA was added and reacted at a temperature of 70° C. for 4 hours to prepare a reaction solution.
The prepared reaction solution was purified using an aqueous formic acid solution, an excess amount of toluene, an excess amount of water, and the like, as in Comparative Synthesis Example 1.
As a result, 24.54 g of a polymer was obtained in which the structural unit derived from maleic anhydride in the raw material polymer was ring-opened with A-TMM-3LM-N and BHEA.
<GPC測定>
 各ポリマーについて、ポリスチレンを標準物質としたGPC測定により、重量平均分子量および分散度(重量平均分子量/数平均分子量)を求めた。
 なお、GPC測定により、アクリレート化合物(BHEA、4-HBA、A-TMM-3L、A-TMM-3LM-N、A-9550)のピークの消失を確認した。つまり、各合成例および比較合成例のポリマーにおいては、原料ポリマーのMA単位と未反応のアクリレートや、そもそもMA単位と反応しないアクリレート化合物(水酸基を含まないアクリレート)が十分に除去されていることを確認した。
<GPC measurement>
For each polymer, the weight average molecular weight and the dispersity (weight average molecular weight/number average molecular weight) were determined by GPC measurement using polystyrene as a standard substance.
The disappearance of the peaks of the acrylate compounds (BHEA, 4-HBA, A-TMM-3L, A-TMM-3LM-N, A-9550) was confirmed by GPC measurement. That is, in the polymers of each synthesis example and comparative synthesis example, it is confirmed that the MA unit of the raw material polymer and the unreacted acrylate and the acrylate compound that does not react with the MA unit (acrylate not containing a hydroxyl group) are sufficiently removed. confirmed.
<ポリマーのNMR測定>
 各合成例および比較合成例のポリマーについて、H-NMR測定を行った。
 H-NMR測定内標準のテレフタル酸ジメチルのフェニル基の4Hのピーク(8.1ppm付近)の積分値を基準にして、ポリマーのカルボキシル基(-COOH)のHのピーク(12.4ppm付近)の積分値からカルボキシル基の量を求めた。そして、その量から酸価(mgKOH/g)を算出した。
 酸価の値が大きいほど、ポリマー単位質量あたりのカルボキシル基の量が多いことを表す。
<NMR measurement of polymer>
1 H-NMR measurement was performed on the polymers of each synthesis example and comparative synthesis example.
1 H-NMR measurement Based on the integrated value of the 4 H peak (around 8.1 ppm) of the phenyl group of dimethyl terephthalate as an internal standard, the H peak (around 12.4 ppm) of the polymer carboxyl group (—COOH). The amount of carboxyl groups was determined from the integrated value of. Then, the acid value (mgKOH/g) was calculated from the amount.
The larger the acid value, the larger the amount of carboxyl groups per unit mass of the polymer.
 また、同様に、テレフタル酸ジメチルのフェニル基の4Hのピーク(8.1ppm付近)の積分値を基準にして、ポリマー中のアクリロイル部分(CH=CH-COO-)の3Hのピーク(6.2ppm付近)の積分値よりC=C二重結合の量を求め、その量から二重結合当量 (C=C二重結合1モルあたりのポリマー質量、g/mol)を算出した。
 二重結合当量の値が小さいほど、ポリマー単位質量あたりのC=C二重結合の量が多いことを表す。
Similarly, based on the integrated value of the 4H peak of the phenyl group of dimethyl terephthalate (around 8.1 ppm), the 3H peak of the acryloyl moiety (CH 2 ═CH—COO—) in the polymer (6. The amount of C=C double bond was obtained from the integrated value of (about 2 ppm), and the double bond equivalent (C=polymer mass per mol of C double bond, g/mol) was calculated from the amount.
The smaller the value of the double bond equivalent, the larger the amount of C=C double bond per unit mass of the polymer.
 表1に、各合成例および比較合成例のポリマーについて、合成で用いたアクリレート化合物、ポリマーの重量平均分子量、分散度、酸価および二重結合当量をまとめて示す。 Table 1 shows the acrylate compound used in the synthesis, the weight average molecular weight of the polymer, the dispersity, the acid value, and the double bond equivalent of the polymers of each synthesis example and comparative synthesis example.
 あわせて、第一構造単位のうち、Rが2以上の重合性炭素-炭素二重結合を含む基である構造単位の比率と、第一構造単位のうち、Rが1のみの重合性炭素-炭素二重結合を含む基である構造単位の比率(ポリマーの全構造単位中の比率)も、表1に示す。これら比率は、原料ポリマー1または2中のノルボルネン構造単位:無水マレイン酸構造単位の比率が50:50(モル比)であることを前提として、前述のように「連立方程式」を解くこと等により求めた。
 念のため述べておくと、各ポリマーにおいて、これら2つの比率の和は50mol%未満である。このことから、ポリマー中の無水マレイン酸構造単位の全ては開環せず、一部は式(MA)で表される構造のままであることがいえる。
In addition, among the first structural unit, R D is 2 or more polymerizable carbon - the ratio of the structural unit is a group containing a carbon double bond, of the first structural unit, polymerizable R D is only one The ratio of structural units that are groups containing carbon-carbon double bonds (ratio in the total structural units of the polymer) is also shown in Table 1. These ratios are obtained by solving the “simultaneous equations” as described above, assuming that the ratio of the norbornene structural unit:maleic anhydride structural unit in the starting polymer 1 or 2 is 50:50 (molar ratio). I asked.
Note that in each polymer, the sum of these two ratios is less than 50 mol %. From this, it can be said that all of the maleic anhydride structural units in the polymer do not undergo ring opening, and some of them remain the structure represented by the formula (MA).
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 ここで、合成例のポリマーの酸価および二重結合当量の数値から、合成例1~10のポリマーには、一般式(1)で表される構造単位であって、Rが2以上の重合性炭素-炭素二重結合を含む基であるものが含まれていることが裏付けられる。このことについて以下に説明する。 Here, from the values of the acid value and double bond equivalent of the polymers of Synthesis Examples, the polymers of Synthesis Examples 1 to 10 have the structural unit represented by the general formula (1) and R D is 2 or more. It is supported to include those that are groups containing a polymerizable carbon-carbon double bond. This will be described below.
 ヒドロキシ基および重合性炭素-炭素二重結合を有する化合物による、原料ポリマー中のMA単位の開環を考える。
 1分子のヒドロキシ基および重合性炭素-炭素二重結合を有する化合物が、1のMA単位を開環させると、一般式(1)のように1つのカルボキシル基が生成する。
 ここで、ヒドロキシ基および重合性炭素-炭素二重結合を有する化合物が、BHEAや4-HBAの如き単官能化合物である場合には、導入されるC=C二重結合の数は1つである。つまり、1つのMA単位の開環により、カルボキシル基が1つ、C=C二重結合が1つ増える。
Consider the ring opening of the MA unit in the starting polymer with a compound having a hydroxy group and a polymerizable carbon-carbon double bond.
When a compound having one molecule of a hydroxy group and a polymerizable carbon-carbon double bond opens one MA unit, one carboxyl group is generated as in the general formula (1).
Here, when the compound having a hydroxy group and a polymerizable carbon-carbon double bond is a monofunctional compound such as BHEA or 4-HBA, the number of C═C double bonds introduced is one. is there. That is, the ring-opening of one MA unit increases the number of carboxyl groups and the number of C=C double bonds by one.
 一方、ヒドロキシ基および重合性炭素-炭素二重結合を有する化合物が、A-TMM-3LやA-9550の如き多官能化合物である場合には、1つのMA単位の開環により、カルボキシル基は1つ、C=C二重結合は「2以上」増える。 On the other hand, when the compound having a hydroxy group and a polymerizable carbon-carbon double bond is a polyfunctional compound such as A-TMM-3L or A-9550, the carboxyl group is converted to a carboxyl group by ring opening of one MA unit. One, the C=C double bond increases by "2 or more".
 そうすると、酸価が同程度(すなわち、MA単位の開環量が同程度)の2種以上のポリマーにおいては、多官能化合物でMA単位を開環させたポリマーのほうが、単官能化合物でMA単位を開環させたポリマーよりも、二重結合当量は小さくなる。 Then, in two or more kinds of polymers having the same acid value (that is, the same amount of ring-opening of MA unit), the polymer obtained by ring-opening the MA unit with the polyfunctional compound is the monofunctional compound with the MA unit. The double bond equivalent is smaller than that of the polymer obtained by ring-opening.
 このことを踏まえて上表を確認する。
 合成例1~10のポリマーの酸価(開環によるカルボキシ基の生成量に対応する)は、比較合成例2、3のポリマー(単官能化合物のみでMA単位を開環させたもの)の酸価と同程度または小さい。それにもかかわらず、合成例1~10のポリマーの二重結合当量は比較合成例2、3のポリマーのそれよりも小さい傾向にある(つまり、ポリマー単位質量あたりのC=C二重結合の量が多い)。このことは、合成例1~10のポリマーには、A-TMM-3LやA-9550の如き多官能化合物に由来する構造が導入されていることを示す。
Based on this, the above table is confirmed.
The acid values of the polymers of Synthesis Examples 1 to 10 (corresponding to the amount of carboxy groups produced by ring opening) are the same as those of the polymers of Comparative Synthesis Examples 2 and 3 (MA units of which are ring-opened with only a monofunctional compound). Same or smaller than the price. Nevertheless, the double bond equivalents of the polymers of Synthesis Examples 1-10 tend to be smaller than that of the polymers of Comparative Synthesis Examples 2 and 3 (ie the amount of C=C double bonds per unit mass of polymer). There are many). This indicates that the polymers of Synthesis Examples 1 to 10 have structures derived from polyfunctional compounds such as A-TMM-3L and A-9550 introduced therein.
 合成の手順からして、A-TMM-3LやA-9550の如き多官能化合物に由来する構造が原料ポリマーに導入されていることは明らかではあるが、上記のように、酸価と二重結合当量の関係からも、多官能化合物に由来する構造の導入が裏付けられる。 From the synthetic procedure, it is clear that a structure derived from a polyfunctional compound such as A-TMM-3L or A-9550 is introduced into the raw material polymer. The relationship of the bond equivalent also supports the introduction of the structure derived from the polyfunctional compound.
<評価>
[現像性評価](TMAH水溶液に対するポリマーの溶解速度)
 各合成例および比較合成例のポリマーをプロピレングリコールモノメチルエーテルアセテート(PGMEA)に溶解させて、固形分濃度30質量%の溶液を作製した。
 次いで、ウエハー上に上記溶液をスピンコートし、PGMEAを乾燥させ、そして温度100℃で2分間プリベークすることで、膜厚約2μmの樹脂膜を作製した。
 この樹脂膜を、ウエハーごと、温度23℃の2.38質量%水酸化テトラメチルアンモニウム(TMAH)水溶液に浸漬し、樹脂膜の溶解速度を測定した。
 溶解速度は、浸漬したウエハーを目視で観察して樹脂膜が溶解して干渉模様が見えなくなるまでの時間を測定し、その時間で膜厚を割り算することで算出した。
<Evaluation>
[Development property evaluation] (polymer dissolution rate in TMAH aqueous solution)
The polymers of each synthesis example and comparative synthesis example were dissolved in propylene glycol monomethyl ether acetate (PGMEA) to prepare a solution having a solid content concentration of 30% by mass.
Then, the solution was spin-coated on the wafer, PGMEA was dried, and prebaked at a temperature of 100° C. for 2 minutes to prepare a resin film having a thickness of about 2 μm.
This resin film, together with the wafer, was immersed in a 2.38 mass% tetramethylammonium hydroxide (TMAH) aqueous solution at a temperature of 23° C., and the dissolution rate of the resin film was measured.
The dissolution rate was calculated by visually observing the immersed wafer, measuring the time until the resin film was dissolved and the interference pattern disappeared, and dividing the film thickness by the time.
 現像性の良し悪しは、以下基準により判断した。 
 ○(良い):溶解速度500nm/s以上
 ×(悪い):溶解速度500nm/s未満
The developability was evaluated according to the following criteria.
Good (good): Dissolution rate of 500 nm/s or more Poor (bad): Dissolution rate of less than 500 nm/s
[感度評価](2.0質量%炭酸ナトリウム水溶液)
 まず、全固形分濃度が30質量%になるように、以下成分をプロピレングリコールモノメチルエーテルアセテート(PGMEA)に溶解した感光性樹脂組成物を得た。
・ポリマー(合成例1~10または比較合成例1~3のもの):100質量部
・多官能アクリレート(ジペンタエリスリトールキサアクリレート):50質量部
・光重合開始剤(BASF社製、Ingacure OXE01):5質量部
・密着助剤(信越化学工業株式会社製、KBM-403):1質量部
・界面活性剤(DIC株式会社製、F-556):0.5質量部
[Sensitivity evaluation] (2.0 mass% sodium carbonate aqueous solution)
First, a photosensitive resin composition was obtained by dissolving the following components in propylene glycol monomethyl ether acetate (PGMEA) so that the total solid content concentration was 30% by mass.
Polymer (Synthesis Examples 1 to 10 or Comparative Synthesis Examples 1 to 3): 100 parts by mass Polyfunctional acrylate (dipentaerythritol oxaacrylate): 50 parts by mass Photopolymerization initiator (BASF Ingacure OXE01) : 5 parts by mass-Adhesion auxiliary agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403): 1 part by mass-Surfactant (manufactured by DIC Corporation, F-556): 0.5 parts by mass
 得られた樹脂組成物を、HMDS(Hexamethyldisilazane)処理した3インチシリコンウェハー上に回転塗布し、100℃、120秒間ホットプレートにてベークして、約3.0μm厚(±0.3μm)の薄膜Aを得た。
 この薄膜Aに、遮光率1~100%の階調を有するフォトマスクを介して、キヤノン社製g+h+i線マスクアライナー(PLA-501F)にて100mJ/cmの露光量でg+h+i線を露光した。
 露光後、薄膜を2.0質量%炭酸ナトリウム水溶液で23℃、60秒間現像(ウェハーごと浸漬)することで、1~100mJ/cmの各露光量で露光、現像された薄膜Bを得た。
The obtained resin composition was spin-coated on a HMDS (Hexamethyldisilane)-treated 3 inch silicon wafer and baked on a hot plate at 100° C. for 120 seconds to give a thin film having a thickness of about 3.0 μm (±0.3 μm). I got A.
This thin film A was exposed to g+h+i rays with an exposure dose of 100 mJ/cm 2 using a g+h+i ray mask aligner (PLA-501F) manufactured by Canon Inc. through a photomask having a gradation of a light blocking rate of 1 to 100%.
After the exposure, the thin film was developed (dipping the whole wafer) with a 2.0% by mass sodium carbonate aqueous solution at 23° C. for 60 seconds to obtain a thin film B exposed and developed at each exposure amount of 1 to 100 mJ/cm 2 . ..
 上記の方法にて得られた薄膜A、薄膜Bの膜厚から、以下の式より残膜率を算出した。
   残膜率(%)=(各露光量での薄膜Bの膜厚/薄膜Aの膜厚)×100
 そして、残膜率が95%以上となる露光量を、各感光性樹脂組成物の感度として、以下基準により評価した。
 ◎(感度がとても良い):20mJ/cm以下
 ○(感度が良い):21~50mJ/cm
 ×(感度が悪い):51mJ/cm以上
From the film thicknesses of the thin film A and the thin film B obtained by the above method, the residual film rate was calculated by the following formula.
Remaining film ratio (%)=(film thickness of thin film B at each exposure amount/film thickness of thin film A)×100
Then, the exposure amount at which the residual film ratio was 95% or more was evaluated as the sensitivity of each photosensitive resin composition according to the following criteria.
◎ (very good sensitivity): 20 mJ/cm 2 or less ○ (good sensitivity): 21 to 50 mJ/cm 2
X (poor sensitivity): 51 mJ/cm 2 or more
[現像性評価](追加:NaCO水溶液に対するポリマーの溶解速度)
 様々な現像プロセスに対する適応性などを探るため、現像液として炭酸ナトリウム水溶液を用いた場合の現像性も評価した。
 具体的には、上記[感度評価]で調製した感光性樹脂組成物のうち、ポリマーとして合成例1~10のいずれかのものを用いた組成物について、現像液としては2.0質量%炭酸ナトリウム水溶液を用い、手順としては上記[現像性評価]と同様にして樹脂膜の作製と溶解速度の測定を行った。そして、以下基準で評価した。
 ○(良い):溶解速度50nm/s以上
 ×(悪い):溶解速度50nm/s未満
[Developability evaluation] (Addition: dissolution rate of polymer in Na 2 CO 3 aqueous solution)
In order to investigate the adaptability to various development processes, the developability when an aqueous sodium carbonate solution was used as the developer was also evaluated.
Specifically, among the photosensitive resin compositions prepared in the above [Sensitivity evaluation], the composition using any one of Synthesis Examples 1 to 10 was used as a developing solution containing 2.0% by mass of carbonic acid. Using a sodium aqueous solution, a resin film was prepared and the dissolution rate was measured in the same manner as in the above [Evaluation of developability]. And the following criteria evaluated.
◯ (good): Dissolution rate of 50 nm/s or more × (bad): Dissolution rate of less than 50 nm/s
 評価結果を以下にまとめて示す。 The evaluation results are summarized below.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表2に示されるとおり、合成例1~10のポリマーを用いた評価においては、現像性と感度の両性能が良好であった。すなわち、感度と現像性を両立させることができた。
 特に、現像性については、TMAH現像液を用いた場合だけでなく、炭酸ナトリウム現像液を用いた場合も良好であった。本実施形態の感光性樹脂組成物またはポリマーは、様々な種類の現像液に対する溶解性が良好であることが読み取れる。
As shown in Table 2, in the evaluation using the polymers of Synthesis Examples 1 to 10, both the developability and the sensitivity were good. That is, both sensitivity and developability could be made compatible.
In particular, the developability was good not only when using the TMAH developer but also when using the sodium carbonate developer. It can be read that the photosensitive resin composition or polymer of the present embodiment has good solubility in various types of developing solutions.
 一方、比較合成例1のポリマーを用いた評価においては、現像性が悪かった。比較的多量の重合性炭素-炭素二重結合がポリマー中に含まれていたにもかかわらず(二重結合当量:286g/mol)、酸価が70mgKOH/g未満と小さかったために、十分な現像性が得られなかったものと考えられる。
 また、比較合成例2、3のポリマーを用いた評価においては、感度が悪かった。高感度化に必要な密度の二重結合がポリマー中に存在しなかったためと考えられる。
On the other hand, in the evaluation using the polymer of Comparative Synthesis Example 1, the developability was poor. Despite the relatively large amount of polymerizable carbon-carbon double bond contained in the polymer (double bond equivalent: 286 g/mol), the acid value was small as less than 70 mgKOH/g, so sufficient development was performed. It is thought that the sex was not obtained.
Moreover, in the evaluation using the polymers of Comparative Synthesis Examples 2 and 3, the sensitivity was poor. It is considered that the double bonds with the density required for the sensitivity enhancement were not present in the polymer.
<カラーフィルタの作製>
 [感度評価]で調製した感光性樹脂組成物のうち、合成例1のポリマーを含むものに対し、さらに、顔料分散液NX-061(大日精化工業株式会社製、緑色)を適量加えた着色感光性樹脂組成物を調製した。これを基板上に製膜し、露光、アルカリ現像処理などを行うことで、緑色のカラーフィルタを形成することができた。
 また、顔料分散液として、NX-061の代わりに、同社製のNX-053(青色)、NX-032(赤色)などを用いて、青色または赤色のカラーフィルタを形成することができた。
 ちなみに、これらカラーフィルタは、デバイス作製工程の中で晒されうる高温に対して十分な耐性を有していた。これには、ポリマーが環状炭化水素骨格を有する構造単位を含むことが関係していると考えられる。
<Production of color filter>
Pigment dispersion NX-061 (manufactured by Dainichiseika Kogyo KK, green) was added to the photosensitive resin composition prepared in [Sensitivity evaluation] containing the polymer of Synthesis Example 1 in an appropriate amount for coloring. A photosensitive resin composition was prepared. A green color filter could be formed by forming a film on the substrate and performing exposure, alkali development treatment and the like.
Further, as the pigment dispersion liquid, NX-053 (blue), NX-032 (red) manufactured by the same company was used instead of NX-061, and a blue or red color filter could be formed.
By the way, these color filters had sufficient resistance to high temperatures that could be exposed during the device manufacturing process. It is believed that this is related to the fact that the polymer contains structural units having a cyclic hydrocarbon skeleton.
<ブラックマトリクスの作製>
 [感度評価]で調製した感光性樹脂組成物のうち、合成例1のポリマーを含むものに対し、さらに、カーボンブラック分散液NX-595(大日精化工業株式会社製)を適量加えた黒色感光性樹脂組成物を調製した。これを基板上に製膜し、露光、アルカリ現像処理などを行うことで、ブラックマトリクスを形成することができた。
 ちなみに、このブラックマトリックスは、デバイス作製工程の中で晒されうる高温に対して十分な耐性を有していた。これには、ポリマーが環状炭化水素骨格を有する構造単位を含むことが関係していると考えられる。
<Production of black matrix>
Black photosensitive material obtained by adding an appropriate amount of carbon black dispersion NX-595 (manufactured by Dainichiseika Kogyo Co., Ltd.) to the photosensitive resin composition prepared in [Sensitivity evaluation] containing the polymer of Synthesis Example 1. A resin composition was prepared. A black matrix could be formed by forming a film on the substrate and performing exposure, alkali development treatment and the like.
Incidentally, this black matrix had sufficient resistance to the high temperatures that can be exposed during the device manufacturing process. It is believed that this is related to the fact that the polymer contains structural units having a cyclic hydrocarbon skeleton.
 この出願は、2019年1月31日に出願された日本出願特願2019-015715号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims the priority right based on Japanese Patent Application No. 2019-015715 filed on January 31, 2019, and incorporates all the disclosure thereof.

Claims (23)

  1.  以下一般式(1)で表される第一構造単位を有し、酸価が70~300mgKOH/gであり、二重結合当量が100~500g/molであるポリマーを含む、感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、Rは、重合性炭素-炭素二重結合を含む基である。
    A photosensitive resin composition comprising a polymer having a first structural unit represented by the following general formula (1), an acid value of 70 to 300 mgKOH/g, and a double bond equivalent of 100 to 500 g/mol. ..
    Figure JPOXMLDOC01-appb-C000001
    In the general formula (1), R D is a group containing a polymerizable carbon-carbon double bond.
  2.  請求項1に記載の感光性樹脂組成物であって、
     前記第一構造単位は、Rが2以上の重合性炭素-炭素二重結合を含む基である構造単位を含む、感光性樹脂組成物。
    The photosensitive resin composition according to claim 1, wherein
    The photosensitive resin composition, wherein the first structural unit includes a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds.
  3.  請求項1または2に記載の感光性樹脂組成物であって、
     前記第一構造単位は、Rが2以上の重合性炭素-炭素二重結合を含む基である構造単位と、Rが1のみの重合性炭素-炭素二重結合を含む基である構造単位とを含む、感光性樹脂組成物。
    The photosensitive resin composition according to claim 1 or 2, wherein
    The first structural unit is a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds, and a structure in which R D is a group containing only one polymerizable carbon-carbon double bond. A photosensitive resin composition comprising a unit.
  4.  請求項1~3のいずれか1項に記載の感光性樹脂組成物であって、
     前記ポリマーが、さらに、以下式(MA)で表される第二構造単位を含む、感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    The photosensitive resin composition according to any one of claims 1 to 3,
    The photosensitive resin composition, wherein the polymer further contains a second structural unit represented by the following formula (MA).
    Figure JPOXMLDOC01-appb-C000002
  5.  請求項1~4のいずれか1項に記載の感光性樹脂組成物であって、
     前記ポリマーが、さらに、環状炭化水素骨格を有する構造単位を含む、感光性樹脂組成物。
    The photosensitive resin composition according to any one of claims 1 to 4, wherein:
    The photosensitive resin composition, wherein the polymer further contains a structural unit having a cyclic hydrocarbon skeleton.
  6.  請求項1~5のいずれか1項に記載の感光性樹脂組成物であって、
     前記ポリマーの全構造単位中の前記第一構造単位の比率が、10~40mol%である、感光性樹脂組成物。
    The photosensitive resin composition according to any one of claims 1 to 5, wherein
    The photosensitive resin composition, wherein the ratio of the first structural unit in all structural units of the polymer is 10 to 40 mol %.
  7.  請求項1~6のいずれか1項に記載の感光性樹脂組成物であって、
     前記ポリマーの重量平均分子量が、6,000~25,000である、感光性樹脂組成物。
    The photosensitive resin composition according to any one of claims 1 to 6, wherein:
    The photosensitive resin composition, wherein the polymer has a weight average molecular weight of 6,000 to 25,000.
  8.  請求項1~7のいずれか1項に記載の感光性樹脂組成物であって、
     さらに着色剤を含む感光性樹脂組成物。
    The photosensitive resin composition according to any one of claims 1 to 7,
    A photosensitive resin composition further containing a colorant.
  9.  請求項1~7のいずれか1項に記載の感光性樹脂組成物であって、
     さらに遮光剤を含む感光性樹脂組成物。
    The photosensitive resin composition according to any one of claims 1 to 7,
    Further, a photosensitive resin composition containing a light shielding agent.
  10.  以下一般式(1)で表される第一構造単位を有し、酸価が70~300mgKOH/gであり、二重結合当量が100~500g/molであるポリマー。
    Figure JPOXMLDOC01-appb-C000003
     一般式(1)中、Rは、重合性炭素-炭素二重結合を含む基である。
    A polymer having the first structural unit represented by the following general formula (1), having an acid value of 70 to 300 mgKOH/g, and having a double bond equivalent of 100 to 500 g/mol.
    Figure JPOXMLDOC01-appb-C000003
    In the general formula (1), R D is a group containing a polymerizable carbon-carbon double bond.
  11.  請求項10に記載のポリマーであって、
     前記第一構造単位は、Rが2以上の重合性炭素-炭素二重結合を含む基である構造単位を含むポリマー。
    The polymer according to claim 10, wherein
    The first structural unit is a polymer containing a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds.
  12.  請求項10または11に記載のポリマーであって、
     前記第一構造単位は、Rが2以上の重合性炭素-炭素二重結合を含む基である構造単位と、Rが1のみの重合性炭素-炭素二重結合を含む基である構造単位とを含むポリマー。
    The polymer according to claim 10 or 11, wherein
    The first structural unit is a structural unit in which R D is a group containing two or more polymerizable carbon-carbon double bonds, and a structure in which R D is a group containing only one polymerizable carbon-carbon double bond. A polymer containing units.
  13.  請求項10~12のいずれか1項に記載の感光性樹脂組成物であって、
     さらに、以下式(MA)で表される第二構造単位を含むポリマー。
    Figure JPOXMLDOC01-appb-C000004
    The photosensitive resin composition according to any one of claims 10 to 12,
    Further, a polymer containing a second structural unit represented by the following formula (MA).
    Figure JPOXMLDOC01-appb-C000004
  14.  請求項10~13のいずれか1項に記載のポリマーであって、
     さらに、環状炭化水素骨格を有する構造単位を含むポリマー。
    The polymer according to any one of claims 10 to 13, wherein
    Further, a polymer containing a structural unit having a cyclic hydrocarbon skeleton.
  15.  請求項10~14のいずれか1項に記載のポリマーであって、
     全構造単位中の前記第一構造単位の比率が、10~40mol%であるポリマー。
    The polymer according to any one of claims 10 to 14, wherein
    A polymer in which the ratio of the first structural unit in all structural units is 10 to 40 mol %.
  16.  請求項10~15のいずれか1項に記載のポリマーであって、
     重量平均分子量が、6,000~25,000であるポリマー。
    The polymer according to any one of claims 10 to 15, wherein
    A polymer having a weight average molecular weight of 6,000 to 25,000.
  17.  請求項1~7のいずれか1項に記載の感光性樹脂組成物を用いて得られるパターン。 A pattern obtained using the photosensitive resin composition according to any one of claims 1 to 7.
  18.  請求項8に記載の感光性樹脂組成物を用いて得られるカラーフィルタ。 A color filter obtained by using the photosensitive resin composition according to claim 8.
  19.  請求項18に記載のカラーフィルタを備える表示装置。 A display device comprising the color filter according to claim 18.
  20.  請求項18に記載のカラーフィルタを備える撮像素子。 An image pickup device comprising the color filter according to claim 18.
  21.  請求項9に記載の感光性樹脂組成物を用いて得られるブラックマトリクス。 A black matrix obtained by using the photosensitive resin composition according to claim 9.
  22.  請求項21に記載のブラックマトリクスを備える表示装置。 A display device comprising the black matrix according to claim 21.
  23.  請求項21に記載のブラックマトリクスを備える撮像素子。 An image pickup device comprising the black matrix according to claim 21.
PCT/JP2020/003004 2019-01-31 2020-01-28 Photosensitive resin composition, polymer, pattern, color filter, black matrix, display device and imaging element WO2020158741A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080011609.2A CN113366029B (en) 2019-01-31 2020-01-28 Photosensitive resin composition, polymer, pattern, color filter, black matrix, display device, and image pickup element
JP2020544958A JPWO2020158741A1 (en) 2019-01-31 2020-01-28 Photosensitive resin compositions, polymers, patterns, color filters, black matrices, display devices and image sensors
KR1020217027408A KR20210121169A (en) 2019-01-31 2020-01-28 Photosensitive resin composition, polymer, pattern, color filter, black matrix, display device and image pickup device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019015715 2019-01-31
JP2019-015715 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020158741A1 true WO2020158741A1 (en) 2020-08-06

Family

ID=71841354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003004 WO2020158741A1 (en) 2019-01-31 2020-01-28 Photosensitive resin composition, polymer, pattern, color filter, black matrix, display device and imaging element

Country Status (5)

Country Link
JP (2) JPWO2020158741A1 (en)
KR (1) KR20210121169A (en)
CN (1) CN113366029B (en)
TW (1) TW202035486A (en)
WO (1) WO2020158741A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075448A1 (en) * 2019-10-16 2021-04-22 住友ベークライト株式会社 Resin composition, photosensitive resin composition, and cured product thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792112B (en) * 2020-12-04 2023-02-11 晨豐光電股份有限公司 Glass with low color difference and low scattering

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033951A (en) * 2009-08-05 2011-02-17 Toyo Ink Mfg Co Ltd Photosensitive composition
WO2011129182A1 (en) * 2010-04-13 2011-10-20 昭和電工株式会社 Addition copolymer, photosensitive resin composition, and color filter
JP2014160228A (en) * 2013-01-22 2014-09-04 Toyo Ink Sc Holdings Co Ltd Photosensitive resin composition and coating film using the same
JP2018197833A (en) * 2017-05-25 2018-12-13 東レ株式会社 Insulating resin composition, method for producing insulating member and touch panel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786388B2 (en) 2006-03-29 2011-10-05 新日鐵化学株式会社 Color filter having a cured film of photosensitive resin composition
JP5384914B2 (en) * 2008-11-19 2014-01-08 株式会社日本触媒 Photosensitive resin, method for producing the same, and photosensitive resin composition
TWI511986B (en) 2013-03-13 2015-12-11 Showa Denko Kk Blocked isocyanate group-containing polymer, composition comprising same and use thereof
JP6405670B2 (en) 2014-04-02 2018-10-17 凸版印刷株式会社 Color filter substrate and liquid crystal display device
CN107615167A (en) * 2015-05-29 2018-01-19 住友电木株式会社 The manufacture method of photosensitive composition, colored pattern or black matrix, colour filter, liquid crystal display device or solid-state imager and colour filter
WO2017154439A1 (en) * 2016-03-08 2017-09-14 住友ベークライト株式会社 Method for manufacturing polymer, method for manufacturing negative-type photosensitive resin composition, method for manufacturing resin film, method for manufacturing electronic device, and polymer
JP6886827B2 (en) * 2017-02-03 2021-06-16 株式会社日本触媒 Alkali-soluble resin, photosensitive resin composition and its uses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033951A (en) * 2009-08-05 2011-02-17 Toyo Ink Mfg Co Ltd Photosensitive composition
WO2011129182A1 (en) * 2010-04-13 2011-10-20 昭和電工株式会社 Addition copolymer, photosensitive resin composition, and color filter
JP2014160228A (en) * 2013-01-22 2014-09-04 Toyo Ink Sc Holdings Co Ltd Photosensitive resin composition and coating film using the same
JP2018197833A (en) * 2017-05-25 2018-12-13 東レ株式会社 Insulating resin composition, method for producing insulating member and touch panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075448A1 (en) * 2019-10-16 2021-04-22 住友ベークライト株式会社 Resin composition, photosensitive resin composition, and cured product thereof

Also Published As

Publication number Publication date
CN113366029A (en) 2021-09-07
JP7052900B2 (en) 2022-04-12
JP2021120741A (en) 2021-08-19
CN113366029B (en) 2024-09-10
TW202035486A (en) 2020-10-01
JPWO2020158741A1 (en) 2021-02-18
KR20210121169A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
JP2023100610A (en) Photosensitive resin composition, pattern, color filter, black matrix, display device, imaging element, and method for producing display device or imaging element
JP7052900B2 (en) Photosensitive resin compositions, polymers, patterns, color filters, black matrices, display devices and image sensors
JP2023024401A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP6930679B1 (en) Resin composition, photosensitive resin composition and cured product thereof
JP7255166B2 (en) Polymer, method for producing polymer, photosensitive resin composition, pattern, color filter, black matrix, liquid crystal display device and solid-state imaging device
JP2021196596A (en) Polymer solution
JP2021063933A (en) Resin composition, photosensitive resin composition, film, color filter, black matrix, display device, and image sensor
JP7552223B2 (en) Polymer, polymer manufacturing method, photosensitive resin composition, and cured product
JP7559421B2 (en) Polymer solution for forming color filters or black matrices
JP7338806B2 (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2023091961A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2022022060A (en) Polymer, polymer solution, photosensitive resin composition, and applications thereof
JP2022046309A (en) Polymer solution, photosensitive resin composition, and use thereof
JP2022114042A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2022085232A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2022170248A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2022113252A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2024110632A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2024110894A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2024110932A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2023016041A (en) Polymer, polymer solution, photosensitive resin composition, and cured material
JP2024034282A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2023010685A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2023031219A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2023031267A (en) Polymer, polymer solution, photosensitive resin composition, and cured product

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020544958

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217027408

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20748574

Country of ref document: EP

Kind code of ref document: A1