WO2017154439A1 - Method for manufacturing polymer, method for manufacturing negative-type photosensitive resin composition, method for manufacturing resin film, method for manufacturing electronic device, and polymer - Google Patents

Method for manufacturing polymer, method for manufacturing negative-type photosensitive resin composition, method for manufacturing resin film, method for manufacturing electronic device, and polymer Download PDF

Info

Publication number
WO2017154439A1
WO2017154439A1 PCT/JP2017/004199 JP2017004199W WO2017154439A1 WO 2017154439 A1 WO2017154439 A1 WO 2017154439A1 JP 2017004199 W JP2017004199 W JP 2017004199W WO 2017154439 A1 WO2017154439 A1 WO 2017154439A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
formula
producing
structural unit
Prior art date
Application number
PCT/JP2017/004199
Other languages
French (fr)
Japanese (ja)
Inventor
陽雄 池田
大西 治
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2018504059A priority Critical patent/JP7074051B2/en
Priority to KR1020187028437A priority patent/KR20180122381A/en
Priority to CN201780016046.4A priority patent/CN108779196A/en
Publication of WO2017154439A1 publication Critical patent/WO2017154439A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/04Anhydrides, e.g. cyclic anhydrides
    • C08F22/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/08Anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/08Epoxidation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a method for producing a polymer, a method for producing a negative photosensitive resin composition, a method for producing a resin film, a method for producing an electronic device, and a polymer.
  • Patent Document 1 discloses that at least a part of an acid anhydride group in a copolymer mainly composed of indene and maleic anhydride is unsaturated alcohol.
  • a photosensitive resin obtained by esterification is disclosed. According to this document, this photosensitive resin is considered to have high heat resistance. Further, it is said that this photosensitive resin can be developed into a solder-resist resist, an etching resist, a plating resist, and a pattern forming material at the time of manufacturing a semiconductor element by itself or by using other components and compositions.
  • photosensitive resin compositions are required to be reliably cured with a lower exposure amount. Therefore, there is a great demand for the polymer constituting the photosensitive resin composition to have better curing performance and the like.
  • the present invention provides a polymer that can be cured at a low exposure amount and is useful for constituting a negative photosensitive resin composition or the like.
  • R 2 is an organic group having 2 to 18 carbon atoms, and has a carbon-carbon double bond in its structure.
  • a method for producing a negative photosensitive resin composition comprising a step of obtaining a polymer by the method for producing a polymer and further incorporating a photo radical generator.
  • a method for producing a resin film comprising the steps of obtaining a negative photosensitive resin composition by the method for producing a negative photosensitive resin composition and further curing the negative photosensitive resin composition.
  • an electronic device manufacturing method including the above-described resin film manufacturing method in the process.
  • a polymer containing a structural unit represented by the following formula (1) is provided.
  • R 1 is an organic group having 1 to 18 carbon atoms.
  • R 2 is an organic group having 2 to 18 carbon atoms, and has a carbon-carbon double bond in the structure thereof.
  • a specific compound having an epoxy group is allowed to act on a functional group such as a carboxyl group derived from a structural unit derived from maleic anhydride.
  • a functional group such as a carboxyl group derived from a structural unit derived from maleic anhydride.
  • a functional group capable of improving the sensitivity can be generated in the polymer structure by acting such a specific compound.
  • curing can be dramatically accelerated when the photosensitive resin composition containing the obtained polymer is exposed. From this, it can be said that the polymer obtained by the production method of the present invention can be cured at a low exposure amount and is useful for constituting a negative photosensitive resin composition and the like.
  • the method for producing a polymer of the present embodiment comprises the following steps (steps (i) to (iii)).
  • steps (i) to (iii) (I) Step of preparing a precursor polymer containing a structural unit represented by the following formula (1a)
  • ii) A precursor polymer containing a structural unit represented by the formula (1a) is represented by R 1 —OH.
  • R 1 is an organic group having 1 to 18 carbon atoms
  • water to open the maleic anhydride site of the structural unit represented by the formula (1a), and into the precursor polymer Step of generating a carboxyl group or a salt thereof
  • R 2 is an organic group having 2 to 18 carbon atoms, and has a carbon-carbon double bond in its structure.
  • a precursor polymer containing the structural unit represented by the above formula (1a) is prepared.
  • the structural unit represented by the formula (1a) is derived by polymerizing maleic anhydride, but in this polymerization, other monomers other than maleic anhydride can be copolymerized.
  • a compound having an ethylenic double bond in the molecule can be used as another monomer.
  • the ethylenic double bond includes an allyl group, an acrylic group, a methacryl group, a maleimide group, an aromatic vinyl group such as a styryl group and an indenyl group, and the like.
  • monomers include alicyclic monomers such as norbornene; styrene monomers such as styrene, vinyltoluene, and ⁇ -methylstyrene; fluorine-containing compounds such as perfluoroethylene, perfluoropropylene, and vinylidene fluoride.
  • Vinyl monomers silicon-containing vinyl monomers such as vinyltrimethoxysilane and vinyltriethoxysilane; nitrile group-containing vinyl monomers such as acrylonitrile and methacrylonitrile; amide group-containing vinyl monomers such as acrylamide and methacrylamide; vinyl acetate; Vinyl esters such as vinyl propionate, vinyl pivalate, vinyl benzoate, and vinyl cinnamate; alkenes such as ethylene and propylene; conjugated dienes such as butadiene and isoprene; vinyl chloride, vinylidene chloride, and vinyl chloride Le, it is possible to use a compound such as allyl alcohol. Among such compounds, in the present embodiment, it is preferable to use a norbornene-type monomer represented by the following formula (2a).
  • R 3 , R 4 , R 5 and R 6 are each independently hydrogen or an organic group having 1 to 30 carbon atoms. N is 0, 1 or 2.
  • the organic group having 1 to 30 carbon atoms constituting R 3 , R 4 , R 5 and R 6 in the formula (2a) is one or more selected from O, N, S, P and Si in the structure May be included. Moreover, the organic group which comprises R ⁇ 3 >, R ⁇ 4 >, R ⁇ 5 >, R ⁇ 6 > does not have any acidic functional group. Thereby, control of the acid value in the polymer finally obtained can be facilitated.
  • examples of the organic group constituting R 3 , R 4 , R 5 and R 6 include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group, an alkaryl group, a cycloalkyl group, And heterocyclic groups.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, An octyl group, a nonyl group, and a decyl group are mentioned.
  • alkenyl group examples include allyl group, pentenyl group, and vinyl group. An ethynyl group is mentioned as an alkynyl group.
  • Examples of the alkylidene group include a methylidene group and an ethylidene group.
  • Examples of the aryl group include a phenyl group, a naphthyl group, and an anthracenyl group.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the alkaryl group include a tolyl group and a xylyl group.
  • Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • Examples of the heterocyclic group include an epoxy group and an oxetanyl group.
  • one or more hydrogen atoms may be substituted with halogen atoms.
  • the halogen atom include fluorine, chlorine, bromine and iodine.
  • the case where the 1 or more hydrogen atom of an alkyl group is the haloalkyl group substituted by the halogen atom can be mentioned as an example of a preferable aspect.
  • R 3 , R 4 , R 5 , and R 6 are a haloalkyl group
  • a cured film is formed using the finally obtained polymer.
  • the dielectric constant can be reduced.
  • a haloalkyl alcohol group not only the solubility in an alkali developer can be adjusted to an appropriate range, but also the heat discoloration can be improved.
  • any or all of R 3 , R 4 , R 5 , and R 6 are hydrogen.
  • norbornene-type monomer represented by the formula (2a) include bicyclo [2.2.1] -hept-2-ene (common name: 2-norbornene), which further has an alkyl group.
  • 2-norbornene common name: 2-norbornene
  • alkenyl group such as 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene, 5-hexyl-2-norbornene, 5-decyl-2-norbornene, etc.
  • alkynyl group such as 5-allyl-2-norbornene, 5- (2-propenyl) -2-norbornene, 5- (1-methyl-4-pentenyl) -2-norbornene, and the like
  • examples of those having an aralkyl group such as -2-norbornene include 5-benzyl-2-norbornene and 5-phenethyl-2-norbol Such as emissions, and the like. Any one or more of these can be used as the norbornene-type monomer.
  • bicyclo [2.2.1] -hept-2-ene common name: 2-norbornene).
  • the precursor polymer and the final product polymer include a structural unit represented by the following formula (2).
  • R 3 , R 4 , R 5 and R 6 are each independently hydrogen or an organic group having 1 to 30 carbon atoms. N is 0, 1 or 2.
  • the norbornene type monomer represented by the formula (2a) and maleic anhydride are subjected to addition polymerization.
  • a copolymer (copolymer 1) of the norbornene type monomer represented by the formula (2a) and maleic anhydride is formed by radical polymerization.
  • the structural unit represented by the above formula (1a) derived from maleic anhydride can be included in the precursor polymer.
  • the molar ratio of the norbornene-type monomer represented by the formula (2a) to maleic anhydride is 0.5: 1 to 1: 0. .5 is preferable.
  • the number of moles of the norbornene-type monomer represented by the formula (2a): number of moles of maleic anhydride 0.8: 1 to 1: 0.8.
  • a monomer that can be copolymerized in addition to the above-described norbornene-type monomer and maleic anhydride can be added.
  • Examples of such a monomer include compounds containing a group having an ethylenic double bond in the molecule.
  • specific examples of the group having an ethylenic double bond include an allyl group, an acrylic group, a methacryl group, a maleimide group, and an aromatic vinyl group such as a styryl group and an indenyl group.
  • the content rate of the structural unit shown by Formula (1a) in the whole precursor polymer obtained at this process is 20 mol% or more, for example, It is preferable that it is 25 mol% or more, It is 30 mol% or more. It is more preferable.
  • the content rate of the structural unit shown by Formula (1a) in the whole precursor polymer obtained at this process is 80 mol% or less, for example, it is preferable that it is 75 mol% or less, and it is 70 mol% or less. It is more preferable.
  • the content ratio of the structural unit can be calculated from, for example, the amount of monomer charged, or can be calculated by performing NMR (nuclear magnetic resonance) analysis on the obtained precursor polymer.
  • a polymerization method using a radical polymerization initiator and, if necessary, a molecular weight adjusting agent is suitable.
  • methods such as suspension polymerization, solution polymerization, dispersion polymerization, and emulsion polymerization can be employed.
  • solution polymerization is preferable.
  • all the monomers may be charged all at once, or a part of the monomers may be charged into a reaction vessel and the rest may be dropped.
  • the norbornene-type monomer represented by the formula (2a), the maleic anhydride, and the radical polymerization initiator are dissolved in a solvent, and then heated for a predetermined time, whereby the norbornene-type monomer represented by the formula (2a) And solution polymerization with maleic anhydride.
  • the heating temperature is, for example, 50 to 80 ° C., and the heating time is 10 to 20 hours.
  • the solvent used for the polymerization can be appropriately selected as long as it does not inhibit the addition polymerization.
  • any one or more of diethyl ether, tetrahydrofuran, toluene, methyl ethyl ketone, ethyl acetate, and the like can be used as a highly versatile solvent.
  • any one or more of an azo compound and a peroxide can be used.
  • the azo compound include azobisisobutyronitrile (AIBN), dimethyl 2,2′-azobis (2-methylpropionate), 1,1′-azobis (cyclohexanecarbonitrile) (ABCN), Any one or more of these can be used.
  • the peroxide include hydrogen peroxide, ditertiary butyl peroxide (DTBP), benzoyl peroxide (benzoyl peroxide, BPO), and methyl ethyl ketone peroxide (MEKP). Among these, Any one or more of them can be used.
  • the amount (number of moles) of the radical polymerization initiator is 0.05% to the total number of moles of each monomer (for example, the sum of the number of moles of the norbornene-type monomer represented by the formula (2a) and the number of moles of maleic anhydride). 5% is preferable. It is possible to adjust the weight average molecular weight (Mw) of the obtained precursor polymer to an appropriate range by appropriately setting the amount of the radical polymerization initiator within the above range and appropriately setting the reaction temperature and reaction time. it can.
  • a precursor polymer (copolymer 1) having the structural unit represented by the above formula (1a) and the structural unit represented by the formula (2) can be obtained.
  • the structural unit represented by the formula (1a) and the structural unit represented by the formula (2) may be randomly arranged, or may be alternately arranged.
  • the norbornene-type monomer represented by the formula (2a) and maleic anhydride may be block copolymerized.
  • the precursor polymer is represented by the structural unit represented by the formula (1a) and the formula (2).
  • a structure in which the structural units shown are alternately arranged is preferable. That is, the precursor polymer (copolymer 1) preferably has a structural unit represented by the following formula (4).
  • n and R 3 to R 6 are the same as those in the above formula (2). That is, n is 0, 1, or 2, and R 3 to R 6 are hydrogen or (It is an organic group having 1 to 30 carbon atoms. R 3 to R 6 may be the same or different, and a is an integer of 10 or more and 200 or less.)
  • the precursor polymer (copolymer 1) in the present embodiment preferably has a peak area of 1% or less of the total molecular weight of 1000 or less.
  • the ratio of the peak area at a molecular weight of 1000 or less in the molecular weight distribution curve obtained by GPC within the above range, the pattern shape of the film made of the resin composition containing the polymer finally obtained is good. can do.
  • the minimum of the quantity of the low molecular weight component in a precursor polymer (copolymer 1) is not specifically limited.
  • the precursor polymer (copolymer 1) in the present embodiment allows a case where the peak area at a molecular weight of 1000 or less is 0.01% or more of the whole in a molecular weight distribution curve obtained by GPC.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw / Mn degree of dispersion indicating the width of the molecular weight distribution.
  • Mw (weight average molecular weight) of the precursor polymer of the present embodiment is, for example, 2500 or more, preferably 3000 or more, and more preferably 4000 or more.
  • the Mw (weight average molecular weight) of the precursor polymer of this embodiment is, for example, 35000 or less, preferably 32000 or less, and more preferably 30000 or less.
  • the weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight distribution (Mw / Mn) are polystyrene determined from, for example, a standard polystyrene (PS) calibration curve obtained by GPC measurement. Use the converted value.
  • PS polystyrene
  • Tosoh gel permeation chromatography device HLC-8320GPC Column: Tosoh TSK-GEL Supermultipore HZ-M Detector: RI detector for liquid chromatogram Measurement temperature: 40 ° C Solvent: THF Sample concentration: 2.0 mg / milliliter
  • the amount of low molecular weight components in the polymer is based on the data on the molecular weight obtained by GPC measurement, for example. It is calculated from the ratio.
  • Step (ii) Subsequently, an alcohol represented by R 1 —OH (provided that R 1 is an organic group having 1 to 18 carbon atoms) or water is allowed to act on the precursor polymer, and the above formula (1a) The maleic anhydride site of the structural unit represented by is opened to produce a carboxyl group or a salt thereof in the precursor polymer.
  • R 1 is an organic group having 1 to 18 carbon atoms.
  • R 1 is an organic group having 1 to 18 carbon atoms.
  • the organic group include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group, an alkaryl group, and a cycloalkyl group.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, An octyl group, a nonyl group, and a decyl group are mentioned.
  • alkenyl group examples include allyl group, pentenyl group, and vinyl group. An ethynyl group is mentioned as an alkynyl group.
  • Examples of the alkylidene group include a methylidene group and an ethylidene group.
  • Examples of the aryl group include a phenyl group, a naphthyl group, and an anthracenyl group.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the alkaryl group include a tolyl group and a xylyl group.
  • Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • R 1 also preferably has a radical polymerizable group that initiates radical polymerization by a photoradical generator. More specifically, R 1 preferably has a carbon-carbon double bond in its structure, and includes any group selected from the group consisting of a vinyl group, a vinylidene group, an acryloyl group, and a methacryloyl group. It is more preferable. R 1 is more preferably any of the following formulas (I) and (II).
  • R 1 is is preferably the same in a plurality of repeating units represented by the formula (1b), may be different for each repeating unit of the formula (1b).
  • R 1 an organic group having 8 to 18 carbon atoms including an aromatic ring may be used.
  • a vinylaryl group (—Ar—CH ⁇ CH 2 , Ar represents an aromatic hydrocarbon group) can be employed as R 1 .
  • the organic group having 1 to 18 carbon atoms constituting R 1 in formula (1b) may contain one or more atoms of O, N, S, P, and Si in the structure. Further, the organic group constituting R 1 may not contain an acidic functional group. Thereby, control of the acid value in the polymer finally obtained can be facilitated.
  • the structural unit shown by this Formula (1b) and the structural unit shown by Formula (1c) mentioned later may contain the salt.
  • the structural unit represented by the formula (1a) in the precursor polymer is represented by the structural unit represented by the above formula (1b) or (1c), or these formula (1b) and formula (1c).
  • the conversion rate represented by the following formula is set to, for example, 5% or more, preferably 10% or more, and more preferably 20% or more.
  • the upper limit value of the conversion rate represented by the following equation is not particularly limited, but is, for example, 99.9% or less.
  • This step can be performed, for example, by adding a predetermined amount of alcohol or water to the solution containing the precursor polymer having the structural unit represented by the formula (1a) and heating.
  • the solvent that dissolves the precursor polymer can be appropriately selected from those that do not inhibit the reaction, and the heating conditions can be set in the range of 50 to 100 ° C., for example.
  • the reaction time can be appropriately set while observing the degree of change in the chemical structure of the polymer.
  • the solvent used in this step for example, one or more of diethyl ether, tetrahydrofuran, toluene, methyl ethyl ketone, ethyl acetate and the like can be used as a highly versatile solvent.
  • a catalyst can be appropriately added from the viewpoint of promoting the reaction, and for example, a base catalyst or an acid catalyst can be added.
  • a base catalyst pyridine, alkylamines such as triethylamine, amine compounds such as dimethylaniline, urotropine and dimethylaminopyridine, and metal salts such as sodium acetate can be used.
  • the acid catalyst mineral acids such as sulfuric acid and hydrochloric acid, organic acids such as paratoluenesulfonic acid, Lewis acids such as boron trifluoride etherate, and the like can be used.
  • generated carboxyl group may form a salt (carboxylate).
  • R 2 is an organic group having 2 to 18 carbon atoms, and has a carbon-carbon double bond in its structure.
  • a solution containing a precursor polymer containing the structural unit (or a salt thereof) represented by the above formula (1b) or (1c), and a compound represented by the formula (3) And are heated.
  • the solvent that dissolves the precursor polymer can be appropriately selected from those that do not inhibit the reaction, and the heating conditions can be set in the range of 50 to 100 ° C., for example.
  • the reaction time can be appropriately set while observing the degree of change in the chemical structure of the polymer.
  • R 2 is an organic group having 2 to 18 carbon atoms and has a carbon-carbon double bond in its structure.
  • R 2 include an allyl group, a pentenyl group, And an organic group containing an alkenyl group such as a vinyl group.
  • R 2 preferably includes any group selected from the group consisting of a vinyl group, a vinylidene group, an acryloyl group, and a methacryloyl group, and more preferably includes an acryloyl group or a methacryloyl group.
  • any of the groups of formula (I) and formula (II) described above can be adopted.
  • R 2 is preferably the same for each structural unit to be formed, but may be different for each structural unit to be formed. Further, as R 2 , an organic group having 8 to 18 carbon atoms including an aromatic ring may be used. In this case, for example, a vinylaryl group (—Ar—CH ⁇ CH 2 , Ar represents an aromatic hydrocarbon group) can be employed as R 2 .
  • the organic group having 2 to 18 carbon atoms constituting R 2 may contain one or more atoms of O, N, S, P and Si in the structure.
  • the organic group constituting R 2 may be made free of acid functionality. Thereby, control of the acid value in the polymer obtained can be facilitated.
  • glycidyl acrylate or glycidyl methacrylate as the compound represented by the formula (3) in view of high availability.
  • the structural unit represented by the formula (1b) is represented by the formula (1).
  • R 1 is an organic group having 1 to 18 carbon atoms.
  • R 2 is an organic group having 2 to 18 carbon atoms, and has a carbon-carbon double bond in the structure thereof.
  • the structural unit represented by the formula (1c) is represented by the formula (1d).
  • the structural unit represented by the formula (1d) preferably corresponds to the structural unit represented by the formula (1).
  • each R 2 is an organic group having 2 to 18 carbon atoms and has a carbon-carbon double bond in its structure.
  • a catalyst can be appropriately added from the viewpoint of promoting the reaction, and for example, a base catalyst or an acid catalyst can be added.
  • a base catalyst pyridine, alkylamines such as triethylamine, amine compounds such as dimethylaniline, urotropine and dimethylaminopyridine, and metal salts such as sodium acetate can be used.
  • the acid catalyst mineral acids such as sulfuric acid and hydrochloric acid, organic acids such as p-toluenesulfonic acid, Lewis acids such as boron fluoride etherate, and the like can be used.
  • the polymer of the present embodiment can be produced.
  • a process of washing the precursor polymer may be interposed between the steps.
  • a treatment suitable for converting the structural unit may be interposed between the steps. Good.
  • the polymer obtained by the present embodiment may contain a structural unit derived from maleic anhydride represented by the above formula (1).
  • the structural unit represented by the following formula (1b) and a structural unit represented by the formula (1c).
  • These structural units have a carboxyl group and impart alkali solubility as a polymer.
  • R 1 is the same as R 1 described above.
  • the alkali dissolution rate of the polymer obtained by the present embodiment is, for example, not less than 500 kg / sec and not more than 30000 kg / sec.
  • the alkali dissolution rate of the polymer can be determined by, for example, dissolving a polymer in propylene glycol monomethyl ether acetate and applying a polymer solution adjusted to a solid content of 20% by weight on a silicon wafer by a spin method, followed by soft baking at 110 ° C. for 100 seconds.
  • the polymer film thus obtained is impregnated with a 2.38% tetramethylammonium hydroxide aqueous solution at 23 ° C., and the time until the polymer film is visually erased is calculated.
  • the alkali dissolution rate of the polymer is more preferably 1000 kg / sec or more, and further preferably 2000 kg / sec or more.
  • the alkali dissolution rate of the polymer is more preferably 28000 kg / second or less, and further preferably 25000 kg / second or less.
  • the peak area at a molecular weight of 1000 or less is preferably 1% or less of the polymer obtained by the present embodiment.
  • the ratio of the peak area at a molecular weight of 1000 or less in the molecular weight distribution curve obtained by GPC within the above range, the pattern shape of the film made of the resin composition containing this polymer can be improved.
  • the minimum of the quantity of the low molecular weight component in the polymer obtained by this embodiment is not specifically limited.
  • the polymer in the present embodiment allows a case where the peak area at a molecular weight of 1000 or less is 0.01% or more of the entire molecular weight distribution curve obtained by GPC.
  • the polymer obtained by this embodiment has, for example, Mw (weight average molecular weight) / Mn (number average molecular weight) of 1.5 or more and 5.0 or less.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw (weight average molecular weight) of the polymer obtained by the present embodiment is, for example, 2500 or more, preferably 3000 or more, and more preferably 4000 or more.
  • the Mw (weight average molecular weight) of the polymer obtained by the present embodiment is, for example, 35000 or less, preferably 32000 or less, and more preferably 30000 or less.
  • the polymer obtained by this embodiment can be preferably used for forming a photosensitive resin film because of the specificity of the chemical performance contained in this structural unit.
  • the “photosensitive resin film” refers to a resin film that is subjected to an exposure process in the manufacturing process of an electronic device or the like. More specifically, the “photosensitive resin film” is a negative type in which a portion irradiated with light is cured, and a portion not irradiated is dissolved and removed in a developing solution (for example, an alkaline solution) in a development process.
  • a developing solution for example, an alkaline solution
  • the negative photosensitive resin composition is obtained by blending a polymer obtained by the production method described above and a photoradical generator.
  • the photo radical generator examples include 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl.
  • Propan-1-one 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2 -Hydroxy-2-methylpropionyl) benzyl] phenyl ⁇ -2-methylpropan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2- Dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenol Alkyl) phenone compounds such as (l) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butan
  • the photoradical generator is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 2 parts by mass or more and 15 parts by mass with respect to 100 parts by mass of the whole polymer. The following is preferable.
  • the sensitivity and the degree of crosslinking can be further improved.
  • dye compounds such as xanthene dyes and coumarin dyes, dialkylaminobenzene compounds such as ethyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2-mercaptobenzothiazole, 2-mercaptobenzoimidazole, etc.
  • mercapto-type hydrogen donors for example, dye compounds such as xanthene dyes and coumarin dyes, dialkylaminobenzene compounds such as ethyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2-mercaptobenzothiazole, 2-mercaptobenzoimidazole, etc.
  • mercapto-type hydrogen donors such as xanthene dyes and coumarin dyes, dialkylaminobenzene compounds such as ethyl 4-dimethylamin
  • the negative photosensitive resin composition described in this embodiment can be used as a varnish by dissolving the above-described components in a solvent.
  • solvents include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylacetamide, dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, dipropylene glycol Monomethyl ether, propylene glycol monomethyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, methyl-1,3-butylene glycol acetate, 1,3-butylene glycol-3-monomethyl ether, methyl pyruvate, and ethyl and methyl pyruvate -3-Methoxypropionate and the like.
  • ⁇ -butyrolaclone dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether are among these compounds from the viewpoint of significantly suppressing the occurrence of cracks in the resin film. It is preferable to use a compound selected from the group consisting of propylene glycol monomethyl ether acetate.
  • content of the solvent in the negative photosensitive resin composition of this embodiment is not specifically limited, It is preferable that it is 100 mass parts or more with respect to 100 mass parts of polymers, and is 150 mass parts or more. More preferably. Moreover, it is preferable that it is 1000 mass parts or less with respect to 100 mass parts of polymers, and, as for content of the solvent in the negative photosensitive resin composition of this embodiment, it is more preferable that it is 800 mass parts or less. When the content of the solvent is within the above range, an appropriate handling property can be provided.
  • the negative photosensitive resin composition of the present embodiment includes a filler, a binder resin other than the aforementioned polymer, a crosslinking agent, an acid generator, a heat improver, and a development aid depending on the purpose and required characteristics of each application.
  • Components other than the above essential components such as surfactants, silane-based, aluminum-based, titanium-based coupling agents, and polyhydric phenol compounds may be blended.
  • the negative photosensitive resin composition of this embodiment can be made into a colored photosensitive resin composition by further including a colorant.
  • a colored photosensitive resin composition can be suitably used, for example, when producing a black matrix or a colored pattern constituting a color filter.
  • the colored photosensitive resin composition of the present embodiment contains a conventionally known pigment or dye.
  • an organic pigment or an inorganic pigment can be used.
  • Organic pigments include azo pigments, phthalocyanine pigments, polycyclic pigments (quinacridone, perylene, perinone, isoindolinone, isoindoline, dioxazine, thioindigo, anthraquinone, quinophthalone, metal complex System, diketopyrrolopyrrole, etc.), dye lake pigments, etc. can be used.
  • Inorganic pigments include white and extender pigments (titanium oxide, zinc oxide, zinc sulfide, clay, talc, barium sulfate, calcium carbonate, etc.) and chromatic pigments (yellow lead, cadmium, chrome vermilion, nickel titanium, chrome titanium) , Yellow iron oxide, bengara, zinc chromate, red lead, ultramarine, bitumen, cobalt blue, chromium green, chromium oxide, bismuth vanadate, etc.), black pigment (carbon black, bone black, graphite, iron black, titanium black, etc.) Bright pigments (pearl pigments, aluminum pigments, bronze pigments, etc.) and fluorescent pigments (zinc sulfide, strontium sulfide, strontium aluminate, etc.) can be used.
  • white and extender pigments titanium oxide, zinc oxide, zinc sulfide, clay, talc, barium sulfate, calcium carbonate, etc.
  • the pigment colors that can be used include yellow, red, purple, blue, green, brown, black, and white.
  • dye for example, known dyes (compounds) described in JP-A No. 2003-270428, JP-A No. 9-171108, JP-A No. 2008-50599 and the like can be used.
  • the above colorants can be used alone or in combination of two or more.
  • those having an appropriate average particle diameter can be used according to the purpose and application.
  • transparency such as a color resist for color filters
  • it is as small as 0.1 ⁇ m or less.
  • An average particle diameter is preferable, and when a concealing property such as a paint is required, a large average particle diameter of 0.5 ⁇ m or more is preferable.
  • the above-described coloring material is subjected to surface treatment such as rosin treatment, surfactant treatment, resin dispersant treatment, pigment derivative treatment, oxide film treatment, silica coating, wax coating, etc., depending on the purpose and application. Also good.
  • the content ratio of the colorant in the colored photosensitive resin composition of the present embodiment may be appropriately set according to the purpose and application.
  • the colored photosensitive resin composition When the total solid content of the product (that is, the component excluding the solvent) is 100 parts by mass, it is preferably 3% by mass to 70% by mass, more preferably 5% by mass to 60% by mass, and still more preferably 10%. It is not less than 50% by mass.
  • the negative photosensitive resin composition of this embodiment can obtain a resin film by using a cured product.
  • a resin film can be used, for example, as a resist, and can also constitute a permanent film such as a protective film, an interlayer film, or a dam material.
  • An electronic device 100 shown in FIG. 1 is, for example, a semiconductor chip.
  • a semiconductor package can be obtained by mounting the electronic device 100 on the wiring board via the bumps 52.
  • the electronic device 100 includes a semiconductor substrate provided with a semiconductor element such as a transistor, and a multilayer wiring layer provided on the semiconductor substrate (not shown).
  • An interlayer insulating film 30 and an uppermost layer wiring 34 provided on the interlayer insulating film 30 are provided in the uppermost layer of the multilayer wiring layer.
  • the uppermost layer wiring 34 is made of, for example, Al.
  • a passivation film 32 is provided on the interlayer insulating film 30 and the uppermost layer wiring 34. An opening through which the uppermost layer wiring 34 is exposed is provided in a part of the passivation film 32.
  • a rewiring layer 40 is provided on the passivation film 32.
  • the rewiring layer 40 includes an insulating layer 42 provided on the passivation film 32, a rewiring 46 provided on the insulating layer 42, an insulating layer 44 provided on the insulating layer 42 and the rewiring 46, Have An opening connected to the uppermost layer wiring 34 is formed in the insulating layer 42.
  • the rewiring 46 is formed on the insulating layer 42 and in an opening provided in the insulating layer 42, and is connected to the uppermost layer wiring 34.
  • the insulating layer 44 is provided with an opening connected to the rewiring 46.
  • one or more of the passivation film 32, the insulating layer 42, and the insulating layer 44 may be formed of a resin film formed by curing, for example, the above-described negative photosensitive resin composition. it can.
  • the coating film formed of the negative photosensitive resin composition is exposed to ultraviolet rays, developed and patterned, and then heat-cured to thereby passivate the passivation film 32, the insulating layer 42, or the insulating film.
  • Layer 44 is formed.
  • a bump 52 is formed via a UBM (Under Bump Metallurgy) layer 50.
  • the electronic device 100 is connected to a wiring board or the like via bumps 52, for example.
  • Example 1 Polymer synthesis
  • maleic anhydride Nippon Shokubai Co., Ltd., 122.4 g, 1.25 mol
  • 2-norbornene 75 wt% toluene solution, manufactured by Maruzen Petrochemical Co., Ltd.
  • V-601 dimethyl 2,2′-azobis (2-methylpropionate
  • MEK methyl ethyl ketone
  • the above-mentioned precursor polymer (10.0 g) was weighed and dissolved in MEK (30.0 g) in an appropriately sized reaction vessel equipped with a stirrer and a cooling pipe. Further, 2-hydroxyethyl methacrylate (HEMA, Nippon Shokubai Co., Ltd., 8.5 g, 65 mmol) and sodium acetate (1.0 g) were added and heated at 70 ° C. for 8 hours. To this reaction solution, glycidyl methacrylate (GMA, 3.7 g, 26 mmol) was added, and the mixture was further stirred at 70 ° C. for 16 hours.
  • HEMA 2-hydroxyethyl methacrylate
  • GMA glycidyl methacrylate
  • Example 2 Polymer synthesis
  • maleic anhydride (735 g, 7.5 mol), 2-norbornene (706 g, 7.5 mol) and dimethyl 2,2′-azobis (2-methylpro) Pionate) (69 g, 0.3 mol) was weighed and dissolved in methyl ethyl ketone (900 g) and toluene (231 g). After removing dissolved oxygen in the system by nitrogen bubbling, this solution was heat-treated at 60 ° C. for 15 hours with stirring. As a result, a copolymer of 2-norbornene and maleic anhydride was obtained.
  • the dicarboxylic acid compound (3.0 g) thus obtained was dissolved in THF (12 g), mixed with glycidyl methacrylate (4.0 g) and triethylamine (0.1 g), and reacted at 70 ° C. for 12 hours. After the reaction solution was reprecipitated in heptane, the precipitate was collected by filtration and dried in a vacuum dryer to obtain 4.3 g of a white solid.
  • the physical properties of the obtained polymer are as follows. Weight average molecular weight (Mw): 13,600 -Dispersity: 2.22
  • Example 1 Polymer synthesis carried out without using a compound having an epoxy group
  • the precursor polymer (10.0 g) described in Example 1 was weighed into a suitably sized reaction vessel equipped with a stirrer and a condenser, and dissolved in MEK (30.0 g). Further, 2-hydroxyethyl methacrylate (8.5 g, 65 mmol) and sodium acetate (1.0 g) were added, and the mixture was heated at 70 ° C. for 24 hours. After formic acid was added to the reaction solution for acid treatment, it was dropped into a large amount of pure water to precipitate a polymer. The solid collected by filtration was dried in a vacuum dryer at 40 ° C. for 16 hours to obtain 11.2 g of a polymer.
  • the physical properties of the obtained polymer are as follows. Weight average molecular weight (Mw): 12,400 ⁇ Dispersity: 2.16
  • the negative photosensitive resin composition obtained above was spin-coated on a silicon wafer (rotation speed: 500 to 3000 rpm) and baked on a hot plate at 100 ° C. for 120 seconds to obtain a thin film A of about 3 ⁇ m.
  • the thin film A was exposed by varying the exposure amount by 5 mJ / cm 2 using an exposure apparatus.
  • a g + h + i line mask aligner (PLA-501F) manufactured by Canon Inc. was used as the exposure apparatus.
  • the exposed film was developed using a TMAH developer (concentration: 2.38%) at 23 ° C. for 60 seconds and rinsed with pure water to obtain a thin film B.
  • the exposure amount at which thin film B / thin film A ⁇ 100 ⁇ 95% was defined as sensitivity (mJ / cm 2 ).
  • the results are summarized in Table 1 for this sensitivity.
  • Comparative Example 2 it was found that the negative photosensitive resin compositions of Examples 3 and 4 using a polymer having a specific structural unit can obtain a high residual film ratio with a lower exposure amount.
  • the negative photosensitive resin composition obtained above was spin-coated on a silicon wafer (rotation speed: 500 to 3000 rpm) and baked on a hot plate at 100 ° C. for 120 seconds to obtain a thin film A of about 3 ⁇ m.
  • the thin film A was exposed to 100 mJ / cm 2 using an exposure apparatus.
  • the exposed film was developed using a TMAH developer (concentration: 2.38%) at 23 ° C. for 60 seconds and rinsed with pure water to obtain a thin film B.
  • Table 1 shows (thin film B / thin film A) ⁇ 100 [%] as a remaining film ratio after development.
  • Comparative Example 2 an increase in film thickness was observed due to swelling of the alkaline developer, while in Examples 3 and 4, no swelling was observed.
  • the polymer obtained by the production method of the present invention can be cured at a low exposure, it is useful for constituting a negative photosensitive resin composition or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Photolithography (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

This method for manufacturing a polymer includes a step for preparing a precursor polymer including structural units represented by formula (1a), a step for applying water or an alcohol represented by the formula R1-OH (where R1 is a C1-18 organic group) to the precursor polymer including structural units represented by formula (1a) to cause ring opening of maleic anhydride portions of the structural units represented by formula (1a) and generating a carboxyl group or a salt thereof in the precursor polymer, and a step for reacting a compound provided with an epoxy group represented by formula (3) with the precursor polymer in which maleic anhydride portions are ring-opened. (In formula (3), R2 represents a C2-18 organic group and has a carbon-carbon double bond in the structure thereof.)

Description

ポリマーの製造方法、ネガ型感光性樹脂組成物の製造方法、樹脂膜の製造方法、電子装置の製造方法およびポリマーMethod for producing polymer, method for producing negative photosensitive resin composition, method for producing resin film, method for producing electronic device, and polymer
 本発明は、ポリマーの製造方法、ネガ型感光性樹脂組成物の製造方法、樹脂膜の製造方法、電子装置の製造方法およびポリマーに関する。 The present invention relates to a method for producing a polymer, a method for producing a negative photosensitive resin composition, a method for producing a resin film, a method for producing an electronic device, and a polymer.
 従来、無水マレイン酸に由来する構造単位を有するポリマー(重合体)に関する検討が鋭意なされている。
 この無水マレイン酸は、たとえばアルコール類等と反応させることにより、酸無水物に由来する部位が開環し、エステル結合を有する部位とカルボキシル基を有する部位とを与える。このように、容易に化学変換を行うことができるという背景もあり、とくに感光性樹脂の分野において、この無水マレイン酸に由来する構造単位を有する種々のポリマーについての応用的な開発がなされている。
Conventionally, studies on polymers (polymers) having structural units derived from maleic anhydride have been intensively conducted.
When this maleic anhydride is reacted with, for example, alcohols, the site derived from the acid anhydride is opened to give a site having an ester bond and a site having a carboxyl group. As described above, there is also a background that chemical conversion can be easily performed. In particular, in the field of photosensitive resins, applied development has been made for various polymers having structural units derived from maleic anhydride. .
 これに関連して、特許文献1には、インデン類を主成分とする重合成分と、無水マレイン酸とを主成分とする共重合体中の酸無水物基の少なくとも一部を不飽和アルコールによりエステル化して得られる感光性樹脂が開示されている。
 当該文献によれば、この感光性樹脂は、耐熱性が高いものとされている。また、この感光性樹脂は、単独で、あるいは他の成分と組成物とすることにより、耐はんだレジスト、エッチングレジスト、耐メッキレジストおよび半導体素子製造時のパターン形成材料に展開できるとされている。
In this connection, Patent Document 1 discloses that at least a part of an acid anhydride group in a copolymer mainly composed of indene and maleic anhydride is unsaturated alcohol. A photosensitive resin obtained by esterification is disclosed.
According to this document, this photosensitive resin is considered to have high heat resistance. Further, it is said that this photosensitive resin can be developed into a solder-resist resist, an etching resist, a plating resist, and a pattern forming material at the time of manufacturing a semiconductor element by itself or by using other components and compositions.
特開平5-134413号公報Japanese Patent Laid-Open No. 5-134413
 しかしながら、近年の電子装置の高密度化、また、電子装置製造プロセスにおける効率化の要請から、感光性樹脂組成物は、より低露光量で確実に硬化することが求められている。そのため、感光性樹脂組成物を構成するポリマーについて、より硬化性能等に優れたものとすることの要請が大きい。 However, due to recent demands for higher density electronic devices and more efficient electronic device manufacturing processes, photosensitive resin compositions are required to be reliably cured with a lower exposure amount. Therefore, there is a great demand for the polymer constituting the photosensitive resin composition to have better curing performance and the like.
 このような事情を鑑み、本発明は、低露光量で硬化することができ、ネガ型感光性樹脂組成物等を構成するのに有用なポリマーを提供するものである。 In view of such circumstances, the present invention provides a polymer that can be cured at a low exposure amount and is useful for constituting a negative photosensitive resin composition or the like.
 本発明によれば、
 以下の式(1a)で示される構造単位を含む前駆体ポリマーを準備する工程と、
 式(1a)で示される構造単位を含む前記前駆体ポリマーに対し、R-OHで表されるアルコール(ただし、Rは炭素数1~18の有機基である。)または水を作用させ、式(1a)で示される構造単位の無水マレイン酸部位を開環させ、前記前駆体ポリマー中にカルボキシル基またはその塩を生成させる工程と、
 無水マレイン酸部位を開環させた前記前駆体ポリマーに対し、式(3)で示されるエポキシ基を備える化合物を反応させる工程と、
を含むポリマーの製造方法が提供される。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(式(3)中、Rは炭素数2~18の有機基であって、その構造中に炭素-炭素二重結合を有する。)
According to the present invention,
Preparing a precursor polymer containing a structural unit represented by the following formula (1a);
Alcohol represented by R 1 —OH (where R 1 is an organic group having 1 to 18 carbon atoms) or water is allowed to act on the precursor polymer containing the structural unit represented by the formula (1a). Opening the maleic anhydride site of the structural unit represented by formula (1a) to form a carboxyl group or a salt thereof in the precursor polymer,
Reacting a compound having an epoxy group represented by the formula (3) with the precursor polymer having a ring opening of a maleic anhydride site;
A process for producing a polymer comprising is provided.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(In Formula (3), R 2 is an organic group having 2 to 18 carbon atoms, and has a carbon-carbon double bond in its structure.)
 また、本発明によれば、
 上記のポリマーの製造方法によりポリマーを得て、さらに、光ラジカル発生剤を配合する工程を含むことを特徴とする、ネガ型感光性樹脂組成物の製造方法が提供される。
Moreover, according to the present invention,
There is provided a method for producing a negative photosensitive resin composition, comprising a step of obtaining a polymer by the method for producing a polymer and further incorporating a photo radical generator.
 また、本発明によれば、
 上記のネガ型感光性樹脂組成物の製造方法によりネガ型感光性樹脂組成物を得て、さらに、当該ネガ型感光性樹脂組成物を硬化させる工程を含む、樹脂膜の製造方法が提供される。
Moreover, according to the present invention,
There is provided a method for producing a resin film, comprising the steps of obtaining a negative photosensitive resin composition by the method for producing a negative photosensitive resin composition and further curing the negative photosensitive resin composition. .
 また、本発明によれば、
 上記の樹脂膜の製造方法を工程中に備える、電子装置の製造方法が提供される。
Moreover, according to the present invention,
There is provided an electronic device manufacturing method including the above-described resin film manufacturing method in the process.
 さらに、本発明によれば、
 以下の式(1)で示される構造単位を含むポリマーが提供される。
Figure JPOXMLDOC01-appb-C000008
(式(1)中、Rは炭素数1~18の有機基である。Rは炭素数2~18の有機基であって、その構造中に炭素-炭素二重結合を有する。)
Furthermore, according to the present invention,
A polymer containing a structural unit represented by the following formula (1) is provided.
Figure JPOXMLDOC01-appb-C000008
(In Formula (1), R 1 is an organic group having 1 to 18 carbon atoms. R 2 is an organic group having 2 to 18 carbon atoms, and has a carbon-carbon double bond in the structure thereof.)
 本発明のポリマーの製造方法では、無水マレイン酸に由来する構造単位から誘導されるカルボキシル基等の官能基に対して、エポキシ基を有する特定の化合物を作用させる。定かなものではないが、このような特定の化合物を作用させることにより、ポリマー構造中に感度を向上させるだけの官能基を生成させることができると考えられる。また、その結果、得られたポリマーを含む感光性樹脂組成物について露光した際に、飛躍的に硬化を促進できることが考えられる。
 このことから、本発明の製造方法によって得られるポリマーは、低露光量で硬化することができ、また、ネガ型感光性樹脂組成物等を構成するのに有用であるといえる。
In the polymer production method of the present invention, a specific compound having an epoxy group is allowed to act on a functional group such as a carboxyl group derived from a structural unit derived from maleic anhydride. Although it is not certain, it is considered that a functional group capable of improving the sensitivity can be generated in the polymer structure by acting such a specific compound. Further, as a result, it is considered that curing can be dramatically accelerated when the photosensitive resin composition containing the obtained polymer is exposed.
From this, it can be said that the polymer obtained by the production method of the present invention can be cured at a low exposure amount and is useful for constituting a negative photosensitive resin composition and the like.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本実施形態に係る電子装置の一例を示す断面図である。It is sectional drawing which shows an example of the electronic device which concerns on this embodiment.
 以下、実施の形態について、適宜図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、「~」はとくに断りがなければ、以上から以下を表す。 Hereinafter, embodiments will be described with reference to the drawings as appropriate. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate. Further, “˜” represents the following from the above unless otherwise specified.
[ポリマーの製造方法]
 まず、本実施形態のポリマーの製造方法について説明する。
 本実施形態のポリマーの製造方法は、以下の工程((i)~(iii)工程)を備えるものである。
(i) 以下の式(1a)で示される構造単位を含む前駆体ポリマーを準備する工程
(ii) 式(1a)で示される構造単位を含む前駆体ポリマーに対し、R-OHで表されるアルコール(ただし、Rは炭素数1~18の有機基である。)または水を作用させ、式(1a)で示される構造単位の無水マレイン酸部位を開環させ、前駆体ポリマー中にカルボキシル基またはその塩を生成させる工程
(iii) 無水マレイン酸部位を開環させた前駆体ポリマーに対し、式(3)で示されるエポキシ基を備える化合物を反応させる工程
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(式(3)中、Rは炭素数2~18の有機基であって、その構造中に炭素-炭素二重結合を有する。)
[Method for producing polymer]
First, the manufacturing method of the polymer of this embodiment is demonstrated.
The method for producing a polymer of the present embodiment comprises the following steps (steps (i) to (iii)).
(I) Step of preparing a precursor polymer containing a structural unit represented by the following formula (1a) (ii) A precursor polymer containing a structural unit represented by the formula (1a) is represented by R 1 —OH. An alcohol (wherein R 1 is an organic group having 1 to 18 carbon atoms) or water to open the maleic anhydride site of the structural unit represented by the formula (1a), and into the precursor polymer Step of generating a carboxyl group or a salt thereof (iii) Step of reacting a precursor polymer having a ring opening of a maleic anhydride site with a compound having an epoxy group represented by the formula (3)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(In Formula (3), R 2 is an organic group having 2 to 18 carbon atoms, and has a carbon-carbon double bond in its structure.)
 以下、各工程について説明を行う。 Hereinafter, each process will be described.
((i)工程)
 本工程は、前述の式(1a)で示される構造単位を含む前駆体ポリマーを準備するものである。ここで、式(1a)で示される構造単位は無水マレイン酸を重合させることで誘導されるものであるが、この重合においては、無水マレイン酸以外の他のモノマーを共重合させることもできる。
((I) Process)
In this step, a precursor polymer containing the structural unit represented by the above formula (1a) is prepared. Here, the structural unit represented by the formula (1a) is derived by polymerizing maleic anhydride, but in this polymerization, other monomers other than maleic anhydride can be copolymerized.
 なお、この共重合を行うに際しては、他のモノマーとして、分子内にエチレン性二重結合を有する化合物を用いることができる。ここで、エチレン性二重結合とは、アリル基、アクリル基、メタクリル基、マレイミド基のほか、スチリル基やインデニル基のような芳香族ビニル基等も包含するものである。 In carrying out this copolymerization, a compound having an ethylenic double bond in the molecule can be used as another monomer. Here, the ethylenic double bond includes an allyl group, an acrylic group, a methacryl group, a maleimide group, an aromatic vinyl group such as a styryl group and an indenyl group, and the like.
 他のモノマーのより具体的な例としては、ノルボルネン等の脂環系モノマー;スチレン、ビニルトルエン、α-メチルスチレン等のスチレン系モノマー;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニルモノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー;アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;の他、塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等の化合物を用いることができる。
 このような化合物の中でも、本実施形態においては、以下の式(2a)で示されるノルボルネン型モノマーを用いることが好ましい。
More specific examples of other monomers include alicyclic monomers such as norbornene; styrene monomers such as styrene, vinyltoluene, and α-methylstyrene; fluorine-containing compounds such as perfluoroethylene, perfluoropropylene, and vinylidene fluoride. Vinyl monomers; silicon-containing vinyl monomers such as vinyltrimethoxysilane and vinyltriethoxysilane; nitrile group-containing vinyl monomers such as acrylonitrile and methacrylonitrile; amide group-containing vinyl monomers such as acrylamide and methacrylamide; vinyl acetate; Vinyl esters such as vinyl propionate, vinyl pivalate, vinyl benzoate, and vinyl cinnamate; alkenes such as ethylene and propylene; conjugated dienes such as butadiene and isoprene; vinyl chloride, vinylidene chloride, and vinyl chloride Le, it is possible to use a compound such as allyl alcohol.
Among such compounds, in the present embodiment, it is preferable to use a norbornene-type monomer represented by the following formula (2a).
Figure JPOXMLDOC01-appb-C000011
(式(2a)中、R、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基である。nは0、1または2である。)
Figure JPOXMLDOC01-appb-C000011
(In the formula (2a), R 3 , R 4 , R 5 and R 6 are each independently hydrogen or an organic group having 1 to 30 carbon atoms. N is 0, 1 or 2.)
 式(2a)中の、R、R、R、Rを構成する炭素数1~30の有機基は、その構造中にO、N、S、PおよびSiから選択される1以上の原子を含んでいてもよい。また、R、R、R、Rを構成する有機基は、いずれも酸性官能基を有しないものとすることができる。これにより、最終的に得られるポリマー中における酸価の制御を容易とすることができる。 The organic group having 1 to 30 carbon atoms constituting R 3 , R 4 , R 5 and R 6 in the formula (2a) is one or more selected from O, N, S, P and Si in the structure May be included. Moreover, the organic group which comprises R < 3 >, R < 4 >, R < 5 >, R < 6 > does not have any acidic functional group. Thereby, control of the acid value in the polymer finally obtained can be facilitated.
 本実施形態において、R、R、R、Rを構成する有機基としては、たとえばアルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基、およびヘテロ環基が挙げられる。
 アルキル基としては、たとえばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、およびデシル基が挙げられる。アルケニル基としては、たとえばアリル基、ペンテニル基、およびビニル基が挙げられる。アルキニル基としては、エチニル基が挙げられる。アルキリデン基としては、たとえばメチリデン基、およびエチリデン基が挙げられる。アリール基としては、たとえばフェニル基、ナフチル基、およびアントラセニル基が挙げられる。アラルキル基としては、たとえばベンジル基、およびフェネチル基が挙げられる。アルカリル基としては、たとえばトリル基、キシリル基が挙げられる。シクロアルキル基としては、たとえばアダマンチル基、シクロペンチル基、シクロヘキシル基、およびシクロオクチル基が挙げられる。ヘテロ環基としては、たとえばエポキシ基およびオキセタニル基が挙げられる。
In this embodiment, examples of the organic group constituting R 3 , R 4 , R 5 and R 6 include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group, an alkaryl group, a cycloalkyl group, And heterocyclic groups.
Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, An octyl group, a nonyl group, and a decyl group are mentioned. Examples of the alkenyl group include allyl group, pentenyl group, and vinyl group. An ethynyl group is mentioned as an alkynyl group. Examples of the alkylidene group include a methylidene group and an ethylidene group. Examples of the aryl group include a phenyl group, a naphthyl group, and an anthracenyl group. Examples of the aralkyl group include a benzyl group and a phenethyl group. Examples of the alkaryl group include a tolyl group and a xylyl group. Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group. Examples of the heterocyclic group include an epoxy group and an oxetanyl group.
 さらに、前述したアルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基、およびヘテロ環基は、1以上の水素原子が、ハロゲン原子により置換されていてもよい。ハロゲン原子としては、フッ素、塩素、臭素およびヨウ素が挙げられる。なかでもアルキル基の1以上の水素原子が、ハロゲン原子に置換されたハロアルキル基である場合を好ましい態様の一例として挙げることができる。このように、R、R、R、Rの少なくともいずれか1つをハロアルキル基とすることで、最終的に得られるポリマーを使用して硬化膜を構成した際、この硬化膜の誘電率を低下させることができる。また、ハロアルキルアルコール基とすることで、アルカリ現像液に対する溶解性を適切な範囲に調整できるだけでなく、耐熱変色性を向上させることができる。
 なお、最終的に得られるポリマーを含んで構成される膜の光透過性を高める観点からは、R、R、R、Rのいずれか、またはすべてが水素であることが好ましい。
Furthermore, in the alkyl group, alkenyl group, alkynyl group, alkylidene group, aryl group, aralkyl group, alkaryl group, cycloalkyl group, and heterocyclic group described above, one or more hydrogen atoms may be substituted with halogen atoms. Good. Examples of the halogen atom include fluorine, chlorine, bromine and iodine. Especially, the case where the 1 or more hydrogen atom of an alkyl group is the haloalkyl group substituted by the halogen atom can be mentioned as an example of a preferable aspect. Thus, when at least one of R 3 , R 4 , R 5 , and R 6 is a haloalkyl group, a cured film is formed using the finally obtained polymer. The dielectric constant can be reduced. In addition, by using a haloalkyl alcohol group, not only the solubility in an alkali developer can be adjusted to an appropriate range, but also the heat discoloration can be improved.
In addition, from the viewpoint of increasing the light transmittance of the film that includes the finally obtained polymer, it is preferable that any or all of R 3 , R 4 , R 5 , and R 6 are hydrogen.
 式(2a)で示されるノルボルネン型モノマーとしては、具体的には、ビシクロ[2.2.1]-ヘプト-2-エン(慣用名:2-ノルボルネン)があげられ、さらに、アルキル基を有するものとして、5-メチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-ヘキシル-2-ノルボルネン、5-デシル-2-ノルボルネンなど、アルケニル基を有するものとしては、5-アリル-2-ノルボルネン、5-(2-プロペニル)-2-ノルボルネン、5-(1-メチル-4-ペンテニル)-2-ノルボルネンなど、アルキニル基を有するものとしては、5-エチニル-2-ノルボルネンなど、アラルキル基を有するものとしては、5-ベンジル-2-ノルボルネン、5-フェネチル-2-ノルボルネンなどが挙げられる。
 ノルボルネン型モノマーとしては、これらのうち、いずれか1種以上を使用できる。なかでも、最終的に得られるポリマーの光透過性の観点からは、ビシクロ[2.2.1]-ヘプト-2-エン(慣用名:2-ノルボルネン)を使用することが好ましい。
Specific examples of the norbornene-type monomer represented by the formula (2a) include bicyclo [2.2.1] -hept-2-ene (common name: 2-norbornene), which further has an alkyl group. As those having an alkenyl group, such as 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene, 5-hexyl-2-norbornene, 5-decyl-2-norbornene, etc. Are those having an alkynyl group, such as 5-allyl-2-norbornene, 5- (2-propenyl) -2-norbornene, 5- (1-methyl-4-pentenyl) -2-norbornene, and the like, Examples of those having an aralkyl group such as -2-norbornene include 5-benzyl-2-norbornene and 5-phenethyl-2-norbol Such as emissions, and the like.
Any one or more of these can be used as the norbornene-type monomer. Among these, from the viewpoint of light transmittance of the finally obtained polymer, it is preferable to use bicyclo [2.2.1] -hept-2-ene (common name: 2-norbornene).
 本工程において、前述の式(2a)で示されるモノマーを用いた場合、前駆体ポリマーおよび最終生成物のポリマーは、以下の式(2)で示される構造単位を含むこととなる。 In this step, when the monomer represented by the above formula (2a) is used, the precursor polymer and the final product polymer include a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000012
(式(2)中、R、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基である。nは0、1または2である。)
Figure JPOXMLDOC01-appb-C000012
(In Formula (2), R 3 , R 4 , R 5 and R 6 are each independently hydrogen or an organic group having 1 to 30 carbon atoms. N is 0, 1 or 2.)
 以下、本工程の具体的手順を、式(2a)で示されるノルボルネン型モノマーと無水マレイン酸を用いて前駆体ポリマーを得る態様を例示しながら説明する。 Hereinafter, the specific procedure of this step will be described with reference to an embodiment in which a precursor polymer is obtained using a norbornene-type monomer represented by the formula (2a) and maleic anhydride.
 すなわち、本工程では、式(2a)で示されるノルボルネン型モノマーと、無水マレイン酸とを付加重合する。ここでは、たとえばラジカル重合により、式(2a)で示されるノルボルネン型モノマーと、無水マレイン酸との共重合体(共重合体1)を形成する。
 この付加重合により、前駆体ポリマー中に、無水マレイン酸に由来する前述の式(1a)で示される構造単位を含ませることができる。
That is, in this step, the norbornene type monomer represented by the formula (2a) and maleic anhydride are subjected to addition polymerization. Here, for example, a copolymer (copolymer 1) of the norbornene type monomer represented by the formula (2a) and maleic anhydride is formed by radical polymerization.
By this addition polymerization, the structural unit represented by the above formula (1a) derived from maleic anhydride can be included in the precursor polymer.
 式(2a)で示されるノルボルネン型モノマーと、無水マレイン酸とのモル比(式(2a)で示される化合物のモル数:無水マレイン酸のモル数)は、0.5:1~1:0.5であることが好ましい。なかでも、分子構造制御の観点から、式(2a)で示されるノルボルネン型モノマーのモル数:無水マレイン酸のモル数=0.8:1~1:0.8であることがより好ましい。
 なお、この付加重合に際しては、上述のノルボルネン型モノマーと、無水マレイン酸以外にも共重合できるモノマーを添加することができる。このようなモノマーとして、分子内にエチレン性二重結合を有する基を含む化合物が挙げられる。ここで、エチレン性二重結合を有する基の具体例としては、アリル基、アクリル基、メタクリル基、マレイミド基や、スチリル基やインデニル基のような芳香族ビニル基等が挙げられる。
 なお、本工程で得られる前駆体ポリマー全体における式(1a)で示される構造単位の含有割合は、たとえば20モル%以上であり、25モル%以上であることが好ましく、30モル%以上であることがより好ましい。
 また、本工程で得られる前駆体ポリマー全体における式(1a)で示される構造単位の含有割合は、たとえば80モル%以下であり、75モル%以下であることが好ましく、70モル%以下であることがより好ましい。
 この構造単位の含有割合は、たとえば、モノマーの仕込み量から計算することもできるし、得られた前駆体ポリマーについてNMR(核磁気共鳴)分析を行うことにより計算することもできる。
The molar ratio of the norbornene-type monomer represented by the formula (2a) to maleic anhydride (mole number of the compound represented by formula (2a): mole number of maleic anhydride) is 0.5: 1 to 1: 0. .5 is preferable. Among these, from the viewpoint of controlling the molecular structure, it is more preferable that the number of moles of the norbornene-type monomer represented by the formula (2a): number of moles of maleic anhydride = 0.8: 1 to 1: 0.8.
In addition, in this addition polymerization, a monomer that can be copolymerized in addition to the above-described norbornene-type monomer and maleic anhydride can be added. Examples of such a monomer include compounds containing a group having an ethylenic double bond in the molecule. Here, specific examples of the group having an ethylenic double bond include an allyl group, an acrylic group, a methacryl group, a maleimide group, and an aromatic vinyl group such as a styryl group and an indenyl group.
In addition, the content rate of the structural unit shown by Formula (1a) in the whole precursor polymer obtained at this process is 20 mol% or more, for example, It is preferable that it is 25 mol% or more, It is 30 mol% or more. It is more preferable.
Moreover, the content rate of the structural unit shown by Formula (1a) in the whole precursor polymer obtained at this process is 80 mol% or less, for example, it is preferable that it is 75 mol% or less, and it is 70 mol% or less. It is more preferable.
The content ratio of the structural unit can be calculated from, for example, the amount of monomer charged, or can be calculated by performing NMR (nuclear magnetic resonance) analysis on the obtained precursor polymer.
 重合方法としては、例えば、ラジカル重合開始剤及び必要に応じて分子量調整剤を用いて重合する方法が好適である。この場合、懸濁重合、溶液重合、分散重合、乳化重合等の方法を取ることができる。中でも、溶液重合が好ましい。溶液重合の際には、各単量体を全量一括仕込みで行っても良いし、一部を反応容器に仕込み、残りを滴下して行ってもよい。 As the polymerization method, for example, a polymerization method using a radical polymerization initiator and, if necessary, a molecular weight adjusting agent is suitable. In this case, methods such as suspension polymerization, solution polymerization, dispersion polymerization, and emulsion polymerization can be employed. Among these, solution polymerization is preferable. In solution polymerization, all the monomers may be charged all at once, or a part of the monomers may be charged into a reaction vessel and the rest may be dropped.
 たとえば、式(2a)で示されるノルボルネン型モノマーと、無水マレイン酸と、ラジカル重合開始剤とを溶媒に溶解し、その後、所定時間加熱することで、式(2a)で示されるノルボルネン型モノマーと、無水マレイン酸とを溶液重合する。加熱温度は、たとえば、50~80℃であり、加熱時間は10~20時間である。 For example, the norbornene-type monomer represented by the formula (2a), the maleic anhydride, and the radical polymerization initiator are dissolved in a solvent, and then heated for a predetermined time, whereby the norbornene-type monomer represented by the formula (2a) And solution polymerization with maleic anhydride. The heating temperature is, for example, 50 to 80 ° C., and the heating time is 10 to 20 hours.
 重合に使用される溶媒は、特に付加重合を阻害するものでなければ適宜選択することができる。本実施形態においては、たとえば、汎用性の高い溶媒として、ジエチルエーテル、テトラヒドロフラン、トルエン、メチルエチルケトン、酢酸エチル等のうち、いずれか1種以上を使用することができる。 The solvent used for the polymerization can be appropriately selected as long as it does not inhibit the addition polymerization. In the present embodiment, for example, any one or more of diethyl ether, tetrahydrofuran, toluene, methyl ethyl ketone, ethyl acetate, and the like can be used as a highly versatile solvent.
 ラジカル重合開始剤としては、アゾ化合物および過酸化物のうちのいずれか1種以上を使用できる。
 アゾ化合物としては、たとえばアゾビスイソブチロニトリル(AIBN)、ジメチル2,2'-アゾビス(2-メチルプロピオネート)、1,1'-アゾビス(シクロヘキサンカルボニトリル)(ABCN)が挙げられ、これらのうち、いずれか1種以上を使用できる。
 また、過酸化物としては、たとえば過酸化水素、ジターシャリブチルパーオキサイド(DTBP)、過酸化ベンゾイル(ベンゾイルパーオキサイド,BPO)および、メチルエチルケトンパーオキサイド(MEKP)を挙げることができ、これらのうち、いずれか1種以上を使用できる。
As the radical polymerization initiator, any one or more of an azo compound and a peroxide can be used.
Examples of the azo compound include azobisisobutyronitrile (AIBN), dimethyl 2,2′-azobis (2-methylpropionate), 1,1′-azobis (cyclohexanecarbonitrile) (ABCN), Any one or more of these can be used.
Examples of the peroxide include hydrogen peroxide, ditertiary butyl peroxide (DTBP), benzoyl peroxide (benzoyl peroxide, BPO), and methyl ethyl ketone peroxide (MEKP). Among these, Any one or more of them can be used.
 ラジカル重合開始剤の量(モル数)は、各モノマーの合計モル数(たとえば、式(2a)で示されるノルボルネン型モノマーのモル数と無水マレイン酸のモル数の和)の0.05%~5%とすることが好ましい。ラジカル重合開始剤の量を前記範囲内で適宜設定し、かつ、反応温度、反応時間を適宜設定することで、得られる前駆体ポリマーの重量平均分子量(Mw)を適切な範囲に調整することができる。 The amount (number of moles) of the radical polymerization initiator is 0.05% to the total number of moles of each monomer (for example, the sum of the number of moles of the norbornene-type monomer represented by the formula (2a) and the number of moles of maleic anhydride). 5% is preferable. It is possible to adjust the weight average molecular weight (Mw) of the obtained precursor polymer to an appropriate range by appropriately setting the amount of the radical polymerization initiator within the above range and appropriately setting the reaction temperature and reaction time. it can.
 本工程により、上述の式(1a)で示される構造単位と、式(2)で示される構造単位とを有する前駆体ポリマー(共重合体1)を得ることができるが、この前駆体ポリマーは、式(1a)で示される構造単位と、式(2)で示される構造単位とが、ランダムに配置されたものであってもよく、また、交互に配置されたものであってもよい。また、式(2a)で示されるノルボルネン型モノマーと、無水マレイン酸とがブロック共重合したものであってもよい。ただし、本実施形態で製造されるポリマーを用いた樹脂組成物の溶解性の均一性を確保する観点からは、前駆体ポリマーは、式(1a)で示される構造単位と、式(2)で示される構造単位とが交互に配置された構造であることが好ましい。すなわち、前駆体ポリマー(共重合体1)は、以下の式(4)で表される構造単位を有するものであることが好ましい。 By this step, a precursor polymer (copolymer 1) having the structural unit represented by the above formula (1a) and the structural unit represented by the formula (2) can be obtained. The structural unit represented by the formula (1a) and the structural unit represented by the formula (2) may be randomly arranged, or may be alternately arranged. Moreover, the norbornene-type monomer represented by the formula (2a) and maleic anhydride may be block copolymerized. However, from the viewpoint of ensuring the uniformity of solubility of the resin composition using the polymer produced in the present embodiment, the precursor polymer is represented by the structural unit represented by the formula (1a) and the formula (2). A structure in which the structural units shown are alternately arranged is preferable. That is, the precursor polymer (copolymer 1) preferably has a structural unit represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000013
(式(4)において、n、R~Rは、上記式(2)と同じである。すなわち、nは0、1、2のいずれかであり、R~Rは、水素または炭素数1~30の有機基である。R~Rは、同一のものであっても異なっていてもよい。また、aは10以上、200以下の整数である。)
Figure JPOXMLDOC01-appb-C000013
(In the formula (4), n and R 3 to R 6 are the same as those in the above formula (2). That is, n is 0, 1, or 2, and R 3 to R 6 are hydrogen or (It is an organic group having 1 to 30 carbon atoms. R 3 to R 6 may be the same or different, and a is an integer of 10 or more and 200 or less.)
 本実施形態における前駆体ポリマー(共重合体1)は、たとえばGPC(Gel Permeation Chromatography)により得られる分子量分布曲線において、分子量1000以下におけるピーク面積が、全体の1%以下であることが好ましい。
 このように、GPCにより得られる分子量分布曲線の分子量1000以下におけるピーク面積の比率を上記範囲とすることにより、最終的に得られるポリマーを含む樹脂組成物からなる膜のパターン形状を良好なものとすることができる。
 なお、前駆体ポリマー(共重合体1)における低分子量成分の量の下限は、特に限定されない。しかし、本実施形態における前駆体ポリマー(共重合体1)は、GPCにより得られる分子量分布曲線において分子量1000以下におけるピーク面積が全体の0.01%以上である場合を許容するものである。
In the molecular weight distribution curve obtained by, for example, GPC (Gel Permeation Chromatography), the precursor polymer (copolymer 1) in the present embodiment preferably has a peak area of 1% or less of the total molecular weight of 1000 or less.
Thus, by setting the ratio of the peak area at a molecular weight of 1000 or less in the molecular weight distribution curve obtained by GPC within the above range, the pattern shape of the film made of the resin composition containing the polymer finally obtained is good. can do.
In addition, the minimum of the quantity of the low molecular weight component in a precursor polymer (copolymer 1) is not specifically limited. However, the precursor polymer (copolymer 1) in the present embodiment allows a case where the peak area at a molecular weight of 1000 or less is 0.01% or more of the whole in a molecular weight distribution curve obtained by GPC.
 本実施形態における前駆体ポリマーは、たとえばMw(重量平均分子量)/Mn(数平均分子量)が1.5以上5.0以下である。なお、Mw/Mnは、分子量分布の幅を示す分散度である。
 このように、前駆体ポリマーにおける分子量分布を一定の範囲に制御することにより、最終的に得られるポリマーにより形成される膜について、硬化時におけるパターンの変形を抑制できることができる。そのため、前駆体ポリマーのMw/Mnを上記範囲とすることにより、最終生成物であるポリマーを含む樹脂組成物からなる膜の形状を良好なものとすることができる。なお、このような効果は、同時に上述のように前駆体ポリマーの低分子量成分を低減する場合において特に顕著に表れる。
In the precursor polymer in the present embodiment, for example, Mw (weight average molecular weight) / Mn (number average molecular weight) is 1.5 or more and 5.0 or less. Mw / Mn is a degree of dispersion indicating the width of the molecular weight distribution.
Thus, by controlling the molecular weight distribution in the precursor polymer to a certain range, it is possible to suppress the deformation of the pattern during curing of the film formed from the finally obtained polymer. Therefore, by setting Mw / Mn of the precursor polymer in the above range, the shape of the film made of the resin composition containing the polymer that is the final product can be improved. Such an effect is particularly noticeable when the low molecular weight component of the precursor polymer is simultaneously reduced as described above.
 また、本実施形態の前駆体ポリマーのMw(重量平均分子量)は、たとえば2500以上であり、3000以上であることが好ましく、4000以上であることがより好ましい。
 一方、本実施形態の前駆体ポリマーのMw(重量平均分子量)は、たとえば35000以下であり、32000以下であることが好ましく、30000以下であることがより好ましい。
Moreover, Mw (weight average molecular weight) of the precursor polymer of the present embodiment is, for example, 2500 or more, preferably 3000 or more, and more preferably 4000 or more.
On the other hand, the Mw (weight average molecular weight) of the precursor polymer of this embodiment is, for example, 35000 or less, preferably 32000 or less, and more preferably 30000 or less.
 なお、本明細書において、重量平均分子量(Mw)、数平均分子量(Mn)、および分子量分布(Mw/Mn)は、たとえばGPC測定により得られる標準ポリスチレン(PS)の検量線から求めた、ポリスチレン換算値を用いる。測定条件は、たとえば以下の通りである。
東ソー社製ゲルパーミエーションクロマトグラフィー装置HLC-8320GPC
カラム:東ソー社製TSK-GEL Supermultipore HZ-M
検出器:液体クロマトグラム用RI検出器
測定温度:40℃
溶媒:THF
試料濃度:2.0mg/ミリリットル
 また、ポリマー中における低分子量成分量は、たとえばGPC測定により得られた分子量に関するデータに基づき、分子量分布全体の面積に占める、分子量1000以下に該当する成分の面積総和の割合から算出される。
In the present specification, the weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight distribution (Mw / Mn) are polystyrene determined from, for example, a standard polystyrene (PS) calibration curve obtained by GPC measurement. Use the converted value. The measurement conditions are, for example, as follows.
Tosoh gel permeation chromatography device HLC-8320GPC
Column: Tosoh TSK-GEL Supermultipore HZ-M
Detector: RI detector for liquid chromatogram Measurement temperature: 40 ° C
Solvent: THF
Sample concentration: 2.0 mg / milliliter In addition, the amount of low molecular weight components in the polymer is based on the data on the molecular weight obtained by GPC measurement, for example. It is calculated from the ratio.
((ii)工程)
 続いて、前述の前駆体ポリマーに対して、R-OHで表されるアルコール(ただし、Rは炭素数1~18の有機基である。)または水を作用させ、上記式(1a)で示される構造単位の無水マレイン酸部位を開環させ、前駆体ポリマー中にカルボキシル基またはその塩を生成させる。
(Step (ii))
Subsequently, an alcohol represented by R 1 —OH (provided that R 1 is an organic group having 1 to 18 carbon atoms) or water is allowed to act on the precursor polymer, and the above formula (1a) The maleic anhydride site of the structural unit represented by is opened to produce a carboxyl group or a salt thereof in the precursor polymer.
 本工程において、アルコールを作用させた場合は、前駆体ポリマー中には、たとえば、以下の式(1b)で示される構造単位が生成することとなる。 In this step, when alcohol is allowed to act, for example, a structural unit represented by the following formula (1b) is generated in the precursor polymer.
Figure JPOXMLDOC01-appb-C000014
(式(1b)において、Rは炭素数1~18の有機基である。)
Figure JPOXMLDOC01-appb-C000014
(In the formula (1b), R 1 is an organic group having 1 to 18 carbon atoms.)
 この式(1b)で示される構造単位において、Rは、炭素数1~18の有機基である。
 ここでの有機基としては、たとえばアルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、シクロアルキル基が挙げられる。
 アルキル基としては、たとえばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、およびデシル基が挙げられる。アルケニル基としては、たとえばアリル基、ペンテニル基、およびビニル基が挙げられる。アルキニル基としては、エチニル基が挙げられる。アルキリデン基としては、たとえばメチリデン基、およびエチリデン基が挙げられる。アリール基としては、たとえばフェニル基、ナフチル基、およびアントラセニル基が挙げられる。アラルキル基としては、たとえばベンジル基、およびフェネチル基が挙げられる。アルカリル基としては、たとえばトリル基、キシリル基が挙げられる。シクロアルキル基としては、たとえばアダマンチル基、シクロペンチル基、シクロヘキシル基、およびシクロオクチル基が挙げられる。
In the structural unit represented by the formula (1b), R 1 is an organic group having 1 to 18 carbon atoms.
Examples of the organic group include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group, an alkaryl group, and a cycloalkyl group.
Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, An octyl group, a nonyl group, and a decyl group are mentioned. Examples of the alkenyl group include allyl group, pentenyl group, and vinyl group. An ethynyl group is mentioned as an alkynyl group. Examples of the alkylidene group include a methylidene group and an ethylidene group. Examples of the aryl group include a phenyl group, a naphthyl group, and an anthracenyl group. Examples of the aralkyl group include a benzyl group and a phenethyl group. Examples of the alkaryl group include a tolyl group and a xylyl group. Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
 ここで、本実施形態で最終的に得られるポリマーは、たとえば、ネガ型感光性樹脂組成物を構成するポリマーとして用いることができるが、このようにネガ型感光性樹脂組成物に適用するに際しては、後に詳述するRのほか、Rについても、光ラジカル発生剤により、ラジカル重合を開始するラジカル重合性基を有していることが好ましい。より具体的にはRは、その構造中に炭素-炭素二重結合を有することが好ましく、また、ビニル基、ビニリデン基、アクリロイル基、メタクリロイル基からなる群から選ばれるいずれかの基を含むことがより好ましい。Rとして以下式(I)、式(II)のいずれかの基がさらに好ましい。 Here, the polymer finally obtained in the present embodiment can be used, for example, as a polymer constituting the negative photosensitive resin composition, but when applied to the negative photosensitive resin composition in this way, In addition to R 2 described in detail later, R 1 also preferably has a radical polymerizable group that initiates radical polymerization by a photoradical generator. More specifically, R 1 preferably has a carbon-carbon double bond in its structure, and includes any group selected from the group consisting of a vinyl group, a vinylidene group, an acryloyl group, and a methacryloyl group. It is more preferable. R 1 is more preferably any of the following formulas (I) and (II).
Figure JPOXMLDOC01-appb-C000015
(式(I)において、fは1~5の整数であり、式(II)において、eは1~9の整数である。)
Figure JPOXMLDOC01-appb-C000015
(In formula (I), f is an integer of 1 to 5, and in formula (II), e is an integer of 1 to 9.)
 なお、Rは式(1b)で示される複数の繰り返し単位において同じであることが好ましいが、式(1b)で示される繰り返し単位ごとに異なっていてもよい。 Incidentally, R 1 is is preferably the same in a plurality of repeating units represented by the formula (1b), may be different for each repeating unit of the formula (1b).
 また、Rとして、芳香環を含む炭素数8~18の有機基を用いてもよい。この場合、たとえばRとしては、ビニルアリール基(-Ar-CH=CH、Arは芳香族炭化水素基を表す。)を採用することができる。 Further, as R 1 , an organic group having 8 to 18 carbon atoms including an aromatic ring may be used. In this case, for example, a vinylaryl group (—Ar—CH═CH 2 , Ar represents an aromatic hydrocarbon group) can be employed as R 1 .
 また、式(1b)におけるRを構成する炭素数1~18の有機基は、その構造中にO、N、S、P、Siのいずれか1以上の原子を含んでいてもよい。また、Rを構成する有機基は、酸性官能基を含まないものとすることができる。これにより、最終的に得られるポリマー中における酸価の制御を容易とすることができる。 In addition, the organic group having 1 to 18 carbon atoms constituting R 1 in formula (1b) may contain one or more atoms of O, N, S, P, and Si in the structure. Further, the organic group constituting R 1 may not contain an acidic functional group. Thereby, control of the acid value in the polymer finally obtained can be facilitated.
 なお、本工程で変換される前駆体ポリマーについて、この式(1b)で示される構造単位、また、後述する式(1c)で示される構造単位は、その塩を含んでいてもよい。 In addition, about the precursor polymer converted at this process, the structural unit shown by this Formula (1b) and the structural unit shown by Formula (1c) mentioned later may contain the salt.
 前述のアルコールを用いる態様とは別に、前駆体ポリマーに対して水を作用させた場合、前駆体ポリマー中には、以下の式(1c)で示される構造単位が生成することとなる。 In addition to the above-described embodiment using alcohol, when water is allowed to act on the precursor polymer, a structural unit represented by the following formula (1c) is generated in the precursor polymer.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 本工程は、前駆体ポリマー中の式(1a)で示される構造単位を、上述の式(1b)または式(1c)で示される構造単位、あるいはこれら式(1b)、式(1c)で示される構造単位の塩に変換するものである。ここで、以下の式で示される変換率は、たとえば5%以上に設定され、10%以上に設定されることが好ましく、20%以上に設定されることがより好ましい。
 一方、以下の式で示される変換率の上限値はとくに制限されるものではないが、たとえば99.9%以下である。
・変換率(%)=100×[(本工程後の式(1b)で示される構造単位およびその塩のモル数)+(本工程後の式(1c)で示される構造単位およびその塩のモル数)]/[本工程前の式(1a)で示される構造単位のモル数)]
In this step, the structural unit represented by the formula (1a) in the precursor polymer is represented by the structural unit represented by the above formula (1b) or (1c), or these formula (1b) and formula (1c). To a structural unit salt. Here, the conversion rate represented by the following formula is set to, for example, 5% or more, preferably 10% or more, and more preferably 20% or more.
On the other hand, the upper limit value of the conversion rate represented by the following equation is not particularly limited, but is, for example, 99.9% or less.
Conversion rate (%) = 100 × [(number of moles of structural unit and salt thereof represented by formula (1b) after this step) + (of structural unit and salt thereof represented by formula (1c) after this step) Number of moles)] / [number of moles of structural unit represented by formula (1a) before this step)]
 本工程は、たとえば、式(1a)で示される構造単位を有する前駆体ポリマーを含む溶液に対し、アルコールまたは水を所定量加え、加熱することで行うことができる。
 前駆体ポリマーを溶解する溶媒は、反応を阻害しないものの中から適宜選択することができ、加熱の条件としては、たとえば、50~100℃の範囲で設定することができる。反応時間は、ポリマーの化学構造の変化の度合などを観察しながら適宜設定できる。
 なお、本工程に用いられる溶媒として、たとえば、汎用性の高い溶媒として、ジエチルエーテル、テトラヒドロフラン、トルエン、メチルエチルケトン、酢酸エチル等のうち、いずれか1種以上を使用することができる。
This step can be performed, for example, by adding a predetermined amount of alcohol or water to the solution containing the precursor polymer having the structural unit represented by the formula (1a) and heating.
The solvent that dissolves the precursor polymer can be appropriately selected from those that do not inhibit the reaction, and the heating conditions can be set in the range of 50 to 100 ° C., for example. The reaction time can be appropriately set while observing the degree of change in the chemical structure of the polymer.
As the solvent used in this step, for example, one or more of diethyl ether, tetrahydrofuran, toluene, methyl ethyl ketone, ethyl acetate and the like can be used as a highly versatile solvent.
 この加熱においては、反応を促進する観点から適宜触媒を加えることができ、たとえば塩基触媒や酸触媒を加えることができる。
 塩基触媒としては、ピリジンや、トリエチルアミンなどのアルキルアミン、ジメチルアニリン、ウロトロピン、ジメチルアミノピリジンなどのアミン化合物、酢酸ナトリウム等の金属塩を用いることができる。
 また、酸触媒としては、硫酸や塩酸などの鉱酸、パラトルエンスルホン酸などの有機酸、三フッ化ホウ素エーテラートなどのルイス酸などを用いることができる。
 なお、本工程で塩基触媒を用いる場合においては、この塩基と、生成したカルボキシル基とが塩(カルボン酸塩)を形成することがある。この場合、このカルボン酸塩の構造を維持したまま次工程に移行することもできるし、また、塩酸やギ酸等の酸を作用させ、上述の式(1b)または式(1c)で示されるような、末端にカルボキシル基を備える構造単位に変換させることもできる。
In this heating, a catalyst can be appropriately added from the viewpoint of promoting the reaction, and for example, a base catalyst or an acid catalyst can be added.
As the base catalyst, pyridine, alkylamines such as triethylamine, amine compounds such as dimethylaniline, urotropine and dimethylaminopyridine, and metal salts such as sodium acetate can be used.
As the acid catalyst, mineral acids such as sulfuric acid and hydrochloric acid, organic acids such as paratoluenesulfonic acid, Lewis acids such as boron trifluoride etherate, and the like can be used.
In addition, when using a base catalyst at this process, this base and the produced | generated carboxyl group may form a salt (carboxylate). In this case, it is possible to proceed to the next step while maintaining the structure of this carboxylate salt, or to react with an acid such as hydrochloric acid or formic acid so as to be represented by the above formula (1b) or formula (1c). Further, it can be converted into a structural unit having a carboxyl group at the terminal.
((iii)工程)
 本工程では、前工程で得られた無水マレイン酸部位を開環させた前駆体ポリマーに対し、式(3)で示されるエポキシ基を備える化合物を反応させる。
((Iii) step)
In this step, the precursor polymer obtained by opening the maleic anhydride moiety obtained in the previous step is reacted with a compound having an epoxy group represented by formula (3).
Figure JPOXMLDOC01-appb-C000017
(式(3)中、Rは炭素数2~18の有機基であって、その構造中に炭素-炭素二重結合を有する。)
Figure JPOXMLDOC01-appb-C000017
(In Formula (3), R 2 is an organic group having 2 to 18 carbon atoms, and has a carbon-carbon double bond in its structure.)
 本工程のより具体的な態様としては、前述の式(1b)または式(1c)で示される構造単位(またはその塩)を含む前駆体ポリマーを含む溶液と、式(3)で示される化合物とを混合し、加熱する。
 前駆体ポリマーを溶解する溶媒は、反応を阻害しないものの中から適宜選択することができ、加熱の条件としては、たとえば、50~100℃の範囲で設定することができる。反応時間は、ポリマーの化学構造の変化の度合などを観察しながら適宜設定できる。
As a more specific aspect of this step, a solution containing a precursor polymer containing the structural unit (or a salt thereof) represented by the above formula (1b) or (1c), and a compound represented by the formula (3) And are heated.
The solvent that dissolves the precursor polymer can be appropriately selected from those that do not inhibit the reaction, and the heating conditions can be set in the range of 50 to 100 ° C., for example. The reaction time can be appropriately set while observing the degree of change in the chemical structure of the polymer.
 また、式(3)で示される化合物は、特定のRを備えるものの中から適宜選択することができる。
 具体的には、Rは、炭素数2~18の有機基であって、その構造中に炭素-炭素二重結合を有するものであるが、Rとしては、たとえばアリル基、ペンテニル基、およびビニル基等のアルケニル基を含む有機基とすることができる。より具体的には、Rは、ビニル基、ビニリデン基、アクリロイル基、メタクリロイル基からなる群から選ばれるいずれかの基を含むことがより好ましく、アクリロイル基またはメタクリロイル基を含むことがさらに好ましい。
 また、Rとしては、前述の式(I)、式(II)のいずれかの基を採用することもできる。
The compound represented by formula (3) can be appropriately selected from those with a specific R 2.
Specifically, R 2 is an organic group having 2 to 18 carbon atoms and has a carbon-carbon double bond in its structure. Examples of R 2 include an allyl group, a pentenyl group, And an organic group containing an alkenyl group such as a vinyl group. More specifically, R 2 preferably includes any group selected from the group consisting of a vinyl group, a vinylidene group, an acryloyl group, and a methacryloyl group, and more preferably includes an acryloyl group or a methacryloyl group.
In addition, as R 2 , any of the groups of formula (I) and formula (II) described above can be adopted.
 また、Rは、形成される構造単位ごとにおいて同じであることが好ましいが、形成される構造単位ごとに異なっていてもよい。
 また、Rとして、芳香環を含む炭素数8~18の有機基を用いてもよい。この場合、たとえばRとしては、ビニルアリール基(-Ar-CH=CH、Arは芳香族炭化水素基を表す)を採用することができる。
R 2 is preferably the same for each structural unit to be formed, but may be different for each structural unit to be formed.
Further, as R 2 , an organic group having 8 to 18 carbon atoms including an aromatic ring may be used. In this case, for example, a vinylaryl group (—Ar—CH═CH 2 , Ar represents an aromatic hydrocarbon group) can be employed as R 2 .
 また、Rを構成する炭素数2~18の有機基は、その構造中にO、N、S、P、Siのいずれか1以上の原子を含んでいてもよい。また、Rを構成する有機基は、酸性官能基を含まないものとすることができる。これにより、得られるポリマー中における酸価の制御を容易とすることができる。 Further, the organic group having 2 to 18 carbon atoms constituting R 2 may contain one or more atoms of O, N, S, P and Si in the structure. The organic group constituting R 2 may be made free of acid functionality. Thereby, control of the acid value in the polymer obtained can be facilitated.
 本実施形態において、入手容易性の高さを鑑み、この式(3)で示される化合物として、グリシジルアクリレートまたはグリシジルメタクリレートを用いることが好ましい。 In this embodiment, it is preferable to use glycidyl acrylate or glycidyl methacrylate as the compound represented by the formula (3) in view of high availability.
 ここで、式(1b)で示される構造単位に対し、式(3)で示される化合物を作用させた場合においては、この式(1b)で示される構造単位は、式(1)で示される構造単位に変換されうる。
 すなわち、本実施形態によって得られるポリマーは、この式(1)で示される構造単位を含みうる。
Here, when the compound represented by the formula (3) is allowed to act on the structural unit represented by the formula (1b), the structural unit represented by the formula (1b) is represented by the formula (1). Can be converted to a structural unit.
That is, the polymer obtained by the present embodiment can include a structural unit represented by the formula (1).
Figure JPOXMLDOC01-appb-C000018
(式(1)中、Rは炭素数1~18の有機基である。Rは炭素数2~18の有機基であって、その構造中に炭素-炭素二重結合を有する。)
Figure JPOXMLDOC01-appb-C000018
(In Formula (1), R 1 is an organic group having 1 to 18 carbon atoms. R 2 is an organic group having 2 to 18 carbon atoms, and has a carbon-carbon double bond in the structure thereof.)
 一方、上記式(1c)で示される構造単位に対し、式(3)で示される化合物を作用させた場合においては、この式(1c)で示される構造単位は、式(1d)で示される構造単位に変換されうる。
 なお、本実施形態において、この式(1d)で示される構造単位は、式(1)で示される構造単位に相当するものであることが好ましい。
On the other hand, when the compound represented by the formula (3) is allowed to act on the structural unit represented by the formula (1c), the structural unit represented by the formula (1c) is represented by the formula (1d). Can be converted to a structural unit.
In the present embodiment, the structural unit represented by the formula (1d) preferably corresponds to the structural unit represented by the formula (1).
Figure JPOXMLDOC01-appb-C000019
(式(1d)中、Rは、それぞれ炭素数2~18の有機基であって、その構造中に炭素-炭素二重結合を有する。)
Figure JPOXMLDOC01-appb-C000019
(In the formula (1d), each R 2 is an organic group having 2 to 18 carbon atoms and has a carbon-carbon double bond in its structure.)
 本工程においては、反応を促進する観点から適宜触媒を加えることができ、たとえば塩基触媒や酸触媒を加えることができる。
 塩基触媒としては、ピリジンや、トリエチルアミンなどのアルキルアミン、ジメチルアニリン、ウロトロピン、ジメチルアミノピリジンなどのアミン化合物、酢酸ナトリウム等の金属塩を用いることができる。
 また、酸触媒としては、硫酸や塩酸などの鉱酸、パラトルエンスルホン酸などの有機酸、フッ化ホウ素エーテラートなどのルイス酸などを用いることができる。
 なお、本工程で塩基触媒を用いる場合においては、この塩基とポリマー中のカルボキシル基とが塩(カルボン酸塩)を形成することがあるため、塩酸やギ酸等の酸を作用させ、ポリマー中のカルボン酸塩の部位を、カルボキシル基へと変換させることが好適である。
In this step, a catalyst can be appropriately added from the viewpoint of promoting the reaction, and for example, a base catalyst or an acid catalyst can be added.
As the base catalyst, pyridine, alkylamines such as triethylamine, amine compounds such as dimethylaniline, urotropine and dimethylaminopyridine, and metal salts such as sodium acetate can be used.
As the acid catalyst, mineral acids such as sulfuric acid and hydrochloric acid, organic acids such as p-toluenesulfonic acid, Lewis acids such as boron fluoride etherate, and the like can be used.
When a base catalyst is used in this step, since this base and the carboxyl group in the polymer may form a salt (carboxylate), an acid such as hydrochloric acid or formic acid is allowed to act, It is preferable to convert the carboxylate moiety to a carboxyl group.
 以上のようにして、本実施形態のポリマーを製造することができるが、本実施形態のポリマーの製造方法においては、各工程の間に前駆体ポリマーを洗浄する処理を介在させてもよいし、また、無水マレイン酸や式(2a)で示される化合物に由来する構造単位以外の構造単位を含む場合は、かかる構造単位を変換するのに適した処理を、各工程の間に介在させてもよい。 As described above, the polymer of the present embodiment can be produced. However, in the polymer production method of the present embodiment, a process of washing the precursor polymer may be interposed between the steps, In addition, when a structural unit other than the structural unit derived from maleic anhydride or the compound represented by formula (2a) is included, a treatment suitable for converting the structural unit may be interposed between the steps. Good.
 本実施形態によって得られるポリマーは、前述の式(1)で示される、無水マレイン酸に由来する構造単位を含みうるが、この構造単位のほか、以下に示す式(1b)で示される構造単位や式(1c)で示される構造単位を含むことができる。
 これら構造単位はカルボキシル基を備えており、ポリマーとしてのアルカリ可溶性を付与するものである。
The polymer obtained by the present embodiment may contain a structural unit derived from maleic anhydride represented by the above formula (1). In addition to this structural unit, the structural unit represented by the following formula (1b) And a structural unit represented by the formula (1c).
These structural units have a carboxyl group and impart alkali solubility as a polymer.
Figure JPOXMLDOC01-appb-C000020
(式(1b)において、Rは、前述したRと同様である。)
Figure JPOXMLDOC01-appb-C000020
(In the formula (1b), R 1 is the same as R 1 described above.)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 なお、本実施形態によって得られるポリマーのアルカリ溶解速度は、たとえば500Å/秒以上30000Å/秒以下である。ポリマーのアルカリ溶解速度は、たとえばポリマーをプロピレングリコールモノメチルエーテルアセテートに溶解させ、固形分20重量%に調整したポリマー溶液を、シリコンウェハ上にスピン方式で塗布し、これを110℃で100秒間ソフトベークして得られるポリマー膜を、23℃で2.38%のテトラメチルアンモニウムハイドロオキサイド水溶液に含浸させ、視覚的に前記ポリマー膜が消去するまでの時間を測定することにより算出される。
 ポリマーのアルカリ溶解速度を500Å/秒以上とすることにより、アルカリ現像液による現像工程におけるスループットを良好なものとすることができる。また、ポリマーのアルカリ溶解速度を30000Å/秒以下とすることにより、アルカリ現像液による現像工程後における残膜率を向上させることができる。このため、リソグラフィ工程による膜減りを抑えることが可能となる。
 同様の観点から、ポリマーのアルカリ溶解速度は1000Å/秒以上であることがより好ましく、2000Å/秒以上であることがさらに好ましい。また、ポリマーのアルカリ溶解速度は28000Å/秒以下であることがより好ましく、25000Å/秒以下であることがさらに好ましい。
In addition, the alkali dissolution rate of the polymer obtained by the present embodiment is, for example, not less than 500 kg / sec and not more than 30000 kg / sec. The alkali dissolution rate of the polymer can be determined by, for example, dissolving a polymer in propylene glycol monomethyl ether acetate and applying a polymer solution adjusted to a solid content of 20% by weight on a silicon wafer by a spin method, followed by soft baking at 110 ° C. for 100 seconds. The polymer film thus obtained is impregnated with a 2.38% tetramethylammonium hydroxide aqueous solution at 23 ° C., and the time until the polymer film is visually erased is calculated.
By setting the alkali dissolution rate of the polymer to 500 kg / second or more, it is possible to improve the throughput in the development step using an alkali developer. Moreover, the residual film rate after the image development process by an alkali developing solution can be improved by making the alkali dissolution rate of a polymer into 30000 kg / sec or less. For this reason, it is possible to suppress film loss due to the lithography process.
From the same viewpoint, the alkali dissolution rate of the polymer is more preferably 1000 kg / sec or more, and further preferably 2000 kg / sec or more. The alkali dissolution rate of the polymer is more preferably 28000 kg / second or less, and further preferably 25000 kg / second or less.
 本実施形態により得られるポリマーは、たとえばGPC(Gel Permeation Chromatography)により得られる分子量分布曲線において、分子量1000以下におけるピーク面積が、全体の1%以下であることが好ましい。
 このように、GPCにより得られる分子量分布曲線の分子量1000以下におけるピーク面積の比率を上記範囲とすることにより、このポリマーを含む樹脂組成物からなる膜のパターン形状を良好なものとすることができる。
 なお、本実施形態により得られるポリマーにおける低分子量成分の量の下限は、特に限定されない。しかし、本実施形態におけるポリマーは、GPCにより得られる分子量分布曲線において分子量1000以下におけるピーク面積が全体の0.01%以上である場合を許容するものである。
In the molecular weight distribution curve obtained by GPC (Gel Permeation Chromatography), for example, the peak area at a molecular weight of 1000 or less is preferably 1% or less of the polymer obtained by the present embodiment.
Thus, by setting the ratio of the peak area at a molecular weight of 1000 or less in the molecular weight distribution curve obtained by GPC within the above range, the pattern shape of the film made of the resin composition containing this polymer can be improved. .
In addition, the minimum of the quantity of the low molecular weight component in the polymer obtained by this embodiment is not specifically limited. However, the polymer in the present embodiment allows a case where the peak area at a molecular weight of 1000 or less is 0.01% or more of the entire molecular weight distribution curve obtained by GPC.
 本実施形態により得られるポリマーは、たとえばMw(重量平均分子量)/Mn(数平均分子量)が1.5以上5.0以下である。
 このように、ポリマーにおける分子量分布を一定の範囲に制御することにより、本実施形態により得られるポリマーにより形成される膜について、硬化時におけるパターンの変形を抑制できることができる。そのため、ポリマーのMw/Mnを上記範囲とすることにより、ポリマーを含む樹脂組成物からなる膜の形状を良好なものとすることができる。
The polymer obtained by this embodiment has, for example, Mw (weight average molecular weight) / Mn (number average molecular weight) of 1.5 or more and 5.0 or less.
As described above, by controlling the molecular weight distribution in the polymer within a certain range, it is possible to suppress the deformation of the pattern at the time of curing of the film formed by the polymer obtained according to the present embodiment. Therefore, when the Mw / Mn of the polymer is in the above range, the shape of the film made of the resin composition containing the polymer can be improved.
 また、本実施形態により得られるポリマーのMw(重量平均分子量)は、たとえば2500以上であり、3000以上であることが好ましく、4000以上であることがより好ましい。
 一方、本実施形態により得られるポリマーのMw(重量平均分子量)は、たとえば35000以下であり、32000以下であることが好ましく、30000以下であることがより好ましい。
 Mw(重量平均分子量)についてこのような範囲に設定することにより、本実施形態のポリマーは、ネガ型感光性樹脂組成物を作製する際に適度に溶媒に溶解し、かつ、樹脂膜を構成する際に適度な剛性を発現することができる。
Moreover, Mw (weight average molecular weight) of the polymer obtained by the present embodiment is, for example, 2500 or more, preferably 3000 or more, and more preferably 4000 or more.
On the other hand, the Mw (weight average molecular weight) of the polymer obtained by the present embodiment is, for example, 35000 or less, preferably 32000 or less, and more preferably 30000 or less.
By setting Mw (weight average molecular weight) in such a range, the polymer of the present embodiment is appropriately dissolved in a solvent when forming a negative photosensitive resin composition, and constitutes a resin film. In this case, appropriate rigidity can be exhibited.
 本実施形態により得られるポリマーは、この構造単位に含まれる化学的性能の特異性から、好ましくは、感光性樹脂膜を形成するために用いることができる。
 なお、本明細書中において「感光性樹脂膜」とは、電子装置等の作製過程において、露光工程に供される樹脂膜を指す。より具体的には、「感光性樹脂膜」は、光が照射された部位が硬化し、一方、照射されない部位は現像工程で現像液(例えばアルカリ溶液)に溶解して除去される、ネガ型の感光性樹脂膜を指す。
The polymer obtained by this embodiment can be preferably used for forming a photosensitive resin film because of the specificity of the chemical performance contained in this structural unit.
In the present specification, the “photosensitive resin film” refers to a resin film that is subjected to an exposure process in the manufacturing process of an electronic device or the like. More specifically, the “photosensitive resin film” is a negative type in which a portion irradiated with light is cured, and a portion not irradiated is dissolved and removed in a developing solution (for example, an alkaline solution) in a development process. The photosensitive resin film.
[ネガ型感光性樹脂組成物]
 続いて、本実施形態にかかるネガ型感光性樹脂組成物について説明する。
 本実施形態に係るネガ型感光性樹脂組成物は、先に説明した製造方法により得られるポリマーと、光ラジカル発生剤とを配合することにより得られるものである。
[Negative photosensitive resin composition]
Then, the negative photosensitive resin composition concerning this embodiment is demonstrated.
The negative photosensitive resin composition according to this embodiment is obtained by blending a polymer obtained by the production method described above and a photoradical generator.
 光ラジカル発生剤としては、具体的には、例えば、2,2-ジエトキシアセトフェノン、2,2-ジメトキシー2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-〔4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル〕フェニル}-2-メチルプロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-〔(4-メチルフェニル)メチル〕-1-〔4-(4-モルホリニル)フェニル〕-1-ブタノン等のアルキルフェノン系化合物;ベンゾフェノン、4,4'-ビス(ジメチルアミノ)ベンゾフェノン、2-カルボキシベンゾフェノン等のベンゾフェノン系化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテ等のベンゾイン系化合物;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン系化合物;2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシカルボキニルナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン等のハロメチル化トリアジン系化合物;2-トリクロロメチル-5-(2'-ベンゾフリル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-〔β-(2'-ベンゾフリル)ビニル〕-1,3,4-オキサジアゾール、4-オキサジアゾール、2-トリクロロメチル-5-フリル-1,3,4-オキサジアゾール等のハロメチル化オキサジアゾール系化合物;2,2'-ビス(2-クロロフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール、2,2'-ビス(2,4-ジクロロフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール、2,2'-ビス(2,4,6-トリクロロフェニル)-4,4',5,5'-テトラフェニル-1,2'-ビイミダゾール等のビイミダゾール系化合物;1,2-オクタンジオン,1-〔4-(フェニルチオ)-2-(O-ベンゾイルオキシム)〕、エタノン,1-〔9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル〕-,1-(O-アセチルオキシム)等のオキシムエステル系化合物;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等のチタノセン系化合物;p-ジメチルアミノ安息香酸、p-ジエチルアミノ安息香酸等の安息香酸エステル系化合物;9-フェニルアクリジン等のアクリジン系化合物;等を挙げることができる。 Specific examples of the photo radical generator include 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl. Propan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2 -Hydroxy-2-methylpropionyl) benzyl] phenyl} -2-methylpropan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2- Dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenol Alkyl) phenone compounds such as (l) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone; benzophenones such as benzophenone, 4,4′-bis (dimethylamino) benzophenone, 2-carboxybenzophenone Compound: Benzoin compounds such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether; thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4 A thioxanthone compound such as diethylthioxanthone; 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxynaphthyl) -4,6-bis ( Lichloromethyl) -s-triazine, 2- (4-ethoxynaphthyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-ethoxycarboquinylnaphthyl) -4,6-bis (trichloromethyl) Halomethylated triazine compounds such as —s-triazine; 2-trichloromethyl-5- (2′-benzofuryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- [β- (2′- Benzofuryl) vinyl] -1,3,4-oxadiazole, 4-oxadiazole, 2-trichloromethyl-5-furyl-1,3,4-oxadiazole and the like halomethylated oxadiazole compounds; 2 , 2'-bis (2-chlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4-dichlorophenyl) Nyl) -4,4 ′, 5,5′-tetraphenyl-1,2′-biimidazole, 2,2′-bis (2,4,6-trichlorophenyl) -4,4 ′, 5,5 ′ -Biimidazole compounds such as tetraphenyl-1,2'-biimidazole; 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone, 1- [9 Oxime ester compounds such as -ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime); bis (η5-2,4-cyclopentadiene-1- Yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium and the like; benzoic acid esters such as p-dimethylaminobenzoic acid and p-diethylaminobenzoic acid Compounds; acridine compounds such as 9-phenylacridine; and the like.
 本実施形態のネガ型感光性樹脂組成物において、光ラジカル発生剤は、ポリマー全体100質量部に対し、1質量部以上20質量部以下であることが好ましく、さらには2質量部以上15質量部以下であることが好ましい。 In the negative photosensitive resin composition of the present embodiment, the photoradical generator is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 2 parts by mass or more and 15 parts by mass with respect to 100 parts by mass of the whole polymer. The following is preferable.
 また、上記光ラジカル発生剤とともに、光増感剤や光ラジカル重合促進剤を使用する事により、感度や架橋度を更に向上させることができる。例えば、キサンテン色素、クマリン色素などの色素系化合物、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸2-エチルヘキシル等のジアルキルアミノベンゼン系化合物、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール等のメルカプト系水素供与体等があげられる。 Further, by using a photosensitizer or a photoradical polymerization accelerator together with the photoradical generator, the sensitivity and the degree of crosslinking can be further improved. For example, dye compounds such as xanthene dyes and coumarin dyes, dialkylaminobenzene compounds such as ethyl 4-dimethylaminobenzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2-mercaptobenzothiazole, 2-mercaptobenzoimidazole, etc. And mercapto-type hydrogen donors.
(溶媒)
 本実施形態に記載のネガ型感光性樹脂組成物は、上述の各成分を溶媒に溶解することで、ワニス状として使用することができる。
 このような溶媒の例としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、メチル-1,3-ブチレングリコールアセテート、1,3-ブチレングリコール-3-モノメチルエーテル、ピルビン酸メチル、およびピルビン酸エチル及びメチル-3-メトキシプロピオネート等が挙げられる。
 なお、樹脂膜のクラック発生を顕著に抑制する観点からは、これらの化合物のうち、γ-ブチロラクロン、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートからなる群から選ばれる化合物を用いることが好ましい態様である。
(solvent)
The negative photosensitive resin composition described in this embodiment can be used as a varnish by dissolving the above-described components in a solvent.
Examples of such solvents include N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylacetamide, dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, dipropylene glycol Monomethyl ether, propylene glycol monomethyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, methyl-1,3-butylene glycol acetate, 1,3-butylene glycol-3-monomethyl ether, methyl pyruvate, and ethyl and methyl pyruvate -3-Methoxypropionate and the like.
Of these compounds, γ-butyrolaclone, dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether are among these compounds from the viewpoint of significantly suppressing the occurrence of cracks in the resin film. It is preferable to use a compound selected from the group consisting of propylene glycol monomethyl ether acetate.
 本実施形態のネガ型感光性樹脂組成物における溶媒の含有量は、特に限定されるものではないが、ポリマー100質量部に対して、100質量部以上であることが好ましく、150質量部以上であることがより好ましい。
 また、本実施形態のネガ型感光性樹脂組成物における溶媒の含有量は、ポリマー100質量部に対して、1000質量部以下であることが好ましく、800質量部以下であることがより好ましい。溶媒の含有量が上記範囲内であると、適度なハンドリング性をもたらすことができる。
Although content of the solvent in the negative photosensitive resin composition of this embodiment is not specifically limited, It is preferable that it is 100 mass parts or more with respect to 100 mass parts of polymers, and is 150 mass parts or more. More preferably.
Moreover, it is preferable that it is 1000 mass parts or less with respect to 100 mass parts of polymers, and, as for content of the solvent in the negative photosensitive resin composition of this embodiment, it is more preferable that it is 800 mass parts or less. When the content of the solvent is within the above range, an appropriate handling property can be provided.
 また、本実施形態のネガ型感光性樹脂組成物は、各用途の目的や要求特性に応じて、フィラー、先述のポリマー以外のバインダー樹脂、架橋剤、酸発生剤、耐熱向上剤、現像助剤、可塑剤、重合禁止剤、紫外線吸収剤、酸化防止剤、艶消し剤、消泡剤、レベリング剤、帯電防止剤、分散剤、スリップ剤、表面改質剤、揺変化剤、揺変助剤、界面活性剤、シラン系やアルミニウム系、チタン系などのカップリング剤、多価フェノール化合物等の上記の必須成分以外の成分が配合されても良い。 Further, the negative photosensitive resin composition of the present embodiment includes a filler, a binder resin other than the aforementioned polymer, a crosslinking agent, an acid generator, a heat improver, and a development aid depending on the purpose and required characteristics of each application. , Plasticizer, polymerization inhibitor, UV absorber, antioxidant, matting agent, antifoaming agent, leveling agent, antistatic agent, dispersant, slip agent, surface modifier, thixotropic agent, thixotropic agent Components other than the above essential components such as surfactants, silane-based, aluminum-based, titanium-based coupling agents, and polyhydric phenol compounds may be blended.
[着色感光性樹脂組成物]
 本実施形態のネガ型感光性樹脂組成物はさらに着色剤を含ませることにより、着色感光性樹脂組成物とすることができる。
 このような着色感光性樹脂組成物は、たとえば、カラーフィルタを構成するブラックマトリクスや着色パターンを作製する際に、好適に用いることができる。
[Colored photosensitive resin composition]
The negative photosensitive resin composition of this embodiment can be made into a colored photosensitive resin composition by further including a colorant.
Such a colored photosensitive resin composition can be suitably used, for example, when producing a black matrix or a colored pattern constituting a color filter.
 本実施形態の着色感光性樹脂組成物は、従来公知の顔料や染料を含有するものである。
 顔料としては有機顔料や無機顔料を用いることができる。
 有機顔料としては、アゾ系顔料、フタロシアニン系顔料、多環式顔料(キナクリドン系、ペリレン系、ペリノン系、イソインドリノン系、イソインドリン系、ジオキサジン系、チオインジゴ系、アントラキノン系、キノフタロン系、金属錯体系、ジケトピロロピロール系等)、染料レーキ系顔料等を使用することができる。
 無機顔料としては、白色・体質顔料(酸化チタン、酸化亜鉛、硫化亜鉛、クレー、タルク、硫酸バリウム、炭酸カルシウム等)、有彩顔料(黄鉛、カドミニウム系、クロムバーミリオン、ニッケルチタン、クロムチタン、黄色酸化鉄、ベンガラ、ジンククロメート、鉛丹、群青、紺青、コバルトブルー、クロムグリーン、酸化クロム、バナジン酸ビスマス等)、黒色顔料(カーボンブラック、ボーンブラック、グラファイト、鉄黒、チタンブラック等)、光輝材顔料(パール顔料、アルミ顔料、ブロンズ顔料等)、蛍光顔料(硫化亜鉛、硫化ストロンチウム、アルミン酸ストロンチウム等)を使用することができる。
The colored photosensitive resin composition of the present embodiment contains a conventionally known pigment or dye.
As the pigment, an organic pigment or an inorganic pigment can be used.
Organic pigments include azo pigments, phthalocyanine pigments, polycyclic pigments (quinacridone, perylene, perinone, isoindolinone, isoindoline, dioxazine, thioindigo, anthraquinone, quinophthalone, metal complex System, diketopyrrolopyrrole, etc.), dye lake pigments, etc. can be used.
Inorganic pigments include white and extender pigments (titanium oxide, zinc oxide, zinc sulfide, clay, talc, barium sulfate, calcium carbonate, etc.) and chromatic pigments (yellow lead, cadmium, chrome vermilion, nickel titanium, chrome titanium) , Yellow iron oxide, bengara, zinc chromate, red lead, ultramarine, bitumen, cobalt blue, chromium green, chromium oxide, bismuth vanadate, etc.), black pigment (carbon black, bone black, graphite, iron black, titanium black, etc.) Bright pigments (pearl pigments, aluminum pigments, bronze pigments, etc.) and fluorescent pigments (zinc sulfide, strontium sulfide, strontium aluminate, etc.) can be used.
 使用できる顔料の色としては黄色、赤色、紫色、青色、緑色、褐色、黒色、白色が挙げられる。 The pigment colors that can be used include yellow, red, purple, blue, green, brown, black, and white.
 また、染料としては、例えば、特開2003-270428号公報や特開平9-171108号公報、特開2008-50599号公報等に記載されている公知の染料(化合物)を使用することができる。 As the dye, for example, known dyes (compounds) described in JP-A No. 2003-270428, JP-A No. 9-171108, JP-A No. 2008-50599 and the like can be used.
 上述の着色剤は、単独でまたは2種以上を組み合わせて使用できる。上述の着色剤は、目的、用途に応じて、適切な平均粒子径を有するものを使用できるが、特にカラーフィルタ用着色レジストのような透明性が要求される場合は、0.1μm以下の小さい平均粒子径が好ましく、その他、塗料などの隠蔽性が必要とされる場合は、0.5μm以上の大きい平均粒子径が好ましい。また、上述の色材は、目的、用途に応じて、ロジン処理、界面活性剤処理、樹脂系分散剤処理、顔料誘導体処理、酸化皮膜処理、シリカコーティング、ワックスコーティングなどの表面処理がなされていてもよい。 The above colorants can be used alone or in combination of two or more. As the above-mentioned colorant, those having an appropriate average particle diameter can be used according to the purpose and application. However, when transparency such as a color resist for color filters is required, it is as small as 0.1 μm or less. An average particle diameter is preferable, and when a concealing property such as a paint is required, a large average particle diameter of 0.5 μm or more is preferable. In addition, the above-described coloring material is subjected to surface treatment such as rosin treatment, surfactant treatment, resin dispersant treatment, pigment derivative treatment, oxide film treatment, silica coating, wax coating, etc., depending on the purpose and application. Also good.
 本実施形態の着色感光性樹脂組成物における着色剤の含有割合は、目的、用途に応じて、適宜設定すればよいが、着色力と分散安定性のバランスを取る観点から、着色感光性樹脂組成物の全固形分(すなわち、溶媒を除く成分)を100質量部としたとき、好ましくは3質量%以上70質量%以下であり、より好ましくは5質量%以上60質量%以下、さらに好ましくは10質量%以上50質量%以下である。 The content ratio of the colorant in the colored photosensitive resin composition of the present embodiment may be appropriately set according to the purpose and application. From the viewpoint of balancing coloring power and dispersion stability, the colored photosensitive resin composition When the total solid content of the product (that is, the component excluding the solvent) is 100 parts by mass, it is preferably 3% by mass to 70% by mass, more preferably 5% by mass to 60% by mass, and still more preferably 10%. It is not less than 50% by mass.
[用途]
 本実施形態のネガ型感光性樹脂組成物は、硬化物とすることにより樹脂膜を得ることができる。
 このような樹脂膜は、たとえばレジストとしての用途として用いることができ、また、たとえば保護膜、層間膜、またはダム材等の永久膜を構成することもできる。
[Usage]
The negative photosensitive resin composition of this embodiment can obtain a resin film by using a cured product.
Such a resin film can be used, for example, as a resist, and can also constitute a permanent film such as a protective film, an interlayer film, or a dam material.
 次に、本実施形態のネガ型感光性樹脂組成物を適用した電子装置100の一例について説明する。
 図1に示す電子装置100は、たとえば半導体チップである。この場合、たとえば電子装置100を、バンプ52を介して配線基板上に搭載することにより半導体パッケージが得られる。電子装置100は、トランジスタ等の半導体素子が設けられた半導体基板と、半導体基板上に設けられた多層配線層と、を備えている(図示せず)。多層配線層のうち最上層には、層間絶縁膜30と、層間絶縁膜30上に設けられた最上層配線34が設けられている。最上層配線34は、たとえばAlにより構成される。また、層間絶縁膜30上および最上層配線34上には、パッシベーション膜32が設けられている。パッシベーション膜32の一部には、最上層配線34が露出する開口が設けられている。
Next, an example of the electronic device 100 to which the negative photosensitive resin composition of the present embodiment is applied will be described.
An electronic device 100 shown in FIG. 1 is, for example, a semiconductor chip. In this case, for example, a semiconductor package can be obtained by mounting the electronic device 100 on the wiring board via the bumps 52. The electronic device 100 includes a semiconductor substrate provided with a semiconductor element such as a transistor, and a multilayer wiring layer provided on the semiconductor substrate (not shown). An interlayer insulating film 30 and an uppermost layer wiring 34 provided on the interlayer insulating film 30 are provided in the uppermost layer of the multilayer wiring layer. The uppermost layer wiring 34 is made of, for example, Al. Further, a passivation film 32 is provided on the interlayer insulating film 30 and the uppermost layer wiring 34. An opening through which the uppermost layer wiring 34 is exposed is provided in a part of the passivation film 32.
 パッシベーション膜32上には、再配線層40が設けられている。再配線層40は、パッシベーション膜32上に設けられた絶縁層42と、絶縁層42上に設けられた再配線46と、絶縁層42上および再配線46上に設けられた絶縁層44と、を有する。絶縁層42には、最上層配線34に接続する開口が形成されている。再配線46は、絶縁層42上および絶縁層42に設けられた開口内に形成され、最上層配線34に接続されている。絶縁層44には、再配線46に接続する開口が設けられている。
 本実施形態においては、パッシベーション膜32、絶縁層42および絶縁層44のうちの一つ以上を、たとえば上述のネガ型感光性樹脂組成物を硬化することにより形成される樹脂膜により構成することができる。この場合、たとえばネガ型感光性樹脂組成物により形成される塗布膜に対し紫外線を露光し、現像を行うことによりパターニングした後、これを加熱硬化することにより、パッシベーション膜32、絶縁層42または絶縁層44が形成される。
A rewiring layer 40 is provided on the passivation film 32. The rewiring layer 40 includes an insulating layer 42 provided on the passivation film 32, a rewiring 46 provided on the insulating layer 42, an insulating layer 44 provided on the insulating layer 42 and the rewiring 46, Have An opening connected to the uppermost layer wiring 34 is formed in the insulating layer 42. The rewiring 46 is formed on the insulating layer 42 and in an opening provided in the insulating layer 42, and is connected to the uppermost layer wiring 34. The insulating layer 44 is provided with an opening connected to the rewiring 46.
In the present embodiment, one or more of the passivation film 32, the insulating layer 42, and the insulating layer 44 may be formed of a resin film formed by curing, for example, the above-described negative photosensitive resin composition. it can. In this case, for example, the coating film formed of the negative photosensitive resin composition is exposed to ultraviolet rays, developed and patterned, and then heat-cured to thereby passivate the passivation film 32, the insulating layer 42, or the insulating film. Layer 44 is formed.
 絶縁層44に設けられた開口内には、たとえばUBM(Under Bump Metallurgy)層50を介してバンプ52が形成される。電子装置100は、たとえばバンプ52を介して配線基板等に接続される。 In the opening provided in the insulating layer 44, for example, a bump 52 is formed via a UBM (Under Bump Metallurgy) layer 50. The electronic device 100 is connected to a wiring board or the like via bumps 52, for example.
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。 It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within the scope that can achieve the object of the present invention are included in the present invention.
 次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
(実施例1:ポリマー合成)
 撹拌機、冷却管を備えた適切なサイズの反応容器に、無水マレイン酸(株式会社日本触媒製、122.4g、1.25mol)、2-ノルボルネン(75wt%トルエン溶液、丸善石油化学株式会社製、156.8g、1.25mol)およびジメチル2,2'-アゾビス(2-メチルプロピオネート)(V-601、和光純薬工業株式会社製、11.5g、50mmol)を計量し、メチルエチルケトン(MEK、150.8g)およびトルエン(38.5g)に溶解させた。
 この溶解液に対して、10分間窒素を通気して酸素を除去し、その後、撹拌しつつ60℃に加熱した。16時間後、MEK(320g)を加えて希釈し、冷却した。
 この反応混合物を大量のメタノールに滴下し、ポリマーを析出させた。ヌッチェを用いてろ過した後、さらにメタノールにて洗浄し固体を濾取した。得られたポリマーを70℃で真空乾燥した。収量は208.1g、重量平均分子量(Mw)は11,100、分散度(Mw/Mn)は2.25であった(本実施例項において、「前駆体ポリマー」と称する。)。
 続いて、撹拌機、冷却管を備えた適切なサイズの反応容器に、上述の前駆体ポリマー(10.0g)を計量しMEK(30.0g)に溶解させた。さらにメタクリル酸2-ヒドロキシエチル(HEMA、株式会社日本触媒製、8.5g、65mmol)、酢酸ナトリウム(1.0g)を添加し、70℃で8時間加熱した。
 この反応液に対して、メタクリル酸グリシジル(GMA、3.7g、26mmol)を添加し、さらに70℃で16時間撹拌した。反応液にギ酸を加えて酸処理した後、大量の純水に滴下しポリマーを析出させた。濾取した固体を真空乾燥機にて40℃で16時間乾燥させ、13.8gの淡黄色固体を得た。
 また、得られたポリマーの諸物性は以下に示す通りである。
・重量平均分子量(Mw):16,200
・分散度:2.46
(Example 1: Polymer synthesis)
In an appropriately sized reaction vessel equipped with a stirrer and a condenser, maleic anhydride (Nippon Shokubai Co., Ltd., 122.4 g, 1.25 mol), 2-norbornene (75 wt% toluene solution, manufactured by Maruzen Petrochemical Co., Ltd.) 156.8 g, 1.25 mol) and dimethyl 2,2′-azobis (2-methylpropionate) (V-601, manufactured by Wako Pure Chemical Industries, Ltd., 11.5 g, 50 mmol) were weighed and methyl ethyl ketone ( MEK, 150.8 g) and toluene (38.5 g).
The solution was purged with nitrogen for 10 minutes to remove oxygen, and then heated to 60 ° C. with stirring. After 16 hours, MEK (320 g) was added to dilute and cool.
This reaction mixture was dropped into a large amount of methanol to precipitate a polymer. After filtration using a Nutsche, it was further washed with methanol and the solid was collected by filtration. The resulting polymer was vacuum dried at 70 ° C. The yield was 208.1 g, the weight average molecular weight (Mw) was 11,100, and the degree of dispersion (Mw / Mn) was 2.25 (referred to as “precursor polymer” in this Example section).
Subsequently, the above-mentioned precursor polymer (10.0 g) was weighed and dissolved in MEK (30.0 g) in an appropriately sized reaction vessel equipped with a stirrer and a cooling pipe. Further, 2-hydroxyethyl methacrylate (HEMA, Nippon Shokubai Co., Ltd., 8.5 g, 65 mmol) and sodium acetate (1.0 g) were added and heated at 70 ° C. for 8 hours.
To this reaction solution, glycidyl methacrylate (GMA, 3.7 g, 26 mmol) was added, and the mixture was further stirred at 70 ° C. for 16 hours. After formic acid was added to the reaction solution for acid treatment, it was dropped into a large amount of pure water to precipitate a polymer. The solid collected by filtration was dried in a vacuum dryer at 40 ° C. for 16 hours to obtain 13.8 g of a pale yellow solid.
The physical properties of the obtained polymer are as follows.
Weight average molecular weight (Mw): 16,200
Dispersity: 2.46
(実施例2:ポリマー合成)
 撹拌機、冷却管を備えた適切なサイズの反応容器に、無水マレイン酸(735g、7.5mol)、2-ノルボルネン(706g、7.5mol)およびジメチル2,2'-アゾビス(2-メチルプロピオネート)(69g、0.3mol)を計量し、メチルエチルケトン(900g)およびトルエン(231g)に溶解させた。
 この溶解液に対して、窒素バブリングにより系内の溶存酸素を除去した後、撹拌しつつ60℃、15時間の条件で熱処理を施した。これにより、2-ノルボルネンと無水マレイン酸の共重合体を得た。次いで、室温まで冷却した上記溶解液を大量のメタノールを用いて再沈させた後、析出物をろ取し、真空乾燥機にて乾燥させ、1100gの白色固体を得た。
 この白色固体(10g)を10%水酸化ナトリウム溶液(40g)と混合し、70℃で16時間撹拌した。室温まで冷却した後、400gの5%塩酸水溶液に再沈し、その後純水で十分に洗浄した。真空乾燥機で乾燥させることでジカルボン酸体(8g)を得た。
 こうして得られたジカルボン酸体(3.0g)をTHF(12g)に溶解させ、グリシジエルメタクリレート(4.0g)、トリエチルアミン(0.1g)と混合し、70℃で12時間反応させた。反応液をヘプタンへ再沈させた後、析出物をろ取し、真空乾燥機にて乾燥させることで4.3gの白色固体を得た。
 また、得られたポリマーの諸物性は以下に示す通りである。
・重量平均分子量(Mw):13,600
・分散度:2.22
(Example 2: Polymer synthesis)
Into a suitably sized reaction vessel equipped with a stirrer and condenser, maleic anhydride (735 g, 7.5 mol), 2-norbornene (706 g, 7.5 mol) and dimethyl 2,2′-azobis (2-methylpro) Pionate) (69 g, 0.3 mol) was weighed and dissolved in methyl ethyl ketone (900 g) and toluene (231 g).
After removing dissolved oxygen in the system by nitrogen bubbling, this solution was heat-treated at 60 ° C. for 15 hours with stirring. As a result, a copolymer of 2-norbornene and maleic anhydride was obtained. Subsequently, after re-precipitating the said melt | dissolution solution cooled to room temperature using a lot of methanol, the deposit was filtered and dried with the vacuum dryer, and 1100g of white solid was obtained.
This white solid (10 g) was mixed with 10% sodium hydroxide solution (40 g) and stirred at 70 ° C. for 16 hours. After cooling to room temperature, it was reprecipitated in 400 g of 5% aqueous hydrochloric acid solution, and then thoroughly washed with pure water. The dicarboxylic acid body (8g) was obtained by making it dry with a vacuum dryer.
The dicarboxylic acid compound (3.0 g) thus obtained was dissolved in THF (12 g), mixed with glycidyl methacrylate (4.0 g) and triethylamine (0.1 g), and reacted at 70 ° C. for 12 hours. After the reaction solution was reprecipitated in heptane, the precipitate was collected by filtration and dried in a vacuum dryer to obtain 4.3 g of a white solid.
The physical properties of the obtained polymer are as follows.
Weight average molecular weight (Mw): 13,600
-Dispersity: 2.22
(比較例1:エポキシ基を有する化合物を用いずに行ったポリマー合成)
 撹拌機、冷却管を備えた適切なサイズの反応容器に、実施例1に記載の前駆体ポリマー(10.0g)を計量し、MEK(30.0g)に溶解させた。さらにメタクリル酸2-ヒドロキシエチル(8.5g、65mmol)、酢酸ナトリウム(1.0g)を添加し、70℃で24時間加熱した。反応液にギ酸を加えて酸処理した後、大量の純水に滴下しポリマーを析出させた。濾取した固体を真空乾燥機にて40℃で16時間乾燥させ、11.2gのポリマーを得た。
 また、得られたポリマーの諸物性は以下に示す通りである。
・重量平均分子量(Mw):12,400
・分散度:2.16
(Comparative Example 1: Polymer synthesis carried out without using a compound having an epoxy group)
The precursor polymer (10.0 g) described in Example 1 was weighed into a suitably sized reaction vessel equipped with a stirrer and a condenser, and dissolved in MEK (30.0 g). Further, 2-hydroxyethyl methacrylate (8.5 g, 65 mmol) and sodium acetate (1.0 g) were added, and the mixture was heated at 70 ° C. for 24 hours. After formic acid was added to the reaction solution for acid treatment, it was dropped into a large amount of pure water to precipitate a polymer. The solid collected by filtration was dried in a vacuum dryer at 40 ° C. for 16 hours to obtain 11.2 g of a polymer.
The physical properties of the obtained polymer are as follows.
Weight average molecular weight (Mw): 12,400
・ Dispersity: 2.16
[ネガ型感光性樹脂組成物の調製]
 実施例及び比較例で得られたポリマー各2.0gに対し、それぞれ架橋剤であるジペンタエリスリトールヘキサアクリレート(A-DPH、新中村化学工業株式会社製)1.0g、以下の式(10)で表される光ラジカル発生剤(イルガキュアOXE02(BASF社製))0.1g、シランカップリング剤(KBM-403(3-グリシドキシプロピルトリメトキシシラン;信越化学工業株式会社製))0.02g、界面活性剤(F556(DIC株式会社製))0.01gをプロピレングリコールモノメチルエーテルアセテートにて溶解し、固形分30%の溶液とした。その後孔径0.2μmのメンブランフィルターでろ過し、感光性樹脂組成物を調製した。
 なお、用いたポリマーと、得られたネガ型感光性樹脂組成物との対応関係は表1に示した通りである。
[Preparation of negative photosensitive resin composition]
For each 2.0 g of the polymers obtained in Examples and Comparative Examples, 1.0 g of dipentaerythritol hexaacrylate (A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), which is a cross-linking agent, and the following formula (10) 0.1 g of a photo radical generator (IRGACURE OXE02 (manufactured by BASF)), silane coupling agent (KBM-403 (3-glycidoxypropyltrimethoxysilane; manufactured by Shin-Etsu Chemical Co., Ltd.)) 02 g and 0.01 g of a surfactant (F556 (manufactured by DIC Corporation)) were dissolved in propylene glycol monomethyl ether acetate to obtain a solution having a solid content of 30%. Thereafter, the mixture was filtered through a membrane filter having a pore size of 0.2 μm to prepare a photosensitive resin composition.
The correspondence relationship between the polymer used and the obtained negative photosensitive resin composition is as shown in Table 1.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
[評価]
 得られたネガ型感光性樹脂組成物については、以下に従い評価を行った。
[Evaluation]
About the obtained negative photosensitive resin composition, it evaluated according to the following.
(感度)
 上記で得たネガ型感光性樹脂組成物を、シリコンウエハー上に回転塗布(回転数500~3000rpm)し、100℃、120秒間ホットプレートにてベークし、約3μmの薄膜Aを得た。この薄膜Aに対し、露光装置を用いて5mJ/cmずつ露光量を変動させて露光を行った。露光装置としては、キヤノン株式会社製g+h+i線マスクアライナー(PLA-501F)を用いた。
 露光を行った膜については、TMAH現像液(濃度:2.38%)を用いて23℃、60秒間現像し、純水リンスを施して、薄膜Bを得た。そして、薄膜B/薄膜A×100≧95%となる露光量を感度(mJ/cm)とした。この感度について、表1に結果をまとめた。比較例2に対し、特定の構造単位を有するポリマーを用いた実施例3、4のネガ型感光性樹脂組成物はいずれもより低露光量で高い残膜率を得られる事がわかった。
(sensitivity)
The negative photosensitive resin composition obtained above was spin-coated on a silicon wafer (rotation speed: 500 to 3000 rpm) and baked on a hot plate at 100 ° C. for 120 seconds to obtain a thin film A of about 3 μm. The thin film A was exposed by varying the exposure amount by 5 mJ / cm 2 using an exposure apparatus. As the exposure apparatus, a g + h + i line mask aligner (PLA-501F) manufactured by Canon Inc. was used.
The exposed film was developed using a TMAH developer (concentration: 2.38%) at 23 ° C. for 60 seconds and rinsed with pure water to obtain a thin film B. The exposure amount at which thin film B / thin film A × 100 ≧ 95% was defined as sensitivity (mJ / cm 2 ). The results are summarized in Table 1 for this sensitivity. In contrast to Comparative Example 2, it was found that the negative photosensitive resin compositions of Examples 3 and 4 using a polymer having a specific structural unit can obtain a high residual film ratio with a lower exposure amount.
(現像後残膜率)
 上記で得たネガ型感光性樹脂組成物を、シリコンウエハー上に回転塗布(回転数500~3000rpm)し、100℃、120秒間ホットプレートにてベークし、約3μmの薄膜Aを得た。この薄膜Aに対し、露光装置を用いて100mJ/cm露光を行った。
 露光を行った膜については、TMAH現像液(濃度:2.38%)を用いて23℃、60秒間現像し、純水リンスを施して、薄膜Bを得た。そして、(薄膜B/薄膜A)×100[%]を現像後残膜率として表1に示した。比較例2ではアルカリ現像液膨潤による膜厚増加が見られた一方、実施例3、4では膨潤が見られなかった。
(Remaining film ratio after development)
The negative photosensitive resin composition obtained above was spin-coated on a silicon wafer (rotation speed: 500 to 3000 rpm) and baked on a hot plate at 100 ° C. for 120 seconds to obtain a thin film A of about 3 μm. The thin film A was exposed to 100 mJ / cm 2 using an exposure apparatus.
The exposed film was developed using a TMAH developer (concentration: 2.38%) at 23 ° C. for 60 seconds and rinsed with pure water to obtain a thin film B. Table 1 shows (thin film B / thin film A) × 100 [%] as a remaining film ratio after development. In Comparative Example 2, an increase in film thickness was observed due to swelling of the alkaline developer, while in Examples 3 and 4, no swelling was observed.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 この出願は、2016年3月8日に出願された日本出願特願2016-044214号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-044214 filed on Mar. 8, 2016, the entire disclosure of which is incorporated herein.
 本発明の製造方法により得られるポリマーは、低露光量で硬化することができるため、ネガ型感光性樹脂組成物等を構成するのに有用である。 Since the polymer obtained by the production method of the present invention can be cured at a low exposure, it is useful for constituting a negative photosensitive resin composition or the like.

Claims (15)

  1.  以下の式(1a)で示される構造単位を含む前駆体ポリマーを準備する工程と、
     式(1a)で示される構造単位を含む前記前駆体ポリマーに対し、R-OHで表されるアルコール(ただし、Rは炭素数1~18の有機基である。)または水を作用させ、式(1a)で示される構造単位の無水マレイン酸部位を開環させ、前記前駆体ポリマー中にカルボキシル基またはその塩を生成させる工程と、
     無水マレイン酸部位を開環させた前記前駆体ポリマーに対し、式(3)で示されるエポキシ基を備える化合物を反応させる工程と、
    を含むポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式(3)中、Rは炭素数2~18の有機基であって、その構造中に炭素-炭素二重結合を有する。)
    Preparing a precursor polymer containing a structural unit represented by the following formula (1a);
    Alcohol represented by R 1 —OH (where R 1 is an organic group having 1 to 18 carbon atoms) or water is allowed to act on the precursor polymer containing the structural unit represented by the formula (1a). Opening the maleic anhydride site of the structural unit represented by formula (1a) to form a carboxyl group or a salt thereof in the precursor polymer,
    Reacting a compound having an epoxy group represented by the formula (3) with the precursor polymer having a ring opening of a maleic anhydride site;
    A process for producing a polymer comprising
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (3), R 2 is an organic group having 2 to 18 carbon atoms, and has a carbon-carbon double bond in its structure.)
  2.  請求項1に記載のポリマーの製造方法であって、
     式(3)で示されるエポキシ基を備える前記化合物のRは、その構造中に、ビニル基、ビニリデン基、アクリロイル基、メタクリロイル基からなる群より選ばれるいずれかの基を含む、ポリマーの製造方法。
    A method for producing the polymer according to claim 1, comprising:
    Production of a polymer, wherein R 2 of the compound having an epoxy group represented by the formula (3) includes in its structure any group selected from the group consisting of a vinyl group, a vinylidene group, an acryloyl group, and a methacryloyl group Method.
  3.  請求項1または2に記載のポリマーの製造方法であって、
     前駆体ポリマー中にカルボキシル基またはその塩を生成させる前記工程において、Rの構造中に炭素-炭素二重結合を有するアルコールが用いられる、ポリマーの製造方法。
    A method for producing a polymer according to claim 1 or 2,
    A method for producing a polymer, wherein an alcohol having a carbon-carbon double bond in the structure of R 1 is used in the step of generating a carboxyl group or a salt thereof in a precursor polymer.
  4.  請求項3に記載のポリマーの製造方法であって、
     前記Rは、その構造中に、ビニル基、ビニリデン基、アクリロイル基、メタクリロイル基からなる群より選ばれるいずれかの基を含む、ポリマーの製造方法。
    A method for producing a polymer according to claim 3,
    The method for producing a polymer, wherein R 1 includes in its structure any group selected from the group consisting of a vinyl group, a vinylidene group, an acryloyl group, and a methacryloyl group.
  5.  請求項1ないし4のいずれか一項に記載のポリマーの製造方法であって、
     前記前駆体ポリマーはさらに以下の式(2)で示される構造単位を含む、ポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(2)中、R、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基である。nは0、1または2である。)
    A method for producing a polymer according to any one of claims 1 to 4,
    The method for producing a polymer, wherein the precursor polymer further includes a structural unit represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000003
    (In Formula (2), R 3 , R 4 , R 5 and R 6 are each independently hydrogen or an organic group having 1 to 30 carbon atoms. N is 0, 1 or 2.)
  6.  請求項1ないし5のいずれか一項に記載のポリマーの製造方法であって、
     前記ポリマーの重量平均分子量(Mw)が2500以上35000以下である、ポリマーの製造方法。
    A method for producing a polymer according to any one of claims 1 to 5,
    The method for producing a polymer, wherein the polymer has a weight average molecular weight (Mw) of 2500 or more and 35000 or less.
  7.  請求項1ないし6のいずれか一項に記載のポリマーの製造方法であって、
     前記ポリマーは、感光性樹脂膜形成用ポリマーである、ポリマーの製造方法。
    A method for producing a polymer according to any one of claims 1 to 6,
    The method for producing a polymer, wherein the polymer is a polymer for forming a photosensitive resin film.
  8.  請求項1ないし7のいずれか一項に記載のポリマーの製造方法によりポリマーを得て、さらに、光ラジカル発生剤を配合する工程を含むことを特徴とする、ネガ型感光性樹脂組成物の製造方法。 A method for producing a negative photosensitive resin composition comprising the steps of: obtaining a polymer by the method for producing a polymer according to any one of claims 1 to 7; and further blending a photoradical generator. Method.
  9.  請求項8に記載のネガ型感光性樹脂組成物の製造方法によりネガ型感光性樹脂組成物を得て、さらに、当該ネガ型感光性樹脂組成物を硬化させる工程を含む、樹脂膜の製造方法。 A method for producing a resin film, comprising: obtaining a negative photosensitive resin composition by the method for producing a negative photosensitive resin composition according to claim 8; and further curing the negative photosensitive resin composition. .
  10.  請求項9に記載の樹脂膜の製造方法を工程中に備える、電子装置の製造方法。 An electronic device manufacturing method comprising the resin film manufacturing method according to claim 9 in the process.
  11.  以下の式(1)で示される構造単位を含むポリマー。
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、Rは炭素数1~18の有機基である。Rは炭素数2~18の有機基であって、その構造中に炭素-炭素二重結合を有する。)
    A polymer containing a structural unit represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000004
    (In Formula (1), R 1 is an organic group having 1 to 18 carbon atoms. R 2 is an organic group having 2 to 18 carbon atoms, and has a carbon-carbon double bond in the structure thereof.)
  12.  請求項11に記載のポリマーであって、
     前記式(1)中のRは、その構造中に、ビニル基、ビニリデン基、アクリロイル基、メタクリロイル基からなる群より選ばれるいずれかの基を含む、ポリマー。
    A polymer according to claim 11, comprising:
    R 2 in the formula (1) is a polymer containing in its structure any group selected from the group consisting of a vinyl group, a vinylidene group, an acryloyl group, and a methacryloyl group.
  13.  請求項11または12に記載のポリマーであって、
     前記式(1)中のRは、その構造中に炭素-炭素二重結合を有する、ポリマー。
    A polymer according to claim 11 or 12,
    R 1 in the formula (1) is a polymer having a carbon-carbon double bond in its structure.
  14.  請求項13に記載のポリマーであって、
     前記式(1)中のRは、その構造中に、ビニル基、ビニリデン基、アクリロイル基、メタクリロイル基からなる群より選ばれるいずれかの基を含む、ポリマー。
    A polymer according to claim 13,
    R 1 in the formula (1) is a polymer containing in its structure any group selected from the group consisting of a vinyl group, a vinylidene group, an acryloyl group, and a methacryloyl group.
  15.  請求項11ないし14のいずれか一項に記載のポリマーであって、
     さらに以下の式(2)で示される構造単位を含む、ポリマー。
    Figure JPOXMLDOC01-appb-C000005
    (式(2)中、R、R、RおよびRはそれぞれ独立して水素または炭素数1~30の有機基である。nは0、1または2である。)
    A polymer according to any one of claims 11 to 14, comprising
    Furthermore, the polymer containing the structural unit shown by the following formula | equation (2).
    Figure JPOXMLDOC01-appb-C000005
    (In Formula (2), R 3 , R 4 , R 5 and R 6 are each independently hydrogen or an organic group having 1 to 30 carbon atoms. N is 0, 1 or 2.)
PCT/JP2017/004199 2016-03-08 2017-02-06 Method for manufacturing polymer, method for manufacturing negative-type photosensitive resin composition, method for manufacturing resin film, method for manufacturing electronic device, and polymer WO2017154439A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018504059A JP7074051B2 (en) 2016-03-08 2017-02-06 Polymer manufacturing method, negative photosensitive resin composition manufacturing method, resin film manufacturing method, electronic device manufacturing method and polymer
KR1020187028437A KR20180122381A (en) 2016-03-08 2017-02-06 METHOD FOR PRODUCING POLYMER, METHOD FOR MANUFACTURING negative-type photosensitive resin composition, method for manufacturing resin film, method for manufacturing electronic device, and polymer
CN201780016046.4A CN108779196A (en) 2016-03-08 2017-02-06 The manufacturing method of polymer, the manufacturing method of negative light-sensitive resin combination, the manufacturing method of resin film, the manufacturing method of electronic device and polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016044214 2016-03-08
JP2016-044214 2016-03-08

Publications (1)

Publication Number Publication Date
WO2017154439A1 true WO2017154439A1 (en) 2017-09-14

Family

ID=59790266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004199 WO2017154439A1 (en) 2016-03-08 2017-02-06 Method for manufacturing polymer, method for manufacturing negative-type photosensitive resin composition, method for manufacturing resin film, method for manufacturing electronic device, and polymer

Country Status (5)

Country Link
JP (1) JP7074051B2 (en)
KR (1) KR20180122381A (en)
CN (1) CN108779196A (en)
TW (1) TWI709580B (en)
WO (1) WO2017154439A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019864A (en) * 2018-07-31 2020-02-06 住友ベークライト株式会社 Photosensitive adhesive composition, and structure
JP2020126117A (en) * 2019-02-04 2020-08-20 三菱ケミカル株式会社 Photosensitive coloring resin composition, cured product, and image display device
WO2022065225A1 (en) * 2020-09-23 2022-03-31 住友ベークライト株式会社 Polymer, polymer solution, and photosensitive resin composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158741A1 (en) * 2019-01-31 2020-08-06 住友ベークライト株式会社 Photosensitive resin composition, polymer, pattern, color filter, black matrix, display device and imaging element
JP7006837B2 (en) * 2019-10-16 2022-01-24 住友ベークライト株式会社 Polymer manufacturing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937701A (en) * 1972-08-11 1974-04-08
JPS5096687A (en) * 1973-12-26 1975-07-31
JPS51149393A (en) * 1976-05-10 1976-12-22 Nok Corp A photosetting composition
JPS62195002A (en) * 1986-02-21 1987-08-27 Showa Denko Kk Production of curable resin
JPS6372710A (en) * 1986-09-12 1988-04-02 Ube Ind Ltd Photocurable composition
JPS63128004A (en) * 1986-11-18 1988-05-31 Showa Highpolymer Co Ltd Production of radically curable resin
JPS63314205A (en) * 1987-06-16 1988-12-22 Ube Ind Ltd Photo-curable composition
JPS63314216A (en) * 1987-06-18 1988-12-22 Showa Highpolymer Co Ltd Preparation of curable resin
WO2011129182A1 (en) * 2010-04-13 2011-10-20 昭和電工株式会社 Addition copolymer, photosensitive resin composition, and color filter
WO2013080629A1 (en) * 2011-11-30 2013-06-06 東洋紡株式会社 Non-aqueous dispersion liquid resulting from acrylic-modified polyolefin dispersed in polar solvent, and method for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323260A (en) * 1998-03-11 1999-11-26 Hitachi Chem Co Ltd Coloring resin composition, coloring photosensitive resin composition, photosensitive solution for coloring imaging, photosensitive element, production of colored image, production of substrate for color filter and production for color filter
CN1114629C (en) * 1999-12-22 2003-07-16 财团法人工业技术研究院 Copolymer containing unsaturated bond branched chain and its photoresist composition
JP2001330714A (en) * 2000-05-24 2001-11-30 Hitachi Chem Co Ltd Photosensitive material, photosensitive liquid and photosensitive element for formation of reflection layer having rough surface, method for manufacturing reflection layer for reflection type lcd using the same and reflection layer for reflection type lcd
TWI636330B (en) * 2013-05-29 2018-09-21 Sumitomo Bakelite Co., Ltd. Negative photosensitive resin composition, electronic device and polymer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937701A (en) * 1972-08-11 1974-04-08
JPS5096687A (en) * 1973-12-26 1975-07-31
JPS51149393A (en) * 1976-05-10 1976-12-22 Nok Corp A photosetting composition
JPS62195002A (en) * 1986-02-21 1987-08-27 Showa Denko Kk Production of curable resin
JPS6372710A (en) * 1986-09-12 1988-04-02 Ube Ind Ltd Photocurable composition
JPS63128004A (en) * 1986-11-18 1988-05-31 Showa Highpolymer Co Ltd Production of radically curable resin
JPS63314205A (en) * 1987-06-16 1988-12-22 Ube Ind Ltd Photo-curable composition
JPS63314216A (en) * 1987-06-18 1988-12-22 Showa Highpolymer Co Ltd Preparation of curable resin
WO2011129182A1 (en) * 2010-04-13 2011-10-20 昭和電工株式会社 Addition copolymer, photosensitive resin composition, and color filter
WO2013080629A1 (en) * 2011-11-30 2013-06-06 東洋紡株式会社 Non-aqueous dispersion liquid resulting from acrylic-modified polyolefin dispersed in polar solvent, and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GENTARO NAGAMATSU ET AL., KINOSEI KOBUNSHI SERIES KANKOSEI KOBUNSHI, vol. 259, 1 November 1977 (1977-11-01), pages 246 - 247 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019864A (en) * 2018-07-31 2020-02-06 住友ベークライト株式会社 Photosensitive adhesive composition, and structure
JP7115120B2 (en) 2018-07-31 2022-08-09 住友ベークライト株式会社 Photosensitive adhesive composition and structure
JP2020126117A (en) * 2019-02-04 2020-08-20 三菱ケミカル株式会社 Photosensitive coloring resin composition, cured product, and image display device
JP7331371B2 (en) 2019-02-04 2023-08-23 三菱ケミカル株式会社 Photosensitive colored resin composition, cured product, and image display device
WO2022065225A1 (en) * 2020-09-23 2022-03-31 住友ベークライト株式会社 Polymer, polymer solution, and photosensitive resin composition
JPWO2022065225A1 (en) * 2020-09-23 2022-03-31
JP7173380B2 (en) 2020-09-23 2022-11-16 住友ベークライト株式会社 Polymer, method for producing polymer, polymer solution and photosensitive resin composition
KR20230071160A (en) 2020-09-23 2023-05-23 스미또모 베이크라이트 가부시키가이샤 Polymers, polymer solutions and photosensitive resin compositions

Also Published As

Publication number Publication date
JP7074051B2 (en) 2022-05-24
TW201800426A (en) 2018-01-01
CN108779196A (en) 2018-11-09
KR20180122381A (en) 2018-11-12
TWI709580B (en) 2020-11-11
JPWO2017154439A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP7074051B2 (en) Polymer manufacturing method, negative photosensitive resin composition manufacturing method, resin film manufacturing method, electronic device manufacturing method and polymer
TWI695850B (en) Method for producing polymer, photosensitive resin composition and electronic device
US20130171566A1 (en) Alkaline solubie resin and light sensible resin composition comprising same and use thereof
JP7263522B2 (en) Carbazole multi-β-oxime ester derivative compound, photopolymerization initiator containing the same, and photoresist composition
TWI644903B (en) Oxime ester derivative compounds, photopolymerization initiator, and photosensitive composition containing the same
TWI759378B (en) Negative photosensitive resin composition, resin film and electronic device
WO2016194619A1 (en) Photosensitive coloring resin composition, colored pattern, black matrix, color filter, liquid crystal display device, solid-state imaging element, and method for producing color filter
JP7052900B2 (en) Photosensitive resin compositions, polymers, patterns, color filters, black matrices, display devices and image sensors
JP6661929B2 (en) Negative photosensitive resin composition, resin film and electronic device
JP2023100610A (en) Photosensitive resin composition, pattern, color filter, black matrix, display device, imaging element, and method for producing display device or imaging element
JP6332583B1 (en) Negative photosensitive resin composition, resin film and electronic device
JP7200532B2 (en) Photosensitive resin composition and electronic device
WO2023140257A1 (en) Polymer, polymer solution, photosensitive resin composition, and cured object
KR100367471B1 (en) Resist Composition For Over-Coat
JP2021063222A (en) Polymer, method for producing polymer, photosensitive resin composition, and cured product
JP6526552B2 (en) Photosensitive polymer used for producing color filter member and photosensitive polymer
JP2021116406A (en) Polymer solution
JP2023091961A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2023091438A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2022085872A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2022085873A (en) Polymer, polymer solution, photosensitive resin composition, and cured product
JP2021140133A (en) Polymer solution for forming color filters or black matrices
JPWO2021075448A1 (en) Resin composition, photosensitive resin composition and cured product thereof
JP2020023654A (en) Polymer, method for producing polymer, photosensitive resin composition, pattern, color filter, black matrix, liquid crystal display device and solid state image sensor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018504059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187028437

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762783

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762783

Country of ref document: EP

Kind code of ref document: A1