WO2020157922A1 - Dc power supply and power system - Google Patents

Dc power supply and power system Download PDF

Info

Publication number
WO2020157922A1
WO2020157922A1 PCT/JP2019/003408 JP2019003408W WO2020157922A1 WO 2020157922 A1 WO2020157922 A1 WO 2020157922A1 JP 2019003408 W JP2019003408 W JP 2019003408W WO 2020157922 A1 WO2020157922 A1 WO 2020157922A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
power supply
storage battery
load
Prior art date
Application number
PCT/JP2019/003408
Other languages
French (fr)
Japanese (ja)
Inventor
田路 和幸
千真 梅木
Original Assignee
国立大学法人東北大学
株式会社エナジア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 株式会社エナジア filed Critical 国立大学法人東北大学
Priority to PCT/JP2019/003408 priority Critical patent/WO2020157922A1/en
Publication of WO2020157922A1 publication Critical patent/WO2020157922A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • the present invention is to stabilize DC power using a storage battery, a capacitor-less PFC circuit that also uses a storage battery, a DC power use method for suppressing arc discharge that is a problem during DC use by a converter circuit, and an existing AC wiring system.
  • DC power supply method using DC power supply and DC/AC hybrid power system that uses DC/AC power by switching between DC and AC at the appropriate time by using loads corresponding to both DC and AC.
  • the power system Regarding the power system.
  • the power supply system for photovoltaic power generation of Patent Document 1 is configured by a solar power supply device, a power supply device other than the solar power supply device, and a DC power combiner that combines the DC powers thereof, Sunlight that detects when the power consumed by the load is equal to or greater than the power from the solar cell and controls the power generated by the solar power supply device so that it is extracted without waste to the maximum extent.
  • a power supply system for power generation is described.
  • Patent Document 2 describes a device in which a circuit including a capacitor, a diode and a resistor is provided around a contact for a DC contact, and an arc discharge is suppressed by a transient phenomenon and a discharge circuit.
  • Non-patent document 1 In response to social demands for expanding the use of renewable energy and improving energy use efficiency in recent years, DC power supply has been reviewed, and DC power supply has been put to practical use in NTT data centers and the like.
  • Patent Document 1 for the photovoltaic power generation that performs optimum control by comparing the magnitude of the DC power obtained from the solar panel and the magnitude of the DC power obtained from the other power supply device other than the solar power supply device with respect to the load.
  • the power supply system is described, the possibility of acquiring a power supply device other than the solar power supply from system AC power is not described.
  • Patent Document 2 describes a device that suppresses arc discharge by a transient phenomenon and a discharge circuit by providing a circuit including a capacitor, a diode and a resistor for a DC switching contact around the switching contact. There is no description about the possibility of arranging the arc discharge suppression circuit of (3) on the load side instead of the contact side.
  • Non-Patent Document 1 describes the superiority of DC power supply and an example of high-voltage DC power supply, but does not describe the possibility of supplying DC power supply using an existing AC wiring system.
  • An object of the present invention is to use an accumulator to generate unstable DC power whose output fluctuates due to renewable energy such as photovoltaic power generation, or DC power whose voltage fluctuates, which is obtained by rectifying from system AC power.
  • the invention according to claim 1 provides unstable DC power whose output fluctuates due to renewable energy such as solar power generation, and DC power whose voltage is unstable obtained by rectifying system AC power with a rectifier or the like, respectively. It is a DC power supply characterized in that a DC voltage is smoothed by connecting storage batteries in parallel to a single circuit or a combined circuit to obtain stable DC power.
  • the invention according to claim 2 is a DC power supply characterized in that a capacitor for voltage smoothing is removed from a PFC (Power Factor Correction) circuit, and a DC voltage is smoothed by a storage battery.
  • PFC Power Factor Correction
  • the invention according to claim 3 is the direct-current power source according to claim 1 or 2, wherein the storage battery is a vehicle-mounted reuse storage battery mounted on an EV, a PHV, or the like and having a reduced SOH.
  • the invention according to claim 4 is an electric power system having a DC power supply, a DC converter being arranged between a load and a switching contact, and having a function of suppressing arc discharge.
  • the invention according to claim 5 is the power system according to claim 4, wherein the DC power supply is the DC power supply according to any one of claims 1 to 3.
  • the invention according to claim 6 is the power system according to claim 4 or 5, characterized in that the DC power supply is connected to an existing AC wiring system and supplied to a load.
  • the invention according to claim 7 is the power system according to claim 4, which is a hybrid of direct current and alternating current, characterized in that a load corresponding to both direct current and alternating current is used, and direct current or alternating current is switched and used.
  • unstable DC power whose output and voltage fluctuate is inexpensive and simple, without using a capacitor or a DC/DC converter, and the power conversion loss is minimized, and is regulated by the storage battery voltage. It is possible to obtain stable DC power of a predetermined voltage.
  • the capacitor for voltage smoothing can be eliminated from the conventional PFC circuit, the life of the device can be greatly improved, the cost can be reduced, and harmonics are less likely to occur.
  • the PFC circuit is a power factor correction circuit, and is a circuit that brings the power factor of the power source close to 1.
  • the SOH is lowered to 70% or less, and the storage battery which is not suitable for reuse of general electricity storage can be effectively used, and the DC power supply system can be obtained at low cost.
  • the DC power feeding method of the invention according to claim 6 it is possible to supply DC power of, for example, 100 V DC by using the existing AC wiring system, and while utilizing the existing social system, smoothly and inexpensively, the DC usage environment. Can be obtained.
  • a load corresponding to both DC and AC is used, and for example, DC power feeding is performed during the day when power is generated by solar power generation, and conventional AC power feeding is performed at night. It can be used by switching to, and the standby power of the power system can be minimized, and the renewable energy can be used with high efficiency.
  • unstable DC power whose output fluctuates due to renewable energy, such as photovoltaic power generation, and unstable AC power whose voltage fluctuates due to a rectifier or a capacitorless PFC circuit from system AC power Therefore, by utilizing the in-vehicle reuse storage battery, it is possible to obtain stable DC power at a predetermined voltage that is specified by the storage battery voltage, at low cost, with minimal power conversion loss.
  • the existing social infrastructure can be utilized effectively, safely, and A DC utilization environment can be obtained at low cost.
  • the present invention in a photovoltaic power generation facility or the like, it is possible to eliminate a power conditioner, which has a large conversion loss, a large device cost, and can significantly reduce the introduction cost of the power system.
  • FIG. 1 shows the concept of direct current stabilization of unstable power by a storage battery, which is the basis of the present invention.
  • the DC voltage (V 1 ) due to the renewable energy, the DC peak voltage (V 2 ) rectified from the system AC power, and the output voltage (V 3 ) of the storage battery are, for example, V 1 >V 2 >V If set to 3 , input of power from the grid AC power to the storage battery will stop while renewable energy is generated, and power will be input from the grid AC power to the storage battery when renewable energy stops. Thus, it is possible to always supply the DC power specified by the storage battery voltage to the load.
  • the storage battery may be, for example, a lead storage battery or a capacitor, as long as it is a secondary battery having a charge/discharge function, but a lithium ion storage battery is most suitable. In this case, in order to ensure the safety of the lithium ion storage battery, it is necessary to design so that overcharge and overdischarge states do not occur.
  • the V 1 and V 3 are set to the usable voltage range of the storage battery. By setting inside, it is possible to make a system in which overcharging and overdischarging hardly occur.
  • the DC power supply system is characterized in that the storage battery is used not as a storage of electric power but as a capacitor for smoothing the voltage.
  • the system AC power is used as a backup.
  • the rectifier for charging the storage battery from the system AC power is only a simple diode bridge. But in principle there is no problem.
  • a PFC circuit is used for rectification from the viewpoint of charging with a predetermined storage battery voltage and suppressing harmonics.
  • Figure 2 shows a typical PFC circuit.
  • the capacitor for voltage smoothing can be eliminated from the conventional PFC circuit described in claim 2, thus reducing the cost of the device and prolonging its life. Effective harmonic suppression can be achieved at the same time.
  • a reuse storage battery for vehicle can be used, which can contribute to cost reduction of the device and resource circulation.
  • This DC power supply system does not require a complicated battery management mechanism that is indispensable for ordinary lithium-ion storage batteries, and only needs the protection circuit to ensure the safety in the event of a power failure, etc., reducing the cost of the device. Can contribute to.
  • 4 is a photograph of a waveform showing the behavior of the voltage across the relay when a load is energized with a DC voltage of 105 V and a current of 1.0 A according to an experiment (FIG. 3) in an example of the present invention. It is a photograph of a waveform showing the behavior of the voltage across the relay when a DC voltage of 105 V and a current of 2.0 A were used in an experiment (FIG. 3) in an example of the present invention.
  • FIG. 6 is a block diagram of a DC/AC hybrid power system 100 that switches and supplies DC power and AC power using an existing AC wiring system.
  • FIG. 3 is a block diagram of a DC/AC hybrid power system 101 that switches and supplies DC power and AC power using an existing AC wiring system. It is a circuit diagram showing an existing AC device.
  • arc discharge of about several tens of milliseconds is not a big problem in practical use.
  • Fig. 5 shows the behavior of the voltage across the relay when a similar experiment was performed at a DC voltage of 105V and a current of 2.0A. In this case, it takes about 3.8 seconds from the contact opening to the end of energization, and the intense arc discharge is visually confirmed, and it is understood that the arc discharge is a major obstacle in opening the contact.
  • FIG. 7 shows the behavior of the voltage across the relay when the above experiment was performed at a DC voltage of 105 V and a current of 2.0 A. In this case, it takes about 5 milliseconds from the contact opening to the end of energization, and it can be seen that arc discharge is clearly suppressed as compared with FIG.
  • FIG. 8 shows the behavior of the voltage across the relay when the above-mentioned experiment was performed at a DC voltage of 105 V and a current of 8.3 A. Even in this case, it takes about 15 milliseconds from the contact opening to the end of energization.
  • the occurrence of arc discharge is significantly suppressed. I understand that
  • FIG. 9 is a block diagram of a DC/AC hybrid power system 100 that switches and supplies DC power and AC power using an existing AC wiring system.
  • the DC/AC hybrid power system combines a switcher 2 that switches from the grid AC 10 with a PFC circuit 4 that receives the AC power from the grid power 10, a DC that is obtained from the PFC circuit 4, and a DC power that is obtained from the solar panel 20. And a DC balance 7 connected to the output terminal of the storage battery 6, and a DC switch 3 for switching the DC system.
  • the connector 5 includes a positive pole terminal and a negative pole terminal of DC power obtained from the PFC circuit 4, and a positive pole terminal and a negative pole terminal of DC power obtained from the solar panel 20, which are the same. It has a circuit configuration that connects the poles.
  • the storage battery 6 is a reuse storage battery of a lithium-ion storage battery that is installed in an EV (Electric Vehicle) or a PHV (Plug-in Hybrid Vehicle: a hybrid vehicle that can be charged from an external power source). May be deteriorated and the SOH, which is not suitable for power storage, may be deteriorated to about 70% or less.
  • the PFC circuit 4 can eliminate the smoothing capacitor shown by the dotted line from the general PFC circuit shown in FIG. 2, contributing to device cost reduction, device life extension, and effective harmonic suppression. To do.
  • FIG. 10 is a block diagram of a DC/AC hybrid power system 101 that switches and supplies DC power and AC power using an existing AC wiring system.
  • storage batteries 61 and 62 are connected in parallel to single-phase 100V of existing AC wiring.
  • the DC balance 7 of FIG. 9 can be omitted, and a power system that is not affected by the load balance can be obtained.
  • 200V cannot be used in this case.
  • the DC switches 71 and 72 may be DC switches attached to the reuse storage battery pack. Further, when the storage battery voltage is equal to the power supply voltage, the DC/DC converters 81 and 82 can be omitted.
  • unstable DC power with varying output such as photovoltaic power generation or DC power with varying voltage obtained from grid AC is used as stable DC power using a storage battery, and the existing AC wiring system is used. Can be utilized to supply the load.
  • a direct current system that maximizes the use of solar power will be used, and at night when power is not generated, existing grid AC power can be used as before.
  • FIG. 11 shows a schematic diagram of a switching power supply currently mainly used. This receives the AC 100V from the grid in the rectifier circuit and obtains a predetermined DC voltage by switching this, but even if DC 100V is input to such a converter, it will pass through the rectifier circuit. However, it operates without problems as in the case of AC power.
  • many of the current AC devices have a relatively wide voltage resistance, such as a withstand voltage of AC100V to 240V, so that they can cope with the power situation in foreign countries. Therefore, in principle, a DC input has a withstand voltage that is ⁇ 2 times the AC withstand voltage. Furthermore, it does not depend on the polarity at DC input.
  • unstable DC power whose output fluctuates due to renewable energy such as photovoltaic power generation, and DC power obtained from grid AC power are converted to stable DC power using a storage battery, and existing AC power is used. It is possible to realize an inexpensive and highly efficient power system which can be safely used by supplying it to a load by using a wiring system without generating arc discharge. Further, even when the DC stabilized power supply of unstable power by the storage battery of the present invention is used alone, the power conditioner, which becomes a bottleneck of the equipment price, can be eliminated from the conventional renewable energy use system, and the renewable power can be reproduced. It contributes to the improvement of the energy utilization rate and the reuse of the in-vehicle storage battery, and further, it is possible to provide an inexpensive emergency power supply system at the time of disaster.
  • the effects of the power system of the present invention can be summarized as follows. (1) Due to the miniaturized device configuration, it is possible to use the renewable energy (photovoltaic power generation, etc.) with high efficiency, while minimizing the DC/AC conversion loss and at low cost. (2) It is possible to reuse the onboard storage battery with low SOH. (3) A highly efficient DC power system can be safely, inexpensively, and smoothly introduced while utilizing existing social infrastructure based on AC power. (4) It is possible to provide an emergency power supply system at the time of disaster at low cost.

Abstract

The present invention transforms an unstable DC power generated by such as the renewable energy of, for example, solar power generation and having a fluctuating output and a DC power obtained from system AC power to a stable DC power using a storage battery and supplies the stable DC power to a load using an already-existing AC wiring system, thereby making it possible to obtain an inexpensive and highly efficient power system that can be safely used without the occurrence of arc discharge. The DC power supply according to the present invention smooths, by connecting a storage battery in parallel with each single circuit or a composite circuit, the DC voltages of an unstable DC power generated by such as the renewable energy of, for example, solar power generation and having a fluctuating output and a DC power obtained by rectifying system AC power by a rectifier or the like and having an unstable voltage, thereby supplying a stable DC power.

Description

直流電源及び電力システムDC power supply and power system
本発明は、蓄電池を利用した直流電力の安定化と、同じく蓄電池を利用したコンデンサレスPFC回路と、直流利用時に問題となるアーク放電をコンバータ回路により抑制する直流電力利用方法と、既存交流配線系を用いて直流電力を給電する方法と、直流と交流の両方に対応する負荷を用いて、直流と交流を適時切り替えて利用する、直流交流ハイブリッド電力システムと、これらを単独または複合して利用する電力システムに関する。 The present invention is to stabilize DC power using a storage battery, a capacitor-less PFC circuit that also uses a storage battery, a DC power use method for suppressing arc discharge that is a problem during DC use by a converter circuit, and an existing AC wiring system. DC power supply method using DC power supply and DC/AC hybrid power system that uses DC/AC power by switching between DC and AC at the appropriate time by using loads corresponding to both DC and AC. Regarding the power system.
従来の電力システムに関して、多数の特許が公開されている。例えば、特許文献1の太陽光発電用電力供給システムは、太陽光電源装置と、前記太陽光電源装置以外の電源装置と、それらの直流電力を合成する直流電力合成装置とで構成されており、負荷にて消費する電力が、太陽電池からの電力と等しいか、又はそれよりも大きい場合を検知して、太陽光電源装置により発電された電力を、最大限無駄なく取り出すように制御する太陽光発電用電力供給システムについて記載されている。(特許文献1) Numerous patents have been published on conventional power systems. For example, the power supply system for photovoltaic power generation of Patent Document 1 is configured by a solar power supply device, a power supply device other than the solar power supply device, and a DC power combiner that combines the DC powers thereof, Sunlight that detects when the power consumed by the load is equal to or greater than the power from the solar cell and controls the power generated by the solar power supply device so that it is extracted without waste to the maximum extent. A power supply system for power generation is described. (Patent Document 1)
また、直流利用時に問題となるアーク放電抑制に関しても、同じく多数の特許が公開されている。例えば、特許文献2の直流電流開閉装置は、直流接点に対してコンデンサ、ダイオード及び抵抗による回路を、接点周囲に設け、過渡現象と放電回路によってアーク放電を抑制する装置について記載されている。(特許文献2) A number of patents have also been published regarding suppression of arc discharge, which is a problem when using direct current. For example, the DC current switchgear of Patent Document 2 describes a device in which a circuit including a capacitor, a diode and a resistor is provided around a contact for a DC contact, and an arc discharge is suppressed by a transient phenomenon and a discharge circuit. (Patent Document 2)
また、近年の再生可能エネルギーの利用拡大や、エネルギー利用効率の向上に対する社会的要請を受けて、直流給電が見直されており、NTTデータセンターなどで直流給電が実用化されている。(非特許文献1) Further, in response to social demands for expanding the use of renewable energy and improving energy use efficiency in recent years, DC power supply has been reviewed, and DC power supply has been put to practical use in NTT data centers and the like. (Non-patent document 1)
特開2016-19415号公報JP, 2016-19415, A 特開2016-28378号公報JP, 2016-28378, A
特許文献1では、太陽光パネルから得られる直流電力と、他の前記太陽光電源装置以外の電源装置から得られる直流電力の負荷に対する大きさの比較を行って、最適制御を行う太陽光発電用電力供給システムについて記載されているが、前記太陽光電源以外の電源装置を、系統交流電力から取得する可能性については記載されていない。 In Patent Document 1, for the photovoltaic power generation that performs optimum control by comparing the magnitude of the DC power obtained from the solar panel and the magnitude of the DC power obtained from the other power supply device other than the solar power supply device with respect to the load. Although the power supply system is described, the possibility of acquiring a power supply device other than the solar power supply from system AC power is not described.
特許文献2では、直流開閉接点に対してコンデンサ、ダイオード及び抵抗による回路を、開閉接点周囲に設け、過渡現象と放電回路によってアーク放電を抑制する装置について記載されているが、前記開閉接点周囲以外のアーク放電抑制回路を、接点側ではなく、負荷側に配置する可能性については記載されていない。 Patent Document 2 describes a device that suppresses arc discharge by a transient phenomenon and a discharge circuit by providing a circuit including a capacitor, a diode and a resistor for a DC switching contact around the switching contact. There is no description about the possibility of arranging the arc discharge suppression circuit of (3) on the load side instead of the contact side.
非特許文献1では、直流給電の優位性や、高電圧直流給電の事例について記載されているが、直流給電を、既存の交流配線系を利用して給電する可能性については記載されていない。 Non-Patent Document 1 describes the superiority of DC power supply and an example of high-voltage DC power supply, but does not describe the possibility of supplying DC power supply using an existing AC wiring system.
本発明の課題は、太陽光発電等の再生可能エネルギーなどによる、出力が変動する不安定な直流電力や、系統交流電力から整流して得られる、電圧が変動する直流電力を、蓄電池を用いて安定な直流電力とし、既存の交流配線系を利用して負荷に供給したり、または安価な直流安定化電源として活用する、高効率で、かつ安価な、直流電源、電力システムを提供することである。 An object of the present invention is to use an accumulator to generate unstable DC power whose output fluctuates due to renewable energy such as photovoltaic power generation, or DC power whose voltage fluctuates, which is obtained by rectifying from system AC power. By providing stable DC power, supplying it to the load using the existing AC wiring system, or utilizing it as an inexpensive DC stabilized power supply, by providing a highly efficient and inexpensive DC power supply and power system. is there.
請求項1に係る発明は、太陽光発電等、再生可能エネルギーなどによる、出力が変動する不安定な直流電力や、系統交流電力を整流器などによって整流した、電圧が不安定な直流電力を、それぞれ単独の、または合成した回路に対して、蓄電池を並列接続することで直流電圧を平滑し、安定な直流電力を得ることを特徴とする直流電源である。 The invention according to claim 1 provides unstable DC power whose output fluctuates due to renewable energy such as solar power generation, and DC power whose voltage is unstable obtained by rectifying system AC power with a rectifier or the like, respectively. It is a DC power supply characterized in that a DC voltage is smoothed by connecting storage batteries in parallel to a single circuit or a combined circuit to obtain stable DC power.
請求項2に係る発明は、PFC(Power Factor Correction)回路から、電圧平滑のためのコンデンサを排し、蓄電池によって直流電圧を平滑にすることを特徴とする直流電源である。 The invention according to claim 2 is a DC power supply characterized in that a capacitor for voltage smoothing is removed from a PFC (Power Factor Correction) circuit, and a DC voltage is smoothed by a storage battery.
請求項3に係る発明は、前記蓄電池は、EVやPHVなどに搭載され、SOHが低下した車載用のリユース蓄電池であることを特徴とする、請求項1または2に記載の直流電源である。 The invention according to claim 3 is the direct-current power source according to claim 1 or 2, wherein the storage battery is a vehicle-mounted reuse storage battery mounted on an EV, a PHV, or the like and having a reduced SOH.
請求項4に係る発明は、直流電源を有し、負荷と開閉接点の間にDCコンバータが配置され、アーク放電を抑制する機能を有することを特徴とする電力システムである。 The invention according to claim 4 is an electric power system having a DC power supply, a DC converter being arranged between a load and a switching contact, and having a function of suppressing arc discharge.
請求項5に係る発明は、前記直流電源は、請求項1ないし3のいずれか1項記載の直流電源である請求項4記載の電力システムである。 The invention according to claim 5 is the power system according to claim 4, wherein the DC power supply is the DC power supply according to any one of claims 1 to 3.
請求項6係る発明は、前記直流電源は、、既存の交流配線系に接続され、負荷に供給するようにしたことを特徴とする請求項4又は5記載の電力システムである。 The invention according to claim 6 is the power system according to claim 4 or 5, characterized in that the DC power supply is connected to an existing AC wiring system and supplied to a load.
請求項7に係る発明は、直流及び交流の両方に対応する負荷を用い、直流又は交流を切り替えて利用することを特徴とする直流交流のハイブリッドの請求項4記載の電力システムである。 The invention according to claim 7 is the power system according to claim 4, which is a hybrid of direct current and alternating current, characterized in that a load corresponding to both direct current and alternating current is used, and direct current or alternating current is switched and used.
本発明によれば、出力や電圧が変動する不安定な直流電力を、コンデンサやDC/DCコンバータを用いずに、安価で簡便に、且つ電力の変換損失を極力少なくし、蓄電池電圧で規定された所定電圧の、安定な直流電力を得ることができる。 According to the present invention, unstable DC power whose output and voltage fluctuate is inexpensive and simple, without using a capacitor or a DC/DC converter, and the power conversion loss is minimized, and is regulated by the storage battery voltage. It is possible to obtain stable DC power of a predetermined voltage.
請求項2、5に係る発明によれば、従来のPFC回路から、電圧平滑のためのコンデンサを排することができ、装置寿命を大きく向上させ、且つ安価で、且つ高調波が発生為難く、且つ容易に並列接続ができる、PFC回路を得ることができる。尚、PFC回路とは力率改善回路であり、電源の力率(power factor)を1に近づける回路のことである。なお、力率とは、交流電力の電圧と電流の位相差をφとすると、力率=cosφで求められる。つまり、電圧と電流の波形がいずれも正弦波のときは1となる。 According to the inventions according to claims 2 and 5, the capacitor for voltage smoothing can be eliminated from the conventional PFC circuit, the life of the device can be greatly improved, the cost can be reduced, and harmonics are less likely to occur. In addition, it is possible to obtain a PFC circuit that can be easily connected in parallel. Note that the PFC circuit is a power factor correction circuit, and is a circuit that brings the power factor of the power source close to 1. The power factor is calculated by power factor=cos φ, where φ is the phase difference between the voltage and the current of the AC power. That is, when both the voltage and current waveforms are sine waves, the value is 1.
請求項3、5に係る発明によれば、例えばSOHが70%以下に低下し、一般的な蓄電利用のリユースに適さない蓄電池を有効活用することができ、前記直流電源システムを安価に得ることができる。 According to the inventions according to claims 3 and 5, for example, the SOH is lowered to 70% or less, and the storage battery which is not suitable for reuse of general electricity storage can be effectively used, and the DC power supply system can be obtained at low cost. You can
請求項4、5に係る発明の直流電力利用方法によれば、開閉接点の周囲に新たにアーク放電抑制回路を設けることなく、また、直流利用に特化したスイッチやプラグを用いることなく、市販家電機器に付帯するDCコンバータによって、直流電力利用時でも、通常の交流家電機器同様に、スイッチの開閉やプラグの抜き差しを、安全に行うことができる。 According to the method of using direct-current power of the inventions according to claims 4 and 5, it is commercially available without newly providing an arc discharge suppression circuit around the switching contacts and without using a switch or plug specialized for direct-current use. By using the DC converter attached to the home electric appliances, it is possible to safely open/close the switch and plug/unplug even when using the DC power, as in the case of normal AC home electric appliances.
請求項6に係る発明の直流給電方法によれば、既存の交流配線系を利用して、例えば直流100Vの直流電力を供給でき、既存社会システムを活かしながら、スムーズ、且つ安価に、直流利用環境を得ることができる。 According to the DC power feeding method of the invention according to claim 6, it is possible to supply DC power of, for example, 100 V DC by using the existing AC wiring system, and while utilizing the existing social system, smoothly and inexpensively, the DC usage environment. Can be obtained.
請求項7に係る発明の直流交流ハイブリッド電力システムによれば、直流及び交流の両方に対応する負荷を用い、例えば太陽光発電により発電が行われる日中は直流給電、夜間等は従来の交流給電に切り替えて利用することができ、電力システムの待機電力を極小化し、再生可能エネルギーを高効率に利用することができる。 According to the DC/AC hybrid power system of the invention of claim 7, a load corresponding to both DC and AC is used, and for example, DC power feeding is performed during the day when power is generated by solar power generation, and conventional AC power feeding is performed at night. It can be used by switching to, and the standby power of the power system can be minimized, and the renewable energy can be used with high efficiency.
本発明によれば、太陽光発電等、再生可能エネルギーなどによる出力が変動する不安定な直流電力、及び系統交流電力から、整流器やコンデンサレスPFC回路などによる、電圧が変動する不安定な直流電力から、車載用リユース蓄電池の活用により、安価に、且つ電力の変換損失を極力少なくし、蓄電池電圧で規定される所定電圧の安定な直流電力を得ることができる。 According to the present invention, unstable DC power whose output fluctuates due to renewable energy, such as photovoltaic power generation, and unstable AC power whose voltage fluctuates due to a rectifier or a capacitorless PFC circuit from system AC power. Therefore, by utilizing the in-vehicle reuse storage battery, it is possible to obtain stable DC power at a predetermined voltage that is specified by the storage battery voltage, at low cost, with minimal power conversion loss.
また、本発明によれば、直流及び交流の両方に対応するDCコンバータ付きの負荷を用い、既存交流配線系を用いて直流給電を行うことで、既存社会インフラを活かし、スムーズ、且つ安全、且つ安価に、直流利用環境を得ることができる。 Further, according to the present invention, by using a load with a DC converter corresponding to both direct current and alternating current and performing direct current power supply using an existing alternating current wiring system, the existing social infrastructure can be utilized effectively, safely, and A DC utilization environment can be obtained at low cost.
また、本発明によれば、太陽光発電設備等において、変換損失が大きく、装置原価が大きい、パワーコンディショナーを排除することができ、電力システムの導入コストを大幅に低減させることができる。 Further, according to the present invention, in a photovoltaic power generation facility or the like, it is possible to eliminate a power conditioner, which has a large conversion loss, a large device cost, and can significantly reduce the introduction cost of the power system.
本発明の根幹をなす、蓄電池による不安定電力の直流安定化について、図1に概念を示す。前記再生可能エネルギーなどによる直流電圧(V1)と、前記系統交流電力から整流された直流ピーク電圧(V2)と、蓄電池の出力電圧(V3)を、例えば、V1 > V2 > V3となるように設定すれば、再生可能エネルギーが発電する間は、系統交流電力から蓄電池へ電力の入力は止まり、再生可能エネルギーが停止した場合は、系統交流電力から蓄電池へ電力が入力することで、常に蓄電池電圧で規定された直流電力を負荷に供給することができる。 FIG. 1 shows the concept of direct current stabilization of unstable power by a storage battery, which is the basis of the present invention. The DC voltage (V 1 ) due to the renewable energy, the DC peak voltage (V 2 ) rectified from the system AC power, and the output voltage (V 3 ) of the storage battery are, for example, V 1 >V 2 >V If set to 3 , input of power from the grid AC power to the storage battery will stop while renewable energy is generated, and power will be input from the grid AC power to the storage battery when renewable energy stops. Thus, it is possible to always supply the DC power specified by the storage battery voltage to the load.
このようにして、従来の再生可能エネルギー利用システムにおける、頻繁な直流と交流の変換による電力の変換損失を解消しながら、シンプルで安価なシステムで、再生可能エネルギーを無駄なく使用できる直流電源システムを得ることができる。 In this way, a DC power supply system that can use renewable energy with a simple and inexpensive system while eliminating the power conversion loss due to frequent DC and AC conversion in conventional renewable energy utilization systems. Obtainable.
前記蓄電池は、充放電機能を有する二次電池であれば、例えば鉛蓄電池でも、キャパシタでも構わないが、リチウムイオン蓄電池が最も適している。この場合、リチウムイオン蓄電池の安全性を担保するために、過充電及び過放電状態が生じない設計とする必要がある。本発明の電力システムでは、蓄電機能が劣化した車載用リユース蓄電池を用いることで、原理的に過充電が生じ難いという利点も得られ、更に前記V1及びV3を、蓄電池の使用可能電圧範囲内に設定することで、過充電及び過放電が生じ難いシステムとすることができる。 The storage battery may be, for example, a lead storage battery or a capacitor, as long as it is a secondary battery having a charge/discharge function, but a lithium ion storage battery is most suitable. In this case, in order to ensure the safety of the lithium ion storage battery, it is necessary to design so that overcharge and overdischarge states do not occur. In the power system of the present invention, by using the vehicle-mounted reused storage battery having a deteriorated power storage function, it is possible in principle to obtain an advantage that overcharging does not easily occur, and further, the V 1 and V 3 are set to the usable voltage range of the storage battery. By setting inside, it is possible to make a system in which overcharging and overdischarging hardly occur.
但し、災害による停電時等、系統交流電力のバックアップが長時間停止した場合においては、例えば低電圧で動作する負荷が接続されていると、過放電状態に至る可能性があることから、蓄電池電圧をモニターして蓄電池を遮断する保護回路は必要となる。 However, when the backup of the system AC power is stopped for a long time, such as during a power outage due to a disaster, for example, if a load that operates at a low voltage is connected, it may lead to an overdischarge state. A protection circuit that monitors the battery and shuts off the storage battery is required.
請求項1に記載する直流電源システムでは、蓄電池を電力のストレージとしてではなく、電圧を平滑化するためのコンデンサとして活用するところに大きな特徴がある。再生可能エネルギーなどを有効活用するために、系統交流電力をバックアップとする、図1に概念を示した本システムの動作では、系統交流電力から蓄電池を充電するための整流器は、単純なダイオードブリッジだけでも原理的に問題はない。しかし、所定の蓄電池電圧で充電すること、及び高調波抑制の観点から、整流にはPFC回路を用いることになる。 The DC power supply system according to claim 1 is characterized in that the storage battery is used not as a storage of electric power but as a capacitor for smoothing the voltage. In order to effectively use renewable energy, the system AC power is used as a backup. In the operation of this system whose concept is shown in Fig. 1, the rectifier for charging the storage battery from the system AC power is only a simple diode bridge. But in principle there is no problem. However, a PFC circuit is used for rectification from the viewpoint of charging with a predetermined storage battery voltage and suppressing harmonics.
図2に典型的なPFC回路を示す。系統交流電力をPFC回路で整流する場合、請求項2に記載する、従来のPFC回路から、電圧平滑のためのコンデンサを排することができ、デバイスの低コスト化、及び長寿命化、更には効果的な高調波抑制を同時に実現することができる。 Figure 2 shows a typical PFC circuit. When the system AC power is rectified by the PFC circuit, the capacitor for voltage smoothing can be eliminated from the conventional PFC circuit described in claim 2, thus reducing the cost of the device and prolonging its life. Effective harmonic suppression can be achieved at the same time.
また、前記蓄電池は、車載用のリユース蓄電池を用いることができ、デバイスの低コスト化、及び資源循環に貢献することができる。 In addition, as the storage battery, a reuse storage battery for vehicle can be used, which can contribute to cost reduction of the device and resource circulation.
本直流電源システムでは、通常のリチウムイオン蓄電池において必須となる、複雑なバッテリーマネジメント機構は不要となり、前記停電時等の安全性担保のための前記保護回路のみ備えればよく、デバイスの低コスト化に貢献することができる。 This DC power supply system does not require a complicated battery management mechanism that is indispensable for ordinary lithium-ion storage batteries, and only needs the protection circuit to ensure the safety in the event of a power failure, etc., reducing the cost of the device. Can contribute to.
さて、一般に直流電力の利用においては、アーク放電の発生が問題となる。アーク放電は、電圧が高いほど発生し易くなることから、既存の直流給電システムにおいては、DCコンバータで降圧した後で開閉を行うため、図3に示すように、負荷とコンバータの間に開閉接点が配置される。一方、本発明では、請求項4に記載する、図4に示すように、負荷と開閉接点の間に、コンバータを配置する。 Now, generally, in the use of DC power, the occurrence of arc discharge is a problem. Since arc discharge is more likely to occur as the voltage is higher, in the existing DC power supply system, since the DC converter is stepped down before opening and closing, as shown in FIG. 3, a switching contact is placed between the load and the converter. Are placed. On the other hand, in the present invention, as shown in FIG. 4 described in claim 4, the converter is arranged between the load and the switching contact.
本発明の直流電源の概念図である。It is a conceptual diagram of the DC power supply of this invention. 典型的なPFC回路図である。It is a typical PFC circuit diagram. 本発明の実施例における実験によるDCコンバータ(COSEL/PBAシリーズ)と、リレー(OMRON/G7L)を用いた例を示す回路図である。It is a circuit diagram which shows the example using the DC converter (COSEL/PBA series) and the relay (OMRON/G7L) by the experiment in the Example of this invention. 本発明の実施例における実験(図3)による直流電圧:105V、電流:1.0Aを負荷に通電し、接点を開放した場合のリレー両端電圧の挙動を示す波形の写真である。4 is a photograph of a waveform showing the behavior of the voltage across the relay when a load is energized with a DC voltage of 105 V and a current of 1.0 A according to an experiment (FIG. 3) in an example of the present invention. 本発明の実施例における実験(図3)による直流電圧:105V、電流:2.0Aにて行った場合のリレー両端電圧の挙動を示す波形の写真である。It is a photograph of a waveform showing the behavior of the voltage across the relay when a DC voltage of 105 V and a current of 2.0 A were used in an experiment (FIG. 3) in an example of the present invention. 本発明の実施例における実験による負荷と開閉接点の間に、前記DCコンバータを配置した例を示す図である。It is a figure which shows the example which has arrange|positioned the said DC converter between the load and the switching contact by experiment in the Example of this invention. 本発明の実施例における実験(図6)による直流電圧:105V、電流:2.0Aにて行った場合のリレー両端電圧の挙動を示す図である。It is a figure which shows the behavior of the voltage across a relay when it carries out by the direct current voltage: 105V and current: 2.0A by the experiment (FIG. 6) in the Example of this invention. 本発明の実施例における実験(図6)による直流電圧:105V、電流:8.3Aにて行った場合のリレー両端電圧の挙動を示す図である。It is a figure which shows the behavior of the voltage across a relay when it carries out by the direct current voltage: 105V and the current: 8.3A by the experiment (FIG. 6) in the Example of this invention. 既存交流配線系を用いた、直流電力及び交流電力を切り替えて供給する、直流交流ハイブリッド電力システム100のブロック図である。1 is a block diagram of a DC/AC hybrid power system 100 that switches and supplies DC power and AC power using an existing AC wiring system. 既存交流配線系を用いた、直流電力及び交流電力を切り替えて供給する、直流交流ハイブリッド電力システム101のブロック図である。FIG. 3 is a block diagram of a DC/AC hybrid power system 101 that switches and supplies DC power and AC power using an existing AC wiring system. 既存の交流機器を示す回路図である。It is a circuit diagram showing an existing AC device.
(実験)
DCコンバータ(COSEL/PBAシリーズ)と、リレー(OMRON/G7L)を用い、図3に示す、既存の直流給電システムにおける開閉接点配置において、通電状態から接点開放時のリレー両端電圧の経時変化を、オシロスコープで観察することで、開閉接点におけるアーク放電の挙動を観察した。
図4に、直流電圧:105V、電流:1.0Aを負荷に通電し、接点を開放した場合のリレー両端電圧の挙動を示す。この場合、接点開放から通電終了まで、約22ミリ秒を要し、この間、わずかながらアーク放電が発生していることが判る。但し、数十ミリ秒程度のアーク放電は、実用上は大きな問題にならない。
図5に、直流電圧:105V、電流:2.0Aにて、同様の実験を行った場合のリレー両端電圧の挙動を示す。この場合、接点開放から通電終了まで、約3.8秒を要し、また目視でも激しいアーク放電が確認され、接点開放においてアーク放電が大きな障害となることが判る。
(Experiment)
Using a DC converter (COSEL/PBA series) and a relay (OMRON/G7L), the change over time of the voltage across the relay from the energized state to the contact opened in the open/close contact arrangement in the existing DC power supply system shown in The behavior of arc discharge at the switching contacts was observed by observing with an oscilloscope.
Figure 4 shows the behavior of the voltage across the relay when a DC voltage of 105V and a current of 1.0A are applied to the load and the contacts are opened. In this case, it takes about 22 milliseconds from the contact opening to the end of energization, and it is understood that arc discharge is slightly generated during this period. However, arc discharge of about several tens of milliseconds is not a big problem in practical use.
Fig. 5 shows the behavior of the voltage across the relay when a similar experiment was performed at a DC voltage of 105V and a current of 2.0A. In this case, it takes about 3.8 seconds from the contact opening to the end of energization, and the intense arc discharge is visually confirmed, and it is understood that the arc discharge is a major obstacle in opening the contact.
次に、図6のように、負荷と開閉接点の間に、前記DCコンバータを配置し、前記実験を行った。
図7に、直流電圧:105V、電流:2.0Aにて、前記実験を行った場合のリレー両端電圧の挙動を示す。この場合、接点開放から通電終了まで、約5ミリ秒程度であり、図5と比較して明らかにアーク放電が抑制されていることが判る。
図8に、直流電圧:105V、電流:8.3Aにて、前記実験を行った場合のリレー両端電圧の挙動を示す。この場合でも、接点開放から通電終了まで、約15ミリ秒程度であり、段落[0037]に記載した実験結果と比較し、DCコンバータの配置を変えることで、大幅にアーク放電の発生が抑制されることが判る。
Next, as shown in FIG. 6, the DC converter was arranged between the load and the switching contact, and the experiment was conducted.
FIG. 7 shows the behavior of the voltage across the relay when the above experiment was performed at a DC voltage of 105 V and a current of 2.0 A. In this case, it takes about 5 milliseconds from the contact opening to the end of energization, and it can be seen that arc discharge is clearly suppressed as compared with FIG.
FIG. 8 shows the behavior of the voltage across the relay when the above-mentioned experiment was performed at a DC voltage of 105 V and a current of 8.3 A. Even in this case, it takes about 15 milliseconds from the contact opening to the end of energization. Compared with the experimental result described in paragraph [0037], by changing the arrangement of the DC converter, the occurrence of arc discharge is significantly suppressed. I understand that
図9は、既存交流配線系を用いた、直流電力及び交流電力を切り替えて供給する、直流交流ハイブリッド電力システム100のブロック図である。直流交流ハイブリッド電力システムは、系統交流10から切り替える切替器2と、系統電力10からの交流電力を受けるPFC回路4と、これにより得られる直流と、太陽光パネル20から得られる直流電力とを合成する接続器5と、合成した不安定な直流電力を平滑する蓄電池6と、前記蓄電池6からの出力端子に接続された、DCバランス7と、直流システムを切り替える直流切替器3とで構成されている。ここで、接続器5は、PFC回路4から得られる直流電力のプラス極端子、及びマイナス極端子と、太陽光パネル20から得られる直流電力のプラス極端子、及びマイナス極端子とを、同一の極を接続する回路構成となっている。 FIG. 9 is a block diagram of a DC/AC hybrid power system 100 that switches and supplies DC power and AC power using an existing AC wiring system. The DC/AC hybrid power system combines a switcher 2 that switches from the grid AC 10 with a PFC circuit 4 that receives the AC power from the grid power 10, a DC that is obtained from the PFC circuit 4, and a DC power that is obtained from the solar panel 20. And a DC balance 7 connected to the output terminal of the storage battery 6, and a DC switch 3 for switching the DC system. There is. Here, the connector 5 includes a positive pole terminal and a negative pole terminal of DC power obtained from the PFC circuit 4, and a positive pole terminal and a negative pole terminal of DC power obtained from the solar panel 20, which are the same. It has a circuit configuration that connects the poles.
前記蓄電池6は、EV(Electric Vehicle:電気自動車)、あるいはPHV(Plug-in Hybrid Vehicle:外部電源から充電できるタイプのハイブリッド自動車)等に搭載された、リチウムイオン蓄電池のリユース蓄電池であって、SOHが低下し、蓄電用途には不向きなSOH70%程度以下に劣化したものでも差し支えない。 The storage battery 6 is a reuse storage battery of a lithium-ion storage battery that is installed in an EV (Electric Vehicle) or a PHV (Plug-in Hybrid Vehicle: a hybrid vehicle that can be charged from an external power source). May be deteriorated and the SOH, which is not suitable for power storage, may be deteriorated to about 70% or less.
PFC回路4は、図2に示した一般的なPFC回路から、点線部に示す平滑用コンデンサを省くことができ、デバイスコストの低減、デバイスの高寿命化、及び効果的な高調波抑制に寄与する。 The PFC circuit 4 can eliminate the smoothing capacitor shown by the dotted line from the general PFC circuit shown in FIG. 2, contributing to device cost reduction, device life extension, and effective harmonic suppression. To do.
図10は、既存交流配線系を用いた、直流電力及び交流電力を切り替えて供給する、直流交流ハイブリッド電力システム101のブロック図である。図9に示した電力システムに対して、蓄電池61及び62を、既存交流配線の単相100Vに並列に接続する。このようにすることで図9のDCバランス7を省くことができ、負荷バランスに左右されない電力システムとすることができる。但し、この場合には、200Vは使用できない。直流スイッチ71及び72は、前記リユース蓄電池パックに付帯する直流スイッチでもよい。また、蓄電池電圧が給電電圧に等しい場合には、DC/DCコンバータ81及び82を省くことができる。 FIG. 10 is a block diagram of a DC/AC hybrid power system 101 that switches and supplies DC power and AC power using an existing AC wiring system. For the power system shown in FIG. 9, storage batteries 61 and 62 are connected in parallel to single-phase 100V of existing AC wiring. By doing so, the DC balance 7 of FIG. 9 can be omitted, and a power system that is not affected by the load balance can be obtained. However, 200V cannot be used in this case. The DC switches 71 and 72 may be DC switches attached to the reuse storage battery pack. Further, when the storage battery voltage is equal to the power supply voltage, the DC/DC converters 81 and 82 can be omitted.
本実施例によれば、太陽光発電等の出力が変動する不安定な直流電力や、系統交流から得られる電圧が変動する直流電力を、蓄電池を用いて安定な直流電力とし、既存交流配線系を活用して、負荷に供給することができる。太陽光パネルが発電する日中は、最大限に太陽光発電を活用する直流システムとし、発電が行われない夜間等は、既存の系統交流電力を従来どおり利用できる。 According to the present embodiment, unstable DC power with varying output such as photovoltaic power generation or DC power with varying voltage obtained from grid AC is used as stable DC power using a storage battery, and the existing AC wiring system is used. Can be utilized to supply the load. During the daytime when the solar panels generate power, a direct current system that maximizes the use of solar power will be used, and at night when power is not generated, existing grid AC power can be used as before.
さて、既存の交流機器は、機器内部では直流で動作する場合が多い。このような機器には、AC/DCコンバータが付帯、あるいは内蔵されている。図11に、現在主に用いられているスイッチング電源の模式図を示す。これは系統からの交流100Vを、整流回路で受け、これをスイッチングすることで所定の直流電圧を得ているが、このようなコンバータに対して、直流100Vを入力しても、整流回路を素通りし、交流電力の場合と同様に問題なく動作する。また、現在の交流機器の多くは、海外の電力事情にも対応できるよう、例えば耐圧AC100V~240Vというように、比較的広い電圧耐性を有する。従って、直流入力に対しては、原理的に、交流耐圧の√2倍の耐圧を持つ。更には、直流入力時の極性にも依存しない。 By the way, existing AC devices often operate with DC inside the device. An AC/DC converter is attached to or built in such a device. FIG. 11 shows a schematic diagram of a switching power supply currently mainly used. This receives the AC 100V from the grid in the rectifier circuit and obtains a predetermined DC voltage by switching this, but even if DC 100V is input to such a converter, it will pass through the rectifier circuit. However, it operates without problems as in the case of AC power. In addition, many of the current AC devices have a relatively wide voltage resistance, such as a withstand voltage of AC100V to 240V, so that they can cope with the power situation in foreign countries. Therefore, in principle, a DC input has a withstand voltage that is √2 times the AC withstand voltage. Furthermore, it does not depend on the polarity at DC input.
また、直流利用時に、前記DCコンバータを、開閉接点と負荷の間に配置すると、直流利用時に問題となるアーク放電を抑制することが出来る。これは従来の交流機器と同様な使用方法で、直流利用環境を得られ、例えば直流100Vで直流を利用する場合でも、アーク放電を抑制し、安全にスイッチの開閉や、コンセントの抜き差しを行うことが出来る。 Further, when the DC converter is used, when the DC converter is arranged between the switching contact and the load, it is possible to suppress arc discharge which is a problem when the DC is used. This is the same usage method as conventional AC equipment, and it is possible to obtain a DC use environment.For example, even when using DC at 100V DC, arc discharge is suppressed and switches are opened and closed safely, and plugs are unplugged. Can be done.
尚、既存交流機器を、本発明の電力システムにて直流利用する場合、機器内部のヒューズを、直流用に交換する必要がある。 When an existing AC device is used as a direct current in the power system of the present invention, it is necessary to replace the fuse inside the device for direct current.
本発明によれば、太陽光発電等の再生可能エネルギーなどによる、出力が変動する不安定な直流電力と、系統交流電力から得る直流電力を、蓄電池を用いて安定な直流電力とし、既存の交流配線系を用いて負荷に供給し、アーク放電を発生させずに安全に使用できる、安価で高効率な電力システムを実現することができる。また、本発明の蓄電池による不安定電力の直流安定化電源を単独で利用する場合においても、従来の再生可能エネルギー利用システムから、設備価格のネックとなるパワーコンディショナーを排除することができ、再生可能エネルギー利用率の向上と、車載用蓄電池のリユースに寄与し、更には、安価な災害時等の非常電源システムを提供することが出来る。 According to the present invention, unstable DC power whose output fluctuates due to renewable energy such as photovoltaic power generation, and DC power obtained from grid AC power are converted to stable DC power using a storage battery, and existing AC power is used. It is possible to realize an inexpensive and highly efficient power system which can be safely used by supplying it to a load by using a wiring system without generating arc discharge. Further, even when the DC stabilized power supply of unstable power by the storage battery of the present invention is used alone, the power conditioner, which becomes a bottleneck of the equipment price, can be eliminated from the conventional renewable energy use system, and the renewable power can be reproduced. It contributes to the improvement of the energy utilization rate and the reuse of the in-vehicle storage battery, and further, it is possible to provide an inexpensive emergency power supply system at the time of disaster.
本発明の電力システムの効果をまとめると、以下の通りとなる。
(1)極小化されたデバイス構成により、直流⇔交流変換損失を極力少なくし、且つ安価に、再生可能エネルギー(太陽光発電、他)の高効率利用が可能となる。
(2)SOHが低下した車載用蓄電池のリユースが可能となる。
(3)交流電力を基盤とする既存社会インフラを活用しながら、高効率な直流電力システムを、安全に、安価に、スムーズに導入することができる。
(4)災害時等の非常電源システムを、安価に提供することができる。
The effects of the power system of the present invention can be summarized as follows.
(1) Due to the miniaturized device configuration, it is possible to use the renewable energy (photovoltaic power generation, etc.) with high efficiency, while minimizing the DC/AC conversion loss and at low cost.
(2) It is possible to reuse the onboard storage battery with low SOH.
(3) A highly efficient DC power system can be safely, inexpensively, and smoothly introduced while utilizing existing social infrastructure based on AC power.
(4) It is possible to provide an emergency power supply system at the time of disaster at low cost.

Claims (7)

  1. 太陽光発電等、再生可能エネルギーなどによる、出力が変動する不安定な直流電力や、系統交流電力を整流器などによって整流した、電圧が不安定な直流電力を、それぞれ単独の、または合成した回路に対して、蓄電池を並列接続することで直流電圧を平滑し、安定な直流電力を得ることを特徴とする直流電源。 Unstable DC power whose output fluctuates due to renewable energy such as solar power generation, or DC power with unstable voltage rectified by system rectifier, etc., into individual or combined circuits. On the other hand, a DC power supply characterized by smoothing DC voltage by connecting storage batteries in parallel and obtaining stable DC power.
  2. PFC回路から、電圧平滑のためのコンデンサを排し、蓄電池によって直流電圧を平滑にすることを特徴とする直流電源。 A DC power source characterized by discharging a capacitor for voltage smoothing from the PFC circuit and smoothing the DC voltage by a storage battery.
  3. 前記蓄電池は、EVやPHVなどに搭載され、SOHが低下した車載用のリユース蓄電池であることを特徴とする、請求項1または2に記載の直流電源。 The DC power supply according to claim 1 or 2, wherein the storage battery is a reuse storage battery mounted on an EV, a PHV or the like and having a reduced SOH.
  4. 直流電源を有し、負荷と開閉接点の間にDCコンバータが配置され、アーク放電を抑制する機能を有することを特徴とする電力システム。 An electric power system having a DC power supply, a DC converter disposed between a load and a switching contact, and having a function of suppressing arc discharge.
  5. 前記直流電源は、請求項1ないし3のいずれか1項記載の直流電源である請求項4記載の電力システム。 The power system according to claim 4, wherein the DC power supply is the DC power supply according to any one of claims 1 to 3.
  6. 前記直流電源は、既存の交流配線系に接続され、負荷に供給するようにしたことを特徴とする請求項4又は5記載の電力システム。 The power system according to claim 4 or 5, wherein the DC power source is connected to an existing AC wiring system and is supplied to a load.
  7. 直流及び交流の両方に対応する負荷を用い、直流又は交流を切り替えて利用することを特徴とする直流交流のハイブリッドの請求項4記載の電力システム。 The power system according to claim 4, wherein a DC/AC hybrid is used by using a load corresponding to both DC and AC and switching between DC and AC.
PCT/JP2019/003408 2019-01-31 2019-01-31 Dc power supply and power system WO2020157922A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003408 WO2020157922A1 (en) 2019-01-31 2019-01-31 Dc power supply and power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003408 WO2020157922A1 (en) 2019-01-31 2019-01-31 Dc power supply and power system

Publications (1)

Publication Number Publication Date
WO2020157922A1 true WO2020157922A1 (en) 2020-08-06

Family

ID=71841247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003408 WO2020157922A1 (en) 2019-01-31 2019-01-31 Dc power supply and power system

Country Status (1)

Country Link
WO (1) WO2020157922A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2759009C1 (en) * 2020-12-08 2021-11-08 Федеральное государственное бюджетное научное учреждение "Федеральный научный агроинженерный центр ВИМ" (ФГБНУ ФНАЦ ВИМ) Method and system for supplying direct current consumers with a power supply source based on renewable energy resources

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308431A (en) * 1991-04-02 1992-10-30 Japan Storage Battery Co Ltd Control method for photovoltaic power generation linking system
JP2002153067A (en) * 2000-11-08 2002-05-24 Origin Electric Co Ltd High power factor converter and method of controlling the same
JP2006254694A (en) * 2002-08-01 2006-09-21 I Hitsutsu Kenkyusho:Kk Distributed power feeding system
JP2014171309A (en) * 2013-03-04 2014-09-18 Honda Motor Co Ltd Smoothing capacitor discharge controller
JP2018050457A (en) * 2017-10-26 2018-03-29 株式会社東芝 Facility management system and facility management method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308431A (en) * 1991-04-02 1992-10-30 Japan Storage Battery Co Ltd Control method for photovoltaic power generation linking system
JP2002153067A (en) * 2000-11-08 2002-05-24 Origin Electric Co Ltd High power factor converter and method of controlling the same
JP2006254694A (en) * 2002-08-01 2006-09-21 I Hitsutsu Kenkyusho:Kk Distributed power feeding system
JP2014171309A (en) * 2013-03-04 2014-09-18 Honda Motor Co Ltd Smoothing capacitor discharge controller
JP2018050457A (en) * 2017-10-26 2018-03-29 株式会社東芝 Facility management system and facility management method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2759009C1 (en) * 2020-12-08 2021-11-08 Федеральное государственное бюджетное научное учреждение "Федеральный научный агроинженерный центр ВИМ" (ФГБНУ ФНАЦ ВИМ) Method and system for supplying direct current consumers with a power supply source based on renewable energy resources

Similar Documents

Publication Publication Date Title
Pires et al. Power converter interfaces for electrochemical energy storage systems–A review
US7456519B2 (en) Power conversion system
KR101084214B1 (en) Grid-connected energy storage system and method for controlling grid-connected energy storage system
CN102355042B (en) Super-capacitor-based direct current power device of power station and power supply method thereof
JP2019525711A (en) Electric vehicle energy management system, control method therefor, and electric vehicle
US20140361624A1 (en) Apparatus and methods for control of load power quality in uninterruptible power systems
WO2011065375A1 (en) Power conversion apparatus, power generating system, and charge/discharge control method
Kim et al. Operation and control strategy of a new hybrid ESS-UPS system
JP5705178B2 (en) Power conversion device, power supply switching device, house, and power conversion method
CN105529735A (en) Grid-tied photovoltaic power generation system
Yang et al. Non-droop-control-based cascaded superconducting magnetic energy storage/battery hybrid energy storage system
WO2020157922A1 (en) Dc power supply and power system
Nasiri et al. Uninterruptible power supplies
CN116316761A (en) Energy storage cabinet and energy storage system
CA3019619C (en) Power supply connection device, and charging-discharging control method for same
WO2018070037A1 (en) Power conversion system, power supply system, and power conversion apparatus
KR20080001239U (en) System for supply the source of electricity using the direct-current dynamo
JP6076381B2 (en) Power supply system
JP2017158265A (en) Electric power supply system and electric power conversion system
KR101321839B1 (en) Energy storage system for harvesting discontinuity energy of multi energy sourses
KR20120077941A (en) A dual charging apparatus using photovoltaic and a method thereof
JP5497216B1 (en) Distribution system control method and information processing apparatus
JP7372613B2 (en) dc power system
JP2016182014A (en) Power Conditioner
JP6752467B1 (en) DC power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP