JP2006254694A - Distributed power feeding system - Google Patents

Distributed power feeding system Download PDF

Info

Publication number
JP2006254694A
JP2006254694A JP2006125944A JP2006125944A JP2006254694A JP 2006254694 A JP2006254694 A JP 2006254694A JP 2006125944 A JP2006125944 A JP 2006125944A JP 2006125944 A JP2006125944 A JP 2006125944A JP 2006254694 A JP2006254694 A JP 2006254694A
Authority
JP
Japan
Prior art keywords
power
storage battery
power supply
commercial
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006125944A
Other languages
Japanese (ja)
Other versions
JP4180086B2 (en
Inventor
Yasunobu Suzuki
康暢 鈴木
Toru Tejima
透 手島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitsutsu Kenkyusho Kk I
I HITSUTSU KENKYUSHO KK
Original Assignee
Hitsutsu Kenkyusho Kk I
I HITSUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitsutsu Kenkyusho Kk I, I HITSUTSU KENKYUSHO KK filed Critical Hitsutsu Kenkyusho Kk I
Priority to JP2006125944A priority Critical patent/JP4180086B2/en
Publication of JP2006254694A publication Critical patent/JP2006254694A/en
Application granted granted Critical
Publication of JP4180086B2 publication Critical patent/JP4180086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/40Fuel cell technologies in production processes

Abstract

<P>PROBLEM TO BE SOLVED: To feed stable power to each load through an electronic transformer used in common with a duty cycle of substally 100% by combining natural energy-based power with a large variation factor and stable power such as midnight power or fuel cell power. <P>SOLUTION: The distributed power feeding system performs distributed power feeding to an AC exclusive load by using at least one of wind power generating system WTG, a solar power generating system PV and a fuel cell FC by using a storage battery B and a commercial AC power supply. Power voltages of the wind generating system, the solar generating system, and the fuel cell are DC power sources having each rate power voltage unified equally to the rated voltage of a DC power supply source. Until the storage battery attains a fully charged state by the DC power source, electric power supply to each prescribed AC exclusive load, electric power recharging from the fuel cell, the charging of the storage battery, and an inverse power flow to the commercial AC side are carried out if the storage battery is fully charged or the commercial AC power supply is broken down, and if the storage battery is nearly fully charged and the commercial AC power supply is not in service interruption at the time of the discharged state of the storage battery during nighttime at nighttime power supply time zone or at light-load time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この出願の発明は、分散給電システムに関するものである。さらに詳しくは、この出願の発明は、自然エネルギーと燃料電池および夜間・深夜電力の蓄電エネルギーを組み合わせた分散給電に有用であって、特に複数の交・直流エネルギー源を電子変圧器とダイオード、オア回路により相互接続して効率良く負荷に電力を供給することのできる、新しい分散給電システムに関するものである。   The invention of this application relates to a distributed power supply system. More specifically, the invention of this application is useful for distributed power supply that combines natural energy, fuel cells, and stored energy of nighttime and midnight power. In particular, a plurality of AC / DC energy sources are connected to electronic transformers, diodes, ORs. The present invention relates to a new distributed power supply system that can be interconnected by a circuit and efficiently supply power to a load.

クリーン・エネルギーの代表例として、太陽光発電が普及してきている。また、風力発電も一部地域で導入されている。これら自然エネルギーは天候や気象条件の変化のため、日照時間や風車の稼働時間比率、さらに発生電力が常に変動し、電力の安定供給が困難であり、現状は商用電力を主としながら、補助的なエネルギー源として利用される例が多い。   As a representative example of clean energy, solar power generation has become widespread. Wind power generation has also been introduced in some areas. Due to changes in weather and meteorological conditions, these natural energies are subject to constant fluctuations in daylight hours, windmill operating time ratios, and generated power, making it difficult to stably supply power. There are many examples that are used as a useful energy source.

しかしながら、地球温暖化を抑制する21世紀の電力供給システムは地球規模で検討が進められており、原子力、火力および水力といった集中発電に加えて消費地域に密着した分散給電による効率の良い電力供給手段が種々検討されつつある。   However, the 21st century power supply system that suppresses global warming has been studied on a global scale, and in addition to central power generation such as nuclear power, thermal power, and hydropower, efficient power supply means by distributed power supply closely linked to the consumption area Various studies are underway.

さらに、従来の上記集中発電においても、昼夜間の消費電力量の大幅な変動を平準化して発送電系統の効率的運用を図るため、夜間・深夜電力を有効利用する制度が導入されてもいる。   Furthermore, even in the conventional centralized power generation, a system for effectively using night / midnight power has been introduced in order to level out large fluctuations in power consumption during the day and night and to operate the dispatch power system efficiently. .

一方、パワー・エレクトロニクス分野では、従来の銅鉄型変圧器では実現することのなかった交・直流両用の電子変圧器が開発され、エネルギー源の交流・直流を問わず電力変換が可能になっている。したがって、商用電源や風力発電のような交流電力と太陽光、燃料電池、深夜電力貯蔵用電池のような直流電力とが電子変圧器によって結ばれ、各エネルギー源の開閉により、交流電力と直流電力が、半サイクル以内の瞬断を許容する無停電電源として各家庭・事務所等で利用可能になる。   On the other hand, in the field of power electronics, electronic transformers for both AC and DC that have not been realized with conventional copper-iron type transformers have been developed, enabling power conversion regardless of AC or DC energy sources. Yes. Therefore, AC power, such as commercial power and wind power, and DC power, such as sunlight, fuel cells, and midnight power storage batteries, are connected by an electronic transformer. However, it can be used at homes and offices as an uninterruptible power supply that allows instantaneous interruption within half a cycle.

現在、国内で普及している家電機器で確実に交・直流両用可能な機種としては電球、インバータ型蛍光灯、電動工具などがあり、エアコン、冷蔵庫、電子レンジ、掃除機、パソコン、FAXなどは一部に倍電圧整流回路や交流保護回路の組み込まれた機種を除き、インバータ型であれば原則的に使用可能である。一方、サイリスタ位相制御方式の調光器や暖房器具、炊飯器は直流での使用不能というのが現状である。したがって、当面は交流専用の機器と交・直流両用の家電機器とは屋内配線系統(コンセント)を分けて使用しなければならない不便さはある。   Currently, there are light bulbs, inverter type fluorescent lamps, electric tools, etc. that can be used interchangeably and dc surely in household appliances that are popular in Japan, such as air conditioners, refrigerators, microwave ovens, vacuum cleaners, personal computers, fax machines, etc. With the exception of models that partially incorporate voltage doubler rectifier circuits and AC protection circuits, inverters can be used in principle. On the other hand, thyristor phase control type dimmers, heaters, and rice cookers are currently unusable with direct current. Therefore, for the time being, there is an inconvenience that separate AC wiring equipment and AC / DC home appliances must use an indoor wiring system (outlet).

しかしながら、従来方式は直流発電エネルギーをインバータを通して常に商用交流に逆変換し、実負荷内で再度直流に変換し、さらに高周波インバータや可変周波数交流電力に変換して電動機やコンプレッサーを駆動するため、変換ロスが多い。   However, the conventional method always converts the DC power generation energy back to commercial AC through the inverter, converts it back to DC within the actual load, and then converts it into DC power and further converts it to high frequency inverter and variable frequency AC power to drive the motor and compressor. There are many losses.

図1は、低圧配電系において、交・直流エネルギー源を分散給電システムに使用する場合における従来の家電機器の交・直流給電の適合性の可否を分類した図であり、それらと変換効率との関係を示している。たとえば、太陽光発電から蛍光灯を点灯させる場合の効率はη1,η2,η3であり、パソコンやFAXを動作させる場合はη1,η2,η3,η4となる。 FIG. 1 is a diagram categorizing the applicability of AC / DC power supply of conventional home appliances when AC / DC energy sources are used in a distributed power supply system in a low-voltage distribution system. Showing the relationship. For example, the efficiency when a fluorescent lamp is turned on from solar power generation is η 1 , η 2 , and η 3 , and when operating a personal computer or FAX, η 1 , η 2 , η 3 , and η 4 are obtained.

また図2は、低圧配電系において、交・直流エネルギー源を直接負荷に供給する場合における太陽光発電と風力発電の従来例を示したものである。この図2に例示したように、従来は、太陽光は系統連繋インバータ(通称:パワー・コンディショナ)を介して商用交流電源と負荷の両方に直接電力を供給し、風力発電は発生電力の時間変動が激しいため、蓄電池に蓄えた後、充・放電機能を持つ双方向コンバータを介して系統連繋を行うというように、それぞれ別個のシステムとして構成されてきた。太陽光については、日中の有効電力発生時間は晴天時でも6〜8時間であり、一方風力発電の週間または月間発電時間比率は季節や地域によって大きく変わるが、我国の平均的な発電時間比率は太陽光の発電時間比率よりも低いと見られている。これが、欧米に比べて普及が進んでいない一因でもある。   FIG. 2 shows a conventional example of solar power generation and wind power generation in a case where an AC / DC energy source is directly supplied to a load in a low voltage distribution system. As illustrated in FIG. 2, conventionally, sunlight directly supplies power to both a commercial AC power source and a load via a grid-connected inverter (common name: power conditioner), and wind power generation is a time of generated power. Since the fluctuations are severe, each system has been configured as a separate system in which system storage is performed via a bidirectional converter having a charge / discharge function after storage in a storage battery. For sunlight, the active power generation time during the day is 6-8 hours even in fine weather, while the weekly or monthly power generation time ratio of wind power generation varies greatly depending on the season and region, but our average power generation time ratio Is expected to be lower than the solar power generation time ratio. This is one of the reasons why it is not widely used compared to the West.

このように稼動比率の低いエネルギー発生源の電力毎にインバータ等の制御機器を設けていたのでは、システム全体のコストが上がり、普及を阻害する一因となる。   Thus, if a control device such as an inverter is provided for each electric power of an energy generation source having a low operation ratio, the cost of the entire system increases and becomes one of the factors that hinder the spread of the system.

そこで、この出願の発明は、以上のとおりの事情に鑑み、これら変動要因の大きい自然エネルギー系電力と深夜電力や燃料電池等の安定電力とを組み合わせて、ほぼ100%に近い使用率で共通に利用される電子変圧器を介して負荷に安定電力を供給し、システム全体の価格・性能比率を高め、分散給電の普及促進と省エネルギー化を図ることのできる、新しい分散給電システムを提供することを課題としている。   Therefore, in view of the circumstances as described above, the invention of this application is a combination of natural energy power having a large variation factor and stable power such as midnight power and fuel cell, and is commonly used at a usage rate close to 100%. To provide a new distributed power supply system that can supply stable power to the load via the electronic transformer used, increase the price / performance ratio of the entire system, promote the spread of distributed power supply and save energy It is an issue.

この出願の発明は、上記の課題を解決するものとして、第1には、風力発電装置、太陽光発電装置および燃料電池のうちの少なくとも1つと、蓄電池と、商用交流電源とを用いて、双方向DC−DCコンバータおよび二巻線電子変圧器を経由してもしくは経由しないで交流専用負荷への分散給電を行う分散給電システムであって、風力発電装置、太陽光発電装置および燃料電池は各々の定格電力電圧が蓄電池の定格電圧に統一された直流電力源となっており、二巻線電子変圧器は交・直流両用で2つの双方向入出力端子を有し、且つ高周波変圧器とその蓄電池側および負荷側に設けられた変復調半導体スイッチとを有しており、当該二巻線電子変圧器の一方の双方向入出力端子は直流電力源の出力側に接続され、他方の双方向入出力端子は商用交流電源と交流専用負荷との間をT字型に接続しており、蓄電池が直流電力源により満充電に達するまでは商用交流電源からの交流電力を双方向DC−DCコンバータおよび二巻線電子変圧器を経由しないで交流専用負荷へ供給し、蓄電池の満充電時もしくは商用交流電源の停電時には、直流電力源および蓄電池からの直流電力を双方向DC−DCコンバータの半サイクル正弦波変調により単相全波整流波形に変換した後、二巻線電子変圧器の高周波変圧器の蓄電池側に設けられた変復調半導体スイッチを構成する2個または2対の単方向半導体スイッチの高周波変調位相を商用周波数の半サイクル毎に交互に逆転し、二巻線電子変圧器の高周波変圧器の負荷側に設けられた変復調半導体スイッチにより復調して正弦波交流出力を取り出して交流専用負荷へ供給し、蓄電池の放電進行時には燃料電池から電力補給を行い、夜間・深夜電力供給時間帯には商用交流電源からの交流電力を交流専用負荷へ供給するとともに、二巻線電子変圧器の有する双方向性および交・直流変換機能ならびに双方向DC−DCコンバータの充電時の昇圧型高力率整流動作を併用して蓄電池の充電を行い、軽負荷時で蓄電池が満充電に近く且つ商用交流電源が停電でないときは直流電力を二巻線電子変圧器のエネルギー双方向伝送特性によって交流に変換し、商用交流電源側に自動的に位相同期して逆潮流させるようになっていることを特徴とする分散給電システムを提供する。   In order to solve the above-described problems, the invention of this application firstly uses both a wind power generator, a solar power generator, and a fuel cell, a storage battery, and a commercial AC power source. A distributed power supply system that performs distributed power supply to an AC-dedicated load with or without a direct-current DC-DC converter and a two-winding electronic transformer, and each of a wind power generator, a solar power generator, and a fuel cell The DC power source with the rated power voltage unified with the rated voltage of the storage battery, the two-winding electronic transformer has two bidirectional input / output terminals for both AC and DC, and the high-frequency transformer and its storage battery Modulation / demodulation semiconductor switch provided on the load side and the load side, one bidirectional input / output terminal of the two-winding electronic transformer is connected to the output side of the DC power source and the other bidirectional input / output Terminal is quotient The AC power supply and the AC dedicated load are connected in a T-shape, and the AC power from the commercial AC power supply is supplied to the bidirectional DC-DC converter and two-winding electronics until the storage battery is fully charged by the DC power source. When the accumulator battery is fully charged or the commercial ac power supply is interrupted without passing through the transformer, the dc power from the dc power source and accumulator is simply converted by the half-cycle sine wave modulation of the bidirectional DC-DC converter. After converting into a phase full-wave rectified waveform, the high-frequency modulation phase of two or two pairs of unidirectional semiconductor switches constituting the modulation / demodulation semiconductor switch provided on the storage battery side of the high-frequency transformer of the two-winding electronic transformer is commercial frequency Reversed alternately every half cycle, and demodulated by a modulation / demodulation semiconductor switch provided on the load side of the high-frequency transformer of the two-winding electronic transformer to extract the sine wave AC output Supply to AC dedicated load, replenish power from fuel cell when battery discharge progresses, supply AC power from commercial AC power source to AC dedicated load during night and midnight power supply time, and double winding electronic transformer The battery is charged using the bidirectional and AC / DC conversion function of the converter and the step-up type high power factor rectification operation when charging the bidirectional DC-DC converter, and the battery is almost fully charged at light load. And when the commercial AC power supply is not blackout, DC power is converted into AC by the bidirectional energy transmission characteristics of the two-winding electronic transformer, and the phase is automatically phase-synchronized to the commercial AC power supply side. A distributed power supply system is provided.

第2には、風力発電装置、太陽光発電装置および燃料電池のうちの少なくとも1つと、蓄電池と、商用交流電源とを用いて、双方向DC−DCコンバータおよび三巻線電子変圧器を経由して交流専用負荷への分散給電を行う分散給電システムであって、風力発電装置、太陽光発電装置および燃料電池は各々の定格電力電圧が蓄電池の定格電圧に統一された直流電力源となっており、三巻線電子変圧器は交・直流両用で3つの双方向入出力端子を有し、且つ高周波変圧器とその商用交流電源側および蓄電池側および負荷側に設けられた変復調半導体スイッチを有し、直流電力源および蓄電池と商用交流電源と交流専用負荷とは当該三巻線電子変圧器によって相互に絶縁して接続されており、蓄電池が直流電力源により満充電に達するまでは商用交流電源からの交流電力を三巻線電子変圧器を経由して交流専用負荷へ供給し、蓄電池の満充電時もしくは商用交流電源の停電時には、直流電力源および蓄電池からの直流電力を双方向DC−DCコンバータの半サイクル正弦波変調により単相全波整流波形に変換した後、三巻線電子変圧器の高周波変圧器の蓄電池側に設けられた変復調半導体スイッチを構成する2個または2対の単方向半導体スイッチの高周波変調位相を商用周波数の半サイクル毎に交互に逆転し、三巻線電子変圧器の高周波変圧器の負荷側に設けられた変復調半導体スイッチにより復調して正弦波交流出力を取り出して交流専用負荷へ供給し、蓄電池の放電進行時には燃料電池から電力補給を行い、夜間・深夜電力供給時間帯には商用交流電源からの交流電力を交流専用負荷へ供給するとともに、三巻線電子変圧器の有する双方向性および交・直流変換機能ならびに双方向DC−DCコンバータの充電時の昇圧型高力率整流動作を併用して蓄電池の充電を行い、軽負荷時で蓄電池が満充電に近く且つ商用交流電源が停電でないときは直流電力を三巻線電子変圧器のエネルギー双方向伝送特性を用いて交流に変換し、商用交流電源側に自動的に位相同期して逆潮流させるようになっていることを特徴とする分散給電システムを提供する。   Second, using a bidirectional DC-DC converter and a three-winding electronic transformer using at least one of a wind power generator, a solar power generator, and a fuel cell, a storage battery, and a commercial AC power source. A distributed power supply system that performs distributed power supply to an AC-dedicated load. Wind power generators, solar power generators, and fuel cells are DC power sources in which each rated power voltage is unified with the rated voltage of the storage battery. The three-winding electronic transformer has three bidirectional input / output terminals for both AC and DC, and has a high-frequency transformer and a modulation / demodulation semiconductor switch provided on the commercial AC power supply side, storage battery side and load side. The DC power source and the storage battery, the commercial AC power source and the AC dedicated load are mutually insulated and connected by the three-winding electronic transformer, and until the storage battery reaches full charge by the DC power source AC power from a direct current power supply is supplied to a dedicated AC load via a three-winding electronic transformer, and the DC power from the DC power source and storage battery is bidirectional DC when the storage battery is fully charged or when a commercial AC power supply fails. -Two or two pairs of modulation / demodulation semiconductor switches provided on the storage battery side of the high-frequency transformer of the three-winding electronic transformer after being converted into a single-phase full-wave rectified waveform by half-cycle sine wave modulation of the DC converter The high-frequency modulation phase of the unidirectional semiconductor switch is alternately reversed every half cycle of the commercial frequency, and is demodulated by the modulation / demodulation semiconductor switch provided on the load side of the high-frequency transformer of the three-winding electronic transformer to generate a sinusoidal AC output Take out and supply to AC dedicated load, replenish the power from the fuel cell when the battery discharges, and use AC power from commercial AC power source for AC only during night and midnight power supply time In addition to supplying to the load, the battery is charged by using the bidirectional and AC / DC conversion function of the three-winding electronic transformer and the step-up high power factor rectification operation when charging the bidirectional DC-DC converter. When the storage battery is almost fully charged at light load and the commercial AC power supply is not out of power, the DC power is converted to AC using the energy bidirectional transmission characteristics of the three-winding electronic transformer and automatically turned to the commercial AC power supply side. A distributed power feeding system characterized in that the reverse power flow is synchronized with the phase of the power supply.

第3には、上記燃料電池用の圧縮水素の貯蔵が可能となっていることを特徴とする分散給電システムを提供する。   Thirdly, the present invention provides a distributed power supply system capable of storing compressed hydrogen for the fuel cell.

上記のとおりのこの出願の発明によれば、たとえば図3に例示したように、交流・直流源とも直接負荷に供給する場合、図1の従来例と比べてインバータの効率η1が除かれる分、効率が改善されることになる。また、実際には保安上の理由から、商用交流電源と分散発電用機器との間に絶縁と変圧を兼ねた装置を挿入することが考えられ、この場合は改めてη1’の効率を考慮する必要があるが、絶縁機能も含む数キロワット以下のDC−ACインバータの効率η1は90%前後であり、同一容量の電子変圧器の効率η1’は94〜95%であり、η1<η1’となるので、この出願の発明によるシステムが優れている。 According to the invention of this application as described above, for example, as illustrated in FIG. 3, when both the AC and DC sources are directly supplied to the load, the efficiency η 1 of the inverter is removed compared to the conventional example of FIG. , Efficiency will be improved. In addition, for safety reasons, it is conceivable to insert a device that serves both as an insulation and a transformer between the commercial AC power supply and the distributed power generation equipment. In this case, the efficiency of η 1 ′ is considered again. Although necessary, the efficiency η 1 of a DC-AC inverter of several kilowatts or less including an insulation function is around 90%, and the efficiency η 1 ′ of an electronic transformer of the same capacity is 94 to 95%, and η 1 < Since η 1 ′, the system according to the invention of this application is excellent.

[第一の参考実施形態]
図4は、この出願の発明の参考実施形態を示したものである。
[First Reference Embodiment]
FIG. 4 shows a reference embodiment of the invention of this application.

この図4に示した参考実施形態では、まず、風力発電装置WTG(Wind Turbine Generator)、太陽光発電装置PV(Photo Voltaic)および燃料電池FC(Fuel Cell)の3つを組み合わせて用いており、それぞれ定格電力電圧が蓄電池B(Battery)の定格電圧に統一された直流電力源となっている。そして、蓄電池Bがそれら直流電力源WTG,PV,FCにより満充電に達するまでは商用交流電源Utilityからの交流電力を交・直流両用負荷Lac/dcへ供給し、蓄電池Bが満充電に達すると当該蓄電池Bからの直流電力を交・直流両用負荷Lac/dcへ供給し、蓄電池Bの放電が進んで放電終期に近づくと商用交流電源Utilityからの交流電力を交・直流両用負荷Lac/dcへ供給するように構成されており、制御回路(図示していない)によってその直流給電・交流給電の切り替えが制御されるようになっている。   In the reference embodiment shown in FIG. 4, first, a wind power generator WTG (Wind Turbine Generator), a solar power generator PV (Photo Voltaic), and a fuel cell FC (Fuel Cell) are used in combination. Each of the rated power voltages is a DC power source in which the rated voltage of the storage battery B (Battery) is unified. Then, until the storage battery B is fully charged by the DC power sources WTG, PV, FC, AC power from the commercial AC power supply Utility is supplied to the AC / DC load Lac / dc, and the storage battery B reaches full charge. When the DC power from the storage battery B is supplied to the AC / DC load Lac / dc and the discharge of the storage battery B advances and approaches the end of discharge, the AC power from the commercial AC power supply Utility is supplied to the AC / DC load Lac / dc. It is configured to supply, and switching between the DC power supply and the AC power supply is controlled by a control circuit (not shown).

蓄電池Bの充電は、通常は風力発電装置WTGおよび太陽光発電装置PVにより行われ、それらの発生電力が十分でない場合は日中であれば燃料電池FCにより行われ、夜間・深夜つまり日中より電気料金が安くなる時間帯であれば充電器CHG1を介して夜間・深夜電力により行われる。   The storage battery B is normally charged by the wind power generation device WTG and the solar power generation device PV. When the generated power is not sufficient, the storage battery B is charged by the fuel cell FC during the daytime. In the time zone when the electricity charge is reduced, it is performed by night / midnight power via the charger CHG1.

蓄電池Bが満充電に達すると、制御回路からの指示によりスイッチSWが開き、交流リレーRLが復旧して直流電源に切り換わり、交・直流両用負荷Lac/dcに引き続き直流電力を供給する。   When the storage battery B reaches full charge, the switch SW is opened by an instruction from the control circuit, the AC relay RL is restored and switched to the DC power supply, and DC power is continuously supplied to the AC / DC load Lac / dc.

蓄電池Bの放電終期に近づくと制御回路の指示によりスイッチSWが閉じ、商用交流電源Utilityによる交流給電に戻る。   When the end of discharge of the storage battery B is approaching, the switch SW is closed by an instruction from the control circuit, and the AC power supply is returned to the commercial AC power supply Utility.

[第二の参考実施形態]
図5は、この出願の発明の別の参考実施形態を示したものである。
[Second Reference Embodiment]
FIG. 5 shows another reference embodiment of the invention of this application.

この図5に示した参考実施形態では、双方向DC−DCコンバータConvおよび二巻線電子変圧器2を具備しており、二巻線電子変圧器2は、蓄電池側電圧と負荷側電圧との整合と絶縁機能を持つ高周波変圧器HFTと、その蓄電池側巻線および負荷側巻線に接続された10〜50kHzで動作する変復調半導体スイッチSW3,SW2と、さらに負荷側に接続されたフィルタF2とで構成されている。   In the reference embodiment shown in FIG. 5, a bidirectional DC-DC converter Conv and a two-winding electronic transformer 2 are provided, and the two-winding electronic transformer 2 includes a storage battery side voltage and a load side voltage. High-frequency transformer HFT having matching and insulation functions, modulation / demodulation semiconductor switches SW3 and SW2 operating at 10 to 50 kHz connected to the storage battery side winding and load side winding, and filter F2 connected to the load side It consists of

この二巻線電子変圧器2は交・直流両用で2つの双方向入出力端子2a,2bを有し、一方の双方向入出力端子2aは直流電力源の出力側に接続され、他方の双方向入出力端子2bは商用交流電源Utilityと交・直流両用負荷Lac/dcとの間をT字型に接続している。   This two-winding electronic transformer 2 has two bidirectional input / output terminals 2a and 2b for both AC and DC use. One bidirectional input / output terminal 2a is connected to the output side of the DC power source, and the other both The direction input / output terminal 2b connects the commercial AC power supply Utility and the AC / DC load Lac / dc in a T shape.

かかる回路構成において、蓄電池Bが直流電力源WTG,PV,FCにより満充電に達するまでは商用交流電源Utilityからの交流電力を二巻線電子変圧器2を経由しないで交・直流両用負荷Lac/dcへ供給し、蓄電池Bの満充電時もしくは商用交流電源Utilityの停電時には直流電力源WTG,PV,FCおよび蓄電池Bからの直流電力を二巻線電子変圧器2を経由して交・直流両用負荷Lac/dcへ供給し、蓄電池Bの放電進行時には燃料電池FCから電力補給を行い、夜間・深夜電力供給時間帯には商用交流電源Utilityからの交流電力を交・直流両用負荷Lac/dcへ供給するとともに、二巻線電子変圧器2の有する双方向性と交・直流変換機能とにより蓄電池Bの充電を行う。   In such a circuit configuration, the AC power from the commercial AC power supply Utility is not passed through the two-winding electronic transformer 2 until the storage battery B reaches full charge by the DC power sources WTG, PV, FC. DC power is supplied to dc, and DC power sources WTG, PV, FC and DC power from storage battery B are used for both AC and DC via the two-winding electronic transformer 2 when the storage battery B is fully charged or when the commercial AC power supply Utility fails. Supply to the load Lac / dc, replenish the power from the fuel cell FC when the discharge of the storage battery B is proceeding, and AC power from the commercial AC power supply Utility to the AC / DC load Lac / dc at night and midnight power supply time While supplying, the storage battery B is charged by the bidirectionality and the AC / DC conversion function of the two-winding electronic transformer 2.

そして、充・放電に伴う蓄電池電圧の変動は充電時・放電時を問わず双方向DC−DCコンバータConvの電圧調整機能により蓄電池Bの電圧変動を調整し、交・直流両用負荷Lac/dcに安定した電圧を供給できるようになっている。   And the fluctuation of the storage battery voltage due to charging / discharging is regulated by the voltage adjustment function of the bi-directional DC-DC converter Conv regardless of the charging / discharging, and the voltage change of the storage battery B is adjusted to the AC / DC load Lac / dc. A stable voltage can be supplied.

また、二巻線電子変圧器2は双方向性と交・直流変換機能とによる正・逆双方向のエネルギー伝送が可能であるため、双方向DC−DCコンバータConvと連動して夜間・深夜電力の充電器(図1におけるCHG)の役割を果たすことができる。   In addition, since the two-winding electronic transformer 2 can transmit energy in both the forward and reverse directions using bidirectionality and AC / DC conversion function, the night / midnight power is linked with the bidirectional DC-DC converter Conv. Can serve as a charger (CHG in FIG. 1).

[第三の参考実施形態]
図6は、この出願の発明のさらに別の参考実施形態を示したものである。
[Third Reference Embodiment]
FIG. 6 shows still another reference embodiment of the invention of this application.

この図6に示した参考実施形態では、商用交流電源Utilityと交・直流両用負荷Lac/dcとの間の絶縁と電源電圧の変動を調整するために、交・直流両用で3つの双方向入出力端子3a,3b,3cを有する三巻線電子変圧器3を具備しており、直流電力源WTG,PV,FCおよび蓄電池Bと商用交流電源Utilityと交・直流両用負荷Lac/dcとを相互に絶縁して接続した構成となっている。三巻線電子変圧器3は、蓄電池側電圧と負荷側電圧との整合と絶縁機能を持つ高周波変圧器HFTと、その商用交流電源側巻線および蓄電池側巻線および負荷側巻線に接続された10〜50kHzで動作する変復調半導体スイッチSW1,SW3,SW2と、さらに商用交流電源側及び負荷側に接続されたフィルタF1,F2とで構成されている。   In the reference embodiment shown in FIG. 6, in order to adjust the insulation between the commercial AC power supply Utility and the AC / DC load Lac / dc and the fluctuations in the power supply voltage, three AC / DC inputs are used. A three-winding electronic transformer 3 having output terminals 3a, 3b, 3c is provided, and a DC power source WTG, PV, FC, a storage battery B, a commercial AC power supply Utility, and an AC / DC load Lac / dc are mutually connected. Insulated and connected to each other. The three-winding electronic transformer 3 is connected to a high-frequency transformer HFT having a matching and insulating function between the storage battery side voltage and the load side voltage, and its commercial AC power supply side winding, storage battery side winding, and load side winding. The modulation / demodulation semiconductor switches SW1, SW3 and SW2 operating at 10 to 50 kHz, and the filters F1 and F2 connected to the commercial AC power supply side and the load side are also included.

かかる回路構成において、蓄電池Bが直流電力源WTG,PV,FCにより満充電に達するまでは商用交流電源Utilityからの交流電力を三巻線電子変圧器3を経由して交・直流両用負荷Lac/dcへ供給し、蓄電池Bの満充電時もしくは商用交流電源Utilityの停電時には直流電力源WTG,PV,FCおよび蓄電池Bからの直流電力を三巻線電子変圧器3を経由して交・直流両用負荷Lac/dcへ供給し、蓄電池Bの放電進行時には燃料電池FCから電力補給を行い、夜間・深夜電力供給時間帯には商用交流電源Utilityからの交流電力を交・直流両用負荷Lac/dcへ供給するとともに、三巻線電子変圧器3の有する双方向性と交・直流変換機能とにより蓄電池の充電Bを行うようになっている。   In such a circuit configuration, until the storage battery B reaches full charge by the DC power sources WTG, PV, FC, the AC power from the commercial AC power source Utility is supplied to the AC / DC load Lac / DC power is supplied to dc, and DC power sources WTG, PV, FC and DC power from storage battery B are used for both AC and DC via the three-winding electronic transformer 3 when the storage battery B is fully charged or when the commercial AC power supply Utility is out of power Supply to the load Lac / dc, replenish the power from the fuel cell FC when the discharge of the storage battery B is proceeding, and AC power from the commercial AC power supply Utility to the AC / DC load Lac / dc at night and midnight power supply time In addition to the supply, the battery B is charged B by the bidirectionality and the AC / DC conversion function of the three-winding electronic transformer 3.

ここで、商用交流電源Utilityの電圧変動に対しては変復調半導体スイッチSW1,SW2のパルス幅変調(PWM)制御またはパルス位相変調(PPM)制御により電圧調整が可能であり、商用交流電源Utilityおよび直流電力源WTG,PV,FCの変動に対して安定した負荷電圧を供給でき、また同時に変復調半導体スイッチSW1,SW3を通して夜間・深夜電力による充電も可能である。   Here, with respect to voltage fluctuation of the commercial AC power supply Utility, voltage adjustment is possible by pulse width modulation (PWM) control or pulse phase modulation (PPM) control of the modulation / demodulation semiconductor switches SW1 and SW2, and the commercial AC power supply Utility and DC A stable load voltage can be supplied with respect to fluctuations in the power sources WTG, PV, and FC, and at the same time, charging with night / midnight power is possible through the modulation / demodulation semiconductor switches SW1 and SW3.

以上の図5および図6の実施形態では、交流リレーRLの接点CT1,CT2,CT3により交流電力または直流電力を切り替えて交・直流両用負荷Lac/dcに電力を供給する回路構成となっており、風力発電装置WTG、太陽光発電装置PVおよび燃料電池FCのエネルギーを、蓄電池Bを経由して商用交流電源側に逆潮流(系統連繋)させることなく、負荷側で消費する。   In the embodiment of FIGS. 5 and 6 described above, the circuit configuration is such that the AC power or DC power is switched by the contacts CT1, CT2, CT3 of the AC relay RL to supply power to the AC / DC load Lac / dc. The energy of the wind power generator WTG, the solar power generator PV, and the fuel cell FC is consumed on the load side without causing reverse flow (system connection) to the commercial AC power source via the storage battery B.

[実施形態]
図7および図8は、各々、この出願の発明の一実施形態を示したものである。これら図7および図8に示した実施形態では、蓄電池Bと双方向DC−DCコンバータConvを直結することにより逆潮流が可能なものとなっている。現在、国内の売電契約の中では夜間・深夜電力を逆潮流させることは許容されていないが、風力発電・太陽光発電については逆潮流が認められており、燃料電池発電時の逆潮流については不明であるが、純技術的観点から見ると逆潮流はすべて可能になる。
[Embodiment]
7 and 8 each show one embodiment of the invention of this application. In the embodiment shown in FIGS. 7 and 8, a reverse power flow is possible by directly connecting the storage battery B and the bidirectional DC-DC converter Conv. Currently, it is not allowed to reverse power flow at night and midnight in domestic power sales contracts, but reverse power flow is permitted for wind power generation and solar power generation. Is unknown, but from a purely technical point of view, all reverse flows are possible.

本実施形態においては、まず、蓄電池Bが直流電力源WTG,PV,FCにより満充電に達するまでは、商用交流電源Utilityからの交流電力を、図7では双方向DC−DCコンバーConvおよび二巻線電子変圧器4を経由しないで、図8では三巻線電子変圧器5を経由して、交流専用負荷Lacへ供給する。蓄電池Bの満充電時もしくは商用交流電源Utilityの停電時には、直流電力源WTG,PV,FCおよび蓄電池Bからの直流電力を双方向DC−DCコンバータConvの半サイクル正弦波変調により単相全波整流波形に変換した後、二巻線電子変圧器4(図7)・三巻線電子変圧器5(図8)の高周波変圧器HFTの蓄電池側に接続された変復調半導体スイッチSW3を構成する2個または2対(計4個)の単方向半導体スイッチ(図示していない)の高周波変調位相を商用周波数の半サイクル毎に交互に逆転し、高周波変圧器HFTの負荷側に接続された変復調半導体スイッチSW2により復調して正弦波交流出力を取り出して交流専用負荷Lacへ供給する。蓄電池Bの放電進行時には、燃料電池FCから電力補給を行う。夜間・深夜電力供給時間帯には、商用交流電源Utilityからの交流電力を交流専用負荷Lacへ供給するとともに、二巻線電子変圧器4(図7)・三巻線電子変圧器5(図8)の有する双方向性および交・直流変換機能ならびに双方向DC−DCコンバータConvの充電時の昇圧型高力率整流動作を併用して蓄電池Bの充電を行う。さらに、軽負荷時で蓄電池Bが満充電に近く且つ商用交流電源Utilityが停電でないときは、直流電力を二巻線電子変圧器4(図7)・三巻線電子変圧器5(図8)の有するエネルギーの双方向伝送特性を用いて交流に変換し、商用交流電源側に自動的に位相同期して逆潮流させる。   In this embodiment, first, until the storage battery B reaches full charge by the DC power sources WTG, PV, and FC, the AC power from the commercial AC power supply Utility is used, and in FIG. 7, the bidirectional DC-DC converter Conv and the two windings are used. In FIG. 8, it is supplied to the AC dedicated load Lac via the three-winding electronic transformer 5 without going through the wire electronic transformer 4. Single-phase full-wave rectification of DC power sources WTG, PV, FC and DC power from storage battery B by half-cycle sine wave modulation of bidirectional DC-DC converter Conv when battery B is fully charged or commercial AC power supply is powered down Two pieces constituting the modulation / demodulation semiconductor switch SW3 connected to the storage battery side of the high-frequency transformer HFT of the two-winding electronic transformer 4 (FIG. 7) and the three-winding electronic transformer 5 (FIG. 8) after being converted into the waveform Alternatively, a modulation / demodulation semiconductor switch in which the high-frequency modulation phases of two pairs (four in total) of unidirectional semiconductor switches (not shown) are alternately reversed every half cycle of the commercial frequency and connected to the load side of the high-frequency transformer HFT A sine wave AC output is demodulated by SW2 and supplied to an AC dedicated load Lac. When the discharge of the storage battery B proceeds, power is supplied from the fuel cell FC. In the night / midnight power supply time period, AC power from the commercial AC power supply Utility is supplied to the AC dedicated load Lac, and the two-winding electronic transformer 4 (FIG. 7) and the three-winding electronic transformer 5 (FIG. 8). The battery B is charged by using both the bidirectional and AC / DC conversion function and the step-up high power factor rectification operation during charging of the bidirectional DC-DC converter Conv. Further, when the storage battery B is nearly fully charged at the time of light load and the commercial AC power supply Utility is not a power failure, the DC power is supplied to the two-winding electronic transformer 4 (FIG. 7) and the three-winding electronic transformer 5 (FIG. 8). Is converted into alternating current using the bidirectional transmission characteristics of the energy, and the power is automatically phase-synchronized to the commercial alternating current power source for reverse power flow.

ここで、図7の実施形態における双方向DC−DCコンバータConvの駆動方式について、図9および図10を用いてより具体的に説明する。図9は夜間・深夜電力等の充電時、図10は蓄電池Bから交・直流両用負荷Lac/dcまたは商用交流電源Utilityへ逆潮流させる場合のインバータ動作例を示している。   Here, the driving method of the bidirectional DC-DC converter Conv in the embodiment of FIG. 7 will be described more specifically with reference to FIGS. 9 and 10. FIG. 9 shows an example of inverter operation in the case of charging at night / midnight power or the like, and FIG. 10 shows a reverse power flow from the storage battery B to the AC / DC load Lac / dc or the commercial AC power supply Utility.

両図では、双方向DC−DCコンバータConv(図7参照)を構成するスイッチS7,S8とダイオードD7,D8は、後述の図11〜図14における回路素子記号との統一を採っている。その他の記号は図4〜図8と同一である。二巻線電子変圧器4内の蓄電池側の変復調半導体スイッチSW3(図7参照)は、実際には後述の図13に例示したように2個の単方向半導体スイッチS5,S6、あるいはブリッジの場合で2対(計4個)の単方向半導体スイッチ(図示していない)により構成できる。また負荷側の変復調半導体スイッチSW2(図7参照)は、図13に例示したように2個のスイッチS3,S4で構成できる。   In both figures, the switches S7 and S8 and the diodes D7 and D8 constituting the bidirectional DC-DC converter Conv (see FIG. 7) are unified with circuit element symbols in FIGS. Other symbols are the same as those in FIGS. The modulation / demodulation semiconductor switch SW3 (see FIG. 7) on the storage battery side in the two-winding electronic transformer 4 is actually two unidirectional semiconductor switches S5 and S6 or a bridge as illustrated in FIG. Thus, it can be configured by two pairs (four in total) of unidirectional semiconductor switches (not shown). Further, the load-side modulation / demodulation semiconductor switch SW2 (see FIG. 7) can be composed of two switches S3 and S4 as illustrated in FIG.

蓄電池側の変復調半導体スイッチSW3が2個の単方向半導体スイッチS5,S6により構成される場合において、単方向半導体スイッチS5,S6(図13参照)を商用周波数の半サイクル毎に変調波の駆動位相を切り替えることにより、負荷側および商用交流電源側のスイッチS3,S4(図13参照)が正弦波交流であるときは、双方向DC−DCコンバータConvのコンデンサC6の両端に2相半波の直流出力電圧6が発生する(図9,図13参照)。そして図9中のスイッチS8を通常の昇圧型力率改善専用IC(PFC-IC)で駆動し、一方でスイッチS7を止め、ダイオードD7を通してチョーク・コイルCHに蓄えられたエネルギーで蓄電池Bを充電する。蓄電池Bの充電電圧は昇圧動作のため、二巻線電子変圧器4の出力最大振幅より高い電圧が発生し、十分な充電が可能である。   In the case where the modulation / demodulation semiconductor switch SW3 on the storage battery side is constituted by two unidirectional semiconductor switches S5 and S6, the unidirectional semiconductor switches S5 and S6 (see FIG. 13) are driven with a modulated wave drive phase every half cycle of the commercial frequency. When the switches S3 and S4 (see FIG. 13) on the load side and the commercial AC power supply side are sinusoidal AC, the two-phase half-wave DC is applied to both ends of the capacitor C6 of the bidirectional DC-DC converter Conv. An output voltage 6 is generated (see FIGS. 9 and 13). Then, the switch S8 in FIG. 9 is driven by a normal boost type power factor correction IC (PFC-IC), while the switch S7 is stopped and the storage battery B is charged with the energy stored in the choke coil CH through the diode D7. To do. Since the charging voltage of the storage battery B is a step-up operation, a voltage higher than the maximum output amplitude of the two-winding electronic transformer 4 is generated, and sufficient charging is possible.

一方、蓄電池Bから正弦波交流を発生させるインバータ動作の場合には、図10に示したように、スイッチS7を正弦波変調されたPWM信号により駆動し、チョーク・コイルCHとコンデンサC6で構成されたフィルタ出力側に2相半波または単相全波整流出力6を発生させる。この出力を変復調半導体スイッチSW3の単方向半導体スイッチS5,S6(図7,図13参照)により高周波変調(10k〜50kHz)するが、このとき変復調半導体スイッチSW2のスイッチS3,S4(図7,図13参照)側で正弦波となるように、単方向半導体スイッチS5,S6(図7,図13参照)側で商用周波数の半サイクル毎に変調パルスの駆動位相を反転させる。このようにして、二巻線電子変圧器4の出力側つまり負荷側および商用交流電源側に正弦波交流出力を取り出すことができる。   On the other hand, in the case of an inverter operation that generates a sine wave alternating current from the storage battery B, as shown in FIG. 10, the switch S7 is driven by a sine wave modulated PWM signal, and is composed of a choke coil CH and a capacitor C6. A two-phase half-wave or single-phase full-wave rectified output 6 is generated on the filter output side. This output is high-frequency modulated (10 k to 50 kHz) by the unidirectional semiconductor switches S5 and S6 (see FIGS. 7 and 13) of the modulation / demodulation semiconductor switch SW3. At this time, the switches S3 and S4 of the modulation / demodulation semiconductor switch SW2 (FIG. 7, FIG. 13), the unidirectional semiconductor switches S5 and S6 (see FIG. 7 and FIG. 13) invert the drive phase of the modulation pulse every half cycle of the commercial frequency so as to be a sine wave. In this way, the sine wave AC output can be taken out to the output side of the two-winding electronic transformer 4, that is, the load side and the commercial AC power source side.

また、全く同様の手法で、図8の三巻線電子変圧器5を用いて商用交流電源Utility、交流専用負荷Lacおよび蓄電池B系を完全に絶縁し、それぞれの電圧値にも整合する巻数比において、高周波変圧器HFTはすべて正弦波商用交流周波数でのエンベロープ変調動作が可能となり、負荷はすべて従来の交流専用負荷Lacが使用可能となる。   Also, using the three-winding electronic transformer 5 shown in FIG. 8, the AC power supply Utility, the AC dedicated load Lac, and the storage battery B system are completely insulated using the three-winding electronic transformer 5 shown in FIG. The high frequency transformer HFT can perform an envelope modulation operation at a sine wave commercial AC frequency, and a conventional AC dedicated load Lac can be used for all loads.

なお、以上の実施形態は風力発電装置WTG、太陽光発電装置PVおよび燃料電池FCの3つ全てを組み合わせた場合のものであるが、それらのうちの1つのみを用いた場合でも任意の2つを組み合わせた場合でも、この出願の発明を適用できることは言うまでもなく、同様に優れた分散給電システムを実現できる。   In addition, although the above embodiment is a thing at the time of combining all three, the wind power generator WTG, the solar power generation device PV, and the fuel cell FC, even when only one of them is used, arbitrary 2 Needless to say, the invention of this application can be applied even when two are combined, and an equally excellent distributed power supply system can be realized.

以下、この出願の発明を参考例および実施例によりさらに詳細に説明する。   Hereinafter, the invention of this application will be described in more detail with reference examples and examples.

[参考例1]
図11は、図5の参考実施形態のより具体的な参考例を示したものである。使われている符号は図5中の符号と一致しているので、ここでは追加した符号のみ説明する。
[Reference Example 1]
FIG. 11 shows a more specific reference example of the reference embodiment of FIG. Since the codes used are the same as those in FIG. 5, only the added codes will be described here.

まず、TMは交・直流給電および夜間・深夜電力充電のためのタイマーで、制御回路CONT-2により制御される。CONT-1は風車発電装置WTGの制御回路で、風車発電装置WTGが交流の場合は自動車用発電機のように整流し、直流の場合はそのまま電圧調整を行う通常公知の制御回路となる。S3,S4は双方向半導体スイッチで、図中の拡大図のとおり2個の単方向半導体スイッチを背面突合せ(Back to Back Connection)として交・直流両用のスイッチ動作を行う。S5〜S8は単方向半導体スイッチで、D5〜D8は内蔵または外付のダイオード、C1〜C6はコンデンサ、CHはチョーク・コイルである。N2〜N4は高周波変圧器HFTの巻線である。   First, TM is a timer for AC / DC power feeding and night / midnight power charging, and is controlled by the control circuit CONT-2. CONT-1 is a control circuit for the wind turbine generator WTG. When the wind turbine generator WTG is alternating current, it is rectified like an automobile generator, and when it is direct current, it is a generally known control circuit that adjusts the voltage as it is. S3 and S4 are bidirectional semiconductor switches. As shown in the enlarged view in the figure, two unidirectional semiconductor switches are used as back-to-back connections to perform both AC / DC switching operations. S5 to S8 are unidirectional semiconductor switches, D5 to D8 are built-in or external diodes, C1 to C6 are capacitors, and CH is a choke coil. N2 to N4 are windings of the high frequency transformer HFT.

この図11の参考例において、商用交流電源Utilityからの交流給電時には単方向半導体スイッチS5,S6,S7を止め、双方向半導体スイッチS3,S4と高周波変圧器HFTとダイオードD5,D6を通してコンデンサC6の両端に直流電圧が発生する。この直流電圧を単方向半導体スイッチS8およびダイオードD7により電圧調整して蓄電池Bの充電が可能になり、それと同時に交・直流両用負荷Lac/dcに交流電力を供給する。日中の太陽光発電や時間帯を問わない風力発電を主として商用交流電源Utilityからの充電は従または零としても差し支えない。商用交流電源Utilityの停電時には交流リレーRLの復旧により直ちに直流電力源WTG,PV,FCおよび蓄電池Bからの直流給電に切替わり、二巻線電子変圧器2を通して負荷側に直流電力が給電され、交・直流両用負荷Lac/dcが動作を持続する。このときは、単方向半導体スイッチS8のみが動作を止め、単方向半導体スイッチS7およびダイオードD8で直流電圧を制御つまり降圧調整する。また蓄電池Bの放電に伴い燃料電池FCを動作させ、放電を行うこともできる。   In the reference example of FIG. 11, the unidirectional semiconductor switches S5, S6, and S7 are stopped during AC power supply from the commercial AC power supply Utility, and the capacitor C6 is connected through the bidirectional semiconductor switches S3 and S4, the high-frequency transformer HFT, and the diodes D5 and D6. A DC voltage is generated at both ends. The DC voltage is adjusted by the unidirectional semiconductor switch S8 and the diode D7, so that the storage battery B can be charged. At the same time, AC power is supplied to the AC / DC load Lac / dc. Charging from commercial AC power supply Utility, mainly solar power generation during the day and wind power generation regardless of time of day, can be subordinate or zero. In the event of a power failure of the commercial AC power supply Utility, the AC relay RL is restored to immediately switch to DC power supply from the DC power sources WTG, PV, FC and the storage battery B, and DC power is supplied to the load side through the two-winding electronic transformer 2. The AC / DC load Lac / dc continues to operate. At this time, only the unidirectional semiconductor switch S8 stops operating, and the unidirectional semiconductor switch S7 and the diode D8 control the DC voltage, that is, step-down adjustment. Further, the discharge of the storage battery B can be performed by operating the fuel cell FC.

以上の説明は商用交流電源Utilityの停電時間の長い場合であるが、停電が無い場合でも蓄電池Bが満充電に到達した場合には、制御回路CONT-2の指令によりタイマーTMによりスイッチSWをオフとし、直流給電に切り替えることにより自然エネルギーおよび燃料電池による分散給電を実現できる。   The above explanation is for a case where the power failure time of the commercial AC power supply Utility is long. However, when the storage battery B reaches full charge even when there is no power failure, the switch SW is turned off by the timer TM according to the command of the control circuit CONT-2. By switching to direct current power supply, distributed power supply using natural energy and fuel cells can be realized.

[参考例2]
図12は、図6の参考実施形態のより具体的な参考例を示したものである。この図12の参考例では、電子変圧器を三巻線として各電源と負荷とを絶縁し、さらに商用交流電源Utilityの変動をPWMまたはPPM制御により安定化することは前述したとおりである。この場合の三巻線電子変圧器3の動作の概要は以下のとおりである。
[Reference Example 2]
FIG. 12 shows a more specific reference example of the reference embodiment of FIG. In the reference example of FIG. 12, as described above, the electronic transformer has three windings to insulate each power source from the load and further stabilize the fluctuation of the commercial AC power source Utility by PWM or PPM control. The outline of the operation of the three-winding electronic transformer 3 in this case is as follows.

図15(a)(b)(c)は、各々、三巻線電子変圧器3の動作概要を説明するための波形図である。図15(a)において左側の波形は、入力商用交流電圧がフィルタF1を通った後、すなわち三巻線変圧器3の交流入力側端子電圧を示す。この入力波形がC1,C2,S1,S2からなるハーフ・ブリッジ回路によって図15(a)の中央部に示したように高周波リング変調され、高周波変圧器HFTの一次巻線N1に加えられる。今、二次巻線N2の巻数が一次巻線N1の巻数と同じ場合にはS3,S4,C3,C4によって構成されるハーフ・ブリッジ(この場合は倍電圧回路として動作)によって二次巻線N2に発生する電圧の2倍の電圧が復調される。この場合のスイッチの駆動タイミングは、S1とS3,S2とS4が同一タイミングで駆動されているものとする。すなわち、高周波変復調技術によって、復調側には原信号である正弦波交流波形がそのまま再現され、高周波変調によって変圧器のみが小型、軽量化され、商用変圧器に比べて効率も向上する。このとき、巻線N3,N4に発生する高周波交流をダイオードD5,D6によって整流し、双方向DC−DCコンバータConvによって蓄電池Bの充電を併行して行なえることは言うまでもない。   FIGS. 15A, 15B, and 15C are waveform diagrams for explaining the outline of the operation of the three-winding electronic transformer 3, respectively. The waveform on the left side in FIG. 15A shows the AC input terminal voltage of the three-winding transformer 3 after the input commercial AC voltage has passed through the filter F1. This input waveform is subjected to high-frequency ring modulation as shown in the center portion of FIG. 15A by a half bridge circuit composed of C1, C2, S1, and S2, and is applied to the primary winding N1 of the high-frequency transformer HFT. Now, when the number of turns of the secondary winding N2 is the same as the number of turns of the primary winding N1, the secondary winding is formed by a half bridge (in this case, operating as a voltage doubler circuit) composed of S3, S4, C3, and C4. A voltage twice as large as the voltage generated at N2 is demodulated. In this case, the drive timing of the switches is assumed to be driven at the same timings S1 and S3, S2 and S4. That is, the high-frequency modulation / demodulation technique reproduces the original sine wave AC waveform as it is on the demodulation side, and only the transformer is reduced in size and weight by high-frequency modulation, and the efficiency is improved as compared with a commercial transformer. At this time, it goes without saying that the high-frequency alternating current generated in the windings N3 and N4 can be rectified by the diodes D5 and D6 and the storage battery B can be charged in parallel by the bidirectional DC-DC converter Conv.

次に、商用交流電源Utilityの停電時または蓄電池Bの満充電時には高周波変圧器HFTの巻線N3,N4と半導体スイッチS5,S6とによってプッシュ・プルのインバータ回路により高周波の矩形波信号が発生するが、このときS3,S4によって巻線N2に発生した矩形波電圧は倍電圧回路によって2倍の電圧値をもつ直流となり、交・直流両用負荷Lac/dcに直流電力を供給する。すなわち、高周波変復調によって動作する電子変圧器は交、直流を問わず電圧を変換することが可能なのである。   Next, at the time of a power failure of the commercial AC power supply Utility or when the storage battery B is fully charged, high-frequency rectangular wave signals are generated by the push-pull inverter circuit by the windings N3 and N4 of the high-frequency transformer HFT and the semiconductor switches S5 and S6. However, the rectangular wave voltage generated in the winding N2 by S3 and S4 at this time becomes a direct current having a double voltage value by the voltage doubler circuit, and direct current power is supplied to the AC / DC load Lac / dc. That is, an electronic transformer operating by high frequency modulation / demodulation can convert a voltage regardless of whether it is a direct current or a direct current.

図15(b)は、直流入力が巻線N3,N4に加わる場合の高周波変圧器HFTの電圧を中央部に例示したものである。図15(c)は、二次巻線側のS3,S4スイッチに公知のPWM制御を行って負荷側の電圧を調整する場合の一例を示したものである。交流変復調の場合を例示したが、直流入力の場合も全く同様に制御可能であることは言うまでもない。   FIG. 15B illustrates the voltage of the high frequency transformer HFT when a DC input is applied to the windings N3 and N4 at the center. FIG. 15C shows an example of adjusting the load side voltage by performing known PWM control on the S3 and S4 switches on the secondary winding side. Although the case of AC modulation / demodulation has been illustrated, it goes without saying that the same control is possible in the case of DC input.

なお、負荷の一部として燃料電池FC用の圧縮燃料Fuel(主として水素)を軽負荷時に圧縮機COMPにより作成し貯蔵しておくことにより、自家発電用および電動車両用等に使えば、蓄電池容量の低減化と負荷変動の平準化やクリーン・エンジン化時代に備えた環境改善にも役立つ。   In addition, if the compressed fuel Fuel (mainly hydrogen) for the fuel cell FC is prepared and stored by the compressor COMP at the time of light load as a part of the load, it can be used for private power generation and electric vehicles. It is also useful for reducing environmental impacts, leveling load fluctuations, and improving the environment in preparation for the age of clean engines.

[実施例]
図13および図14は、各々、図7および図8の実施形態のより具体的な実施例を示したものであり、図11,図12における交・直流両用負荷Lac/dcの制約をなくして交流専用の既存設備との整合性を重視し、同時に、直流源から電子変圧器を通して商用交流電源Utility側に逆潮流をも可能にしたものであり、図13は蓄電池B側のみの二巻線電子変圧器4を介して商用交流電源Utilityおよび交流専用負荷Lacに接続した場合のものであり、図14は三巻線電子変圧器5を介して直流電力源WTG,PV,FCおよび蓄電池Bと商用交流電源Utilityと交流専用負荷Lacとを相互に絶縁して接続した場合のものである。
[Example]
FIGS. 13 and 14 show more specific examples of the embodiments of FIGS. 7 and 8, respectively, and eliminate the restrictions on the AC / DC load Lac / dc in FIGS. Emphasis is placed on compatibility with existing AC-dedicated equipment, and at the same time, a reverse power flow from the DC source through the electronic transformer to the commercial AC power supply Utility side is also possible. FIG. 14 shows a case in which a DC power source WTG, PV, FC and a storage battery B are connected via a three-winding electronic transformer 5. This is a case where the commercial AC power supply Utility and the AC dedicated load Lac are mutually insulated and connected.

図11,図12と比較した大きな相違点は、単方向半導体スイッチS5,S6が充・放電時いずれも動作している点にある。また、図9,図10に示したように双方向DC―DCコンバータConvにおいて、蓄電池電圧と2相半波または単相全波整流出力6を正・逆双方向に変換し、単方向半導体スイッチS5,S6において交流変調または復調変換を行って、二巻線電子変圧器4・三巻線電子変圧器5内では、常に交流変調成分のみで動作させている。このことによって、交流専用負荷側には交流給電・直流給電を問わず、常に交流出力を取り出すことができる。   A major difference compared to FIGS. 11 and 12 is that the unidirectional semiconductor switches S5 and S6 operate during charging and discharging. Further, as shown in FIGS. 9 and 10, in the bidirectional DC-DC converter Conv, the battery voltage and the two-phase half-wave or single-phase full-wave rectified output 6 are converted into the forward / reverse bidirectional, and the unidirectional semiconductor switch In S5 and S6, AC modulation or demodulation conversion is performed, and the two-winding electronic transformer 4 and the three-winding electronic transformer 5 are always operated with only the AC modulation component. As a result, an AC output can always be taken out from the AC dedicated load side regardless of whether AC power supply or DC power supply is used.

この動作を実現するために、たとえば図16(a)(b)に例示したように三巻線電子変圧器5のスイッチS1〜S6の駆動パルス位相を商用交流電源Utilityの正の半サイクルと負の半サイクルの期間、交互に逆転することにより、v1とv2は常に交流正弦波形で動作し、直流回路のv3端子には常に単相全波または2層半波の直流入出力が発生しながら、三巻線電子変圧器5の磁束の変化は常に前述の図15(a)に例示した交流変調動作を行わせることができる。   In order to realize this operation, for example, as illustrated in FIGS. 16A and 16B, the drive pulse phases of the switches S1 to S6 of the three-winding electronic transformer 5 are set to the positive half cycle and negative of the commercial AC power supply Utility. By alternately reversing during the half-cycle period, v1 and v2 always operate with an AC sine waveform, and the DC circuit v3 terminal always generates single-phase full-wave or two-layer half-wave DC input / output. The change in the magnetic flux of the three-winding electronic transformer 5 can always perform the AC modulation operation illustrated in FIG.

図13の二巻線変圧器4の場合には、図16の例でN1がない場合に相当し、他の動作は全く同じであることは言うまでもない。   In the case of the two-winding transformer 4 of FIG. 13, it corresponds to the case where there is no N1 in the example of FIG. 16, and it goes without saying that other operations are exactly the same.

いずれにしても二巻線電子変圧器4、三巻線電子変圧器5の2組または3組の入出力端子間で電力エネルギーの双方向伝送が直流から数100ヘルツの交流まで可能である点が商用電源電圧器と大きく異なる点であり、このことが本願発明のシステム構成の基本特徴となっている。   In any case, bidirectional transmission of power energy between two or three sets of input / output terminals of the two-winding electronic transformer 4 and the three-winding electronic transformer 5 is possible from direct current to alternating current of several hundred hertz. Is greatly different from the commercial power supply voltage device, and this is a basic feature of the system configuration of the present invention.

さらに、もう一つの特徴は、商用交流電源Utilityの停電がない限り、蓄電池側から二巻線電子変圧器4・三巻線電子変圧器5を通して商用交流電源側へ逆潮流を行うことが可能になる。なお、この場合、停電時のインバータ動作用発振器を内蔵することは言うまでもない。   Furthermore, another feature is that reverse power flow from the storage battery side to the commercial AC power supply side can be performed through the two-winding electronic transformer 4 and the three-winding electronic transformer 5 as long as there is no power failure of the commercial AC power supply Utility. Become. In this case, it goes without saying that an inverter operating oscillator in the event of a power failure is incorporated.

もちろん、この出願の発明は以上の実施形態および実施例に限定されるものではなく、細部については様々な態様が可能である。   Of course, the invention of this application is not limited to the above-described embodiments and examples, and various details are possible.

以上詳しく説明したとおり、この出願の発明によって、変動要因の大きい自然エネルギー系電力と深夜電力や燃料電池等の安定電力とを組み合わせて、ほぼ100%に近い使用率で共通に利用される電子変圧器を介して負荷に安定電力を供給し、システム全体の価格・性能比率を高め、分散給電の普及促進と省エネルギー化を図ることのできる、新しい分散給電システムが提供される。   As described above in detail, according to the invention of this application, a combination of a natural energy system power having a large variation factor and a stable power such as midnight power or a fuel cell can be commonly used at a usage rate close to 100%. A new distributed power supply system that can supply stable power to a load via a device, increase the price / performance ratio of the entire system, promote the spread of distributed power supply and save energy is provided.

低圧配電系において交・直流エネルギー源を分散給電システムに使用する場 合における従来の家電機器の交・直流給電の適合性の可否を分類した図である。It is a diagram that classifies the suitability of AC / DC power supply compatibility of conventional home appliances when AC / DC energy sources are used in a distributed power supply system in a low-voltage distribution system. 低圧配電系において交・直流エネルギー源を直接負荷に供給する場合におけ る太陽光発電と風力発電の従来例を示した図である。FIG. 6 is a diagram showing a conventional example of solar power generation and wind power generation when an AC / DC energy source is directly supplied to a load in a low-voltage distribution system. この出願の発明に従って給電系と交・直流両用負荷とを接続した場合の一例 を説明するための図である。It is a figure for demonstrating an example at the time of connecting a power feeding system and AC / DC load for both according to invention of this application. この出願の発明の参考実施形態を示した図である。It is the figure which showed the reference embodiment of invention of this application. この出願の発明の別の参考実施形態を示した図である。It is the figure which showed another reference embodiment of invention of this application. この出願の発明のさらに別の参考実施形態を示した図である。It is the figure which showed another reference embodiment of invention of this application. この出願の発明の一実施形態を示した図である。It is the figure which showed one Embodiment of invention of this application. この出願の発明の別の一実施形態を示した図である。It is the figure which showed another one Embodiment of invention of this application. 図7の実施形態における双方向DC−DCコンバータの動作を説明するため の図である。FIG. 8 is a diagram for explaining the operation of the bidirectional DC-DC converter in the embodiment of FIG. 7. 図7の実施形態における双方向DC−DCコンバータの動作を説明するた めの図である。It is a figure for demonstrating operation | movement of the bidirectional | two-way DC-DC converter in embodiment of FIG. この出願の発明の参考例を示した図である。It is the figure which showed the reference example of invention of this application. この出願の発明の別の参考例を示した図である。It is the figure which showed another reference example of invention of this application. この出願の発明のさらに一実施例を示した図である。It is the figure which showed further one Example of invention of this application. この出願の発明の別の一実施例を示した図である。It is the figure which showed another one Example of invention of this application. 三巻線電子変圧器の動作概要を説明するための図である。It is a figure for demonstrating the operation | movement outline | summary of a three winding electronic transformer. 三巻線電子変圧器の直流変換動作原理を説明するための図である。It is a figure for demonstrating the direct current | flow conversion operation | movement principle of a three-winding electronic transformer.

符号の説明Explanation of symbols

Lac/dc 交・直流両用負荷
Lac 交流専用負荷
Utility 商用交流電源
WTG 風車発電装置
PV 太陽光発電装置
FC 燃料電池
B 蓄電池
Conv 双方向DC−DCコンバータ
S7,S8 単方向半導体スイッチ
D7,D8 ダイオード
C5,C6 コンデンサ
CH チョーク・コイル
1 充電器CHG
2 二巻線電子変圧器
2a,2b 双方向入出力端子
HFT 高周波変圧器
N2〜N4 巻線
F2 フィルタ
SW2,SW3 変復調半導体スイッチ
S3,S4 双方向半導体スイッチ
S5,S6 単方向半導体スイッチ
D5,D6 ダイオード
C3,C4 コンデンサ
3 三巻線電子変圧器
3a,3b,3c 双方向入出力端子
HFT 高周波変圧器
N1〜N4 巻線
F1,F2 フィルタ
SW1〜SW3 変復調半導体スイッチ
S1〜S4 双方向半導体スイッチ
S5,S6 単方向半導体スイッチ
D5,D6 ダイオード
C1〜C4 コンデンサ
4 二巻線電子変圧器
4a,4b 双方向入出力端子
HFT 高周波変圧器
N2〜N4 巻線
F2 フィルタ
SW2,SW3 変復調半導体スイッチ
S3,S4 双方向半導体スイッチ
S5,S6 単方向半導体スイッチ
D5,D6 ダイオード
C3,C4 コンデンサ
5 三巻線電子変圧器
5a,5b,5c 双方向入出力端子
HFT 高周波変圧器
N1〜N4 巻線
F1,F2 フィルタ
SW1〜SW3 変復調半導体スイッチ
S1〜S4 双方向半導体スイッチ
S5,S6 単方向半導体スイッチ
D5,D6 ダイオード
C1〜C4 コンデンサ
6 単相全波または2相半波の直流出力電圧
D1〜D4 ダイオード
SW スイッチ
RL 交流リレー
CT1,CT2,CT3 交流リレー接点
TM タイマー
CONT−1 風力発電制御装置
CONT−2 分散給電制御装置
T 端子板
COMP 圧縮機
Fuel 燃料電池用燃料
AC 交流
DC 直流
Ic 充電電流
I INV インバータ電流
IB 蓄電池電流
EB 蓄電池電圧
Lac / dc AC / DC dual load Lac AC dedicated load
Utility Commercial AC power supply WTG Wind turbine generator PV PV generator FC Fuel cell B Storage battery
Conv Bidirectional DC-DC converter S7, S8 Unidirectional semiconductor switch D7, D8 Diode C5, C6 Capacitor CH Choke coil 1 Charger CHG
2 Two-winding electronic transformer 2a, 2b Bidirectional input / output terminal HFT High-frequency transformer N2-N4 Winding F2 Filter SW2, SW3 Modulation / demodulation semiconductor switch S3, S4 Bidirectional semiconductor switch S5, S6 Unidirectional semiconductor switch D5, D6 Diode C3, C4 Capacitor 3 Three-winding electronic transformer 3a, 3b, 3c Bidirectional input / output terminal HFT High frequency transformer N1-N4 Winding F1, F2 Filter SW1-SW3 Modulation / demodulation semiconductor switch S1-S4 Bidirectional semiconductor switch S5, S6 Unidirectional semiconductor switch D5, D6 Diode C1-C4 Capacitor 4 Two-winding electronic transformer 4a, 4b Bidirectional input / output terminal HFT High-frequency transformer N2-N4 Winding F2 Filter SW2, SW3 Modulation / demodulation semiconductor switch S3, S4 Bidirectional semiconductor Switch S5, S6 Unidirectional semiconductor Switch D5, D6 Diode C3, C4 Capacitor 5 Three-winding electronic transformer 5a, 5b, 5c Bidirectional input / output terminal HFT High-frequency transformer N1-N4 Winding F1, F2 Filter SW1-SW3 Modulation / demodulation semiconductor switch S1-S4 Bi-directional Semiconductor switch S5, S6 Unidirectional semiconductor switch D5, D6 Diode C1-C4 Capacitor 6 Single-phase full-wave or 2-phase half-wave DC output voltage D1-D4 Diode SW switch RL AC relay CT1, CT2, CT3 AC relay contact TM Timer CONT-1 Wind power generation control device CONT-2 Distributed power supply control device T Terminal plate COMP Compressor Fuel Fuel for fuel cell AC AC DC DC
Ic charge current
I INV Inverter current IB Battery current EB Battery voltage

Claims (3)

風力発電装置、太陽光発電装置および燃料電池のうちの少なくとも1つと、蓄電池と、商用交流電源とを用いて、双方向DC−DCコンバータおよび二巻線電子変圧器を経由してもしくは経由しないで交流専用負荷への分散給電を行う分散給電システムであって、
風力発電装置、太陽光発電装置および燃料電池は各々の定格電力電圧が蓄電池の定格電圧に統一された直流電力源となっており、
二巻線電子変圧器は交・直流両用で2つの双方向入出力端子を有し、且つ高周波変圧器とその蓄電池側および負荷側に設けられた変復調半導体スイッチとを有しており、
当該二巻線電子変圧器の一方の双方向入出力端子は直流電力源の出力側に接続され、他方の双方向入出力端子は商用交流電源と交流専用負荷との間をT字型に接続しており、
蓄電池が直流電力源により満充電に達するまでは商用交流電源からの交流電力を双方向DC−DCコンバータおよび二巻線電子変圧器を経由しないで交流専用負荷へ供給し、
蓄電池の満充電時もしくは商用交流電源の停電時には、直流電力源および蓄電池からの直流電力を双方向DC−DCコンバータの半サイクル正弦波変調により単相全波整流波形に変換した後、二巻線電子変圧器の高周波変圧器の蓄電池側に設けられた変復調半導体スイッチを構成する2個または2対の単方向半導体スイッチの高周波変調位相を商用周波数の半サイクル毎に交互に逆転し、二巻線電子変圧器の高周波変圧器の負荷側に設けられた変復調半導体スイッチにより復調して正弦波交流出力を取り出して交流専用負荷へ供給し、
蓄電池の放電進行時には燃料電池から電力補給を行い、
夜間・深夜電力供給時間帯には商用交流電源からの交流電力を交流専用負荷へ供給するとともに、二巻線電子変圧器の有する双方向性および交・直流変換機能ならびに双方向DC−DCコンバータの充電時の昇圧型高力率整流動作を併用して蓄電池の充電を行い、
軽負荷時で蓄電池が満充電に近く且つ商用交流電源が停電でないときは直流電力を二巻線電子変圧器のエネルギー双方向伝送特性によって交流に変換し、商用交流電源側に自動的に位相同期して逆潮流させるようになっていることを特徴とする分散給電システム。
With or without a bidirectional DC-DC converter and a two-winding electronic transformer using at least one of a wind power generator, a solar power generator, and a fuel cell, a storage battery, and a commercial AC power source A distributed power supply system that performs distributed power supply to a dedicated AC load,
Wind power generators, solar power generators, and fuel cells are DC power sources in which each rated power voltage is unified with the rated voltage of the storage battery.
The two-winding electronic transformer has two bidirectional input / output terminals for both AC and DC, and has a high-frequency transformer and a modulation / demodulation semiconductor switch provided on the storage battery side and the load side.
One bidirectional input / output terminal of the two-winding electronic transformer is connected to the output side of the DC power source, and the other bidirectional input / output terminal is connected in a T shape between the commercial AC power supply and the AC dedicated load. And
Until the storage battery reaches full charge by the DC power source, supply AC power from the commercial AC power source to the AC dedicated load without going through the bidirectional DC-DC converter and the two-winding electronic transformer,
When the storage battery is fully charged or when the commercial AC power supply fails, the DC power from the DC power source and storage battery is converted into a single-phase full-wave rectified waveform by half-cycle sine wave modulation of a bidirectional DC-DC converter, Two windings are used to reverse the high frequency modulation phase of two or two pairs of unidirectional semiconductor switches constituting the modulation / demodulation semiconductor switch provided on the storage battery side of the high frequency transformer of the electronic transformer alternately every half cycle of the commercial frequency. Demodulated by a modulation / demodulation semiconductor switch provided on the load side of the high-frequency transformer of the electronic transformer, extracted the sine wave AC output and supplied to the AC dedicated load,
When the discharge of the storage battery progresses, power is supplied from the fuel cell,
In the night / midnight power supply time period, AC power from a commercial AC power source is supplied to the AC dedicated load, and the bidirectional and AC / DC conversion function of the two-winding electronic transformer and the bidirectional DC-DC converter Charge the storage battery using the boost type high power factor rectification operation at the time of charging.
When the storage battery is almost fully charged at light load and the commercial AC power supply is not out of power, the DC power is converted to AC by the energy bidirectional transmission characteristics of the two-winding electronic transformer and automatically phase synchronized to the commercial AC power supply side. The distributed power supply system is characterized by the reverse power flow.
風力発電装置、太陽光発電装置および燃料電池のうちの少なくとも1つと、蓄電池と、商用交流電源とを用いて、双方向DC−DCコンバータおよび三巻線電子変圧器を経由して交流専用負荷への分散給電を行う分散給電システムであって、
風力発電装置、太陽光発電装置および燃料電池は各々の定格電力電圧が蓄電池の定格電圧に統一された直流電力源となっており、
三巻線電子変圧器は交・直流両用で3つの双方向入出力端子を有し、且つ高周波変圧器とその商用交流電源側および蓄電池側および負荷側に設けられた変復調半導体スイッチを有し、
直流電力源および蓄電池と商用交流電源と交流専用負荷とは当該三巻線電子変圧器によって相互に絶縁して接続されており、
蓄電池が直流電力源により満充電に達するまでは商用交流電源からの交流電力を三巻線電子変圧器を経由して交流専用負荷へ供給し、
蓄電池の満充電時もしくは商用交流電源の停電時には、直流電力源および蓄電池からの直流電力を双方向DC−DCコンバータの半サイクル正弦波変調により単相全波整流波形に変換した後、三巻線電子変圧器の高周波変圧器の蓄電池側に設けられた変復調半導体スイッチを構成する2個または2対の単方向半導体スイッチの高周波変調位相を商用周波数の半サイクル毎に交互に逆転し、三巻線電子変圧器の高周波変圧器の負荷側に設けられた変復調半導体スイッチにより復調して正弦波交流出力を取り出して交流専用負荷へ供給し、
蓄電池の放電進行時には燃料電池から電力補給を行い、
夜間・深夜電力供給時間帯には商用交流電源からの交流電力を交流専用負荷へ供給するとともに、三巻線電子変圧器の有する双方向性および交・直流変換機能ならびに双方向DC−DCコンバータの充電時の昇圧型高力率整流動作を併用して蓄電池の充電を行い、
軽負荷時で蓄電池が満充電に近く且つ商用交流電源が停電でないときは直流電力を三巻線電子変圧器のエネルギー双方向伝送特性を用いて交流に変換し、商用交流電源側に自動的に位相同期して逆潮流させるようになっていることを特徴とする分散給電システム。
Using an at least one of a wind power generator, a solar power generator, and a fuel cell, a storage battery, and a commercial AC power source, to a dedicated AC load via a bidirectional DC-DC converter and a three-winding electronic transformer A distributed power supply system that performs distributed power supply of
Wind power generators, solar power generators, and fuel cells are DC power sources in which each rated power voltage is unified with the rated voltage of the storage battery.
The three-winding electronic transformer has three bidirectional input / output terminals for both AC and DC, and has a high-frequency transformer and a modulation / demodulation semiconductor switch provided on the commercial AC power supply side, storage battery side and load side,
The DC power source and the storage battery, the commercial AC power source and the AC dedicated load are mutually insulated and connected by the three-winding electronic transformer.
Until the storage battery is fully charged by the DC power source, supply AC power from the commercial AC power supply to the AC dedicated load via the three-winding electronic transformer,
When the storage battery is fully charged or when the commercial AC power supply fails, the DC power from the DC power source and the storage battery is converted into a single-phase full-wave rectified waveform by half-cycle sine wave modulation of a bidirectional DC-DC converter, and then three windings Three windings alternately reverse the high frequency modulation phase of two or two pairs of unidirectional semiconductor switches constituting the modulation / demodulation semiconductor switch provided on the storage battery side of the high frequency transformer of the electronic transformer every half cycle of the commercial frequency Demodulated by a modulation / demodulation semiconductor switch provided on the load side of the high-frequency transformer of the electronic transformer, extracted the sine wave AC output and supplied to the AC dedicated load,
When the discharge of the storage battery progresses, power is supplied from the fuel cell,
In the night / midnight power supply time period, AC power from a commercial AC power supply is supplied to the AC dedicated load, and the bidirectional and AC / DC conversion function of the three-winding electronic transformer and the bidirectional DC-DC converter Charge the storage battery using the boost type high power factor rectification operation at the time of charging.
When the storage battery is near full charge at light load and the commercial AC power supply is not out of power, the DC power is converted to AC using the bidirectional energy transmission characteristics of the three-winding electronic transformer, and automatically switched to the commercial AC power supply side. A distributed power supply system characterized in that reverse power flow is performed in phase synchronization.
燃料電池用圧縮水素の貯蔵が可能となっていることを特徴とする請求項1または2の分散給電システム。   3. The distributed power supply system according to claim 1, wherein compressed hydrogen for fuel cells can be stored.
JP2006125944A 2002-08-01 2006-04-28 Distributed power supply system Expired - Fee Related JP4180086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125944A JP4180086B2 (en) 2002-08-01 2006-04-28 Distributed power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002224787 2002-08-01
JP2006125944A JP4180086B2 (en) 2002-08-01 2006-04-28 Distributed power supply system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003280883A Division JP3825020B2 (en) 2002-08-01 2003-07-28 Distributed power supply system

Publications (2)

Publication Number Publication Date
JP2006254694A true JP2006254694A (en) 2006-09-21
JP4180086B2 JP4180086B2 (en) 2008-11-12

Family

ID=37094560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125944A Expired - Fee Related JP4180086B2 (en) 2002-08-01 2006-04-28 Distributed power supply system

Country Status (1)

Country Link
JP (1) JP4180086B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072415A1 (en) 2007-12-04 2009-06-11 Sharp Kabushiki Kaisha Power supply system
JP2012175830A (en) * 2011-02-22 2012-09-10 Denso Corp Electric power supply device
CN102751735A (en) * 2011-04-19 2012-10-24 巨争号 Generating set output reducing and generating set tripping device used in case of overload of contact outgoing lines of power plant
CN103956095A (en) * 2014-03-14 2014-07-30 北京工业大学 Wind power and solar power complementary type micro power network experiment platform
US9866129B2 (en) 2016-04-08 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Power conversion device including primary inverter, transformer, secondary converter, and controller
US9966939B2 (en) 2016-02-09 2018-05-08 Panasonic Intellectual Property Management Co., Ltd. Converter for converting code-modulated power with conversion code, power transmission system, and controller
US10122289B2 (en) 2016-02-09 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Conveter for converting code-modulated power with conversion code, power transmission system, and controller
US10326470B2 (en) 2015-12-03 2019-06-18 Panasonic Intellectual Property Management Co., Ltd. Converter for converting code-modulated power with conversion code, and controller thereof
US10411002B2 (en) 2016-05-26 2019-09-10 Panasonic Intellectual Property Management Co., Ltd. Electric power conversion circuit including switches and bootstrap circuits, and electric power transmission system including electric power conversion circuit
WO2020008985A1 (en) * 2018-07-03 2020-01-09 株式会社ダイヘン System interconnection system, system interconnection unit, system interconnection method, and installation method for system interconnection system
JP2020010442A (en) * 2018-07-03 2020-01-16 株式会社ダイヘン System interconnection system and system interconnection method
WO2020157922A1 (en) * 2019-01-31 2020-08-06 国立大学法人東北大学 Dc power supply and power system
JP2021118634A (en) * 2020-01-28 2021-08-10 国立大学法人東北大学 Dc power supply device
CN116470602A (en) * 2023-03-14 2023-07-21 中子高新技术产业发展(重庆)有限公司 Stable power isotope battery coupled with secondary capacitor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072415A1 (en) 2007-12-04 2009-06-11 Sharp Kabushiki Kaisha Power supply system
US8362648B2 (en) 2007-12-04 2013-01-29 Sharp Kabushiki Kaisha Electric power supply system
JP2012175830A (en) * 2011-02-22 2012-09-10 Denso Corp Electric power supply device
CN102751735A (en) * 2011-04-19 2012-10-24 巨争号 Generating set output reducing and generating set tripping device used in case of overload of contact outgoing lines of power plant
CN102751735B (en) * 2011-04-19 2014-08-13 巨争号 Generating set output reducing and generating set tripping device used in case of overload of contact outgoing lines of power plant
CN103956095A (en) * 2014-03-14 2014-07-30 北京工业大学 Wind power and solar power complementary type micro power network experiment platform
US10326470B2 (en) 2015-12-03 2019-06-18 Panasonic Intellectual Property Management Co., Ltd. Converter for converting code-modulated power with conversion code, and controller thereof
US10122289B2 (en) 2016-02-09 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Conveter for converting code-modulated power with conversion code, power transmission system, and controller
US9966939B2 (en) 2016-02-09 2018-05-08 Panasonic Intellectual Property Management Co., Ltd. Converter for converting code-modulated power with conversion code, power transmission system, and controller
US9866129B2 (en) 2016-04-08 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Power conversion device including primary inverter, transformer, secondary converter, and controller
US10411002B2 (en) 2016-05-26 2019-09-10 Panasonic Intellectual Property Management Co., Ltd. Electric power conversion circuit including switches and bootstrap circuits, and electric power transmission system including electric power conversion circuit
WO2020008985A1 (en) * 2018-07-03 2020-01-09 株式会社ダイヘン System interconnection system, system interconnection unit, system interconnection method, and installation method for system interconnection system
JP2020010442A (en) * 2018-07-03 2020-01-16 株式会社ダイヘン System interconnection system and system interconnection method
US11332030B2 (en) 2018-07-03 2022-05-17 Daihen Corporation Power system interconnection system, and method of installing power system interconnection system
JP7186027B2 (en) 2018-07-03 2022-12-08 株式会社ダイヘン Grid interconnection system and grid interconnection method
WO2020157922A1 (en) * 2019-01-31 2020-08-06 国立大学法人東北大学 Dc power supply and power system
JP2021118634A (en) * 2020-01-28 2021-08-10 国立大学法人東北大学 Dc power supply device
CN116470602A (en) * 2023-03-14 2023-07-21 中子高新技术产业发展(重庆)有限公司 Stable power isotope battery coupled with secondary capacitor
CN116470602B (en) * 2023-03-14 2023-11-28 中子高新技术产业发展(重庆)有限公司 Stable power isotope battery coupled with secondary capacitor

Also Published As

Publication number Publication date
JP4180086B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP3825020B2 (en) Distributed power supply system
JP4180086B2 (en) Distributed power supply system
US10965208B2 (en) System and method for a multi purpose bidirectional power converter
JP5124114B2 (en) Power conditioner with power storage function
Zhou et al. A review on microgrid architectures and control methods
US5929538A (en) Multimode power processor
US7333349B2 (en) Single-stage buck-boost inverter
JP5081596B2 (en) Power supply system
JP5342598B2 (en) Power converter
EP2815913A1 (en) Recharging system for electric vehicles
TW201230653A (en) System and method for bidirectional DC-AC power conversion
JP5526043B2 (en) DC power supply system
WO2013000185A1 (en) Grid-connected inverter
Wu et al. Design and development of dc-distributed system with grid connection for residential applications
Ryu et al. Test bed implementation of 380V DC distribution system using isolated bidirectional power converters
JP2011250605A (en) Power conversion apparatus
JP2012244882A (en) Connection box
CN102255356B (en) Efficient uninterruptible power supply
EP3807971A1 (en) Microgrid controller with one or more sources
CN104716680A (en) Offline uninterruptible power supply with renewable energy and control method thereof
CN108092538A (en) Parallel Time-sharing is for being electrically isolated flyback DC chopped-wave type single-stage multi input inverter
CN215071777U (en) Wisdom street lamp
Ravichandrudu et al. Design and performance of a bidirectional isolated Dc-Dc converter for renewable power system
Baek et al. A study on the DC distribution system for small scale residential buildings
Bubovich et al. Overview of Bidirectional Unfolding Converters for Battery Energy Storage Systems

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees