JPH04308431A - Control method for photovoltaic power generation linking system - Google Patents

Control method for photovoltaic power generation linking system

Info

Publication number
JPH04308431A
JPH04308431A JP3098214A JP9821491A JPH04308431A JP H04308431 A JPH04308431 A JP H04308431A JP 3098214 A JP3098214 A JP 3098214A JP 9821491 A JP9821491 A JP 9821491A JP H04308431 A JPH04308431 A JP H04308431A
Authority
JP
Japan
Prior art keywords
voltage
storage battery
power
amount
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3098214A
Other languages
Japanese (ja)
Inventor
Ichio Kawarabayashi
一王 河原林
Masahide Yamaguchi
山口 雅英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP3098214A priority Critical patent/JPH04308431A/en
Publication of JPH04308431A publication Critical patent/JPH04308431A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To smooth a rapid fluctuation of output power quantity of a solar battery by A storage battery, further to ensure a charging amount of the storage battery and further so as to actuate the solar battery in the vicinity of optimum operational voltage. CONSTITUTION:A control method for a photovoltaic power generation linking system in which a storage battery 2 is selected so that optimum operational voltage of a solar battery 1 obtains floating charge voltage of the storage battery 2 to detect its voltage, and a power quantity fed to the other AC system 9 from the above-mentioned inverter 3 is controlled so as to decrease, in the case of the voltage of the storage battery 2 lower than the floating charge voltage, and so as to increase in the case of the voltage of the storage battery 2 higher than the floating charge voltage.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は太陽電池及びエネルギ蓄
積手段として蓄電池が併設され、太陽電池発電電力をイ
ンバータを介して他の交流系統に供給する太陽光発電連
系システムにおいて、蓄電池の充電量を確保し、太陽電
池を最適動作電圧付近で動作させつつ、太陽電池の出力
電力量の平滑化を行う電力制御法に関するものである。
[Industrial Application Field] The present invention relates to a solar power generation interconnection system in which a solar battery and a storage battery are installed as energy storage means, and the power generated by the solar battery is supplied to another AC system via an inverter. This invention relates to a power control method that smoothes the amount of power output from a solar cell while ensuring that the solar cell operates near its optimal operating voltage.

【0002】0002

【従来の技術とその課題】太陽電池の出力電力を系統へ
給電する太陽光発電連系システムは、太陽電池の出力電
力量が日射量に依存し、気象条件の変化によって急激に
変動するため、この電力を直接系統へ給電すると系統の
電圧や周波数の急激な変動など悪影響を及ぼす恐れがあ
る。これを解決するために従来より蓄電池を使って太陽
電池の出力電力量を平滑化するシステムが使用されてい
る。
[Prior art and its problems] In a solar power generation interconnection system that supplies power output from solar cells to the grid, the amount of power output from the solar cells depends on the amount of solar radiation and fluctuates rapidly due to changes in weather conditions. If this power is supplied directly to the grid, there is a risk of negative effects such as rapid fluctuations in the voltage and frequency of the grid. To solve this problem, systems have been used that use storage batteries to smooth the amount of power output from solar cells.

【0003】従来のこのような太陽光発電連系システム
は、太陽電池の出力電力量の急激な変動が直接系統へ悪
影響を与えないよう、太陽電池の出力電力量を、太陽電
池電圧と太陽電池電流等より演算しこれを平滑化した電
力量をインバータが系統へ給電する電力量となるように
制御が行われていた。
[0003] In such conventional solar power generation interconnection systems, the output power of the solar cells is adjusted between the solar cell voltage and the solar cell voltage so that rapid fluctuations in the output power of the solar cells do not have a direct adverse effect on the grid. Control was performed so that the amount of power calculated from the current, etc. and smoothed was the amount of power that the inverter supplied to the grid.

【0004】図3は従来のこのような太陽光発電連系シ
ステムの制御法を示す構成例であり、図4はその動作を
説明するための各部の波形を示す図である。以下図によ
って説明する。
FIG. 3 is a configuration example showing a conventional control method for such a solar power generation interconnection system, and FIG. 4 is a diagram showing waveforms of various parts for explaining the operation. This will be explained below using figures.

【0005】一日の内のある一定期間での太陽電池1の
出力電力量の変動例を図4のAに示す。制御回路8′は
太陽電池電圧検出器5′から得られた太陽電池電圧と太
陽電池電流検出器6から得られた太陽電池電流から太陽
電池1の発電電力量を演算し、それを平滑した信号によ
りインバータ3が系統9へ供給する電力量を図4のBの
ように制御する。
FIG. 4A shows an example of variation in the output power amount of the solar cell 1 during a certain period of one day. A control circuit 8' calculates the amount of power generated by the solar cell 1 from the solar cell voltage obtained from the solar cell voltage detector 5' and the solar cell current obtained from the solar cell current detector 6, and generates a smoothed signal. Accordingly, the amount of power that the inverter 3 supplies to the grid 9 is controlled as shown in B of FIG.

【0006】すなわち太陽電池1の発電電力量が急激に
減少した場合は蓄電池2から放電することによりインバ
ータ3から系統9へ給電する電力量を一定に保ち、逆に
太陽電池1の発電電力量が急激に増加した場合は蓄電池
2を充電しながらインバータ3から系統9へ給電する電
力量を一定に保つことにより太陽電池1の発電電力量が
平滑化されたことになる。
That is, when the amount of power generated by the solar cell 1 suddenly decreases, the amount of power supplied from the inverter 3 to the grid 9 is kept constant by discharging from the storage battery 2, and conversely, the amount of power generated by the solar cell 1 decreases. In the case of a sudden increase, the amount of power generated by the solar cell 1 is smoothed by keeping the amount of power supplied from the inverter 3 to the grid 9 constant while charging the storage battery 2.

【0007】ところがこの方法によると蓄電池2の充放
電が発生し過充放電をさける為に蓄電池2の充放電管理
を行う必要があり現実には蓄電池2の充放電効率を考慮
する必要がある等インバータ3の制御が複雑になるとい
う欠点があった。また蓄電池2の充電状態は常に満充電
状態とはならず、蓄電池2の寿命に悪影響を与えるおそ
れがあった。またこのシステム例では太陽電池1の有効
利用のため太陽電池1が最適動作電圧付近で動作するよ
う別の電力変換装置が使用されることもあった。図にお
いて4は連系リアクトル、7は蓄電池の充放電電流を検
出するための電流検出器、10は太陽電池の逆流防止素
子である。
However, according to this method, charging and discharging of the storage battery 2 occurs, and in order to avoid overcharging and discharging, it is necessary to manage the charging and discharging of the storage battery 2, and in reality, it is necessary to consider the charging and discharging efficiency of the storage battery 2, etc. There is a drawback that the control of the inverter 3 becomes complicated. Further, the charging state of the storage battery 2 is not always fully charged, which may adversely affect the life of the storage battery 2. Further, in this system example, in order to effectively utilize the solar cell 1, another power converter may be used so that the solar cell 1 operates near the optimum operating voltage. In the figure, 4 is an interconnection reactor, 7 is a current detector for detecting the charging and discharging current of the storage battery, and 10 is a backflow prevention element of the solar cell.

【0008】[0008]

【課題を解決するための手段】本発明は太陽電池の最適
動作電圧が蓄電池の浮動充電電圧に近くなるよう蓄電池
のセル数を選定し、この蓄電池の電圧のみを取り込こみ
、これを浮動充電電圧に収束するようにインバータが系
統へ給電する電力を制御することにより、太陽電池の出
力電力量の急激な変動を蓄電池で平滑し、かつ蓄電池の
充電量を確保し、かつ太陽電池が最適動作電圧付近で動
作するようにしたものである。
[Means for Solving the Problems] The present invention selects the number of storage battery cells so that the optimal operating voltage of the solar cell is close to the floating charging voltage of the storage battery, captures only the voltage of this storage battery, and performs floating charging. By controlling the power supplied to the grid by the inverter so that it converges with the voltage, the storage battery smoothes out sudden fluctuations in the output power of the solar cells, secures the amount of charge in the storage battery, and allows the solar cells to operate optimally. It is designed to operate near voltage.

【0009】[0009]

【実施例】図1は本発明の一実施例による太陽光発電連
系システムの制御法を示す構成図であり、図2は動作を
説明するための各部の波形を示す図である。以下図によ
って説明する。図において、1は太陽電池、2は太陽電
池1と並列に接続された蓄電池であり、太陽電池1の出
力は蓄電池2で平滑化され、インバータ3および連系リ
アクトル4を介して他の電力系統9へ供給される。5は
蓄電池電圧を検出するための電圧検出器、8′はインバ
ータが他の系統へ給電する電力量を制御する制御回路、
10は太陽電池の逆流防止素子である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing a method of controlling a solar power generation interconnection system according to an embodiment of the present invention, and FIG. 2 is a diagram showing waveforms of various parts to explain the operation. This will be explained below using figures. In the figure, 1 is a solar cell, 2 is a storage battery connected in parallel with the solar cell 1, and the output of the solar cell 1 is smoothed by the storage battery 2, and connected to other power systems via an inverter 3 and a interconnection reactor 4. 9. 5 is a voltage detector for detecting the storage battery voltage; 8' is a control circuit that controls the amount of power that the inverter supplies to other systems;
10 is a backflow prevention element for a solar cell.

【0010】一日のうちのある一期間での太陽電池1の
電力量の変動例を図2のAに示す。太陽電池1の発電電
力量がインバータ3により系統9へ給電している電力量
より少ない場合には、蓄電池2より系統へ給電されてい
るために蓄電池電圧が低下し、逆に太陽電池1の発電電
力量がインバータ3により系統へ給電している電力量よ
り多い場合には太陽電池1から蓄電池2へ充電されるた
めに蓄電池電圧が上昇し図2のCのように変動する。
FIG. 2A shows an example of the variation in the amount of power of the solar cell 1 during a certain period of the day. If the amount of power generated by the solar cell 1 is less than the amount of power being supplied to the grid 9 by the inverter 3, the storage battery voltage will drop because power is being supplied from the storage battery 2 to the grid, and conversely the power generated by the solar cell 1 will be reduced. When the amount of electric power is greater than the amount of electric power being supplied to the grid by the inverter 3, the storage battery 2 is charged from the solar cell 1, so that the storage battery voltage increases and fluctuates as shown in C in FIG.

【0011】そこで、制御回路8は蓄電池2の電圧を電
圧検出器5より検出しこれが浮動充電電圧に収束するよ
うインバータ3の電力量を制御する。つまり、蓄電池2
の電圧が浮動充電電圧より低下している場合は、インバ
ータ3が系統9へ給電している電力量を減少させ、浮動
充電電圧より上昇している場合は、インバータ3が系統
9へ給電している電力量を増加させるように制御を行う
Therefore, the control circuit 8 detects the voltage of the storage battery 2 by the voltage detector 5 and controls the amount of power of the inverter 3 so that the voltage converges to the floating charging voltage. In other words, storage battery 2
If the voltage is lower than the floating charging voltage, inverter 3 reduces the amount of power feeding to grid 9, and if it is rising above the floating charging voltage, inverter 3 reduces the amount of power feeding to grid 9. Control is performed to increase the amount of electricity being used.

【0012】このように蓄電池電圧を浮動充電電圧に収
束させるように動作させることによって、蓄電池は常に
満充電状態に収束しかつ太陽電池は最適動作電圧付近で
動作するように制御することができる。また以上の電力
量の増減の制御を低速またはなめらかにおこなうことに
より図2のBのように電力量を変化させることができる
。これにより太陽電池1の急激な出力電力の変動を吸収
することができる。
By operating the storage battery voltage so as to converge it to the floating charging voltage in this manner, it is possible to control the storage battery so that it always converges to a fully charged state and the solar cell to operate near the optimum operating voltage. Furthermore, by performing the above-described control for increasing and decreasing the amount of electric power at a low speed or smoothly, the amount of electric power can be changed as shown in B in FIG. 2. Thereby, sudden fluctuations in the output power of the solar cell 1 can be absorbed.

【0013】[0013]

【発明の効果】以上のように本発明によれば蓄電池を併
設した太陽光発電連系システムに於て、蓄電池電圧をの
みを検出し、これを浮動充電電圧に収束するようインバ
ータが給電している電力を制御するという簡単な方法で
、太陽電池の出力電力量を平滑化し、蓄電池の充電量を
満充電状態に収束させることができるため、蓄電池の充
放電管理を行う必要がなく、蓄電池に与える悪影響が少
なく、太陽電池を常に最適動作電圧付近で動作させるこ
とができるという効果がある。
[Effects of the Invention] As described above, according to the present invention, in a solar power generation interconnection system equipped with a storage battery, an inverter supplies power so that only the storage battery voltage is detected and this is converged to a floating charging voltage. By simply controlling the amount of power that is being used, it is possible to smooth the output power of the solar cell and converge the charge amount of the storage battery to a fully charged state, so there is no need to manage the charging and discharging of the storage battery, and the storage battery This has the advantage that there are few negative effects and the solar cell can always be operated near the optimum operating voltage.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例による太陽光発電連系システ
ムの制御法を示す構成図。
FIG. 1 is a configuration diagram showing a control method for a solar power generation interconnection system according to an embodiment of the present invention.

【図2】図1の動作を説明するための各部の波形を示す
図。
FIG. 2 is a diagram showing waveforms of various parts for explaining the operation of FIG. 1;

【図3】従来例による太陽光発電連系システムの制御法
を示す構成図。
FIG. 3 is a configuration diagram showing a conventional control method for a solar power generation interconnection system.

【図4】図3の動作を説明するための各部の波形を示す
図。
FIG. 4 is a diagram showing waveforms of various parts for explaining the operation of FIG. 3;

【符号の説明】[Explanation of symbols]

1  太陽電池 2  蓄電池 3  インバータ 4  連系リアクトル 5  電圧検出器 8  制御回路 9  給電する他の電源系統 1. Solar cells 2 Storage battery 3 Inverter 4 Grid interconnection reactor 5 Voltage detector 8 Control circuit 9 Other power supply systems for power supply

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  太陽電池及びこれに並列に接続された
蓄電池よりインバータを介して他の交流系統に電力を供
給する太陽光発電連系システムに於て、太陽電池の最適
動作電圧が蓄電池の浮動充電電圧になるように蓄電池を
選定し、上記蓄電池の電圧を検出し、蓄電池電圧が浮動
充電電圧より低い場合には上記インバータから他の交流
系統に給電する電力量を減少させ、蓄電池電圧が浮動充
電電圧より高い場合には給電する電力量を増加させるよ
うに制御することを特徴とする太陽光発電連系システム
の制御法。
Claim 1: In a solar power generation interconnection system in which power is supplied from a solar cell and a storage battery connected in parallel to another AC system via an inverter, the optimum operating voltage of the solar cell is determined by the floating voltage of the storage battery. A storage battery is selected so as to have a charging voltage, the voltage of the storage battery is detected, and if the storage battery voltage is lower than the floating charging voltage, the amount of power supplied from the inverter to other AC systems is reduced, and the voltage of the storage battery is floating. A control method for a solar power generation interconnection system, characterized in that control is performed to increase the amount of power supplied when the voltage is higher than the charging voltage.
JP3098214A 1991-04-02 1991-04-02 Control method for photovoltaic power generation linking system Pending JPH04308431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3098214A JPH04308431A (en) 1991-04-02 1991-04-02 Control method for photovoltaic power generation linking system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3098214A JPH04308431A (en) 1991-04-02 1991-04-02 Control method for photovoltaic power generation linking system

Publications (1)

Publication Number Publication Date
JPH04308431A true JPH04308431A (en) 1992-10-30

Family

ID=14213727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3098214A Pending JPH04308431A (en) 1991-04-02 1991-04-02 Control method for photovoltaic power generation linking system

Country Status (1)

Country Link
JP (1) JPH04308431A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283749A (en) * 1993-02-17 1994-10-07 Sanyo Electric Co Ltd Method and circuit for detecting output of solar cell
WO1995000806A1 (en) * 1993-06-17 1995-01-05 Devappa Device for generating electric power from solar energy
JP2015163015A (en) * 2014-02-28 2015-09-07 東芝Itコントロールシステム株式会社 Output fluctuation suppression system for distributed power supply
WO2020157922A1 (en) * 2019-01-31 2020-08-06 国立大学法人東北大学 Dc power supply and power system
JP2021118634A (en) * 2020-01-28 2021-08-10 国立大学法人東北大学 Dc power supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283749A (en) * 1993-02-17 1994-10-07 Sanyo Electric Co Ltd Method and circuit for detecting output of solar cell
WO1995000806A1 (en) * 1993-06-17 1995-01-05 Devappa Device for generating electric power from solar energy
JP2015163015A (en) * 2014-02-28 2015-09-07 東芝Itコントロールシステム株式会社 Output fluctuation suppression system for distributed power supply
WO2020157922A1 (en) * 2019-01-31 2020-08-06 国立大学法人東北大学 Dc power supply and power system
JP2021118634A (en) * 2020-01-28 2021-08-10 国立大学法人東北大学 Dc power supply device

Similar Documents

Publication Publication Date Title
RU2565235C2 (en) Regulating contribution of secondary power supply sources to distribution network
US4725740A (en) DC-AC converting arrangement for photovoltaic system
JP4170565B2 (en) Power fluctuation smoothing apparatus and control method of distributed power supply system including the same
WO2013128947A1 (en) Power control system, power control device, and power control method
US20150288189A1 (en) Power control apparatus, power control method, program, and energy management system
KR101794837B1 (en) The charge and discharge of photovoltaic power generation the control unit system
CN116054237B (en) Power limiting method based on optical storage common direct current bus system
JPH06351266A (en) Air-conditioner
JP2003317808A (en) Charge/discharge control method of sodium - sulfur battery, and power preservation device and power compensation device
JP5480343B2 (en) DC power supply system
JP4267541B2 (en) Power supply
JPH04308431A (en) Control method for photovoltaic power generation linking system
KR101737461B1 (en) System for obtaining a driving power source to the power generation of the solar cell and method therefor
KR100956105B1 (en) The charge system using the multi-photovoltaic power supply plate
JP6795082B2 (en) DC power supply system
KR101162221B1 (en) An apparatus of preventing over-charging/over-discharging for an energy storage and a method thereof
JPH10174312A (en) System interconnection operating method for hybrid power supply system involving photovoltaic power generation and wind power generation
JPH06266455A (en) Photovoltaic power generating equipment capable of jointly using battery
WO2021261094A1 (en) Dc bus control system
JP3530519B2 (en) Voltage equalizing device for power storage device and power storage system provided with the device
JP3688744B2 (en) Solar power plant
JP2006067673A (en) Power supply apparatus
JP2006067672A (en) Power supply apparatus
JP2022072945A (en) Storage battery system
JP2019193524A (en) Solar battery charge device and solar battery charging method