JP4267541B2 - Power supply - Google Patents

Power supply Download PDF

Info

Publication number
JP4267541B2
JP4267541B2 JP2004243314A JP2004243314A JP4267541B2 JP 4267541 B2 JP4267541 B2 JP 4267541B2 JP 2004243314 A JP2004243314 A JP 2004243314A JP 2004243314 A JP2004243314 A JP 2004243314A JP 4267541 B2 JP4267541 B2 JP 4267541B2
Authority
JP
Japan
Prior art keywords
power
storage battery
charging
voltage
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004243314A
Other languages
Japanese (ja)
Other versions
JP2006060984A (en
Inventor
篤史 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Panasonic Ecology Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Ecology Systems Co Ltd filed Critical Panasonic Ecology Systems Co Ltd
Priority to JP2004243314A priority Critical patent/JP4267541B2/en
Publication of JP2006060984A publication Critical patent/JP2006060984A/en
Application granted granted Critical
Publication of JP4267541B2 publication Critical patent/JP4267541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Description

本発明は、インバータ技術を利用した電源装置に関する。   The present invention relates to a power supply device using inverter technology.

近年、一般家庭の負荷の増加による化石燃料の枯渇、地球温暖化問題などが生じており、太陽光発電システムや節電装置、あるいは系統電圧の安定化装置などによる、クリーンエネルギーの利用や省エネルギー装置が求められている。   In recent years, fossil fuel depletion and global warming have occurred due to an increase in the load on ordinary households. Use of clean energy and energy-saving devices such as solar power generation systems, power-saving devices, and system voltage stabilization devices have been developed. It has been demanded.

従来、この種の電源装置は、発電装置の発電電力を系統側に連系する系統連系電力変換装置として、進相無効成分を含む電流を出力し、需要家負荷の消費電力を低減可能とするものが知られている(例えば、特許文献1参照)。   Conventionally, this type of power supply device can output a current including a phase advance invalid component as a grid-connected power conversion device that links the generated power of the power generator to the grid side, and can reduce power consumption of a consumer load. Is known (see, for example, Patent Document 1).

以下、その電源装置について図15及び図16を参照しながら説明する。   Hereinafter, the power supply apparatus will be described with reference to FIGS. 15 and 16.

図15に示すように、系統連系インバータ101から配電系統102へ進相無効成分を含む電流Iinvを出力すると、需要家一般負荷103への供給電圧Vline=Vinvは、系統電圧Vgに系統インピーダンス104(R+j×L)における電圧降下分Vdifを加えた値となる。図16の(a)は太陽光の照射があり直流電源が配電系統102に有効電力を供給している有効電力調整モードで、系統連系インバータ101は直流電源からの直流電力を交流電力に変換し、配電系統102および需要家一般負荷103に電力供給した場合のベクトル図を示す。この運転モードでは、通常負荷電圧Vlineは系統電圧Vgより高くなる。次に図16の(b)では、系統連系インバータ101の制御を変えて同時に無効電力を配電系統102および需要家一般負荷103に供給している場合のベクトル図を示す。この場合、図に示すように、負荷電圧Vlineが系統電圧Vgより低くなり、系統インピーダンス104の定数を加味して有効電力および無効電力を適切に制御することにより、需要家一般負荷103に供給する負荷電圧Vlineをその運転可能下限電圧以上の範囲で定格電圧より低い電圧値に制御することができることとなる。よって、需要家一般負荷103への供給電圧をその定格電圧未満に制御することができ、需要家一般負荷103の消費電力を低減可能としている。
特開2003−153444号公報
As shown in FIG. 15, when a current Iinv including a phase advance invalid component is output from the grid interconnection inverter 101 to the distribution system 102, the supply voltage Vline = Vinv to the consumer general load 103 becomes the grid impedance 104 to the grid voltage Vg. A value obtained by adding the voltage drop Vdif at (R + j × L). (A) of FIG. 16 is an active power adjustment mode in which sunlight is radiated and the DC power supply supplies active power to the distribution system 102. The grid interconnection inverter 101 converts DC power from the DC power supply into AC power. And the vector diagram at the time of supplying electric power to the power distribution system 102 and the consumer general load 103 is shown. In this operation mode, the normal load voltage Vline is higher than the system voltage Vg. Next, FIG. 16B shows a vector diagram when the control of the grid interconnection inverter 101 is changed and reactive power is simultaneously supplied to the distribution system 102 and the consumer general load 103. In this case, as shown in the figure, the load voltage Vline is lower than the system voltage Vg, and the active power and the reactive power are appropriately controlled in consideration of the constant of the system impedance 104, thereby supplying the consumer general load 103. The load voltage Vline can be controlled to a voltage value lower than the rated voltage within a range equal to or higher than the operable lower limit voltage. Therefore, the supply voltage to the consumer general load 103 can be controlled to be lower than the rated voltage, and the power consumption of the consumer general load 103 can be reduced.
JP 2003-153444 A

このような従来の電源装置では、発電装置が地域に集中して設置され、系統電源に連系した場合、系統電源の電圧が上昇し、発電電力を抑制する必要が発生するという課題があり、確実に系統電圧の上昇を抑制し、かつ発電装置により発電した電力を有効に利用することが要求されている。   In such a conventional power supply device, when the power generation device is concentrated in the area and connected to the system power supply, there is a problem that the voltage of the system power supply rises and the generated power needs to be suppressed, It is required to reliably suppress the increase in system voltage and to effectively use the power generated by the power generator.

また、蓄電池の回復充電中に、発電電力が少なくなり、規定の定電流充電が行なえなくなる場合が発生し、回復充電に必要な時間が長くなる、あるいは回復充電と中断状態を反復することで蓄電池の過充電、すなわち蓄電池の寿命に影響を及ぼす可能性があるという課題があり、回復充電を効率的に行なう電源装置が要求されている。   In addition, during the recovery charge of the storage battery, the generated power may be reduced and the specified constant current charge may not be performed, and the time required for the recovery charge becomes longer, or the storage battery is repeated by repeating the recovery charge and the suspended state. Overcharging, that is, there is a possibility of affecting the life of the storage battery, and a power supply device that efficiently performs recovery charging is required.

さらに、太陽光発電のような不安定な電力供給源の場合、回復充電中に充分な発電電力が得られなくなることで、蓄電池電圧が下がり、再度発電電力が多くなった際に通常の蓄電池への充電方法をとった場合、蓄電池電圧が規定電圧を超過し、蓄電池の寿命に影響を及ぼす可能性があるという課題があり、回復充電中においても発電電力の変動による蓄電池の規定電圧オーバーシュートを抑制する必要がある。   Furthermore, in the case of an unstable power supply source such as solar power generation, sufficient generated power cannot be obtained during recovery charging, so that the storage battery voltage decreases and the generated power increases again. If this method is used, there is a problem that the storage battery voltage exceeds the specified voltage, which may affect the life of the storage battery. It is necessary to suppress it.

また、発電電力のみによる回復充電であっても、回復充電を効率的に行ない、かつ蓄電池の長寿命化に対して悪影響を抑制した充電を行なうことができる電源装置を提供することを目的としている。   It is another object of the present invention to provide a power supply device that can efficiently perform recovery charging and perform charging while suppressing adverse effects on extending the life of a storage battery, even if it is recovery charging using only generated power. .

本発明の電源装置は上記目的を達成するために、発電手段と、前記発電手段により得られた発電電力を交流電源へ出力する、スイッチング素子と逆並列したダイオードを上下に直列接続した2つのアームにより構成したフルブリッジインバータと、前記2つのアームに並列に接続したコンデンサと、フルブリッジインバータを制御する主回路制御部を備えた系統連系インバータにおいて、前記コンデンサに並列接続し、かつ交流電源の電圧の上下変動に応じて前記発電手段からの発電電力を充電あるいは交流電源出力するための放電を行なう蓄電池と、前記発電手段の発電電力が前記蓄電池の定電圧充電に必要な電力量を満たさなかった場合であっても充電を継続し、かつ充電継続時間をカウントしない定電圧充電手段とを備える構成としたものである。 In order to achieve the above object, the power supply device of the present invention has two arms in which a diode in reverse parallel to a switching element is connected in series up and down, which outputs power generated by the power generating means to the AC power source. A grid-connected inverter having a main circuit control unit for controlling the full-bridge inverter, connected in parallel to the capacitor, and connected to the AC power source. filled electric storage battery in response to vertical fluctuations of the voltage to discharge to charge or AC power supply output power generated from the power generating means, the amount of power required to the constant voltage charging of the generated power is the battery of the power generating means even if no then continue charging, and was configured to Ru and a constant voltage charging means, not counting the charging duration Than is.

この手段により、発電装置が集中設置された場合であっても、系統電源の電圧上昇を抑制しつつ、発電電力を有効利用することができる電源装置が得られる。   By this means, even when the power generation apparatus is centrally installed, a power supply apparatus that can effectively use the generated power while suppressing an increase in the voltage of the system power supply can be obtained.

また、特にこの手段により、発電電力のみによる回復充電であっても、回復充電を効率的に行ない、かつ充電効率の悪い場合には充電量をカウントせず、蓄電池の長寿命化に対して悪影響を抑制した充電を行なうことができる電源装置が得られる。In particular, by this means, even if recovery charging is performed only with generated power, recovery charging is performed efficiently, and if the charging efficiency is low, the charging amount is not counted, and the storage battery has a long life. A power supply device that can perform charging while suppressing the above is obtained.

また、発電手段の発電電力が、蓄電池の定電流充電に必要な電力量を満たさなかった場合であっても充電を継続する定電流充電手段を備える構成としたものである。   Moreover, even if it is a case where the generated electric power of an electric power generation means does not satisfy | fill the electric energy required for the constant current charge of a storage battery, it was set as the structure provided with the constant current charge means which continues charging.

この手段により、発電電力のみによる回復充電であっても、回復充電を効率的に行ない、かつ蓄電池の長寿命化に対して悪影響を抑制した充電を行なうことができる電源装置が得られる。   By this means, a power supply device can be obtained that can perform recovery charging efficiently and perform charging while suppressing adverse effects on the extension of the life of the storage battery, even if it is recovery charging using only generated power.

また、蓄電池の充電制御において、発電手段の発電電力が変動による、蓄電池電圧のオーバーシュートを抑制する蓄電池電圧抑制手段を備える構成としたものである。   In addition, the storage battery charging control includes a storage battery voltage suppression unit that suppresses overshoot of the storage battery voltage due to fluctuations in the generated power of the power generation unit.

この手段により、発電電力のみによる回復充電であっても、蓄電池の電圧を規定範囲内とすることができ、蓄電池の長寿命化に対して悪影響を抑制した充電を行なうことができる電源装置が得られる。   By this means, even when recovery charging is performed only with generated power, the voltage of the storage battery can be kept within the specified range, and a power supply device that can perform charging while suppressing adverse effects on the extension of the life of the storage battery is obtained. It is done.

さらに、蓄電池電圧抑制手段は、蓄電池電圧の比例積分制御を備える構成としたものである。   Furthermore, the storage battery voltage suppression means is configured to include proportional integration control of the storage battery voltage.

この手段により、発電電力のみによる回復充電であっても、蓄電池の電圧を規定範囲内とすることができ、蓄電池の長寿命化に対して悪影響を抑制した充電を行なうことができる電源装置が得られる。   By this means, even when recovery charging is performed only with generated power, the voltage of the storage battery can be kept within the specified range, and a power supply device that can perform charging while suppressing adverse effects on the extension of the life of the storage battery is obtained. It is done.

また、蓄電池電圧抑制手段は、蓄電池電圧の比例積分制御及び微分制御を備える構成としたものである。   Moreover, the storage battery voltage suppression means is configured to include proportional-integral control and differential control of the storage battery voltage.

この手段により、発電電力のみによる回復充電で急峻な蓄電池電圧の上昇があっても、蓄電池の電圧を規定範囲内とすることができ、蓄電池の長寿命化に対して悪影響を抑制した充電を行なうことができる電源装置が得られる。   By this means, even if there is a steep rise in the storage battery voltage due to recovery charging using only the generated power, the voltage of the storage battery can be kept within the specified range, and charging is performed while suppressing adverse effects on extending the life of the storage battery. A power supply device is obtained.

本発明によれば、発電手段と、前記発電手段により得られた発電電力を交流電源へ出力する、スイッチング素子と逆並列したダイオードを上下に直列接続した2つのアームにより構成したフルブリッジインバータと、前記2つのアームに並列に接続したコンデンサと、フルブリッジインバータを制御する主回路制御部を備えた系統連系インバータにおいて、前記コンデンサに並列接続し、かつ交流電源の電圧の上下変動に応じて前記発電手段からの発電電力を充電あるいは交流電源出力するための放電を行なう蓄電池と、前記発電手段の発電電力が前記蓄電池の定電圧充電に必要な電力量を満たさなかった場合であっても充電を継続し、かつ充電継続時間をカウントしない定電圧充電手段とを備える構成とすることで、発電装置が集中設置された場合であっても、系統電源の電圧上昇を抑制しつつ、発電電力を有効利用することができるという効果のある電源装置を提供できる。 According to the present invention, a full-bridge inverter configured by two arms in which a diode in reverse parallel to a switching element is connected in series up and down, which outputs power generated by the power generating means to an AC power source, In a grid-connected inverter provided with a capacitor connected in parallel to the two arms and a main circuit control unit for controlling a full bridge inverter, the capacitor is connected in parallel, and according to the vertical fluctuation of the voltage of the AC power supply charging a power storage battery for performing discharge for charging or AC power supply output power generated from the power generation means, even when the generated power of the generator unit does not satisfy the amount of power required to the constant voltage charging of the battery It continues, and is formed to have a structure in which Ru and a constant voltage charging means, not counting the charging duration, power plant of concentrated installation Even when an, while suppressing the voltage rise of the system power source, it is possible to provide a power supply device having the effect that the generated power can be effectively utilized.

そして特に、発電電力のみによる回復充電であっても、回復充電を効率的に行ない、かつ充電効率の悪い場合には充電量をカウントせず、蓄電池の長寿命化に対して悪影響を抑制した充電を行なうことができるという効果のある電源装置を提供できる。 And in particular, even in the recovery charging with only outgoing denden force, effectively it performs recovery charge, and not counting the amount of charge when poor charging efficiency, to suppress an adverse effect on the life of the battery It is possible to provide a power supply device that can be charged.

また、発電手段の発電電力が、蓄電池の定電流充電に必要な電力量を満たさなかった場合であっても充電を継続する定電流充電手段を備える構成とすることで、発電電力のみによる回復充電であっても、回復充電を効率的に行ない、かつ蓄電池の長寿命化に対して悪影響を抑制した充電を行なうことができるという効果のある電源装置を提供できる。   Moreover, even if the power generated by the power generation means does not satisfy the amount of power required for constant current charging of the storage battery, the power supply is equipped with constant current charging means that continues charging, so that recovery charging using only generated power is possible. Even in this case, it is possible to provide a power supply device that can perform recovery charging efficiently and perform charging while suppressing adverse effects on extending the life of the storage battery.

また、蓄電池の充電制御において、発電手段の発電電力が変動による、蓄電池電圧のオーバーシュートを抑制する蓄電池電圧抑制手段を備える構成とすることで、発電電力のみによる回復充電であっても、蓄電池の電圧を規定範囲内とすることができ、蓄電池の長寿命化に対して悪影響を抑制した充電を行なうことができるという効果のある電源装置を提供できる。   Moreover, in the charging control of the storage battery, the storage battery voltage suppression means that suppresses the overshoot of the storage battery voltage due to fluctuations in the generated power of the power generation means is provided. It is possible to provide a power supply device that can make the voltage within a specified range and can perform charging while suppressing adverse effects on extending the life of the storage battery.

さらに、蓄電池電圧抑制手段は、蓄電池電圧の比例積分制御を備える構成とすることで、発電電力のみによる回復充電であっても、蓄電池の電圧を規定範囲内とすることができ、蓄電池の長寿命化に対して悪影響を抑制した充電を行なうことができるという効果のある電源装置を提供できる。   Furthermore, the storage battery voltage suppression means is configured to have a proportional integral control of the storage battery voltage, so that the voltage of the storage battery can be within the specified range even when recovery charging is performed only by the generated power, and the long life of the storage battery Thus, it is possible to provide a power supply device having an effect of being able to perform charging while suppressing adverse effects on the conversion.

また、蓄電池電圧抑制手段は、蓄電池電圧の比例積分制御及び微分制御を備える構成とすることで、発電電力のみによる回復充電で急峻な蓄電池電圧の上昇があっても、蓄電池の電圧を規定範囲内とすることができ、蓄電池の長寿命化に対して悪影響を抑制した充電を行なうことができるという効果のある電源装置を提供できる。   In addition, the storage battery voltage suppression means includes a proportional integral control and a differentiation control of the storage battery voltage, so that the storage battery voltage is kept within a specified range even if there is a sharp increase in the storage battery voltage due to recovery charging only by the generated power. Therefore, it is possible to provide a power supply device that can perform charging while suppressing adverse effects on extending the life of the storage battery.

本発明の請求項1記載の発明は、発電手段と、前記発電手段により得られた発電電力を交流電源へ出力する,スイッチング素子と逆並列したダイオードを上下に直列接続した2つのアームにより構成したフルブリッジインバータと、前記2つのアームに並列に接続したコンデンサと、フルブリッジインバータを制御する主回路制御部を備えた系統連系インバータにおいて、前記コンデンサに並列接続し、かつ交流電源の電圧の上下変動に応じて前記発電手段からの発電電力を充電あるいは交流電源出力するための放電を行なう蓄電を備え、前記発電手段の発電電力が前記蓄電池の定電圧充電に必要な電力量を満たさなかった場合であっても充電を継続し、かつ充電継続時間をカウントしない定電圧充電手段を備える構成としたものであり、発電装置が集中設置された場合であっても、系統電源の電圧上昇を抑制しつつ、発電電力を有効利用することができるという作用を有する。そして特に、発電電力のみによる回復充電であっても、回復充電を効率的に行ない、かつ充電効率の悪い場合には充電量をカウントせず、蓄電池の長寿命化に対する悪影響を抑制した充電を行なうことができるという作用を有する。 The invention according to claim 1 of the present invention is constituted by a power generation means and two arms in which a diode in reverse parallel to a switching element is connected in series up and down, which outputs the generated power obtained by the power generation means to an AC power source. In a grid-connected inverter having a full bridge inverter, a capacitor connected in parallel to the two arms, and a main circuit control unit for controlling the full bridge inverter, the capacitor is connected in parallel and the voltage of the AC power supply is comprising a power storage battery in accordance with the fluctuation to discharge for charging or AC power supply output power generated from the power generating means, the generated power of the generator unit does not satisfy the amount of power required to the constant voltage charging of the battery even when continuing the charging, and is obtained by a configuration in which Ru with constant voltage charging means, not counting the charging duration, Even if the collector is focused installed, an effect that it is possible while suppressing the voltage rise of the system power source, to effectively utilize the generated power. In particular, even if the recovery charge is based only on the generated power, the recovery charge is efficiently performed, and if the charging efficiency is poor, the charging amount is not counted and the charging is performed while suppressing the adverse effect on the extension of the life of the storage battery. It has the effect of being able to.

また、発電手段の発電電力が、蓄電池の定電流充電に必要な電力量を満たさなかった場合であっても充電を継続する定電流充電手段を備える構成としたものであり、発電電力のみによる回復充電であっても、回復充電を効率的に行ない、かつ蓄電池の長寿命化に対して悪影響を抑制した充電を行なうことができるという作用を有する。   In addition, the power generation means has a configuration including constant current charging means that continues charging even when the amount of power required for constant current charging of the storage battery is not satisfied. Even if it is charge, it has the effect | action which can perform recovery charge efficiently and can perform charge which suppressed the bad influence with respect to the lifetime extension of a storage battery.

また、蓄電池の充電制御において、発電手段の発電電力が変動による、蓄電池電圧のオーバーシュートを抑制する蓄電池電圧抑制手段を備える構成としたものであり、発電電力のみによる回復充電であっても、蓄電池の電圧を規定範囲内とすることができ、蓄電池の長寿命化に対して悪影響を抑制した充電を行なうことができるという作用を有する。   In addition, in the storage battery charging control, the storage battery voltage suppression means for suppressing the overshoot of the storage battery voltage due to fluctuations in the generated power of the power generation means is provided. Thus, the battery can be charged with an adverse effect on the extension of the life of the storage battery.

さらに、蓄電池電圧抑制手段は、蓄電池電圧の比例積分制御を備える構成としたものであり、発電電力のみによる回復充電であっても、蓄電池の電圧を規定範囲内とすることができ、蓄電池の長寿命化に対して悪影響を抑制した充電を行なうことができるという作用を有する。   Furthermore, the storage battery voltage suppression means is configured to have a proportional integral control of the storage battery voltage, and the storage battery voltage can be within a specified range even in the recovery charge only by the generated power. It has the effect that it is possible to perform charging while suppressing adverse effects on the life extension.

また、蓄電池電圧抑制手段は、蓄電池電圧の比例積分制御及び微分制御を備える構成としたものであり、発電電力のみによる回復充電で急峻な蓄電池電圧の上昇があっても、蓄電池の電圧を規定範囲内とすることができ、蓄電池の長寿命化に対して悪影響を抑制した充電を行なうことができるという作用を有する。   In addition, the storage battery voltage suppression means is configured to have proportional integral control and differential control of the storage battery voltage, and even if there is a sharp increase in the storage battery voltage due to recovery charging only by the generated power, the storage battery voltage is regulated within a specified range. It has the effect | action that it can carry out inside and can perform the charge which suppressed the bad influence with respect to the lifetime extension of a storage battery.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

前提例1
図1は、前提例1における電源装置の構成図を示す。
( Assumption example 1 )
FIG. 1 is a configuration diagram of a power supply device according to the first premise example .

図に示すように、発電手段1としての太陽電池1a及び昇圧チョッパ回路1bと、太陽電池1aからの電力を昇圧チョッパ回路1bにより昇電圧した発電電力を交流電源2へ出力する、スイッチング素子3a〜3dと逆並列したダイオード4a〜4dを上下に直列接続した2つのアーム5a及び5bにより構成したフルブリッジインバータ6と、前記2つのアーム5a及び5bに並列に接続したコンデンサ7と、フルブリッジインバータ6を制御する主回路制御部8を備えた系統連系インバータ9において、前記コンデンサ7に並列接続し、かつ交流電源2の電圧の上下変動に応じて発電手段1からの発電電力を充電あるいは交流電源2に出力するための放電を行なう蓄電手段10としての蓄電池10a、充放電回路10b及び充放電制御部10cにより構成している。   As shown in the figure, a solar cell 1a and a step-up chopper circuit 1b as power generation means 1, and switching elements 3a to 3a that output generated power obtained by raising the power from the solar cell 1a by the step-up chopper circuit 1b to an AC power source 2. A full bridge inverter 6 composed of two arms 5a and 5b in which diodes 4a to 4d antiparallel to 3d are vertically connected in series, a capacitor 7 connected in parallel to the two arms 5a and 5b, and a full bridge inverter 6 In a grid-connected inverter 9 having a main circuit control unit 8 for controlling the power supply, the generator 7 is connected in parallel with the capacitor 7 and the generated power from the power generation means 1 is charged according to the vertical fluctuation of the voltage of the AC power supply 2 or the AC power supply. A storage battery 10a, a charge / discharge circuit 10b, and a charge / discharge control unit as a power storage means 10 for discharging to output to 2. It is constituted by 0c.

次に、充放電制御部10cの制御フローチャートについて、図2を参照しながら説明する。   Next, a control flowchart of the charge / discharge control unit 10c will be described with reference to FIG.

図に示すように、充放電制御部10cは、系統電圧Vacを入力する。系統電圧Vacが系統上限電圧Vac_maxを超えた場合、系統連系インバータ9の出力電流指令値を△Iのみ下げるように指令する。この時の出力電流指令値を下げるのはゼロまでとし、交流電源2から受電することは行なわない。この指令により、発電電力の需給バランスが崩れるため、中間のコンデンサ7の電圧が上昇することとなる。次に、充放電制御部10cはコンデンサ7の電圧を入力する。入力したコンデンサ7の電圧Vcが充電閾値Vchより高いか否かを判定し、Vch以上であれば充電を行なう。充電電流の指令値は、コンデンサ7の電圧の目標値Vch*と実際の電圧値Vcとの偏差からPI制御器に入力し、算出する。ここで、充電電流指令値は、蓄電池10aの充電可能電流Ib_chaより大きければ、充電電流指令値はIb_chaに制限する。さらに充電電流を制限し、交流電源2への出力を絞ることにより、発電電力の需給バランスが崩れた場合には、昇圧チョッパ回路1bは太陽電池1aのMPPT制御(最大電力追従制御)を外れて定電力制御へリミット制御することとなる。逆に、系統電圧Vacが系統下限電圧Vac_minを下回った場合、系統連系インバータ9の出力電流指令値を△Iのみ上げるように指令する。この時の出力電流の指令は、系統連系インバータ9から出力可能な最大電流Iinv_maxまでとし、リミット制御を行なう。この出力電流の増加指令により、発電電力の需給バランスが崩れるため、中間のコンデンサ7の電圧は低下することとなる。次に充放電制御部10cはコンデンサ7の電圧を入力する。入力したコンデンサ7の電圧Vcが放電閾値Vclより低いか否かを判定し、Vcl以下であれば放電を行なう。また、放電電流の指令値は、充電の時と同様に、コンデンサ7の電圧の目標値Vcl*と実際の電圧値Vcとの偏差からPI制御器に入力し、算出する。さらに、放電電流指令値は、蓄電池10aの放電可能電流Ib_disより大きければ、放電電流指令値はIb_disに制限する。   As shown in the figure, the charge / discharge control unit 10c receives the system voltage Vac. When the system voltage Vac exceeds the system upper limit voltage Vac_max, the output current command value of the system interconnection inverter 9 is commanded to be lowered by ΔI. At this time, the output current command value is reduced to zero, and no power is received from the AC power source 2. Due to this command, the supply and demand balance of the generated power is lost, and the voltage of the intermediate capacitor 7 increases. Next, the charge / discharge control unit 10 c inputs the voltage of the capacitor 7. It is determined whether or not the input voltage Vc of the capacitor 7 is higher than the charging threshold value Vch. The command value for the charging current is calculated by inputting to the PI controller from the deviation between the target value Vch * of the voltage of the capacitor 7 and the actual voltage value Vc. Here, if the charging current command value is larger than the chargeable current Ib_cha of the storage battery 10a, the charging current command value is limited to Ib_cha. Further, by limiting the charging current and reducing the output to the AC power source 2, the boost chopper circuit 1b deviates from the MPPT control (maximum power follow-up control) of the solar cell 1a when the supply and demand balance of the generated power is lost. Limit control to constant power control will be performed. On the contrary, when the system voltage Vac falls below the system lower limit voltage Vac_min, the output current command value of the system interconnection inverter 9 is commanded to be increased by ΔI. The command of the output current at this time is limited to the maximum current Iinv_max that can be output from the grid interconnection inverter 9, and limit control is performed. Due to this output current increase command, the supply and demand balance of the generated power is disrupted, so the voltage of the intermediate capacitor 7 decreases. Next, the charge / discharge control unit 10 c inputs the voltage of the capacitor 7. It is determined whether or not the input voltage Vc of the capacitor 7 is lower than the discharge threshold value Vcl. The discharge current command value is calculated by inputting it to the PI controller from the deviation between the target value Vcl * of the voltage of the capacitor 7 and the actual voltage value Vc, as in the case of charging. Furthermore, if the discharge current command value is larger than the dischargeable current Ib_dis of the storage battery 10a, the discharge current command value is limited to Ib_dis.

以上のように、本前提例1によれば、太陽電池1a及び昇圧チョッパ回路1bと、太陽電池1aからの電力を昇圧チョッパ回路1bにより昇電圧した発電電力を交流電源2へ出力する、スイッチング素子3a〜3dと逆並列したダイオード4a〜4dを上下に直列接続した2つのアーム5a及び5bにより構成したフルブリッジインバータ6と、前記2つのアーム5a及び5bに並列に接続したコンデンサ7と、フルブリッジインバータ6を制御する主回路制御部8を備えた系統連系インバータ9において、前記コンデンサ7に並列接続し、かつ交流電源2の電圧の上下変動に応じて発電手段1からの発電電力を充電あるいは交流電源2に出力するための放電を行なう蓄電手段10としての蓄電池10a、充放電回路10b及び充放電制御部10cにより構成することで、フルブリッジインバータ6からの過剰電力を蓄電池10aへ充放電回路10bを通して充電あるいは放電することができることとなる。また、発電装置が集中設置された場合であっても、系統電源の電圧上昇を抑制しつつ、発電電力を有効利用することができる。 As described above, according to the first premise example , the solar cell 1a and the boost chopper circuit 1b, and the switching element that outputs the generated power obtained by raising the power from the solar cell 1a by the boost chopper circuit 1b to the AC power source 2. A full bridge inverter 6 composed of two arms 5a and 5b in which diodes 4a to 4d antiparallel to 3a to 3d are connected in series vertically, a capacitor 7 connected in parallel to the two arms 5a and 5b, and a full bridge In a grid-connected inverter 9 having a main circuit control unit 8 for controlling the inverter 6, it is connected in parallel to the capacitor 7, and the generated power from the power generation means 1 is charged according to the vertical fluctuation of the voltage of the AC power supply 2 or Storage battery 10a, charge / discharge circuit 10b, and charge / discharge control section as power storage means 10 for discharging to output to AC power supply 2 By configuring the 0c, and thus capable of charging or discharging the excess power from the full-bridge inverter 6 to the storage battery 10a through the charge-discharge circuit 10b. Further, even when the power generation devices are centrally installed, the generated power can be effectively used while suppressing the voltage increase of the system power supply.

なお、本実施例においては、蓄電手段10の蓄電媒体として蓄電池10aとしたが、電気二重層コンデンサ、ニッケル水素電池、リチウムイオン電池等であってもよい。   In this embodiment, the storage battery 10a is used as the storage medium of the storage means 10, but an electric double layer capacitor, a nickel metal hydride battery, a lithium ion battery, or the like may be used.

参考例1
図3は、本参考例1における電源装置の構成図を示す。
( Reference Example 1 )
FIG. 3 is a configuration diagram of the power supply device according to the first reference example .

図に示すように、参考例1における電源装置は、発電手段1としての太陽電池1a及び昇圧チョッパ回路1bと、太陽電池1aからの電力を昇圧チョッパ回路1bにより昇電圧した発電電力を交流電源2へ出力する、スイッチング素子3a〜3dと逆並列したダイオード4a〜4dを上下に直列接続した2つのアーム5a及び5bにより構成したフルブリッジインバータ6と、前記2つのアーム5a及び5bに並列に接続したコンデンサ7と、フルブリッジインバータ6を制御する主回路制御部8を備えた系統連系インバータ9において、前記コンデンサ7に並列接続し、かつ交流電源2の電圧の上下変動に応じて発電手段1からの発電電力を充電あるいは交流電源2に出力するための放電を行なう蓄電手段10としての蓄電池10a、充放電回路10b及び充放電制御部10cと、コンデンサ7とフルブリッジインバータ6との間に直列に挿入した、発電電力充電手段あるいは回復充電制御手段としての逆流防止ダイオード11aにより構成している。 As shown in the figure, the power supply device in Reference Example 1 includes a solar battery 1a and a step-up chopper circuit 1b as power generation means 1, and an AC power source 2 that generates power generated by boosting the power from the solar cell 1a by the step-up chopper circuit 1b. A full bridge inverter 6 composed of two arms 5a and 5b in which diodes 4a to 4d antiparallel to switching elements 3a to 3d connected in series are connected in parallel to the two arms 5a and 5b. In a grid-connected inverter 9 provided with a capacitor 7 and a main circuit control unit 8 for controlling the full-bridge inverter 6, it is connected in parallel to the capacitor 7 and from the power generation means 1 according to the vertical fluctuation of the voltage of the AC power supply 2. A storage battery 10a as a power storage means 10 for charging or discharging the generated power to be discharged or output to the AC power source 2; A circuit 10b and the charge-discharge control section 10c, is constituted by a blocking diode 11a as the inserted, generated power charging means or the recovery charging control means in series between the capacitor 7 and the full-bridge inverter 6.

以上のように、本参考例1によれば、蓄電手段10の蓄電池10aへの充電は、逆流防止ダイオード11aにより、交流電源2からの電力流入を防止し、発電手段1からの発電電力のみ充電あるいは蓄電池10aの回復充電を行なうことができる。 As described above, according to the first reference example , the storage battery 10a is charged by the storage means 10 by preventing the inflow of power from the AC power source 2 by the backflow prevention diode 11a and charging only the generated power from the power generation means 1. Or the recovery charge of the storage battery 10a can be performed.

参考例2
図4は、本参考例2における電源装置の構成図を示す。
( Reference Example 2 )
FIG. 4 is a configuration diagram of the power supply device according to the second reference example .

図に示すように、実施の形態3における電源装置は、発電手段1としての太陽電池1a及び昇圧チョッパ回路1bと、太陽電池1aからの電力を昇圧チョッパ回路1bにより昇電圧した発電電力を交流電源2へ出力する、スイッチング素子3a〜3dと逆並列したダイオード4a〜4dを上下に直列接続した2つのアーム5a及び5bにより構成したフルブリッジインバータ6と、前記2つのアーム5a及び5bに並列に接続したコンデンサ7と、フルブリッジインバータ6を制御する主回路制御部8を備えた系統連系インバータ9において、前記コンデンサ7に並列接続し、かつ交流電源2の電圧の上下変動に応じて発電手段1からの発電電力を充電あるいは交流電源2に出力するための放電を行なう蓄電手段10としての蓄電池10a、充放電回路10b及び充放電制御部10cと、発電電力充電手段あるいは回復充電制御手段としてのインバータ逆流防止制御部11bにより構成している。   As shown in the figure, the power supply apparatus according to the third embodiment includes a solar cell 1a and a boost chopper circuit 1b as power generation means 1, and an AC power source that generates power generated by boosting the power from the solar cell 1a by the boost chopper circuit 1b. 2 is connected in parallel to the two arms 5a and 5b, and a full bridge inverter 6 composed of two arms 5a and 5b in which diodes 4a to 4d antiparallel to the switching elements 3a to 3d are connected in series vertically. In the grid interconnection inverter 9 provided with the capacitor 7 and the main circuit control unit 8 for controlling the full bridge inverter 6, the power generation means 1 is connected in parallel to the capacitor 7 and according to the vertical fluctuation of the voltage of the AC power supply 2. A storage battery 10a serving as a power storage means 10 for performing a discharge for charging or outputting the generated power from the AC power source 2; A discharge circuit 10b and the charge and discharge control unit 10c, and then an inverter blocking control section 11b of the generated power charging unit or recovery charge control means.

次に、インバータ逆流防止制御部11bのフローチャートについて、図5を参照しながら説明する。   Next, a flowchart of the inverter backflow prevention control unit 11b will be described with reference to FIG.

図に示すように、インバータ逆流防止制御部11bは、フルブリッジインバータ6を制御する主回路制御部8の出力電力指令値を常時正の値Po_minをとるように出力下限値設定を送信する。また、充放電回路10bは、充電時にコンデンサ7の電圧がVc_chaとなるように制御する。このため、発電電力が充分ない状態となった時には、コンデンサ7の電圧は低下することとなる。従って、フルブリッジインバータ6を制御する主回路制御部8が常時正の値Po_minを出力下限値として動作することから、コンデンサ7の電圧の低下を充放電回路10bが制御することとなり、蓄電池10aへ充電するよう制御していた運転制御は充電電流を絞り、放電制御へと切り換わることとなる。   As shown in the figure, the inverter backflow prevention control unit 11b transmits an output lower limit value setting so that the output power command value of the main circuit control unit 8 that controls the full bridge inverter 6 always takes a positive value Po_min. The charging / discharging circuit 10b controls the voltage of the capacitor 7 to be Vc_cha during charging. For this reason, when the generated power becomes insufficient, the voltage of the capacitor 7 decreases. Accordingly, since the main circuit control unit 8 that controls the full bridge inverter 6 always operates with the positive value Po_min as the output lower limit value, the charge / discharge circuit 10b controls the decrease in the voltage of the capacitor 7, and the storage battery 10a is controlled. In the operation control that has been controlled to charge, the charging current is reduced and the control is switched to the discharge control.

以上のように、本実施の形態3によれば、蓄電手段10の蓄電池10aへの充電は、インバータ逆流防止制御部11bにより、交流電源2に対し、常時出力する制御を行なうため、交流電源2からの電力流入が防止でき、発電手段1からの発電電力のみ充電あるいは回復充電することができることとなる。   As described above, according to the third embodiment, charging of the storage battery 10a of the power storage means 10 is controlled by the inverter backflow prevention control unit 11b so that the AC power supply 2 is always output. Therefore, only the generated power from the power generation means 1 can be charged or recovered.

(実施の形態
図6は、本実施の形態における電源装置の構成図を示す。
(Embodiment 1 )
Figure 6 shows a block diagram of a power supply device according to the first embodiment.

図に示すように、実施の形態における電源装置は、発電手段1の発電電力が、蓄電池10aの定電流充電に必要な電力量を満たさなかった場合であっても充電を継続する定電流充電手段12と、発電手段1の発電電力が、蓄電池10aの定電圧充電に必要な電力量を満たさなかった場合であっても充電を継続し、かつ充電継続時間をカウントしない定電圧充電手段13と、蓄電池10aの充電制御において、発電手段1の発電電力が変動による、蓄電池10aの電圧のオーバーシュートを抑制する蓄電池電圧抑制手段14を備える構成としている。 As shown in the figure, the power supply device according to the first embodiment has constant current charging that continues charging even when the power generated by the power generation means 1 does not satisfy the amount of power required for constant current charging of the storage battery 10a. Means 12 and constant voltage charging means 13 that continues charging even when the power generated by the power generation means 1 does not satisfy the amount of power required for constant voltage charging of the storage battery 10a, and does not count the charging duration. In the charging control of the storage battery 10a, the storage battery voltage suppression means 14 is configured to suppress the overshoot of the voltage of the storage battery 10a due to fluctuations in the generated power of the power generation means 1.

次に、定電流充電手段12のフローチャートについて、図7を参照しながら説明する。   Next, a flowchart of the constant current charging unit 12 will be described with reference to FIG.

図に示すように、定電流充電手段12は、回復充電中であることを示す回復充電フラグ信号と、回復充電に必要な発電電力があるか否かを示す回復充電可能フラグ信号を入力する。入力した回復充電フラグ信号と回復充電可能フラグ信号の両信号がONすなわち回復充電中でかつ必要な発電電力が無い場合、コンデンサ7の電圧が一定となるよう制御し、定電流充電ではなく、コンデンサ7の電圧を一定に保ちながら充電制御を行なう。この時の充電電流の上限値は、蓄電池10aの定電流充電時の指令値を使用し蓄電池10aへの過充電も防止する。従って、蓄電池10aの定電流充電の指令値を超える充電量へと発電電力が増加した際には、上限値である定電流充電時の指令値により飽和し、上限値以上の指令とならないよう構成している。   As shown in the figure, the constant current charging means 12 inputs a recovery charge flag signal indicating that recovery charging is being performed and a recovery charge enable flag signal indicating whether or not there is generated power necessary for recovery charging. When both of the input recovery charge flag signal and recovery charge enable flag signal are ON, that is, during recovery charge and there is no necessary generated power, control is performed so that the voltage of the capacitor 7 becomes constant. Charge control is performed while keeping the voltage of 7 constant. The upper limit value of the charging current at this time uses a command value at the time of constant current charging of the storage battery 10a and prevents overcharging to the storage battery 10a. Therefore, when the generated power increases to a charge amount that exceeds the command value for constant current charging of the storage battery 10a, it is saturated by the command value at the time of constant current charging, which is the upper limit value, and does not become a command exceeding the upper limit value. is doing.

次に、定電圧充電手段13のフローチャートについて、図8を参照しながら説明する。   Next, a flowchart of the constant voltage charging unit 13 will be described with reference to FIG.

図に示すように、定電圧充電手段13は、回復充電中に蓄電池10aの電圧が規定の電圧に到達し、その時の充電電流が規定値より小さくなった場合、充電継続時間のカウントを開始する。その後、発電電力が減少し、蓄電池10aの定電圧充電が継続できなくなった時には、蓄電池10aへの充電は継続するが、充電継続時間のカウントを中断する。この充電継続時間のカウントは、再度発電電力が回復充電に充分な発電電力となり、蓄電池10aの電圧が規定電圧に到達すると同時に、規定の充電電流より小さくなった場合に再開する。この再開時の充電継続時間のカウントの初期値は、充電を中断した際のカウント値とする。   As shown in the figure, the constant voltage charging means 13 starts counting the charging duration when the voltage of the storage battery 10a reaches the specified voltage during the recovery charging and the charging current at that time becomes smaller than the specified value. . Thereafter, when the generated power decreases and the constant voltage charging of the storage battery 10a cannot be continued, the charging of the storage battery 10a is continued, but the counting of the charging duration time is interrupted. The counting of the charging duration time is resumed when the generated power becomes enough generated power for the recovery charge again, and the voltage of the storage battery 10a reaches the specified voltage and at the same time becomes smaller than the specified charging current. The initial value of the count of the charge continuation time at the time of resumption is the count value when charging is interrupted.

次に、蓄電池電圧抑制手段14の制御ブロックについて、図9を参照しながら説明する。   Next, the control block of the storage battery voltage suppression means 14 will be described with reference to FIG.

図に示すように、蓄電池電圧抑制手段14は、定電圧充電時の制御ブロックと定電流充電時の制御ブロックにより構成している。定電圧充電時の制御ブロックは、蓄電池10aの電圧目標値と、実際の蓄電池10aの電圧との偏差により充電電流を決定している。その充電電流の指令値は、偏差をPI制御器に入力することで計算する。次に定電流充電時の制御ブロックは、蓄電池10aの充電電流目標値と、実際の充電電流との偏差からPI制御器に入力することで充放電制御部10cに指令を送信する。さらに蓄電池10aの電圧の上昇速度が速い場合、図10に示すような、微分制御を追加しPID制御器へ蓄電池10aの電圧を入力することで対応する。微分制御の入力には蓄電池10aの電圧が逐次入力され、蓄電池10aの電圧変化量に微分ゲインを掛けることで演算する。これにより蓄電池10aの電圧は、充電状態に関わらず、規定電圧をオーバーしない制御としている。   As shown in the figure, the storage battery voltage suppression means 14 is composed of a control block for constant voltage charging and a control block for constant current charging. The control block at the time of constant voltage charging determines the charging current from the deviation between the voltage target value of the storage battery 10a and the actual voltage of the storage battery 10a. The charge current command value is calculated by inputting the deviation into the PI controller. Next, the control block at the time of constant current charge transmits a command to the charge / discharge control unit 10c by inputting the deviation between the charge current target value of the storage battery 10a and the actual charge current to the PI controller. Furthermore, when the rate of increase of the voltage of the storage battery 10a is fast, it is possible to add differential control as shown in FIG. 10 and input the voltage of the storage battery 10a to the PID controller. The voltage of the storage battery 10a is sequentially input to the input of the differential control, and calculation is performed by multiplying the voltage change amount of the storage battery 10a by a differential gain. Thereby, the voltage of the storage battery 10a is controlled not to exceed the specified voltage regardless of the state of charge.

図11に、蓄電池電圧抑制手段14による蓄電池10aの電圧上昇を抑えた結果例を示す。   In FIG. 11, the example of a result which suppressed the voltage rise of the storage battery 10a by the storage battery voltage suppression means 14 is shown.

図に示すように、蓄電池10aの電圧は、充電開始時の初期立ち上り速度は通常のPI制御器と同等であり、蓄電池10aの電圧が上昇してきた際には、規定電圧をオーバーしないように制御を可能としている。   As shown in the figure, the voltage of the storage battery 10a is controlled so that the initial rising speed at the start of charging is equivalent to that of a normal PI controller, and the specified voltage is not exceeded when the voltage of the storage battery 10a increases. Is possible.

以上のように、本実施の形態によれば、蓄電池10aへの回復充電中は発電電力を有効に充電するため、規定電流を充電できない場合であっても、蓄電池10aに充電することができる。また、蓄電池10aが満充電付近となり充電制御が定電圧充電に切り換わった後、発電電力が不足した場合、蓄電池10aの充電効率が悪化するため、充電カウントを停止し、蓄電池10aの長寿命化を図ることができる。さらに、蓄電池10aへの回復充電中に発電電力が減少し、一時的に蓄電池10aの電圧が低下した際には、定電流充電から再スタートする場合であっても、通常時の充電と同等の充電立ち上り速度を確保することで早期に充電を開始、継続することができ、また蓄電池10aの電圧は規定電圧を超えることなく制御することができる。 As described above, according to the first embodiment, since the generated power is effectively charged during the recovery charging of the storage battery 10a, the storage battery 10a can be charged even when the specified current cannot be charged. . In addition, if the storage battery 10a is near full charge and the charging control is switched to constant voltage charging, and the generated power is insufficient, the charging efficiency of the storage battery 10a deteriorates, so the charging count is stopped and the life of the storage battery 10a is extended. Can be achieved. Further, when the generated power is reduced during the recovery charging to the storage battery 10a and the voltage of the storage battery 10a is temporarily reduced, even when restarting from constant current charging, it is equivalent to normal charging. By ensuring the charging rising speed, charging can be started and continued at an early stage, and the voltage of the storage battery 10a can be controlled without exceeding the specified voltage.

参考例3
図12は、本参考例3における電源装置の構成図を示す。
( Reference Example 3 )
FIG. 12 is a configuration diagram of the power supply device according to the third reference example .

図に示すように、参考例3における電源装置は、蓄電池10aの回復充電中において、発電電力の給電優先順位は蓄電池10aを最優先とする優先順位制御手段15と、蓄電池10aの回復充電以外の場合、発電電力の給電優先順位は交流電源2への出力を最優先する第二優先順位制御手段16を備えている。 As shown in the figure, in the power supply device in Reference Example 3 , during the recovery charging of the storage battery 10a, the priority order of the power supply of the generated power is priority control means 15 that gives the storage battery 10a the highest priority, and the recovery charging of the storage battery 10a. In this case, the power supply priority order of the generated power includes the second priority control means 16 that gives the highest priority to the output to the AC power supply 2.

次に、優先順位制御手段15のフローチャートについて、図13を参照しながら説明する。   Next, a flowchart of the priority control means 15 will be described with reference to FIG.

図に示すように、優先順位制御手段15は、回復充電フラグ信号を入力し、回復充電であるか否かを判別する。判定した結果、回復充電中であれば、フルブリッジインバータ6を制御する主回路制御部8をコンデンサ7の電圧制御モードで動作するよう指令を送信する。さらに優先順位制御手段15は、充放電制御部10cに対して定電流充電制御を行なうように指令を送信する。   As shown in the figure, the priority order control means 15 inputs a recovery charge flag signal and determines whether or not it is recovery charge. As a result of the determination, if recovery charging is being performed, a command is transmitted so that the main circuit control unit 8 that controls the full bridge inverter 6 operates in the voltage control mode of the capacitor 7. Furthermore, the priority order control means 15 transmits a command to the charge / discharge control unit 10c to perform constant current charge control.

次に、第二優先順位制御手段16のフローチャートについて、図14を参照しながら説明する。   Next, the flowchart of the second priority control means 16 will be described with reference to FIG.

図に示すように、第二優先順位制御手段16は、回復充電フラグ信号から回復充電中でない場合、フルブリッジインバータ6を制御する主回路制御部8に対して、定電力制御指令を送信する。さらに第二優先順位制御手段16は、充放電制御部10cに対してコンデンサ7の電圧制御を行なうように指令を送信する。   As shown in the figure, the second priority control means 16 transmits a constant power control command to the main circuit control unit 8 that controls the full bridge inverter 6 when the recovery charge is not being performed from the recovery charge flag signal. Further, the second priority order control means 16 sends a command to the charge / discharge control unit 10c to control the voltage of the capacitor 7.

以上のように、本参考例3によれば、優先順位制御手段15により、回復充電中は蓄電池10aの管理及び長寿命化のための充電を第一優先に発電電力を給電し、第二優先順制御手段16により、回復充電以外の時は系統への出力を第一優先に発電電力を給電することができる。従って、発電電力のみの回復充電であっても、回復充電を効率的に実施することができ、また必要容量のみ蓄電池10aを具備するため、蓄電池10aの容量を最小化でき、装置全体の小型化を図ることができる。 As described above, according to the third embodiment , the priority control unit 15 supplies the generated power to the first priority for the management and the life extension of the storage battery 10a during the recovery charge, and the second priority. By means of the forward control means 16, the generated power can be fed with the output to the grid being given the first priority at times other than recovery charging. Therefore, even if it is recovery charge only of generated electric power, recovery charge can be implemented efficiently, and since only the required capacity is provided with the storage battery 10a, the capacity of the storage battery 10a can be minimized, and the entire apparatus can be downsized. Can be achieved.

太陽電池や燃料電池を用いた発電手段を、コンデンサに対して並列接続したシステムに対して、蓄電手段を用いて容易に発電電力のピークシフトができるため、発電電力の平準化あるいは負荷の平準化が必要となる家庭向けにも適用でき、また、交流電源側のインピーダンスを自動判定することにより、系統連系の際の出力抑制を未然に予測することができるため、系統側との調和を図る必要のある集中連系の用途にも適用できる。   Since the power generation means using solar cells and fuel cells can be easily connected to the capacitor in parallel, the generated power can be easily peak shifted using the power storage means. It can also be applied to households that require power, and by automatically determining the impedance on the AC power supply side, output suppression during grid interconnection can be predicted in advance, so that harmony with the system side is aimed at It can also be applied to centralized interconnection applications where necessary.

本発明の前提例1の電源装置の構成図Configuration diagram of power supply device according to precondition example 1 of the present invention 同充放電制御部の制御フローチャートControl flowchart of the charge / discharge control unit 本発明の参考例1の電源装置の構成図The block diagram of the power supply device of the reference example 1 of this invention 本発明の参例2の電源装置の構成図The block diagram of the power supply device of the reference 2 of this invention 同インバータ逆流防止制御部のフローチャートFlow chart of the inverter backflow prevention control unit 本発明の実施の形態1の電源装置の構成図Configuration diagram of power supply device according to Embodiment 1 of the present invention 同定電流充電手段のフローチャートFlow chart of identification current charging means 同定電圧充電手段のフローチャートFlowchart of identification voltage charging means 同蓄電池電圧抑制手段(PI制御時)の制御ブロック図Control block diagram of the storage battery voltage suppression means (during PI control) 同蓄電池電圧抑制手段(PID制御時)の制御ブロック図Control block diagram of the storage battery voltage suppression means (during PID control) (a)同蓄電池電圧上限値をオーバーした場合の実施例を示す図(b)同蓄電池電圧の上昇抑制時の実施例を示す図(A) The figure which shows the Example at the time of exceeding the same storage battery voltage upper limit (b) The figure which shows the Example at the time of the rise suppression of the storage battery voltage 本発明の参考例3の電源装置の構成図The block diagram of the power supply device of the reference example 3 of this invention 同優先順位制御手段のフローチャートFlow chart of the same priority control means 同第二優先順位制御手段のフローチャートFlow chart of the second priority control means 従来の電源装置(系統連系インバータ)のブロック図Block diagram of a conventional power supply (system-connected inverter) 同供給電圧制御時のベクトル図Vector diagram when controlling the supply voltage

符号の説明Explanation of symbols

1 発電手段
2 交流電源
3 スイッチング素子
4 ダイオード
5 アーム
6 フルブリッジインバータ
7 コンデンサ
8 主回路制御部
9 系統連系インバータ
10a 蓄電池
10b 充放電回路
10c 充放電制御部
11a 逆流防止ダイオード
11b インバータ逆流防止制御部
12 定電流充電手段
13 定電圧充電手段
14 蓄電池電圧抑制手段
15 優先順位制御手段
16 第二優先順位制御手段
DESCRIPTION OF SYMBOLS 1 Power generation means 2 AC power source 3 Switching element 4 Diode 5 Arm 6 Full bridge inverter 7 Capacitor 8 Main circuit control part 9 System interconnection inverter 10a Storage battery 10b Charge / discharge circuit 10c Charge / discharge control part 11a Backflow prevention diode 11b Inverter backflow prevention control part 12 constant current charging means 13 constant voltage charging means 14 storage battery voltage suppression means 15 priority order control means 16 second priority order control means

Claims (5)

発電手段と、前記発電手段により得られた発電電力を交流電源へ出力する,スイッチング素子と逆並列したダイオードを上下に直列接続した2つのアームにより構成したフルブリッジインバータと、前記2つのアームに並列に接続したコンデンサと、フルブリッジインバータを制御する主回路制御部を備えた系統連系インバータにおいて、前記コンデンサに並列接続し、かつ交流電源の電圧の上下変動に応じて前記発電手段からの発電電力を充電あるいは交流電源出力するための放電を行なう蓄電池とを備え、前記発電手段の発電電力が前記蓄電池の定電圧充電に必要な電力量を満たさなかった場合であっても充電を継続し、かつ充電継続時間をカウントしない定電圧充電手段とを備えたことを特徴とする電源装置。 A full-bridge inverter composed of two arms in which a diode in reverse parallel to a switching element is connected in series up and down, which outputs the generated power obtained by the power generation means to an AC power source, and in parallel with the two arms And a grid-connected inverter having a main circuit control unit for controlling a full-bridge inverter, and connected to the capacitor in parallel, and generated power from the power generation means according to the vertical fluctuation of the voltage of the AC power supply. and a power storage pond for performing discharge for charging or AC power output, generated power of the generator means continues to charge even when not satisfied the amount of power required for constant-voltage charging of the battery, And a constant voltage charging means that does not count the charging duration time . 発電手段の発電電力が蓄電池の定電流充電に必要な電力量を満たさなかった場合であっても、充電を継続する定電流充電手段を備えたことを特徴とする請求項1記載の電源装置。 2. The power supply apparatus according to claim 1, further comprising a constant current charging unit that continues charging even when the generated power of the power generation unit does not satisfy the amount of power required for constant current charging of the storage battery. 蓄電池の充電制御において、発電手段の発電電力が変動による、蓄電池電圧のオーバーシュートを抑制する蓄電池電圧抑制手段を備えたことを特徴とする請求項1記載の電源装置。 2. The power supply apparatus according to claim 1, further comprising a storage battery voltage suppression unit that suppresses overshoot of the storage battery voltage due to fluctuations in power generated by the power generation unit in charge control of the storage battery. 蓄電池電圧抑制手段は、蓄電池電圧の比例積分制御を備えたことを特徴とする請求項に記載の電源装置。 The power supply apparatus according to claim 3 , wherein the storage battery voltage suppression means includes proportional-integral control of the storage battery voltage. 蓄電池電圧抑制手段は、蓄電池電圧の比例積分制御及び微分制御を備えたことを特徴とする請求項に記載の電源装置。 The power supply apparatus according to claim 3 , wherein the storage battery voltage suppression means includes proportional-integral control and differential control of the storage battery voltage.
JP2004243314A 2004-08-24 2004-08-24 Power supply Expired - Fee Related JP4267541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004243314A JP4267541B2 (en) 2004-08-24 2004-08-24 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004243314A JP4267541B2 (en) 2004-08-24 2004-08-24 Power supply

Publications (2)

Publication Number Publication Date
JP2006060984A JP2006060984A (en) 2006-03-02
JP4267541B2 true JP4267541B2 (en) 2009-05-27

Family

ID=36107993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004243314A Expired - Fee Related JP4267541B2 (en) 2004-08-24 2004-08-24 Power supply

Country Status (1)

Country Link
JP (1) JP4267541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329567A (en) * 2016-08-30 2017-01-11 上海新华控制技术集团科技有限公司 Photovoltaic grid-connected system based on FPGA and realization method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5605548B2 (en) * 2010-04-12 2014-10-15 富士電機株式会社 Grid interconnection device
JP5614085B2 (en) * 2010-04-16 2014-10-29 トヨタ自動車株式会社 Power supply
WO2012067368A2 (en) * 2010-11-15 2012-05-24 (주)인텍에프에이 Method and device for multifunctional power conversion employing a charging device and having reactive power control
WO2013018507A1 (en) * 2011-07-29 2013-02-07 三洋電機株式会社 Power conversion apparatus
JP5915201B2 (en) * 2012-01-24 2016-05-11 富士電機株式会社 Electric power leveling device
CN102723888B (en) * 2012-05-14 2014-04-09 清华大学 Three-port full-bridge inverter and method for controlling same
JP5876374B2 (en) * 2012-05-29 2016-03-02 京セラ株式会社 Power control method, power control system, and power control apparatus
KR20180022789A (en) * 2015-07-06 2018-03-06 티엠4 인코포레이티드 Circuitry for softening switching phases in a voltage converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329567A (en) * 2016-08-30 2017-01-11 上海新华控制技术集团科技有限公司 Photovoltaic grid-connected system based on FPGA and realization method thereof
CN106329567B (en) * 2016-08-30 2018-12-21 上海新华控制技术集团科技有限公司 A kind of photovoltaic parallel in system and its implementation based on FPGA

Also Published As

Publication number Publication date
JP2006060984A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP5584763B2 (en) DC power distribution system
JP5717172B2 (en) Power supply system
JP4641507B2 (en) Power supply system
JP2008154334A (en) Power conditioner
JP4566658B2 (en) Power supply
JP2008131736A (en) Distributed power system and step-up/step-down chopper device
US9651927B2 (en) Power supply control system and power supply control method
JP5297127B2 (en) DC power supply system and power storage device
JP2015015793A (en) Control apparatus for micro grid, and control method thereof
JP4267541B2 (en) Power supply
JP5841279B2 (en) Electric power charging device
JP6426014B2 (en) Bidirectional inverter and storage system using the same
JPWO2015059873A1 (en) Power management equipment
CN110829464A (en) Photovoltaic energy storage battery frequency modulation system and method based on direct current side
CN114899913A (en) Battery charging and discharging current control method under off-grid mode of hybrid energy storage inverter
JP2015065765A (en) Charging circuit and charging system
JP4569223B2 (en) Power supply
JP4337687B2 (en) Power supply
CN103051032B (en) Fuel battery power supply device and power supply system
JP6479516B2 (en) Input control power storage system
JP2014082915A (en) Dispersed power supply system
WO2018155442A1 (en) Dc power supply system
KR20220075969A (en) Frequincy regulation operating method and grid system frequincy regulation system
JP2006074954A (en) Power supply
JP2006074946A (en) Power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees