WO2020156542A1 - 轨道交通机车车辆巡检位姿检测系统及其方法 - Google Patents

轨道交通机车车辆巡检位姿检测系统及其方法 Download PDF

Info

Publication number
WO2020156542A1
WO2020156542A1 PCT/CN2020/074157 CN2020074157W WO2020156542A1 WO 2020156542 A1 WO2020156542 A1 WO 2020156542A1 CN 2020074157 W CN2020074157 W CN 2020074157W WO 2020156542 A1 WO2020156542 A1 WO 2020156542A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
vehicle
rail transit
inspection robot
distance
Prior art date
Application number
PCT/CN2020/074157
Other languages
English (en)
French (fr)
Inventor
罗阳
关山
黄雪峰
庞龙
Original Assignee
北京新联铁集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京新联铁集团股份有限公司 filed Critical 北京新联铁集团股份有限公司
Priority to GB2112025.8A priority Critical patent/GB2595186B/en
Priority to SG11202108466UA priority patent/SG11202108466UA/en
Publication of WO2020156542A1 publication Critical patent/WO2020156542A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles

Definitions

  • This application relates to the field of rail transit locomotive and rolling stock detection, and in particular to a rail transit locomotive and rolling stock inspection pose detection system and method.
  • Rail transit rolling stock represented by trains, high-speed trains, subways, and high-speed rails has become an important means of transportation for people to travel.
  • Rail transit rolling stock needs to be overhauled on a regular basis to ensure the safety of operation.
  • the rail transit locomotive inspection robot will have a deviation in the positioning of the vehicle to be inspected.
  • the final positioning will be deviated due to the rail transit locomotive inspection robot itself in the walking process. The above two deviations will affect the accuracy of the positioning of the inspection robot for rail transit rolling stock, thereby affecting the accuracy of the detection results.
  • a rail transit locomotive and vehicle inspection pose detection system including:
  • the reference datum is set on one side of the track along the extension direction of the track where the vehicle to be detected is parked;
  • the pose detection device is provided in a rail transit vehicle inspection robot, and is used to detect the distance information of the rail transit vehicle inspection robot relative to the reference reference;
  • the processing device is communicatively connected with the pose detection device, and is used to calculate the position of the rail transit vehicle inspection robot relative to the reference coordinate according to the distance information of the rail transit vehicle inspection robot relative to the reference reference Pose offset.
  • the reference coordinates include a first reference plane and a first direction; the reference reference includes a reference scale, and the reference scale is attached to the track near the rail transit along the extending direction of the track.
  • the pose detection device includes a first distance detection device, the first distance detection device is arranged at a first position on a side of the rail transit vehicle inspection robot close to the reference scale, and communicates with the processing device Connected, the first distance detection device is used to detect the distance information of the first position relative to the reference scale along the first direction to obtain the first detection distance;
  • the processing device is configured to calculate the pose offset of the first position relative to the first reference plane along the first direction according to the first detection distance.
  • the reference coordinates include a second reference surface and a second direction;
  • the reference reference includes a reference slope, and the reference slope is arranged on the reference scale away from the rail transit along the extension direction of the track.
  • One end of the locomotive running on the ground, and the reference slope is inclined with respect to the reference scale;
  • the pose detection device also includes a second distance detection device, the second distance detection device is arranged at a second position of the rail transit vehicle inspection robot, the first position and the second position are located The same surface of the rail transit vehicle inspection robot, the second distance detection device is communicatively connected with the processing device, and the second distance detection device is used to detect the second position relative to the reference slope The distance information in the first direction to obtain the second detection distance;
  • the processing device is configured to calculate the pose offset of the rail transit rolling stock inspection robot relative to the second reference plane in the second direction according to the first detection distance and the second detection distance .
  • the first position and the second position are located on a straight line perpendicular to the second reference plane.
  • the reference coordinates include a second direction
  • the pose detection device further includes a third distance detection device
  • the third distance detection device is disposed on the first position of the rail vehicle inspection robot. Three positions, the third position and the first position are located on the same surface of the rail transit vehicle inspection robot, and the first position and the third position are respectively set along the extension direction of the track
  • the third distance detection device is communicatively connected with the processing device, and the third distance detection device is configured to detect the distance information of the third position relative to the reference scale along the first direction, Get the third detection distance;
  • the processing device is configured to calculate the rotation angle of the rail transit rolling stock inspection robot around the second direction according to the first detection distance and the third detection distance.
  • the reference coordinates include a third reference plane and a third direction
  • the reference datum includes a datum ruler, the datum ruler includes scale information, the pose detection device includes a recognition device, and the recognition device is used to recognize the scale information of the datum scale to obtain the rail transit locomotive inspection robot Position information along the third direction relative to the third reference plane.
  • the reference coordinates further include a first reference plane and a first direction
  • the reference ruler is a two-dimensional code tape
  • the identification device is an image acquisition device, and the image acquisition device is used to collect information of the two-dimensional code strip to obtain image information;
  • the pose detection device further includes a first processing mechanism that is communicatively connected to the image acquisition device, and the first processing mechanism is configured to obtain the rail transit rolling stock inspection based on the image information Position information of the robot relative to the first reference surface along the first direction, and position information of the rail transit rolling stock inspection robot relative to the third reference surface along the third direction.
  • the reference scale is a two-dimensional code tape or a barcode tape
  • the identification device is a code reader, and the code reader is used to identify the two-dimensional code tape or the information of the barcode tape;
  • the pose detection device further includes a second processing mechanism, which is communicatively connected with the barcode reader, and the second processing mechanism is used to perform information based on the two-dimensional code tape or the barcode tape Obtain position information of the rail transit rolling stock inspection robot relative to the third reference plane along the third direction.
  • the pose detection device further includes a fourth distance detection device, the fourth distance detection device is arranged on the top of the rail transit rolling stock inspection robot, and is communicatively connected with the processing device.
  • the fourth distance detection device is used to detect the distance information of the bottom of the vehicle to be detected relative to the fourth distance detection device to obtain a fourth detection distance;
  • the processing device is used to calculate the pose offset of the vehicle to be detected according to the fourth detection distance.
  • the rail transit rolling stock inspection pose detection system detects the distance information of the inspection robot relative to the reference reference through the cooperation of the reference reference and the pose detection device, and then The detection of the posture of the inspection robot is realized by the processing device.
  • the reference datum provides a stable and accurate reference datum for distance detection, thereby improving the accuracy of pose detection, thereby improving the accuracy of the subsequent positioning of the inspection robot.
  • a rail transit locomotive and vehicle patrol inspection pose detection method including:
  • the rail transit locomotive vehicle inspection work pose offset is obtained.
  • the reference coordinates include a first reference plane and a first direction
  • the acquisition of the pose offset of the rail transit locomotive inspection robot relative to the reference coordinates to obtain the robot pose offset Quantity including:
  • the pose offset of the first position relative to the first reference plane along the first direction is calculated according to the first distance information and the first record information.
  • the reference coordinates include a second reference plane and a second direction
  • the pose offset of the rail transit vehicle inspection robot relative to the reference coordinates is obtained to obtain the robot pose offset
  • the amount also includes:
  • a pose offset of the rail transit rolling stock inspection robot relative to the second reference plane along the second direction is obtained.
  • the reference coordinates include a second direction
  • the obtaining the pose offset of the rail transit vehicle inspection robot relative to the reference coordinates to obtain the pose offset of the robot further includes:
  • the reference coordinates include a second reference surface, a third reference surface, a second direction, and a third direction
  • the pose offset of the vehicle to be detected relative to the reference coordinates is acquired to obtain the vehicle position Pose offset, including:
  • the attitude offset of the vehicle to be detected relative to the second reference plane in the second direction is obtained, and the vehicle to be detected The amount of attitude offset along the third direction relative to the third reference plane.
  • the attitude offset of the vehicle to be detected relative to the second reference surface in the second direction is obtained , And the attitude offset of the vehicle to be detected along the third direction, including:
  • the posture offset of the vehicle to be detected relative to the second reference plane in the second direction is obtained, and the vehicle to be detected relative to the The posture offset of the third reference plane along the third direction.
  • the rail transit locomotive and vehicle inspection pose detection method provided by the embodiment of the present application obtains the vehicle pose offset and the robot pose offset, and then according to the vehicle pose offset and The robot pose offset obtains the pose offset during the inspection work of rail transit rolling stock.
  • the method provided in the embodiment of the application not only considers the pose deviation of the inspection robot during the inspection operation of rail transit rolling stock, but also considers the pose deviation of the vehicle to be inspected, and eliminates positioning errors in many aspects. Improve the positioning accuracy, thereby improving the detection effect.
  • Figure 1 is a schematic diagram of a rail transit rolling stock inspection device and inspection site provided by an embodiment of the application;
  • FIG. 2 is a schematic diagram of a rail transit rolling stock inspection device and inspection site provided by an embodiment of the application;
  • Figure 3 is a schematic structural diagram of a lifting device provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a rail transit rolling stock inspection device provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of the front view structure of the inspection robot provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of the three-dimensional structure of an inspection robot provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of an auxiliary charging terminal and an auxiliary charging device provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of the front view structure of the inspection robot and inspection auxiliary device provided by an embodiment of the application;
  • FIG. 9 is a schematic diagram of a three-dimensional structure of an inspection robot and an inspection auxiliary device provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a rail transit rolling stock inspection device provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of reference coordinates in the inspection pose detection process provided by an embodiment of the application.
  • FIG. 12 is a structural block diagram of a pose detection device provided by an embodiment of this application.
  • FIG. 13 is a side view of a reference benchmark provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of a calculation method for obtaining the posture offset of the inspection robot relative to the second reference plane in the second direction through the first detection distance and the second detection distance provided by an embodiment of the application (shown in the figure) It is the side view of the inspection robot body and the reference datum);
  • 15 is a schematic diagram of the principle of the calculation method for obtaining the rotation angle of the inspection robot around the second direction through the first detection distance and the third detection distance provided by an embodiment of the application (the figure shows the inspection robot body and reference Benchmark top view);
  • FIG. 16 is a schematic flow chart of the steps of a method for detecting the pose and attitude of rail transit rolling stock according to an embodiment of the application;
  • FIG. 17 is a schematic flowchart of steps for obtaining the pose offset of the inspection robot relative to the reference coordinates according to an embodiment of the application, and obtaining the pose offset of the robot;
  • FIG. 18 is a schematic flowchart of steps for obtaining the pose offset of the inspection robot relative to the reference coordinates according to an embodiment of the application;
  • FIG. 19 is a schematic flowchart of steps for obtaining the pose offset of the inspection robot relative to the reference coordinates according to an embodiment of the application, and obtaining the pose offset of the robot;
  • FIG. 20 is a schematic flowchart of steps for obtaining the pose offset of the vehicle to be detected relative to the reference coordinates according to an embodiment of the present application to obtain the vehicle pose offset;
  • FIG. 21 is a comparison diagram of vehicle bottom height length curve information and standard height length curve information provided by an embodiment of this application;
  • Figure 22 is a schematic structural diagram of a rail transit rolling stock inspection device provided by an embodiment of the application.
  • FIG. 23 is a schematic diagram of the patrol site location layout of the rail transit rolling stock inspection device and system provided by an embodiment of the application.
  • Robot arm 420 Detection device 430 Quick change device 431 Robot arm end 433
  • Tool rack 920 Energy supply device 930 Power supply device 931 Air supply device 932
  • Dispatching device 20 Inspection pose detection system 30 Reference benchmark 310 Benchmark scale 311
  • Second distance detection device 322 Third distance detection device 323 Identification device 324
  • connection and “connection” mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
  • connection connection
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • This application provides an inspection device 10 for rail transit rolling stock.
  • the rail transit rolling stock inspection device 10 is used to detect rail transit rolling stock, for example, high-speed rail, train, subway, etc.
  • the rail transit rolling stock to be detected is hereinafter referred to as the vehicle to be detected.
  • the rail transit rolling stock inspection device 10 detects the vehicle to be inspected at the inspection site.
  • the inspection site includes an inspection platform 200, a track 100 and an inspection groove 300.
  • the track 100 is installed on the inspection platform 200.
  • the vehicle to be detected is parked on the track 100.
  • the inspection platform 200 correspondingly defines an inspection groove 300 along the extending direction of the track 100.
  • the inspection platform 200 may be a plane that is flush with the ground, or may be a plane that is higher or lower than the ground.
  • the patrol inspection platform 200 is used to set up devices required for patrol inspections, and for equipment and staff to walk on for patrol inspections.
  • the track 100 includes two parallel rails.
  • the rails of the track 100 may be directly arranged on the inspection platform 200, or may be arranged on the inspection platform 200 by supporting columns or other devices arranged at intervals.
  • the number of the tracks 100 can be one group or multiple groups. Each group of the tracks 100 is correspondingly provided with the inspection groove 300.
  • the inspection groove 300 is a pit recessed in the inspection platform 200 in a groove structure.
  • the inspection groove 300 is opened between the rails 100 and extends along the extending direction of the rail 100.
  • the size and recess size of the inspection groove 300 can be set according to actual requirements, and this application does not specifically limit it.
  • the vehicle to be inspected is parked on the track 100, the inspection platform 200 can realize the inspection of the vehicle side of the vehicle to be inspected, and the inspection of the vehicle to be inspected can be implemented in the inspection groove 300. Bottom detection.
  • the inspection device 10 for rail transit rolling stock includes an inspection robot 400, a lifting equipment group 500 and a control device 600.
  • the inspection robot 400 is the inspection robot for rail transit rolling stock, and is referred to as the inspection robot 400 for short below.
  • the inspection robot 400 is used to detect relevant parameters of the vehicle to be inspected, such as appearance, size, position and posture, temperature, air leakage, and so on.
  • the specific structure and functions of the inspection robot 400 are not limited in this application, and can be selected according to actual needs.
  • the lifting equipment group 500 includes at least one lifting equipment 501.
  • the lifting device 501 is arranged on the side of the rail 100 in the extending direction.
  • the lifting device 501 is a liftable structure, that is, the lifting device 501 can be raised and lowered.
  • the inspection platform 200 on the side of the track 100 may be provided with a lifting groove, and the lifting device 501 is disposed in the lifting groove, and can be raised and lowered in the lifting groove.
  • the lifting equipment 501 may be a guide rail type elevator, a crank type elevator, a scissor type elevator, a chain type elevator or others.
  • the lifting device 501 can be, but not limited to, used to lower the inspection robot 400 or the operator to the inspection groove 300, or to raise the inspection robot 400 or the operator to the inspection platform 200 .
  • the number of the lifting device 501 may be one or multiple.
  • the multiple lifting devices 501 may be arranged on one side of the rail 100 at intervals along the rail 100, or may be distributed on both sides of the rail 100.
  • the control device 600 is in communication connection with the inspection robot 400 and is used to control the work of the inspection robot 400.
  • the control device 600 may be used to control the inspection robot 400 to walk, and perform detection and the like.
  • the control device 600 may be, but is not limited to, a computer device, a PLC (Programmable Logic Controller, Programmable Logic Controller), or other devices containing a processor.
  • PLC Programmable Logic Controller, Programmable Logic Controller
  • the present application does not limit the specific structure, model, etc. of the control device 600, as long as its functions can be realized.
  • the working process of the rail transit rolling stock inspection device 10 may include but is not limited to the following processes:
  • the control device 600 obtains inspection tasks, the inspection tasks including the number of the vehicles to be detected, the positions of the vehicles to be detected, the items to be detected, and so on.
  • the control device 600 sends the inspection task to the inspection robot 400 and issues inspection instructions.
  • the inspection robot 400 receives the inspection instruction, and autonomously walks to the location of the vehicle to be inspected according to the inspection task, and detects the vehicle to be inspected.
  • the inspection robot 400 walks and inspects the inspection platform 200 along the extension direction of the track 100.
  • the lifting device 501 may be level with the surface of the inspection platform 200, so that the inspection robot 400 can walk along the inspection platform 200 without hindrance.
  • the inspection robot 400 When the item to be inspected included in the inspection task is located under the vehicle of the vehicle to be inspected, the inspection robot 400 needs to walk into the inspection groove 300 to work.
  • the inspection robot 400 first walks to the lifting device 501 according to the inspection task. After controlling the lifting device 501 to descend and docking with the inspection groove 300, the inspection robot 400 walks to the inspection groove 300 and performs inspection operations. When the inspection is completed, the inspection robot 400 walks to the lifting device 501, and the lifting device 501 drives the inspection robot 400 to rise, exit the inspection groove 300, and return to the inspection platform 200, complete the test.
  • the rail transit locomotive provided in the embodiment of the present application
  • the vehicle inspection device 10 first automatically lifts and lowers through the lifting device 501 to realize the docking with the inspection groove 300 and the docking and communication with the inspection platform 200, which improves the degree of automation.
  • the lifting device 501 is used to achieve leveling with the surface of the inspection platform 200, so that the inspection platform 200 is flat without walking obstacles.
  • the lifting device 501 enables the inspection robot 400 to enter and exit the inspection groove 300 without manual intervention, and can realize fully automatic walking, thereby improving the intelligence of the inspection robot 400 and thereby The intelligence of the rail transit rolling stock inspection device 10.
  • the lifting equipment group 500 includes at least two lifting equipment 501. At least two lifting devices 501 are respectively arranged on both sides of the rail 100. At least two lifting devices 501 can be connected to the inspection groove 300 to form at least one passage.
  • the two lifting devices 501 are distributed on both sides of the rail 100.
  • the connection line of the two lifting devices 501 is at a certain angle to the rail 100.
  • the connection line of the two lifting devices 501 is perpendicular to the rail 100.
  • the number of the tracks 100 is at least 2 groups.
  • the number of the inspection groove 300 is at least two.
  • the number of the lifting equipment group 500 is at least 2 groups.
  • Each of the inspection grooves 300 is arranged corresponding to a group of the tracks 100.
  • Each group of the rails 100 is correspondingly provided with a group of the lifting equipment group 500, that is, at least two of the lifting equipment 501 are provided on both sides of each group of the rails 100.
  • the plurality of lifting devices 501 of at least two groups of the lifting device group 500 can be connected to at least two of the inspection grooves 300 to form at least one cross-track passage.
  • the lifting devices 501 of the two adjacent groups of the rails 100 can be connected, so that the passages of each group of the rails 100 are connected to form at least one cross-track passage.
  • the cross-track passage can realize the communication of multiple inspection grooves 300. Therefore, when there are multiple vehicles to be inspected, the inspection robot 400 can perform cross-track inspection and detect multiple vehicles to be inspected at a time, thereby improving detection efficiency.
  • the lifting device 501 includes a lifting platform board 510, a driving device 520 and a lifting control device 530.
  • the driving device 520 is drivingly connected to the lifting platform board 510 for driving the lifting platform board 510 to lift.
  • the lifting control device 530 is electrically connected to the driving device 520.
  • the lifting control device 530 is used to control the operation of the driving device 520.
  • the lifting platform board 510 is disposed in the lifting groove on the side of the rail 100. When the lifting platform board 510 is in a rising state, the lifting platform board 510 is flush with the plane where the inspection platform 100 is located. When the lifting platform board 510 is in a descending state, the lifting platform board 510 is flush with and communicates with the plane where the inspection groove 300 is located.
  • the lifting platform board 510 may be an insulating board, and the material of the insulating board may be an inorganic insulating material, an organic insulating material or a mixed insulating material. It can be selected according to actual needs, and this application is not limited.
  • the shape of the lifting platform plate 510 can be rectangular, trapezoidal, polygonal, etc., which can be specifically selected according to actual needs, which is not specifically limited in this application.
  • the overhaul site includes multiple groups of the rails 100, and each group of the rails 100 is provided with the lifting device 501, the lifting platform plates 510 of the two adjacent lifting devices 501 are arranged in contact, so that the lifting platform When the plate 510 descends to the inspection groove 300, the cross-track path is formed.
  • the driving device 520 may be arranged in the lifting groove on the side of the rail 100.
  • the driving device 520 is drivingly connected to the lifting platform board 510 for driving the lifting platform board 510 to lift.
  • the specific structure, installation location, and installation method of the driving device 520 can be selected according to actual needs, and this application does not make specific limitations.
  • the number of the driving devices 520 can also be selected according to actual needs.
  • the driving device 520 may be a hydraulic driving device, a pneumatic driving device, an electrical driving device, a chain driving device, or other forms of driving device, as long as it can drive the lifting platform board 510 to lift.
  • the driving device 520 is a hydraulic driving device.
  • the hydraulic driving device and the lifting platform plate 510 are combined to form a hydraulic scissor lifting platform.
  • the hydraulic scissor lift platform is a fixed hydraulic scissor lift platform.
  • the rollers, balls, turntables and other tables of the fixed hydraulic scissor lift platform can be arbitrarily configured to meet actual use requirements. Therefore, in actual use, the fixed hydraulic scissor lift platform is more convenient for maintenance personnel or users to adjust according to actual needs, which facilitates the use of the lift equipment 501.
  • the lifting control device 530 is electrically connected to the driving device 520, and is used to control the startup, shutdown, and working modes of the driving device 520.
  • the lifting control device 530 obtains a lifting command, and according to the lifting command, controls the driving device 520 to start, close, and work mode, thereby controlling the lifting or lowering of the lifting platform board 510.
  • the lifting command of the lifting device 501 may be manually input, may be obtained through the control device 600, or may be obtained through detection.
  • the lifting device 501 further includes a distance sensor 540.
  • the distance sensor 540 is in communication connection with the lifting control device 530.
  • the distance sensor 540 is used to detect the distance between it and the front object, so as to determine whether the surface of the lifting platform plate 510 is human or stopped. If the distance detected by the distance sensor 540 meets the preset distance threshold, it indicates that the surface of the lifting platform plate 510 is parked on a person or an object and needs to be lifted.
  • the lifting platform plate 510 does not stop a person or object
  • the distance detected by the distance sensor is 1m
  • the distance detected by the distance sensor 540 becomes less than 0.98m and greater than 0.05m
  • the lifting The control device 530 determines that there is a person or an object on the lifting platform, and the lifting control device 530 controls the driving device 520 to start.
  • the distance sensor may be a capacitive proximity sensor, a laser ranging sensor, and an ultrasonic sensor, which can be specifically selected according to actual needs, which is not limited in this application.
  • the number of the distance sensors 540 may be one or more.
  • the lifting equipment 501 provided in this embodiment is highly intelligent, thereby improving the intelligence of the rail transit rolling stock inspection device 10.
  • the lifting equipment 501 further includes a lifting safety alarm device 550.
  • the lifting safety alarm device 550 is electrically connected to the lifting control device 530.
  • the lifting alarm device 550 is used for alarming when the distance sensor 540 detects abnormal data or the lifting equipment 501 fails.
  • the specific structure of the lifting safety alarm device 550 is not limited in this application, and can be selected according to actual needs.
  • the safety and intelligence of the lifting equipment 501 can be improved by the lifting safety alarm device 550, and thus the safety and intelligence of the rail transit rolling stock inspection device 10 can be improved.
  • the rail transit rolling stock inspection device 10 further includes an on-site working condition detection device 700.
  • the on-site working condition detection device 700 is installed at the inspection site. Specifically, the on-site working condition detection device 700 may be installed on the track 100, the inspection platform and/or the inspection groove 300.
  • the on-site working condition detection device 700 is in communication connection with the control device 600.
  • the on-site working condition detection device 700 is used to detect on-site working conditions. By setting the on-site working condition detection device 700, it is possible to know the situation of the inspection site in time before the inspection starts and during the inspection, so as to control the control of the inspection robot 400 according to the situation and improve Reliability, safety and intelligence of inspection work.
  • the on-site working condition detection device 700 can be configured with different structures according to different requirements and different working conditions.
  • the structure of the on-site working condition detection device 700 will be described below in conjunction with embodiments.
  • the on-site working condition detection device 700 includes a fluid accumulation detection mechanism 710.
  • the effusion detection mechanism 710 is disposed in the inspection groove 300.
  • the effusion detection mechanism 710 is communicatively connected with the control device 600.
  • the fluid accumulation detection structure 710 is used to detect the fluid accumulation in the inspection groove 300.
  • the effusion detection mechanism 710 may be a liquid detection sensor.
  • the number of the effusion detection mechanism 710 is not limited.
  • the specific location of the effusion detection mechanism 710 in the inspection groove 300 is not limited, and can be set according to actual conditions.
  • the effusion detection mechanism 710 may be provided at a position where the inspection groove 300 has a deep depth and is prone to effusion.
  • the effusion detection mechanism 710 detects the effusion situation at the current position and transmits it to the control device 600.
  • the control device 600 judges whether to start the patrol inspection based on the effusion situation. When the effusion exceeds the preset effusion threshold, the operating conditions are not met, and no enable signal is sent to the inspection robot 400.
  • the fluid accumulation detection mechanism 710 prevents the inspection operation from starting when the inspection groove 300 has a large amount of fluid accumulation, thereby improving the safety and intelligence of the rail transit rolling stock inspection device 10 .
  • the on-site working condition detection device 700 includes a vehicle presence detection component 720 to be detected.
  • the vehicle presence detection component 720 to be detected is arranged on the track 100.
  • the vehicle presence detection component 720 to be detected is in communication connection with the control device 600.
  • the vehicle presence detection component 720 is used to detect whether the vehicle to be detected is parked in place.
  • the vehicle to-be-detected presence detection assembly 720 may be provided on one side of the rail 100, or may be provided on the support column supporting the rail 100.
  • the number of the vehicle presence detection component 720 to be detected may be one or more.
  • the vehicle presence detection component 720 to be detected may include, but is not limited to, a speed sensor and a presence sensor.
  • a plurality of the presence sensors and a plurality of the speed sensors are sequentially arranged inside the rail.
  • the presence sensor detects the presence of wheels and car bodies on the track 100, and a plurality of the speed detection devices arranged in sequence detects the vehicle The body speed gradually decreases to zero.
  • the control device 600 determines whether to start the inspection operation according to the detection result of the vehicle presence detection component 720 to be inspected, and controls the start of the inspection robot 400.
  • the vehicle presence detection component 720 to be detected the intelligence and automation of the rail transit rolling stock inspection device 10 are further improved, and the inspection of the rail transit rolling stock inspection device 10 is improved. Accuracy.
  • the on-site working condition detection device 700 includes an intrusion detection component 730.
  • the intrusion detection component 730 is installed at the inspection site. Specifically, the intrusion detection component 730 may be arranged on the track 100, the inspection platform 200 and/or the inspection groove 300.
  • the intrusion detection device 730 is in communication connection with the control device 600.
  • the intrusion detection component 730 is used to detect whether there is an intrusion in the inspection site.
  • the intrusion detection component 730 may include an image acquisition device and an image processing device communicatively connected to it.
  • the image acquisition device may be a camera, a video camera, or the like.
  • the image acquisition device collects image information of the inspection site and transmits it to the image processing device.
  • the image processing apparatus may be a computer device or the like.
  • the image processing device may also be a module or processing software of the control device 600.
  • the image processing device processes the image information, and determines whether there are people or objects invading the inspection site, and then determines whether the operation conditions are met and whether the inspection operation is started.
  • the intrusion detection component 730 improves the intelligence of the rail transit rolling stock inspection device, and further improves the safety of the operation of the rail transit rolling stock inspection device 10.
  • the on-site working condition inspection device 700 may further include a component for detecting the connection status of the inspection robot 400 and related equipment, so as to ensure the safety of the inspection robot 400 being connected.
  • control device 600 includes a corresponding module for processing the data of the on-site working condition detection device 700 in the above embodiments, so as to receive the relevant data transmitted by the on-site working condition detection device 700, and perform processing and judgment to It is determined whether the current patrol site meets the conditions of the patrol operation, and then it is determined whether to send a patrol enable signal.
  • the inspection robot 400 performs inspection operations according to the inspection enable signal.
  • the inspection robot 400 will be described below with reference to embodiments.
  • the inspection robot 400 includes a work walking device 410 and a mechanical arm 420.
  • the working walking device 410 includes a vehicle body 411 and wheels 412.
  • the wheels 412 are arranged at the bottom of the vehicle body 411.
  • the vehicle body 411 includes a receiving cavity 413.
  • the mechanical arm 420 is disposed on the vehicle body 411.
  • the mechanical arm 420 is a foldable structure.
  • the robot arm 420 can be stored in the receiving cavity 413.
  • the operating walking device 410 may specifically be an AGV (Automated Guided Vehicle), or may be other small vehicles capable of automatically completing the walking function.
  • the vehicle body 411 may be a cubic structure or a structure of other shapes. Taking the car body 411 with a cubic structure as an example, the car body 411 has a cavity structure, and the receiving cavity 413 is surrounded by six surfaces.
  • the robot arm 420 is mounted on the top of the vehicle body 411. At the same time, the vehicle body 411 has an opening. After being folded, the mechanical arm 420 is stored in the receiving cavity 413 through the opening.
  • the work walking device 410 may be communicatively connected with the control device 600, and the control device 600 is used to issue work instructions and work walking tasks to the work walking device 410.
  • the operating walking device 410 may include its own control system, and its walking may be controlled by its own control system, or it may be controlled to walk through an external control system.
  • the control device 600 can control the walking of the work walking device 410.
  • the wheels 412 are mounted on the bottom of the vehicle body 411.
  • the number of the wheels 412 may be four.
  • the structure of the wheel 412 may be various, for example, the wheel 412 may be a universal wheel structure.
  • the wheel 412 is a two-wheel differential drive structure.
  • the wheels 412 with a dual-wheel differential drive structure can effectively reduce the volume of the inspection robot 400.
  • the wheel 412 adopts a dual-wheel differential drive structure, which can avoid the traditional complicated calculations that take the midpoint of the wheelbase as the base point for planning.
  • the control is simple and the trajectory tracking effect is good, which effectively improves the real-time motion control. Sex.
  • the robotic arm 420 may include multiple movable joints.
  • the mechanical arm 420 includes 6 movable joints, and each of the movable joints can rotate around an axis, so that the mechanical arm 420 can be flexibly moved and positioned along six axes.
  • the mechanical arm 420 is signally connected to the control device 600.
  • the control device 600 is used to control the movement and folding of the mechanical arm 420.
  • the mechanical arm 420 is placed outside the vehicle body 411 during operation.
  • the control device 600 controls the robotic arm 420 to fold and is housed in the containing cavity 413, so as to prevent dust, collision, and reduce the volume.
  • the inspection robot 400 includes the work walking device 410 and the robotic arm 420.
  • the vehicle body 411 of the working walking device 410 includes the receiving cavity 413.
  • the robot arm 420 has a foldable structure and can be accommodated in the containing cavity 413, so that the volume of the inspection robot 400 can be reduced, and it can be dust-proof, anti-collision, and convenient for storage.
  • the folded shape and size of the mechanical arm 420 match the shape and size of the opening of the receiving cavity 413.
  • the vehicle body 411 can have an opening along the top and side surfaces.
  • the opening of the vehicle body 411 is the opening of the receiving cavity 413.
  • the shape and size of the opening are the same as the folded shape and size of the mechanical arm 420, so that the mechanical arm 420 is sealed at the opening after being folded.
  • the robotic arm 420 includes 6 movable joints, and 3 movable joints are maintained in the length after being folded.
  • the shape, length, and width of the opening are consistent with the shape, length, and width of the three movable joints.
  • the inspection robot 400 further includes a lifting device 460.
  • the lifting device 460 is disposed in the receiving cavity 413.
  • the lifting device 460 is mechanically connected to the mechanical arm 420.
  • the lifting device 460 is used to realize the raising and lowering of the mechanical arm 420.
  • the lifting device 460 may specifically include an additional lifting shaft.
  • One end of the additional lifting shaft is arranged in the receiving cavity 413, and the other end is mechanically connected to the bottom of the mechanical arm 420.
  • the form of driving the lifting of the additional shaft may include, but is not limited to, hydraulic drive, cylinder drive, etc.
  • the specific application is not limited, and can be selected according to actual needs.
  • the driving of the lifting device 460 may be automatic or manual.
  • the lifting device 460 is in communication connection with the control device 600, and the control device 600 is also used to control the operation of the lifting device 460.
  • the lifting device 460 can realize the lifting of the robotic arm 420, which can not only realize the lifting and extension of the robotic arm 420, but also the lowering and storing of the robotic arm 420. At the same time, when the robotic arm 420 implements inspection and detection, the lifting device 460 can further adjust the height of the robotic arm 420 to achieve compensation for the end position of the robotic arm 420. Therefore, the inspection robot 400 provided in this embodiment has strong practicability, and can increase the flexibility of the inspection work and improve the accuracy of the inspection.
  • the inspection robot 400 includes a detection device 430.
  • the detection device 430 is arranged at the end of the mechanical arm 420.
  • the detection device 430 is used to detect the vehicle to be detected.
  • the type of the detection device 430 can be set according to actual needs.
  • the detection device 430 can be directly electrically connected to the end of the robotic arm 420, or indirectly connected to the end of the robotic arm 420 through other devices.
  • the movement of the mechanical arm 420 drives the detection device 430 to move to the inspection item area of the device to be inspected, so as to realize the inspection of the inspection item.
  • the detection device 430 is in communication connection with the control device 600.
  • the control device 600 controls the detection device 430 to perform detection, and processes and analyzes the detection data collected by the detection device 430.
  • the detection device 430 includes at least one of an image acquisition device, an air leakage detection device, a temperature detection device, and a size detection device. It can be understood that, in order to achieve other required functions, the detection device 430 may also include other detection devices. This application does not limit this.
  • the image capture device may include a 2D image capture device and/or a 3D image capture device.
  • the 2D image collector mainly includes an area scan camera.
  • the area scan camera is used to collect the surface image of the measured workpiece. It can be used for presence detection, shape detection, position and posture detection, appearance detection, size detection, etc. of the vehicle component to be detected.
  • the 2D image collector may further include a light source. The light source is used to illuminate the measured workpiece to achieve a better image acquisition effect.
  • the 3D image collector mainly includes a linear laser light source, a linear array camera, and a linear motion unit.
  • the linear laser light source emits linear laser light, which is projected on the surface of the workpiece to be measured.
  • the line scan camera acquires an image, and as the linear motion unit moves, the line scan camera continuously acquires multiple images. By stitching multiple images, a complete image containing depth information can be obtained.
  • the 3D image collector can be used for bolt tightening detection, crack detection, wheelset tread quality detection, etc. of the vehicle to be detected.
  • the air leakage detection device is used to detect the inspection of the vehicle bottom and/or the side air duct of the vehicle to be detected.
  • the air leakage detection device includes a microphone array.
  • the microphone array is used for collecting and detecting air leakage sound data.
  • the air leakage sound data acquired by the microphone array is transmitted to the control device 600.
  • the control device 600 processes and judges the air leakage sound, thereby determining whether the air duct is leaking, and further determining the specific location of the air leakage.
  • the microphone array includes 3 cardioid microphones and 1 omnidirectional microphone.
  • the microphone array includes one cardioid pointing microphone, and multiple cardioid pointing microphones are provided on the robotic arm 420.
  • the method for the control device 600 to process the air leakage sound data to determine whether the air duct is leaking, and to further determine the specific location of the air leakage includes the following steps:
  • S1140 Determine whether the vehicle to be detected leaks air according to the position of the sound source and the vehicle model to be detected;
  • S1150 Identify the position of the sound source in the vehicle model to be detected.
  • the method provided in this embodiment matches the vehicle model to be detected with the sound source position of the air leakage sound in the detection item point area of the vehicle to be detected, which can effectively eliminate the air leakage sound around the item to be detected as being determined Detecting the possibility of vehicle air leakage improves the accuracy of detection, thereby providing a reliable basis for vehicle inspection and maintenance. At the same time, by modeling the vehicle to be detected, and matching the air leakage sound with the vehicle model to be detected, the detection process and the detection result of the vehicle air tightness are more intuitive.
  • the temperature detection device is used to detect the temperature of the workpiece to be detected in the vehicle to be detected.
  • the selection of the specific structure of the temperature detection device is not limited.
  • the temperature detection device includes a thermal imager.
  • the thermal imager is used to detect the temperature distribution of the workpiece to be tested and form a corresponding temperature distribution image.
  • the temperature distribution image detected by the thermal imager is transmitted to the control device 600.
  • the control device 600 further processes the temperature distribution image.
  • the temperature detection device further includes a non-contact infrared temperature sensor.
  • the non-contact infrared temperature sensor is used to detect the surface temperature of the workpiece to be measured. Before the detection is carried out, the control device 600 may choose to perform 3D modeling of the vehicle to be detected.
  • one item to be checked includes a plurality of points to be measured.
  • the mechanical arm 420 clamps the non-contact infrared temperature sensor to move to the item to be inspected, and directs the light of the non-contact infrared temperature sensor to the outer surface of the item to be inspected.
  • the robot arm 420 changes its posture and sequentially adjusts and measures the temperature of the point to be measured.
  • the temperature measurement of the point to be measured is completed.
  • the data measured by the non-contact infrared temperature sensor is transmitted to the control device 600.
  • the control device 600 may process the data by using methods such as taking an intermediate value and taking an expected value, and match it with the 3D model to obtain a model diagram reflecting the temperature of the item to be checked.
  • the determination of the point to be measured may be based on the detection result of the thermal imager, and the region or point of interest is set as the point to be measured for further detection to obtain the specific temperature of the region of interest.
  • the size detecting device is used for detecting distance information related to the quantity to be detected.
  • the size detection device may include a wheel rim and rim measuring tool and/or a wheel set spacing measuring tool.
  • the rim and rim measuring tool is used to measure the relevant dimensions of the rim and rim of the vehicle to be tested.
  • the wheelset spacing measurement tool is used to measure the wheelset spacing of the vehicle to be tested.
  • the tool for measuring wheelset spacing includes 2 laser distance sensors and a measuring rod.
  • the distance information measured by the wheelset spacing measuring tool is transmitted to the control device 600.
  • the control device 600 processes the distance information to obtain the wheelset size. The specific process includes but is not limited to the following steps:
  • the control device 600 establishes a wheelset coordinate system with the center of symmetry of the wheelset as the origin and establishes a 3D model describing the shape of the wheelset according to the size and positional relationship of the standard wheelset rim and rim section relative to the axis. Secondly, determine the relative position of the base coordinate system of the work walking device 410 of the inspection robot 400 relative to the center coordinate system of the wheelset when the inspection robot 400 is measuring and sampling, and the end of the robot arm 420 The relative position of the sampling points, and the establishment of a 3D model database of the measuring points.
  • S2220 Perform precise calibration on the position of the wheel set to be detected and the position of the inspection robot 400.
  • the inspection robot 400 locates the auxiliary positioning mark points of the wheel axis or the wheel set to obtain the actual pose information of the inspection robot 400 in the wheel set coordinate system.
  • the inspection robot 400 compensates the actual pose by adjusting the pose of the end of the robotic arm 420 to conform to the 3D model database of the measurement point.
  • the inspection robot 400 performs sampling and measurement.
  • the end of the inspection robot 400 clamps the laser distance measuring sensor, measures the distance and size of the contour shape of the wheelset inspection item, and transmits the data to the control device 600.
  • the inspection robot 400 draws the actual outline of the wheelset inspection item based on the collected outline dimension points, combined with the position of the running track point of the inspection robot 400, and compares the detected actual outline with the standard outline. Yes, get the size value of the actual wheelset check item.
  • Each of the detection devices 430 described above may be separately installed at the end of the robotic arm 420, or may be installed at the end of the robotic arm 420 in combination of multiple items.
  • the 2D image collector, the air leak detection device, and the temperature detection device are combined and arranged at the end of the robotic arm 420 to realize the presence detection, shape detection, and pose detection of the vehicle to be detected. Simultaneous detection of multiple items such as detection, leak detection, temperature detection, etc.
  • the 3D image collector, the air leakage detection device, and the temperature detection device are combined and arranged at the end of the robotic arm 420 to realize the detection of bolt tightening and crack detection of the vehicle to be detected. , Simultaneous detection of various items such as wheelset tread quality detection, air leakage detection, temperature detection, etc.
  • the inspection robot 400 by setting the detection device 430 at the end of the robotic arm 420 to inspect various items of the vehicle to be detected, the inspection robot 400 has multiple inspection functions, which increases the number of inspections. The comprehensiveness and intelligence of the functions of the inspection robot 400 are described.
  • the inspection robot 400 further includes a docking device 440.
  • the docking device 440 is installed on the vehicle body 411.
  • the docking device 440 is used to realize docking with other devices.
  • the docking device 440 may be used to realize mechanical docking with other equipment, and may also be used to realize electrical docking with other equipment.
  • the structure of the docking device 440 can have different designs according to different requirements. Take the docking device 440 to achieve mechanical docking with rescue equipment or inspection auxiliary devices as an example.
  • the docking device 440 may be arranged at the front end and/or the rear end of the vehicle body 411.
  • the docking device 440 may include a ring-shaped or square-shaped docking interface, etc., for the rescue equipment or the patrol auxiliary device to be connected to it to pull or drag the patrol robot 400.
  • the function of the inspection robot 400 is further improved by the docking device 440, and the practicability of the inspection device 10 for rail transit rolling stock is improved.
  • the inspection robot 400 further includes a quick change device 431.
  • the quick change device 431 is connected between the end of the mechanical arm 420 and the detection device 430.
  • the detection device 430 is connected to the end of the mechanical arm 420 through the quick change device 431.
  • the electrical connection and mechanical connection of the detection device 430 and the mechanical arm 420 are realized by the quick change device 431.
  • the inspection robot 400 further includes an auxiliary charging terminal 450.
  • the auxiliary charging terminal 450 is disposed on the vehicle body 411.
  • the auxiliary charging terminal 450 may be a charging head or a charging base, or any device capable of realizing circuit conduction, such as a charging brush or a charging conductive rail.
  • the auxiliary charging terminal 450 is connected to the power supply device of the inspection robot 400, and is used to charge the inspection robot 400 by connecting with an external charging device.
  • the auxiliary charging terminal 450 can supplement electric energy to the inspection robot 400 in time, which improves the inspection work capability of the inspection robot 400.
  • the rail transit rolling stock inspection device 10 further includes an auxiliary charging device 800.
  • the auxiliary charging device 800 is arranged on the rail 100.
  • the auxiliary charging device 100 is matched with the auxiliary charging terminal 450 and is used to provide power to the auxiliary charging terminal 450 to charge the inspection robot 400.
  • the specific shape, structure, etc. of the auxiliary charging device 800 are not limited, as long as it can be matched with the auxiliary charging terminal to realize charging. Two embodiments of the auxiliary charging device 800 and the auxiliary charging terminal 450 are provided below.
  • the auxiliary charging terminal 450 is a conductive brush.
  • the auxiliary charging device 800 is a conductive rail.
  • the conductive brush has a fur brush structure.
  • the conductive brush may be provided on one side of the vehicle body 411 through an extendable cantilever structure.
  • the extensible cantilever can be a corner contact structure.
  • a spring or other elastic device may be arranged between the extendable cantilever and the vehicle body 411 to improve the elasticity and flexibility of the conductive brush, and at the same time, it is convenient for the conductive brush to be retracted and fit to the body when not in use.
  • the car body 411 saves space.
  • the number of the conductive brushes may be one, which is arranged on one side of the vehicle body 411, or two, which are respectively arranged on both sides of the vehicle body 411.
  • the number of the conductive brushes can also be two or more, which are respectively arranged at the required positions of the vehicle body 411.
  • the conductive rail is provided on the side of the rail 100 close to the walking of the inspection robot 400.
  • the conductive rail is elongated.
  • the conductive rail can be powered by a safe voltage to the ground.
  • the conductive rail may adopt a PVC profile, an aluminum profile, or a copper tape composite structure.
  • the number of the conductive tracks may be multiple.
  • a plurality of the conductive tracks are arranged at intervals along the track 100.
  • a plurality of the conductive rails may also be respectively provided inside the two rails of the rail 100. For a plurality of the conductive rails, the on and off can be controlled respectively.
  • the robot arm 420 has a heavy workload and long working time during the entire operation process of the inspection robot 400 when it stops at the target position and performs detection, the power consumption is the largest during the detection process. Therefore, it is often necessary to charge the inspection robot 400 during the inspection process.
  • the inspection robot 400 when the inspection robot 400 walks and stops at the target position and is about to start detection, the inspection robot 400 extends the conductive brush through the outstretchable cantilever, and connects with the conductive brush. Rail contact. By energizing the conductive rail, the inspection robot 400 can be charged through the conductive brush.
  • the inspection robot 400 When the inspection robot 400 is about to complete the detection task and is about to move to the next detection position, it cuts off the power to the conductive rail, stops charging the conductive brush, and retracts the conductive brush through the extendable cantilever , The inspection robot 400 continues to walk to the next detection position.
  • the auxiliary charging terminal 450 is a conductive brush
  • the auxiliary charging device 800 is a conductive brush.
  • the settings of the conductive brush and the conductive rail are just the opposite of those in the previous embodiment. The realization method, principle and setting method are similar. I won't repeat them here.
  • the auxiliary charging of the inspection robot 400 is realized, the working power of the inspection robot 400 is guaranteed, and the rail transit locomotive is improved.
  • the conductive rail is a long strip, therefore, in the case of the parking and positioning deviation of the inspection robot 400 or the vehicle to be detected, it can still cooperate with the conductive brush to complete the inspection assistance
  • the charging of the device 900 reduces the charging error.
  • the quick change device 431 includes two parts: a mechanical arm end 433 and a tool end 435.
  • the mechanical arm end 433 is matched with the tool end 435 correspondingly.
  • the mechanical arm end 433 is electrically and mechanically connected to the mechanical arm 420.
  • the tool end 435 is electrically and mechanically connected to the detection device 430.
  • the insertion of the mechanical arm end 433 and the tool end 435 can realize electrical and mechanical connection, thereby realizing electrical and mechanical connection between the mechanical arm 420 and the detection device 430.
  • the electrical and mechanical connection between the detection device 430 and the end of the robotic arm 420 is realized by the quick change device 431, which is simple and convenient, and has strong versatility.
  • the rail transit rolling stock inspection device 10 further includes a rail transit rolling stock inspection auxiliary device.
  • the patrol inspection auxiliary device for rail transit rolling stock is referred to as the patrol inspection auxiliary device 900 hereinafter.
  • the inspection auxiliary device 900 is used to assist the inspection robot 400 to complete the replacement of the detection device 430, as well as the functions of energy supply, maintenance, and emergency rescue.
  • the auxiliary inspection device 900 will be further described below in conjunction with embodiments.
  • the inspection auxiliary device 900 includes a walking auxiliary device 910 and a tool rack 920.
  • the tool rack 920 is installed on the auxiliary walking device 910.
  • the tool rack 920 is used to place the detection device to be replaced.
  • the inspection device 430 at the end of the robot arm 420 needs to be replaced.
  • the detection device to be replaced is named the detection device to be replaced.
  • the replaced detection device is named the original detection device.
  • the walking auxiliary device 910 is used to complete walking and drive the equipment installed on it to walk.
  • the structure, implementation principle, and control method of the auxiliary walking device 910 are similar to those of the working walking device 410, and will not be repeated here.
  • the tool rack 920 may be arranged on the top of the vehicle body of the walking auxiliary device 910.
  • the specific structure of the tool holder 920 is not limited, and can be set according to the structure and size of the tool to be placed.
  • the detection device to be replaced is placed on the tool rack 920.
  • the auxiliary walking device 910 is controlled to walk to the side of the inspection robot 400.
  • the original detection device is replaced with the detection device to be replaced on the tool rack 920.
  • the replacement method can be automatic or manual, which is not limited in this application.
  • the rail transit rolling stock inspection device 10 includes the inspection auxiliary device 900.
  • the inspection auxiliary device 900 is provided with the tool rack 920, so that the inspection device to be replaced can be transported to the inspection robot 400 to realize the replacement of the inspection device 430.
  • the inspection auxiliary device 900 provided in this embodiment improves the comprehensiveness of the functions of the rail transit rolling stock inspection device 10, and at the same time, improves its intelligence.
  • the shape and size of the tool holder 920 match the shape and size of the detection device to be replaced.
  • the tool holder 920 mimics the shape design of the detection device to be replaced, so that the detection device to be replaced can be placed on the tool holder 920 more securely and more closely.
  • the tool rack 920 of the inspection auxiliary device 900 is provided with the detection device to be replaced.
  • the tool end 435 is connected to one end of the detection device to be replaced.
  • the detection device to be replaced is electrically and mechanically connected to the tool end 435.
  • the tool end 435 is used to connect with the mechanical arm end 433 to realize the connection between the detection device to be replaced and the end of the mechanical arm 420.
  • the original detection device 430 and the tool end 435 connected to it are removed.
  • the tool end 435 of the detection device to be replaced is connected to the mechanical arm end 433 at the end of the robotic arm 420, so as to realize the electrical and mechanical connection between the detection device to be replaced and the robotic arm 420.
  • the detection device can be quickly replaced and work efficiency is improved.
  • the inspection auxiliary device 900 further includes an energy supply device 930.
  • the energy supply device 930 is installed in the auxiliary walking device.
  • the energy supply device is used to provide energy to rail transit rolling stock inspection equipment.
  • the rail transit rolling stock inspection equipment includes but is not limited to the inspection robot 400.
  • the energy supply device 930 may include a power supply device 931, an air source supply device 932, and may also be any other device that requires energy for the inspection robot 400.
  • the energy supply device 930 can provide and supplement energy to the inspection robot 400, ensure the energy supply of the inspection robot 400, and improve the stability and reliability of the inspection robot 400 work. Therefore, the stability and reliability of the rail transit rolling stock inspection device 10 are improved.
  • the energy supply device 930 includes a power supply device 931.
  • the power supply device 931 includes a power supply and a power interface.
  • the power source is provided in the auxiliary walking device 910.
  • the power interface is electrically connected to the power source, and is used to realize the electrical connection between the power source and the inspection robot 400.
  • the power supply supplies power to the inspection robot 400 through the power interface.
  • the specific structure and installation method of the power supply and the power interface are not limited in this application, as long as their functions can be realized.
  • the patrol auxiliary device 900 carries the power supply device to walk to the patrol robot 400 and supplies power to it.
  • the power supply function to the inspection robot 400 is realized through the power supply and the power interface, and the function of the inspection auxiliary device 900 is increased, which improves the practicability.
  • the inspection auxiliary device 900 further includes an emergency device 940.
  • the emergency device 940 is installed in the walking auxiliary device 910.
  • the emergency device is used to provide emergency rescue to the inspection robot 400.
  • the inspection robot 400 may encounter sudden failures, resulting in emergency situations such as the operation walking device 410 unable to walk, the robotic arm 420 unable to move, or the robotic arm 420 stuck.
  • the inspection auxiliary device 900 is controlled to carry the emergency device 940 to walk near the inspection robot 400 to provide emergency rescue to the inspection robot 400.
  • the function of the inspection auxiliary device 900 is further increased by the emergency device 940, which ensures the safety and stability of the inspection robot 400.
  • the emergency device 940 may include a mechanical emergency device 941.
  • the mechanical emergency device 941 is installed on the auxiliary walking device 910.
  • the mechanical emergency device 941 is used to realize mechanical docking with the inspection robot 400.
  • the specific structure of the mechanical emergency device 941 is not limited, as long as its function can be realized.
  • the structure of the mechanical emergency device 941 matches the structure of the docking device 440, so as to realize the mechanical docking with the inspection robot 400, so that the inspection auxiliary device 900 can contact the Drag, move, etc. of the inspection robot 400.
  • the patrol inspection auxiliary device 900 provided in this embodiment can drag the patrol robot 400 away from the patrol site when the patrol robot 400 fails, so as to improve the degree of automation and the inspection device 10 for rail transit rolling stock. Intelligence.
  • the emergency device 940 further includes an electrical emergency device 942.
  • the electrical emergency device 942 is installed in the auxiliary walking device 910. Specifically, the electrical emergency device 942 may be provided in the mechanical emergency device 941.
  • the electrical emergency device 942 is used to implement electrical connection with the inspection robot 400 and implement electrical emergency rescue for the inspection robot 400.
  • the emergency device 940 may also include a communication emergency device. The communication emergency device is used to realize the communication emergency rescue of the inspection robot 400.
  • the inspection auxiliary device 900 further includes a maintenance device (not shown in the figure).
  • the maintenance device is installed in the auxiliary walking device 910.
  • the maintenance device is used to check the fault information of the inspection robot 400 and perform maintenance. For example, when the mechanical arm 420 of the inspection robot 400 cannot move, the inspection device may connect the electrical communication control line of the inspection robot 400 to the inspection device.
  • the maintenance device debugs the inspection robot 400, and performs further maintenance according to the debugging results.
  • the function of the inspection auxiliary device 900 is further improved by the inspection device, and the safety and reliability of the inspection robot 400 are improved.
  • the inspection robot 400 needs to locate the vehicle to be inspected to achieve accurate inspection and measurement.
  • the inspection robot 400 determines the position of the vehicle to be inspected, due to various errors, it may cause positioning deviation.
  • the inspection robot 400 cannot accurately reach the predetermined position due to the error of its own positioning caused by the error of its own navigation system, unevenness of the walking ground, wheel slip, wheel wear, etc.
  • the vehicle to be detected may cause an error between the actual parking position of the vehicle to be detected and the preset parking position. Errors in both aspects will lead to errors in the relative positions of the two.
  • the inspection robot 400 performs inspection work on the vehicle to be inspected, the inspection is not accurate. Therefore, it is necessary to detect errors in the inspection process of rail transit rolling stock, so that further positioning correction can be carried out based on the errors.
  • the rail transit rolling stock inspection device 10 further includes a rail transit rolling stock inspection pose detection system.
  • the inspection pose detection system for rail transit rolling stock is referred to as the inspection pose detection system 30 hereinafter.
  • the patrol pose detection system 30 will be further described below in conjunction with embodiments.
  • the inspection pose detection system 30 includes a reference reference 310, a pose detection device 320 and a processing device 330.
  • the reference datum 310 is arranged on one side of the rail 100 along the extension direction of the rail 100 where the vehicle to be detected is parked.
  • the length of the reference datum 310 matches the length of the working surface of the inspection robot 400.
  • the reference datum 310 may be a reference made of a profile.
  • the reference datum 310 includes absolute position information and datum plane information along the extending direction of the track 100.
  • the reference datum 310 may reflect the absolute position information and the datum plane information, etc. through scale information, image information, and the like.
  • the pose detection device 320 is used to detect the distance information of the inspection robot 400 relative to the reference reference 310.
  • the pose detection device 320 is provided on the inspection robot 400, so that it can detect the distance information of the inspection robot 400 relative to the reference reference 310 in real time with the movement of the inspection robot 400, and then obtain all information.
  • the posture offset of the inspection robot 400 is described.
  • the pose detection device 320 may be set in different positions of the vehicle body 411 of the inspection robot 400 according to different detection parameters required.
  • the pose detection device 320 includes but is not limited to a distance detection device.
  • the processing device 330 is in communication connection with the pose detection device 320.
  • the distance information of the inspection robot 400 relative to the reference reference 310 detected by the pose detection device 320 is transmitted to the processing device 330.
  • the processing device 330 calculates the pose offset of the inspection robot 400 relative to the reference coordinates according to the distance information of the inspection robot 400 relative to the reference reference 310.
  • the reference coordinates may include one or more reference planes and reference directions in a coordinate system formed by a first coordinate axis, a second coordinate axis, and a third coordinate axis.
  • the first coordinate axis is the y axis shown in FIG. 11, that is, an axis perpendicular to the traveling direction of the inspection robot 400 and parallel or approximately parallel to the ground of the inspection robot 400.
  • the second coordinate axis is the z-axis shown in FIG. 11, that is, an axis perpendicular to the walking direction of the inspection robot 400 and the second coordinate axis.
  • the third coordinate axis is the x axis shown in FIG. 11, that is, an axis parallel to the walking direction of the inspection robot 400.
  • the reference coordinates used to calculate the pose offset include a first reference surface, a second reference surface, a third reference surface, a first direction, a second direction, and a third direction.
  • the first reference plane is a plane parallel to the plane formed by the x-axis and the z-axis.
  • the first direction is a direction parallel to the y-axis. The specific position of the first reference plane along the y-axis can be set according to actual requirements.
  • the first reference plane may be a symmetrical plane of the inspection groove 300 along the transverse direction, that is, the first reference plane is a plane parallel to the plane formed by the x-axis and the z-axis, and the first The reference plane is located at the midpoint of the inspection groove 300 perpendicular to the extending direction of the track 100.
  • the second reference plane is a plane parallel to the plane formed by the x-axis and the y-axis.
  • the second direction is a direction parallel to the z-axis. The specific position of the second reference plane along the z-axis can be set according to actual requirements.
  • the second reference plane may be the walking ground of the inspection robot 400.
  • the third reference plane is a plane parallel to the plane formed by the y axis and the z axis.
  • the third direction is a direction parallel to the x-axis.
  • the specific position of the third reference plane along the x-axis can be set according to actual requirements.
  • the third reference plane may be located at the starting position of the inspection groove 300 along the extending direction of the track 100.
  • the pose offset of the inspection robot 400 relative to the reference coordinates may include, but is not limited to, the offset of the inspection robot 400 in the first direction relative to the first reference plane, relative to The offset of the second reference surface along the second direction, the offset relative to the third reference surface along the third direction, and the angle of rotation around the first direction, around the The angle of rotation in the second direction and the angle of rotation around the third direction.
  • the processing device 330 realizes the Inspection of 400 poses of the inspection robot.
  • the reference datum 310 provides a stable and accurate reference datum for distance detection, thereby improving the accuracy of the pose detection, and further improving the accuracy of the positioning of the subsequent inspection robot 400.
  • the reference coordinates include the first reference plane and the first direction.
  • the reference datum 310 includes a datum scale 311.
  • the reference scale 311 is attached to the side of the rail 100 that is close to the inspection robot 400 along the extending direction of the rail 100.
  • the pose detection device 320 includes a first distance detection device 321.
  • the first distance detection device 321 includes but is not limited to a laser rangefinder.
  • the first distance detecting device 321 is arranged at a first position of the vehicle body 411 of the inspection robot 400 close to the reference scale 311. The first position can be set according to actual needs.
  • the first distance detecting device 321 is used for detecting the distance information of the first position relative to the reference scale 311 along the first direction to obtain the first detecting distance.
  • the first distance detecting device 321 is in communication connection with the processing device 330. The first detection distance detected by the first distance detection device 321 is transmitted to the processing device 330.
  • the processing device 330 calculates the pose offset of the first position relative to the first reference plane in the first direction according to the first detection distance. There may be multiple methods for the processing device 330 to calculate the pose offset of the first position relative to the first reference plane in the first direction. In one embodiment, the processing device 330 obtains the first detection distance, and obtains the distance information of the reference scale 311 relative to the first reference surface along the first direction, so as to calculate the patrol The inspection robot 400 obtains first distance information from the distance information along the first direction relative to the first reference plane. The processing device 330 further obtains the first record information of the patrol robot 400, and calculates according to the first record information and the first distance information to obtain the patrol robot 400 relative to the first reference The pose offset of the face along the first direction. Wherein, the first record information may be obtained by a position collection module such as an encoder of the vehicle body 411 of the inspection robot 400.
  • the distance information of the inspection robot 400 relative to the reference ruler 311 is detected by the first distance detection device 321, and then the processing device 330 calculates that the inspection robot 400 is relative to The pose offset of the first reference plane along the first direction.
  • This embodiment realizes the detection of the offset of the inspection robot 400 along the y-axis, and provides a basis for subsequent positioning and correction in the y-axis direction, thereby eliminating uneven ground, wheel wear, and navigation caused by the inspection robot 400.
  • the y-axis deviation caused by system deviation and other factors can realize the accurate positioning of the inspection.
  • the reference coordinates include the second reference plane and the second direction.
  • the reference datum 310 also includes a datum slope 312.
  • the reference slope 312 is disposed at an end of the reference scale 311 away from the ground where the inspection robot 400 is walking along the extending direction of the track 100.
  • the reference slope 312 is disposed on the top of the reference scale 311.
  • the reference inclined surface 312 is inclined with respect to the reference scale 311.
  • the included angle between the reference slope 312 and the reference scale 311 can be set as required. In a specific embodiment, the angle between the reference slope 312 and the reference scale 311 is 45°.
  • the pose detection device 320 further includes a second distance detection device 322.
  • the second distance detecting device 322 is arranged at a second position of the vehicle body 411 of the inspection robot 400.
  • the second position and the first position are located on the same surface of the vehicle body 411 of the inspection robot 400.
  • the second position is also set on the side of the vehicle body 411 close to the reference scale.
  • the second distance detecting device 322 for the second position includes but is not limited to a laser rangefinder.
  • the second distance detecting device 322 is used to detect the distance information of the second position relative to the reference slope 312 along the first direction to obtain a second detecting distance.
  • the specific setting of the second position can be adjusted and selected according to the setting position of the reference slope 312 to ensure that the second distance detection device 322 can detect that the second position is relative to the reference slope 312.
  • the distance information in the first direction For example, the second position is located above the first position, and the second position is higher than the lowest point of the reference slope 312, so that the second distance detection device 322 can detect the second Distance information of the position relative to the reference slope.
  • the second distance detecting device 322 is in communication connection with the processing device 330.
  • the processing device 330 calculates the pose offset of the inspection robot 400 in the second direction relative to the second reference plane according to the first detection distance and the second detection distance.
  • the first detection distance is y1
  • the second detection distance is y2.
  • the first detection distance and the second detection distance is the posture offset of the inspection robot 400 relative to the second reference plane along the z-th axis.
  • the inspection pose detection system 30 provided in this embodiment realizes the detection of the second detection distance through the second distance detection device 322 and the reference slope 312, and then calculates that the inspection robot 400 is relative to The pose offset of the second reference plane along the second direction.
  • the system provided by this embodiment is simple and effective, and can accurately detect and calculate the offset of the inspection robot 400 along the z-axis, so as to eliminate the wheel wear and uneven walking ground of the inspection robot 400.
  • the first position and the second position are located on a straight line perpendicular to the second reference plane. That is, the first position and the second position are arranged on a straight line parallel to the second direction, so that the position difference between the first position and the second position in the third direction is zero Therefore, when calculating the pose offset in the y-axis direction, the influence caused by the tilt of the vehicle body of the inspection robot 400 is eliminated, and the accuracy of the detection and calculation of the pose offset in the z-axis direction is improved.
  • the reference coordinates include the second direction.
  • the pose detection device 320 further includes a third distance detection device 323.
  • the third distance detecting device 323 is arranged at the third position of the inspection robot.
  • the third distance detecting device 323 includes but is not limited to a laser rangefinder.
  • the third distance detecting device 323 is used for detecting the distance information of the third position relative to the reference scale 311 along the first direction to obtain the third detecting distance.
  • the third position is located on the same plane as the first position and the second position.
  • the third position and the first position are respectively arranged at different positions along the extending direction of the track 100. That is, the coordinate values of the third position and the first position on the third coordinate axis are different.
  • the first position and the third position are arranged one behind the other on the side surface of the vehicle body 411 of the inspection robot 400.
  • the third distance detecting device 323 is in communication connection with the processing device 330.
  • the processing device 330 calculates the rotation angle of the inspection robot 400 around the second direction according to the first detection distance and the third detection distance.
  • the rotation angle of the inspection robot 400 around the second direction is the inclination angle of the vehicle body 411 of the inspection robot 400.
  • the first detection distance is y1
  • the third detection distance is y3
  • the distance between the first position and the third position is d, then, according to d, y3-y1,
  • Calculating the degree of ⁇ 1 is the rotation angle of the inspection robot 400 around the second direction.
  • the third detection distance is detected by the third distance detection device 323, and the direction of the inspection robot 400 around the second direction is calculated according to the first detection distance and the third detection distance.
  • the rotation angle can eliminate the vehicle body tilt caused by the inspection robot 400 on uneven ground, wheel wear, wheel slippage, etc., and improve the accuracy of positioning.
  • the reference coordinates include the third reference plane and the third direction.
  • the reference datum 310 includes the datum scale 311.
  • the reference scale 311 includes scale information.
  • the pose detection device 320 further includes a recognition device 324.
  • the identification device is used to equip the scale information of the reference scale, so as to obtain the position information of the inspection robot relative to the third reference surface along the third direction. That is, the recognition device 324 recognizes the scale information of the reference ruler 311, obtains the position information of the inspection robot 400 along the walking direction, and then obtains the relative position of the inspection robot 400 relative to the third reference plane. Position information along the third direction.
  • the system provided in this embodiment can further detect the deviation between the actual walking position in the third direction and the target position of the inspection robot 400 caused by wheel slippage, navigation system deviation, etc., so as to improve subsequent positioning performance. Accuracy, improve the quality and efficiency of inspection work.
  • the display form of the scale information on the reference scale 311 and the specific structure of the identification device 324 are not limited, as long as the two can cooperate to achieve position information acquisition.
  • the reference scale 311 is a two-dimensional code strip.
  • the two-dimensional code strip includes y-axis information and x-axis information.
  • the identification device 324 is an image acquisition device.
  • the image acquisition device includes but is not limited to a camera and the like.
  • the image acquisition device is arranged on the vehicle body 411 of the inspection robot 400, and is used to collect information of the two-dimensional code belt to obtain image information.
  • the pose detection device 320 further includes a first processing mechanism 325.
  • the first processing mechanism 325 is in communication connection with the image acquisition device.
  • the first processing mechanism 325 obtains the image information and obtains the position information of the inspection robot 400 in the first direction relative to the first reference plane according to the image information, and the inspection robot 400 Position information along the third direction relative to the third reference plane. That is, the first processing mechanism 325 obtains the current position of the inspection robot 400 in the y-axis direction and the position in the x-axis according to the information of the two-dimensional code strip acquired by the image acquisition device 324. . It can be understood that when information is acquired through the two-dimensional code belt and the image acquisition device, the first distance detection device 321 may not be provided.
  • the detection of the position of the inspection robot 400 along the x-axis direction and the y-axis direction is realized, so that the inspection robot 400 can be obtained.
  • the detection method of the pose offset in the x-axis direction and the y-axis direction is simple and accurate.
  • the reference scale 311 is a two-dimensional code tape or a barcode tape.
  • the identification device 324 is a code reader. The code reader is used to identify the information of the two-dimensional code tape or the barcode tape.
  • the barcode strip includes x-axis information.
  • the pose detection device 320 further includes a second processing mechanism 326. The second processing mechanism 326 is in communication connection with the barcode reader. The second processing mechanism 326 is configured to obtain position information of the inspection robot 400 relative to the third reference plane along the third direction according to the information of the two-dimensional code strip or the barcode strip. In other words, the x-axis information on the two-dimensional code tape or the barcode tape is read by the code reader to obtain the current position information of the inspection robot 400 in the x-axis direction.
  • the inspection of the inspection robot 400 along the x-axis direction is realized, so that the inspection robot 400 can be The pose offset in the x-axis direction, the detection method is simple and accurate.
  • the pose detection device 320 further includes a fourth distance detection device 327.
  • the fourth distance detecting device 327 is installed on the top of the inspection robot 400.
  • the fourth distance detection device 327 includes but is not limited to a laser rangefinder.
  • the fourth distance detection device 327 is used to detect the distance information of the bottom of the vehicle to be detected relative to the fourth distance detection device 327 to obtain a fourth detection distance.
  • the fourth distance detection device 327 is in communication connection with the processing device 330.
  • the processing device 330 is configured to calculate the pose offset of the vehicle to be detected according to the fourth detection distance.
  • the fourth detection distance is the height information of the bottom of the vehicle to be detected.
  • the fourth distance detecting device 327 continuously moves in the inspection groove 300 to collect the height information curve of the bottom of the vehicle to be detected.
  • the inspection robot 400 can also recognize the information of the reference ruler 311 through the recognition device 324, and obtain the position information in the x-axis direction corresponding to the height information, thereby obtaining the vehicle to be detected.
  • the processing device 330 calculates the pose offset of the vehicle to be detected according to the height-length curve information.
  • the pose offset of the vehicle to be detected includes, but is not limited to, the pose offset of the vehicle to be detected relative to the second reference plane in the second direction, and the pose offset of the vehicle to be detected relative to the The pose offset of the third reference plane along the third direction, that is, the offset of the vehicle to be detected in the z-axis direction and the offset in the x-axis direction.
  • the process of processing calculation by the processing device 330 refer to the following method embodiments.
  • the fourth distance detecting device 327 realizes the detection of the displacement of the vehicle to be detected, so that the parking deviation of the vehicle to be detected in the x-axis direction caused by navigation errors can be eliminated. , And the posture deviation in the z-axis direction caused by the wear of the wheels of the vehicle to be detected, thereby enabling the accuracy of positioning.
  • an embodiment of the present application provides a method for detecting the patrol pose of a rail transit rolling stock.
  • the patrol pose detection system 30 described above may be used for pose detection.
  • the execution subject of the method is computer equipment.
  • the computer equipment may be the processing device 330 in the rail transit rolling stock inspection system 30, or the control device 600, or any other device that includes a memory and a processor and can process computer programs. Computer equipment.
  • the method includes:
  • the definition of the reference coordinates is as described in the above embodiment.
  • the pose offset of the vehicle to be detected relative to the reference coordinates can be determined by the fourth distance detection device 327, the processing device 330, the identification device 324, the first processing mechanism 325 and The second processing mechanism 326 detects it.
  • the pose offset of the inspection robot 400 relative to the reference coordinates can be determined by the first distance detection device 321, the second distance detection device 322, and/or the third distance detection device as described above. 324, and detected by the processing device 330, the identification device 324, the first processing mechanism 325, and the second processing mechanism 326.
  • the vehicle pose offset may be acquired and stored in the memory of the computer device after the vehicle to be detected is parked in place.
  • the robot pose offset is acquired in real time during the inspection operation of the inspection robot 400.
  • the computer device After the computer device separately obtains the vehicle pose offset and the robot pose offset, calculates and processes the vehicle pose offset and the robot offset according to a preset method , Obtain the total pose offset during the inspection operation, that is, the pose offset of the rail transit rolling stock inspection operation.
  • the calculation method includes, but is not limited to, the summation or weighted summation of the same coordinate axis pose offset, and other related quantities. The specific calculation method can be set according to actual needs.
  • the posture offset of the rail transit rolling stock inspection operation is transmitted to the control device 600.
  • the control device 600 corrects and adjusts the walking direction of the inspection robot 400 in real time according to the pose offset, thereby accurately positioning and accurately detecting the vehicle to be detected.
  • the rail transit vehicle patrol is obtained.
  • the method provided in this embodiment not only considers the pose deviation of the inspection robot 400 during the inspection operation of rail transit rolling stock, but also considers the pose deviation of the vehicle to be inspected, and eliminates positioning errors in many aspects. Improve positioning accuracy, thereby improving inspection results.
  • the reference coordinates include a first reference plane and a first direction
  • S20 includes:
  • S210 Obtain distance information of the first position of the inspection robot 400 relative to the first reference plane along the first direction to obtain first distance information.
  • the obtaining of the first distance information may include, but is not limited to, detecting the distance between the first position and the reference ruler 311 by the first distance detecting device 321 in the foregoing embodiment to obtain the first detecting distance.
  • the first distance information is calculated according to the distance of the reference scale 311 with respect to the first reference surface along the first direction and the first detection distance.
  • the first reference surface can also be set as the reference scale, then the first distance information is the first detection distance.
  • the first distance information represents actual distance information of the first position of the inspection robot 400 relative to the first reference plane along the first direction.
  • the first distance is the distance information along the y-axis of the first position of the inspection robot 400 relative to the first reference plane.
  • the first record information represents an ideal position or a target position of the first position of the inspection robot 400 in the first direction relative to the first reference plane.
  • the first record information may be obtained through a navigation module such as an encoder of the inspection robot 400.
  • S230 Calculate the pose offset of the first position relative to the first reference plane in the first direction according to the first distance information and the first record information. Calculation methods include, but are not limited to, subtracting the two or adding a proportional coefficient.
  • the pose offset of the first reference plane along the first direction is the pose offset of the inspection robot 400 along the x-axis.
  • the reference coordinates include the second reference plane and the second direction
  • S20 includes:
  • S240 Obtain distance information of the second position of the inspection robot 400 relative to the reference slope along the first direction to obtain second distance information.
  • the reference inclined surface is inclined with respect to the second reference surface, and the first position and the second position are located on the same surface of the inspection robot 400. And the first position and the second position are located on a straight line perpendicular to the second reference plane.
  • S250 Obtain a pose offset of the inspection robot 400 in the second direction relative to the second reference plane according to the first distance information and the second distance information.
  • the reference coordinates include the second direction.
  • S20 includes:
  • S260 Obtain distance information of the third position of the inspection robot 400 relative to the first reference plane along the first direction to obtain third distance information.
  • the third position and the first position are located on the same surface of the inspection robot 400, and the first position and the third position are respectively arranged on the inspection robot 400 along the track 100 different positions in the extension direction.
  • S270 Obtain a rotation angle of the inspection robot 400 around the second direction according to the first distance information and the third distance information.
  • the acquisition of the third distance information is similar to the acquisition of the first distance information.
  • the calculation and acquisition of the rotation angle of the inspection robot 400 around the second direction are the same as those shown in the foregoing embodiment and FIG. 15. I won't repeat them here.
  • the reference coordinates include the second reference plane, the third reference plane, the second direction, and the third direction.
  • S10 includes:
  • the height-length curve information represents the position of the vehicle under inspection on the x-axis when the vehicle to be inspected is parked at the actual parking position, the position of the components under the vehicle on the z-axis, and the corresponding relationship between the z-axis and the x-axis.
  • the standard height-length curve information represents the position of the vehicle to be detected on the x-axis, the position of the components on the z-axis, and the corresponding relationship between the z-axis and the x-axis when the vehicle to be detected is located at the accurate target parking position.
  • the inspection robot 400 carries the fourth distance detection device to move along the bottom of the vehicle to be detected, and while acquiring the height information of the bottom of the vehicle to be detected, it recognizes the vehicle through the identification device 324. According to the information of the reference scale 311, position information of each position of the vehicle bottom to be detected relative to the third reference surface along the third direction is obtained. Thus, the height length curve information is obtained.
  • the deviation of the vehicle to be detected along the z-axis and the parking deviation along the x-axis can be quickly obtained.
  • the method provided in this embodiment can quickly and accurately obtain the attitude deviation and the position of the vehicle to be detected along the z-axis by acquiring the information of the height-length curve of the vehicle under test and the standard height-length curve.
  • the parking deviation in the x-axis direction can quickly and accurately obtain the attitude deviation and the position of the vehicle to be detected along the z-axis by acquiring the information of the height-length curve of the vehicle under test and the standard height-length curve. The parking deviation in the x-axis direction.
  • S130 includes:
  • S131 Obtain the distance information of the wheelset position of the vehicle to be detected in the first direction relative to the first reference surface according to the vehicle bottom height length curve information, and obtain wheelset position information.
  • S132 Obtain standard distance information along the first direction of the wheelset position of the vehicle to be detected relative to the first reference plane according to the standard height length curve information, to obtain standard wheelset information.
  • the actual parking position of the wheelset can be obtained as the x-axis point x1a, and the height is z2a.
  • the ideal parking position of the wheelset can be obtained as the x-axis x2b point and the height z2b. Therefore, it can be obtained that the offset of the vehicle to be detected along the z-axis is z2a-z2b, and the offset of the vehicle to be detected along the x-axis is x2a-x2b.
  • control device 600 of the rail transit rolling stock inspection device 10 is in communication connection with the processing device 330.
  • the pose offset of the inspection robot 400 relative to the reference coordinates calculated by the processing device 330, the pose offset of the vehicle to be detected relative to the reference coordinates, and/or the rail transit locomotive The posture offset of the vehicle inspection operation is transmitted to the control device 600.
  • the control device 600 controls the walking of the inspection robot 400 according to the above offset, so as to realize accurate positioning and accurate inspection.
  • an embodiment of the present application provides a rail transit rolling stock inspection system 1.
  • the rail transit rolling stock inspection system 1 includes the rail transit rolling stock inspection device 10 and the dispatching device 20 as described above. Wherein, the number of the inspection robot 400 is at least two.
  • the scheduling device 20 is in communication connection with the inspection robot 400. The scheduling device 20 is used to schedule the inspection robot 400.
  • the rail transit rolling stock inspection system 1 includes a plurality of inspection robots 400.
  • the control device 600 of each rail transit rolling stock device 10 may be set separately to control the corresponding inspection robot 400, or one control device 600 may control multiple inspection robots.
  • the scheduling device 20 may be a separate device or a module of the control device 600.
  • the scheduling device 20 is used to formulate the operation sequence and walking route of each inspection robot 400 according to the inspection operation content requirements and the state of the inspection robot 400.
  • the scheduling device 20 may also be used to control the lifting of the lifting equipment 501 according to the working requirements and working status of the inspection robot 400.
  • the scheduling device 20 can also control the work of the inspection auxiliary device 900 according to the work requirements and working status of the inspection robot 400.
  • the work of multiple inspection robots 400 is controlled by the scheduling device 20, so that multiple inspection robots 400 can perform inspection operations at the same time, which greatly shortens the inspection operation time and improves the inspection operation. Check work efficiency.
  • each inspection robot 400 may be provided with multiple different detection devices 430 according to requirements.
  • the scheduling device 20 is used to control each inspection robot 400 to respectively complete multiple inspection items for a vehicle to be inspected.
  • the scheduling device 20 controls each inspection robot 400 to complete all inspection items required for one vehicle to be inspected.
  • the multiple inspection robots 400 simultaneously complete the inspection of multiple vehicles to be inspected.
  • the inspection robot 400 does not need to perform cross-track inspection, which saves the walking time of the inspection robot 400 and improves detection efficiency.
  • multiple inspection robots 400 are provided with different detection devices 430 respectively.
  • the scheduling device 20 is used to control each of the inspection robots 400 to respectively complete one inspection item for multiple vehicles to be inspected.
  • the multiple inspection robots 400 are respectively installed with different detection devices 430 to complete different inspection items.
  • the multiple inspection robots 400 perform inspection operations at the same time, and each of the inspection robots 400 completes the inspection of multiple vehicles to be inspected across tracks, thereby simultaneously completing inspections of multiple vehicles to be inspected.
  • each inspection robot 400 does not need to replace the detection device 430, which saves time and resources for the inspection robot 400 to replace the device 400 to be inspected, and improves the inspection efficiency.
  • the rail transit locomotive inspection system 1 includes six inspection robots 400, M5(1)-M5(6), which are parked at positions P001-P006, respectively.
  • the rail transit rolling stock inspection system 1 also includes two of the inspection auxiliary devices 900, M6(1) and M6(2), which are parked at positions P007 and P008, respectively.
  • Pxxx represents the position.
  • J1-J6 represented by dashed lines are different compartments of the vehicle to be inspected.
  • M7(1) and M7(2) represent the lifting device 501. Assuming that the lifting equipment 501 is in communication connection with the dispatching device 20, the lifting action of the lifting equipment 501 is controlled by the dispatching device 20.
  • the inspection robots M5(1)-M5(6) are arranged in standby positions on the side L of the vehicle to be inspected.
  • P007-P008 The patrol auxiliary devices M6(1)-M6(2) are arranged in standby positions on the side L of the vehicle to be detected.
  • P120 The point on the lifting platform of the lifting device M7(1) (the reference point in the middle of the vehicle side L), on the vehicle side L of the vehicle to be inspected, the plane where the inspection platform 200 is located and the inspection recess
  • the slot 300 moves between the planes.
  • P110, P130 the reference points at both ends of the vehicle side L of the vehicle to be detected.
  • P114-P119, P121-P126 The typical car-side L detection stops corresponding to each compartment of the vehicle to be detected.
  • P150 the central reference point in the inspection groove 300.
  • P140, P160 the reference points at both ends of the inspection groove 300.
  • P144-P149, P151-P156 The typical vehicle bottom inspection grooves corresponding to each compartment of the vehicle to be inspected detect stopping points.
  • P180 The point on the lifting platform of the lifting device M7(2) (the reference point in the middle of the vehicle side R), on the plane where the inspection platform 200 on the vehicle side of the vehicle to be inspected is located and the inspection groove 300 Move between the planes.
  • P170, P190 the reference points at both ends of the vehicle side R of the vehicle to be detected.
  • P174-P179, P181-P186 The typical car-side R detection stops corresponding to each compartment of the vehicle to be detected.
  • the rail transit rolling stock inspection system 1 includes one inspection robot 400, and the inspection operation process is as follows:
  • the on-site working condition detection device 700 acquires working condition parameters of the patrol inspection site.
  • the fluid accumulation detection mechanism 710 detects the fluid accumulation in the inspection groove 300, the intrusion detection component 730 whether there is an intrusion at the inspection site, and so on. If there is an abnormality, the on-site working condition detection device 700 or the control device 600 alarms.
  • the vehicle presence detection component 720 detects whether the vehicle to be detected is parked in place. If the guide detects that the vehicle is parked in place, it can be used as a start enable signal.
  • the control device 600 confirms whether the operation can be started according to the detection situation of the on-site working condition detection device 700, and if so, sends a start signal.
  • the scheduling device 20 obtains the information of the inspection robot 400 that is activated on standby, and allocates inspection tasks to the inspection robot M5(1), and issues a job control instruction. Assume that the inspection task is: complete a certain inspection item at P150 in the figure.
  • the inspection robot M5(1) described in S105 runs in the following 4 steps:
  • the scheduling device 20 controls the inspection robot M5(1) to walk from P001 to P120, and when ready, the inspection robot M5(1) feeds back the status to the scheduling device 20.
  • the dispatching device 20 sends a "down" instruction to the lifting device M7(1), the lifting device M7(1) performs a lowering action, and when it is in place, it feeds back to the dispatching device 20.
  • the scheduling device 20 sends the instruction "P120—>P150" to the inspection robot M5(1).
  • the inspection robot M5(1) reaches P150, it enters the inspection groove 300, and The status is fed back to the scheduling device 20.
  • the dispatching device 20 issues a "rising" instruction to the lifting equipment M7(1), and the lifting equipment M7(1) performs a lifting action.
  • the control device 600 sends an instruction of "locating and detecting the vehicle to be detected” to the inspection robot M5(1), and the inspection robot M5(1) moves along "J4—>J5—>J6—> J3—>J2—>J1" direction is used for traveling measurement to obtain the parking deviation ⁇ X of the vehicle to be detected and the height deviation ⁇ Yn of the components.
  • control device 600 sends an instruction of “carrying out under-vehicle inspection on the vehicle to be inspected” to the inspection robot M5(1), and the inspection robot M5(1) follows “P140->P150->P160 Go in the direction of the vehicle to detect the under-vehicle items of the vehicle to be detected.
  • the inspection robot M5(1) stops at P144, and the control device 600 controls the end of the robot arm 420 of the inspection robot M5(1) to a predetermined detection position.
  • the detection device 430 installed at the end of the robotic arm 420 starts to work, collects related information about the detection item, and transmits it to the control device 600.
  • the control device 600 processes related information and confirms whether there is a fault.
  • the inspection robot M5 (1) walks to the next inspection stop position, and repeats the above 1)-3) steps until the inspection tasks corresponding to all the inspection positions in P140 to P160 are completed.
  • the inspection robot M5(1) returns to P150 after completing the inspection work on the underbody of the vehicle to be inspected, and then feeds back the status to the control device 600.
  • control device 600 sends an instruction "complete a certain item detection at P110" to the inspection robot M5(1), according to the following steps:
  • the dispatching device 20 issues a "descent" instruction to the lifting equipment M7(1), the lifting equipment M7(1) performs a descending action, and when it is in place, feeds back the dispatching device 20.
  • the scheduling device 20 sends the instruction "P150—>P120" to the inspection robot M5(1), and when the inspection robot M5(1) reaches P120, it walks out of the inspection groove 300, and The state is fed back to the control device 600.
  • the control device 600 issues a "rising" instruction to the lifting equipment M7(1), the lifting equipment M7(1) performs the lifting action, and when it is in place, feeds back to the dispatching device 20.
  • the scheduling device 20 sends the instruction "P120->P110" to the inspection robot M5(1), and when the inspection robot M5(1) reaches P110, the action is completed.
  • the inspection robot M5(1) performs the inspection operation on the vehicle side L of the vehicle to be inspected from P110 to P130, and the process is similar to that of S108, which will not be repeated here. After the inspection robot M5(1) completes the inspection, it reaches P130.
  • the scheduling device 20 sends the instruction "execute P130—>P170 action” to the inspection robot M5(1), and implement the following steps:
  • the scheduling device 20 controls the inspection robot M5(1) to walk from P130 to P120. After being in place, the inspection robot M5(1) feeds back the status to the scheduling device 20.
  • the dispatching device 20 sends a "descent" instruction to the lifting equipment M7(1), M7(2), and the lifting equipment M7(1) and M7(2) perform the descending action.
  • the scheduling device 20 sends a "descent" instruction to the lifting equipment M7(1), M7(2), and the lifting equipment M7(1) and M7(2) perform the descending action.
  • the scheduling device 20 sends the instruction "P120—>P180" to the inspection robot M5(1).
  • the inspection robot M5(1) walks to P180, it walks out of the trench, and the status is fed back to the scheduling device 20.
  • the dispatching device 20 issues an "rising" instruction to the lifting equipment M7(1) and the lifting equipment M7(2), and the lifting equipment M7(1) and the lifting equipment M7(2) perform ascent action. After being in place, the lifting equipment M7 (1) and the lifting equipment M7 (2) feed back information to the dispatching device 20.
  • the scheduling device 20 sends the instruction "P180—>P170" to the inspection robot M5(1), and when the inspection robot M5(1) moves to P170, the action is completed.
  • the inspection robot M5(1) in S113 executes the vehicle side R detection operation between P170 and P190, and the process is similar to S108, which will not be repeated here.
  • the inspection device 430 transmits the collected information to the control device 600 for processing.
  • the control device 600 feeds back the fault information through the client to the maintenance personnel for confirmation. Confirm the faulty parts and prompt the maintenance personnel to perform maintenance. If it cannot be confirmed, it can be re-checked and confirmed again.
  • the re-inspection process is similar to the above process.
  • the scheduling device 20 controls the inspection robot M5(1) to walk to the position that has been inspected, and the control device 600 controls the inspection robot M5(1) to perform inspection items after inspection. Re-collect information and record.
  • the walking route control and inspection operation control of the inspection robot 400 may also be controlled by the control device 600.
  • the lifting control of the lifting equipment 501 may also be controlled by the control device 600.
  • the scheduling device 20 schedules three inspection robots 400 to perform inspection operations at the same time.
  • the inspection operation process is as follows:
  • the inspection and task acquisition before S201 patrol operation include the following steps:
  • the on-site working condition detection device 700 acquires working condition parameters of the inspection site. The details are the same as step S102.
  • control device 600 confirms whether the operation can be started according to the detection situation of the on-site working condition detection device 700, and if so, sends a start signal.
  • the scheduling device 20 obtains the information of the inspection robot 400 that is activated on standby, and assigns inspection tasks to the inspection robots M5(1), M5(2), and M5(3), and issues job control instruction. Assume that the inspection tasks are allocated as follows: the inspection robot M5(1) completes the first inspection item at P150 in the figure; the inspection robot M5(2) completes the second inspection item at P110 in the figure ; The inspection robot M5 (3) completes the third inspection item at P170 in the figure.
  • the inspection robots M5(1), M5(2), and M5(3) walk to P150, P110, and P170 respectively according to the instructions of the scheduling device 20 and the control device 600.
  • the control device 600 issues an instruction of “locating and detecting the vehicle to be detected” to the inspection robot M5(1) or M5(2) or M5(3), and the inspection robot M5(1) or M5 (2) or M5(3) measure traveling along the direction of "J4—>J5—>J6—>J3—>J2—>J1" to obtain the parking deviation ⁇ X of the vehicle to be detected and the height deviation ⁇ Yn of the components.
  • the inspection robots M5(1), M5(2) and M5(3) feed back information to the control device 600 after walking in place.
  • control device 600 issues an instruction of “carrying out under-vehicle inspection of the vehicle to be inspected” to the inspection robot M5(1), and the inspection robot M5(1) follows “P140->P150->P160 "Go in the direction of the vehicle, and carry out the inspection of the undercarriage items.
  • control device 600 issues an instruction of "carrying out vehicle side L inspection on the vehicle to be inspected” to the inspection robot M5(2), and the inspection robot M5(2) follows "P110—>P120—> Walk in the direction of P130" and check the L item on the car side.
  • control device 600 issues an instruction of “carrying out R detection on the vehicle side of the vehicle to be detected” to the inspection robot M5(3), and the inspection robot M5(3) follows “P170—>P180—> Walk in the direction of P190” and check the R item on the car side.
  • the dispatching device 20 dispatches 6 inspection robots M5 to simultaneously perform inspection operations on the vehicle side L of the vehicle to be inspected, and the steps are as follows:
  • step S211 is the same as step S201.
  • the scheduling device 20 sends out "P001—>P110" to the inspection robot M5(1); the dispatch device 20 sends out “P002—>P114” to the inspection robot M5( 2); The dispatching device 20 sends out “P003—>P116” to the inspection robot M5(3); the dispatching device 20 sends out “P004—>P118” to the inspection robot M5(4); The dispatching device 20 sends out "P005—>P123” to the inspection robot M5(5); the dispatching device 20 sends out “P006—>P125” to the inspection robot M5(6); the dispatching device 20 Send "P144—>P125” to the inspection robot M5 (6).
  • the walking process of the inspection robot is similar to S110, and after it is in place, feedback information to the control device 600.
  • the control device 600 sends a "car-side L-J1 detection" instruction to the inspection robot M5(2), and the inspection robot M5(2) performs P114 ⁇ P115 on the vehicle to be inspected along the lines Go in the direction of "L-J1" on the vehicle side.
  • control device 600 issues an instruction of “carrying out L-J2 inspection on the vehicle to be inspected” to the inspection robot M5(3), and the inspection robot M5(3) follows “P116 ⁇ P117”. Go in the direction of "L-J2" on the vehicle side.
  • the control device 600 issues an instruction of "carrying out L-J3 inspection on the vehicle to be inspected” to the inspection robot M5 (4), and the inspection robot M5 (4) follows "P118 ⁇ P119" Go in the direction of "L-J3" on the vehicle side.
  • control device 600 issues an instruction of "carrying out L-J4 inspection on the vehicle to be inspected” to the inspection robot M5(1), and the inspection robot M5(1) follows "P121 ⁇ P122" Go in the direction of "L-J4" on the vehicle side.
  • control device 600 issues an instruction of "carry out L-J5 inspection on the vehicle to be inspected” to the inspection robot M5 (5), and the inspection robot M5 (5) follows "P123 ⁇ P124" Go in the direction of "L-J5" on the vehicle side.
  • control device 600 issues an instruction of "carrying out L-J6 inspection on the vehicle to be inspected” to the inspection robot M5 (6), and the inspection robot M5 (6) follows "P125 ⁇ P126" Go in the direction of "L-J6" on the vehicle side.
  • the process of the inspection robots M5(1) and M5(2) being docked through the docking device 440 and performing cooperative operations at positions P122 and P123 is as follows:
  • the inspection robot M5(1) arrives at the detection point P123.
  • the inspection robot M5(2) in S302 reaches the detection point P122, and realizes a mechanical connection with the M5(1) through the real-time docking device 440.
  • the inspection robots M5(1) and M5(2) described in S303 cooperate with each other while keeping their relative positions in a static state according to process requirements.
  • the docking device 440 is disconnected.
  • the auxiliary operation process performed by the inspection auxiliary device M6(1) on the inspection robot M5(1) is as follows:
  • step S401 During the detection operation process of step S108 (assuming that the parking position is P121), the inspection robot M5(1) controls the end of the robotic arm 420 to a predetermined detection position.
  • the detection device 430 starts the detection work. After the collection and detection are completed, the detection device 430 needs to be replaced to perform another detection.
  • the dispatching device 20 issues an instruction "position P121 to replace the robot arm end detection device" to the patrol auxiliary device M6(1).
  • the patrol inspection auxiliary device M6(1) executes the action "P007—>P121” and walks from P007 to P121.
  • the docking device 440 is used for docking with the inspection robot M5(1) to realize a mechanical connection. After completion, the status is fed back to the control device 600.
  • the control device 600 issues an instruction to replace the detection device, and the inspection robot M5(1) connects the detection device at the end of the robotic arm 420 with the tool rack 920 of the inspection auxiliary device M6(1). Replace the detection device on the device. After completion, the inspection robot M5 (1) is separated from the inspection auxiliary device M6 (1), and the inspection auxiliary device M6 (1) returns.
  • the inspection auxiliary device M6(1) assists the emergency rescue of the inspection robot M5(1), and the steps are as follows:
  • the inspection robot M6(1) walks to P121, and docks with the inspection robot M5(1) that has a fault to achieve mechanical and electrical connection.
  • the inspection robot M5(1) is diagnosed through the inspection auxiliary device M6(1), and if it is a software failure, the inspection robot M5(1) is software repaired and restarted. Then determine whether it is still in a fault state.
  • the inspection auxiliary device M6(1) is disconnected from the docking device 440 of the inspection robot M5(1), and the inspection auxiliary device M6(1) returns.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

一种轨道交通机车车辆巡检位姿检测系统。包括:参考基准(310)、位姿检测装置(320)和处理装置(330)。参考基准(310)沿待检测车辆停放的轨道延伸方向设置于所述轨道一侧。位姿检测装置(320)设置于轨道交通机车车辆巡检机器人(400),用于检测轨道交通机车车辆巡检机器人(400)相对于参考基准(310)的距离信息。处理装置(330)与位姿检测装置(320)通信连接,用于根据轨道交通机车车辆巡检机器人(400)相对于参考基准(310)的距离信息计算轨道交通机车车辆巡检机器人(400)相对于基准坐标的位姿偏移量。该轨道交通机车车辆巡检位姿检测系统能够实现位姿偏移量检测,且精确度高。还提供一种轨道交通机车车辆巡检位姿检测方法。

Description

轨道交通机车车辆巡检位姿检测系统及其方法
相关申请
本申请要求2019年2月3日申请的,申请号为201910108764.5,名称为“轨道交通机车车辆巡检位姿检测系统及其方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及轨道交通机车车辆检测领域,特别是涉及一种轨道交通机车车辆巡检位姿检测系统及其方法。
背景技术
随着交通技术的发展,以火车、动车、地铁、高铁等为代表的轨道交通机车车辆已成为人们出行的重要交通工具。轨道交通机车车辆需要定期进行检修,以保障运行的安全性。
传统技术中,对轨道交通机车车辆的检修主要以人工检测为主。通过人工目视检测或手持检测设备进行检测。这样的检测存在效率低、质量差、信息化水平低等问题。
随着人工智能的逐步发展,轨道交通机车车辆巡检机器人逐渐出现。人们通过将各种检测探头与机器人配合,实现对轨道交通机车车辆的检修。轨道交通机车车辆巡检系统在对轨道交通机车车辆进行检修时,需要对轨道交通机车车辆进行精确定位,以保证检测结果的准确性。
然而,待检测车辆停放在轨道上,由于停靠定位偏差,以及车轮磨损的影响等,会导致轨道交通机车车辆巡检机器人对待检测车辆定位存在偏差。同时,由于轨道交通机车车辆巡检机器人自身在行走过程中,由于车轮磨损、导航系统偏差以及地面不平整等,导致最终的定位存在偏差。以上两种偏差均会影响轨道交通机车车辆巡检机器人定位的准确性,从而影响检测结果的准确性。
因此,需要一种装置和方法对轨道交通机车车辆巡检系统测量过程中的位姿进行检测。
发明内容
基于此,有必要针对上述问题,提供一种轨道交通机车车辆巡检位姿检测系统及其方法。
一种轨道交通机车车辆巡检位姿检测系统,包括:
参考基准,沿待检测车辆停放的轨道延伸方向设置于所述轨道一侧;
位姿检测装置,设置于轨道交通机车车辆巡检机器人,用于检测所述轨道交通机车车辆巡检机器人相对于所述参考基准的距离信息;
处理装置,与所述位姿检测装置通信连接,用于根据所述轨道交通机车车辆巡检机器人相对于所述参考基准的距离信息计算所述轨道交通机车车辆巡检机器人相对于基准坐标的位姿偏移量。
在其中一个实施例中,所述基准坐标包括第一基准面和第一方向;所述参考基准包括基准标尺,所述基准标尺沿所述轨道延伸方向贴合于所述轨道靠近所述轨道交通机车车辆巡检机器人的一侧;
所述位姿检测装置包括第一距离检测装置,所述第一距离检测装置设置于所述轨道交通机车车辆巡检机器人靠近所述基准标尺的一侧的第一位置,与所述处理装置通信连接,所述第一距离检测装置用于检测所述第一位置相对于所述基准标尺沿所述第一方向的距离信息,得到第一检测距离;
所述处理装置用于根据所述第一检测距离计算所述第一位置相对于所述第一基准面沿所述第一方向的位姿偏移量。
在其中一个实施例中,所述基准坐标包括第二基准面和第二方向;所述参考基准包括基准斜面,所述基准斜面沿所述轨道延伸方向设置于所述基准标尺远离所述轨道交通机车车辆行走地面的一端,且所述基准斜面相对于所述基准标尺倾斜设置;
所述位姿检测装置还包括第二距离检测装置,所述第二距离检测装置设置于所述轨道交通机车车辆巡检机器人的第二位置,所述第一位置与所述第二位置位于所述轨道交通机车车辆巡检机器人的同一个面,所述第二距离检测装置与所述处理装置通信连接,所述第二距离检测装置用于检测所述第二位置相对于所述基准斜面沿所述第一方向的距离信息,得到第二检测距离;
所述处理装置用于根据所述第一检测距离和所述第二检测距离计算所述轨道交通机车车辆巡检机器人相对于所述第二基准面沿所述第二方向的位姿偏移量。
在其中一个实施例中,所述第一位置和所述第二位置位于垂直于所述第二基准面的直线上。
在其中一个实施例中,所述基准坐标包括第二方向,所述位姿检测装置还包括第三距离检测装置,所述第三距离检测装置设置于所述轨道交通机车车辆巡检机器人的第三位置,所述第三位置与所述第一位置位于所述轨道交通机车车辆巡检机器人的同一个面,且所述第一位置和所述第三位置分别设置于沿所述轨道延伸方向的不同位置,所述第三距离检测装置与所述处理装置通信连接,所述第三距离检测装置用于检测所述第三位置相对于所述基准标尺沿所述第一方向的距离信息,得到第三检测距离;
所述处理装置用于根据所述第一检测距离和所述第三检测距离计算所述轨道交通机车车辆巡检机器人绕所述第二方向的旋转角度。
在其中一个实施例中,所述基准坐标包括第三基准面和第三方向;
所述参考基准包括基准标尺,所述基准标尺包括刻度信息,所述位姿检测装置包括识别装置,所述识别装置用于识别所述基准标尺的刻度信息,获得所述轨道交通机车巡检机器人相对于所述第三基准面沿所述第三方向的位置信息。
在其中一个实施例中,所述基准坐标还包括第一基准面和第一方向;
所述基准标尺为二维码带;
所述识别装置为图像采集装置,所述图像采集装置用于采集所述二维码带的信息,得到图像信息;
所述位姿检测装置还包括第一处理机构,所述第一处理机构与所述图像采集装置通信连接,所述第一处理机构用于根据所述图像信息得到所述轨道交通机车车辆巡检机器人相对于所述第一基准面沿所述第一方向的位置信息,以及所述轨道交通机车车辆巡检机器人相对于所述第三基准面沿所述第三方向的位置信息。
在其中一个实施例中,所述基准标尺为二维码带或条形码带;
所述识别装置为读码器,所述读码器用于识别所述二维码带或所述条形码带的信息;
所述位姿检测装置还包括第二处理机构,所述第二处理机构与所述读码器通信连接, 所述第二处理机构用于根据所述二维码带或所述条形码带的信息得到所述轨道交通机车车辆巡检机器人相对于所述第三基准面沿所述第三方向的位置信息。
在其中一个实施例中,所述位姿检测装置还包括第四距离检测装置,所述第四距离检测装置设置于所述轨道交通机车车辆巡检机器人顶部,与所述处理装置通信连接,所述第四距离检测装置用于检测所述待检测车辆底部相对于所述第四距离检测装置的距离信息,得到第四检测距离;
所述处理装置用于根据所述第四检测距离计算所述待检测车辆的位姿偏移量。
本申请实施例提供的所述轨道交通机车车辆巡检位姿检测系统,通过所述参考基准与所述位姿检测装置配合,检测所述巡检机器人相对于所述参考基准的距离信息,然后通过所述处理装置实现对所述巡检机器人位姿的检测。本申请中,所述参考基准为距离检测提供了稳定准确的参考基准,从而提高了位姿检测的精确度,进而提高后续所述巡检机器人定位的精确性。
一种轨道交通机车车辆巡检位姿检测方法,包括:
获取待检测车辆相对于基准坐标的位姿偏移量,得到车辆位姿偏移量;
获取轨道交通机车车辆巡检机器人相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量;
根据所述车辆位姿偏移量和所述机器人位姿偏移量得到轨道交通机车车辆巡检工作位姿偏移量。
在其中一个实施例中,所述基准坐标包括第一基准面和第一方向,所述获取轨道交通机车车辆巡检机器人相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量,包括:
获取所述轨道交通机车车辆巡检机器人的第一位置相对于所述第一基准面沿所述第一方向的距离信息,得到第一距离信息;
获取所述第一位置相对于所述第一基准面沿所述第一方向的记录信息,得到第一记录信息;
根据所述第一距离信息和所述第一记录信息计算得到所述第一位置相对于所述第一基准面沿所述第一方向的位姿偏移量。
在其中一个实施例中,所述基准坐标包括第二基准面和第二方向,所述获取轨道交通机车车辆巡检机器人相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量,还包括:
获取所述轨道交通机车车辆巡检机器人的第二位置相对于基准斜面沿所述第一方向的距离信息,得到第二距离信息,其中,所述基准斜面相对于所述第二基准面倾斜设置,所述第一位置与所述第二位置位于所述轨道交通机车车辆巡检机器人的同一个面,且所述第一位置和所述第二位置位于垂直于所述第二基准面的直线上;
根据所述第一距离信息和所述第二距离信息得到所述轨道交通机车车辆巡检机器人相对于所述第二基准面沿所述第二方向的位姿偏移量。
在其中一个实施例中,所述基准坐标包括第二方向,所述获取轨道交通机车车辆巡检机器人相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量,还包括:
获取所述轨道交通机车车辆巡检机器人的第三位置相对于所述第一基准面沿所述第一方向的距离信息,得到第三距离信息,其中,所述第三位置与所述第一位置位于所述轨道交通机车车辆巡检机器人的同一个面,且所述第一位置和所述第三位置分别设置于沿所述轨道延伸方向的不同位置;
根据所述第一距离信息和所述第三距离信息得到所述轨道交通机车车辆巡检机器人 绕所述第二方向的旋转角度。
在其中一个实施例中,所述基准坐标包括第二基准面、第三基准面、第二方向和第三方向,所述获取待检测车辆相对于基准坐标的位姿偏移量,得到车辆位姿偏移量,包括:
获取所述待检测车辆车底沿所述第三方向的每个位置相对于所述第二基准面沿所述第二方向的距离信息,以及相对于所述第三基准面沿所述第三方向的距离信息,得到车底高度长度曲线信息;
获取所述待检测车辆车底的标准高度长度曲线信息;
根据所述车底高度长度曲线信息和所述标准高度长度曲线信息,得到所述待检测车辆相对于所述第二基准面沿所述第二方向的姿态偏移量,以及所述待检测车辆相对于所述第三基准面沿所述第三方向的姿态偏移量。
在其中一个实施例中,所述根据所述车底高度长度曲线信息和所述标准高度长度曲线信息,得到所述待检测车辆相对于所述第二基准面沿第二方向的姿态偏移量,以及所述待检测车辆沿第三方向的姿态偏移量,包括:
根据所述车底高度长度曲线信息,获得所述待检测车辆的轮对位置相对于所述第一基准面沿所述第一方向的距离信息,得到轮对位置信息;
根据所述标准高度长度曲线信息,获得所述待检测车辆的轮对位置相对于所述第一基准面沿所述第一方向的标准距离信息,得到标准轮对位置信息;
根据所述轮对位置信息和所述标准轮对位置信息,得到所述待检测车辆相对于所述第二基准面沿所述第二方向的姿态偏移量,以及所述待检测车辆相对于所述第三基准面沿所述第三方向的姿态偏移量。
本申请实施例提供的所述轨道交通机车车辆巡检位姿检测方法,通过获取所述车辆位姿偏移量和所述机器人位姿偏移量,并根据所述车辆位姿偏移量和所述机器人位姿偏移量得到轨道交通机车车辆巡检工作过程中的位姿偏移量。本申请实施例提供的所述方法不仅考虑了轨道交通机车车辆巡检作业过程中所述巡检机器人的位姿偏差,而且考虑了所述待检测车辆的位姿偏差,多方面消除定位误差,提高定位准确性,进而提高检测效果。
附图说明
图1为本申请一个实施例提供的轨道交通机车车辆巡检装置及巡检现场示意图;
图2为本申请一个实施例提供的轨道交通机车车辆巡检装置及巡检现场示意图;
图3为本申请一个实施例提供的升降设备结构示意图;
图4为本申请一个实施例提供的轨道交通机车车辆巡检装置结构示意图;
图5为本申请一个实施例提供的巡检机器人正视结构示意图;
图6为本申请一个实施例提供的巡检机器人立体结构示意图;
图7为本申请一个实施例提供的辅助充电端和辅助充电装置结构示意图;
图8为本申请一个实施例提供的巡检机器人及巡检辅助装置正视结构示意图;
图9为本申请一个实施例提供的巡检机器人及巡检辅助装置立体结构示意图;
图10为本申请一个实施例提供的轨道交通机车车辆巡检装置结构示意图;
图11为本申请一个实施例提供的巡检位姿检测过程中的基准坐标示意图;
图12为本申请一个实施例提供的位姿检测装置结构框图;
图13为本申请一个实施例提供的参考基准侧视图;
图14为本申请一个实施例提供的通过第一检测距离和第二检测距离获得所述巡检机 器人相对于第二基准面沿第二方向姿态偏移量的计算方法原理示意图(图中所示为巡检机器人车体和参考基准的侧视图);
图15为本申请一个实施例提供的通过第一检测距离和第三检测距离获得所述巡检机器人绕第二方向旋转角度的计算方法原理示意图(图中所示为巡检机器人车体和参考基准的俯视图);
图16为本申请一个实施例提供的轨道交通机车车辆巡检位姿检测方法的步骤流程示意图;
图17为本申请一个实施例提供的获取巡检机器人相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量的步骤流程示意图;
图18为本申请一个实施例提供的获取巡检机器人相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量的步骤流程示意图;
图19为本申请一个实施例提供的获取巡检机器人相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量的步骤流程示意图;
图20本申请一个实施例提供的获取待检测车辆相对于基准坐标的位姿偏移量,得到车辆位姿偏移量的步骤流程示意图;
图21为本申请一个实施例提供的车底高度长度曲线信息和标准高度长度曲线信息对比图;
图22为本申请一个实施例提供的轨道交通机车车辆巡检装置结构示意图;
图23为本申请一个实施例提供的轨道交通机车车辆巡检装置及系统的巡检现场位置布置示意图。
附图标记说明:
轨道交通机车车辆巡检系统 1         轨道交通机车车辆巡检装置 10
轨道 100     巡检平台 200     巡检凹槽 300     巡检机器人 400
作业行走装置 410      车体 411       车轮 412      容纳腔 413
机械臂 420     检测装置 430      快换装置 431    机械臂端 433
工具端 435    对接装置 440     辅助充电端 450    升降装置 460
升降设备组 500   升降设备 501    升降平台板 510   驱动装置 520
升降控制装置 530      距离传感器 540       控制装置 600
现场工况检测装置 700      积液检测机构 710
待检测车辆在位检测组件 720    入侵检测组件 730
辅助充电装置 800    巡检辅助装置 900    辅助行走装置910
工具架 920   能源供给装置 930   电源供给装置 931   气源供给装置 932
应急装置 940   机械应急装置 941    电气应急装 置942
调度装置 20     巡检位姿检测系统 30 参考基准 310    基准标尺 311
基准斜面 312    位姿检测装置 320   第一距离检测装置 321
第二距离检测装置 322   第三距离检测装置 323   识别装置 324
第一处理机构 325    第二处理机构 326   第四距离检测装置 327
处理装置 330
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图, 对本申请的轨道交通机车车辆巡检位姿检测系统及其方法进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
本申请提供一种轨道交通机车车辆巡检装置10。所述轨道交通机车车辆巡检装置10用于对轨道交通机车车辆,例如,动车、高铁、火车、地铁等进行检测。待检测的所述轨道交通机车车辆以下简称为待检测车辆。
请参见图1,所述轨道交通机车车辆巡检装置10在巡检现场对所述待检测车辆进行检测。所述巡检现场包括巡检平台200、轨道100和巡检凹槽300。所述轨道100设置于所述巡检平台200。所述待检测车辆停放于所述轨道100。所述巡检平台200沿所述轨道100延伸方向对应开设巡检凹槽300。
所述巡检平台200可以是与地面平齐的平面,也可以是高出地面或低于地面的平面。所述巡检平台200用于设置巡检需要的装置,并供巡检需要的设备以及工作人员行走。所述轨道100包括2条平行的铁轨。所述轨道100的铁轨可以直接设置于所述巡检平台200,也可以通过间隔设置的支撑柱或其他装置设置于所述巡检平台200。所述轨道100的数量可以为1组,也可以为多组。每组所述轨道100对应设置所述巡检凹槽300。所述巡检凹槽300为凹陷于所述巡检平台200呈凹槽结构的坑。所述巡检凹槽300开设于所述轨道100之间,并沿所述轨道100的延伸方向延伸。所述巡检凹槽300的大小及凹陷尺寸可以根据实际需求设置,本申请不做具体限定。所述待检测车辆停放于所述轨道100,在所述巡检平台200可以实现对所述待检测车辆车侧的检测,在所述巡检凹槽300内可以实现对所述待检测车辆车底的检测。
在一个实施例中,所述轨道交通机车车辆巡检装置10包括巡检机器人400、升降设备组500和控制装置600。
所述巡检机器人400即为轨道交通机车车辆巡检机器人,以下均简称为巡检机器人400。所述巡检机器人400用于检测所述待检测车辆的相关参数,例如:外观、尺寸、位置姿态、温度、漏气情况等。所述巡检机器人400的具体结构及功能等,本申请不做限定,可以根据实际需求选择。
所述升降设备组500包括至少一个升降设备501。所述升降设备501设置于所述轨道100延伸方向的侧面。所述升降设备501为可升降结构,即,所述升降设备501能够实现上升和下降。具体的,所述轨道100侧面的所述巡检平台200可以开设一升降凹槽,所述升降设备501设置于所述升降凹槽,并能够在所述升降凹槽内实现上升与下降。通过升降, 所述升降设备501能够实现与所述巡检凹槽300对接,且能够实现与所述巡检平台200的表面持平。所述升降设备501可以为导轨式升降机,曲臂式升降机,剪叉式升降机,链条式升降机或其他。具体可根据实际需要选择,本申请不做限定。所述升降设备501可以但不限于用于将所述巡检机器人400或操作人员下降至所述巡检凹槽300,或将所述巡检机器人400或操作人员上升至所述巡检平台200。所述升降设备501的数量可以为一个,也可以为多个。多个所述升降设备501可以沿所述轨道100间隔设置于所述轨道100一侧,也可以分布于所述轨道100的两侧。
所述控制装置600与所述巡检机器人400通信连接,用于控制所述巡检机器人400工作。所述控制装置600可以用于控制所述巡检机器人400行走,并实施检测等。所述控制装置600可以但不限于是计算机设备、PLC(Programmable Logic Controller,可编程逻辑控制器)或其他包含处理器的设备。本申请对所述控制装置600的具体结构、型号等不做限定,只要可实现其功能即可。
所述轨道交通机车车辆巡检装置10的工作过程可以包括但不限于以下过程:
所述控制装置600获取巡检任务,所述巡检任务包括所述待检测车辆的数量、所述待检测车辆的位置、待检测的项目等等。所述控制装置600将所述巡检任务发送至所述巡检机器人400,并发出巡检指令。所述巡检机器人400接收所述巡检指令,根据所述巡检任务,自主行走至所述待检测车辆的所在位置,并对所述待检测车辆进行检测。当所述巡检任务包含的所述待检测项目位于所述待检测车辆的车侧时,所述巡检机器人400在所述巡检平台200沿所述轨道100延伸方向行走并检测。此时,所述升降设备501可以与所述巡检平台200的表面持平,从而使得所述巡检机器人400沿所述巡检平台200行走不受阻碍。当所述巡检任务包含的所述待检测项目位于所述待检测车辆的车底时,所述巡检机器人400需行走至所述巡检凹槽300内作业。所述巡检机器人400根据所述巡检任务首先行走至所述升降设备501。控制所述升降设备501下降,并与所述巡检凹槽300对接后,所述巡检机器人400行走至所述巡检凹槽300,并实施巡检作业。当巡检完成后,所述巡检机器人400行走至所述升降设备501,所述升降设备501带动所述巡检机器人400上升,退出所述巡检凹槽300,回到所述巡检平台200,完成检测。
与传统技术中在所述轨道100一侧的所述巡检平台200上设置步行梯或斜坡与所述巡检凹槽300对接连通的方法相比,本申请实施例提供的所述轨道交通机车车辆巡检装置10首先通过所述升降设备501,自动升降,实现与所述巡检凹槽300的对接和与所述巡检平台200的对接和连通,提高了自动化程度。其次,通过所述升降设备501实现与所述巡检平台200表面的持平,使得所述巡检平台200平整,无行走障碍。再次,通过所述升降设备501使得所述巡检机器人400进入、退出所述巡检凹槽300无需人工干预,可实现全自动行走,从而提高所述巡检机器人400的智能性,进而提高了所述轨道交通机车车辆巡检装置10的智能性。
请参见图2,在一个实施例中,所述升降设备组500包括至少2个所述升降设备501。至少2个所述升降设备501分别设置于所述轨道100的两侧。至少2个所述升降设备501能够与所述巡检凹槽300对接连通,并形成至少一个通路。
以所述升降设备组500包括2个所述升降设备501为例,2个所述升降设备501分布于所述轨道100的两侧。2个所述升降设备501的连线与所述轨道100呈一定角度,例如,2个所述升降设备501的连线与所述轨道100垂直。2个所述升降设备501均下降至所述巡检凹槽300后,与所述巡检凹槽300对接连通,形成一个通路。所述通路与所述巡检凹 槽300呈一定角度。
在一个实施例中,所述轨道100的数量为至少2组。所述巡检凹槽300的数量为至少2个。所述升降设备组500的数量为至少2组。每个所述巡检凹槽300与一组所述轨道100对应设置。每组所述轨道100对应设置一组所述升降设备组500,即:每组所述轨道100的两侧均设置至少2个所述升降设备501。至少2组所述升降设备组500的多个所述升降设备501能够与至少2个所述巡检凹槽300对接连通,并形成至少一个跨轨道通路。也就是说,相邻两组所述轨道100的升降设备501能够实现连通,从而使得每组所述轨道100的所述通路连通,形成至少一个所述跨轨道通路。所述跨轨道通路能够实现多个所述巡检凹槽300的连通。因此,当有多个所述待检测车辆时,所述巡检机器人400可以实现跨轨道检测,一次检测多个所述待检测车辆,从而提高检测效率。
以下对本申请中的所述升降设备501进行说明:
请参见图3,在一个实施例中,所述升降设备501包括升降平台板510、驱动装置520和升降控制装置530。所述驱动装置520与所述升降平台板510驱动连接,用于驱动所述升降平台板510升降。所述升降控制装置530与所述驱动装置520电气连接。所述升降控制装置530用于控制所述驱动装置520工作。
所述升降平台板510设置于所述轨道100侧部的所述升降凹槽。所述升降平台板510处于上升状态时,所述升降平台板510与所述巡检平台100所在的平面平齐。所述升降平台板510处于下降状态时,所述升降平台板510与所述巡检凹槽300所在的平面平齐并连通。所述升降平台板510可以为绝缘板,绝缘板的材料可以为无机绝缘材料、有机绝缘材料或混合绝缘材料。具体可以根据实际需要选择,本申请不做限定。所述升降平台板510的形状可以为矩形、梯形或多边形等,具体可以根据实际需要选择,本申请不做具体限定。当检修现场包括多组所述轨道100,每组所述轨道100分别设置所述升降设备501时,相邻的两个所述升降设备501的升降平台板510接触设置,从而使得所述升降平台板510下降至所述巡检凹槽300时,形成所述跨轨道通路。
所述驱动装置520可以设置于所述轨道100侧面的所述升降凹槽中。所述驱动装置520与所述升降平台板510驱动连接,用于驱动所述升降平台板510升降。所述驱动装置520的具体结构、安装位置和安装方式可以根据实际需要选择,本申请不做具体限定。所述驱动装置520的数量也可以根据实际需要选择。所述驱动装置520可以为液压式驱动装置,气压驱动装置,电器驱动装置,链条式驱动装置,或其他形式的驱动装置,只要能驱动所述升降平台板510升降即可。在一个具体的实施例中,所述驱动装置520为液压式驱动装置。所述液压式驱动装置与所述升降平台板510组合构成液压剪叉式升降平台。所述液压剪叉式升降平台为固定式液压剪叉式升降平台。所述固定式液压剪叉式升降平台的滚轴、滚珠、转盘等台面可以任意配置,满足实际使用要求。因此,在实际使用中,所述固定式液压剪叉式升降平台更便于维修人员或使用人员根据实际需要进行调整,方便了所述升降设备501的使用。
所述升降控制装置530与所述驱动装置520电气连接,用于控制所述驱动装置520启动、关闭以及工作模式。所述升降控制装置530获取升降命令,并根据所述升降命令,控制所述驱动装置520启动、关闭以及工作模式,从而控制所述升降平台板510的上升或下降。
所述升降设备501的升降命令可以通过人工输入,可以通过所述控制装置600得到,也可以通过检测得到。在一个实施例中,所述升降设备501还包括距离传感器540。所述 距离传感器540与所述升降控制装置530通信连接。所述距离传感器540用于检测其与前方物体的距离,从而确定所述升降平台板510表面是否有人或停靠物。若所述距离传感器540检测出的距离满足预设的距离阈值,说明所述升降平台板510表面停靠有人或物体,需要升降。例如,假设当所述升降平台板510未停靠人或物体,所述距离传感器检测出的距离为1m,当所述距离传感器540检测到的距离变为小于0.98m大于0.05m时,所述升降控制装置530判断所述升降平台板上有人或停靠物,所述升降控制装置530控制所述驱动装置520启动。所述距离传感器可以为电容式接近传感器、激光测距传感器和超声波传感器,具体可根据实际需要选择,本申请不做限定。所述距离传感器540的数量可以为一个也可以为多个。本实施例中,通过所述距离传感器540与所述升降控制装置530的配合,实现对所述升降平台板510的自动升降。本实施例提供的所述升降设备501智能性高,从而提高了所述轨道交通机车车辆巡检装置10的智能性。
在一个实施例中,所述升降设备501还进一步包括升降安全报警装置550。所述升降安全报警装置550与所述升降控制装置530电气连接。所述升降报警装置550用于当所述距离传感器540检测到异常数据或所述升降设备501出现故障时进行报警。所述升降安全报警装置550的具体结构本申请不做限定,可以根据实际需求选择。通过所述升降安全报警装置550可以提高所述升降设备501的安全性和智能性,进而提高所述轨道交通机车车辆巡检装置10的安全性和智能性。
请参见图4,在一个实施例中,所述轨道交通机车车辆巡检装置10还包括现场工况检测装置700。所述现场工况检测装置700设置于所述巡检现场。具体的,所述现场工况检测装置700可以设置于所述轨道100、所述巡检平台和/或所述巡检凹槽300。所述现场工况检测装置700与所述控制装置600通信连接。所述现场工况检测装置700用于检测现场工况。通过设置所述现场工况检测装置700可以在巡检开始前,及巡检过程中,及时了解所述巡检现场的情况,从而根据所述情况控制对所述巡检机器人400的控制,提高巡检工作的可靠性、安全性和智能性。
所述现场工况检测装置700可以根据不同的需求和不同的工况设置不同的结构。以下结合实施例对所述现场工况检测装置700的结构进行说明。
在一个实施例中,所述现场工况检测装置700包括积液检测机构710。所述积液检测机构710设置于所述巡检凹槽300。所述积液检测机构710与所述控制装置600通信连接。所述积液检测结构710用于检测所述巡检凹槽300内的积液情况。
所述积液检测机构710可以为液体检测传感器。所述积液检测机构710的数量不限。所述积液检测机构710在所述巡检凹槽300的具体设置位置也不限,可以根据实际情况设定。例如,可以在所述巡检凹槽300深度较深,容易产生积液的位置设置所述积液检测机构710。所述积液检测机构710检测当前位置的积液情况,并传输至所述控制装置600。所述控制装置600结合积液情况判断是否启动巡检作业。当积液超过预设积液阈值时,不满足作业条件,不向所述巡检机器人400发出使能信号。本实施例中,通过所述积液检测机构710防止在所述巡检凹槽300积液较多时仍然启动巡检作业的情况,提高了轨道交通机车车辆巡检装置10的安全性和智能性。
在一个实施例中,所述现场工况检测装置700包括待检测车辆在位检测组件720。所述待检测车辆在位检测组件720设置于所述轨道100。所述待检测车辆在位检测组件720与所述控制装置600通信连接。所述待检测车辆在位检测组件720用于检测所述待检测车辆是否停靠到位。
所述待检测车辆在位检测组件720可以设置于所述轨道100一侧,也可以设置于支撑所述轨道100的所述支撑柱。所述待检测车辆在位检测组件720的数量可以是一个,也可以是多个。所述待检测车辆在位检测组件720可以包括但不限于速度传感器和存在传感器。在一个具体的实施例中,沿所述轨道100延伸方向,在所述铁轨内侧依次设置多个所述存在传感器和多个所述速度传感器。当所述待检测车辆沿所述轨道100驶入并停靠时,所述存在传感器检测到所述轨道100上存在车轮及车体,且依次排列的多个所述速度检测装置检测到所述车体的速度逐渐降低至0。说明所述待检测车辆驶入所述轨道100且停靠至传感器设置位置。所述控制装置600依据所述待检测车辆在位检测组件720的检测结果判断是否启动巡检作业,并控制所述巡检机器人400的启动。本实施例中,通过所述待检测车辆在位检测组件720进一步提高了所述轨道交通机车车辆巡检装置10的智能性和自动性,提高了所述轨道交通机车车辆巡检装置10巡检的准确性。
在一个实施例中,所述现场工况检测装置700包括入侵检测组件730。所述入侵检测组件730设置于所述巡检现场。具体的,所述入侵检测组件730可以设置于所述轨道100、所述巡检平台200和/或所述巡检凹槽300。所述入侵检测装置730与所述控制装置600通信连接。所述入侵检测组件730用于检测所述巡检现场是否有入侵。
所述入侵检测组件730可以包括图像采集装置以及与其通信连接的图像处理装置。所述图像采集装置可以是摄像头、摄像机等。所述图像采集装置采集所述巡检现场的图像信息,并传输至所述图像处理装置。所述图像处理装置可以是计算机设备等。所述图像处理装置也可以是所述控制装置600的一个模块或处理软件等。所述图像处理装置处理所述图像信息,并判断所述巡检现场是否有人或物体入侵,进而判断是否符合作业条件,是否启动巡检作业。本实施例中,通过所述入侵检测组件730,提高了所述轨道交通机车车辆巡检装置的智能性,并进一步提高了所述轨道交通机车车辆巡检装置10作业的安全性。
在一个实施例中,所述现场工况巡检装置700还可以包括用于检测所述巡检机器人400与相关设备挂接状况的组件,以确保所述巡检机器人400挂接的安全性。
可以理解,所述控制装置600包括用于处理以上实施例中所述现场工况检测装置700数据的相应模块,以接收所述现场工况检测装置700传输的相关数据,并进行处理判断,以确定当前所述巡检现场是否满足巡检作业的条件,进而确定是否发出巡检使能信号。
所述巡检机器人400根据所述巡检使能信号进行巡检作业。以下结合实施例对所述巡检机器人400进行说明。
请参见图5和图6,在一个实施例中,所述巡检机器人400包括作业行走装置410和机械臂420。所述作业行走装置410包括车体411和车轮412。所述车轮412设置于所述车体411底部。所述车体411包括容纳腔413。所述机械臂420设置于所述车体411。所述机械臂420为可折叠结构。所述机械臂420能够收纳于所述容纳腔413。
所述作业行走装置410具体可以为AGV(Automated Guided Vehicle,自动导引运输车),也可以为其他能够自动完成行走功能的小车。所述车体411可以为立方体结构,也可以为其他形状的结构。以立方体结构的所述车体411为例,所述车体411为空腔结构,六个面包围形成所述容纳腔413。所述车体411的顶部安装所述机械臂420。同时,所述车体411开设有一开口。所述机械臂420折叠后通过所述开口收纳于所述容纳腔413内部。所述作业行走装置410可以与所述控制装置600通信连接,所述控制装置600用于向所述作业行走装置410下发作业指令和作业行走任务。所述作业行走装置410可以包括自身的控制系统,由自身控制系统控制其行走,也可以通过外部控制系统,实现控制行走。例如可以通 过所述控制装置600控制所述作业行走装置410的行走。
所述车体411底部安装所述车轮412。所述车轮412的数量可以为4个。所述车轮412的结构可以为多种,例如,所述车轮412可以为万向轮结构。在一个具体的实施例中,所述车轮412为双轮差速驱动式结构。双轮差速驱动式结构的所述车轮412能够有效减小所述巡检机器人400的体积。同时,所述车轮412采用双轮差速驱动式结构,能够避免传统的以轮距中点为基点进行规划时所进行的复杂计算,控制简单,轨迹跟踪效果良好,有效提高了运动控制的实时性。
所述机械臂420可以包含有多个活动关节。在一个具体的实施例中,所述机械臂420包括6个活动关节,且每个所述活动关节可以绕轴转动,从而可以实现所述机械臂420沿六个轴的柔性活动和定位。所述机械臂420与所述控制装置600信号连接。所述控制装置600用于控制所述机械臂420的活动、折叠等动作。
所述机械臂420在工作时,置于所述车体411外部。当所述机械臂420完成工作时,所述控制装置600控制所述机械臂420折叠,并收纳于所述容纳腔413,从而起到防尘、防撞、缩小体积的作用。
本实施例中,所述巡检机器人400包括所述作业行走装置410和所述机械臂420。所述作业行走装置410的所述车体411包括所述容纳腔413。所述机械臂420为可折叠结构,且能够收纳于所述容纳腔413,因此能够缩小所述巡检机器人400的体积,且能够防尘、防撞,便于存放。
在一个实施例中,所述机械臂420折叠后的形状和尺寸与所述容纳腔413的开口的形状和尺寸相匹配。
所述车体411可以沿顶端及侧面开设一开口。所述车体411的开口即为所述容纳腔413的开口。所述开口的形状和尺寸与所述机械臂420折叠的形状和尺寸相同,从而使得所述机械臂420折叠后密封在所述开口处。例如,所述机械臂420包括6个所述活动关节,折叠后长度上保持3个所述活动关节。所述开口的形状、长度、宽度均与3个所述活动关节的形状、长度、宽度一致。所述机械臂420收纳于所述容纳腔413时,3个所述活动关节收纳于所述容纳腔413内,另外3个所述活动关节与所述开口贴合,将所述容纳腔413的所述开口密封,进一步起到防尘的作用。且这样可以节省所述容纳腔413内部的空间,供所述容纳腔413放置其他设备和装置。本实施例提高了所述巡检机器人400的实用性。
在一个实施例中,所述巡检机器人400还包括升降装置460。所述升降装置460设置于所述容纳腔413。所述升降装置460与所述机械臂420机械连接。所述升降装置460用于实现所述机械臂420的上升和下降。
所述升降装置460可以具体包括举升附加轴。所述举升附加轴的一端设置于所述容纳腔413内,另外一端与所述机械臂420的底部机械连接。所述举升附加轴驱动升降的形式可以包括但不限于液压式驱动、气缸式驱动等,具体的本申请不做限定,可以根据实际需求选择。所述升降装置460的驱动可以为自动也可以为手动。在一个具体的实施例中,所述升降装置460与所述控制装置600通信连接,所述控制装置600还用于控制所述升降装置460的工作。通过所述升降装置460能够实现对所述机械臂420的升降,不仅可以实现所述机械臂420的上升伸出,还可以实现所述机械臂420的下降收纳。同时,在所述机械臂420实现巡检探测时,所述升降装置460还能进一步调整所述机械臂420的高度,实现对所述机械臂420末端位置的补偿。因此,本实施例提供的所述巡检机器人400实用性强,且能够增加巡检工作的灵活性、提高巡检的精确度。
在一个实施例中,所述巡检机器人400包括检测装置430。所述检测装置430设置于所述机械臂420的末端。所述检测装置430用于检测所述待检测车辆。所述检测装置430的种类可以根据实际需求进行设置。所述检测装置430可以直接电气连接于所述机械臂420末端,也可以通过其他装置间接连接于所述机械臂420的末端。所述机械臂420活动,带动所述检测装置430移动至所述待检测装置的检查项区域,实现对所述检查项的检查。所述检测装置430与所述控制装置600通信连接。所述控制装置600控制所述检测装置430进行检测,并对所述检测装置430采集的检测数据进行处理和分析。
在一个实施例中,所述检测装置430包括图像采集装置、漏气检测装置、温度检测装置和尺寸检测装置中的至少一种。可以理解,为了实现需要的其他功能,所述检测装置430也可以包括其他检测装置。本申请对此不做限定。
所述图像采集装置可以包括2D图像采集器和/或3D图像采集器。在一个具体的实施例中,所述2D图像采集器主要包括面阵相机。所述面阵相机用于采集被测工件的表面图像。可以用于对所述待检测车辆零部件的存在检测、形状检测、位置姿态检测、外观检测、尺寸检测等。所述2D图像采集器还可以进一步包括光源。所述光源用于对被测工件进行不光,以达到较好的图像采集效果。
在一个具体的实施例中,所述3D图像采集器主要包括线性激光光源、线阵相机、直线运动单元。所述3D图像采集器工作时,所述线性激光光源发出线性激光,投射在被测工件表面。所述线阵相机获取一张图像,随着所述直线运动单元的移动,所述线阵相机连续采集,得到多张图像。通过对多张图像的拼接,可到包含深度信息的完整图像。所述3D图像采集器可以用于对所述待检测车辆的螺栓紧固检测、裂纹检测、轮对踏面质量检测等。
所述漏气检测装置用于检测所述待检测车辆车底和/或车侧风管的检查。在一个具体的实施例中,所述漏气检测装置包括麦克风阵列。所述麦克风阵列用于采集检测漏气声音数据。所述麦克风阵列获取的所述漏气声音数据传输至所述控制装置600。所述控制装置600对所述漏气声音进行处理和判断,从而确定出风管是否漏气,并进一步确定出漏气的具体位置。在一个实施例中,所述麦克风阵列包括3个心形指向麦克风和1个全指向麦克风。在另一个实施例中,所述麦克风阵列包括1个心形指向麦克风,且所述机械臂420上设置多个所述心形指向麦克风。
在一个实施例中,所述控制装置600处理所述漏气声音数据,确定出风管是否漏气,并进一步确定出漏气的具体位置的方法包括如下步骤:
S1110,对待检测车辆进行建模,形成待检测车辆模型;
S1120,识别所述待检测车辆检查项点区域的漏气声音;
S1130,确定所述漏气声音的声源位置;以及
S1140,根据所述声源位置与待检测车辆模型,判断所述待检测车辆是否漏气;
S1150,标识出所述声源位置在所述待检测车辆模型中的位置。
本实施例提供的所述方法通过将所述待检测车辆模型与待检测车辆检测项点区域的漏气声音声源位置进行匹配,能够有效排除将待检测项点周围的漏气声音判定为待检测车辆漏气的可能性,提高了检测的准确性,从而为车辆的检修和维护提供可靠的依据。同时,通过对待检测车辆进行建模,并将漏气声音与所述待检测车辆模型进行匹配,使得对车辆气密性检测过程和检测结果更加直观。
所述温度检测装置用于实现对所述待检测车辆待检测工件温度的检测。所述温度检测装置的具体结构的选择不做限定。在一个具体的实施例中,所述温度检测装置包括热成像 仪。所述热成像仪用于对所述待测工件的温度分布进行检测,并形成对应的温度分布图像。所述热成像仪检测的所述温度分布图像传输至所述控制装置600。所述控制装置600对所述温度分布图像进行进一步处理。在又一个实施例中,所述温度检测装置还进一步包括非接触式红外温度传感器。所述非接触式红外温度传感器用于检测待测工件表面温度。检测实施前,所述控制装置600可以选择对所述待检测车辆进行3D建模。将待检查项和待测量点的位置在3D模型上进行标注。其中,一个所述待检查项包括多个所述待测量点。所述机械臂420夹持所述非接触式红外温度传感器运动到所述待检查项,并将所述非接触式红外温度传感器光线指向所述待检查项外表面。所述机械臂420改变位姿,依次调整测量所述待测量点的温度。完成对所述待测量点的温度测量。所述非接触式红外温度传感器测量的数据传输至所述控制装置600。所述控制装置600可以采用取中间值、取期望值等方法对所述数据进行处理,并与所述3D模型进行匹配,得到反应所述待检查项温度的模型图。
可以理解,所述待测量点的确定可以是基于所述热成像仪检测的结果,将感兴趣区域或点设置为所述待测量点进行进一步检测,得到感兴趣区域的具体温度。
所述尺寸检测装置用于检测所述待检测量相关的距离信息。所述尺寸检测装置可以包括轮缘轮辋测量工具和/或轮对间距测量工具。所述轮缘轮辋测量工具用于对所述待检测车辆的轮缘轮辋相关尺寸进行测量。所述轮对间距测量工具用于对所述待检测车辆的轮对间距进行测量。
在一个实施例中,所述轮对间距测量工具包括2个激光距离传感器和一个测量杆。所述轮对间距测量工具测量得到的距离信息传输至所述控制装置600。所述控制装置600对所述距离信息进行处理,得到所述轮对尺寸。具体的过程包括但不限于以下步骤:
S2210,对待检测轮对的检测项点的标准轮廓尺寸进行建模,形成轮对模型。
首先,所述控制装置600根据标准轮对轮缘、轮辋截面相对轴心的尺寸位置关系,以轮对对称中心为原点建立轮对坐标系,并建立描述轮对外形3D模型。其次,确定所述巡检机器人400测量采样时,相应的所述巡检机器人400的所述作业行走装置410的基座坐标系相对轮对中心坐标系的相对位置,以及所述机械臂420末端采样点的相对位置,并建立测量点3D模型数据库。
S2220,对所述待检测轮对的位置和所述巡检机器人400的位置进行精确标定。
所述巡检机器人400检测前,通过轮轴视觉特征或轮对辅助定位标记点进行定位,获取所述巡检机器人400在轮对坐标系的实际位姿信息。所述巡检机器人400通过所述机械臂420末端位姿的调整,对实际位姿进行补偿,以与测量点3D模型数据库相符合。
S2230,所述巡检机器人400进行采样测量。
所述巡检机器人400末端夹持所述激光测距传感器,对轮对检查项轮廓外形的距离尺寸进行采点测量,将数据传到所述控制装置600。
S2240,计算目标尺寸值
所述巡检机器人400将采集到的外形尺寸点,结合所述巡检机器人400的运行轨迹点位置,绘制轮对检查项的实际外形轮廓,并将检测到的实际外形轮廓和标准轮廓进行比对,得到实际轮对检查项的尺寸值。
上述各所述检测装置430可以单独设置于所述机械臂420末端,也可以多项组合设置于所述机械臂420末端。在一个实施例中,将所述2D图像采集器、漏气检测装置、温度检测装置进行组合,设置于所述机械臂420末端,以实现对所述待检测车辆存在检测、形 状检测、位姿检测、漏气检测、温度检测等多种项目的同时检测。
在又一个实施例中,将所述3D图像采集器、漏气检测装置、温度检测装置进行组合,设置于所述机械臂420的末端,实现对所述待检测车辆螺栓紧固检测、裂纹检测、轮对踏面质量检测、漏气检测、温度检测等多种项目的同时检测。
以上实施例中,通过在所述机械臂420末端设置所述检测装置430,对所述待检测车辆进行各种项目的检查,使得所述巡检机器人400具备多项巡检功能,增加了所述巡检机器人400的功能的全面性和智能性。
在一个实施例中,所述巡检机器人400还包括对接装置440。所述对接装置440设置于所述车体411。所述对接装置440用于实现与其他设备的对接。所述对接装置440可以用于实现与其他设备的机械对接,也可以用于实现与其他设备的电气对接。根据需求的不同所述对接装置440的结构可以有不同设计。以所述对接装置440实现与救援设备或巡检辅助装置的机械对接为例。所述对接装置440可以设置于所述车体411的车头和/或车尾一端。所述对接装置440可以包括环状或方形的对接口等,以供所述救援设备或所述巡检辅助装置与其连接实现对所述巡检机器人400的拉动或拖曳。本实施例中,通过所述对接装置440进一步完善了所述巡检机器人400的功能,提高了所述轨道交通机车车辆巡检装置10的实用性。
在一个实施例中,所述巡检机器人400还包括快换装置431。所述快换装置431连接于所述机械臂420末端与所述检测装置430之间。也就是说,所述检测装置430通过所述快换装置431连接于所述机械臂420末端。通过所述快换装置431实现所述检测装置430和所述机械臂420的电气连接和机械连接。
请参见图7,在一个实施例中,所述巡检机器人400还包括辅助充电端450。所述辅助充电端450设置于所述车体411。所述辅助充电端450可以是充电头或充电座,还可以是充电毛刷或充电导电轨等任何能够实现电路导通的装置。所述辅助充电端450与所述巡检机器人400的电源设备连接,用于通过与外部的充电装置接通,实现对所述巡检机器人400的充电。本实施例中,通过所述辅助充电端450能够对所述巡检机器人400及时补充电能,提高了所述巡检机器人400的巡检工作能力。
在一个实施例中,所述轨道交通机车车辆巡检装置10还包括辅助充电装置800。所述辅助充电装置800设置于所述轨道100。所述辅助充电装置100与所述辅助充电端450匹配,用于向所述辅助充电端450提供电源,进而向所述巡检机器人400充电。所述辅助充电装置800的具体形态、结构等不做限定,只要可以实现与所述辅助充电端配合,实现充电即可。以下提供两个所述辅助充电装置800和所述辅助充电端450的实施例。
在一个实施例中,所述辅助充电端450为导电刷。所述辅助充电装置800为导电轨。所述导电刷呈毛刷结构。所述导电刷可以通过可外伸悬臂结构设置于所述车体411的一侧。所述可外伸悬臂可以为转角接触结构。所述可外伸悬臂与所述车体411之间可以设置弹簧或其他弹性装置,以提高所述导电刷的活动弹性和灵活度,同时,方便所述导电刷不使用时收回贴合于所述车体411,节省空间。所述导电刷的数量可以是一个,设置于所述车体411一侧,也可以是2个,分别设置于所述车体411两侧。当然,所述导电刷的数量也可以是2个以上,分别设置于车体411需要的位置。
所述轨道100靠近所述巡检机器人400行走的一侧设置所述导电轨。所述导电轨呈长条状。所述导电轨可以采用对地安全电压供电。所述导电轨可以采用PVC型材、铝型材或铜带复合结构等。所述导电轨数量可以为多个。多个所述导电轨沿所述轨道100间隔设置。 当所述车体411两侧均设置所述导电刷时,多个所述导电轨也可分别设置于所述轨道100的2个所述铁轨内侧。对于多个所述导电轨,可以分别控制其接通和断开。
由于所述巡检机器人400整个作业过程中,停靠在目标位置后进行检测时,所述机械臂420工作量大,工作时间长,因此,检测过程中耗电量最大。所以,往往需要在检测过程中对所述巡检机器人400进行充电。本实施例中,当所述巡检机器人400行走并停靠在目标位置,即将开始检测时,所述巡检机器人400通过所述可外伸悬臂将所述导电刷伸出,并与所述导电轨接触。对所述导电轨通电,即可通过所述导电刷向所述巡检机器人400充电。当所述巡检机器人400即将完成检测任务,将要移动到下一个检测位置时,对所述导电轨断电,停止对所述导电刷充电,并通过所述可外伸悬臂收回所述导电刷,所述巡检机器人400继续行走至下一个检测位置。
在另一个实施例中,所述辅助充电端450为导电刷,所述辅助充电装置800为导电刷。所述导电刷、所述导电轨的设置于上个实施例设置刚好相反。其实现方法、原理及设置方式类似。在此不再赘述。
以上两个实施例中,通过所述导电刷与所述导电轨配合,实现对所述巡检机器人400的辅助充电,保障了所述巡检机器人400的工作电量,提高了所述轨道交通机车车辆巡检装置10的可靠性和稳定性。同时,所述导电轨为长条状,因此,在所述巡检机器人400或所述待检测车辆停靠定位偏差的情况下,仍然能够实现与所述导电刷配合,完成对所述巡检辅助装置900的充电,减小了充电误差。
请参见图8和图9,在一个实施例中,所述快换装置431包括两部分:机械臂端433和工具端435。所述机械臂端433与所述工具端435对应匹配。所述机械臂端433与所述机械臂420电气连接和机械连接。所述工具端435与所述检测装置430电气连接和机械连接。所述机械臂端433与所述工具端435插接可实现电气连接和机械连接,进而实现所述机械臂420与所述检测装置430的电气连接和机械连接。
上述两个实施例中,通过所述快换装置431实现所述检测装置430与所述机械臂420末端的电气连接和机械连接,简单方便,且通用性强。
在一个实施例中,所述轨道交通机车车辆巡检装置10还包括轨道交通机车车辆巡检辅助装置。所述轨道交通机车车辆巡检辅助装置以下均简称巡检辅助装置900。所述巡检辅助装置900用于辅助所述巡检机器人400完成所述检测装置430的更换,及能源供应、检修、应急救援更功能。以下结合实施例对所述巡检辅助装置900进行进一步说明。
请参见图9,在一个实施例中,所述巡检辅助装置900包括辅助行走装置910和工具架920。所述工具架920设置于所述辅助行走装置910。所述工具架920用于放置待替换检测装置。
所述轨道交通机车车辆巡检装置10的所述巡检机器人400在巡检过程中,有时为了完成不同的检测项目,需要对所述机械臂420末端的所述检测装置430进行更换。为了方便说明,替换的所述检测装置命名为所述待替换检测装置。被替换的所述检测装置命名为原检测装置。
所述辅助行走装置910用于完成行走,并带动在其上设置的设备行走。所述辅助行走装置910的结构、实现原理、控制方式等于所述作业行走装置410类似,在此不再赘述。
所述工具架920可以设置于所述辅助行走装置910的车体顶部。所述工具架920的具体结构不做限定,可以根据需要放置的工具的结构、尺寸等进行设置。所述待替换检测装置放置于所述工具架920。当需要替换所述原检测装置时,控制所述辅助行走装置910行 走至所述巡检机器人400旁边。将所述原检测装置替换为所述工具架920上的所述待替换检测装置。替换的方法可以为自动,也可以为手动,本申请不做限定。
本实施例中,所述轨道交通机车车辆巡检装置10包括所述巡检辅助装置900。所述巡检辅助装置900设置所述工具架920,从而能够将所述待替换检测装置运输至所述巡检机器人400处,实现对所述检测装置430的替换。本实施例提供的所述巡检辅助装置900提高了所述轨道交通机车车辆巡检装置10功能的全面性,同时,提高了其智能性。
在一个实施例中,所述工具架920的形状和尺寸与所述待替换检测装置的形状和尺寸相匹配。也就是说,所述工具架920模仿所述待替换检测装置的形状设计,从而使得所述待替换检测装置能够更稳妥、更贴合的放置于所述工具架920。
在一个实施例中,所述巡检辅助装置900的所述工具架920上设置有所述待替换检测装置。所述待替换检测装置的一端连接有所述工具端435。所述待替换检测装置与所述工具端435电气连接和机械连接。所述工具端435用于与所述机械臂端433连接实现所述待替换检测装置与所述机械臂420末端的连接。替换所述检测装置430时,拆卸掉原所述检测装置430及与其连接的所述工具端435。将所述待替换检测装置的所述工具端435与所述机械臂420末端的机械臂端433连接,从而实现所述待替换检测装置与所述机械臂420的电气连接和机械连接。本实施例中,通过在所述待替换检测装置上设置所述工具端435,实现对所述检测装置的快速更换,提高工作效率。
在一个实施例中,所述巡检辅助装置900还包括能源供给装置930。所述能源供给装置930设置于所述辅助行走装置。所述能源供给装置用于向轨道交通机车车辆巡检设备提供能源。所述轨道交通机车车辆巡检设备包括但不限于所述巡检机器人400。所述能源供给装置930可以包括电源供给装置931,也可以包括气源供给装置932,还可以为其他任何所述巡检机器人400所需能源的装置。本实例中,所述能源供给装置930能够向所述巡检机器人400提供和补充能源,保证了所述巡检机器人400能源供给,提高了所述巡检机器人400工作的稳定性和可靠性,从而提高了所述轨道交通机车车辆巡检装置10的稳定性和可靠性。
在一个实施例中,所述能源供给装置930包括电源供给装置931。所述电源供给装置931包括电源和电源接口。所述电源设置于所述辅助行走装置910。所述电源接口与所述电源电连接,用于实现所述电源与所述巡检机器人400的电连接。也就是说,通过所述电源接口,所述电源向所述巡检机器人400供电。所述电源和所述电源接口的具体结构、安装方式等本申请均不作限定,只要可以实现其功能即可。当所述巡检机器人400电能耗尽时,所述巡检辅助装置900携带所述电源供给装置行走至所述巡检机器人400,并向其供电。本实施例中,通过所述电源和所述电源接口,实现对所述巡检机器人400的供电功能,增加了所述巡检辅助装置900的功能,提高了实用性。
在一个实施例中,所述巡检辅助装置900还包括应急装置940。所述应急装置940设置于所述辅助行走装置910。所述应急装置用于向所述巡检机器人400提供应急救援。
所述巡检机器人400在巡检作业过程中,可能会遇到突发故障,导致所述作业行走装置410无法行走、所述机械臂420无法动作或所述机械臂420卡死等紧急情况。此时,控制所述巡检辅助装置900携带所述应急装置940行走至所述巡检机器人400附近,向所述巡检机器人400提供应急救援。本实施例中,通过所述应急装置940进一步增加了所述巡检辅助装置900的功能,保证了所述巡检机器人400的安全性和稳定性。
在一个实施例中,所述应急装置940可以包括机械应急装置941。所述机械应急装置 941设置于所述辅助行走装置910。所述机械应急装置941用于实现与所述巡检机器人400的机械对接。所述机械应急装置941的具体结构不做限定,只要可以实现其功能即可。在一个实施例中,所述机械应急装置941的结构与所述对接装置440的结构相匹配,以实现与所述巡检机器人400的机械对接,进而实现所述巡检辅助装置900对所述巡检机器人400的拖拽、移动等。本实施例中提供的所述巡检辅助装置900能够在所述巡检机器人400出现故障时,将其拖离所述巡检现场,提高所述轨道交通机车车辆巡检装置10的自动化程度和智能性。
在一个实施例中,所述应急装置940还包括电气应急装置942。所述电气应急装置942设置于所述辅助行走装置910。具体的,所述电气应急装置942可以设置于所述机械应急装置941。所述电气应急装置942用于实现与所述巡检机器人400的电气对接,实现对所述巡检机器人400的电气应急救援。进一步的,所述应急装置940还可以包括通信应急装置。所述通信应急装置用于实现对所述巡检机器人400的通信应急救援。
在一个实施例中,所述巡检辅助装置900还包括检修装置(图中未示出)。所述检修装置设置于所述辅助行走装置910。所述检修装置用于检查所述巡检机器人400的故障信息,并维修。例如,当所述巡检机器人400的所述机械臂420无法动作,所述检修装置可以将所述巡检机器人400的电气通信控制线连接于所述检修装置。所述检修装置对所述巡检机器人400进行调试,根据调试结果,进行进一步维修。本实施例中,通过所述检修装置进一步完善了所述巡检辅助装置900的功能,提高了所述巡检机器人400的安全性和可靠性。
利用如上所述的轨道交通机车车辆巡检装置10进行巡检工作时,所述巡检机器人400要对所述待检测车辆进行定位,以实现准确的检测和测量。而所述巡检机器人400在确定与所述待检测车辆位置时,由于存在多方面的误差,会导致定位偏差。首先,所述巡检机器人400由于自身导航系统的误差、行走地面的不平整、车轮打滑、车轮磨损等造成自身定位的误差,无法准确到达预定的位置。另外,所述待检测车辆由于车轮磨损、导航误差等,会造成所述待检测车辆实际停车位置与预设停车位置的误差。两方面的误差均会导致两者相对位置的误差,最终所述巡检机器人400在对所述待检测车辆进行巡检工作时,检测不准确。因此,需要对轨道交通机车车辆巡检过程中的误差进行检测,从而可以依据误差进行进一步定位校正。
请参见图10,在一个实施例中,所述轨道交通机车车辆巡检装置10还包括轨道交通机车车辆巡检位姿检测系统。所述轨道交通机车车辆巡检位姿检测系统以下均简称巡检位姿检测系统30。以下结合实施例对所述巡检位姿检测系统30进行进一步说明。
请参见图10,在一个实施例中,所述巡检位姿检测系统30包括参考基准310、位姿检测装置320和处理装置330。
所述参考基准310沿所述待检测车辆停放的所述轨道100延伸方向设置于所述轨道100的一侧。所述参考基准310的长度与所述巡检机器人400走行工作面的长度匹配。所述参考基准310可以为型材制成的参考物。所述参考基准310包括沿所述轨道100延伸方向的绝对位置信息和基准面信息等。所述参考基准310可以通过刻度信息、图像信息等体现所述绝对位置信息和所述基准面信息等。
所述位姿检测装置320用于检测所述巡检机器人400相对于所述参考基准310的距离信息。所述位姿检测装置320设置于所述巡检机器人400,从而可以随所述巡检机器人400的移动,实时检测所述巡检机器人400相对于所述参考基准310的距离信息,进而得到所述巡检机器人400的位姿偏移量。所述位姿检测装置320可以根据需求检测参数的不同, 设置于所述巡检机器人400的所述车体411的不同位置。所述位姿检测装置320包括但不限于距离检测装置。
所述处理装置330与所述位姿检测装置320通信连接。所述位姿检测装置320检测到的所述巡检机器人400相对于所述参考基准310的距离信息传输至所述处理装置330。所述处理装置330根据所述巡检机器人400相对于所述参考基准310的距离信息计算所述巡检机器人400相对于基准坐标的位姿偏移量。
请参见图11,所述基准坐标可以包括第一坐标轴、第二坐标轴和第三坐标轴构成的坐标系中的一个或多个基准面及基准方向。在一个实施例中,所述第一坐标轴为图11所示的y轴,即与所述巡检机器人400行走方向垂直,与所述巡检机器人400行走地面平行或近似平行的轴。所述第二坐标轴为图11所示的z轴,即与所述巡检机器人400行走方向和所述第二坐标轴垂直的轴。所述第三坐标轴为图11所示的x轴,即平行于所述巡检机器人400行走方向的轴。
在一个实施例中,用于计算位姿偏移量的所述基准坐标包括第一基准面、第二基准面、第三基准面、第一方向、第二方向和第三方向。所述第一基准面为与x轴和z轴形成的平面平行的面。所述第一方向为平行于y轴的方向。所述第一基准面沿y轴的具体位置可以根据实际需求设定。例如,所述第一基准面可以为所述巡检凹槽300沿横向的对称面,即,所述第一基准面为与x轴和z轴形成的平面平行的面,且所述第一基准面位于所述巡检凹槽300垂直所述轨道100延伸方向的中点。所述第二基准面为与x轴和y轴形成的平面平行的面。所述第二方向为平行于z轴的方向。所述第二基准面沿z轴的具体位置可以根据实际需求设定。例如,假设所述巡检机器人400行走地面与x轴和y轴形成的平面平行,所述第二基准面可以为所述巡检机器人400行走地面。所述第三基准面为与y轴和z轴形成的平面平行的面。所述第三方向为平行于x轴的方向。所述第三基准面沿x轴的具体位置可以根据实际需求设定。例如,所述第三基准面可以位于所述巡检凹槽300沿所述轨道100延伸方向的起始位置。
所述巡检机器人400相对于所述基准坐标的位姿偏移量可以包括但不限于所述巡检机器人400相对于所述第一基准面沿所述第一方向的偏移量,相对于所述第二基准面沿所述第二方向的偏移量,相对于所述第三基准面沿所述第三方向的偏移量,以及绕所述第一方向的旋转角度、绕所述第二方向的旋转角度、绕所述第三方向的旋转角度。
本实施例中,通过所述参考基准310与所述位姿检测装置320配合,检测所述巡检机器人400相对于所述参考基准310的距离信息,然后通过所述处理装置330实现对所述巡检机器人400位姿的检测。所述参考基准310为距离检测提供了稳定准确的参考基准,从而提高了位姿检测的精确度,进而提高后续所述巡检机器人400定位的精确性。
基于上述实施例,请参见图12和图13,在一个实施例中,所述基准坐标包括所述第一基准面和所述第一方向。所述参考基准310包括基准标尺311。所述基准标尺311沿所述轨道100延伸方向贴合于所述轨道100靠近所述巡检机器人400行走的一侧。
请一并参见图14,所述位姿检测装置320包括第一距离检测装置321。所述第一距离检测装置321包括但不限于激光测距仪。所述第一距离检测装置321设置于所述巡检机器人400的所述车体411靠近所述基准标尺311一侧的第一位置。所述第一位置可以根据实际需求设置。所述第一距离检测装置321用于检测所述第一位置相对于所述基准标尺311沿所述第一方向的距离信息,得到第一检测距离。所述第一距离检测装置321与所述处理装置330通信连接。所述第一距离检测装置321检测的所述第一检测距离传输至所述处理 装置330。
所述处理装置330根据所述第一检测距离计算所述第一位置相对于所述第一基准面沿所述第一方向的位姿偏移量。所述处理装置330计算所述第一位置相对于所述第一基准面沿所述第一方向的位姿偏移量的方法可以有多种。在一个实施例中,所述处理装置330获取所述第一检测距离,并获取所述基准标尺311相对于所述第一基准面沿所述第一方向的距离信息,从而计算得到所述巡检机器人400相对于所述第一基准面沿所述第一方向的距离信息,得到第一距离信息。所述处理装置330进一步获取所述巡检机器人400的所述第一记录信息,根据所述第一记录信息和所述第一距离信息计算得到所述巡检机器人400相对于所述第一基准面沿所述第一方向的位姿偏移量。其中,所述第一记录信息可以通过所述巡检机器人400的所述车体411的编码器等位置采集模块获得。
本实施例中,通过所述第一距离检测装置321检测得到所述巡检机器人400相对于所述基准标尺311的距离信息,进而通过所述处理装置330计算得到所述巡检机器人400相对于所述第一基准面沿所述第一方向的位姿偏移量。本实施例实现了所述巡检机器人400沿y轴偏移量的检测,为后续y轴方向的定位和校正提供依据,进而消除所述巡检机器人400因行走地面不平整、车轮磨损、导航系统偏差等因素引起的y轴偏差,实现巡检的准确定位。
在一个实施例中,所述基准坐标包括所述第二基准面和所述第二方向。所述参考基准310还包括基准斜面312。所述基准斜面312沿所述轨道100延伸方向设置于所述基准标尺311远离所述巡检机器人400行走地面的一端。也就是说,所述基准斜面312设置于所述基准标尺311的顶部。且所述基准斜面312相对于所述基准标尺311倾斜设置。所述基准斜面312与所述基准标尺311的夹角可以根据需要设置。在一个具体的实施例中,所述基准斜面312与所述基准标尺311的夹角为45°。
所述位姿检测装置320还包括第二距离检测装置322。所述第二距离检测装置322设置于所述巡检机器人400的所述车体411的第二位置。所述第二位置与所述第一位置位于所述巡检机器人400的所述车体411的同一个面。也就是说,所述第二位置也设置于所述车体411靠近所述基准标尺的一侧。所述第二位置所述第二距离检测装置322包括但不限于激光测距仪。所述第二距离检测装置322用于检测所述第二位置相对于所述基准斜面312沿所述第一方向的距离信息,得到第二检测距离。所述第二位置的具体设置可以根据所述基准斜面312的设置位置进行调整和选择,以保证所述第二距离检测装置322能够检测到所述第二位置相对于所述基准斜面312沿所述第一方向的距离信息。例如,所述第二位置位于所述第一位置的上方,且所述第二位置高于所述基准斜面312的最低点,以使得所述第二距离检测装置322能够检测到所述第二位置相对于所述基准斜面的距离信息。
所述第二距离检测装置322与所述处理装置330通信连接。所述处理装置330根据所述第一检测距离和所述第二检测距离计算所述巡检机器人400相对于所述第二基准面沿所述第二方向的位姿偏移量。
以所述基准斜面312与所述基准标尺311的夹角为45°为例,所述第一检测距离为y1,所述第二检测距离为y2。假设所述巡检机器人400相对于所述第二基准面沿所述第二方向无偏移量时,所述第二检测距离y2=y1,则所述第一检测距离和所述第二检测距离的差y1-y2即为所述巡检机器人400相对于所述第二基准面沿第z轴方向的位姿偏移量。
本实施例提供的所述巡检位姿检测系统30通过所述第二距离检测装置322和所述基准斜面312实现所述第二检测距离的检测,进而计算得到所述巡检机器人400相对于所述 第二基准面沿所述第二方向的位姿偏移量。本实施例提供的所述系统简单有效,且能准确的检测和计算所述巡检机器人400沿z轴方向的偏移量,从而可以消除因所述巡检机器人400车轮磨损、行走地面不平整等造成的z轴方向上的误差。
在一个实施例中,所述第一位置和所述第二位置位于垂直于所述第二基准面的直线上。也就是说,所述第一位置和所述第二位置设置与所述第二方向平行的直线上,使得所述第一位置和所述第二位置在所述第三方向的位置差为零,从而在计算y轴方向上位姿偏移量时,排除所述巡检机器人400车体倾斜造成的影响,提高了z轴方向上位姿偏移量检测和计算的准确性。
在一个实施例中,所述基准坐标包括所述第二方向。所述位姿检测装置320还包括第三距离检测装置323。所述第三距离检测装置323设置于所述巡检机器人的第三位置。所述第三距离检测装置323包括但不限于激光测距仪。所述第三距离检测装置323用于检测所述第三位置相对于所述基准标尺311沿所述第一方向的距离信息,得到所述第三检测距离。所述第三位置与所述第一位置及所述第二位置位于同一个平面。所述第三位置和所述第一位置分别设置于沿所述轨道100延伸方向的不同位置。也就是说,所述第三位置和所述第一位置在所述第三坐标轴的坐标值不同。所述第一位置和所述第三位置一前一后的设置于所述巡检机器人400的所述车体411的侧面。
所述第三距离检测装置323与所述处理装置330通信连接。所述处理装置330根据所述第一检测距离和所述第三检测距离计算所述巡检机器人400绕所述第二方向的旋转角度。所述巡检机器人400绕所述第二方向的旋转角度也即所述巡检机器人400的所述车体411的倾斜角度。
请参见图15,所述第一检测距离为y1,所述第三检测距离为y3,所述第一位置和所述第三位置之间的距离为d,则,根据d、y3-y1可以算出∠1的度数,即为所述巡检机器人400绕所述第二方向的旋转角度。
本实施例中,通过所述第三距离检测装置323检测第三检测距离,并根据所述第一检测距离和所述第三检测距离计算得到所述巡检机器人400绕所述第二方向的旋转角度,从而可以消除所述巡检机器人400因行走地面不平整、车轮磨损、车轮打滑等造成的车体倾斜,提高定位的准确性。
请参见图12,在一个实施例中,所述基准坐标包括所述第三基准面和所述第三方向。所述参考基准310包括所述基准标尺311。所述基准标尺311包括刻度信息。所述位姿检测装置320还包括识别装置324。所述识别装置用于设备所述基准标尺的刻度信息,从而获得所述巡检机器人相对于所述第三基准面沿所述第三方向的位置信息。也就是说,所述识别装置324识别所述基准标尺311的刻度信息,得到所述巡检机器人400沿行走方向的位置信息,进而可以得到所述巡检机器人400相对于所述第三基准面沿所述第三方向的位置信息。本实施例提供的所述系统能够进一步检测所述巡检机器人400因车轮打滑、导航系统偏差等造成的在所述第三方向上的实际行走位置与目标位置产生的偏差,从而可以提高后续定位的准确性,提高巡检工作的质量和效率。
所述基准标尺311上的所述刻度信息的显示形式,以及所述识别装置324的具体结构不做限制,只要二者配合可以实现位置信息的获取即可。在一个实施例中,所述基准标尺311为二维码带。所述二维码带包含y轴信息和x轴信息。所述识别装置324为图像采集装置。所述图像采集装置包括但不限于摄像头等。所述图像采集装置设置于所述巡检机器人400的所述车体411,用于采集所述二维码带的信息,得到图像信息。所述位姿检测装 置320还包括第一处理机构325。所述第一处理机构325与所述图像采集装置通信连接。所述第一处理机构325获取所述图像信息并根据所述图像信息得到所述巡检机器人400相对于所述第一基准面沿所述第一方向的位置信息,以及所述巡检机器人400相对于所述第三基准面沿所述第三方向的位置信息。也就是说,所述第一处理机构325根据所述图像采集装置324的获取的所述二维码带的信息,获取当前所述巡检机器人400在y轴方向的位置和在x轴的位置。可以理解,通过所述二维码带和所述图像采集装置进行信息获取时,所述第一距离检测装置321可以不设置。
本实施例中,通过所述二维码带与所述图像采集装置的配合,实现所述巡检机器人400沿x轴方向及沿y轴方向位置的检测,从而可以得到所述巡检机器人400在x轴方向和y轴方向上的位姿偏移量,检测方法简单准确。
在一个实施例中,所述基准标尺311为二维码带或条形码带。所述识别装置324为读码器。所述读码器用于识别所述二维码带或所述条形码带的信息。所述条形码带包括x轴信息。所述位姿检测装置320还包括第二处理机构326。所述第二处理机构326与所述读码器通信连接。所述第二处理机构326用于根据所述二维码带或所述条形码带的信息得到所述巡检机器人400相对于所述第三基准面沿所述第三方向的位置信息。也即是说,通过所述读码器读取所述二维码带或所述条形码带上的x轴信息,得到所述巡检机器人400当前在x轴方向的位置信息。
本实施例中,通过所述二维码带或所述条形码带与所述读码器的配合,实现所述巡检机器人400沿x轴方向的检测,从而可以得到所述巡检机器人400在x轴方向的位姿偏移量,检测方法简单准确。
在一个实施例中,所述位姿检测装置320还包括第四距离检测装置327。所述第四距离检测装置327设置于所述巡检机器人400顶部。所述第四距离检测装置327包括但不限于激光测距仪。所述第四距离检测装置327用于检测所述待检测车辆底部相对于所述第四距离检测装置327的距离信息,得到第四检测距离。所述第四距离检测装置327与所述处理装置330通信连接。所述处理装置330用于根据所述第四检测距离计算所述待检测车辆的位姿偏移量。
所述第四检测距离即为所述待检测车辆车底的高度信息。所述第四距离检测装置327在所述巡检凹槽300内连续移动,从而采集所述待检测车辆底部的高度信息曲线。同时,所述巡检机器人400移动的同时,也可以通过所述识别装置324识别所述基准标尺311的信息,获取所述高度信息对应的x轴方向的位置信息,从而得到所述待检测车辆车底高度长度曲线信息。所述处理装置330根据所述高度长度曲线信息计算所述待检测车辆的位姿偏移量。所述待检测车辆的位姿偏移量包括但不限于所述待检测车辆相对于所述第二基准面沿所述第二方向的位姿偏移量、所述待检测车辆相对于所述第三基准面沿所述第三方向的位姿偏移量,即:所述待检测车辆在z轴方向的偏移量和x轴方向的偏移量。所述处理装置330处理计算的过程可参见下述方法的实施例。
本实施例中,通过所述第四距离检测装置327实现对所述待检测车辆位姿偏移量的检测,从而可以消除因导航误差等导致的所述待检测车辆在x轴方向的停放偏差,以及因所述待检测车辆车轮磨损造成的z轴方向的姿态偏差,进而可以定位的准确性。
请参见图16,本申请一个实施例提供一种轨道交通机车车辆巡检位姿检测方法,可以利用如上所述的巡检位姿检测系统30进行位姿检测。所述方法的执行主体为计算机设备。所述计算机设备可以是所述轨道交通机车车辆巡检位姿检测系统30中的处理装置330,也 可以是所述控制装置600,还可以是其他包含存储器和处理器,能够处理计算机程序的任何计算机设备。
所述方法包括:
S10,获取所述待检测车辆相对于所述基准坐标的位姿偏移量,得到车辆位姿偏移量。
S20,获取所述巡检机器人400相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量。
S30,根据所述车辆位姿偏移量和所述机器人位姿偏移量得到轨道交通机车车辆巡检工作位姿偏移量。
所述基准坐标的定义如上述实施例所述。所述待检测车辆相对于所述基准坐标的位姿偏移量可以通过如上所述的第四距离检测装置327、所述处理装置330、所述识别装置324、所述第一处理机构325和所述第二处理机构326检测得到。所述巡检机器人400相对于所述基准坐标的位姿偏移量,可以通过如上所述的第一距离检测装置321、所述第二距离检测装置322和/或所述第三距离检测装置324,以及所述处理装置330、所述识别装置324、所述第一处理机构325和所述第二处理机构326检测得到。其中,所述车辆位姿偏移量可以在所述待检测车辆停车到位后获取并存储于所述计算机设备的存储器中。所述机器人位姿偏移量在所述巡检机器人400的巡检作业过程中实时获取。
所述计算机设备分别获取所述车辆位姿偏移量和所述机器人位姿偏移量后,根据预设的方法对所述车辆位姿偏移量和所述机器人偏移量进行计算和处理,得到巡检作业过程中的总位姿偏移量,即所述轨道交通机车车辆巡检作业位姿偏移量。计算的方法包括但不限于相同坐标轴位姿偏移量,及其他相关量的求和或加权求和等。具体的计算方法可以根据实际需求设定。
所述轨道交通机车车辆巡检作业位姿偏移量传输至所述控制装置600。所述控制装置600根据位姿偏移量实时校正调整所述巡检机器人400的行走方向,从而对所述待检测车辆准确定位、准确检测。
本实施例中,通过获取所述车辆位姿偏移量和所述机器人位姿偏移量,并根据所述车辆位姿偏移量和所述机器人位姿偏移量得到轨道交通机车车辆巡检工作过程中的位姿偏移量。本实施例提供的所述方法不仅考虑了轨道交通机车车辆巡检作业过程中所述巡检机器人400的位姿偏差,而且考虑了所述待检测车辆的位姿偏差,多方面消除定位误差,提高定位准确性,进而提高巡检效果。
在一个实施例中,所述基准坐标包括第一基准面和第一方向,S20包括:
S210,获取所述巡检机器人400的第一位置相对于所述第一基准面沿所述第一方向的距离信息,得到第一距离信息。
所述第一距离信息的获得可以包括但不限于通过上述实施例中的所述第一距离检测装置321检测所述第一位置与所述基准标尺311的距离,得到所述第一检测距离。再依据所述基准标尺311相对于所述第一基准面沿所述第一方向的距离,以及所述第一检测距离计算得到所述第一距离信息。当然,所述第一基准面也可以设定为所述基准标尺,则,所述第一距离信息即为所述第一检测距离。
所述第一距离信息表征所述巡检机器人400的所述第一位置相对于所述第一基准面沿所述第一方向的实际距离信息。延续上述实施例,即所述第一距离为所述巡检机器人400的所述第一位置相对于第一基准面沿y轴的距离信息。
S220,获取所述第一位置相对于所述第一基准面沿所述第一方向的记录信息,得到第 一记录信息。
所述第一记录信息表征所述巡检机器人400的所述第一位置相对于所述第一基准面沿所述第一方向的理想位置或目标位置。所述第一记录信息可以通过所述巡检机器人400的编码器等导航模块获知。
S230,根据所述第一距离信息和所述第一记录信息计算得到所述第一位置相对于所述第一基准面沿所述第一方向的位姿偏移量。计算的方法包括但不限于两者相减或加入比例系数相减等。
本实施例中,通过获取所述第一距离信息和所述第一记录信息,进而根据所述第一距离信息和所述第一记录信息得到所述巡检机器人400的第一位置相对于所述第一基准面沿所述第一方向的位姿偏移量,即获得所述巡检机器人400沿x轴的姿态偏移量。
请参见图18,在一个实施例中,所述基准坐标包括所述第二基准面和所述第二方向,S20包括:
S240,获取所述巡检机器人400的所述第二位置相对于基准斜面沿所述第一方向的距离信息,得到第二距离信息。其中,所述基准斜面相对于所述第二基准面倾斜设置,所述第一位置和所述第二位置位于所述巡检机器人400的同一个面。且所述第一位置和所述第二位置位于垂直于所述第二基准面的直线上。
S250,根据所述第一距离信息和所述第二距离信息,得到所述巡检机器人400相对于所述第二基准面沿所述第二方向的位姿偏移量。
所述第二距离信息的获取,以及所述巡检机器人400相对于所述第二基准面沿所述第二方向的位姿偏移量的计算和获取同上述实施例及图14所示。在此不再赘述。
请参见图19,在一个实施例中,所述基准坐标包括所述第二方向。S20包括:
S260,获取所述巡检机器人400的所述第三位置相对于所述第一基准面沿所述第一方向的距离信息,得到第三距离信息。其中,所述第三位置与所述第一位置位于所述巡检机器人400的同一个面,且所述第一位置和所述第三位置分别设置于所述巡检机器人400沿所述轨道100延伸方向的不同位置。
S270,根据所述第一距离信息和所述第三距离信息得到所述巡检机器人400绕所述第二方向的旋转角度。
所述第三距离信息的获取与所述第一距离信息的获取类似。所述巡检机器人400绕所述第二方向的旋转角度的计算和获取同上述实施例及图15所示。在此不再赘述。
请参见图20,在一个实施例中,所述基准坐标包括所述第二基准面、所述第三基准面、所述第二方向和所述第三方向。S10包括:
S110,获取所述待检测车辆车底沿所述第三方向的每个位置相对于所述第二基准面沿所述第二方向的距离信息,并获取所述带检车车辆车底相对于所述第三基准面沿所述第三方向的距离信息,得到车底高度长度曲线信息。
S120,获取所述待检测车辆车底的标准高度长度曲线信息。
S130,根据所述车底高度长度曲线信息和所述标准高度长度曲线信息,得到所述待检测车辆相对于所述第二基准面沿所述第二方向的姿态偏移量,以及所述待检测车辆沿所述第三方向的姿态偏移量。
所述高度长度曲线信息表征所述待检车车辆停放于实际停放位置时,在x轴的位置,车底各组件在z轴的位置,以及z轴和x轴的位置对应关系。所述标准高度长度曲线信息表征所述待检测车辆位于准确的目标停车位置时,在x轴的位置,车底各组件在z轴的位 置,以及z轴和x轴的位置对应关系。
请参见图21,所述巡检机器人400承载所述第四距离检测装置沿所述待检测车辆车底运动,获取所述待检测车辆车底高度信息的同时,通过所述识别装置324识别所述基准标尺311的信息,得到所述待检测车底各位置相对于所述第三基准面沿所述第三方向的位置信息。从而得到所述高度长度曲线信息。
根据所述车底高度长度曲线信息和所述标准高度长度曲线信息的对比,可以快速获得所述待检测车辆沿z轴偏差以及沿x轴的停车偏差。
例如,图21中,根据对比图a和图b可知,z轴偏差为z1a-z1b,x轴偏差为x1a-0=x1a。
本实施例提供的所述方法,通过获取所述待检测和车辆车底高度长度曲线信息和所述标准高度长度曲线信息,能够快速准确的获取所述待检测车辆沿z轴的姿态偏差和在x轴方向的停放偏差。
在一个实施例中,S130包括:
S131,根据所述车底高度长度曲线信息,获得所述待检测车辆的轮对位置相对于所述第一基准面沿所述第一方向的距离信息,得到轮对位置信息。
S132,根据所述标准高度长度曲线信息,获得所述待检测车辆的轮对位置相对于所述第一基准面沿所述第一方向的标准距离信息,得到标准轮对信息。
S133,根据所述轮对位置信息和所述标准轮对位置信息,得到所述带检车车辆相对于所述第二基准面沿所述第二方向的姿态偏移量,以及所述待检测车辆相对于所述第三基准面沿所述第三方向的姿态偏移量。
请继续参见图21,根据图a中,可以得到轮对的实际停放位置为x轴x1a点,高度为z2a。根据图b,可以得到轮对的理想停放位置为x轴x2b点,高度为z2b。因此,可得所述待检测车辆沿z轴偏移量为z2a-z2b,所述待检测车辆沿x轴偏移量为x2a-x2b。
本实施例中,通过识别轮对的位置,能够快速、准确的获取所述待检测车辆相对于所述第二基准面沿所述第二方向的姿态偏移量,以及相对于所述第三基准面沿所述第三方向的姿态偏移量,提高姿态偏移量的计算速度。
在一个实施例中,所述轨道交通机车车辆巡检装置10的所述控制装置600与所述处理装置330通信连接。所述处理装置330计算得到的所述巡检机器人400相对于所述基准坐标的位姿偏移量、所述待检测车辆相对于所述基准坐标的位姿偏移量和/或轨道交通机车车辆巡检作业姿态偏移量传输至所述控制装置600。所述控制装置600根据以上偏移量控制所述巡检机器人400的行走,从而实现准确定位,准确巡检。
请参见图22,本申请一个实施例提供一种轨道交通机车车辆巡检系统1。所述轨道交通机车车辆巡检系统1包括如上所述的轨道交通机车车辆巡检装置10和调度装置20。其中,所述巡检机器人400的数量为至少2个。所述调度装置20与所述巡检机器人400通信连接。所述调度装置20用于调度所述巡检机器人400。
所述轨道交通机车车辆巡检系统1包括多个所述巡检机器人400。每个所述轨道交通机车车辆装置10的所述控制装置600可以分别设置,控制对应的所述巡检机器人400,也可以通过一个所述控制装置600控制多个所述巡检机器人。
同样,所述调度装置20可以为单独设置的装置,也可以为所述控制装置600的一个模块。所述调度装置20用于根据巡检作业内容要求和所述巡检机器人400的状态,制定每个所述巡检机器人400的作业顺序和行走路线。所述调度装置20也可以用于根据所述巡检机器人400的工作需求和工作状态,控制所述升降设备501的升降。另外,所述调度 装置20还可以根据所述巡检机器人400的工作需求和工作状态,控制所述巡检辅助装置900的工作。
本实施例中,通过所述调度装置20控制多个所述巡检机器人400工作,从而能够实现多个所述巡检机器人400同时进行巡检作业,大大缩短了巡检作业时间,提高了巡检作业效率。
所述调度装置20控制多个所述巡检机器人400的方式有多种,在一个实施例中,每个所述巡检机器人400可以根据需求设置多个不同的所述检测装置430。所述调度装置20用于控制每个所述巡检机器人400分别完成对一辆所述待检测车辆的多项检测项目。也就是说,所述调度装置20控制每个所述巡检机器人400完成对一辆所述待检测车辆需要的所有检测项目。多个所述巡检机器人400同时完成多辆所述待检测车辆的检测。本实施例中,所述巡检机器人400无需跨轨道检测,节约所述巡检机器人400行走时间,提高检测效率。
在另一个实施例中,多个所述巡检机器人400分别设置不同的所述检测装置430。所述调度装置20用于控制每个所述巡检机器人400分别完成对多辆所述待检测车辆的一项检测项目。也就是说,多个所述巡检机器人400分别安装不同的所述检测装置430,完成不同的检测项目。多个所述巡检机器人400同时巡检作业,每个所述巡检机器人400跨轨道完成对多辆所述待检测车辆的检测,从而,同时完成多辆所述待检测车辆的检测。本实施例中,每个所述巡检机器人400无需更换所述检测装置430,节约了所述巡检机器人400更换所述待检测装置400的时间和资源,提高了巡检效率。
以下结合实施例对所述轨道交通机车车辆巡检装置10及所述轨道交通机车车辆巡检系统1的工作过程进行说明。
请参见图23,所述轨道交通机车车辆巡检系统1包括M5(1)-M5(6)共6台所述巡检机器人400,分别停放与P001-P006位置。所述轨道交通机车车辆巡检系统1还包括M6(1)和M6(2)共2台所述巡检辅助装置900,分别停放于P007和P008位置。图中,Pxxx表示位置。用虚线表示的J1-J6为所述待检测车辆的不同车厢。M7(1)和M7(2)表示所述升降装置501。假设所述升降设备501与所述调度装置20通信连接,所述升降设备501的升降动作由所述调度装置20控制。
以下对图中P001-P186位置进行说明:
P001-P006:安排在所述待检测车辆车侧L的所述巡检机器人M5(1)-M5(6)待命位。
P007-P008:安排在所述待检测车辆车侧L的所述巡检辅助装置M6(1)-M6(2)待命位。
P120:所述的升降装置M7(1)的升降台上的点(车侧L中部基准点),在所述待检测车辆车侧L所述巡检平台200所在的平面和所述巡检凹槽300所在平面之间移动。
P110、P130:所述待检测车辆车侧L两端的基准点。
P114-P119、P121-P126:所述待检测车辆各节车厢对应的典型的车侧L检测停靠点。
P150:所述巡检凹槽300内的中部基准点。
P140、P160:所述巡检凹槽300内两端的基准点。
P144-P149、P151-P156:所述待检测车辆各节车厢对应的典型的车底巡检凹槽检测停靠点。
P180:所述升降设备M7(2)的升降台上的点(车侧R中部基准点),在所述待检测车辆车侧的所述巡检平台200所在平面和所述巡检凹槽300所在平面之间移动。
P170、P190:所述待检测车辆车侧R两端的基准点。
P174-P179、P181-P186:所述待检测车辆各节车厢对应的典型的车侧R检测停靠点。
在一个实施例中,所述轨道交通机车车辆巡检系统1包括1个所述巡检机器人400,巡检作业过程如下:
S101所述轨道交通机车车辆巡检装置10各工作模块自检正常,各部分功能准备就绪。
S102所述现场工况检测装置700获取所述巡检现场的工况参数。
具体的,所述积液检测机构710检测所述巡检凹槽300内的积液情况,所述入侵检测组件730所述巡检现场是否有入侵等。若有异常,所述现场工况检测装置700或所述控制装置600报警。
同时,所述待检测车辆在位检测组件720检测所述待检测车辆是否停靠到位。若所述导检测车辆停靠到位,则可作为启动使能信号。
S103所述控制装置600根据所述现场工况检测装置700的检测情况,确认确定是否可以启动作业,若是,则发送启动信号。
S104所述调度装置20获取被激活待命的所述巡检机器人400的信息,并分配巡检任务给所述巡检机器人M5(1),并发出作业控制指令。假设所述巡检任务为:完成图中P150处的某一巡检项目。
S105所述巡检机器人M5(1)按照如下4个步骤运行:
1)所述调度装置20控制所述巡检机器人M5(1)从P001行走到P120,准备就绪后,所述巡检机器人M5(1)将状态反馈给所述调度装置20。
2)所述调度装置20发出“下降”指令给所述升降装置M7(1),所述升降装置M7(1)执行下降动作,到位后,反馈给所述调度装置20。
3)所述调度装置20发出指令“P120—>P150”给所述巡检机器人M5(1),所述巡检机器人M5(1)走行到P150时,进入所述巡检凹槽300,并将状态反馈给所述调度装置20。
4)所述调度装置20发出“上升”指令给所述升降设备M7(1),所述升降设备M7(1)执行上升动作。
S106所述控制装置600发出“对所述待检测车辆定位检测”指令给所述巡检机器人M5(1),所述巡检机器人M5(1)沿着“J4—>J5—>J6—>J3—>J2—>J1”方向进行走行测量,得到所述待检测车辆的停靠偏差ΔX和部件的高度偏差ΔYn。
S107所述控制装置600发出“对所述待检测车辆进行车底检测”指令给所述巡检机器人M5(1),所述巡检机器人M5(1)沿着“P140—>P150—>P160”方向走行,进行所述待检测车辆车底项目的检测。
S108所述待检测车辆车底项目的检测作业按以下步骤:
1)所述巡检机器人M5(1)在P144停靠,所述控制装置600控制所述巡检机器人M5(1)的所述机械臂420末端到预定的检测位置。
2)安装在所述机械臂420末端的所述检测装置430开始工作,采集检测项目相关信息,并传送至所述控制装置600。
3)所述控制装置600对相关信息进行处理,对是否存在故障进行确认。
4)所述巡检机器人M5(1)走行到下一个检测停靠位,重复以上1)-3)步骤,直到完成P140到P160中所有检测需要位置对应的检测作业。
S109所述巡检机器人M5(1)完成对所述待检测车辆车底检测作业后,回到P150,然后状态反馈给所述控制装置600。
S110假设所述巡检机器人M5(1)当前位于P150位置,所述控制装置600向所述巡检 机器人M5(1)发送指令“完成P110处的某一项目检测”,按以下步骤:
1)所述调度装置20发出“下降”指令给所述升降设备M7(1),所述升降设备M7(1)执行下降动作,到位后,反馈所述调度装置20。
2)所述调度装置20发出指令“P150—>P120”给所述巡检机器人M5(1),所述巡检机器人M5(1)走行到P120时,走出所述巡检凹槽300,并将状态反馈给所述控制装置600。
3)所述控制装置600发出“上升”指令给升降设备M7(1),所述升降设备M7(1)执行上升动作,到位后,反馈给所述调度装置20。
4)所述调度装置20发出指令“P120—>P110”给所述巡检机器人M5(1),所述巡检机器人M5(1)走行到P110时,动作完成。
S111所述巡检机器人M5(1)在P110到P130执行对所述待检测车辆车侧L检测作业,其过程与S108相似,在此不再赘述。所述巡检机器人M5(1)完成检测后,到达P130。
S112所述调度装置20向所述巡检机器人M5(1)发送指令“执行P130—>P170动作”,按以下步骤实施:
1)所述调度装置20控制所述巡检机器人M5(1)从P130行走到P120。到位后,所述巡检机器人M5(1)将状态反馈给所述调度装置20。
2)所述调度装置20发出“下降”指令给所述升降设备M7(1)、M7(2),所述升降设备M7(1)和M7(2)执行下降动作,到位后,反馈给所述调度装置20。
3)所述调度装置20发出指令“P120—>P180”给所述巡检机器人M5(1),所述巡检机器人M5(1)走行到P180时,走出地沟,状态反馈给所述调度装置20。
4)所述调度装置20发出“上升”指令给所述升降设备M7(1)和所述升降设备M7(2),所述升降设备M7(1)和所述升降设备M7(2)执行上升动作。到位后,所述升降设备M7(1)和所述升降设备M7(2)将信息反馈给所述调度装置20。
5)所述调度装置20发出指令“P180—>P170”给所述巡检机器人M5(1),所述巡检机器人M5(1)走行到P170时,动作完成。
S113所述巡检机器人M5(1)在P170到P190之间执行车侧R检测作业,过程类似S108,在此不再赘述。
S114以上巡检检测作业过程中,或巡检检测作业完成后,所述检测装置430将采集的信息传输至所述控制装置600进行处理。所述控制装置600将故障信息通过客户端反馈给检修人员进行确认。确认有故障的部件,提示检修人员进行检修。不能确认的,可进行重检后再次确认。重检过程与上述过程类似。
S115人工检修完成后,所述调度装置20控制所述巡检机器人M5(1)走行到被检修过的位置,所述控制装置600控制所述巡检机器人M5(1)进行检修后检测项目的重新信息采集记录。
可以理解,当所述轨道交通机车车辆巡检系统1包括1个所述巡检机器人400时,所述巡检机器人400的行走路线控制和巡检作业控制等也可以都通过所述控制装置600控制。所述升降设备501的升降控制也可以通过所述控制装置600控制。
在又一个实施例中,所述调度装置20调度3台所述巡检机器人400同时进行巡检作业,巡检作业过程如下:
S201巡检作业前的检查和任务获取,具体包括如下步骤:
S2011所述轨道交通机车车辆巡检系统1各工作模块自检正常,各部分功能准备就绪。
S2012所述现场工况检测装置700获取所述巡检现场的工况参数。具体同步骤S102。
S2013所述控制装置600根据所述现场工况检测装置700的检测情况,确认确定是否可以启动作业,若是,则发送启动信号。
S2014所述调度装置20获取被激活待命的所述巡检机器人400的信息,并分配巡检任务给所述巡检机器人M5(1)、M5(2)和M5(3),并发出作业控制指令。假设所述巡检任务分配为:所述巡检机器人M5(1)完成图中P150处的第一巡检项目;所述巡检机器人M5(2)完成图中P110处的第二巡检项目;所述巡检机器人M5(3)完成图中P170处的第三巡检项目。
S2015所述巡检机器人M5(1)、M5(2)和M5(3)根据所述调度装置20及所述控制装置600的指令分别行走至P150、P110和P170处。
S2016所述控制装置600发出“对所述待检测车辆定位检测”指令给所述巡检机器人M5(1)或M5(2)或M5(3),所述巡检机器人M5(1)或M5(2)或M5(3)沿着“J4—>J5—>J6—>J3—>J2—>J1”方向进行走行测量,得到所述待检测车辆的停靠偏差ΔX和部件的高度偏差ΔYn。
S202所述巡检机器人M5(1)、M5(2)和M5(3)行走到位后反馈信息给所述控制装置600。
S203所述控制装置600发出“对所述待检测车辆进行车底检测”指令给所述巡检机器人M5(1),所述巡检机器人M5(1)沿着“P140—>P150—>P160”方向走行,进行车底项目检测。
S204所述控制装置600发出“对所述待检测车辆进行车侧L检测”指令给所述巡检机器人M5(2),所述巡检机器人M5(2)沿着“P110—>P120—>P130”方向走行,进行车侧L项目检测。
S205所述控制装置600发出“对所述待检测车辆进行车侧R检测”指令给所述巡检机器人M5(3),所述巡检机器人M5(3)沿着“P170—>P180—>P190”方向走行,进行车侧R项目检测。
S206同步骤S114到S115。
在一个实施例中,所述调度装置20调度6台所述巡检机器人M5同时对所述待检测车辆进行车侧L的巡检作业,步骤如下:
S211同步骤S201。
S212其中,上述S2014中,所述调度装置20发出“P001—>P110”给所述巡检机器人M5(1);所述调度装置20发出“P002—>P114”给所述巡检机器人M5(2);所述调度装置20发出“P003—>P116”给所述巡检机器人M5(3);所述调度装置20发出“P004—>P118”给所述巡检机器人M5(4);所述调度装置20发出“P005—>P123”给所述巡检机器人M5(5);所述调度装置20发出“P006—>P125”给所述巡检机器人M5(6);所述调度装置20发出“P144—>P125”给所述巡检机器人M5(6)。所述巡检机器人的行走过程类似S110,到位后,反馈信息给所述控制装置600。
S213所述控制装置600发出“车侧L-J1检测”指令给所述巡检机器人M5(2),所述巡检机器人M5(2)沿着“对所述待检测车辆进行P114—>P115”方向走行,进行车侧L-J1项目检测。
S214所述控制装置600发出“对所述待检测车辆进行车侧L-J2检测”指令给所述巡检机器人M5(3),所述巡检机器人M5(3)沿着“P116—>P117”方向走行,进行车侧L-J2项目检测。
S215所述控制装置600发出“对所述待检测车辆进行车侧L-J3检测”指令给所述巡检机器人M5(4),所述巡检机器人M5(4)沿着“P118—>P119”方向走行,进行车侧L-J3项目检 测。
S216所述控制装置600发出“对所述待检测车辆进行车侧L-J4检测”指令给所述巡检机器人M5(1),所述巡检机器人M5(1)沿着“P121—>P122”方向走行,进行车侧L-J4项目检测。
S217所述控制装置600发出“对所述待检测车辆进行车侧L-J5检测”指令给所述巡检机器人M5(5),所述巡检机器人M5(5)沿着“P123—>P124”方向走行,进行车侧L-J5项目检测。
S218所述控制装置600发出“对所述待检测车辆进行车侧L-J6检测”指令给所述巡检机器人M5(6),所述巡检机器人M5(6)沿着“P125—>P126”方向走行,进行车侧L-J6项目检测。
S219同步骤S114到S115。
在一个实施例中,所述巡检机器人M5(1)和M5(2)通过所述对接装置440对接并在P122和P123位置进行协同作业的过程如下:
S301所述巡检机器人M5(1)到达检测点P123。
S302所述巡检机器人M5(2)到达检测点P122,并通过实时对接装置440与M5(1)实现机械连接。
S303所述巡检机器人M5(1)和M5(2)按工艺要求,相对位置保持静止状态下,协同配合作业。
S304所述巡检机器人M5(1)和M5(2)作业完成后,所述对接装置440断开连接。
在一个实施例中,所述巡检辅助装置M6(1)对所述巡检机器人M5(1)进行辅助作业过程如下:
S401在上述步骤S108的检测作业过程中(假设停靠位置为P121),所述巡检机器人M5(1)控制所述机械臂420末端到预定检测位置。所述检测装置430开始检测工作。采集检测完成后,需要替换所述检测装置430,进行另一项检测。
S402所述调度装置20发出指令“位置P121替换机械臂末端检测装置”给巡检辅助装置M6(1)。所述巡检辅助装置M6(1)执行“P007—>P121”动作,从P007行走至P121位置。到位后,通过所述对接装置440,与所述巡检机器人M5(1)对接,实现机械连接。完成后,状态反馈到所述控制装置600。
S403所述控制装置600发出替换检测装置指令,所述巡检机器人M5(1)将所述机械臂420末端的所述检测装置与所述巡检辅助装置M6(1)的所述工具架920上的检测装置进行替换。完成后,所述巡检机器人M5(1)与所述巡检辅助装置M6(1)脱离,巡检辅助装置M6(1)返回。
在一个实施例中,所述巡检辅助装置M6(1)对所述巡检机器人M5(1)进行辅助应急救援,步骤如下:
S501在所述巡检机器人M5(1)巡检作业过程中,在位置P121遇到故障,无法正常工作。所述调度装置20获取到异常信息后,发出指令“位置P121救援”给到所述巡检机器人M6(1).
S502所述巡检机器人M6(1)走行到P121,并与发生故障的所述巡检机器人M5(1)进行对接,实现机械和电气连接。
S503通过所述巡检辅助装置M6(1)对所述巡检机器人M5(1)进行诊断,如果是软件故障,则对所述巡检机器人M5(1)进行软件修复和重启。然后判断是否仍然处于故障状态。
S504如果软件修复不成功,通过所述巡检辅助装置M6(1)对所述巡检机器人M5(1)进行电气连接检查,如果是电气故障,则尝试对所述巡检机器人M5(1)进行走行部驱动控制模式切换。使所述巡检机器人M5(1)能自行走行到维修区域。
S505如果所述巡检机器人M5(1)驱动控制模式切换不成功,则直接将所述巡检机器人M5(1)推送到维修区域。
S506所述巡检辅助装置M6(1)与所述巡检机器人M5(1)的所述对接装置440脱离,所述巡检辅助装置M6(1)返回。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种轨道交通机车车辆巡检位姿检测系统,其特征在于,包括:
    参考基准,沿待检测车辆停放的轨道延伸方向设置于所述轨道一侧;
    位姿检测装置,设置于轨道交通机车车辆巡检机器人,用于检测所述轨道交通机车车辆巡检机器人相对于所述参考基准的距离信息;
    处理装置,与所述位姿检测装置通信连接,用于根据所述轨道交通机车车辆巡检机器人相对于所述参考基准的距离信息计算所述轨道交通机车车辆巡检机器人相对于基准坐标的位姿偏移量。
  2. 根据权利要求1所述的轨道交通机车车辆巡检位姿检测系统,其特征在于,所述基准坐标包括第一基准面和第一方向;所述参考基准包括基准标尺,所述基准标尺沿所述轨道延伸方向贴合于所述轨道靠近所述轨道交通机车车辆巡检机器人的一侧;
    所述位姿检测装置包括第一距离检测装置,所述第一距离检测装置设置于所述轨道交通机车车辆巡检机器人靠近所述基准标尺的一侧的第一位置,与所述处理装置通信连接,所述第一距离检测装置用于检测所述第一位置相对于所述基准标尺沿所述第一方向的距离信息,得到第一检测距离;
    所述处理装置用于根据所述第一检测距离计算所述第一位置相对于所述第一基准面沿所述第一方向的位姿偏移量。
  3. 根据权利要求2所述的轨道交通机车车辆巡检位姿检测系统,其特征在于,所述基准坐标包括第二基准面和第二方向;所述参考基准包括基准斜面,所述基准斜面沿所述轨道延伸方向设置于所述基准标尺远离所述轨道交通机车车辆行走地面的一端,且所述基准斜面相对于所述基准标尺倾斜设置;
    所述位姿检测装置还包括第二距离检测装置,所述第二距离检测装置设置于所述轨道交通机车车辆巡检机器人的第二位置,所述第一位置与所述第二位置位于所述轨道交通机车车辆巡检机器人的同一个面,所述第二距离检测装置与所述处理装置通信连接,所述第二距离检测装置用于检测所述第二位置相对于所述基准斜面沿所述第一方向的距离信息,得到第二检测距离;
    所述处理装置用于根据所述第一检测距离和所述第二检测距离计算所述轨道交通机车车辆巡检机器人相对于所述第二基准面沿所述第二方向的位姿偏移量。
  4. 根据权利要求3所述的轨道交通机车车辆巡检位姿检测系统,其特征在于,所述第一位置和所述第二位置位于垂直于所述第二基准面的直线上。
  5. 根据权利要求2所述的轨道交通机车车辆巡检位姿检测系统,其特征在于,所述基准坐标包括第二方向,所述位姿检测装置还包括第三距离检测装置,所述第三距离检测装置设置于所述轨道交通机车车辆巡检机器人的第三位置,所述第三位置与所述第一位置位于所述轨道交通机车车辆巡检机器人的同一个面,且所述第一位置和所述第三位置分别设置于沿所述轨道延伸方向的不同位置,所述第三距离检测装置与所述处理装置通信连接,所述第三距离检测装置用于检测所述第三位置相对于所述基准标尺沿所述第一方向的距离信息,得到第三检测距离;
    所述处理装置用于根据所述第一检测距离和所述第三检测距离计算所述轨道交通机 车车辆巡检机器人绕所述第二方向的旋转角度。
  6. 根据权利要求1-5所述的轨道交通机车车辆巡检位姿检测系统,其特征在于,所述基准坐标包括第三基准面和第三方向;
    所述参考基准包括基准标尺,所述基准标尺包括刻度信息,所述位姿检测装置包括识别装置,所述识别装置用于识别所述基准标尺的刻度信息,获得所述轨道交通机车巡检机器人相对于所述第三基准面沿所述第三方向的位置信息。
  7. 根据权利要求6所述的轨道交通机车车辆巡检位姿检测系统,其特征在于,所述基准坐标还包括第一基准面和第一方向;
    所述基准标尺为二维码带;
    所述识别装置为图像采集装置,所述图像采集装置用于采集所述二维码带的信息,得到图像信息;
    所述位姿检测装置还包括第一处理机构,所述第一处理机构与所述图像采集装置通信连接,所述第一处理机构用于根据所述图像信息得到所述轨道交通机车车辆巡检机器人相对于所述第一基准面沿所述第一方向的位置信息,以及所述轨道交通机车车辆巡检机器人相对于所述第三基准面沿所述第三方向的位置信息。
  8. 根据权利要求6所述的轨道交通机车车辆巡检位姿检测系统,其特征在于,所述基准标尺为二维码带或条形码带;
    所述识别装置为读码器,所述读码器用于识别所述二维码带或所述条形码带的信息;
    所述位姿检测装置还包括第二处理机构,所述第二处理机构与所述读码器通信连接,所述第二处理机构用于根据所述二维码带或所述条形码带的信息得到所述轨道交通机车车辆巡检机器人相对于所述第三基准面沿所述第三方向的位置信息。
  9. 根据权利要求1所述的轨道交通机车车辆巡检系统位姿检测系统,其特征在于,所述位姿检测装置还包括第四距离检测装置,所述第四距离检测装置设置于所述轨道交通机车车辆巡检机器人顶部,与所述处理装置通信连接,所述第四距离检测装置用于检测所述待检测车辆底部相对于所述第四距离检测装置的距离信息,得到第四检测距离;
    所述处理装置用于根据所述第四检测距离计算所述待检测车辆的位姿偏移量。
  10. 一种轨道交通机车车辆巡检位姿检测方法,其特征在于,包括:
    获取待检测车辆相对于基准坐标的位姿偏移量,得到车辆位姿偏移量;
    获取轨道交通机车车辆巡检机器人相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量;
    根据所述车辆位姿偏移量和所述机器人位姿偏移量得到轨道交通机车车辆巡检工作位姿偏移量。
  11. 根据权利要求10所述的方法,其特征在于,所述基准坐标包括第一基准面和第一方向,所述获取轨道交通机车车辆巡检机器人相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量,包括:
    获取所述轨道交通机车车辆巡检机器人的第一位置相对于所述第一基准面沿所述第一方向的距离信息,得到第一距离信息;
    获取所述第一位置相对于所述第一基准面沿所述第一方向的记录信息,得到第一记录信息;
    根据所述第一距离信息和所述第一记录信息计算得到所述第一位置相对于所述第一 基准面沿所述第一方向的位姿偏移量。
  12. 根据权利要求11所述的方法,其特征在于,所述基准坐标包括第二基准面和第二方向,所述获取轨道交通机车车辆巡检机器人相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量,还包括:
    获取所述轨道交通机车车辆巡检机器人的第二位置相对于基准斜面沿所述第一方向的距离信息,得到第二距离信息,其中,所述基准斜面相对于所述第二基准面倾斜设置,所述第一位置与所述第二位置位于所述轨道交通机车车辆巡检机器人的同一个面,且所述第一位置和所述第二位置位于垂直于所述第二基准面的直线上;
    根据所述第一距离信息和所述第二距离信息得到所述轨道交通机车车辆巡检机器人相对于所述第二基准面沿所述第二方向的位姿偏移量。
  13. 根据权利要求11所述的方法,其特征在于,所述基准坐标包括第二方向,所述获取轨道交通机车车辆巡检机器人相对于所述基准坐标的位姿偏移量,得到机器人位姿偏移量,还包括:
    获取所述轨道交通机车车辆巡检机器人的第三位置相对于所述第一基准面沿所述第一方向的距离信息,得到第三距离信息,其中,所述第三位置与所述第一位置位于所述轨道交通机车车辆巡检机器人的同一个面,且所述第一位置和所述第三位置分别设置于沿所述轨道延伸方向的不同位置;
    根据所述第一距离信息和所述第三距离信息得到所述轨道交通机车车辆巡检机器人绕所述第二方向的旋转角度。
  14. 根据权利要求10所述的方法,其特征在于,所述基准坐标包括第二基准面、第三基准面、第二方向和第三方向,所述获取待检测车辆相对于基准坐标的位姿偏移量,得到车辆位姿偏移量,包括:
    获取所述待检测车辆车底沿所述第三方向的每个位置相对于所述第二基准面沿所述第二方向的距离信息,以及相对于所述第三基准面沿所述第三方向的距离信息,得到车底高度长度曲线信息;
    获取所述待检测车辆车底的标准高度长度曲线信息;
    根据所述车底高度长度曲线信息和所述标准高度长度曲线信息,得到所述待检测车辆相对于所述第二基准面沿所述第二方向的姿态偏移量,以及所述待检测车辆相对于所述第三基准面沿所述第三方向的姿态偏移量。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述车底高度长度曲线信息和所述标准高度长度曲线信息,得到所述待检测车辆相对于所述第二基准面沿第二方向的姿态偏移量,以及所述待检测车辆沿第三方向的姿态偏移量,包括:
    根据所述车底高度长度曲线信息,获得所述待检测车辆的轮对位置相对于所述第一基准面沿所述第一方向的距离信息,得到轮对位置信息;
    根据所述标准高度长度曲线信息,获得所述待检测车辆的轮对位置相对于所述第一基准面沿所述第一方向的标准距离信息,得到标准轮对位置信息;
    根据所述轮对位置信息和所述标准轮对位置信息,得到所述待检测车辆相对于所述第二基准面沿所述第二方向的姿态偏移量,以及所述待检测车辆相对于所述第三基准面沿所述第三方向的姿态偏移量。
PCT/CN2020/074157 2019-02-03 2020-02-02 轨道交通机车车辆巡检位姿检测系统及其方法 WO2020156542A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2112025.8A GB2595186B (en) 2019-02-03 2020-02-02 Inspection pose detection system and method for rail-transportation rolling stock
SG11202108466UA SG11202108466UA (en) 2019-02-03 2020-02-02 Inspection pose detection system and method for rail-transportation rolling stock

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910108764.5A CN109738213B (zh) 2019-02-03 2019-02-03 轨道交通机车车辆巡检位姿检测系统及其方法
CN201910108764.5 2019-02-03

Publications (1)

Publication Number Publication Date
WO2020156542A1 true WO2020156542A1 (zh) 2020-08-06

Family

ID=66367241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074157 WO2020156542A1 (zh) 2019-02-03 2020-02-02 轨道交通机车车辆巡检位姿检测系统及其方法

Country Status (4)

Country Link
CN (1) CN109738213B (zh)
GB (1) GB2595186B (zh)
SG (1) SG11202108466UA (zh)
WO (1) WO2020156542A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229655A (zh) * 2020-09-25 2021-01-15 中车长春轨道客车股份有限公司 一种轨道列车调试布局及轨道列车动态调试工艺
CN113386804A (zh) * 2021-06-25 2021-09-14 中铁第四勘察设计院集团有限公司 轨道交通基础设施动静一体化检测机器人及其作业方法
CN113722852A (zh) * 2021-08-26 2021-11-30 成都飞机工业(集团)有限责任公司 一种基于多交点孔约束的部件位姿计算方法
CN114112448A (zh) * 2021-11-24 2022-03-01 中车长春轨道客车股份有限公司 基于f轨的磁浮车辆动态限界的测试装置和测试方法
CN116720711A (zh) * 2023-07-26 2023-09-08 北京中科希望物联网络科技有限公司 一种货车运输智能监控系统以及监控方法
EP4385684A1 (en) * 2022-12-16 2024-06-19 Seiko Epson Corporation Robot inspection system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020125810A1 (zh) * 2018-12-21 2020-06-25 北京新联铁集团股份有限公司 轨道交通机车车辆运维系统
CN109738213B (zh) * 2019-02-03 2020-10-02 北京新联铁集团股份有限公司 轨道交通机车车辆巡检位姿检测系统及其方法
CN109795521B (zh) * 2019-02-03 2024-06-28 北京新联铁集团股份有限公司 轨道交通机车车辆巡检装置及系统
CN110181536A (zh) * 2019-06-28 2019-08-30 华中科技大学无锡研究院 用于高铁车体定位的系统
CN111845864B (zh) * 2020-06-12 2022-09-09 佛山中国空间技术研究院创新中心 一种轨道列车识别定位方法、系统、装置及存储介质
CN111855242A (zh) * 2020-06-12 2020-10-30 佛山中国空间技术研究院创新中心 一种轨道列车巡检控制方法、系统、装置及存储介质
CN111882694A (zh) * 2020-07-15 2020-11-03 中国工商银行股份有限公司 机房巡检方法、装置和机器人
CN111722633A (zh) * 2020-07-22 2020-09-29 上海金东唐科技有限公司 视觉引导取放料装置及系统
CN112860952B (zh) * 2020-12-17 2023-06-20 成都盛锴科技有限公司 巡检机器人定位检修部件的方法及系统
CN112792798B (zh) * 2020-12-29 2022-05-06 重庆电子工程职业学院 轨道机器人巡检定位装置、方法、设备及可读存储介质
CN112882046A (zh) * 2021-03-30 2021-06-01 哈尔滨市科佳通用机电股份有限公司 一种机械臂使用的多功能拍照装置
CN113436366B (zh) * 2021-06-25 2023-01-24 北京铁道工程机电技术研究所股份有限公司 一种轨道交通车辆底部和侧边同步协同巡检方法
CN114281081B (zh) * 2021-12-24 2023-10-24 杭州申昊科技股份有限公司 地铁车辆巡检机器人的导航系统和导航方法、机器人
CN115797587B (zh) * 2023-02-08 2023-04-07 西南交通大学 一种融合线扫描车底图像特征的巡检机器人定位建图方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11208471A (ja) * 1998-01-22 1999-08-03 Kn Lab Analysis:Kk 軌条検査測定装置
US20090284758A1 (en) * 2008-05-19 2009-11-19 Toyonaka Kenkyusho Co., Ltd. Displacement measuring method, displacement measuring apparatus and displacement measuring target
CN102536196A (zh) * 2011-12-29 2012-07-04 中国科学院自动化研究所 基于激光测距和加速度测量的井下姿态测量系统及方法
CN106043355A (zh) * 2016-06-28 2016-10-26 中国人民解放军国防科学技术大学 一种铁路检测车沉降和位姿的高精度摄像测量方法
CN108301766A (zh) * 2018-02-08 2018-07-20 北京科技大学 一种钻孔自动定位凿岩台车的双钻臂车体定位方法
CN109738213A (zh) * 2019-02-03 2019-05-10 北京新联铁集团股份有限公司 轨道交通机车车辆巡检位姿检测系统及其方法
CN109795521A (zh) * 2019-02-03 2019-05-24 北京新联铁集团股份有限公司 轨道交通机车车辆巡检装置及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006086021A2 (en) * 2004-10-25 2006-08-17 University Of Dayton Method and system to provide improved accuracies in multi-jointed robots through kinematic robot model parameters determination
CN101666716B (zh) * 2009-06-05 2010-12-15 中南大学 铁路机车车辆运行姿态测量方法
CN203595497U (zh) * 2013-12-04 2014-05-14 上海铁路局科学技术研究所 轨道交通车辆运动姿态的检测装置
CN106323294B (zh) * 2016-11-04 2023-06-09 新疆大学 变电站巡检机器人定位方法及定位装置
CN107024197A (zh) * 2017-05-05 2017-08-08 重庆市计量质量检测研究院 基于激光跟踪测量原理的机器人位姿准确度检测系统
CN107389686B (zh) * 2017-06-08 2020-03-31 深圳市智能机器人研究院 一种针对机车底部的检测机器人系统及其检测方法
CN108198216A (zh) * 2017-12-12 2018-06-22 深圳市神州云海智能科技有限公司 一种机器人及其基于标识物的位姿估计方法和装置
CN108195354A (zh) * 2017-12-21 2018-06-22 长沙长泰机器人有限公司 一种基于机器人的车辆定位方法和车辆定位系统
CN109059922B (zh) * 2018-06-29 2020-10-16 北京旷视机器人技术有限公司 移动机器人定位方法、装置和系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11208471A (ja) * 1998-01-22 1999-08-03 Kn Lab Analysis:Kk 軌条検査測定装置
US20090284758A1 (en) * 2008-05-19 2009-11-19 Toyonaka Kenkyusho Co., Ltd. Displacement measuring method, displacement measuring apparatus and displacement measuring target
CN102536196A (zh) * 2011-12-29 2012-07-04 中国科学院自动化研究所 基于激光测距和加速度测量的井下姿态测量系统及方法
CN106043355A (zh) * 2016-06-28 2016-10-26 中国人民解放军国防科学技术大学 一种铁路检测车沉降和位姿的高精度摄像测量方法
CN108301766A (zh) * 2018-02-08 2018-07-20 北京科技大学 一种钻孔自动定位凿岩台车的双钻臂车体定位方法
CN109738213A (zh) * 2019-02-03 2019-05-10 北京新联铁集团股份有限公司 轨道交通机车车辆巡检位姿检测系统及其方法
CN109795521A (zh) * 2019-02-03 2019-05-24 北京新联铁集团股份有限公司 轨道交通机车车辆巡检装置及系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229655A (zh) * 2020-09-25 2021-01-15 中车长春轨道客车股份有限公司 一种轨道列车调试布局及轨道列车动态调试工艺
CN112229655B (zh) * 2020-09-25 2022-09-02 中车长春轨道客车股份有限公司 一种轨道列车调试布局及轨道列车动态调试工艺
CN113386804A (zh) * 2021-06-25 2021-09-14 中铁第四勘察设计院集团有限公司 轨道交通基础设施动静一体化检测机器人及其作业方法
CN113386804B (zh) * 2021-06-25 2022-04-29 中铁第四勘察设计院集团有限公司 轨道交通基础设施动静一体化检测机器人及其作业方法
CN113722852A (zh) * 2021-08-26 2021-11-30 成都飞机工业(集团)有限责任公司 一种基于多交点孔约束的部件位姿计算方法
CN113722852B (zh) * 2021-08-26 2023-11-10 成都飞机工业(集团)有限责任公司 一种基于多交点孔约束的部件位姿计算方法
CN114112448A (zh) * 2021-11-24 2022-03-01 中车长春轨道客车股份有限公司 基于f轨的磁浮车辆动态限界的测试装置和测试方法
CN114112448B (zh) * 2021-11-24 2024-02-09 中车长春轨道客车股份有限公司 基于f轨的磁浮车辆动态限界的测试装置和测试方法
EP4385684A1 (en) * 2022-12-16 2024-06-19 Seiko Epson Corporation Robot inspection system
CN116720711A (zh) * 2023-07-26 2023-09-08 北京中科希望物联网络科技有限公司 一种货车运输智能监控系统以及监控方法
CN116720711B (zh) * 2023-07-26 2024-01-23 北京中科希望物联网络科技有限公司 一种货车运输智能监控系统以及监控方法

Also Published As

Publication number Publication date
CN109738213A (zh) 2019-05-10
GB202112025D0 (en) 2021-10-06
CN109738213B (zh) 2020-10-02
GB2595186A (en) 2021-11-17
GB2595186B (en) 2023-08-09
SG11202108466UA (en) 2021-09-29

Similar Documents

Publication Publication Date Title
WO2020156542A1 (zh) 轨道交通机车车辆巡检位姿检测系统及其方法
WO2020156543A1 (zh) 轨道交通机车车辆巡检装置及系统
CN210310341U (zh) 轨道交通机车车辆巡检机器人
JP6981736B2 (ja) 樹脂隆起部自動低減システム
CN112059363B (zh) 一种基于视觉测量的无人爬壁焊接机器人及其焊接方法
US20170132355A1 (en) Advanced automated process for the wing-to-body join of an aircraft with predictive surface scanning
CN209888849U (zh) 轨道交通机车车辆巡检的辅助装置
CA3071901C (en) Device and method for maintaining the capability for precise navigation of an automated guided vehicle
CN210162104U (zh) 轨道交通机车车辆巡检装置及系统
JP2013063474A (ja) ロボットシステム及び撮像方法
JP5954241B2 (ja) 金属板用自走式検査装置および検査方法
JP6051751B2 (ja) 金属板の位置および姿勢検出方法および装置、ならびに金属板の検査方法
CN108238460B (zh) 光缆自动装车系统和方法
WO2023178713A1 (zh) 预制构件拼装面智能扫描和误差自动标识系统及方法
CN113405472A (zh) 一种基于机器视觉的双块式轨枕外观质量检测系统及方法
TW202146186A (zh) 自主遍歷換胎機器人,自主換胎系統,及其方法
US20220194708A1 (en) Storage and picking system, mobile measured-value detection unit, and method for improved detection of measured values in the storage and picking system
CN115826576A (zh) 一种自装卸叉车机器人智能控制系统及其方法
CN113720592A (zh) 一种用于飞机机身筒段结构的无损检测自动化搭载平台
CN115717868B (zh) 一种实时在线的三维自动化扫描测量系统
CN116718128A (zh) 一种船用薄板大尺度变形量检测装置及其检测方法
Dąbrowska et al. Human safety in autonomous transport systems–review and case study
CN111351854A (zh) 智能空心车轴探伤机及系统
CN115575503A (zh) 一种大型构件焊接缺陷超声探测方法及装置
CN115655102A (zh) 一种搭载尺寸测量系统的自主机器人及工件测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 202112025

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200202

122 Ep: pct application non-entry in european phase

Ref document number: 20748046

Country of ref document: EP

Kind code of ref document: A1