WO2020156360A1 - 胆碱酯酶抑制剂多晶型及其应用 - Google Patents
胆碱酯酶抑制剂多晶型及其应用 Download PDFInfo
- Publication number
- WO2020156360A1 WO2020156360A1 PCT/CN2020/073389 CN2020073389W WO2020156360A1 WO 2020156360 A1 WO2020156360 A1 WO 2020156360A1 CN 2020073389 W CN2020073389 W CN 2020073389W WO 2020156360 A1 WO2020156360 A1 WO 2020156360A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crystal form
- ray powder
- powder diffraction
- diffraction pattern
- octahydroaminoacridine
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D219/00—Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
- C07D219/04—Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
- C07D219/08—Nitrogen atoms
- C07D219/10—Nitrogen atoms attached in position 9
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/473—Quinolines; Isoquinolines ortho- or peri-condensed with carbocyclic ring systems, e.g. acridines, phenanthridines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C55/00—Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
- C07C55/02—Dicarboxylic acids
- C07C55/10—Succinic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/13—Crystalline forms, e.g. polymorphs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the invention relates to the technical field of biomedicine, in particular to the polymorph of cholinesterase inhibitor and its application, and in particular to the polymorph of succinyl octahydroacridine and its application.
- Drug molecules usually have a variety of arrangements, and different arrangements constitute different crystal forms, that is, the phenomenon of polymorphism of the drug, which is generally manifested as the existence of the drug material in the solid state.
- a drug can have multiple crystal forms, and different crystal forms of the same drug may have different dissolution and absorption in the body, which will naturally affect the dissolution and release of its preparations, thereby affecting clinical efficacy and safety.
- the problem of the crystal form of a drug will directly affect the quality and efficacy of the drug.
- the study of the polymorphic form and its properties of a drug has many meanings and values.
- the crystal stability of the drug can be ensured during the preparation and storage process; the choice of pharmaceutical superior crystal to prepare the drug can improve the dissolution rate and bioavailability of the drug, improve the therapeutic effect of the drug, and may also reduce Small toxicity; determining the preparation process according to the characteristics of the crystal form, improving the tableting performance of the drug powder, etc., can effectively ensure the drug equivalence between batches of production; by selecting the crystal form that is reliable, stable and controllable in clinical treatment, you can To prepare high-efficiency, low-toxicity, safety, and high-quality oral solid preparations.
- Succinyl octahydroacridine chemical name 1,2,3,4,5,6,7,8-octahydroacridine-9-aminosuccinate, is a new generation of cholinesterase inhibitor, simultaneously inhibits Acetylcholinesterase and butyrylcholinesterase are dual cholinesterase inhibitors. Its molecular formula is C 17 H 24 N 2 O 4 and its molecular weight is 320.38.
- the main pharmacological effect of succinyl octahydroaminoacridine is to selectively inhibit the activity of acetylcholinesterase in the brain, correspondingly increase the content of acetylcholine between the protruding nerves in the brain, and reduce the main areas of memory production and information processing (hippocampus, cerebral cortex) (And the amygdala) is associated with the basal brain area.
- its pharmacological mechanism is to selectively block certain subtypes of potassium channels in the cell membrane and inhibit acetylcholinesterase. In addition, it can restore the excitement of the peripheral nervous system, stimulate muscle nerve conduction, stimulate the central nervous system, promote the contraction of smooth muscle organs, and change memory and learning capabilities. It has a good effect on the prevention and treatment of Alzheimer's disease, the prevention and treatment of cerebral hemorrhage and stroke sequelae, the prevention and treatment of young people's attention deficit syndrome, and the brain strengthening.
- Example 1 of Chinese patent application CN1523016A discloses the preparation of succinyl octahydroaminoacridine, but has not studied its crystal structure.
- the research purpose of this application is to seek a new crystal form of succinyl octahydroaminoacridine, improve its bioavailability, and improve its therapeutic effect. At the same time, it is hoped that it can provide more qualitative and quantitative information for the study of the efficacy of solid drugs.
- the present invention conducts polymorphic screening and research on the compound succinyl octahydroaminoacridine, identifies and evaluates the polymorphic forms found, and determines the crystal form with better physical and chemical properties for subsequent research and development.
- the purpose is to provide The crystalline form of amber octahydroaminoacridine with good stability and excellent therapeutic effect.
- the present invention provides a crystal form of amber octahydroaminoacridine, the crystal form being any one of the following crystal forms:
- the X-ray powder diffraction pattern has main characteristic diffraction peaks corresponding to the corresponding positions with 2 ⁇ values of 8.8° ⁇ 0.2°, 16.4° ⁇ 0.2°, and 23.2° ⁇ 0.2°.
- the X-ray powder diffraction pattern has a main characteristic diffraction peak corresponding to the corresponding positions of the 2 ⁇ value of 8.0° ⁇ 0.2°, 24.1° ⁇ 0.2°, and 21.7° ⁇ 0.2°.
- the X-ray powder diffraction pattern has main characteristic diffraction peaks corresponding to the corresponding positions with 2 ⁇ values of 21.3° ⁇ 0.2°, 7.1° ⁇ 0.2°, and 26.3° ⁇ 0.2°.
- crystal form A X-ray powder diffraction pattern at 2 ⁇ values of 17.0° ⁇ 0.2°, 17.8° ⁇ 0.2°, 23.8° ⁇ 0.2° correspond to the secondary characteristic diffraction peaks
- crystal form C X- The 2 ⁇ values of the X-ray powder diffraction pattern are 25.5° ⁇ 0.2°, 22.8° ⁇ 0.2°, and 17.0° ⁇ 0.2°.
- the corresponding positions correspond to the minor characteristic diffraction peaks
- crystal form F the X-ray powder diffraction pattern is 2 ⁇ values
- the corresponding positions of 24.2° ⁇ 0.2°, 8.3° ⁇ 0.2°, 14.2° ⁇ 0.2° correspond to secondary characteristic diffraction peaks.
- the X-ray powder diffraction pattern of the crystal form A corresponds to a second characteristic diffraction peak at the corresponding positions where the 2 ⁇ values are 12.1° ⁇ 0.2°, 8.2° ⁇ 0.2°, and 9.3° ⁇ 0.2°.
- crystal form A has an X-ray powder diffraction pattern substantially as shown in FIG. 1; crystal form C has an X-ray powder diffraction pattern substantially as shown in FIG. 2; and crystal form F has an X-ray powder diffraction pattern substantially as shown in FIG. X-ray powder diffraction pattern shown.
- the present invention provides a method for preparing the aforementioned crystal form of succinyl octahydroaminoacridine;
- Form A through anti-solvent addition, anti-anti-solvent addition, gas-solid diffusion, slow volatilization, slow cooling, room temperature suspension stirring, 50°C suspension stirring, 70°C suspension stirring, 50-5°C circulation stirring, gas-liquid diffusion, high polymerization It can be prepared by any of the methods of induced volatilization and high polymer induced stirring and grinding.
- Form C is prepared by any method of anti-solvent addition, anti-anti-solvent addition, slow cooling, room temperature suspension stirring, 50°C suspension stirring, 70°C suspension stirring, 50-5°C circulating stirring, and gas-liquid diffusion methods. .
- Form F is prepared by gas-solid diffusion or suspension and stirring at room temperature.
- the present invention provides a crystalline composition comprising any of the aforementioned crystal form A, the aforementioned crystal form C, and the aforementioned crystal form F One crystal form or multiple crystal forms.
- the crystal form A, the crystal form C, or the crystal form F in the crystalline composition accounts for more than 50%, preferably more than 80%, more preferably more than 90%, and most preferably more than 95% by weight of the crystalline composition.
- the present invention provides a pharmaceutical composition comprising an effective amount of the aforementioned crystal form A, or the aforementioned crystal form C, or the aforementioned Form F or the crystalline composition as described above.
- the pharmaceutical composition also includes a carrier or excipient generally accepted in the art for delivering the biologically active compound to an organism (such as a human).
- Excipients or carriers include flavoring agents, pharmaceutical grade dyes or pigments, solvents, co-solvents, buffer systems, surfactants, preservatives, sweeteners, viscosity agents, fillers, lubricants, glidants, and disintegrants , Adhesives and resins.
- the pharmaceutical composition of the present invention generally contains 0% to about 2% flavoring agent.
- the pharmaceutical composition of the present invention generally contains 0% to about 2% dye and/or pigment.
- the pharmaceutical composition of the present invention generally contains about 0.1% to about 99.9% solvent.
- the preferred solvent is water.
- Preferred co-solvents include ethanol, glycerin, propylene glycol, polyethylene glycol, and the like.
- the pharmaceutical composition of the present invention may contain 0% to about 50% co-solvent.
- the preferred buffer system comprises acetic acid, boric acid, carbonic acid, phosphoric acid, succinic acid, malic acid, tartaric acid, citric acid, acetic acid, benzoic acid, lactic acid, glyceric acid, gluconic acid, glutaric acid and glutamic acid and their sodium, Potassium and ammonium salts.
- Particularly preferred buffers are phosphoric acid, tartaric acid, citric acid and acetic acid and their salts.
- the pharmaceutical composition of the present invention generally contains 0% to about 5% buffer.
- Preferred surfactants include polyoxyethylene sorbitan fatty acid esters, polyoxyethylene monoalkyl ethers, sucrose monoesters and lanolin esters and ethers, alkyl sulfates and sodium, potassium, and ammonium salts of fatty acids.
- the pharmaceutical composition of the present invention generally contains 0% to about 2% surfactant.
- Preferred preservatives include phenol, alkyl esters of p-hydroxybenzoic acid, o-phenylphenol benzoic acid and its salts, boric acid and its salts, sorbic acid and its salts, chlorobutanol, benzyl alcohol, thimerosal, phenylmercuric acetate And phenylmercuric nitrate, nitrocresol mercury, benzalkonium chloride, cetylpyridinium, methyl paraben and propyl paraben.
- Particularly preferred preservatives are the salt of benzoic acid, cetylpyridinium, methyl paraben and propyl paraben.
- the pharmaceutical composition of the present invention generally contains 0% to about 2% preservative.
- Preferred sweeteners include sucrose, glucose, saccharin, sorbitol, mannitol and aspartame. Particularly preferred sweeteners are sucrose and saccharin.
- the pharmaceutical composition of the present invention generally contains 0% to about 5% sweetener.
- Preferred viscosity agents include methyl cellulose, sodium carboxymethyl cellulose, hydroxypropyl-methyl cellulose, hydroxypropyl cellulose, sodium alginate, carbomer, polyvinylpyrrolidone, gum arabic, guar Gum, xanthan gum and tragacanth gum.
- Particularly preferred viscosity agents are methyl cellulose, carbomer, xanthan gum, guar gum, polyvinylpyrrolidone, sodium carboxymethyl cellulose and aluminum magnesium silicate.
- the pharmaceutical composition of the present invention generally contains 0% to about 5% of a viscous agent.
- Preferred fillers include lactose, mannitol, sorbitol, tertiary calcium phosphate, secondary calcium phosphate, compressible sugar, starch, calcium sulfate, dextro, and microcrystalline cellulose.
- the pharmaceutical composition of the present invention generally contains 0% to about 90% filler.
- Preferred lubricants/glidants include magnesium stearate, stearic acid and talc.
- the pharmaceutical composition of the present invention generally contains 0% to 7%, preferably about 1% to about 5% lubricant/glidant.
- Preferred disintegrants include starch, sodium starch glycolate, polyvinyl polypyrrolidone and croscarmelose sodium and microcrystalline cellulose.
- the pharmaceutical composition of the present invention generally contains 0% to about 20%, preferably about 4% to about 15%, disintegrant.
- Preferred binders include gum arabic, tragacanth, hydroxypropyl cellulose, pregelatinized starch, gelatin, polyvinylpyrrolidone, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose , Sugar solutions (such as sucrose and sorbitol) and ethyl cellulose.
- the pharmaceutical composition of the present invention generally contains 0% to about 12%, preferably about 1% to about 10%, binder.
- the crystalline forms, crystalline compositions and pharmaceutical compositions described herein can be administered via any method that can deliver them to the site of action.
- Methods include (but are not limited to) delivery via the following routes: enteral routes (including oral, gastric or duodenal feeding tubes, rectal suppositories and rectal enemas), parenteral routes (injection or infusion, including intraarterial , Intracardiac, intradermal, intraduodenal, intramedullary, intramuscular, intraosseous, intraperitoneal, intrathecal, intravascular, intravenous, intravitreal, epidural and subcutaneous), inhalation, transdermal, transdermal Mucosal, sublingual, buccal and topical (including upper epidermis, dermis, enema, eye drops, ear drops, intranasal, vagina) administration, but the most suitable route may depend on, for example, the recipient’s disease and disease.
- crystalline forms, crystalline compositions and pharmaceutical compositions and methods of the present invention can be used for administration techniques.
- it can be through (for example) local infusion, local application (such as cream or ointment), injection, catheter, or implant (the implant is made of (for example) porous, non-porous , Or made of colloidal materials (including films, such as silicone rubber films or fibers), and locally administer the crystal forms, crystalline compositions and pharmaceutical compositions described herein to the area to be treated. It can also be administered by direct injection into the diseased tissue or organ.
- the pharmaceutical composition described herein may be, for example, in a form suitable for oral administration, such as lozenges, capsules, pills, powders, sustained-release preparations, solutions, suspensions; forms suitable for parenteral injection, such as sterile solutions , Suspension or emulsion; a form suitable for topical administration, such as ointment or cream; or a form suitable for rectal administration, such as suppositories.
- the pharmaceutical composition may be in a unit dosage form suitable for single administration of precise dosage.
- the content of the pharmaceutical composition administered in the present invention will firstly depend on the mammal to be treated.
- the daily dose will usually be determined by the prescribing physician, and the dose is generally based on the age, sex, diet, weight, general health and response of the individual patient, the severity of the patient’s symptoms, and The exact indication or condition for treatment, the severity of the indication or condition to be treated, the time of administration, the route of administration, the disposal of the composition, the excretion rate, the combination of drugs, and the judgment of the prescribing physician will vary.
- the route of administration may vary according to the condition and its severity.
- the pharmaceutical composition can be in unit dosage form.
- the preparation is subdivided into unit doses containing an appropriate amount of active ingredients, for example, an effective amount to achieve the desired purpose. Determining the appropriate dosage for a specific situation is within the technical scope of the relevant field. For convenience, if necessary, the total daily dose can be administered in batches during the day. The dosage and frequency will be adjusted according to the judgment of the attending physician (doctor) in consideration of these factors as described above. Therefore, the content of the pharmaceutical composition to be administered can vary greatly. It can be administered in an amount of about 0.001 mg/kg body weight/day to about 100 mg/kg body weight/day (administered in single or divided doses), or at least about 0.1 mg/kg body weight/day.
- the pharmaceutical compositions described herein can be administered as a monotherapy or in combination with another therapy or other therapies.
- the pharmaceutical compositions described herein and the pharmaceutical preparations used in other therapies can be administered simultaneously, sequentially or separately, depending on the nature of the disease, the patient's condition, and the actual choice of other pharmaceutical preparations to be administered.
- the pharmaceutical composition as described herein can be administered first, followed by other pharmaceutical formulations; or the other pharmaceutical formulations can be administered first, followed by the pharmaceutical composition as described herein.
- this alternate administration can be repeated.
- a skilled clinician can determine the order of administration during the treatment regimen and the number of repeated administrations of each drug.
- other pharmaceutical preparations may be administered first, and then the treatment may be continued with the administration of the pharmaceutical composition as described herein, when it is determined that it is advantageous, then other pharmaceutical preparations may be administered, and so on, until the treatment plan is completed. Therefore, based on experience and knowledge, physicians can change the medication regimens for treatment according to the needs of individual patients as the treatment progresses. The attending physician will consider the overall welfare of the patient and more specific signs such as relief of disease-related symptoms when judging whether the treatment at the administered dose is effective. Relief of disease-related symptoms (such as pain) and improvement of general health can also be used to help judge the effectiveness of treatment.
- the present invention provides the use of the aforementioned crystal form, crystalline composition or pharmaceutical composition of succinyl octahydroaminoacridine in the preparation of drugs for treating diseases caused by excessive activation of cholinesterase.
- the present invention provides the use of the aforementioned succinyl octahydroaminoacridine crystal form, crystalline composition or pharmaceutical composition to treat diseases caused by excessive activation of cholinesterase.
- diseases caused by cholinesterase overactivation include, but are not limited to, Alzheimer's disease, myasthenia gravis, muscle atrophy, sequelae of polio, cerebral palsy in children, traumatic sensorimotor disorder, and polyneuritis And spinal radiculitis, bloating and urinary retention, paroxysmal supraventricular tachycardia, rescue of non-depolarizing muscle relaxant poisoning, glaucoma, muscle relaxant antagonism, inflammation, kidney disease, obesity, fatty liver , Hyperthyroidism, schizophrenia, hemolytic anemia, megaloblastic anemia.
- the present invention provides the use of the aforementioned succinyl octahydroaminoacridine crystal form, crystalline composition or pharmaceutical composition in the preparation of drugs for treating diseases related to reduced choline function.
- the present invention provides the use of the aforementioned succinyl octahydroaminoacridine crystal form, crystalline composition or pharmaceutical composition to treat diseases related to decreased choline function.
- diseases related to decreased choline function include insomnia, vascular dementia, memory loss, attention disorders and other sleep disorders, and cognitive impairment diseases related to choline depletion.
- polymorph refers to different crystal forms of the same compound and other solid molecular forms, including pseudopolymorphs, such as hydrates of the same compound (for example, the presence of bound water in the crystal structure) and solvates (for example , Combined with non-aqueous solvents).
- pseudopolymorphs such as hydrates of the same compound (for example, the presence of bound water in the crystal structure) and solvates (for example , Combined with non-aqueous solvents).
- pseudopolymorphs such as hydrates of the same compound (for example, the presence of bound water in the crystal structure) and solvates (for example , Combined with non-aqueous solvents).
- solvates for example , Combined with non-aqueous solvents.
- Different crystalline polymorphs have different crystal structures due to different arrangements of molecules in the crystal lattice. This leads to different crystal symmetry and/or unit cell parameters, which directly affect its physical properties, such as the X-ray diffraction characteristics of the crystal or powder
- X-ray powder diffraction can be used to identify different polymorphs or solid forms containing more than one polymorph in a reproducible and reliable method (S. Byrn et al., Pharmaceutical Solids: A Strategic Approach to Regulatory Considerations, Pharmaceutical research, Vol.12, No.7, p.945-954, 1995; JK Haleblian and W. McCrone, Pharmaceutical Applications of Polymorphism, Journal of Pharmaceutical Sciences, Vol.58, No.8, p.911- 929, 1969). Crystalline polymorphs, especially those polymorphs involved in the development of suitable dosage forms, are very important to the pharmaceutical industry. If the polymorph cannot remain unchanged during the clinical or stability study, the exact dosage form used or studied may not be comparable between batches.
- Certain polymorphs may have enhanced thermodynamic stability or can be more conveniently prepared in high purity in large quantities and thus are more suitable for inclusion in pharmaceutical formulations. Certain polymorphs may exhibit other advantageous physical properties due to different lattice energies, such as less moisture absorption, increased solubility, and increased dissolution rate.
- pharmaceutical composition refers to a mixture of one or more of the crystalline forms or crystalline compositions described herein and other chemical components, such as physiologically/pharmaceutically acceptable carriers or excipients.
- the purpose of the pharmaceutical composition is to facilitate the administration of the crystal form to the organism.
- Effective amount means a certain amount of an agent that can significantly inhibit the proliferation and/or dedifferentiation of eukaryotic cells (e.g., mammalian, insect, plant, or fungal cells), and is useful for the designated use (e.g., specific Therapeutic treatment) is effective.
- eukaryotic cells e.g., mammalian, insect, plant, or fungal cells
- 2 ⁇ value refers to a peak position based on an experimental setting of an X-ray diffraction experiment, and is a commonly used unit of abscissa in diffraction patterns.
- the experimental setup requires that if the reflection is diffracted when the incident beam forms an angle ⁇ with a specific lattice plane, the reflected beam is recorded at an angle of 2 ⁇ .
- X-ray powder diffraction pattern refers to the diffraction pattern observed experimentally or the parameters derived therefrom.
- the X-ray powder diffraction pattern is characterized by the peak position (abscissa) and peak intensity (ordinate).
- the above technical scheme of the present invention has the following advantages: good physical and chemical stability, high solubility, and excellent therapeutic effect.
- Figure 1 shows the X-ray powder diffraction pattern of crystal form A
- Figure 2 shows the X-ray powder diffraction pattern of crystal form C
- Figure 3 shows the X-ray powder diffraction pattern of crystal form F
- Figure 4 shows the TGA diagram of Form A
- Figure 5 shows the DSC chart of Form A
- Figure 6 shows the TGA diagram of Form C
- Figure 7 shows the DSC chart of Form C
- Figure 8 shows the TGA diagram of Form F
- Figure 9 shows the DSC chart of Form F
- Figure 10 shows the 1 H NMR chart of Form A
- Figure 11 shows the 1 H NMR chart of Form C
- Figure 12 shows the XRPD overlay of Form C before and after heating
- Figure 13 shows the 1 H NMR chart of Form F
- Figure 14 shows the XRPD overlay of Form F before and after heating
- Figure 15 shows the XRPD overlay images before and after the stability test of Form A
- Figure 16 shows the DVS diagram of Form A
- Figure 17 shows the PLM diagram of Form A
- Figure 18 shows the effect of crystal form A on the strategy adopted by ⁇ -amyloid-induced dementia rats to reach the platform (peripheral type and random type);
- Figure 19 shows the effect of crystal form A on the strategy adopted to block the common carotid artery vascular dementia rats to reach the platform (peripheral and random);
- Figure 20 shows the X-ray powder diffraction pattern of Form K of the Comparative Example.
- the mixed polymer A polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl chloride, polyvinyl acetonitrile, hydroxypropyl methyl cellulose and methyl cellulose (mixed by equal mass);
- mixed polymer B poly Caprolactone, polyethylene glycol, polymethyl methacrylate, sodium alginate and hydroxyethyl cellulose (mixed of equal mass).
- the mixed polymer A polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl chloride, polyvinyl acetonitrile, hydroxypropyl methyl cellulose and methyl cellulose (mixed by equal mass);
- mixed polymer B poly Caprolactone, polyethylene glycol, polymethyl methacrylate, sodium alginate and hydroxyethyl cellulose (mixed of equal mass).
- Example 1 of Chinese Patent Application CN1523016A 1.01g (0.005mol) of acridine base was dissolved in methanol, and 0.65g (0.0055mol) of succinic acid in methanol was added to the resulting solution. After mixing uniformly, a small amount of ether was added to the resulting mixture, and the white precipitate formed was placed at 4°C for 20 minutes. After filtration, the precipitate was collected and washed 3 times with ether, and dried at 100°C to obtain a solid compound.
- the X-ray powder diffraction pattern of Form A corresponds to the main characteristic diffraction peak at 2 ⁇ values of 8.8° ⁇ 0.2°, 16.4° ⁇ 0.2°, 23.2° ⁇ 0.2°, and the 2 ⁇ value is 17.0° ⁇ 0.2°
- the corresponding positions of 17.8° ⁇ 0.2°, 23.8° ⁇ 0.2° correspond to secondary characteristic diffraction peaks, and the corresponding positions at 2 ⁇ values of 12.1° ⁇ 0.2°, 8.2° ⁇ 0.2°, 9.3° ⁇ 0.2° correspond again Characteristic diffraction peaks.
- the X-ray powder diffraction pattern of crystal form C has main characteristic diffraction peaks at 2 ⁇ values of 8.0° ⁇ 0.2°, 24.1° ⁇ 0.2°, 21.7° ⁇ 0.2°, and 2 ⁇ values of 25.5° ⁇ 0.2° , 22.8° ⁇ 0.2°, 17.0° ⁇ 0.2° correspond to the secondary characteristic diffraction peaks.
- the X-ray powder diffraction pattern of crystal form F has main characteristic diffraction peaks at 2 ⁇ values of 21.3° ⁇ 0.2°, 7.1° ⁇ 0.2°, 26.3° ⁇ 0.2°, and 2 ⁇ values of 24.2° ⁇ 0.2° , 8.3° ⁇ 0.2°, 14.2° ⁇ 0.2° correspond to the secondary characteristic diffraction peaks.
- the X-ray powder diffraction pattern of the crystal form K of the comparative example corresponds to the main characteristic diffraction peak at the corresponding position where the 2 ⁇ value is 8.69° ⁇ 0.2°, and the 2 ⁇ value is 17.39° ⁇ 0.2°, 10.39° ⁇ 0.2°, 21.51° ⁇
- the corresponding position of 0.2° corresponds to the secondary characteristic diffraction peak.
- TGA Thermogravimetric analysis
- DSC differential scanning calorimetry
- TGA is collected on TA Q500/5000 thermogravimetric analyzer
- DSC is collected on TA Q200/2000 differential scanning calorimeter.
- the collection parameters are shown in Table 14.
- thermogravimetric analysis result of crystal form A is shown in Fig. 4, and the differential scanning calorimetry result is shown in Fig. 5.
- the crystal form A has a sharp melting endothermic peak at 200.6°C (initial temperature), and the crystal form A has a weight loss of 0.5% when heated to 180°C.
- thermogravimetric analysis result of crystal form C is shown in FIG. 6, and the differential scanning calorimetry result is shown in FIG. 7.
- Form C has two endothermic peaks at 90.8°C and 202.1°C (initial temperature).
- the crystal form C lost 2.4% when heated to 115°C, and lost 8.2% between 115°C and 170°C.
- thermogravimetric analysis result of crystal form F is shown in FIG. 8, and the differential scanning calorimetry result is shown in FIG. 9.
- Form F has three endothermic peaks at 137.1°C, 142.1°C (peak temperature) and 201.7°C (initial temperature).
- Form F has a significant step weight loss (19.7%) when heated to 150°C.
- Steps The 24-hour equilibrium solubility of the crystal form A sample in water was tested at room temperature.
- the crystalline sample was mixed with water to form a suspension (the initial concentration was about 100 mg/mL), and the mixture was stirred at room temperature for 24 hours (1000 rpm). After centrifugation, the supernatant was filtered to determine the solubility, and the remaining solids were subjected to XRPD testing.
- the equilibrium solubility of crystal form A in H 2 O for 24 hours is 72.9 mg/mL.
- the DVS result of the crystal form A is shown in Fig. 16.
- the sample started to absorb water significantly and increased to 5.2% when the relative humidity was 90%.
- the crystal form A is a flaky crystal with a particle size of about 30-100 ⁇ m.
- amber octahydroaminoacridine crystal form A was observed.
- the results showed that amber octahydroaminoacridine crystal form A 0.8, 1.6, 3.2 mg/kg had no significant effect on the respiratory frequency, respiratory amplitude, arterial blood pressure, heart rate and electrocardiogram of normal anesthetized dogs.
- the LD50 of succinyl octahydroaminoacridine crystal form A was measured by intragastric administration in mice and rats by two kinds of animals, and the succinyl octahydroaminoacridine crystal form A was obtained by intragastric administration.
- the LD50 of the administered mice is 66.6 ⁇ 3.3mg/kg, which is equivalent to 499.5 times the clinical daily dosage (8mg/60kg person/day) according to kilogram body weight; the LD50 of rats administered by gavage is 109.9 ⁇ 9.1mg/kg , which is equivalent to 824.3 times of the clinical daily dosage (8mg/60kg person/day) converted by kilogram body weight.
- the female rats decreased significantly from the 20th to 27th weeks of administration.
- the control group was significantly different (p ⁇ 0.05), and 5 animals died. Both male and female rats recovered completely during the recovery period, and there was no significant difference compared with the control group. Although there was no significant difference in hematology, blood biochemistry and various organ coefficients compared with the control group, the liver function index ALT of two rats in the high-dose group was significantly increased for 3 months and 6 months. No obvious pathological changes of drug toxicity were found in the general and microscopic examination of various organs. After stopping the drug for 2 weeks, all laboratory tests and organ coefficients in each group were normal, and no obvious drug-damaging pathological changes were found under the naked eye and light microscope in the pathological examination of each organ in each group.
- the location coordinates of the hippocampus 3.5mm behind the bregma, 2.0mm lateral to the midline, and 2.7mm subdural.
- the operation method of the normal control group was the same, and the same volume of saline was injected. After the operation, the denture powder sealed the skull hole, sutured the skin, intramuscular injection of penicillin G 100,000 units per day for three days to fight infection, grouped on the third day after the operation, and started the administration.
- the normal control group and the model group were given 0.5ml/100g of distilled water by gavage, and the positive control group was given 1.75mg/kg of donepezil hydrochloride (equivalent to 3.85 times of the clinical daily medicine 5mg/70kg), amber octahydroaminoacridine crystal form A
- the small, medium, and high-dose groups were given 0.7, 1.4, and 2.8 mg/kg amber octahydroaminoacridine crystal form A by intragastric administration (equivalent to 0.96, 1.92, 3.85 times of the clinical daily drug 8mg/70kg). After 7 days of continuous administration, water maze test and platform jump test were performed, and the administration was continued during the test.
- the water maze was tested continuously for 7 days. In the first 6 days, at four different water entry points in the 1, 2, 3, and 4 quadrants, the time, run length, heading angle and average speed of the rats reaching the platform were measured. The strategy adopted is to remove the platform on the 7th day, and measure the number of times the rat crosses the platform within 2 minutes, the stay time in the platform area, the stay time in the platform quadrant, the percentage of the trip in the platform quadrant to the total trip, Average speed and heading angle.
- a platform jump test is performed, and the number of electric shocks or the number of errors received by each rat within 5 minutes is recorded as the academic performance. Retake the test after 24 hours. This is the memory retention test. The latency of the first jump off the platform and the total number of errors within 5 minutes are recorded.
- the brain was quickly taken for pathological examination to observe the pathological changes of hippocampus and cortex.
- the incubation period of rats in the model group to reach the platform from day 2 to day 6 was significantly prolonged (P ⁇ 0.05 or P ⁇ 0.01), and the journey to the platform from day 3 to day 6 was significantly prolonged (P ⁇ 0.05) ), the heading angle was significantly increased on the 2nd and 5th days (P ⁇ 0.05 or P ⁇ 0.01), the swimming speed was significantly reduced on the 1st, 3rd, and 5th days (P ⁇ 0.05), the rats on the 7th day
- the number of times of crossing the platform within 2min, the staying time in the platform area was significantly reduced (P ⁇ 0.05 or P ⁇ 0.01), the staying time of the rat in the platform quadrant, the percentage of the total travel distance in the platform quadrant, and the average speed And the direction angle has no obvious change, the strategy of finding the platform has changed from edge type, random type to trend type, linear type, and the speed is significantly slowed down (P ⁇ 0.05 or P ⁇ 0.01), the number of errors in platform jumps on the first and second days Significantly increased (P ⁇ 0.05), and the
- the incubation period of the rats in the water maze at the 2.8mg/kg dose group of amber octahydroacridine crystal form A was significantly shorter on the 2nd to the 6th day Shortened (P ⁇ 0.05 or P ⁇ 0.01), amber octahydroacridine crystal form A 0.7mg/kg dose group rat water maze on the first day to reach the plateau latency significantly shortened (P ⁇ 0.05), amber octahydroacridine
- the pyridine crystal form A 1.4mg/kg dose group reached the platform on the 3rd and 5th day, and the journey to the platform was significantly shortened (P ⁇ 0.05).
- the number of times and staying time on stage increased significantly P ⁇ 0.05 or P ⁇ 0.01).
- the succinyl octahydroamine acridine crystal form A 0.7, 1.4 The strategy of finding a platform in the 2.8mg/kg dose group changed from marginal, random to trending, linear and significantly faster (P ⁇ 0.05 or P ⁇ 0.01), the succinyl octahydroaminoacridine crystal form A 2.8mg/kg dose group had significantly fewer platform jump errors on day 1 and day 2 (P ⁇ 0.05), and the error latency on day 2 was significant Prolonged (P ⁇ 0.05), the incubation period of the water maze in the positive control group from the 1st day to the 6th day has a trend of shortening, but it is not statistically significant.
- the run length to the platform on the 4th day is significantly shortened (P ⁇ 0.05) ,
- the heading angle decreased significantly on the second day (P ⁇ 0.05), and the swimming speed from day 1 to day 6 did not change significantly.
- the rat’s stay in the platform quadrant within 2 minutes, the number of times that The staying time in the platform area and the percentage of the run length in the platform quadrant to the total run length increased significantly (P ⁇ 0.05), and the average speed and heading angle of the rats did not change significantly.
- Amber octahydroaminoacridine crystal form A high-dose group the cortical nerve cells are more numerous, evenly arranged, nuclear pyknosis, few deep-stained necrotic nerve cells, occasionally neurophilic phenomenon, hippocampal nerve cells are arranged neatly and clearly , The number of nerve cells did not decrease significantly, and necrotic nerve cells were occasionally seen.
- the high-dose amber octahydroaminoacridine crystal form A group can reduce the pathological damage of the rat brain cortex and hippocampus caused by ⁇ -amyloid. The results are shown in Table 15-19, Figure 18.
- Table 15 The effect of crystal form A and crystal form K on the time (s) to reach the plateau in rats with ⁇ -amyloid induced Alzheimer's disease (x ⁇ s)
- Table 17 The effect of crystal form A and crystal form K on the angle (°) of reaching the platform of ⁇ -amyloid-induced senile dementia rats (x ⁇ s)
- Table 18 The effect of crystal form A and crystal form K on the speed (cm/s) of ⁇ -amyloid-induced senile dementia rats (x ⁇ s)
- the normal control group and the model group were given 0.5ml/100g of distilled water by gavage, and the positive control group was given 1.75mg/kg of donepezil hydrochloride (equivalent to 3.85 times of the clinical daily medicine 5mg/70kg), amber octahydroaminoacridine crystal form A
- the small, medium, and high-dose groups were given 0.7, 1.4, and 2.8 mg/kg amber octahydroaminoacridine crystal form A by intragastric administration (equivalent to 0.96, 1.92, 3.85 times of the clinical daily drug 8mg/70kg). Water maze test and platform jump test were performed after continuous administration for seven days, and administration was continued during the test period.
- the amber octahydroaminoacridine crystal form A 1.4, 2.8 mg/kg dose group found the platform strategy from the edge type , Random type changed to trend type, linear type was significantly faster (P ⁇ 0.05 or P ⁇ 0.01), amber octahydroaminoacridine crystal form A 2.8mg/kg dose group had obvious error times of platform jumping on the 1st and 2nd day Decrease (P ⁇ 0.05), the error latency on the second day was significantly prolonged (P ⁇ 0.05), and the number of errors of platform jumping on the second day in the amber octahydroacridine crystal form A1.4mg/kg dose group was significantly reduced (P ⁇ 0.05)
- the incubation period to reach the platform on the 5th and 6th day of the water maze was significantly shortened (P ⁇ 0.05 or P ⁇ 0.01), and the run length to reach the platform on the second, third, and sixth day was significantly shortened (P ⁇ 0.05), the heading angle and swimming speed did not change significantly from day 1
- Succinate octahydroaminoacridine crystal form A 1.4mg/kg, 2.8mg/kg dose group can reduce the pathological changes of vascular dementia caused by blocking the common carotid artery, see Table 20-26, Figure 19.
- Table 20 The influence of crystal form A and crystal form K on the time to reach plateau (s) in rats with vascular dementia caused by blocking the common carotid artery (x ⁇ s)
- Table 21 The effect of crystal form A and crystal form K on the reach (cm) of the common carotid artery in rats with vascular dementia (x ⁇ s)
- Table 23 The effect of crystal form A and crystal form K on the plateau velocity (cm/s) of rats with vascular dementia caused by blocking the common carotid artery (x ⁇ s)
- Table 24 The influence of crystal form A and crystal form K on the strategy adopted by blocking the common carotid artery to reach the platform in dementia rats (peripheral and random type %)
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Neurology (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Psychiatry (AREA)
- Hospice & Palliative Care (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
胆碱酯酶抑制剂多晶型,具体公开了琥珀八氢氨吖啶多晶型、相应的结晶组合物和药物组合物及其应用。使用化合物琥珀八氢氨吖啶展开多晶型筛选和研究,并对发现的多晶型进行鉴定和评估,确定理化性质较优的晶型用于后续开发研究,获得了稳定性好,具有优异的治疗效果的晶型。
Description
本发明涉及生物医药技术领域,尤其涉及胆碱酯酶抑制剂多晶型及其应用,具体涉及琥珀八氢氨吖啶多晶型及其应用。
药物分子通常具有多种排列方式,不同的排列方式构成了不同的晶型,即药物的多晶型现象,其一般表现为药物原料在固体状态下的存在形式。一种药物可以有多种晶型,同一种药物的不同晶型,在体内的溶解和吸收可能不同,自然会影响其制剂的溶出和释放,进而影响临床疗效和安全性。
因此,药物晶型问题会直接关系到药物的质量和疗效,研究药物的多晶型及其性质,具有多方面的意义和价值。通过多晶型研究,可以保证药物在制备、贮存过程中的晶型稳定性;选择药用优势晶型制备药物,可以改善药物的溶出速度和生物利用度,提高药物的治疗效果,也可能减小毒性;根据晶型的特点确定制剂工艺,改善药物粉末的压片性能等,可有效保证生产的批间药物等效性;通过选择在临床治疗上效果可靠且稳定可控的晶型,可以制备高效、低毒、安全、优质的口服固体制剂。
琥珀八氢氨吖啶,化学名为1,2,3,4,5,6,7,8-八氢吖啶-9-氨基琥珀酸盐,属新一代胆碱酯酶抑制剂,同时抑制乙酰胆碱酯酶、丁酰胆碱酯酶,系双重胆碱酯酶抑制剂。其分子式为C
17H
24N
2O
4,分子量为320.38。2002年以来有十几个国家文献报道,双重胆碱酯酶抑制剂(利凡斯的明)较高选择性乙酰胆碱酯酶抑制剂(多奈哌齐)治疗老年性痴呆临床上显示出更好的治疗效果和前景,特别是对重度老年性痴呆患者,多奈哌齐治疗无效时,改用利凡斯的明产生明显的治疗效果。体外试 验表明琥珀八氢氨吖啶对乙、丁两种胆碱酯酶的抑制能力分别是利凡斯的明的500倍和2000倍。按理论推算琥珀八氢氨吖啶将有比利凡斯的明更好的临床治疗效果。
琥珀八氢氨吖啶的主要药理作用就是有选择地抑制脑中乙酰胆碱酯酶的活性,相应的增加脑内神经突出间乙酰胆碱的含量,将记忆产生和信息处理的主要区域(海马区、脑皮质和杏仁体)与基底部脑区相联系,是有效的乙酰胆碱酯酶抑制剂(Acetyl-chol-inesterase Inhibitors),能够较好地穿透血脑屏障,通过抑制乙酰胆碱酯酶在神经腱内浓缩乙酰胆碱并能保持较长的作用时间,它的药理作用机制在于对细胞膜的钾通道一定亚型有选择的封闭和对乙酰胆碱酯酶的抑制作用。此外,能恢复末梢神经系统的兴奋,刺激肌肉神经传导,刺激中枢神经系统,促进平滑肌器官收缩,改变记忆和学习能力。对预防和治疗老年痴呆症、预防和治疗脑出血及中风后遗症以及预防和治疗青少年注意力缺乏综合症、健脑益智具有较好疗效。
中国专利申请CN1523016A实施例1公开了琥珀八氢氨吖啶的制备,但是没有对其晶型结构进行研究。
本申请的研究目的是为了寻求琥珀八氢氨吖啶的新晶型,改善其生物利用度的问题,提高其治疗效果,同时希望能够为固体药物的疗效研究提供更多的定性定量信息。
发明内容
(一)要解决的技术问题
本发明对化合物琥珀八氢氨吖啶展开多晶型筛选和研究,并对发现的多晶型进行鉴定和评估,确定理化性质较优的晶型以供后续的研究及开发,目的是为了提供稳定性好,具有优异的治疗效果的琥珀八氢氨吖啶晶型。
(二)技术方案
为了解决上述技术问题,本发明提供了一种琥珀八氢氨吖啶晶型, 所述晶型为以下晶型中的任意一种:
晶型A,X-射线粉末衍射图谱在2θ值为8.8°±0.2°,16.4°±0.2°,23.2°±0.2°的相应位置对应有主要特征衍射峰。
晶型C,X-射线粉末衍射图谱在2θ值为8.0°±0.2°,24.1°±0.2°,21.7°±0.2°的相应位置对应有主要特征衍射峰。
晶型F,X-射线粉末衍射图谱在2θ值为21.3°±0.2°,7.1°±0.2°,26.3°±0.2°的相应位置对应有主要特征衍射峰。
进一步,晶型A,X-射线粉末衍射图谱在2θ值为17.0°±0.2°,17.8°±0.2°,23.8°±0.2°的相应位置对应有次要特征衍射峰;晶型C,X-射线粉末衍射图谱在2θ值为25.5°±0.2°,22.8°±0.2°,17.0°±0.2°的相应位置对应有次要特征衍射峰;晶型F,X-射线粉末衍射图谱在2θ值为24.2°±0.2°,8.3°±0.2°,14.2°±0.2°的相应位置对应有次要特征衍射峰。
更进一步,晶型A的X-射线粉末衍射图谱在2θ值为12.1°±0.2°,8.2°±0.2°,9.3°±0.2°的相应位置对应有再次特征衍射峰。
更进一步,晶型A具有基本上如图1所示的X-射线粉末衍射图;晶型C具有基本上如图2所示的X-射线粉末衍射图;晶型F具有基本上如图3所示的X-射线粉末衍射图。
根据本发明的另一个方面,本发明提供了前面所述的琥珀八氢氨吖啶晶型的制备方法;
晶型A通过反溶剂添加、反反溶剂添加、气固扩散、缓慢挥发、缓慢降温、室温悬浮搅拌、50℃悬浮搅拌、70℃悬浮搅拌、50-5℃循环搅拌、气液扩散、高聚物诱导挥发、高聚物诱导搅拌研磨方法中的任一种方法制备而成。
晶型C通过反溶剂添加、反反溶剂添加、缓慢降温、室温悬浮搅 拌、50℃悬浮搅拌、70℃悬浮搅拌、50-5℃循环搅拌、气液扩散方法中的任一种方法制备而成。
晶型F通过气固扩散或室温悬浮搅拌制备而成。
根据本发明的又一个方面,本发明提供了一种结晶组合物,所述结晶组合物包括前面所述的晶型A、前面所述的晶型C,前面所述的晶型F中的任一种晶型或多种晶型。
进一步,所述结晶组合物中晶型A、晶型C,或晶型F占结晶组合物重量的50%以上,优选80%以上,更优选90%以上,最优选95%以上。
根据本发明的又一个方面,本发明提供了一种药物组合物,所述药物组合物包含有效量的前面所述的晶型A、或者如前面所述的晶型C、或者如前面所述的晶型F、或者如前面所述的结晶组合物。
进一步,所述药物组合物还包括在本领域中通常接受的用于将生物活性化合物输送至有机体(例如人)的载体、或赋形剂。
赋形剂或者载体包含调味剂、药物级染料或者色素、溶剂、共溶剂、缓冲系统、表面活性剂、防腐剂、增甜剂、粘性剂、充填剂、润滑剂、助流剂、崩解剂、粘合剂和树脂。
可以使用常规调味剂,如Remington′s Pharmaceutical Sciences,18thEd.,Mack Publishing Co.,1288-1300(1990)中描述的那些,将该文献引入本文作为参考。本发明的药物组合物通常包含0%到约2%调味剂。
可以使用常规染料和/或色素,如Handbook of Pharmaceutical Excipients,by the American Pharmaceutical Association&thePharmaceutical Society of GreatBritain,81-90(1986)中描述的那些,将该文献引入本文作为参考。本发明的药物组合物通常包 含0%到约2%染料和/或色素。
本发明的药物组合物通常包含约0.1%到约99.9%溶剂。优选的溶剂是水。优选的共溶剂包含乙醇、甘油、丙二醇、聚乙二醇等等。本发明的药物组合物可以包含0%到约50%共溶剂。
优选的缓冲系统包含乙酸、硼酸、碳酸、磷酸、琥珀酸、苹果酸、酒石酸、柠檬酸、乙酸、苯甲酸、乳酸、甘油酸、葡糖酸、戊二酸和谷氨酸和它们的钠、钾和铵盐。特别优选的缓冲液是磷酸、酒石酸、柠檬酸和乙酸和其盐。本发明的药物组合物通常包含0%到约5%缓冲液。
优选的表面活性剂包含聚氧乙烯山梨糖醇酐脂肪酸酯、聚氧乙烯单烷基醚、蔗糖单酯和羊毛脂酯和醚、脂肪酸的烷基硫酸盐和钠、钾和铵盐。本发明的药物组合物通常包含0%到约2%表面活性剂。
优选的防腐剂包含苯酚、对羟基苯甲酸的烷基酯、邻苯基苯酚苯甲酸和其盐、硼酸和其盐、山梨酸和其盐、氯代丁醇、苄醇、硫柳汞、乙酸苯汞和硝酸苯汞、硝甲酚汞、苯扎氯铵、西氯吡铵、对羟基苯甲酸甲酯和对羟基苯甲酸丙酯。特别优选的防腐剂是苯甲酸的盐、西氯吡铵、对羟基苯甲酸甲酯和对羟基苯甲酸丙酯。本发明的药物组合物通常包含0%到约2%防腐剂。
优选的增甜剂包含蔗糖、葡萄糖、糖精、山梨糖醇、甘露糖醇和阿斯巴甜。特别优选的增甜剂是蔗糖和糖精。本发明的药物组合物通常包含0%到约5%增甜剂。
优选的粘性剂包含甲基纤维素、羧甲基纤维素钠、羟丙基-甲基纤维素、羟丙基纤维素、藻酸钠、卡波姆、聚乙烯吡咯酮、阿拉伯胶、瓜耳胶、黄原胶和西黄蓍胶。特别优选的粘性剂是甲基纤维素、卡波姆、黄原胶、瓜耳胶、聚乙烯吡咯酮、羧甲基纤维素钠和硅酸铝镁。本发明的药物组合物通常包含0%到约5%粘性剂。
优选的充填剂包含乳糖、甘露糖醇、山梨糖醇、三代磷酸钙、二代磷酸钙、可压缩的糖、淀粉、硫酸钙、右旋的(dextro)和微晶纤维素。本发明的药物组合物通常包含0%到约90%充填剂。
优选的润滑剂/助流剂包含硬脂酸镁、硬脂酸和滑石。本发明的药物组合物通常包含0%到7%,优选约1%到约5%润滑剂/助流剂。
优选的崩解剂包含淀粉、羟基乙酸淀粉钠、聚乙烯聚吡咯烷酮和交联甲羧纤维素(croscarmelose)钠和微晶纤维素。本发明的药物组合物通常包含0%到约20%,优选约4%到约15%崩解剂。
优选的粘合剂包含阿拉伯胶、西黄蓍胶、羟丙基纤维素、预胶凝淀粉、明胶、聚乙烯吡咯酮、羟丙基纤维素、羟丙基甲基纤维素、甲基纤维素、糖溶液(如蔗糖和山梨糖醇)和乙基纤维素。本发明的药物组合物通常包含0%到约12%,优选约1%到约10%粘合剂。
本文所述的晶型、结晶组合物及药物组合物可经由任何可递送其至作用部位的方法实现投药。方法包括(但不限于)经由以下途径递送:肠內途径(包括口腔、胃或十二指肠喂食管、直肠栓剂及直肠灌肠剂),非经肠途径(注射或输注,其包括动脉內、心內、皮內、十二指肠內、髓內、肌肉內、骨內、腹腔內、鞘內、血管內、静脉內、玻璃体內、硬膜外及皮下),吸入、透皮、透粘膜、舌下、经颊及局部(包括上表皮、真皮、灌肠剂、滴眼剂、滴耳剂、鼻內、阴道)投药,然而最适宜的途径可取決于(例如)接受者的病症及疾病。本领域技术人员将熟悉本发明晶型、结晶组合物及药物组合物及方法可使用的投药技术。仅举例而言,可经由(例如)手术过程中的局部输注、局部施用(如乳膏或軟膏)、注射、导管、或植入物(该植入物是由(例如)多孔、无孔、或胶状材料(包括薄膜,如硅橡胶薄膜或纤维)制成),将本文所述的晶型、结晶组合物及药物组合物局部投与至需要治疗的区域。也可经由在患病组织或器官的部位直接注射进行投药。
本文所述的药物组合物可呈(例如)适于口服的形式,如锭剂、胶囊、丸剂、粉剂、缓释制剂、溶液、悬浮液;适于非经肠注射的形式,如无菌溶液、悬浮液或乳液;适于局部投药的形式,如软膏或乳膏;或适于直肠给药的形式,如栓剂。该药物组合物可呈适于精确剂量的单次投与的单位剂型。
本发明所投与的药物组合物之含量首先将取决于待治疗的哺乳动物。在将药物组合物投与人类个体的情况下,日剂量通常将由处方医师决定,且该剂量一般根据个別患者的年龄、性別、饮食、体重、总体健康及反应、该患者症状的严重度、待治疗的确切适应征或病症、待治疗的适应征或病症的严重度、投药时间、投药途径、该组合物的处置、排泄率、药物组合、及处方医师的判断而变化。此外,投药途径可根据病症及其严重度而变化。该药物组合物可呈单位剂型。在此剂型中,该制剂是再分为含有适当量的活性组分的单位剂量,例如,达到所欲目的的有效量。确定针对特定情况的适当剂量是在相关领域的技术范围內。为了方便起见,如果需要的话,则可在该天期间将总日剂量分批投与。将根据主治医师(医生)考虑如上所述的此等因素的判断,调整投药量及频率。因此,待投与的药物组合物之含量可大幅变化。可以约0.001mg/kg体重/天至约100mg/kg体重/天(以单次或分次剂量投与),或至少约0.1mg/kg体重/天的用量进行投药。
本文所述的药物组合物可作为单一疗法或与另一疗法或其他疗法组合投与。本文所述药物组合物和其他疗法中使用的药物制剂可同时投与、依次或分开投与,此取决于疾病的性质、患者的病症、及待投与的其他药物制剂之实际选择。例如,可先投与如本文所述的药物组合物,接着投与其他药物制剂;或可先投与其他药物制剂,接着投与如本文所述的药物组合物。在单一治疗方案期间,可重复此交替式投药。在评估经治疗的疾病及该患者的病症之后,熟练的临床医师即可确定治疗方案期间的投药顺序、及各药物的重复投与次数。例如,可 先投与其他药物制剂,且随后以投与如本文所述的药物组合物继续治疗,在确定有利时,接着投与其他药物制剂,依此类推,直至完成该治疗方案。因此,根据经验及知识,医师可根据个別患者的需要,随着治疗的进行,改变针对治疗的各投药方案。主治医师在判断所投与的剂量下之治疗是否有效时,将考虑该患者的总体福利,及更明确的征兆,如疾病相关症状的缓解。与疾病相关的症状(如疼痛)的缓解及总体健康状況的改善也可用于帮助判断治疗的有效性。
根据本发明的又一个方面,本发明提供了前面所述的琥珀八氢氨吖啶晶型、结晶组合物或药物组合物在制备治疗胆碱酯酶过度激活导致的疾病的药物中的应用。
根据本发明的又一个方面,本发明提供了前面所述的琥珀八氢氨吖啶晶型、结晶组合物或药物组合物治疗胆碱酯酶过度激活导致的疾病的应用。
进一步,胆碱酯酶过激活导致的疾病包括但不限于,阿尔茨海默病、重症肌无力、肌肉萎缩、脊髓灰白质炎后遗症、儿童脑型麻痹、外伤性感觉运动障碍、多发性神经炎及脊神经根炎、腹气胀和尿潴留、阵发性室上性心动过速、非去极化型肌松药中毒的解救、青光眼、肌松药拮抗、炎症、肾脏疾病、肥胖、脂肪肝、甲状腺功能亢进症、精神分裂症、溶血性贫血、巨幼细胞性贫血。
根据本发明的又一个方面,本发明提供了前面所述的琥珀八氢氨吖啶晶型、结晶组合物或药物组合物在制备治疗胆碱功能减低有关疾病的药物中的应用。
根据本发明的又一个方面,本发明提供了前面所述的琥珀八氢氨吖啶晶型、结晶组合物或药物组合物治疗胆碱功能减低有关疾病的应用。
进一步,胆碱功能减低有关疾病包括失眠、血管性痴呆、记忆丧失、注意力障碍及其他睡眠障碍、与胆碱耗损相关的认知缺损疾病。
本文所用术语“多晶型”是指相同化合物的不同晶型以及其他固态分子形式,包括假多晶型,例如相同化合物的水合物(例如,在晶体结构中存在结合水)和溶剂化物(例如,结合非水溶剂)。不同的结晶多晶型物由于晶格中分子的不同排列方式而具有不同的晶体结构。这导致不同的晶体对称性和/或晶胞参数,直接影响其物理性质,例如晶体或粉末的X射线衍射特性。例如,不同的多晶型物通常会在不同的一系列角度下衍射并且得到不同的强度值。因此,X射线粉末衍射可被用于以可重复且可靠的方法识别不同的多晶型物或包含多于一种多晶型物的固体形式(S.Byrn等,Pharmaceutical Solids:A Strategic Approach to Regulatory Considerations,Pharmaceutical research,Vol.12,No.7,p.945-954,1995;J.K.Haleblian和W.McCrone,Pharmacetical Applications of Polymorphism,Journal ofPharmaceutical Sciences,Vol.58,No.8,p.911-929,1969)。结晶多晶型物特别是在合适剂型的开发中涉及的那些多晶型物对于制药业十分重要。如果在临床或稳定性研究过程中多晶型物不能保持不变,则所使用或研究的确切剂型的批量之间可能不具有可比性。当在临床研究或商业产品中使用化合物时,由于存在的杂质可能会产生不期望的毒性作用,因此还期望存在以高纯度制备具有选定多晶型物的化合物的方法。某些多晶型物可能具有增强的热力学稳定性或可以更方便地以高纯度大量制备,从而更适合于包含在药物配制剂中。某些多晶型物可能由于不同的晶格能而呈现出其他有利的物理性质,例如不易吸湿、溶解度增大和溶解速率提高。
本文术语“药物组合物”是指一种或多种本文所述的晶型或结晶组合物与其他化学组分例如生理上/药学上可接受的载体或赋形剂的混合物。药物组合物的目的在于便于对生物体给药晶型。
“有效量”意指药剂的一定量,该量能够显著抑制真核细胞(例如, 哺乳动物、昆虫、植物或真菌细胞)的增殖和/或防止其去分化,并且对于指定用途(例如特定的治疗处理)是有效的。
术语“2θ值”或“2θ”是指基于X射线衍射实验的实验设置的峰位置,并且是衍射图样中常用的横坐标单位。实验设置要求,如果当入射光束与特定晶格平面形成θ角时反射被衍射,则在2θ角度处纪录到反射光束。
术语“X射线粉末衍射图”是指实验观察到的衍射图或由其得到的参数。X射线粉末衍射图通过峰位置(横坐标)和峰强度(纵坐标)来表征。
本发明的上述技术方案具有如下优点:物理和化学稳定性好,溶解度高,治疗效果优异。
图1显示晶型A的X射线粉末衍射图;
图2显示晶型C的X射线粉末衍射图;
图3显示晶型F的X射线粉末衍射图;
图4显示晶型A的TGA图;
图5显示晶型A的DSC图;
图6显示晶型C的TGA图;
图7显示晶型C的DSC图;
图8显示晶型F的TGA图;
图9显示晶型F的DSC图;
图10显示晶型A的
1H NMR图;
图11显示晶型C的
1H NMR图;
图12显示晶型C加热前后的XRPD叠图;
图13显示晶型F的
1H NMR图;
图14显示晶型F加热前后的XRPD叠图;
图15显示晶型A稳定性测试前后的XRPD叠图;
图16显示晶型A的DVS图;
图17显示晶型A的PLM图;
图18显示晶型A对β-淀粉样蛋白致痴呆大鼠到达平台采取策略的影响(周边型及随机型);
图19显示晶型A对阻断颈总动脉血管性痴呆大鼠到达平台采取策略的影响(周边性和随机型);
图20显示对比例晶型K的X射线粉末衍射图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1琥珀八氢氨吖啶多晶型的制备
1、晶型A的制备
1)反溶剂添加试验
称取约20mg琥珀八氢氨吖啶(商品名:神尔洋,由长春华洋高科技有限公司提供)加至20mL的小瓶内,用0.2-2.0mL的良溶剂(见表 1)溶解后,向该澄清溶液中加入反溶剂(见表1),边滴加边搅拌(~1000转/分),搅拌3天析出固体析出,离心分离析出固体。表格中*:滴加10ml反溶剂后无固体析出,转移至5℃继续搅拌析出固体。
表1反溶剂添加试验
2)反反溶剂添加
称取约20mg琥珀八氢氨吖啶加至20mL的小瓶内,用0.4-2.0mL的良溶剂(见表2)溶解,将所得溶液逐滴滴加到有8mL反溶剂(见表2)的20mL小瓶内,边滴加边搅拌(~1000转/分)。若有固体析出则离心分离析出固体并进行XRPD测试。表中*:未析出固体,转移至5℃搅拌析出固体;#:未析出固体,转移至5℃搅拌仍澄清,转移至室温下挥发析出固体。
表2反反溶剂添加试验
3)气固扩散
称取约15mg每份的琥珀八氢氨吖啶于3mL小瓶中,另在20mL小瓶中加入约4mL溶剂(二氯甲烷、甲醇、乙腈、四氢呋喃、丙酮、 二甲基亚砜、乙酸乙酯、1,4-二氧六环、异丙醇、水(22.5%相对湿度)、水(43.2%相对湿度)、水(57.6%相对湿度)、或水(75.3%相对湿度)),将3mL小瓶敞口置于20mL小瓶中后,将20mL小瓶密封。室温下静置9天后收集固体。
4)缓慢挥发
称取约15mg琥珀八氢氨吖啶至3mL小瓶中,分别加入0.4-3.0mL甲醇、异丙醇、或者水/四氢呋喃(1:1),经震荡过滤后取其上清液,用封口膜封住装有澄清溶液的小瓶并在上面扎几个小孔,放置在室温下缓慢挥发。当溶剂完全挥干后,收集所得固体。
5)缓慢降温
称取约20mg每份的琥珀八氢氨吖啶于5mL小瓶中,加入1.0-3.0mL异丙醇、甲醇/乙酸异丙酯(1:4),在50℃下搅拌约2小时后过滤取上清液,将所得上清液放置在生化培养箱中,以0.1℃/分钟的降温速度从50℃降温至-20℃,收集析出的固体。
6)室温悬浮搅拌
称量约20mg琥珀八氢氨吖啶至HPLC小瓶中,加入0.3mL异丙醇、丙酮、乙酸异丙酯、甲基叔丁基醚、2-甲基四氢呋喃、乙腈、二氯甲烷、正庚烷、异丙苯、2-丁酮、甲醇/甲基异丁基酮(1:9)、无水乙醇/乙酸乙酯(1:4)、四氢呋喃/苯甲醚(1:1)、三氯甲烷/正庚烷(1:9)、二甲基亚砜/环己烷(1:9)、甲基叔丁基醚/2-丁酮(1:9)、乙腈/丙酮(1:1)、甲醇/甲苯(1:9)、异丙醇/2-甲基四氢呋喃(1:1)、丙酮/1,4-二氧六环(1:1)、三氯甲烷/间二甲苯(1:1)、正辛醇/1,4-二氧六环(1:1)、乙腈/水(aw~0.2,99:1)、乙腈/水(aw~0.4,98:2)、乙腈/水(aw~0.6,96:4)、或乙腈/水(aw~0.8,92:8),得到的浑浊液置于室温下磁力搅拌(~1000转/分)约3天后,离心收集固体。
7)50℃悬浮搅拌
称量约25mg每份的琥珀八氢氨吖啶至HPLC小瓶中,加入0.4mL异丙醇、甲基异丁基酮、1,4-二氧六环、三氯甲烷、甲苯、正辛醇、苯甲醚、间二甲苯、无水乙醇/乙腈(1:4)、丙酮/1,4-二氧六环(1:1)、2-丁酮/正庚烷(1:1)、甲苯/间二甲苯(1:1)、异丙醇/异丙苯(1:1)、水/丙酮(1:9)、乙酸异丁酯/正庚烷(1:1)、1,4-二氧六环/苯甲醚(1:1)、或正辛醇/乙酸异丙酯(1:1),得到的浑浊液置于50℃下磁力搅拌(~1000转/分)约3天后,离心收集固体。
8)70℃悬浮搅拌
称量约25mg每份的琥珀八氢氨吖啶至HPLC小瓶中,分别加入0.5mL异丙醇、2-甲基四氢呋喃、1,4-二氧六环、甲苯、环己烷、1,4-二氧六环/乙酸乙酯(1:1)、甲基异丁基酮/正庚烷(1:1)、乙腈/正辛醇(1:1)、异丙苯/甲苯(1:1)、苯甲醚/乙酸异丙酯(1:1)、环己烷/乙腈(1:1)、间二甲苯/2-甲基四氢呋喃(1:1)、或正庚烷/异丙醇(1:1),得到的浑浊液置于70℃下磁力搅拌(~1000转/分)约3天后,离心收集固体。
9)50-5℃循环搅拌
称量约20mg每份的琥珀八氢氨吖啶至HPLC小瓶中,分别加入0.4mL异丙醇、丙酮、甲基叔丁基醚、乙腈、正庚烷、异丙苯、甲基异丁基酮(1:1)、甲苯/苯甲醚(1:1)、正庚烷/乙腈(1:1)、或N,N-二甲基乙酰胺/甲基叔丁基醚(1:9),得到的悬浊液置于50℃下磁力搅拌2小时后以0.1℃/min的降温速率降到5℃,在5℃下平衡1小时后再以相同速率升温至50℃,如此循环3次后在5℃下搅拌,试验共约3天。离心收集固体。
10)气液扩散
称取约20mg每份的琥珀八氢氨吖啶溶于0.43-2.0mL良溶剂(见表3)中,过滤取得上清液转移至3mL小瓶,另取20mL的小瓶向其中加入约4mL的反溶剂(见表3),将装有清液的3mL小瓶敞口置于 20mL小瓶后,密封20mL的小瓶并于室温下静置。当观察到有固体析出时,则分离固体,若16天后无固体析出,则取出3mL小瓶置于室温挥发,收集得到的固体。
表3气液扩散试验
11)高聚物诱导挥发
称取约20mg每份的琥珀八氢氨吖啶溶于0.4-3.0mL表4中所列溶剂,过滤取得上清液转移至装有~1mg混合聚合物的3mL小瓶中,用封口膜封住装有澄清溶液的小瓶并在上面扎几个小孔,放置在室温下缓慢挥发。当溶剂完全挥干后,收集所得固体。其中,混合高聚物A:聚乙烯吡咯烷酮,聚乙烯醇,聚氯乙烯,聚乙腈乙烯酯,羟丙基甲基纤维素和甲基纤维素(等质量混合);混合高聚物B:聚己酸内酯,聚乙二醇,聚甲基丙烯酸甲酯,海藻酸钠和羟乙基纤维素(等质量混合)。
表4高聚物诱导(挥发)
12)高聚物诱导搅拌
称取约20mg每份的琥珀八氢氨吖啶至HPLC小瓶中,分别加入0.3mL表5中所列溶剂,室温下磁力搅拌(~1000转/分)约3天,收集 所得固体。其中,混合高聚物A:聚乙烯吡咯烷酮,聚乙烯醇,聚氯乙烯,聚乙腈乙烯酯,羟丙基甲基纤维素和甲基纤维素(等质量混合);混合高聚物B:聚己酸内酯,聚乙二醇,聚甲基丙烯酸甲酯,海藻酸钠和羟乙基纤维素(等质量混合)。
表5高聚物诱导(搅拌)
13)研磨
称取约20mg每份的琥珀八氢氨吖啶于研钵中,不滴加溶剂,或者分别滴加无水乙醇、甲苯、或甲酸乙酯研磨5分钟,收集固体。
2、晶型C的制备
1)反溶剂添加试验
称取约20mg琥珀八氢氨吖啶加至20mL的小瓶内,用0.2-2.0mL的良溶剂(见表6)溶解后,向该澄清溶液中加入反溶剂(见表6),边滴加边搅拌(~1000转/分),搅拌3天析出固体析出,离心分离析出固体。表格中*:滴加10ml反溶剂后无固体析出,转移至5℃继续搅拌析出固体。
表6反溶剂添加试验
良溶剂 | 反溶剂 | 晶型 |
N,N-二甲基乙 | 乙酸异丁酯 | 晶型C |
酰胺 | ||
水 | 乙腈 | 晶型C* |
2)反反溶剂添加
称取约20mg琥珀八氢氨吖啶加至20mL的小瓶内,用0.4-2.0mL的良溶剂(见表7)溶解,将所得溶液逐滴滴加到有8mL反溶剂(见表7)的20mL小瓶内,边滴加边搅拌(~1000转/分)。若有固体析出则离心分离析出固体并进行XRPD测试。表中*:未析出固体,转移至5℃搅拌析出固体。
表7反反溶剂添加试验
3)缓慢降温
称取约20mg每份的琥珀八氢氨吖啶于5mL小瓶中,加入1.0-3.0mL无水乙醇或无水乙醇/乙腈(1:1),在50℃下搅拌约2小时后过滤取上清液,将所得上清液放置在生化培养箱中,以0.1℃/分钟的降温速度从50℃降温至-20℃,收集析出的固体。
4)室温悬浮搅拌
称量约20mg每份的琥珀八氢氨吖啶至HPLC小瓶中,加入0.3mL无水乙醇/乙酸乙酯(1:4),得到的浑浊液置于室温下磁力搅拌(~1000转/分)约3天后,离心收集固体。
5)50℃悬浮搅拌
称量约25mg每份的琥珀八氢氨吖啶至HPLC小瓶中,加入0.4mL乙酸乙酯、1,4-二氧六环、乙酰丙酮、无水乙醇/乙腈(1:4)、丙酮/1,4-二氧六环(1:1)、甲基异丁基酮/乙酸乙酯(1:1)、或乙酰丙酮/正庚烷(1:1), 得到的浑浊液置于50℃下磁力搅拌(~1000转/分)约3天后,离心收集固体。
6)70℃悬浮搅拌
称量约25mg每份的琥珀八氢氨吖啶至HPLC小瓶中,加入0.5mL乙酰丙酮或者乙酸乙酯,得到的浑浊液置于70℃下磁力搅拌(~1000转/分)约3天后,离心收集固体。
7)50-5℃循环搅拌
称量约20mg每份的琥珀八氢氨吖啶至HPLC小瓶中,分别加入0.4mL甲酸乙酯、丙酮、乙酸乙酯/异丙苯(1:1)、或乙酰丙酮/乙酸异丙酯(1:1),得到的悬浊液置于50℃下磁力搅拌2小时后以0.1℃/min的降温速率降到5℃,在5℃下平衡1小时后再以相同速率升温至50℃,如此循环3次后在5℃下搅拌,试验共约3天。离心收集固体。
8)气液扩散
称取约20mg每份的琥珀八氢氨吖啶溶于0.43-2.0mL良溶剂(见表8)中,过滤取得上清液转移至3mL小瓶,另取20mL的小瓶向其中加入约4mL的反溶剂(见表8),将装有清液的3mL小瓶敞口置于20mL小瓶后,密封20mL的小瓶并于室温下静置。当观察到有固体析出时,则分离固体,若16天后无固体析出,则取出3mL小瓶置于室温挥发,收集得到的固体。
表8气液扩散试验
3、晶体F的制备
1)气固扩散
称取约15mg每份的琥珀八氢氨吖啶于3mL小瓶中,另在20mL小瓶中加入约4mL三氯甲烷,将3mL小瓶敞口置于20mL小瓶中后,将20mL小瓶密封。室温下静置9天后收集固体。
2)室温悬浮搅拌
称量约20mg每份的琥珀八氢氨吖啶至HPLC小瓶中,加入0.3mL三氯甲烷/正庚烷(1:9),得到的浑浊液置于室温下磁力搅拌(~1000转/分)约3天后,离心收集固体。
4、对比例晶型的制备
根据中国专利申请CN1523016A实施例1记载的方法进行制备,将1.01g(0.005mol)吖啶碱基溶解于甲醇中,并向所得溶液内加入0.65g(0.0055mol)琥珀酸的甲醇溶液。混合均匀后向所得混合物中加入少量乙醚,并将所形成的白色沉淀4℃下放置20分钟。过滤后收集沉淀物并用乙醚洗涤3次,于100℃下干燥后得到固体化合物。
实施例2琥珀八氢氨吖啶多晶型的表征鉴定
1、X射线粉末衍射(XRPD)检测
步骤:XRPD图在PANalytacal Empyrean X射线粉末衍射分析仪上采集,扫描参数如表9所示。
表9 XRPD测试参数
结果:
(1)晶型A的X射线粉末衍射结果分别如图1和表10所示,表10中的2θ值的允许误差范围±0.2°。
晶型A的X-射线粉末衍射图谱在2θ值为8.8°±0.2°,16.4°±0.2°,23.2°±0.2°的相应位置对应有主要特征衍射峰,在2θ值为17.0°±0.2°,17.8°±0.2°,23.8°±0.2°的相应位置对应有次要特征衍射峰,在2θ值为12.1°±0.2°,8.2°±0.2°,9.3°±0.2°的相应位置对应有再次特征衍射峰。
表10晶型A的XRPD衍射峰数据
(2)晶型C的X射线粉末衍射结果分别如图2和表11所示,表11中的2θ值的允许误差范围±0.2°。
晶型C的X-射线粉末衍射图谱在2θ值为8.0°±0.2°,24.1°±0.2°,21.7°±0.2°的相应位置对应有主要特征衍射峰,在2θ值为25.5°±0.2°,22.8°±0.2°,17.0°±0.2°的相应位置对应有次要特征衍射峰。
表11晶型C的X射线衍射峰数据
(3)晶型F的X射线粉末衍射结果如图3和表12所示,表12中的2θ值的允许误差范围±0.2°。
晶型F的X-射线粉末衍射图谱在2θ值为21.3°±0.2°,7.1°±0.2°,26.3°±0.2°的相应位置对应有主要特征衍射峰,在2θ值为24.2°±0.2°,8.3°±0.2°,14.2°±0.2°的相应位置对应有次要特征衍射峰。
表12晶型F的X射线衍射峰数据
(4)对比例晶型的X射线粉末衍射结果如图20和表13所示,表13中的2θ值的允许误差范围±0.2°,将对比例的该晶型命名为晶型K。
对比例晶型K的X-射线粉末衍射图谱在2θ值为8.69°±0.2°的相应位置对应有主要特征衍射峰,在2θ值为17.39°±0.2°,10.39°±0.2°,21.51°±0.2°的相应位置对应有次要特征衍射峰。
表13晶型K的X射线衍射峰数据
2、热重分析(TGA)和差示扫描量热(DSC)检测
步骤:TGA在TA Q500/5000热重分析仪上采集,DSC在TA Q200/2000差示扫描量热仪上采集,采集参数如表14所示。
表14 TGA和DSC测试参数
结果:
晶型A的热重分析结果如图4所示,差示扫描量热结果如图5所示。晶型A在200.6℃(起始温度)处有一个尖锐的熔化吸热峰,晶型A加热至180℃失重0.5%。
晶型C的热重分析结果如图6所示,差示扫描量热结果如图7所示。晶型C在90.8℃和202.1℃(起始温度)处有两个吸热峰。晶型C加热至115℃失重2.4%,在115℃至170℃间失重8.2%。
晶型F的热重分析结果如图8所示,差示扫描量热结果如图9所示。晶型F在137.1℃、142.1℃(峰值温度)和201.7℃(起始温度)处有三 个吸热峰,晶型F加热至150℃有一明显台阶失重(19.7%)。
3、液态核磁氢谱(
1H Solution NMR)检测
步骤:液态核磁氢谱在Bruker 400M核磁共振仪上采集,DMSO-d6作为溶剂。
结果:
(1)晶型A的
1H NMR如图10所示,样品中琥珀酸与琥珀八氢氨吖啶的摩尔比为1.0:1。根据较小的TGA失重以及单个DSC吸热峰,推测晶型A为无水晶型。
(2)晶型C的
1H NMR如图11所示,溶剂乙酸乙酯与琥珀八氢氨吖啶的摩尔比为0.4:1(9.8wt%),1,4-二氧六环与琥珀八氢氨吖啶的摩尔比为0.05:1(1.2wt%)。为了研究熔点前的吸热峰,将晶型C样品加热至150℃,XRPD结果(如图12所示)显示加热后样品转变为晶型A。根据以上结果推测,晶型C脱去溶剂后转变为无水晶型,表明晶型C样品为乙酸乙酯溶剂合物。
(3)晶型F的
1H NMR如图13所示,该样品中溶剂三氯甲烷与琥珀八氢氨吖啶的摩尔比为0.6:1(17.8wt%)。将晶型F样品分别加热至130℃和150℃并冷却至室温后测XRPD,结果如图14所示。晶型F样品加热至150℃后转变为晶型A(加热至130℃时在~21.1°处多一个衍射峰)。根据
1H NMR和加热试验结果推测,晶型F加热后脱去溶剂三氯甲烷转变为无水晶型A,表明晶型F为三氯甲烷溶剂合物。
实施例3琥珀八氢氨吖啶多晶型的稳定性研究
晶型A的稳定性研究:
(1)将晶型A在80℃条件下闭口放置24小时后进行物理和化学稳定性评估。
(2)将晶型A在25℃/60%相对湿度、40℃/75%相对湿度条件下敞口放置1周后进行物理和化学稳定性评估。
通过XRPD和HPLC测试样品的物理和化学稳定性。
结果:XRPD结果显示(图15)在80℃条件下、25℃/60%相对湿度、40℃/75%相对湿度条件下晶型A未发生改变;HPLC结果显示,晶型A的化学纯度在三种测试条件下均未发生变化。表明,晶型A具有较好的物理和化学稳定性。
实施例4琥珀八氢氨吖啶多晶型平衡溶解度研究
水中平衡溶解度测定
步骤:室温对晶型A样品在水中的24小时平衡溶解度进行了测试。试验中将晶型样品与水混合成悬浊液后(起始浓度约100mg/mL),室温下搅拌24小时(1000rpm),离心后将上清液过滤测溶解度,剩余固体进行XRPD测试。
结果:
晶型A在H
2O中24小时的平衡溶解度为72.9mg/mL。
实施例5琥珀八氢氨吖啶多晶型引湿性研究
为了评估晶型A在不同湿度条件下的稳定性,在25℃恒温条件下对晶型A样品进行了动态水分吸附(DVS)试验结果。
结果:
晶型A的DVS结果如图16所示,样品在90%相对湿度时开始显著吸水并增重至5.2%。
实施例6颗粒形貌表征
利用偏光显微镜(PLM)对晶型A样品进行表征,结果如图17所示。晶型A为片状晶体,粒径约30~100μm。
实施例7晶型A的药理毒理学研究
1、一般药理学研究
琥珀八氢氨吖啶晶型A 4、8、16mg/kg灌胃给药1次,对戊巴比妥钠阈下剂量动物入睡数无明显影响,提示琥珀八氢氨吖啶晶型A与戊巴比妥钠无协同或拮抗作用。对小鼠一般状态、自主活动及协调运动的影响,琥珀八氢氨吖啶晶型A 4、8、16mg/kg剂量组小鼠的一般状态无异常,5min内的运动次数及1min、3min内的转棒坠落率与正常对照组比较均无明显差异,给药前后自身比较也均无明显差异。提示琥珀八氢氨吖啶晶型A对小鼠的一般状态、自主活动及协调运动均无明显影响。
同时观察了琥珀八氢氨吖啶晶型A对正常麻醉犬一般药理学指标的影响。结果表明,琥珀八氢氨吖啶晶型A 0.8、1.6、3.2mg/kg对正常麻醉犬呼吸频率、呼吸幅度、动脉血压、心率和心电图均无明显影响。
2、毒理学研究
2.1急性毒性研究
根据化学药品新药研究的指导原则,通过两种动物对琥珀八氢氨吖啶晶型A进行小鼠和大鼠灌胃给药的LD50测定,求得琥珀八氢氨吖啶晶型A灌胃给药的小鼠LD50为66.6±3.3mg/kg,按公斤体重折算约相当临床日用量(8mg/60kg人/天)的499.5倍;大鼠灌胃给药的LD50为109.9±9.1mg/kg,按公斤体重折算约相当临床日用量(8mg/60kg人/天)的824.3倍。
2.2长期毒性研究
本试验进行了啮齿类动物大鼠灌胃给予琥珀八氢氨吖啶晶型A的长期毒性试验研究。试验分低剂量组(7.5mg/kg)、中剂量组(15mg/kg)、高剂量组(30mg/kg)及空白对照组(蒸馏水)。Wistar大鼠120只,每组动物30只,雌雄各半。给药途径为ig给药,每天1次,每周给药6天,试验周期为27周。各试验组约1/3动物观察2周恢复期变化。按化学药品的长期毒性试验要求观察了动物的一般状况、体重变化、血液细胞学及生化学指征、大体解剖及组织病理学检查。
结果表明,大鼠以琥珀八氢氨吖啶晶型A 7.5、15、30mg/kg(按体重折算分别为临床最大日用量8mg/60kg人/天的56.3、112.5、225倍)给大鼠连续灌胃27周,受试动物的一般状态、行为活动、精神状态、皮毛、尿便及摄食(水)量均正常。各给药组心电图PR间期、QRS间期、QT间期、T波及心率等指标与对照组比较无显著性差异。大剂量组雄性大鼠于给药第20~27周体重明显降低,与对照组比较差异显著(p<0.05或p<0.01),雌性大鼠于给药第20~27周体重明显降低,与对照组比较差异显著(p<0.05),并有5只动物死亡。恢复期雄性和雌性大鼠体重均完全恢复,与对照组比较未见明显差异。血液学、血液生化学检查及各脏器系数与对照组比较虽均无明显差别,但大剂量组给药3个月和6个月均有2只大鼠肝功能指标ALT明显升高。各脏器大体及镜下检查均未见明显药物毒性病理改变。停药2周后,各组各项化验检查及各脏器系数均正常,各组各脏器病理学检查在肉眼及光镜下均未见有明显药物损害性病理改变。
在本试验条件下,受试物30mg/kg可使体重明显降低,部分动物出现肝功能指标ALT异常,并有部分动物死亡,但未见肝脏出现明显药物损害性病理改变。停药2周后,动物出现的体重降低,肝功能指标ALT异常均恢复,未出现动物死亡。表明琥珀八氢氨吖啶晶型A长期给药的毒性靶器官可能是肝脏,但是可逆性的。无毒反应剂量为 15mg/kg。
实施例8晶型A的药效研究
1、对β-淀粉样蛋白致老年性痴呆的治疗作用
(1)动物
雄性Wistar大鼠100只,体重280~320g,由长春高新医学试验动物中心提供,合格证号:10-5113。
(2)试验方法
按参考文献[丛伟红,刘建勋.老年性痴呆动物模型研究进展,中国药理学通报,2003;19(5):497-501;沈玉先,杨军,魏伟,等.β-淀粉样多肽25-35片段诱导的大鼠学习记忆功能障碍,中国药理学通报,2001,17(1):26-19;林煜,陈俊抛,徐斌,等.大鼠海马注射β-淀粉样蛋白建立记忆障碍模型的研究,中华精神科杂志,2000,33(4):222-225]制作大鼠老年性痴呆模型。氯胺酮100mg/kg麻醉大鼠,将麻醉大鼠固定于立体定位仪上,调节固定平面使门齿比内耳连线中点低2mm,清洁头顶皮肤做正中竖切口,剥开皮下筋膜暴露顶骨,在两侧冠状缝后钻出小孔,取出碎骨屑,保持硬脑膜的完整。海马区定位坐标:前囟后3.5mm,中线外侧2.0mm,硬脑膜下2.7mm。每侧用微量注射器分别注入5ul(10ug)聚集肽的Aβ25-35,5min内注完,注射后留针5min,以免拔针时药物溢出。正常对照组手术方法相同,注射同体积的盐水。术后牙托粉封固颅骨孔,缝合皮肤,三日内每日肌注青霉素G10万单位抗感染,在术后第3天分组,开始给药。正常对照组、模型组灌胃给蒸馏水0.5ml/100g,阳性对照组灌胃给盐酸多奈哌齐1.75mg/kg(相当于临床日用药5mg/70kg的3.85倍),琥珀八氢氨吖啶晶型A小、中、大剂量组分别灌胃给琥珀八氢氨吖啶晶型A 0.7、1.4、2.8mg/kg(相当于临床日用药8mg/70kg的0.96、1.92、3.85倍)。 连续给药7天后进行水迷宫试验及跳台试验,试验期间继续给药。水迷宫连续试验7天,前6天,在1、2、3、4象限四个不同的入水点,测定大鼠到达平台的时间、游程、朝向角及平均速度,同时观察大鼠到达平台所采取的策略,第7天撤掉平台,测定大鼠在2min内穿越平台的次数,在平台区的逗留时间、在平台象限内的逗留时间、在平台区象限内的游程占总游程的百分比、平均速度及朝向角。水迷宫试验结束后,进行跳台试验,并记录每只鼠5min内受到电击的次数或叫错误次数,以此作为学习成绩。24小时后重新做测验,此即为记忆保持测验,记录第1次跳下平台的潜伏期和5min内的错误总数。跳台试验结束后快速取脑进行病理检查,观察海马、皮层的病理变化。
(3)试验结果
与正常对照组比,模型组大鼠第2天至第6天到达平台的潜伏期明显延长(P<0.05或P<0.01),第3天至第6天到达平台的游程明显延长(P<0.05),第2天、第5天朝向角明显增大(P<0.05或P<0.01),第1天、第3天、第5天游泳速度明显降低(P<0.05),第7天大鼠在2min内的穿越平台的次数,在平台区的逗留时间明显降低(P<0.05或P<0.01),大鼠在平台象限的逗留时间、平台区象限内的游程占总游程的百分比、平均速度及朝向角无明显变化,寻找平台的策略由边缘型、随机型转为趋向型、直线型的速度明显减慢(P<0.05或P<0.01),第1天、第2天跳台的错误次数明显增加(P<0.05),第2天的错误潜伏期明显缩短(P<0.05);与模型组比,琥珀八氢氨吖啶晶型A 1.4mg/kg剂量组大鼠水迷宫第1天至第6天达到平台的潜伏期明显缩短(P<0.05或P<0.01),琥珀八氢氨吖啶晶型A 2.8mg/kg剂量组大鼠水迷宫第2天至第6天达到平台的潜伏期明显缩短(P<0.05或P<0.01),琥珀八氢氨吖啶晶型A 0.7mg/kg剂量组大鼠水迷宫第1天达到平台的潜伏期明显缩短(P<0.05),琥珀八氢氨吖啶晶型A 1.4mg/kg剂量组第3天及第5天到达平台的游程明显缩短(P<0.05),琥珀八氢氨吖啶晶型A 2.8mg/kg 剂量组第5天及第6天到达平台的游程明显缩短(P<0.05),琥珀八氢氨吖啶晶型A 0.7、1.4mg/kg剂量组第2天朝向角明显缩小(P<0.05),琥珀八氢氨吖啶晶型A 2.8mg/kg剂量组第2天、第3天、第5天及第6天朝向角明显缩小(P<0.05或P<0.01),琥珀八氢氨吖啶晶型A 0.7、1.4、2.8mg/kg剂量组第1天游泳速度明显增快(P<0.05),琥珀八氢氨吖啶晶型A 0.7、1.4、2.8mg/kg剂量组第7天大鼠在2min内穿越平台的次数、台上逗留时间明显增加(P<0.05或P<0.01),琥珀八氢氨吖啶晶型A 1.4mg/kg剂量组平台象限内的逗留时间、平台区象限内的游程占总游程的百分比明显增加(P<0.05),琥珀八氢氨吖啶晶型A 0.7、1.4、2.8mg/kg剂量组平均速度及朝向角无明显变化,琥珀八氢氨吖啶晶型A 0.7、1.4、2.8mg/kg剂量组寻找平台的策略由边缘型、随机型转为趋向型、直线型明显增快(P<0.05或P<0.01),琥珀八氢氨吖啶晶型A 2.8mg/kg剂量组第1天、第2天跳台的错误次数明显减少(P<0.05),第2天的错误潜伏期有明显延长(P<0.05),阳性对照组大鼠水迷宫第1天至第6天达到平台的潜伏期有缩短的趋势,但无统计学意义,第4天达到平台的游程明显缩短(P<0.05),第2天朝向角明显变小(P<0.05),第1天至第6天的游泳速度无明显变化,第7天大鼠在2min内平台象限内的逗留时间、穿越平台的次数、在平台区的逗留时间及平台区象限内的游程占总游程的百分比明显升高(P<0.05)、大鼠平均速度、朝向角无明显变化,寻找平台的策略由边缘型、随机型转为趋向型、直线型明显增快(P<0.05或P<0.01),第1天、第2天跳台的错误次数明显减少(P<0.05),第2天的错误潜伏期有明显延长(P<0.05)。病理显示:琥珀八氢氨吖啶晶型A小及中剂量组:皮质神经细胞数目略有减少,排列不均匀,可见核固缩,深染的坏死神经细胞,嗜神经现象较多。海马神经细胞数目减少,嗜神经现象较多,与模型组比较,皮层、海马的病理变化无明显差异。琥珀八氢氨吖啶晶型A大剂量组:皮层神经细胞数多,排列均匀,核固缩,深染的坏死神经细胞较少,偶见嗜神经细胞现象,海马神经细胞排列整齐,层次清楚,神经细胞 数无明显减少,偶见坏死的神经细胞。琥珀八氢氨吖啶晶型A大剂量组可减轻β-淀粉样蛋白所致大鼠脑皮层及海马的病理损害,结果见表15-19、图18。
表15晶型A和晶型K对β-淀粉样蛋白致老年性痴呆大鼠到达平台时间(s)的影响(x±s)
与模型组比较:*P<0.05,**P<0.01
表16晶型A和晶型K对β-淀粉样蛋白致老年性痴呆大鼠到达平台游程(cm)的影响(x±s)
与模型组比较:*P<0.05,**P<0.01
表17晶型A和晶型K对β-淀粉样蛋白致老年性痴呆大鼠到达平台朝向角(°)的影响(x±s)
与模型组比较:*P<0.05,**P<0.01
表18晶型A和晶型K对β-淀粉样蛋白致老年性痴呆大鼠到达平台速度(cm/s)的影响(x±s)
与模型组比较:*P<0.05,**P<0.01
表19晶型A和晶型K对β-淀粉样蛋白致痴呆大鼠到达平台采取策略的影响(周边型与随机型%)
与模型组比较:*P<0.05,**P<0.01
2、对阻断颈总动脉致血管性痴呆的治疗作用
(1)动物
雄性Wistar大鼠100只,体重350~400g,由长春高新医学试验动物中心提供,合格证号:10-5113。
(2)试验方法
按参考文献[赵宪林,方秀斌,李东培.大鼠血管性痴呆模型的制作,中国医科大学学报,2002,31(3):166-168;王永炎,张伯礼,主编.血管性痴呆现代中医临床与研究,人民卫生出版社,2003年10月,第一版214]制作大鼠血管痴呆模型:水合氯醛0.4g/kg腹腔注射麻醉大鼠,分离、结扎双侧颈总动脉。饲养16周,在最后的7天分组,给药。正常对照组、模型组灌胃给蒸馏水0.5ml/100g,阳性对照组灌胃给盐酸多奈哌齐1.75mg/kg(相当于临床日用药5mg/70kg的3.85倍),琥珀八氢氨吖啶晶型A小、中、大剂量组分别灌胃给琥珀八氢氨吖啶晶型A 0.7、1.4、2.8mg/kg(相当于临床日用药8mg/70kg的0.96、1.92、3.85倍)。连续给药七天后进行水迷宫试验及跳台试验,试验期间继续给药。水迷宫试验连续7天,前6天,在1、2、3、4象限四个不同的入水点,测定大鼠到达平台的时间、游程、朝向角及平均速度,同时观察大鼠到达平台所采取的策略,第7天撤掉平台,测定大鼠在2min内穿越平台的次数,在平台区的逗留时间、在平台象限内的逗留时间、在平台区象限内的游程占总游程的百分比、平均速度及朝向角。水迷 宫试验结束后,进行跳台试验,记录每只鼠5min内受到电击的次数或叫错误次数,以此作为学习成绩。24小时后重新做测验,此即为记忆保持测验,记录第1次跳下平台的潜伏期和5min内的错误次数。跳台试验结束后快速取进行病理检查,观察海马、皮层的病理变化。
(3)试验结果
与正常对照组比,模型组大鼠第2天至第6天到达平台的潜伏期及游程明显延长(P<0.05或P<0.01),第6天朝向角明显增大(P<0.05),第1天至第6天的游泳速度无明显变化,第7天大鼠在2min内穿越平台的次数,在平台区的逗留时间、在平台象限的逗留时间及平台区象限内的游程占总游程的百分比均明显降低(P<0.05或P<0.01),平均速度及朝向角无明显变化,寻找平台的策略由边缘型、随机型转为趋向型、直线型的明显减慢(P<0.05或P<0.01),第1天、第2天跳台的错误次数明显增加(P<0.05),第2天的错误潜伏期有明显缩短(P<0.05);与模型组比,琥珀八氢氨吖啶晶型A 1.4mg/kg剂量组大鼠水迷宫第4天至第6天达到平台的潜伏期明显缩短(P<0.05或P<0.01),第4天到达平台的游程明显缩短(P<0.05),琥珀八氢氨吖啶晶型A 2.8mg/kg剂量组大鼠水迷宫第3天至第6天达到平台的潜伏期明显缩短(P<0.05或P<0.01),第3天到达平台的游程明显缩短(P<0.05),琥珀八氢氨吖啶晶型A 0.7、1.4、2.8mg/kg剂量组第1天至第6天朝向角及游泳速度无明显变化,琥珀八氢氨吖啶晶型A 1.4、2.8mg/kg剂量组第7天大鼠在2min内穿越平台的次数明显增加(P<0.05),琥珀八氢氨吖啶晶型A 0.7、1.4、2.8mg/kg剂量组平台象限内的逗留时间、平均速度、朝向角及平台区象限内的游程占总游程的百分比无明显变化,琥珀八氢氨吖啶晶型A 1.4、2.8mg/kg剂量组寻找平台的策略由边缘型、随机型转为趋向型、直线型明显增快(P<0.05或P<0.01),琥珀八氢氨吖啶晶型A 2.8mg/kg剂量组第1天、第2天跳台的错误次数明显减少(P<0.05),第2天的错误潜伏期明显延长(P<0.05),琥珀八氢氨吖啶晶型A1.4mg/kg剂量组第2天跳台的错误次数明显减少(P<0.05),阳性对照组大鼠水迷宫第5天及第6天达到平台的潜伏期明显缩短(P<0.05或 P<0.01),第2天、第3天及第6天达到平台的游程明显缩短(P<0.05),第1天至第6天朝向角及游泳速度无明显变化,第7天大鼠在2min内的平台象限内的逗留时间明显增加(P<0.05),穿越平台的次数、在平台区的逗留时间及平台区象限内的游程占总游程的百分比有升高趋势,但无统计学意义,平均速度、朝向角无明显变化,寻找平台的策略由边缘型、随机型转为趋向型、直线型明显增快(P<0.05或P<0.01),第1天、第2天跳台的错误次数明显减少(P<0.05),第2天的错误潜伏期明显延长(P<0.05)。病理显示:琥珀八氢氨吖啶晶型A 2.8mg/kg剂量组皮质神经细胞数无明显减少,核固缩、深染的坏死神经细胞及嗜神经细胞现象较模型组减少,未见软化灶及胶质小结。海马神经细胞数无明显减少,变性、坏死细胞比模型组少,可见嗜神经细胞现象。琥珀八氢氨吖啶晶型A 0.7mg/kg剂量组病理与模型组相似,琥珀八氢氨吖啶晶型A 1.4mg/kg组与2.8mg/kg剂量组皮层及海马神经细胞病理基本相同。琥珀八氢氨吖啶晶型A 1.4mg/kg、2.8mg/kg剂量组可减轻阻断颈总动脉所致血管性痴呆的病理性变化,见表20-26、图19。
表20晶型A和晶型K对阻断颈总动脉致血管性痴呆大鼠到达平台时间(s)的影响(x±s)
与模型组比较:*P<0.05,**P<0.01
表21晶型A和晶型K对阻断颈总动脉致血管性痴呆大鼠到达平台游程(cm)的影响(x±s)
与模型组比较:*P<0.05,**P<0.01
表22晶型A和晶型K对阻断颈总动脉致血管性痴呆大鼠到达平台朝 向角(°)的影响(x±s)
与模型组比较:*P<0.05
表23晶型A和晶型K对阻断颈总动脉致血管性痴呆大鼠到达平台速度(cm/s)的影响(x±s)
表24晶型A和晶型K对阻断颈总动脉致痴呆大鼠到达平台采取策略的影响(周边性和随机型%)
与模型组比较:*P<0.05,**P<0.01
表25晶型A和晶型K对阻断颈总动脉血管性痴呆大鼠第7天水迷宫的影响(x±s)
与模型组比较:*P<0.05,**P<0.01
表26晶型A和晶型K对阻断颈总动脉致大鼠血管性痴呆的防治作用(跳台法,n=10,x±s)
与模型组比较:*P<0.05,**P<0.05
通过上述动物实验的效果可以看出,晶型A相对于现有技术的对比例晶型K表现出更好的体内治疗效果。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (9)
- 一种琥珀八氢氨吖啶晶型,其特征在于,所述晶型为以下晶型中的任意一种:晶型A,X-射线粉末衍射图谱在2θ值为8.8°±0.2°,16.4°±0.2°,23.2°±0.2°的相应位置对应有主要特征衍射峰;晶型C,X-射线粉末衍射图谱在2θ值为8.0°±0.2°,24.1°±0.2°,21.7°±0.2°的相应位置对应有主要特征衍射峰;晶型F,X-射线粉末衍射图谱在2θ值为21.3°±0.2°,7.1°±0.2°,26.3°±0.2°的相应位置对应有主要特征衍射峰。
- 根据权利要求1所述的晶型,其特征在于,晶型A,X-射线粉末衍射图谱在2θ值为17.0°±0.2°,17.8°±0.2°,23.8°±0.2°的相应位置对应有次要特征衍射峰;晶型C,X-射线粉末衍射图谱在2θ值为25.5°±0.2°,22.8°±0.2°,17.0°±0.2°的相应位置对应有次要特征衍射峰;晶型F,X-射线粉末衍射图谱在2θ值为24.2°±0.2°,8.3°±0.2°,14.2°±0.2°的相应位置对应有次要特征衍射峰。
- 根据权利要求2所述的晶型,其特征在于,晶型A,X-射线粉末衍射图谱在2θ值为12.1°±0.2°,8.2°±0.2°,9.3°±0.2°的相应位置对应有再次特征衍射峰。
- 根据权利要求3所述的晶型,其特征在于,晶型A具有基本上如图1所示的X-射线粉末衍射图;晶型C具有基本上如图2所示的X-射线粉末衍射图;晶型F具有基本上如图3所示的X-射线粉末衍射图。
- 权利要求1-4中任一项所述的晶型的制备方法,其特征在于,晶型A通过反溶剂添加试验、反反溶剂添加试验、气固扩散、缓慢挥 发、缓慢降温、室温悬浮搅拌、50℃悬浮搅拌、70℃悬浮搅拌、50-5℃循环搅拌、气液扩散、高聚物诱导挥发、高聚物诱导搅拌研磨方法中的任一种方法制备而成;晶型C通过反溶剂添加试验、反反溶剂添加试验、缓慢降温、室温悬浮搅拌、50℃悬浮搅拌、70℃悬浮搅拌、50-5℃循环搅拌、气液扩散方法中的任一种方法制备而成;晶型F通过气固扩散或室温悬浮搅拌制备而成。
- 一种药物组合物,其特征在于,所述药物组合物包含有效量的权利要求1-4中任一项所述的晶型A、权利要求1-4中任一项所述的晶型C,或权利要求1-4中任一项所述的晶型F。
- 权利要求1-4中任一项所述的晶型A、权利要求1-4中任一项所述的晶型C,权利要求1-4中任一项所述的晶型F、或权利要求6所述的药物组合物在制备治疗胆碱酯酶过度激活导致的疾病或胆碱功能减低有关疾病的药物中的应用。
- 权利要求1-4中任一项所述的晶型A、权利要求1-4中任一项所述的晶型C,权利要求1-4中任一项所述的晶型F、或权利要求6所述的药物组合物治疗胆碱酯酶过度激活导致的疾病或胆碱功能减低有关疾病的应用。
- 根据权利要求7或8所述的应用,其特征在于,所述胆碱酯酶过度激活导致的疾病包括阿尔茨海默病、重症肌无力、肌肉萎缩、脊髓灰白质炎后遗症、儿童脑型麻痹、外伤性感觉运动障碍、多发性神经炎及脊神经根炎、腹气胀、尿潴留、阵发性室上性心动过速、非去极化型肌松药中毒的解救、青光眼、肌松药拮抗、炎症、肾脏疾病、肥胖、脂肪肝、甲状腺功能亢进症、精神分裂症、溶血性贫血、巨幼细胞性贫血;所述胆碱功能减低有关疾病包括失眠、血管性痴呆、记忆丧失、注意力障碍及其他睡眠障碍、与胆碱耗损相关的认知缺损疾 病。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021539458A JP7138799B2 (ja) | 2019-01-31 | 2020-01-21 | コリンエステラーゼ阻害剤結晶多形及びその使用 |
DK20748154.0T DK3912971T3 (da) | 2019-01-31 | 2020-01-21 | Cholinsteraseinhibitorpolymorf og anvendelse deraf |
EP20748154.0A EP3912971B1 (en) | 2019-01-31 | 2020-01-21 | Cholinesterase inhibitor polymorph and application thereof |
FIEP20748154.0T FI3912971T3 (fi) | 2019-01-31 | 2020-01-21 | Koliiniesteraasi-inhibiittorin polymorfi ja sen käyttö |
US17/424,699 US20220227712A1 (en) | 2019-01-31 | 2020-01-21 | Cholinesterase inhibitor polymorph and application thereof |
ES20748154T ES2954408T3 (es) | 2019-01-31 | 2020-01-21 | Inhibidor de colinesterasa polimorfo y aplicación de este |
CN202080005940.3A CN113166064B (zh) | 2019-01-31 | 2020-01-21 | 胆碱酯酶抑制剂多晶型及其应用 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910100045.9 | 2019-01-31 | ||
CN201910100045 | 2019-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020156360A1 true WO2020156360A1 (zh) | 2020-08-06 |
Family
ID=71841590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/073389 WO2020156360A1 (zh) | 2019-01-31 | 2020-01-21 | 胆碱酯酶抑制剂多晶型及其应用 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20220227712A1 (zh) |
EP (1) | EP3912971B1 (zh) |
JP (1) | JP7138799B2 (zh) |
CN (1) | CN113166064B (zh) |
DK (1) | DK3912971T3 (zh) |
ES (1) | ES2954408T3 (zh) |
FI (1) | FI3912971T3 (zh) |
WO (1) | WO2020156360A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002079166A1 (en) * | 2001-03-30 | 2002-10-10 | Council Of Scientific And Industrial Research | A process for the synthesis of an annulated pyridine base |
CN1523016A (zh) | 2003-02-18 | 2004-08-25 | 长春华洋高科技有限公司 | 吖啶衍生物及其应用 |
CN109651248A (zh) * | 2019-01-31 | 2019-04-19 | 长春华洋高科技有限公司 | 琥珀八氢氨吖啶新晶型及其制备方法和用途 |
CN109734663A (zh) * | 2019-01-31 | 2019-05-10 | 长春华洋高科技有限公司 | 吖啶衍生物的新晶型、制备方法及其应用 |
CN109796405A (zh) * | 2019-01-31 | 2019-05-24 | 长春华洋高科技有限公司 | 琥珀八氢氨吖啶多晶型及其制备方法 |
-
2020
- 2020-01-21 CN CN202080005940.3A patent/CN113166064B/zh active Active
- 2020-01-21 DK DK20748154.0T patent/DK3912971T3/da active
- 2020-01-21 ES ES20748154T patent/ES2954408T3/es active Active
- 2020-01-21 FI FIEP20748154.0T patent/FI3912971T3/fi active
- 2020-01-21 WO PCT/CN2020/073389 patent/WO2020156360A1/zh unknown
- 2020-01-21 EP EP20748154.0A patent/EP3912971B1/en active Active
- 2020-01-21 US US17/424,699 patent/US20220227712A1/en active Pending
- 2020-01-21 JP JP2021539458A patent/JP7138799B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002079166A1 (en) * | 2001-03-30 | 2002-10-10 | Council Of Scientific And Industrial Research | A process for the synthesis of an annulated pyridine base |
CN1523016A (zh) | 2003-02-18 | 2004-08-25 | 长春华洋高科技有限公司 | 吖啶衍生物及其应用 |
CN109651248A (zh) * | 2019-01-31 | 2019-04-19 | 长春华洋高科技有限公司 | 琥珀八氢氨吖啶新晶型及其制备方法和用途 |
CN109734663A (zh) * | 2019-01-31 | 2019-05-10 | 长春华洋高科技有限公司 | 吖啶衍生物的新晶型、制备方法及其应用 |
CN109796405A (zh) * | 2019-01-31 | 2019-05-24 | 长春华洋高科技有限公司 | 琥珀八氢氨吖啶多晶型及其制备方法 |
CN110683987A (zh) * | 2019-01-31 | 2020-01-14 | 长春华洋高科技有限公司 | 吖啶衍生物多晶型及其制备方法和应用 |
Non-Patent Citations (10)
Title |
---|
"Handbook of Pharmaceutical Excipients", 1986, AMERICAN PHARMACEUTICAL ASSOCIATION & THE PHARMACEUTICAL SOCIETY OF GREAT BRITAIN, pages: 81 - 90 |
"Remington's Pharmaceutical Sciences", 1990, MACK PUBLISHING CO., pages: 1288 - 1300 |
CONG WEI-HONGLIU JIAN-XUN: "Progress in the study of animal models of Alzheimer's disease", CHINESE PHARMACOLOGICAL BULLETIN, vol. 19, no. 5, 2003, pages 497 - 501 |
J. K. HALEBLIANW. MCCRONE: "Pharmaceutical Applications of Polymorphism", JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 58, no. 8, 1969, pages 911 - 929 |
LIN YUCHEN JUNPAOXU BIN ET AL.: "Study of rats with beta-amyloid injection into hippocampus to establish a memory impairment model", CHIN J PSYCHIATRY, vol. 33, no. 4, 2000, pages 222 - 225 |
S. BYRN ET AL., PHARMACEUTICAL SOLIDS: A STRATEGIC APPROACH TO REGULATORY CONSIDERATIONS, PHARMACEUTICAL RESEARCH, vol. 12, no. 7, 1995, pages 945 - 954 |
SHEN YU-XIANYANG JUNWEI WEI ET AL.: "Learning and memory dysfunction in rats induced by beta-amyloid peptide fragment 25-35", CHINESE PHARMACOLOGICAL BULLETIN, vol. 17, no. 1, 2001, pages 26 - 19 |
WANG YONG-YANZHANG BO-LI: "Modern Chinese Medicine Clinic and Research on Vascular Dementia", vol. 214, October 2003, PEOPLE'S MEDICAL PUBLISHING HOUSE, article "Editor-in-chief" |
XIA ZHAO, YAN LIANG, JUNYU XU, DONGMEI ZHANG, DEPU WANG, JINGKAI GU, YIMIN CUI: "A single-center, randomized, open-label, dose-escalation study to evaluate the pharmacokinetics of tacrine analogue octahydrogenacridine succinate tablets in healthy Chinese subjects", BIOLOGICAL & PHARMACEUTICAL BULLETIN, vol. 35, no. 9, 31 December 2012 (2012-12-31), pages 1502 - 1508, XP055724299, ISSN: 0918-6158, DOI: 10.1248/bpb.b1200242 * |
ZHAO XIAN-LINFANG XIU-BINLI DONG-PEI: "Establishment of Vascular Dementia Model in Rats", J CHIN MED UNIV, vol. 31, no. 3, 2002, pages 166 - 168 |
Also Published As
Publication number | Publication date |
---|---|
DK3912971T3 (da) | 2023-09-04 |
FI3912971T3 (fi) | 2023-08-21 |
US20220227712A1 (en) | 2022-07-21 |
JP2022508467A (ja) | 2022-01-19 |
EP3912971A4 (en) | 2022-02-23 |
EP3912971B1 (en) | 2023-05-31 |
JP7138799B2 (ja) | 2022-09-16 |
CN113166064A (zh) | 2021-07-23 |
EP3912971A1 (en) | 2021-11-24 |
ES2954408T3 (es) | 2023-11-22 |
CN113166064B (zh) | 2023-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EA023751B1 (ru) | Набор, композиция, продукт или лекарственное средство для лечения нарушения познавательной способности | |
CN106866733A (zh) | 左旋美普他酚前药及其制备方法和用途 | |
WO2020177292A1 (zh) | Rock抑制剂-二氯乙酸复盐及其制备方法和用途 | |
JPH0317046A (ja) | アリールオキシフエニルプロピルアミン、その製造方法及びその使用方法 | |
CN108699083A (zh) | 喹啉酮类似物及其盐的结晶形式 | |
WO2020156360A1 (zh) | 胆碱酯酶抑制剂多晶型及其应用 | |
KR101659596B1 (ko) | 부틸프탈라이드 유도체 및 그의 제조방법 및 그의 용도 | |
CN113559102B (zh) | 包括trh类似物和丙基辛酸的组合的组合物和丙基辛酸的药学上可接受的盐 | |
JP2022517396A (ja) | Egfr阻害剤の塩、結晶形及びその製造方法 | |
US8722701B2 (en) | 1,2,3,4,5 6,7,8-octohydro-9-phenylacetamidoacridine, the preparation method and medical use thereof | |
WO2020177291A1 (zh) | 法舒地尔复合盐及其制备方法和用途 | |
JP2012006918A (ja) | イソキノリンスルホニル誘導体を有効成分として含有する網脈絡膜変性疾患の予防または治療剤 | |
US20180117043A1 (en) | Use of src protein inhibitor in the manufacture of a medicament for the prophylaxis and/or treatment of alzheimer's disease | |
WO2020249120A9 (zh) | 氨基硫醇类化合物作为脑神经或心脏保护剂的用途 | |
CN113402444A (zh) | 一种咔唑类化合物及其在制备治疗脂肪肝及2型糖尿病等代谢相关疾病药物中的应用 | |
CN104478798B (zh) | N‑氨基烷基磺酰基‑3‑吡啶甲酰胺衍生物及其在制备治疗心脑血管病药物中的应用 | |
CN109988199B (zh) | 红景天苷衍生物及其用途 | |
CN115785094B (zh) | 苄基取代α-咔啉化合物或其药用盐、其药物组合物及其制备方法和用途 | |
CN106466313A (zh) | 一类磺酰胺基取代的酰胺类衍生物在制备用于治疗阿尔茨海默病的药物中的用途 | |
CN108658843A (zh) | 乙酰苄胺哌啶酰胺类衍生物及其作为脑神经保护剂的应用 | |
KR20240144990A (ko) | 시클로헥세논 화합물의 결정형 | |
CN116987091A (zh) | 用于治疗癫痫发作疾病的药物及其制备方法 | |
JPWO2003087091A1 (ja) | キノキサリンジオン誘導体無水物の新規結晶 | |
JPS63297325A (ja) | 骨粗鬆症治療剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20748154 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021539458 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020748154 Country of ref document: EP Effective date: 20210817 |