WO2020156316A1 - Iab网络、mac实体和适配实体的执行方法以及通信设备 - Google Patents

Iab网络、mac实体和适配实体的执行方法以及通信设备 Download PDF

Info

Publication number
WO2020156316A1
WO2020156316A1 PCT/CN2020/073182 CN2020073182W WO2020156316A1 WO 2020156316 A1 WO2020156316 A1 WO 2020156316A1 CN 2020073182 W CN2020073182 W CN 2020073182W WO 2020156316 A1 WO2020156316 A1 WO 2020156316A1
Authority
WO
WIPO (PCT)
Prior art keywords
bsr
logical channel
adaptation
entity
iab
Prior art date
Application number
PCT/CN2020/073182
Other languages
English (en)
French (fr)
Inventor
肖芳英
刘仁茂
Original Assignee
夏普株式会社
鸿颖创新有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 鸿颖创新有限公司 filed Critical 夏普株式会社
Publication of WO2020156316A1 publication Critical patent/WO2020156316A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to the field of wireless communication technology, and more specifically, the present disclosure relates to an execution method of an IAB network, a MAC entity and an adaptation entity, and a communication device.
  • a multi-hop IAB network based on the existing scheduling request (SR) and buffer status report (BSR) mechanisms, after receiving the uplink data, the intermediate IAB node sends a scheduling request and a buffer status report to the next hop to request uplink scheduling .
  • the mechanism of requesting uplink scheduling after the data arrives will increase the data transmission delay and cannot be applied to delay-sensitive services.
  • IAB-related research report TR38.874 an idea of requesting uplink resources based on expected arrival data is proposed, but no specific implementation is given.
  • the present disclosure is dedicated to solving how to reduce the scheduling delay in a multi-hop IAB network by requesting uplink resources based on expected arrival data.
  • the specific research content includes the operations required by the adaptation entity and/or the MAC entity.
  • the present invention provides an IAB network, a MAC entity and an adaptation entity execution method and a communication device, which can solve how to reduce multi-hop IAB by requesting uplink resources based on expected arrival data.
  • a method for executing a MAC entity which is executed by a MAC entity configured in an IAB node, and the method for executing the MAC entity includes: the MAC entity receives a BSR from a user equipment or from an IAB node And when receiving the BSR from the user equipment, the MAC entity indicates the BSR information to the upper layer, and when receiving the BSR and/or the adapted BSR from the IAB node, the MAC entity The entity indicates the BSR information and/or the adapted BSR to the upper layer.
  • the BSR information is one of the following:
  • the adapted BSR includes D/C, destination address, and one of the following:
  • an execution method of an adaptation entity which is a method executed by an adaptation entity configured in an IAB node, and the execution method of the adaptation entity includes: the adaptation entity receives an instruction from a lower layer BSR information and/or adapted BSR; upon receiving the BSR information and/or adapted BSR indicated by the lower layer, the adaptation entity constructs a new adapted BSR; and the adaptation entity will construct The new adapted BSR or the adapted BSR indicated by the lower layer is delivered to the lower layer for sending to the next hop.
  • the adaptation entity indicates the expected amount of data to the lower layer.
  • the adaptation BSR includes D/C, destination address, and one of the following:
  • the lower layer is the lower layer corresponding to the destination address of the data reported in the BSR or the lower layer corresponding to the destination address of the expected data.
  • next hop that receives the adapted BSR is an IAB node and its next hop is not an IAB donor, then the received adapted BSR is Submit to the lower level.
  • next hop that receives the adapted BSR is an IAB node and its next hop is not an IAB donor, then according to the difference between receiving logical channel and sending logical channel Mapping relationship, generate a new adapted BSR and submit it to the lower layer.
  • a communication device which is a communication device with a MAC entity and an adaptation entity, including: a processor; and a memory, where instructions are stored in the memory.
  • the communication device is caused to execute the execution method of the MAC entity according to any one of claims 1 to 3 and/or the execution method of the adaptation entity according to any one of claims 4 to 9.
  • the RLC entity and/or the adaptation entity in the IAB node perform the above operations, so as to solve how to request data based on expected arrival
  • the uplink resource approach reduces the scheduling delay in the multi-hop IAB network.
  • Fig. 1 is a flowchart of an IAB network execution method involved in an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of the overall flow of the implementation method of the IAB network involved in the embodiment of the present disclosure implemented in the IAB network.
  • Figure 3 is a schematic diagram of a logical channel-based adaptive BSR.
  • Figure 4 is a schematic diagram of another adaptive BSR based on logical channels.
  • Fig. 5 is a schematic diagram of an adaptive BSR based on logical channel group.
  • Fig. 6 is a flowchart of an execution method of a MAC entity receiving a BSR in an IAB node involved in an embodiment of the present disclosure.
  • Fig. 7 is a block diagram of an execution method of an adaptation entity in an IAB node involved in an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a method for executing a MAC entity sending a BSR in an IAB node involved in an embodiment of the present disclosure.
  • Fig. 9 is a schematic structural block diagram of a communication device involved in an embodiment of the present disclosure.
  • RLC Radio Link Control, radio link control.
  • the transmission mode of the RLC entity can be configured as one of transparent transmission mode TM, unconfirmed mode UM or confirmed mode AM.
  • MAC Medium Access Control, media access control.
  • PDU Protocol Data Unit, protocol data unit.
  • SDU Service Data Unit, service data unit.
  • data received from or sent to the upper layer is called SDU
  • data sent to or received from the lower layer is called PDU
  • the data received by the RLC entity from the upper layer or the data sent to the upper layer is called RLC SDU
  • the data received by the RLC entity from the MAC entity or the data sent to the MAC entity is called RLC PDU.
  • the adaptation layer is the upper layer of the RLC, so the adaptation PDU is the RLC SDU.
  • IAB node refers to the RAN node that supports wireless access and wireless backhaul access traffic of user equipment (RAN node that supports wireless access to UEs and wirelessly backhauls the access traffic).
  • IAB donor IAB-donor, a RAN node (RAN node which provides UE’s interface to core network and wireless backhauling functionality to IAB-nodes) that provides UE interfaces for the core network and provides wireless backhaul functions for IAB nodes.
  • RAN node RAN node which provides UE’s interface to core network and wireless backhauling functionality to IAB-nodes
  • DRB Data Radio Bearer carrying user plane data, the data radio bearer that carries user plane data or simply data radio bearer.
  • SRB Signaling Radio Bearer, signaling radio bearer.
  • BSR Buffer Status Reporting, buffer status report.
  • CU Central Unit, the central unit or gNB-CU.
  • the NB-CU terminates the F1 interface connected to the gNB-DU.
  • CU can be divided into CU-CP (or gNB-CU-CP) and CU-UP (or gNB-CU-UP).
  • CU-CP is a logical node that carries the control plane part of the PDCP protocol of RRC and gNB-CU, and is used for eh-gNB or gNB.
  • the gNB-CU-CP terminates the E1 interface connected to gNB-CU-UP and the F1-C interface connected to gNB-DU.
  • CU-UP is a logical node used to carry the user plane part of the PDCP protocol of gNB-CU of eh-gNB, the user plane part of the PDCP protocol of gNB-CU and the SDAP protocol of gNB-CU.
  • the gNB-CU-UP terminates the E1 interface connected to the gNB-CU-CP and the F1-U interface connected to the gNB-DU.
  • the DU Distributed Unit, distributed unit.
  • the DU can be located in the IAB node or the IAB donor. In the IAB node or IAB donor, the DU may also have an adaptation layer.
  • MT Mobile-Termination, mobile terminal.
  • MT is the radio interface layer used in the IAB node to terminate the backhaul Uu interface with the IAB donor or other IAB nodes (MT is referred to as a function resisting on an IAB-node that terminates the radio interface layers of the backhaul Uu interface toward the IAB-donor or other IAB-nodes).
  • Each IAB node connects to an uplink IAB node or an IAB donor through an MT, and establishes an RLC channel with a UE or a MT of a downlink IAB node through the DU.
  • the IAB donor supports the MT of the UE and the downlink IAB node through the DU.
  • the execution method of the IAB network of the present disclosure is a method of requesting uplink resources based on expected arrival data in the IAB network. First, the overall flow of the execution method of the IAB network involved in the embodiments of the present disclosure is explained.
  • Fig. 1 is a flowchart of an IAB network execution method involved in an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of the overall flow of the implementation method of the IAB network involved in the embodiment of the present disclosure implemented in the IAB network.
  • multiple user equipment UEs can send BSRs to the same or different IAB nodes/donors at the same time, and the same IAB node/donor can also receive BSRs from multiple user equipment UEs and other IAB nodes at the same time.
  • step S101 the MAC entity of the IAB node receives the BSR from the user equipment UE.
  • the MAC entity of the IAB node indicates the BSR information to the upper layer (for example, the adaptation layer).
  • the BSR information is based on the BSR received from the user equipment UE.
  • the BSR information may be one of the following: (1) the buffer size (Buffer Size) of each logical channel carried in the received BSR, (2) the received BSR Each logical channel carried and its buffer size (Buffer Size), (3) the buffer size of each logical channel group (LCG) carried in the received BSR, (4) the received BSR carried Each logical channel group (LCG) and its buffer size, (5) the received BSR.
  • the MAC entity of the IAB node is configured to indicate BSR information to the upper layer.
  • an IAB node receives a configuration message (for example, an RRC message) from an IAB donor, and the message contains one or more indication identifiers.
  • the indication identifiers may be used to indicate that the MAC entity will receive the BSR from the local UE.
  • the BSR information indicates the upper layer.
  • the indication identifier may also be used to instruct the MAC entity to set the logical channel or logical channel group when it receives a BSR from the local UE and the BSR contains a certain logical channel or logical channel group and/or its buffer size.
  • the BSR information indicates the upper layer.
  • the indication identifier may correspond to a certain logical channel or logical channel group one-to-one.
  • the indication identifier is included in the configuration information of the logical channel.
  • the identifier appears or has a value of 1 or true
  • the corresponding BSR information is indicated to the upper layer
  • the identifier does not appear or has a value of 0 or false
  • the corresponding BSR information is not indicated to the upper layer; for example, indicating The identification indicates which logical channel or logical channel group’s BSR information is indicated to the upper layer.
  • the value of the corresponding position in the figure is 1, it indicates to the upper layer the BSR information of the corresponding logical channel or logical channel group), or through the logical channel list or logical channel group list, only when the logical channel or logical channel group appears in the list Only when the upper layer indicates the BSR information of the corresponding logical channel or logical channel group.
  • the BSR information indicating the logical channel or logical channel group to the upper layer is only when the BSR from the local UE contains the buffer size of the corresponding logical channel or logical channel group (the buffer size is not 0) Instructions.
  • step S103 after receiving the BSR information indicated by the lower layer (for example, MAC), the adaptation entity of the IAB node constructs an adapted BSR.
  • the lower layer for example, MAC
  • the BSR information may come from multiple lower-layer entities (or BSR information based on BSRs from multiple local UEs).
  • the adaptation BSR constructed by the adaptation entity may also contain the information of the received adaptation BSR.
  • the buffer size corresponding to the logical channel or logical channel group in the adapted BSR constructed by the adaptation entity is the buffer size of the corresponding logical channel or logical channel group indicated by the BSR information and the corresponding logical channel contained in the received adapted BSR Or the sum of the buffer size of the logical channel group.
  • step S104 the adaptation entity submits the adapted BSR to the lower layer (for example, the RLC layer or the MAC layer) for sending to the next hop.
  • the next hop may be an IAB node or an IAB donor (for example, an IAB node DU or an IAB donor DU).
  • the adapted BSR may be based on a logical channel or a logical channel group.
  • the adapted BSR may include the following fields (or referred to as domains): D/C, destination address, logical channel identifier, and buffer size corresponding to the logical channel.
  • D/C field is used to indicate the type of corresponding data (or adaptation PDU)
  • the D/C field can occupy 1 (or 2 or 3 or 4) bits
  • the value indicates that the corresponding data is adapted BSR (for example, when the value of the D/C field is 0 or 01 or 001 or 0001, the adaptation PDU is an adaptation BSR); or, the D/C field indicates whether the adaptation PDU is an adaptation control PDU or an adaptation data PDU (for example, When the value of the D/C field is 0, the adaptive PDU is an adaptive control PDU, and when the value of the D/C field is 1, the adaptive PDU is an adaptive data PDU, and vice versa), at this time, define a control PDU
  • the type field CPT (the CPT field can occupy 1 or 2 or 3 bits) is used to indicate the CPT
  • the destination address field is the destination address (for example, the address of the destination IAB-donor DU) to which the adapted BSR (or adapted PDU) is finally sent.
  • the value of the LCID field can be a logical channel identifier.
  • the buffer size corresponding to a certain logical channel is not 0 (for example, there is data to be sent or data is expected to be sent)
  • the logical channel identifier of the logical channel Contained in the adapted BSR; the logical channel and its corresponding buffer size can be indicated in order of logical channel identifiers from large to small or small to large.
  • Fig. 3 is a schematic diagram showing a suitable BSR including a logical channel identifier.
  • the extension indicator bit E may be included, which is used to indicate whether to include the LCID and its corresponding buffer size and extension indicator bit set. For example, if the value of the extension indicator bit is 0, it means that there is no LCID and its corresponding buffer size and extension indicator bit set; if the value of the extension indicator bit is 1, it means that the LCID and its corresponding buffer size and extension are followed by The set of indicator bits; vice versa.
  • the adapted BSR may include the following fields (or referred to as domains): D/C, destination address, bitmap corresponding to the logical channel identifier, and buffer size corresponding to the logical channel.
  • D/C field is used to indicate the type of corresponding data (or adaptation PDU)
  • the D/C field can occupy 1 (or 2 or 3 or 4) bits
  • the corresponding data (or (Called adaptation PDU) is an adaptation BSR (for example, when the value of the D/C field is 0 or 01 or 001 or 0001, the adaptation PDU is an adaptation BSR); or, the D/C field indicates that the adaptation PDU is an adaptation control PDU is also an adaptive data PDU (for example, when the value of the D/C field is 0, the adaptive PDU is an adaptive control PDU, and when the value of the D/C field is 1, the adaptive PDU is an adaptive data PDU, and vice versa)
  • a control PDU type field CPT the CPT field can occupy 1
  • the destination address is the destination address (for example, the address of the destination IAB-donor DU) to which the adapted BSR (or adapted PDU) is finally sent.
  • the adapted BSR contains a bitmap, corresponding to the bits in the bitmap in the order of logical channel identification from large to small or from small to large (for example, mapping to the bitmap in the order from left to right or right to left) everybody).
  • the length of the bitmap can be the number of configured logical channels or the maximum number of configurable logical channels.
  • the buffer size corresponding to SRB and DRB is included in the adapted BSR, it can be based on SRB first and then DRB (or DRB and then SRB), and between SRB and DRB according to the bearer identification or logical channel identification from large to small or small
  • the order to the largest is mapped to each bit in the bitmap. If the bit in the bitmap corresponding to a certain bearer or logical channel is set to 1, the corresponding buffer size field is reported (that is, included in the adaptation BSR). If the bit in the bitmap corresponding to a certain bearer or logical channel is set If it is 0, the corresponding buffer size field has not been reported (that is, it is not included in the adapted BSR). vice versa.
  • Fig. 4 is a schematic diagram showing an adapted BSR containing a bitmap corresponding to a logical channel identifier.
  • the adapted BSR may include the following fields (or referred to as domains): D/C, destination address, bitmap corresponding to the logical channel group, and buffer size corresponding to the logical channel group.
  • D/C is used to indicate the type of the corresponding data (or adaptation PDU), the D/C field can occupy 1 (or 2 or 3 or 4) bits, and the value indicates that the corresponding data is suitable.
  • the adapted PDU is an adapted BSR
  • the D/C field indicates whether the adapted PDU is an adapted control PDU or an adapted data PDU ( For example, when the value of the D/C field is 0, the adaptive PDU is an adaptive control PDU, and when the value of the D/C field is 1, the adaptive PDU is an adaptive data PDU, and vice versa).
  • the PDU type field CPT (the CPT field can occupy 1 or 2 or 3 bits) is used to indicate the type of control PDU (for example, when the value of the CPT field is 0 or 00 or 000, it means that the corresponding control PDU is an adaptive BSR) .
  • the destination address is the destination address to which the adapted BSR will ultimately be sent (for example, the address of the destination IAB-donor DU).
  • Fig. 5 is a schematic diagram showing an adapted BSR containing a bitmap corresponding to a logical channel group.
  • the adapted BSR may also include other fields not defined in the foregoing embodiment.
  • the adapted BSR can be byte-aligned, and the insufficient part is filled with 0.
  • the destination address field can be determined according to the destination address of the expected data indicated by the BSR received in step S101 (for example, the value of the destination address field is the destination of the expected data address).
  • the foregoing embodiments of adaptive BSR based on logical channels or logical channel groups only one form of BSR (may be called long BSR) is defined, but two types of adaptive BSR based on logical channels or logical channel groups can also be defined.
  • One or more types of adaptive BSRs and indicate the type of adaptive BSR in the header of the adaptive PDU. This can be indicated by defining a field different from the D/C field (or called the data control indicator field).
  • the type of the configured BSR can also be indicated in the D/C domain (that is, different values of the D/C domain are used to indicate different types of adaptive BSRs).
  • adapted BSR is divided into short adapted BSR and long adapted BSR.
  • the short adaptation BSR only includes a logical channel identifier or logical channel group identifier field and a buffer size field corresponding to the logical channel or logical channel group. If there is only one logical channel or the buffer size of the logical channel group is not 0, a short adaptation BSR can be used.
  • the adaptation entity instructs the lower layer (specifically, the lower layer corresponding to the destination address of the data reported in the received BSR or the lower layer corresponding to the destination address of the expected data).
  • the amount of data is determined based on the BSR information.
  • the adaptation entity also receives an adaptation BSR from another IAB node (or adaptation entity)
  • the expected amount of data to arrive also includes the buffer size indicated in the received adaptation BSR ( Or the amount of data).
  • the expected data volume is the buffer size of the logical channel or logical channel group indicated by the lower layer and/or the buffer size of the logical channel or logical channel group included in the adaptation BSR.
  • step S105 the MAC entity of the IAB node generates a BSR and sends it to the next hop.
  • the adapted BSR may also be sent to the next hop.
  • the next hop may be an IAB node or an IAB donor.
  • step S106 when the IAB node or IAB donor as the next hop receives the BSR and/or the adapted BSR, the MAC entity indicates the BSR information and/or the adapted BSR to the upper layer (for example, the adapted BSR). Matching layer).
  • step S107 when the next hop is an IAB node, the adaptation entity of the IAB node of the next hop indicates the expected amount of data to the lower layer (for example, the RLC layer or the MAC layer).
  • the lower layer for example, the RLC layer or the MAC layer.
  • the received adapted BSR is delivered to a lower layer (for example, RLC).
  • the lower layer is determined according to the mapping relationship between the receiving logical channel and the sending logical channel.
  • next hop that receives the adapted BSR is an IAB node and its next hop is not an IAB donor (for example, an IAB donor DU) or the final destination, then the received The adapted BSR is submitted to the lower layer (such as RLC).
  • the lower layer such as RLC
  • a new adapted BSR is generated and submitted to the lower layer according to the mapping relationship between the receiving logical channel and the sending logical channel.
  • the newly generated adapted BSR may be obtained by replacing the receiving logical channel identifier in the received adapted BSR with the logical channel identifier of the sending logical channel.
  • the newly generated adapted BSR may also be regenerated by multiple received adapted BSRs according to the mapping relationship between the receiving logical channel and the sending logical channel. For example, the buffer size of a certain logical channel in the newly generated adapted BSR is the sum of the buffer sizes of multiple receiving logical channels mapped to the same sending logical channel.
  • next hop that receives the adapted BSR is an IAB node and its next hop is not an IAB donor (for example, an IAB donor DU) or a final destination, then according to the received logical channel and Send the mapping relationship of the logical channel, generate a new adapted BSR and submit it to the lower layer.
  • the newly generated adapted BSR may be obtained by replacing the receiving logical channel identifier in the received adapted BSR with the logical channel identifier of the sending logical channel.
  • the newly generated adapted BSR may also be regenerated by multiple received adapted BSRs according to the mapping relationship between the receiving logical channel and the sending logical channel. For example, the buffer size of a certain logical channel in the newly generated adapted BSR is the sum of the buffer sizes of multiple receiving logical channels mapped to the same sending logical channel.
  • the present disclosure provides an IAB network execution method that can solve how to reduce the scheduling delay in the multi-hop IAB network by requesting uplink resources based on expected arrival data.
  • steps S101, S102, S105, and S106 shown in FIG. 1 are operations performed by a MAC entity, and one MAC entity can perform one or more steps.
  • steps S103, S104, and S107 are operations that the adapting entity can perform, and one adapting entity can perform one or more steps. The following is described in detail as other embodiments.
  • the operations that need to be performed by the MAC entity and the adaptation entity in the IAB node are respectively described. Specifically, it includes the method executed by the MAC entity and the method executed by the adaptation entity.
  • the MAC entity that receives the BSR in the IAB node will simultaneously receive the BSR and/or adapted BSR from multiple user equipment UEs and multiple IAB nodes, and the adaptation entity in the IAB node will receive information from multiple user equipments and IAB nodes. BSR and/or adapted BSR of one user equipment UE and multiple IAB nodes.
  • Fig. 6 is a flowchart of an execution method of a MAC entity receiving a BSR in an IAB node involved in an embodiment of the present disclosure.
  • step S601 the MAC entity receives the BSR from the user equipment UE or the BSR and/or the adapted BSR from the IAB node.
  • step S602 when receiving the BSR from the user equipment, the MAC entity indicates the BSR information to the upper layer (for example, the adaptation layer).
  • the MAC entity When receiving the BSR and/or adaptation BSR from the IAB node, the MAC entity The entity indicates the BSR information and/or the adapted BSR to the upper layer (for example, the adaptation layer).
  • the BSR information may be one of the following: (1) the buffer size (Buffer Size) of each logical channel carried in the received BSR, (2) the received BSR Each logical channel carried and its buffer size (Buffer Size), (3) the buffer size of each logical channel group (LCG) carried in the received BSR, (4) the received BSR carried Each logical channel group (LCG) and its buffer size, (5) the received BSR.
  • the MAC entity of the IAB node is configured to indicate BSR information to the upper layer.
  • an IAB node receives a configuration message (for example, an RRC message) from an IAB donor, and the message contains one or more indication identifiers.
  • the indication identifiers may be used to indicate that the MAC entity will receive the BSR from the local UE.
  • the BSR information indicates the upper layer.
  • the indication identifier may also be used to instruct the MAC entity to set the logical channel or logical channel group when it receives a BSR from the local UE and the BSR contains a certain logical channel or logical channel group and/or its buffer size.
  • the BSR information indicates the upper layer.
  • the indication identifier may correspond to a certain logical channel or logical channel group one-to-one.
  • the indication identifier is included in the configuration information of the logical channel.
  • the corresponding BSR information is indicated to the upper layer; when the identifier does not appear or has a value of 0 or false, the corresponding BSR information is not indicated to the upper layer;
  • the BSR information of which logical channel or logical channel group is indicated in the identification to the upper layer which can be realized by a bitmap (according to the logical channel or logical channel group identification, the bits in the bitmap from small to large or from large to small correspond to each bit in the bitmap.
  • the BSR information indicating the logical channel or logical channel group to the upper layer is only when the BSR from the local UE contains the buffer size of the corresponding logical channel or logical channel group (the buffer size is not 0) Instructions.
  • Fig. 7 is a block diagram of an execution method of an adaptation entity in an IAB node involved in an embodiment of the present disclosure.
  • step S701 the adaptation entity receives BSR information and/or adapted BSR indicated by the lower layer.
  • step S702 upon receiving the BSR information and/or the adapted BSR indicated by the lower layer, the adaptation entity constructs a new adapted BSR.
  • the constructed new adapted BSR may contain multiple BSR information indicated by the lower layer (or BSR information based on BSRs from multiple local UEs).
  • the new adaptation BSR constructed by the adaptation entity may also contain the information of the received adaptation BSR.
  • the buffer size corresponding to the logical channel or logical channel group in the new adapted BSR constructed by the adaptation entity is the buffer size of the corresponding logical channel or logical channel group indicated by the BSR information and the correspondence contained in the received adapted BSR The sum of the buffer sizes of logical channels or logical channel groups.
  • the BSR information may come from multiple lower-layer entities (or based on BSR information from multiple local UEs).
  • the adaptation entity submits the constructed new adapted BSR or the adapted BSR indicated by the lower layer to the lower layer (for example, the RLC layer or the MAC layer) for sending to the next hop.
  • the next hop may be an IAB node or an IAB donor (for example, an IAB node DU or an IAB donor DU).
  • the adapted BSR may be based on logical channels or logical channel groups.
  • the adapted BSR may include the following fields (or referred to as domains): D/C, destination address, logical channel identifier, and buffer size corresponding to the logical channel.
  • D/C field is used to indicate the type of corresponding data (or adaptation PDU)
  • the D/C field can occupy 1 (or 2 or 3 or 4) bits
  • the value indicates that the corresponding data is adapted BSR (for example, when the value of the D/C field is 0 or 01 or 001 or 0001, the adaptation PDU is an adaptation BSR); or, the D/C field indicates whether the adaptation PDU is an adaptation control PDU or an adaptation data PDU (for example, When the value of the D/C field is 0, the adaptive PDU is an adaptive control PDU, and when the value of the D/C field is 1, the adaptive PDU is an adaptive data PDU, and vice versa), at this time, define a control PDU
  • the type field CPT (the CPT field can occupy 1 or 2 or 3 bits) is used to indicate the CPT
  • the destination address field is the destination address (for example, the address of the destination IAB-donor DU) to which the adapted BSR (or adapted PDU) is finally sent.
  • the value of the LCID field can be a logical channel identifier.
  • the buffer size corresponding to a certain logical channel is not 0 (for example, there is data to be sent or data is expected to be sent)
  • the logical channel identifier of the logical channel Contained in the adapted BSR; the logical channel and its corresponding buffer size can be indicated in order of logical channel identifiers from large to small or small to large.
  • Figure 3 is a schematic diagram showing an adapted BSR containing a logical channel identifier.
  • the extension indicator bit E may be included, which is used to indicate whether to include the LCID and its corresponding buffer size and extension indicator bit set. For example, if the value of the extension indicator bit is 0, it means that there is no set of LCID and its corresponding buffer size and extension indicator bits; if the value of the extension indicator bit is 1, it means that the LCID and its corresponding buffer size and extension are followed by The set of indicator bits; vice versa.
  • the adapted BSR may include the following fields (or referred to as domains): D/C, destination address, bitmap corresponding to the logical channel identifier, and buffer size corresponding to the logical channel.
  • D/C field is used to indicate the type of corresponding data (or adaptation PDU)
  • the D/C field can occupy 1 (or 2 or 3 or 4) bits
  • the corresponding data (or (Called adaptation PDU) is an adaptation BSR (for example, when the value of the D/C field is 0 or 01 or 001 or 0001, the adaptation PDU is an adaptation BSR); or, the D/C field indicates that the adaptation PDU is an adaptation control PDU is also an adaptive data PDU (for example, when the value of the D/C field is 0, the adaptive PDU is an adaptive control PDU, and when the value of the D/C field is 1, the adaptive PDU is an adaptive data PDU, and vice versa)
  • a control PDU type field CPT the CPT field can occupy 1
  • the destination address is the destination address (for example, the address of the destination IAB-donor DU) to which the adapted BSR (or adapted PDU) is finally sent.
  • the adapted BSR contains a bitmap, corresponding to the bits in the bitmap in the order of logical channel identification from large to small or from small to large (for example, mapping to the bitmap in the order from left to right or right to left) everybody).
  • the length of the bitmap can be the number of configured logical channels or the maximum number of configurable logical channels.
  • the buffer size corresponding to SRB and DRB is included in the adapted BSR, it can be based on SRB first and then DRB (or DRB and then SRB), and between SRB and DRB according to the bearer identification or logical channel identification from large to small or small
  • the order to the largest is mapped to each bit in the bitmap. If the bit in the bitmap corresponding to a certain bearer or logical channel is set to 1, the corresponding buffer size field is reported (that is, included in the adaptation BSR). If the bit in the bitmap corresponding to a certain bearer or logical channel is set If it is 0, the corresponding buffer size field has not been reported (that is, it is not included in the adapted BSR). vice versa.
  • Fig. 4 is a schematic diagram showing an adapted BSR containing a bitmap corresponding to a logical channel identifier.
  • the adapted BSR may include the following fields (or referred to as domains): D/C, destination address, bitmap corresponding to the logical channel group, and buffer size corresponding to the logical channel group.
  • D/C is used to indicate the type of the corresponding data (or adaptation PDU).
  • the D/C field can occupy 1 (or 2 or 3 or 4) bits, and the value indicates that the corresponding data is suitable.
  • the adapted PDU is an adapted BSR
  • the D/C field indicates whether the adapted PDU is an adapted control PDU or an adapted data PDU ( For example, when the value of the D/C field is 0, the adaptive PDU is an adaptive control PDU, and when the value of the D/C field is 1, the adaptive PDU is an adaptive data PDU, and vice versa).
  • the PDU type field CPT (the CPT field can occupy 1 or 2 or 3 bits) is used to indicate the type of control PDU (for example, when the value of the CPT field is 0 or 00 or 000, it means that the corresponding control PDU is an adaptive BSR) .
  • the destination address is the destination address to which the adapted BSR will ultimately be sent (for example, the address of the destination IAB-donor DU).
  • Fig. 5 is a schematic diagram showing an adapted BSR containing a bitmap corresponding to a logical channel group.
  • the adapted BSR may also include other fields not defined in the foregoing embodiment.
  • the adapted BSR can be byte-aligned, and the insufficient part is filled with 0.
  • the destination address field can be determined according to the destination address of the expected data indicated by the BSR received in step S101 (for example, the value of the destination address field is the destination of the expected data address).
  • the foregoing embodiments of adaptive BSR based on logical channels or logical channel groups only one form of BSR (may be called long BSR) is defined, but two types of adaptive BSR based on logical channels or logical channel groups can also be defined.
  • One or more types of adaptive BSRs and indicate the type of adaptive BSR in the header of the adaptive PDU. This can be indicated by defining a field different from the D/C field (or called the data control indicator field).
  • the type of the configured BSR can also be indicated in the D/C domain (that is, different values of the D/C domain are used to indicate different types of adaptive BSRs).
  • adapted BSR is divided into short adapted BSR and long adapted BSR.
  • the short adaptation BSR only includes a logical channel identifier or logical channel group identifier field and a buffer size field corresponding to the logical channel or logical channel group. If there is only one logical channel or the buffer size of the logical channel group is not 0, a short adaptation BSR can be used.
  • the received adapted BSR is delivered to the lower layer (for example, RLC).
  • the lower layer is determined according to the mapping relationship between the receiving logical channel and the sending logical channel.
  • next hop that receives the adapted BSR is an IAB node and its next hop is not an IAB donor (for example, an IAB donor DU) or the final destination, then the received adapted BSR is The configuration BSR is submitted to the lower layer (such as RLC).
  • the lower layer such as RLC
  • a new adapted BSR is generated and submitted to the lower layer according to the mapping relationship between the receiving logical channel and the sending logical channel.
  • the newly generated adapted BSR may be obtained by replacing the receiving logical channel identifier in the received adapted BSR with the logical channel identifier of the sending logical channel.
  • the newly generated adapted BSR may also be regenerated by multiple received adapted BSRs according to the mapping relationship between the receiving logical channel and the sending logical channel. For example, the buffer size of a certain logical channel in the newly generated adapted BSR is the sum of the buffer sizes of multiple receiving logical channels mapped to the same sending logical channel.
  • the adapted BSR may be obtained by replacing the receiving logical channel identifier in the received adapted BSR with the logical channel identifier of the sending logical channel.
  • the newly generated adapted BSR may also be regenerated by multiple received adapted BSRs according to the mapping relationship between the receiving logical channel and the sending logical channel. For example, the buffer size of a certain logical channel in the newly generated adapted BSR is the sum of the buffer sizes of multiple receiving logical channels mapped to the same sending logical channel.
  • step S704 the adaptation entity indicates the expected amount of data to the lower layer.
  • the expected amount of data in the embodiments of the present disclosure is determined based on the BSR information.
  • the adaptation entity also receives an adaptation BSR from another IAB node (or adaptation entity)
  • the expected amount of data to arrive also includes the buffer size indicated in the received adaptation BSR ( Or the amount of data).
  • the expected data volume is the buffer size of the logical channel or logical channel group indicated by the lower layer and/or the buffer size of the logical channel or logical channel group included in the adaptation BSR.
  • Figure 8 is used to describe the method performed by the MAC entity sending the BSR in the IAB node.
  • FIG. 8 is a flowchart of a method for executing a MAC entity sending a BSR in an IAB node involved in an embodiment of the present disclosure.
  • step S801 the MAC entity receives the adapted BSR from the upper layer.
  • step S802 the MAC entity generates a BSR.
  • the MAC entity sends the generated BSR and/or the received adapted BSR to the next hop.
  • the next hop may be an IAB node or an IAB donor.
  • FIG. 9 is used to illustrate a communication device that can execute the execution method of the IAB network and the execution method of the MAC entity and the execution method of the adaptation entity described in detail above in this disclosure as a modified example.
  • FIG. 9 is a schematic structural block diagram showing a communication device related to an embodiment of the present disclosure.
  • the communication device 900 includes at least a processor 901 and a memory 902.
  • the processor 901 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 902 may include, for example, a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a nonvolatile memory (such as a flash memory), or other memory systems.
  • the memory 902 stores program instructions. When the instruction is run by the processor 901, it can execute one or several steps in the execution method of the IAB network described in Figures 1 to 2 of the present disclosure, and can execute the steps described in Figures 6 to 8 of the present disclosure.
  • the data of the adaptation layer can be referred to as adaptation SDU (which does not include the header of the adaptation layer) and adaptation PDU (which includes the header of the adaptation layer), respectively, where the adaptation PDU can also Divided into adaptation data PDU and adaptation control PDU.
  • mapping relationship can be replaced with the mapping relationship between the receiving RLC entity (or the RLC entity receiving end) and the sending RLC entity (or the RLC entity sending end), or the receiving adaptation entity (or the adapting entity receiving end) and the sending adaption
  • the mapping relationship of the configuration entity (or the sending end of the adaptation entity) can also be replaced with the configuration of forwarding data, and these descriptions can be replaced with each other.
  • the lower layer of the adaptation entity may be the RLC layer or the MAC layer. If there is a one-to-one mapping relationship between the DU and/or MT and the adaptation entity (that is, an adaptation entity is defined in a DU or MT), the adaptation entity (or IP layer or routing is implemented) during data transmission The functional entity) should select the corresponding sending adaptation entity (or MT adaptation entity) according to the destination address or the address of the IAB-donor DU (for example, the IP address of the IAB-donor DU).
  • the adaptation entity selects the corresponding RLC entity according to the destination address or the address of the IAB-donor DU (for example, the IP address of the IAB-donor DU).
  • the embodiments of the present disclosure are described based on the many-to-one mapping relationship between the DU and/or MT and the adaptation layer.
  • the adaptation entity (or the IP layer or the entity implementing the routing function) needs to select the sending adaptation entity according to the correspondence between the DU and/or MT and the adaptation entity when forwarding data.
  • the foregoing sending adaptation entity can also be used to receive data, and the receiving adaptation entity can also send data.
  • both the sending adaptation entity and the receiving adaptation entity can be called adaptation entities; or the sending adaptation entity is called For the sending end of the adaptation entity, the receiving adaptation entity is called the receiving end of the adaptation entity.
  • the routing function is integrated in the adaptation entity in the present disclosure.
  • the receiving adaptation entity sends the data to the upper layer after receiving the data that needs to be forwarded, and the upper layer sends the data according to the destination address. Route (or deliver) to the corresponding sending adaptation entity.
  • the destination address in the adapted BSR may not be included in the adapted BSR, for example, it is included in the header of the IP message as the destination IP address.
  • the destination address can refer to the address of IAB-donor (or IAB-donor DU), such as the IP address of IAB-donor (or IAB-donor DU); for the downlink, the destination address can be Refers to the address of the IAB-node (or IAB-node MT), such as the IP address of the IAB-nod (or IAB-node MT); for the downlink, the destination address can also be the identity of the UE, such as C-RNTI.
  • the IAB node used to receive data may be the DU of the IAB node, and the IAB donor used to receive data may be the DU of the IAB donor.
  • the IAB node used to receive data may be the MT of the IAB node.
  • the user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future that can be used for base stations, MMEs, or UEs, and so on.
  • the various identifiers shown above are only exemplary rather than restrictive, and the present disclosure is not limited to specific information elements as examples of these identifiers. Those skilled in the art can make many changes and modifications based on the teaching of the illustrated embodiment.
  • the foregoing embodiments of the present disclosure may be implemented by software, hardware, or a combination of both software and hardware.
  • the various components inside the base station and user equipment in the above embodiment can be implemented by a variety of devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing Device, application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable logic device (CPLD), etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD programmable logic device
  • base station may refer to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission.
  • User equipment may refer to a user's mobile terminal, for example, including mobile phones, notebooks, and other terminal devices that can communicate with base stations or micro base stations wirelessly.
  • the computer-executable instructions or program running on the device according to the present invention may be a program that enables the computer to implement the functions of the embodiments of the present invention by controlling a central processing unit (CPU).
  • the program or the information processed by the program can be temporarily stored in volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory systems.
  • Computer-executable instructions or programs for implementing the functions of the various embodiments of the present invention may be recorded on a computer-readable storage medium. Corresponding functions can be realized by causing the computer system to read the programs recorded on the recording medium and execute these programs.
  • the so-called “computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as peripheral devices).
  • the "computer-readable storage medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium storing a program dynamically for a short time, or any other recording medium readable by a computer.
  • circuits for example, single-chip or multi-chip integrated circuits.
  • Circuits designed to perform the functions described in this specification may include general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above devices.
  • the general-purpose processor may be a microprocessor, or any existing processor, controller, microcontroller, or state machine.
  • the above-mentioned circuit can be a digital circuit or an analog circuit. In the case of new integrated circuit technologies that replace existing integrated circuits due to advances in semiconductor technology, one or more embodiments of the present invention can also be implemented using these new integrated circuit technologies.
  • the present invention is not limited to the above-mentioned embodiment. Although various examples of the embodiment have been described, the present invention is not limited thereto.
  • Fixed or non-mobile electronic equipment installed indoors or outdoors can be used as terminal equipment or communication equipment, such as AV equipment, kitchen equipment, cleaning equipment, air conditioners, office equipment, vending machines, and other household appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种MAC实体和适配实体的执行方法以及通信设备。MAC实体的执行方法是IAB节点中配置的MAC实体执行的方法,所述MAC实体的执行方法包括:MAC实体接收来自用户设备的BSR或来自IAB节点的BSR和/或适配BSR;和在接收到来自用户设备的BSR时,所述MAC实体将BSR信息指示给上层,在接收到来自IAB节点的BSR和/或适配BSR时,所述MAC实体将BSR信息和/或所述适配BSR指示给上层。

Description

IAB网络、MAC实体和适配实体的执行方法以及通信设备 技术领域
本公开涉及无线通信技术领域,更具体地,本公开涉及IAB网络、MAC实体和适配实体的执行方法以及通信设备。
背景技术
2018年9月,在第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN#81次全会上,高通提出了一个关于NR一体接入和回程(Integrated Access and Backhaul for NR,简称IAB)的工作项目(参见非专利文献:RP-182882:New WID:Integrated Access and Backhaul for NR),并获批准。该工作项目的目标之一是通过信令的逐跳传播来降低调度时延。
在多跳的IAB网络中,基于现有的调度请求(SR)和缓存状态报告(BSR)机制,在接收到上行数据后中间IAB节点向下一跳发送调度请求和缓存状态报告以请求上行调度。所述在数据到达后才请求上行调度的机制将增加数据传输时延,无法应用于对时延敏感的业务。在IAB相关的研究报告TR38.874中提出了一种基于预期到达的数据请求上行资源的设想,但未给出具体实现。本公开致力于解决如何以基于预期到达的数据请求上行资源的方式减少多跳IAB网络中的调度时延,具体的研究内容包括适配实体和/或MAC实体所需执行的操作。
发明内容
为了解决上述问题中的至少一部分,本发明提供了一种IAB网络、MAC实体和适配实体的执行方法以及通信设备,是能够解决如何以基于预期到达的数据请求上行资源的方式减少多跳IAB网络中的调度时延的IAB网络、MAC实体和适配实体的执行方法以及通信设备。
根据本发明的一个方面,提供了一种MAC实体的执行方法,是IAB节点中配置的MAC实体执行的方法,所述MAC实体的执行方法包括: MAC实体接收来自用户设备的BSR或来自IAB节点的BSR和/或适配BSR;和在接收到来自用户设备的BSR时,所述MAC实体将BSR信息指示给上层,在接收到来自IAB节点的BSR和/或适配BSR时,所述MAC实体将BSR信息和/或所述适配BSR指示给上层。
在上述MAC实体的执行方法中,优选的是,所述BSR信息是以下之一:
(1)接收到的所述BSR中携带的每个逻辑信道的缓存大小;
(2)接收到的所述BSR中携带的每个逻辑信道及其缓存大小;
(3)接收到的所述BSR中携带的每个逻辑信道群的缓存大小;
(4)接收到的所述BSR中携带的每个逻辑信道群及其缓存大小;以及
(5)接收到的所述BSR。
在上述MAC实体的执行方法中,优选的是,所述适配BSR包括D/C、目的地址和以下之一:
(1)逻辑信道标识及逻辑信道对应的缓存大小;
(2)逻辑信道标识对应的位图及逻辑信道对应的缓存大小;以及
(3)逻辑信道群对应的位图及逻辑信道群对应的缓存大小。
根据本发明的另一个方面,提供了一种适配实体的执行方法,是IAB节点中配置的适配实体执行的方法,所述适配实体的执行方法包括:适配实体接收由下层指示的BSR信息和/或适配BSR;在接收到由下层指示的所述BSR信息和/或所述适配BSR时,所述适配实体构建新的适配BSR;和所述适配实体将构建的所述新的适配BSR或由下层指示的所述适配BSR递交给下层以发送给下一跳。
在上述适配实体的执行方法中,优选的是,所述适配实体将预期到达的数据量指示给下层。
在上述适配实体的执行方法中,优选的是,所述适配BSR包括D/C、目的地址和以下之一:
(1)逻辑信道标识及逻辑信道对应的缓存大小;
(2)逻辑信道标识对应的位图及逻辑信道对应的缓存大小;以及
(3)逻辑信道群对应的位图及逻辑信道群对应的缓存大小。
在上述适配实体的执行方法中,优选的是,所述下层是BSR中报告的数据的目的地址对应的下层或者所述预期到达的数据的目的地址对应的下 层。
在上述适配实体的执行方法中,优选的是,如果接收到所述适配BSR的所述下一跳是IAB节点且其下一跳不是IAB施主,则将接收到的所述适配BSR递交给下层。
在上述适配实体的执行方法中,优选的是,如果接收到所述适配BSR的所述下一跳是IAB节点且其下一跳不是IAB施主,则按照接收逻辑信道与发送逻辑信道的映射关系,生成新的适配BSR并递交给下层。
根据本发明的另一个方面,提供了一种通信设备,是具有MAC实体和适配实体的通信设备,包括:处理器;以及存储器,在存储器上存储有指令,指令在由处理器运行时,使通信设备执行权利要求1~3中任一项所述的MAC实体的执行方法和/或权利要求4~9中任一项所述的适配实体的执行方法。
根据本发明所涉及的IAB网络、MAC实体和适配实体的执行方法以及通信设备,通过IAB节点中的RLC实体和/或适配实体执行上述操作,从而能够解决如何以基于预期到达的数据请求上行资源的方式减少多跳IAB网络中的调度时延。
附图说明
通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:
图1是本公开实施例涉及的IAB网络的执行方法的流程图。
图2是本公开实施例涉及的IAB网络的执行方法在IAB网络中实现的总体流程的示意图。
图3是一种基于逻辑信道的适配BSR的示意图。
图4是另一种基于逻辑信道的适配BSR的示意图。
图5是一种基于逻辑信道群的适配BSR的示意图。
图6是本公开实施例涉及的IAB节点中接收BSR的MAC实体的执行方法的流程图。
图7是本公开实施例涉及的IAB节点中的适配实体的执行方法的框图。
图8是本公开实施例涉及的IAB节点中发送BSR的MAC实体的执行方法的流程图。
图9是本公开实施例涉及的通信设备的简要结构框图。
具体实施方式
下面结合附图和具体实施方式对本公开进行详细阐述。应当注意,本公开不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本公开没有直接关联的公知技术的详细描述,以防止对本公开的理解造成混淆。
下面描述本公开涉及的部分术语,如未特别说明,本公开涉及的术语采用此处定义。本公开给出的术语在NR、LTE和eLTE中可能采用不同的命名方式,但本公开中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
RLC:Radio Link Control,无线链路控制。RLC实体的传输模式可以配置为透传模式TM、非确认模式UM或确认模式AM之一。
MAC:Medium Access Control,媒体访问控制。
PDU:Protocol Data Unit,协议数据单元。
SDU:Service Data Unit,服务数据单元。
在本公开中,将从上层接收或发往上层的数据称为SDU,将发往下层或从下层接收的数据称为PDU。例如,RLC实体从上层接收的数据或发往上层的数据称为RLC SDU;RLC实体从MAC实体接收到的数据或发往MAC实体的数据称为RLC PDU。例如,在IAB节点中,适配层是RLC的上层,所以适配PDU就是RLC SDU。
IAB节点:IAB-node,指支持用户设备的无线接入和无线回程接入流量的RAN节点(RAN node that supports wireless access to UEs and wirelessly backhauls the access traffic)。
IAB施主:IAB-donor,为核心网络提供UE接口,并为IAB节点提供无线回程功能的RAN节点(RAN node which provides UE’s interface to core network and wireless backhauling functionality to IAB-nodes)。
DRB:Data Radio Bearer carrying user plane data,承载用户面数据的数 据无线承载或简称数据无线承载。
SRB:Signalling Radio Bearer,信令无线承载。
BSR:Buffer Status Reporting,缓存状态报告。
CU:Central Unit,中心单元或记为gNB-CU。一个具有(hosting)或至少具有基站的RRC、SDAP和PDCP协议或者en-gNB的RRC和PDCP协议,并控制一个或多个DU或gNB-DU。NB-CU终止与gNB-DU连接的F1接口。CU又可分为CU-CP(或记为gNB-CU-CP)和CU-UP(或记为gNB-CU-UP)。CU-CP是一个逻辑节点,承载RRC和gNB-CU的PDCP协议的控制面部分,用于eh-gNB或gNB。gNB-CU-CP终止与gNB-CU-UP连接的E1接口和与gNB-DU连接的F1-C接口。CU-UP是一个逻辑节点,用于承载eh-gNB的gNB-CU的PDCP协议的用户面部分,以及gNB-CU的PDCP协议的用户面部分和gNB-CU的SDAP协议。gNB-CU-UP终止与gNB-CU-CP连接的E1接口和与gNB-DU连接的F1-U接口。
DU:Distributed Unit,分布式单元。一个具有或至少具有RLC、MAC和物理层的逻辑节点。DU可以位于IAB节点或IAB施主中。在IAB节点或IAB施主中,DU还可以具有适配层。
MT:Mobile-Termination,移动终端。MT是IAB节点中用于终止与IAB施主或其他IAB节点的回程Uu接口的无线接口层(MT is referred to as a function residing on an IAB-node that terminates the radio interface layers of the backhaul Uu interface toward the IAB-donor or other IAB-nodes)。
每个IAB节点通过MT连接到上行IAB节点或IAB施主,并通过DU与UE或下行IAB节点的MT建立RLC通道。IAB施主通过DU来支持UE和下行IAB节点的MT。
本公开的IAB网络的执行方法是在IAB网络中基于预期到达的数据请求上行资源的方法。首先,说明本公开实施例涉及的IAB网络的执行方法的总体流程。
图1是本公开实施例涉及的IAB网络的执行方法的流程图。
图2是本公开实施例涉及的IAB网络的执行方法在IAB网络中实现的总体流程的示意图。
下面,结合图1和图2来说明本公开实施例涉及的IAB网络的执行方法。
需要说明的是,这里为了说明清楚,仅示出来自一个用户设备UE的BSR在IAB网络中传输的过程。在实际中,可以同时有多个用户设备UE向相同或不同的IAB节点/施主发出BSR等,而且同一个IAB节点/施主也可以同时接收来自多个用户设备UE的BSR等和来自其他IAB节点的BSR和/或适配BSR等。
在步骤S101,IAB节点的MAC实体接收来自用户设备UE的BSR。
在步骤S102,IAB节点的MAC实体向上层(例如适配层)指示BSR信息。所述BSR信息基于从用户设备UE接收到的所述BSR。
本公开实施例中,所述BSR信息可以是以下之一:(1)接收到的所述BSR中携带的每个逻辑信道的缓存大小(Buffer Size),(2)接收到的所述BSR中携带的每个逻辑信道及其缓存大小(Buffer Size),(3)接收到的所述BSR中携带的每个逻辑信道群(LCG)的缓存大小,(4)接收到的所述BSR中携带的每个逻辑信道群(LCG)及其缓存大小,(5)接收到的所述BSR。
可选的,IAB节点的MAC实体被配置为向上层指示BSR信息。例如,IAB节点接收到来自IAB施主的配置消息(例如RRC消息),所述消息中包含一个或多个指示标识,所述指示标识可以用于指示MAC实体在接收到来自本地UE的BSR时将BSR信息指示上层。所述指示标识也可以用于指示MAC实体在接收到来自本地UE的BSR且所述BSR中包含某个逻辑信道或逻辑信道群和/或其缓存大小时,将所述逻辑信道或逻辑信道群的BSR信息指示上层。对于仅指示部分逻辑信道或逻辑信道群的BSR信息的实现方式,所述指示标识可以与某个逻辑信道或逻辑信道群一一对应,例如所述指示标识包含在逻辑信道的配置信息中,当所述标识出现或取值为1或真时,将对应的BSR信息指示给上层,当所述标识不出现或取值为0或假时,不将对应的BSR信息指示给上层;又例如指示标识中指明哪些逻辑信道或逻辑信道群的BSR信息指示给上层,这可以通过一个位图实现(按照逻辑信道或逻辑信道群标识从小到大或从大到小依次对应位图中各位,当位图中相应位置取值为1时,向上层指示对应逻辑信道或逻辑信道群的BSR信息),或通过逻辑信道列表或逻辑信道群列表实现,只有当逻辑信道或逻辑信道群出现在所述列表中,才向上层指示对应逻辑信道或逻辑信道群的 BSR信息。需要说明的是,所述向上层指示逻辑信道或逻辑信道群的BSR信息是只有在接收到来自本地UE的BSR中包含对应逻辑信道或逻辑信道群的缓存大小(缓存大小不为0)时才指示。
在步骤S103,在接收到来自下层(例如MAC)指示的所述BSR信息后,IAB节点的适配实体构建适配BSR。
所述BSR信息可以来自多个下层实体(或基于来自多个本地UE的BSR的BSR信息)。此外,如果适配实体中存在接收到来自其他IAB节点的适配BSR,适配实体所构建的适配BSR中还可以包含所接收到的适配BSR的信息。换言之,适配实体所构建的适配BSR中逻辑信道或逻辑信道群对应的缓存大小是BSR信息指示的对应逻辑信道或逻辑信道群的缓存大小和接收到的适配BSR所包含的对应逻辑信道或逻辑信道群的缓存大小的和。
在步骤S104,所述适配实体将所述适配BSR递交给下层(例如RLC层或MAC层)以发送给下一跳。所述下一跳可以是IAB节点或IAB施主(例如,IAB节点DU或IAB施主DU)。
具体的,所述适配BSR可以基于逻辑信道或逻辑信道群。
在一个实施例中,适配BSR可以包括以下字段(或称为域):D/C、目的地址、逻辑信道标识及逻辑信道对应的缓存大小。其中,D/C域用于指示对应数据(或称适配PDU)的类型,D/C域可以占1(或2或3或4)个比特,根据取值来指示对应的数据是适配BSR(例如D/C域取值为0或01或001或0001时,适配PDU为适配BSR);或者,D/C域指示适配PDU是适配控制PDU还是适配数据PDU(例如D/C域取值为0时,适配PDU为适配控制PDU,D/C域取值为1时,适配PDU为适配数据PDU,反之亦然),此时,定义一个控制PDU类型字段CPT(CPT域可以占1或2或3比特),用于指示控制PDU的类型(例如,当CPT域取值为0或00或000时,表示对应的控制PDU是适配BSR)。目的地址域是适配BSR(或适配PDU)最终要发送到的目的地址(例如目的IAB-donor DU的地址)。LCID域的取值可以是逻辑信道标识,此时,如果某个逻辑信道对应的缓存大小不为0(例如有数据要发送或预期有数据要发送),则将所述逻辑信道的逻辑信道标识包含在适配BSR中;可以按照逻辑信道标识由大到小或由小到大的顺序依次指示逻辑信道及其对应的缓存大小。图3是示出包含逻辑信道标识的适 配BSR的示意图。其中可以包含扩展指示位E,用于指示随后是否包含LCID及其对应的缓存大小和扩展指示位的集合。例如,如果扩展指示位取值为0,表示随后没有LCID及其对应的缓存大小和扩展指示位的集合;如果扩展指示位取值为1,表示随后跟随有LCID及其对应的缓存大小和扩展指示位的集合;反之亦然。
在一个实施例中,适配BSR可以包括以下字段(或称为域):D/C、目的地址、逻辑信道标识对应的位图及逻辑信道对应的缓存大小。其中,D/C域用于指示对应数据(或称适配PDU)的类型,D/C域可以占1(或2或3或4)个比特,按照其取值来指示对应的数据(或称适配PDU)是适配BSR(例如D/C域取值为0或01或001或0001时,适配PDU为适配BSR);或者,D/C域指示适配PDU是适配控制PDU还是适配数据PDU(例如D/C域取值为0时,适配PDU为适配控制PDU,D/C域取值为1时,适配PDU为适配数据PDU,反之亦然),此时,定义一个控制PDU类型字段CPT(CPT域可以占1或2或3比特),用于指示控制PDU的类型(例如,当CPT域取值为0或00或000时,表示对应的控制PDU是适配BSR)。目的地址是适配BSR(或称适配PDU)最终要发送到的目的地址(例如目的IAB-donor DU的地址)。适配BSR中包含一个位图,按照逻辑信道标识由大到小或由小到大的顺序依次对应位图中的各位(例如,按照从左到右或从右到左的顺序映射到位图中各位)。位图的长度可以是配置的逻辑信道数或是最大可配置的逻辑信道数。如果适配BSR中同时包含SRB和DRB对应的缓存大小,则可以按照先SRB后DRB(或先DRB后SRB)且在SRB和DRB之间又按照承载标识或逻辑信道标识从大到小或从小到大的顺序映射到位图中的各位。如果某个承载或逻辑信道对应位图中的位设置为1,则其对应的缓存大小域被报告(即包含在适配BSR中),如果某个承载或逻辑信道对应位图中的位设置为0,则其对应的缓存大小域未被报告(即不包含在适配BSR中)。反之亦然。图4是示出包含逻辑信道标识对应的位图的适配BSR的示意图。
在一个实施例中,适配BSR可以包括以下字段(或称为域):D/C、目的地址、逻辑信道群对应的位图及逻辑信道群对应的缓存大小。其中,D/C域用于指示对应数据(或称适配PDU)的类型,D/C域可以占1(或2或3 或4)个比特,按照其取值来指示对应的数据是适配BSR(例如D/C域取值为0或01或001或0001时,适配PDU为适配BSR);或者,D/C域指示适配PDU是适配控制PDU还是适配数据PDU(例如D/C域取值为0时,适配PDU为适配控制PDU,D/C域取值为1时,适配PDU为适配数据PDU,反之亦然),此时,定义一个控制PDU类型字段CPT(CPT域可以占1或2或3比特),用于指示控制PDU的类型(例如,当CPT域取值为0或00或000时,表示对应的控制PDU是适配BSR)。目的地址是适配BSR最终要发送到的目的地址(例如目的IAB-donor DU的地址)。位图中LCG i位被设置为1时指示逻辑信道群i的缓存大小域被报告(换言之,适配BSR中包含对应的域);位图中LCG i位被设置为0时指示逻辑信道群i的缓存大小域未被报告(换言之,适配BSR中未包含对应的域)。图5是示出包含逻辑信道群对应的位图的适配BSR的示意图。
需要说明的是,适配BSR还可以包括未在上述实施例中定义的其他字段。适配BSR可以是字节对齐的,不足部分用0补齐。在上述适配BSR的实施例中,目的地址字段可以根据步骤S101中接收到的BSR指示的预期到达的数据的目的地址确定(例如,所述目的地址字段的取值就是预期到达的数据的目的地址)。在上述基于逻辑信道或逻辑信道群的适配BSR实施例中都只定义了一种形式的BSR(可称为长BSR),但还可以为基于逻辑信道或逻辑信道群的适配BSR定义两种或两种以上的适配BSR,并在适配PDU的头部指示适配BSR的类型,这可以通过定义一个不同于D/C域(或称为数据控制指示域)的域来指示适配BSR的类型,也可以在D/C域中指示(即通过D/C域的不同取值指示不同类型的适配BSR)。例如适配BSR分成短适配BSR和长适配BSR。其中,短适配BSR中只包含一个逻辑信道标识或逻辑信道群标识域及逻辑信道或逻辑信道群对应的缓存大小域。如果只有一个逻辑信道或逻辑信道群的缓存大小不为0,可以用短适配BSR。
在步骤S104,可选的,所述适配实体指示下层(具体来说,即接收到的BSR中报告的数据的目的地址对应的下层或者预期到达的数据的目的地址对应的下层)预期到达的数据量。本公开实施例中所述预期到达的数据量基于BSR信息确定。可选的,如果所述适配实体还接收到来自其他IAB节点(或适配实体)的适配BSR,所述预期到达的数据量还包括所接收到 的适配BSR中指示的缓存大小(或数据量)。具体的,所述预期到达的数据量是下层指示的逻辑信道或逻辑信道群的缓存大小和/或适配BSR中包含的逻辑信道或逻辑信道群的缓存大小。
在步骤S105,IAB节点的MAC实体生成BSR并发送给下一跳。此外,也可以将所述适配BSR发送给下一跳。所述下一跳可以是IAB节点或IAB施主。
在步骤S106,作为所述下一跳的IAB节点或IAB施主接收到所述BSR和/或所述适配BSR时,MAC实体将BSR信息和/或所述适配BSR指示给上层(例如适配层)。
在步骤S107,在所述下一跳是IAB节点时,该下一跳的IAB节点的适配实体将所述预期到达的数据量指示给下层(例如RLC层或MAC层)。
优选的,如果接收到所述适配BSR的所述下一跳是IAB节点,则将所述接收到的适配BSR递交给下层(例如RLC)。所述下层根据接收逻辑信道和发送逻辑信道间的映射关系确定。
或者,也可以设为,如果接收到所述适配BSR的所述下一跳是IAB节点且其下一跳不是IAB施主(例如,IAB施主DU)或最终目的地,则将所述接收到的适配BSR递交给下层(例如RLC)。
备选的,如果接收到所述适配BSR的所述下一跳是IAB节点,则按照接收逻辑信道与发送逻辑信道的映射关系,生成新的适配BSR并递交给下层。所述新产生的适配BSR可以通过将所述接收到的适配BSR中的接收逻辑信道标识替换为发送逻辑信道的逻辑信道标识得到。所述新产生的适配BSR也可以是接收到的多个适配BSR按照接收逻辑信道与发送逻辑信道的映射关系重新产生的。例如,新产生的适配BSR中某个逻辑信道的缓存大小是多个映射到同一发送逻辑信道的接收逻辑信道的缓存大小的和。
或者,也可以设为,如果接收到所述适配BSR的所述下一跳是IAB节点且其下一跳不是IAB施主(例如,IAB施主DU)或最终目的地,则按照接收逻辑信道与发送逻辑信道的映射关系,生成新的适配BSR并递交给下层。所述新产生的适配BSR可以通过将所述接收到的适配BSR中的接收逻辑信道标识替换为发送逻辑信道的逻辑信道标识得到。所述新产生的适配BSR也可以是接收到的多个适配BSR按照接收逻辑信道与发送逻辑信道的 映射关系重新产生的。例如,新产生的适配BSR中某个逻辑信道的缓存大小是多个映射到同一发送逻辑信道的接收逻辑信道的缓存大小的和。
这样,通过在IAB网络中执行上述的各个步骤,本公开提供了一种能够解决如何以基于预期到达的数据请求上行资源的方式减少多跳IAB网络中的调度时延的IAB网络的执行方法。
需要说明的是,图1所示步骤S101、S102、S105、S106是MAC实体执行的操作,一个MAC实体可以执行其中一个步骤或多个步骤。而步骤S103、S104、S107是适配实体可执行的操作,一个适配实体可以执行其中一个步骤或多个步骤。下面作为其他实施例具体描述。
作为上面所描述的本公开实施例涉及的IAB网络的执行方法的其他实施例,分别说明IAB节点中的MAC实体和适配实体所需要执行的操作。具体包括MAC实体执行的方法和适配实体执行的方法。
需要说明的是,在本公开实施例涉及的IAB网络的执行方法的上述描述中,为了说明清楚,仅示出来自一个用户设备UE的BSR在IAB网络中传输的过程。在实际中,IAB节点中接收BSR的MAC实体会同时从多个用户设备UE和多个IAB节点接收BSR和/或适配BSR等,IAB节点中的适配实体会接收由下层指示的来自多个用户设备UE和多个IAB节点的BSR和/或适配BSR。
首先,使用图6描述IAB节点中接收BSR的MAC实体执行的方法。
图6是本公开实施例涉及的IAB节点中接收BSR的MAC实体的执行方法的流程图。
如图6所示,在步骤S601,MAC实体接收来自用户设备UE的BSR或来自IAB节点的BSR和/或适配BSR。
在步骤S602,在接收到来自用户设备的BSR时,所述MAC实体将BSR信息指示给上层(例如适配层),在接收到来自IAB节点的BSR和/或适配BSR时,所述MAC实体将BSR信息和/或所述适配BSR指示给上层(例如适配层)。
本公开实施例中,所述BSR信息可以是以下之一:(1)接收到的所述BSR中携带的每个逻辑信道的缓存大小(Buffer Size),(2)接收到的所述 BSR中携带的每个逻辑信道及其缓存大小(Buffer Size),(3)接收到的所述BSR中携带的每个逻辑信道群(LCG)的缓存大小,(4)接收到的所述BSR中携带的每个逻辑信道群(LCG)及其缓存大小,(5)接收到的所述BSR。
可选的,IAB节点的MAC实体被配置为向上层指示BSR信息。例如,IAB节点接收到来自IAB施主的配置消息(例如RRC消息),所述消息中包含一个或多个指示标识,所述指示标识可以用于指示MAC实体在接收到来自本地UE的BSR时将BSR信息指示上层。所述指示标识也可以用于指示MAC实体在接收到来自本地UE的BSR且所述BSR中包含某个逻辑信道或逻辑信道群和/或其缓存大小时,将所述逻辑信道或逻辑信道群的BSR信息指示上层。对于仅指示部分逻辑信道或逻辑信道群的BSR信息的实现方式,所述指示标识可以与某个逻辑信道或逻辑信道群一一对应,例如所述指示标识包含在逻辑信道的配置信息中,当所述标识出现或取值为1或真时,将对应的BSR信息指示给上层,当所述标识不出现或取值为0或假时,不将对应的BSR信息指示给上层;又例如指示标识中指明哪些逻辑信道或逻辑信道群的BSR信息指示给上层,这可以通过一个位图实现(按照逻辑信道或逻辑信道群标识从小到大或从大到小依次对应位图中各位,当位图中相应位置取值为1时,向上层指示对应逻辑信道或逻辑信道群的BSR信息),或通过逻辑信道列表或逻辑信道群列表实现,只有当逻辑信道或逻辑信道群出现在所述列表中,才向上层指示对应逻辑信道或逻辑信道群的BSR信息。需要说明的是,所述向上层指示逻辑信道或逻辑信道群的BSR信息是只有在接收到来自本地UE的BSR中包含对应逻辑信道或逻辑信道群的缓存大小(缓存大小不为0)时才指示。
其次,使用图7描述IAB节点中适配实体执行的方法。
图7是本公开实施例涉及的IAB节点中的适配实体的执行方法的框图。
如图7所示,在步骤S701,适配实体接收由下层指示的BSR信息和/或适配BSR。
在步骤S702,在接收到由下层指示的所述BSR信息和/或所述适配BSR时,所述适配实体构建新的适配BSR。构建的所述新的适配BSR中可以包 含多个下层指示的BSR信息(或基于来自多个本地UE的BSR的BSR信息)。此外,如果适配实体中存在接收到来自其他IAB节点的适配BSR,适配实体所构建的新的适配BSR中还可以包含所接收到的适配BSR的信息。换言之,适配实体所构建的新的适配BSR中逻辑信道或逻辑信道群对应的缓存大小是BSR信息指示的对应逻辑信道或逻辑信道群的缓存大小和接收到的适配BSR所包含的对应逻辑信道或逻辑信道群的缓存大小的和。
另外,所述BSR信息可以来自多个下层实体(或基于来自多个本地UE的BSR的BSR信息)。
在步骤S703,所述适配实体将构建的所述新的适配BSR或由下层指示的所述适配BSR递交给下层(例如RLC层或MAC层)以发送给下一跳。所述下一跳可以是IAB节点或IAB施主(例如,IAB节点DU或IAB施主DU)。
具体的,适配BSR可以基于逻辑信道或逻辑信道群。
在一个实施例中,适配BSR可以包括以下字段(或称为域):D/C、目的地址、逻辑信道标识及逻辑信道对应的缓存大小。其中,D/C域用于指示对应数据(或称适配PDU)的类型,D/C域可以占1(或2或3或4)个比特,根据取值来指示对应的数据是适配BSR(例如D/C域取值为0或01或001或0001时,适配PDU为适配BSR);或者,D/C域指示适配PDU是适配控制PDU还是适配数据PDU(例如D/C域取值为0时,适配PDU为适配控制PDU,D/C域取值为1时,适配PDU为适配数据PDU,反之亦然),此时,定义一个控制PDU类型字段CPT(CPT域可以占1或2或3比特),用于指示控制PDU的类型(例如,当CPT域取值为0或00或000时,表示对应的控制PDU是适配BSR)。目的地址域是适配BSR(或适配PDU)最终要发送到的目的地址(例如目的IAB-donor DU的地址)。LCID域的取值可以是逻辑信道标识,此时,如果某个逻辑信道对应的缓存大小不为0(例如有数据要发送或预期有数据要发送),则将所述逻辑信道的逻辑信道标识包含在适配BSR中;可以按照逻辑信道标识由大到小或由小到大的顺序依次指示逻辑信道及其对应的缓存大小。图3是示出包含逻辑信道标识的适配BSR的示意图。其中可以包含扩展指示位E,用于指示随后是否包含LCID及其对应的缓存大小和扩展指示位的集合。例如,如果扩展指示位取值为0, 表示随后没有LCID及其对应的缓存大小和扩展指示位的集合;如果扩展指示位取值为1,表示随后跟随有LCID及其对应的缓存大小和扩展指示位的集合;反之亦然。
在一个实施例中,适配BSR可以包括以下字段(或称为域):D/C、目的地址、逻辑信道标识对应的位图及逻辑信道对应的缓存大小。其中,D/C域用于指示对应数据(或称适配PDU)的类型,D/C域可以占1(或2或3或4)个比特,按照其取值来指示对应的数据(或称适配PDU)是适配BSR(例如D/C域取值为0或01或001或0001时,适配PDU为适配BSR);或者,D/C域指示适配PDU是适配控制PDU还是适配数据PDU(例如D/C域取值为0时,适配PDU为适配控制PDU,D/C域取值为1时,适配PDU为适配数据PDU,反之亦然),此时,定义一个控制PDU类型字段CPT(CPT域可以占1或2或3比特),用于指示控制PDU的类型(例如,当CPT域取值为0或00或000时,表示对应的控制PDU是适配BSR)。目的地址是适配BSR(或称适配PDU)最终要发送到的目的地址(例如目的IAB-donor DU的地址)。适配BSR中包含一个位图,按照逻辑信道标识由大到小或由小到大的顺序依次对应位图中的各位(例如,按照从左到右或从右到左的顺序映射到位图中各位)。位图的长度可以是配置的逻辑信道数或是最大可配置的逻辑信道数。如果适配BSR中同时包含SRB和DRB对应的缓存大小,则可以按照先SRB后DRB(或先DRB后SRB)且在SRB和DRB之间又按照承载标识或逻辑信道标识从大到小或从小到大的顺序映射到位图中的各位。如果某个承载或逻辑信道对应位图中的位设置为1,则其对应的缓存大小域被报告(即包含在适配BSR中),如果某个承载或逻辑信道对应位图中的位设置为0,则其对应的缓存大小域未被报告(即不包含在适配BSR中)。反之亦然。图4是示出包含逻辑信道标识对应的位图的适配BSR的示意图。
在一个实施例中,适配BSR可以包括以下字段(或称为域):D/C、目的地址、逻辑信道群对应的位图及逻辑信道群对应的缓存大小。其中,D/C域用于指示对应数据(或称适配PDU)的类型,D/C域可以占1(或2或3或4)个比特,按照其取值来指示对应的数据是适配BSR(例如D/C域取值为0或01或001或0001时,适配PDU为适配BSR);或者,D/C域指 示适配PDU是适配控制PDU还是适配数据PDU(例如D/C域取值为0时,适配PDU为适配控制PDU,D/C域取值为1时,适配PDU为适配数据PDU,反之亦然),此时,定义一个控制PDU类型字段CPT(CPT域可以占1或2或3比特),用于指示控制PDU的类型(例如,当CPT域取值为0或00或000时,表示对应的控制PDU是适配BSR)。目的地址是适配BSR最终要发送到的目的地址(例如目的IAB-donor DU的地址)。位图中LCG i位被设置为1时指示逻辑信道群i的缓存大小域被报告(换言之,适配BSR中包含对应的域);位图中LCG i位被设置为0时指示逻辑信道群i的缓存大小域未被报告(换言之,适配BSR中未包含对应的域)。图5是示出包含逻辑信道群对应的位图的适配BSR的示意图。
需要说明的是,适配BSR还可以包括未在上述实施例中定义的其他字段。适配BSR可以是字节对齐的,不足部分用0补齐。在上述适配BSR的实施例中,目的地址字段可以根据步骤S101中接收到的BSR指示的预期到达的数据的目的地址确定(例如,所述目的地址字段的取值就是预期到达的数据的目的地址)。在上述基于逻辑信道或逻辑信道群的适配BSR实施例中都只定义了一种形式的BSR(可称为长BSR),但还可以为基于逻辑信道或逻辑信道群的适配BSR定义两种或两种以上的适配BSR,并在适配PDU的头部指示适配BSR的类型,这可以通过定义一个不同于D/C域(或称为数据控制指示域)的域来指示适配BSR的类型,也可以在D/C域中指示(即通过D/C域的不同取值指示不同类型的适配BSR)。例如适配BSR分成短适配BSR和长适配BSR。其中,短适配BSR中只包含一个逻辑信道标识或逻辑信道群标识域及逻辑信道或逻辑信道群对应的缓存大小域。如果只有一个逻辑信道或逻辑信道群的缓存大小不为0,可以用短适配BSR。
优选的,如果接收到适配BSR的所述下一跳是IAB节点,则将所述接收到的适配BSR递交给下层(例如RLC)。所述下层根据接收逻辑信道和发送逻辑信道间的映射关系确定。
或者,也可以设为,如果接收到适配BSR的所述下一跳是IAB节点且其下一跳不是IAB施主(例如,IAB施主DU)或最终目的地,则将所述接收到的适配BSR递交给下层(例如RLC)。
备选的,如果接收到适配BSR的是IAB节点,则按照接收逻辑信道与发送逻辑信道的映射关系,生成新的适配BSR并递交给下层。所述新产生的适配BSR可以通过将所述接收到的适配BSR中的接收逻辑信道标识替换为发送逻辑信道的逻辑信道标识得到。所述新产生的适配BSR也可以是接收到的多个适配BSR按照接收逻辑信道与发送逻辑信道的映射关系重新产生的。例如,新产生的适配BSR中某个逻辑信道的缓存大小是多个映射到同一发送逻辑信道的接收逻辑信道的缓存大小的和。
或者,也可以设为,如果接收到适配BSR的是IAB节点且其下一跳不是IAB施主(例如,IAB施主DU)或最终目的地,则按照接收逻辑信道与发送逻辑信道的映射关系,生成新的适配BSR并递交给下层。所述新产生的适配BSR可以通过将所述接收到的适配BSR中的接收逻辑信道标识替换为发送逻辑信道的逻辑信道标识得到。所述新产生的适配BSR也可以是接收到的多个适配BSR按照接收逻辑信道与发送逻辑信道的映射关系重新产生的。例如,新产生的适配BSR中某个逻辑信道的缓存大小是多个映射到同一发送逻辑信道的接收逻辑信道的缓存大小的和。
在步骤S704,所述适配实体将预期到达的数据量指示给下层。
本公开实施例中所述预期到达的数据量基于BSR信息确定。可选的,如果所述适配实体还接收到来自其他IAB节点(或适配实体)的适配BSR,所述预期到达的数据量还包括所接收到的适配BSR中指示的缓存大小(或数据量)。具体的,所述预期到达的数据量是下层指示的逻辑信道或逻辑信道群的缓存大小和/或适配BSR中包含的逻辑信道或逻辑信道群的缓存大小。
最后,使用图8描述IAB节点中发送BSR的MAC实体执行的方法。
图8是本公开实施例涉及的IAB节点中发送BSR的MAC实体的执行方法的流程图。
如图8所示,在步骤S801,MAC实体接收来自上层的适配BSR。
在步骤S802,所述MAC实体生成BSR。
在步骤S803,所述MAC实体将生成的所述BSR和/或接收到的所述适配BSR发送给下一跳。所述下一跳可以是IAB节点或IAB施主。
变形例
下面,利用图9来说明作为一种变形例的可执行本公开上面所详细描述的IAB网络的执行方法以及MAC实体的执行方法和适配实体的执行方法的通信设备。
图9是示出本公开实施例涉及的通信设备的简要结构框图。
如图9所示,该通信设备900至少包括处理器901和存储器902。处理器901例如可以包括微处理器、微控制器、嵌入式处理器等。存储器902例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统等。存储器902上存储有程序指令。该指令在由处理器901运行时,可以执行本公开的上述图1~2所描述的IAB网络的执行方法中的一个或几个步骤,并且可以执行本开的上述图6~8所描述的MAC实体执行的方法和适配实体执行的方法。
以下,对本公开所涉及的IAB节点以及MAC实体、适配实体等实体给出进一步的说明。
本公开实施例中,适配层的数据可以分别称为适配SDU(其中不包含适配层的头部)和适配PDU(其中包含适配层的头部),其中适配PDU又可分为适配数据PDU和适配控制PDU。
基于IAB节点中配置的转发数据的规则(即来自某个端口或RLC实体或适配实体的数据应通过哪个端口或RLC实体或适配实体发送),本公开中接收逻辑信道与发送逻辑信道的映射关系可以替换为接收RLC实体(或RLC实体接收端)与发送RLC实体(或RLC实体发送端)间的映射关系,也可以替换为接收适配实体(或适配实体接收端)与发送适配实体(或适配实体发送端)的映射关系,还可以替换为转发数据的配置,这几种描述均可相互替换。
在本公开实施例中,所述适配实体的下层可以是RLC层或MAC层。如果DU和/或MT与适配实体之间是一对一的映射关系(即一个DU或MT中定义一个适配实体),在进行数据传输时,接收适配实体(或IP层或实现路由功能的实体)要根据目的地址或IAB-donor DU的地址(例如IAB-donor  DU的IP地址)选择对应的发送适配实体(或MT适配实体)。如果DU和/或MT与适配层之间是多对一的映射关系(即多个DU和/或MT中定义一个适配实体或一个IAB节点或施主中定义一个适配实体),在进行数据传输时,适配实体(或IP层或实现路由功能的实体)根据目的地址或IAB-donor DU的地址(例如IAB-donor DU的IP地址)选择对应的RLC实体。本公开实施例是基于DU和/或MT与适配层之间是多对一的映射关系进行描述的,如果DU和/或MT与适配实体之间是一对一的映射关系,则接收适配实体(或IP层或实现路由功能的实体)在转发数据时需要按照DU和/或MT与适配实体之间的对应关系选择发送适配实体。上述发送适配实体也可以用于接收数据,接收适配实体也可以发送数据,在这种情形下,发送适配实体和接收适配实体都可称为适配实体;或者发送适配实体称为适配实体的发送端,接收适配实体称为适配实体的接收端。另外,本公开中将路由功能整合在适配实体中,如果路由功能属于适配实体的上层实体,则接收适配实体在接收到需要转发的数据后,发送给上层,上层按照目的地址将数据路由(或递交)到对应的发送适配实体。本公开实施例中,适配BSR中的目的地址可以不包含在适配BSR中,例如,作为目的IP地址包含在IP报文的头部。本公开中,如未特别说明,对于上行,目的地址可以指IAB-donor(或IAB-donor DU)的地址,例如IAB-donor(或IAB-donor DU)的IP地址;对于下行,目的地址可以指IAB-node(或IAB-node MT)的地址,例如IAB-nod(或IAB-node MT)的IP地址;对于下行,目的地址也可以是UE的标识,例如C-RNTI。
在本公开实施例中,对于上行,用于接收数据的IAB节点可以是IAB节点的DU,用于接收数据的IAB施主可以是IAB施主的DU。对于下行,用于接收数据的IAB节点可以是IAB节点的MT。
上文已经结合优选实施例对本公开的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。
上面示出的用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的 各种标识仅是示例性的而不是限制性的,本公开并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本公开的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
在本申请中,“基站”可以指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”可以指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
运行在根据本发明的设备上的计算机可执行指令或者程序可以是通过控制中央处理单元(CPU)来使计算机实现本发明的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本发明各实施例功能的计算机可执行指令或程序可以记录在计算机可读存储介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读存储介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态 机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本发明的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本发明并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本发明并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (10)

  1. 一种MAC实体的执行方法,是IAB节点中配置的MAC实体执行的方法,所述MAC实体的执行方法包括:
    MAC实体接收来自用户设备的BSR或来自IAB节点的BSR和/或适配BSR;和
    在接收到来自用户设备的BSR时,所述MAC实体将BSR信息指示给上层,在接收到来自IAB节点的BSR和/或适配BSR时,所述MAC实体将BSR信息和/或所述适配BSR指示给上层。
  2. 根据权利要求1所述的MAC实体的执行方法,其中,
    所述BSR信息是以下之一:
    (1)接收到的所述BSR中携带的每个逻辑信道的缓存大小;
    (2)接收到的所述BSR中携带的每个逻辑信道及其缓存大小;
    (3)接收到的所述BSR中携带的每个逻辑信道群的缓存大小;
    (4)接收到的所述BSR中携带的每个逻辑信道群及其缓存大小;以及
    (5)接收到的所述BSR。
  3. 根据权利要求1所述的MAC实体的执行方法,其中,
    所述适配BSR包括D/C、目的地址和以下之一:
    (1)逻辑信道标识及逻辑信道对应的缓存大小;
    (2)逻辑信道标识对应的位图及逻辑信道对应的缓存大小;以及
    (3)逻辑信道群对应的位图及逻辑信道群对应的缓存大小。
  4. 一种适配实体的执行方法,是IAB节点中配置的适配实体执行的方法,所述适配实体的执行方法包括:
    适配实体接收由下层指示的BSR信息和/或适配BSR;
    在接收到由下层指示的所述BSR信息和/或所述适配BSR时,所述适配实体构建新的适配BSR;和
    所述适配实体将构建的所述新的适配BSR或由下层指示的所述适配BSR递交给下层以发送给下一跳。
  5. 根据权利要求4所述的适配实体的执行方法,其中,
    所述适配实体将预期到达的数据量指示给下层。
  6. 根据权利要求4~5中任一项所述的适配实体的执行方法,其中,
    所述适配BSR包括D/C、目的地址和以下之一:
    (1)逻辑信道标识及逻辑信道对应的缓存大小;
    (2)逻辑信道标识对应的位图及逻辑信道对应的缓存大小;以及
    (3)逻辑信道群对应的位图及逻辑信道群对应的缓存大小。
  7. 根据权利要求5所述的IAB网络的执行方法,其中,
    所述下层是BSR中报告的数据的目的地址对应的下层或者所述预期到达的数据的目的地址对应的下层。
  8. 根据权利要求4所述的IAB网络的执行方法,其中,
    如果接收到所述适配BSR的所述下一跳是IAB节点且其下一跳不是IAB施主,则将接收到的所述适配BSR递交给下层。
  9. 根据权利要求4所述的IAB网络的执行方法,其中,
    如果接收到所述适配BSR的所述下一跳是IAB节点且其下一跳不是IAB施主,则按照接收逻辑信道与发送逻辑信道的映射关系,生成新的适配BSR并递交给下层。
  10. 一种通信设备,是具有MAC实体和适配实体的通信设备,包括:
    处理器;以及
    存储器,在存储器上存储有指令,
    指令在由处理器运行时,使通信设备执行权利要求1~3中任一项所述的MAC实体的执行方法和/或权利要求4~9中任一项所述的适配实体的执行方法。
PCT/CN2020/073182 2019-01-28 2020-01-20 Iab网络、mac实体和适配实体的执行方法以及通信设备 WO2020156316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910083881.0A CN111491388A (zh) 2019-01-28 2019-01-28 Iab网络、mac实体和适配实体的执行方法以及通信设备
CN201910083881.0 2019-01-28

Publications (1)

Publication Number Publication Date
WO2020156316A1 true WO2020156316A1 (zh) 2020-08-06

Family

ID=71811540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073182 WO2020156316A1 (zh) 2019-01-28 2020-01-20 Iab网络、mac实体和适配实体的执行方法以及通信设备

Country Status (2)

Country Link
CN (1) CN111491388A (zh)
WO (1) WO2020156316A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547435A (zh) * 2008-03-25 2009-09-30 大唐移动通信设备有限公司 一种缓存状态上报的方法和装置
US20180332498A1 (en) * 2017-05-09 2018-11-15 Qualcomm Incorporated Signaling for report configurations

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547435A (zh) * 2008-03-25 2009-09-30 大唐移动通信设备有限公司 一种缓存状态上报的方法和装置
US20180332498A1 (en) * 2017-05-09 2018-11-15 Qualcomm Incorporated Signaling for report configurations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Pre-BSR Enabling Fast Scheduling", 3GPP TSG-RAN AH-1807, R2-1810700, 6 May 2018 (2018-05-06), XP051526458, DOI: 20200316170105X *

Also Published As

Publication number Publication date
CN111491388A (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
RU2693859C1 (ru) Эффективные механизмы планирования восходящей линии связи для двойного соединения
AU2018286127B2 (en) Radio configuration method and corresponding user equipment
WO2018171546A1 (zh) 用户设备和基站处执行的方法及相应的设备
WO2020103842A1 (zh) 一种通信方法及装置
JP6463839B2 (ja) モバイル環境におけるフローベースのアドレス指定のためのシステム及び方法
US11381994B2 (en) Method for delivering data packet, user equipment, and base station
WO2018171512A1 (zh) 无线配置方法、用户设备和基站
WO2018228289A1 (zh) 基站、用户设备和相关方法
JP2020504517A (ja) 無線通信システムにおいてサービス品質(QoS)フロー基盤のULパケットを送信する方法及びそのための装置
JP2020507976A (ja) 無線通信システムにおいて反映式サービス品質(QoS)を行うための方法及びそのための装置
WO2021027860A1 (zh) 路由方法、bsr的生成方法、装置和存储介质
JP2012529206A (ja) 基地局と中継ノードの間のインタフェースを介してのQoS多重化
WO2020119638A1 (zh) 用户设备及其方法、基站及其方法
WO2020098747A1 (zh) 传输路径的配置方法及装置
WO2018000220A1 (zh) 数据传输方法、数据传输装置及系统
WO2016074211A1 (zh) 一种数据转发的方法和控制器
WO2020192654A1 (zh) 配置无线链路控制rlc承载的方法和装置
JP2021513291A (ja) バッファ状態報告のための方法および装置、ならびにコンピュータ記憶媒体
WO2020151648A1 (zh) 适配实体和rlc实体的无线通信方法及通信设备
WO2021174377A1 (zh) 切换方法和通信装置
WO2020156316A1 (zh) Iab网络、mac实体和适配实体的执行方法以及通信设备
US20220182910A1 (en) Data Processing Method, Apparatus, And System
WO2022135336A1 (zh) QoS分割和携带方法、对象侧QoS确定方法及UE
WO2018054336A1 (zh) 消息的发送方法和装置
WO2021223623A1 (zh) 针对信令无线承载pdcp重复的配置方法及rrc实体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748470

Country of ref document: EP

Kind code of ref document: A1