WO2018000220A1 - 数据传输方法、数据传输装置及系统 - Google Patents

数据传输方法、数据传输装置及系统 Download PDF

Info

Publication number
WO2018000220A1
WO2018000220A1 PCT/CN2016/087578 CN2016087578W WO2018000220A1 WO 2018000220 A1 WO2018000220 A1 WO 2018000220A1 CN 2016087578 W CN2016087578 W CN 2016087578W WO 2018000220 A1 WO2018000220 A1 WO 2018000220A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
access network
terminal
mapping table
uplink data
Prior art date
Application number
PCT/CN2016/087578
Other languages
English (en)
French (fr)
Inventor
洪伟
周珏嘉
张明
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2016/087578 priority Critical patent/WO2018000220A1/zh
Priority to CN201680000730.9A priority patent/CN106134274A/zh
Priority to JP2017508484A priority patent/JP2018521518A/ja
Publication of WO2018000220A1 publication Critical patent/WO2018000220A1/zh
Priority to US16/229,311 priority patent/US10778590B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a data transmission method, a data transmission apparatus, and a system.
  • LTE-WLAN Aggregations LTE-WLAN Aggregations, LWA
  • LTE-WLAN Aggregations LTE-WLAN Aggregations, LWA
  • LTE Long Term Evolution
  • WLAN Wireless Local Area Networks
  • the 3rd Generation Partnership Project (3GPP) currently only discusses the downlink data transmission of the LWA, and the downlink data transmission process includes: the evolved base station (eNB) uses the LWA for downlink data. During transmission, the eNB transmits a part of the downlink data to the user equipment (User Equipment, UE) through the LTE link, and transmits the remaining part of the downlink data through the WLAN link according to the medium access control (MAC) address of the UE. To the UE; the UE aggregates the two pieces of data received, thereby implementing downlink transmission of data.
  • the evolved base station eNB uses the LWA for downlink data.
  • the eNB uses the LWA for downlink data.
  • the eNB uses the LWA for downlink data.
  • the eNB uses the LWA for downlink data.
  • the eNB uses the LWA for downlink data.
  • the eNB uses the LWA for downlink data.
  • the eNB transmits a part of the downlink data
  • the present disclosure provides a data transmission method, a data transmission device, and a system.
  • the technical solution is as follows:
  • a data transmission method comprising:
  • a quality of service QOS level mapping table delivered by the access network device receives, by the terminal, a quality of service QOS level mapping table delivered by the access network device, where the QOS level mapping table includes a correspondence between the quality of service level identifier QCI and the access level AC;
  • the terminal receives the QCI configured by the access network device as the radio bearer, where the radio bearer is a radio bearer established between the terminal and the access network device, and the radio bearer is used to transmit the first uplink data.
  • the terminal queries the AC corresponding to the QCI according to the QOS level mapping table
  • the terminal uses the AC to send the second uplink data to the access network device through the WLAN link of the wireless local area network;
  • the first uplink data and the second uplink data are data that are transmitted by using aggregation.
  • the terminal receives the quality of service QOS level mapping table delivered by the access network device, including:
  • the terminal receives the system information broadcasted by the access network device, and the specified system information block SIB of the system information includes a QOS level mapping table, and the designated SIB is the original SIB or the newly added SIB in the system information.
  • the terminal uses the AC to send the second uplink data to the access network device by using the WLAN link of the wireless local area network, including:
  • the terminal sends the second uplink data to the access network device through the WLAN link, and the QOS control domain of the MAC frame header of the second uplink data carries the AC.
  • the method further includes:
  • the network parameter includes at least one of a network congestion parameter, a data packet transmission rate, a data packet delay parameter, and a data packet loss parameter.
  • a data transmission method comprising:
  • the access network device sends a quality of service QOS level mapping table to the terminal, where the QOS level mapping table includes a correspondence between the quality of service level identifier QCI and the access level AC;
  • the access network device configures the QCI to the radio bearer corresponding to the terminal, where the radio bearer is a radio bearer established between the terminal and the access network device, and the radio bearer is used to transmit the first uplink data.
  • the access network device receives the second uplink data that is sent by the terminal through the WLAN link of the wireless local area network, and the AC corresponding to the second uplink data is the AC corresponding to the QCI in the QOS level mapping table;
  • the first uplink data and the second uplink data are data that are transmitted by using aggregation.
  • the quality of service QOS level mapping table sent by the access network device to the terminal includes:
  • the access network device broadcasts a QOS level mapping table in the designated system information block SIB of the system information, and the designated SIB is the original SIB or the newly added SIB in the system information.
  • the data transmission method further includes:
  • the access network device obtains network parameters, where the network parameters include: at least one of a network congestion parameter, a data packet transmission rate, a data packet delay parameter, and a data packet loss parameter;
  • the access network device updates the QOS level mapping table according to the network parameters
  • the access network device sends the updated QOS level mapping table to the terminal.
  • a data transmission apparatus comprising:
  • the receiving module is configured to receive a quality of service QOS level mapping table delivered by the access network device, where the QOS level mapping table includes a correspondence between the quality of service level identifier QCI and the access level AC;
  • the receiving module is configured to receive the QCI configured by the access network device as the radio bearer, where the radio bearer is a radio bearer established between the terminal and the access network device, and the radio bearer is used to transmit the first uplink data.
  • the processing module is configured to query an AC corresponding to the QCI according to the QOS level mapping table
  • a sending module configured to send, by using an AC, a second uplink data to the access network device by using a wireless local area network (WLAN) link;
  • WLAN wireless local area network
  • the first uplink data and the second uplink data are data that are transmitted by using aggregation.
  • the receiving module is configured to receive system information broadcast by the access network device, where the designated system information block SIB of the system information includes a QOS level mapping table, and the designated SIB is the original SIB or new in the system information. Increased SIB.
  • the sending module is configured to send the second uplink data to the access network device by using the WLAN link, where the QOS control domain of the MAC frame header of the second uplink data carries the AC.
  • the apparatus further includes:
  • the receiving module is further configured to receive a QOS level mapping table updated by the access network device, where the updated QOS level mapping table is updated by the access network device according to the network parameter;
  • the network parameter includes at least one of a network congestion parameter, a data packet transmission rate, a data packet delay parameter, and a data packet loss parameter.
  • a data transmission apparatus comprising:
  • a sending module configured to send a quality of service QOS level mapping table to the terminal, where the QOS level mapping table includes a correspondence between the quality of service level identifier QCI and the access level AC;
  • the sending module is configured to configure a QCI to the radio bearer corresponding to the terminal, where the radio bearer is a radio bearer established between the terminal and the access network device, and the radio bearer is used to transmit the first uplink data.
  • the receiving module is configured to receive second uplink data that is sent by the terminal through the WLAN link of the wireless local area network, and the AC corresponding to the second uplink data is an AC corresponding to the QCI in the QOS level mapping table;
  • the first uplink data and the second uplink data are data that are transmitted by using aggregation.
  • the sending module is configured to broadcast a QOS level mapping table in the specified system information block SIB of the system information, where the SIB is the original SIB or the newly added SIB in the system information.
  • the device further includes:
  • the processing module is configured to acquire network parameters, where the network parameters include: at least one of a network congestion parameter, a data packet transmission rate, a data packet delay parameter, and a data packet loss parameter;
  • a processing module configured to update a QOS level mapping table according to network parameters
  • the sending module is configured to send the updated QOS level mapping table to the terminal.
  • a terminal comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the QOS level mapping table includes a correspondence between the quality of service level identifier QCI and the access level AC;
  • Radio bearer is a radio bearer established between the terminal and the access network device, and the radio bearer is used to transmit the first uplink data
  • the first uplink data and the second uplink data are data that are transmitted by using aggregation.
  • an access network device comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the QOS level mapping table includes a correspondence between the quality of service level identifier QCI and the access level AC;
  • the radio bearer is a radio bearer established between the terminal and the access network device, and the radio bearer is used to transmit the first uplink data.
  • the terminal Receiving, by the terminal, the second uplink data that is sent by the WLAN link of the wireless local area network, where the AC corresponding to the second uplink data is an AC corresponding to the QCI in the QOS level mapping table;
  • the first uplink data and the second uplink data are data that are transmitted by using aggregation.
  • a data transmission system comprising: an access network device and a terminal;
  • An access network device comprising the data transmission device of the fourth aspect; the terminal, comprising the data transmission device of the third aspect; or
  • the access network device is an access network device as in the sixth aspect; the terminal is a terminal as in the fifth aspect.
  • the terminal By configuring the QOS level mapping table and the QCI to the terminal by the access network device, the terminal queries the AC corresponding to the QCI in the QOS level mapping table, and the terminal accesses the access network device according to the QCI on the mobile communication link (such as the LTE link). Sending the first uplink data, and transmitting the second uplink data to the access network device according to the AC on the WLAN link; solving the problem of how to ensure the QOS requirement in the uplink data transmission in the LWA scenario; reaching the terminal in the mobile communication chain On the road and WLAN links, the same or similar QOS level can be used for uplink data transmission, so that the quality of service can be guaranteed on both streams.
  • the mobile communication link such as the LTE link
  • FIG. 1 is a schematic structural diagram of a data transmission system according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a flow chart showing a data transmission method provided by an exemplary embodiment
  • FIG. 3 is a flow chart showing a data transmission method provided by another exemplary embodiment
  • FIG. 4 is a block diagram showing the structure of a data transmission apparatus provided by an exemplary embodiment
  • FIG. 5 is a block diagram showing the structure of a data transmission device provided by another exemplary embodiment.
  • FIG. 6 is a schematic structural diagram of a terminal provided by an exemplary embodiment
  • FIG. 7 is a schematic structural diagram of an access network device according to an exemplary embodiment
  • Figure 8 shows a block diagram of a data transmission system provided by an exemplary embodiment.
  • the "module” mentioned in this article is considered to be stored in memory to enable certain functions.
  • the program or instruction; or, the “module” is considered to refer to a functional structure divided by logic, implemented by pure hardware, or a combination of hardware and software.
  • Multiple as referred to herein means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the symbol “/” generally indicates that the contextual object is an "or" relationship.
  • Access network device A network element used to provide access functions of a mobile communication network in a mobile communication system.
  • the access network device is a Global System for Mobile communication (GSM) or a base station (BTS, Base Transceiver Station) in Code Division Multiple Access (CDMA).
  • the access network device is a base station (NodeB) in a Universal Mobile Telecommunications System (UMTS).
  • the access network device is an evolved base station (eNB or e-NodeB) in Long Term Evolution (LTE).
  • the specific implementation form of the access network device may be a macro base station, a micro base station, a pico base station, a repeater, and the like.
  • Terminal An electronic device used by a user in a mobile communication system.
  • terminals In different mobile communication systems, terminals have the same or similar functions, but may have different names or specific implementations.
  • the terminal may be a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, an Access Point, and a Remote Remote Terminal, Access Terminal, User Terminal, User Agent, User Device, or User Equipment (UE).
  • UE User Equipment
  • the specific implementation form of the terminal may be a mobile phone, a tablet computer, a smart home appliance, a smart instrument, an Internet of Things device, a car network device, or the like.
  • the specific number and specific installation location of the terminal are not limited in the embodiment of the present disclosure.
  • WLAN Termination A logical network element defined in the LWA system with management functions for WLAN access points (APs).
  • the WT and the eNB are connected one-to-one and are usually fixed together.
  • One The WT can be connected to multiple WLAN APs at the same time, and is responsible for monitoring and managing each WLAN AP connected to it.
  • the access network device transmits the downlink data packet to the terminal through the WLAN link, or receives the uplink data packet transmitted by the terminal through the WLAN link, and the downlink data packet and the uplink data packet are both connected to the access network device. WT.
  • AP A node used to provide wireless LAN access capability to a terminal in a WLAN.
  • FIG. 1 is a schematic structural diagram of a data transmission system according to an exemplary embodiment of the present disclosure.
  • the data transmission system includes: an access network device 110, a WT 120, a WLAN AP 130, and a terminal 140.
  • the access network device 110 is an eNB in LTE.
  • the access network device 110 has a function of transmitting downlink data through an LTE link and a WLAN link, and the access network device 110 also has a function of receiving uplink data through an LTE link and a WLAN link.
  • the access network device 110 can encapsulate the data from the core network into The first downlink data and the second downlink data, and the first downlink data is sent to the terminal through the LTE link, and the second downlink data is sent to the terminal through the WLAN link; the access network device 110 can also pass the LTE link.
  • the first uplink data is received, the second uplink data is received by the WLAN link, the received first uplink data and the second uplink data are aggregated, and the aggregated uplink data is sent to the core network.
  • the access network device 110 is connected to the WT 120 in a one-to-one manner.
  • the access network device 110 can be fixed to the WT 120, for example, on the same motherboard.
  • the access network device 110 and the WT 120 are connected through an optical fiber.
  • the access network device 110 is correspondingly connected to the WT 120.
  • the WT 120 has a function of transmitting second downlink data and receiving second uplink data.
  • the WT 120 can be connected to multiple WLAN APs 130 at the same time, and receive the second uplink data sent by each WLAN AP 130 or the second downlink data to the connected WLAN AP 130.
  • the number of WLAN APs 130 connected to the WT 120 is not limited in the embodiment of the present disclosure.
  • the WLAN AP 130 has a function of transmitting second downlink data and receiving second uplink data.
  • the WLAN AP 130 may be an electronic device such as a wireless router or a wireless gateway.
  • the WLAN AP 130 can be connected to multiple WTs 120 at the same time.
  • the terminal 140 has a function of transmitting first uplink data and second uplink data, and receiving first downlink data and second downlink data.
  • the terminal 140 further has an LWA function, that is, when the received downlink data includes the first downlink data and the second downlink data, the terminal 140 can aggregate the first downlink data and the second downlink data.
  • the terminal 140 further has the uplink data divided into the first uplink.
  • the data and the second uplink data are used to send the first uplink data to the access network device 110 through the LTE link, and send the second uplink data to the access network device 110 through the WLAN link.
  • the specific number and specific location of the terminal 140 are not limited in the embodiment of the present disclosure.
  • FIG. 2 shows a flow chart of a data transmission method provided by an exemplary embodiment. This embodiment is exemplified by the data transmission method applied to the data transmission system shown in FIG. 1, and the method includes:
  • Step 201 The access network device sends a QOS level mapping table to the terminal.
  • the QOS level mapping table includes a correspondence between a QoS Class Identifier (QCI) and an Access Level (AC).
  • QCI is a parameter that indicates a QoS level in a mobile communication system.
  • the mobile communication system is an LTE system.
  • the AC is a parameter that indicates the QoS level in the WLAN system.
  • Step 202 The terminal receives a QOS level mapping table sent by the access network device.
  • Step 203 The access network device configures a QCI to the radio bearer corresponding to the terminal.
  • the radio bearer is a radio bearer established between the terminal and the access network device, and the radio bearer is used to transmit the first uplink data.
  • the radio bearer refers to a Data Radio Bearer (DRB).
  • DRB Data Radio Bearer
  • the access network device configures each corresponding radio bearer with a corresponding QCI.
  • Step 204 The terminal receives a QCI configured by the access network device as a radio bearer.
  • Step 205 The terminal queries the AC corresponding to the QCI according to the QOS level mapping table.
  • Step 206 The terminal sends, by using the AC, the second uplink data to the access network device by using the WLAN link.
  • Step 207 The access network device receives the second uplink data sent by the terminal through the WLAN link.
  • the AC corresponding to the second uplink data is obtained by the terminal according to the QCI query in the QoS level mapping table.
  • the first uplink data and the second uplink data are data that are transmitted by using aggregation.
  • the QOS level mapping table and the QCI are configured by the access network device to the terminal, and the terminal queries the AC corresponding to the QCI in the QOS level mapping table, and the terminal performs the mobile communication according to the QCI.
  • the first uplink data is sent to the access network device on the link (such as the LTE link), and the second uplink data is sent to the access network device according to the AC on the WLAN link.
  • How to ensure the QOS requirements; achieve the terminal on the mobile communication link and WLAN link can use the same or similar QOS level for uplink data transmission, so as to ensure the quality of service on the dual stream.
  • FIG. 3 shows a flow chart of a data transmission method provided by another exemplary embodiment of the present disclosure. This embodiment is exemplified by the data transmission method applied to the data transmission system shown in FIG. 1, and the method includes:
  • Step 301 The access network device broadcasts a QoS level mapping table in a specified system information block of system information.
  • the QOS level mapping table includes: a correspondence between QCI and AC.
  • the QCI is a parameter that indicates a QoS level in a mobile communication system.
  • the access network device allocates a QCI to a radio bearer (Radio Bearer), and allocates and schedules transmission resources for the radio bearer according to the QCI.
  • a radio bearer is a logical channel for transmitting data corresponding to a service.
  • the QCI ranges from 1 to 9, which correspond to different resource types, different priorities, different delays, and different packet loss rates.
  • Table 1 shows the correspondence between the value, priority, delay, packet loss rate, and example service of the QCI.
  • the AC is a parameter that indicates the QoS level in the WLAN system.
  • an AC is allocated to each data packet at the Medium Access Control (MAC) layer, and then the terminal, the WLAN AP, and the WT perform transmission resource allocation and scheduling according to the AC of each data packet.
  • MAC Medium Access Control
  • WLAN APs divide individual packets into high-to-low order priorities.
  • AC-VO Voice, voice stream
  • AC-VI Video, video stream
  • AC-BE Best-effort, best-effort flow
  • AC-BK Back-ground, background stream
  • Table 2 shows a QoS level mapping table.
  • the access network device can associate two or more QCIs with the same AC.
  • Table 2 is only a schematic description. According to different embodiments, Table 2 may be other structures, which are not limited in this disclosure.
  • the access network device broadcasts the QoS level mapping table through system information.
  • the access network device broadcasts a QoS class mapping table to all terminals in the coverage; optionally, the access network device broadcasts a QoS class mapping table to one or several terminals within the coverage.
  • the system information includes several System Informaion Blocks (SIBs).
  • SIBs System Informaion Blocks
  • the system information of the current LTE system includes 18 SIBs.
  • the access network device broadcasts a QoS level mapping table in a designated SIB of system information.
  • the designated SIB is an existing SIB in the current LTE system, such as SIB1; the designated SIB is a new SIB in the current LTE system, such as SIB19.
  • Step 302 The terminal receives system information broadcasted by the access network device, where the designated SIB of the system information carries a QOS level mapping table.
  • Step 303 The access network device configures a QCI to the radio bearer corresponding to the terminal.
  • the terminal When the terminal accesses the LTE network, the terminal establishes a Radio Resource Control (RRC) connection with the access network device, and establishes at least one radio bearer in the RRC connection.
  • RRC Radio Resource Control
  • the radio bearer may also be referred to as an Evolved Packet System (EPS) bearer, and the radio bearer includes a Signaling Radio Bearer (SRB) and a Data Radio Bearer (DRB).
  • SRB Signaling Radio Bearer
  • DRB Data Radio Bearer
  • the access network device configures each corresponding radio bearer with a corresponding QCI. Take DRB as an example, according to The type of service, the access network device will assign a different DCI to each DRB.
  • Step 304 The terminal receives the QCI configured by the access network device as a radio bearer.
  • Step 305 The terminal sends the first uplink data to the access network device by using the mobile communication link according to the QCI.
  • the mobile communication link is an LTE link.
  • the mobile communication link is a transmission link in 5G.
  • links may also be referred to as connections, bearers, tunnels, tunnels, etc., but any other possible name, but those skilled in the art will recognize that these nouns represent one for transmitting data in a mobile communication system.
  • the route does not constitute a limitation on the meaning of the term link.
  • the access network device allocates and schedules transmission resources to the radio bearer according to the QCI of the radio bearer, and the terminal sends the first uplink data to the access network device according to the transmission resource.
  • Step 306 The access network device receives the first uplink data sent by the terminal through the mobile communication link.
  • Step 307 The terminal queries the AC corresponding to the QCI according to the QoS level mapping table.
  • the terminal queries the AC as AC-VO according to the QoS class mapping table.
  • Step 308 The terminal sends the second uplink data to the access network device by using the AC through the WLAN link.
  • the terminal sends the second uplink data to the access network device by using the WLAN link, where the QOS control domain in the MAC frame header of the second uplink data carries the AC.
  • Table 3 shows the frame structure of the MAC frame.
  • the MAC frame is a MAC frame format specified by the Institute of Electrical and Electronics Engineers (IEEE) 802.11e.
  • the frame control domain to the QoS control domain is the MAC Header of the 802.11e MAC frame, and the rest is the MAC Body of the 802.11e MAC frame.
  • Address 1 is used to indicate the recipient of the data frame
  • address 2 is used to indicate the sender of the data frame
  • address 3 is used to indicate the destination address of the data frame
  • address 4 is used to indicate the source address of the data frame.
  • the QoS control domain occupies two bytes and is used to carry the AC.
  • the frame header portion of the MAC frame carries the same AC, so that the WLAN AP and the WT send corresponding QoS to the data packet according to the AC.
  • Step 309 The access network device receives the second uplink data sent by the terminal through the WLAN link.
  • the WLAN network employs an unlicensed spectrum.
  • the second uplink data is sent from the terminal to the WLAN AP, and then sent by the WLAN AP to the WT, and then forwarded by the WT to the access network device.
  • the access network device receives the second uplink data forwarded by the WT.
  • Step 310 The access network device aggregates the first uplink data and the second uplink data.
  • Step 311 The access network device acquires network parameters.
  • the access network device acquires network parameters in real time, and the network parameter is used to characterize the network between the access network device and the terminal.
  • the network parameter is used to characterize the network of the mobile communication network; optionally, the network parameter is used to characterize the network of the WLAN link.
  • the network parameters include, but are not limited to, at least one of a network congestion parameter, a data packet transmission rate, a packet delay parameter, and a packet loss parameter.
  • the specific form of the network parameters is not limited in the embodiment of the present disclosure.
  • Step 312 The access network device updates the QOS level mapping table according to the network parameter.
  • the network parameter includes a congestion parameter of the WLAN network.
  • the congestion parameter of the WLAN network is greater than the first threshold, the AC corresponding to the at least one QCI is adjusted to a level to ensure that the second uplink data of the terminal can be transmitted to the terminal in time.
  • the access network device performs aggregation.
  • the network parameter includes a data packet transmission rate of the WLAN network.
  • the data packet transmission rate of the WLAN network is greater than the second threshold, the AC corresponding to the at least one QCI is increased by one level to ensure the second uplink data of the terminal. It can be transmitted to the access network device for aggregation in time.
  • the network parameters include a data packet delay parameter and a data packet loss parameter.
  • the data packet delay parameter or the data packet loss parameter exceeds a third threshold, the AC corresponding to the at least one QCI is raised by one level.
  • the manner in which the access network device updates the QoS level mapping table is not limited in the embodiment of the present disclosure.
  • Step 313 The access network device sends the updated QoS level mapping table to the terminal.
  • the access network device broadcasts the updated QOS level mapping table in the designated SIB of the system information, where the designated SIB is an original SIB or a newly added SIB in the system information.
  • Step 314 The terminal receives the updated QoS level mapping table sent by the access network device.
  • the terminal receives the system information broadcast by the access network device, and the system information is carried in the designated SIB. With updated QoS level mapping table.
  • the QOS level mapping table and the QCI are configured by the access network device to the terminal, and the terminal queries the AC corresponding to the QCI in the QOS level mapping table, and the terminal performs the mobile communication according to the QCI.
  • the first uplink data is sent to the access network device on the link (such as the LTE link), and the second uplink data is sent to the access network device according to the AC on the WLAN link.
  • How to ensure the QOS requirements; achieve the terminal on the mobile communication link and WLAN link can use the same or similar QOS level for uplink data transmission, so as to ensure the quality of service on the dual stream.
  • the access network device updates the QOS level mapping table according to the network parameter, and sends the updated QOS level mapping table to the terminal; the QOS level mapping table can be dynamically updated to better adapt to the real-time network situation. Therefore, the quality of service of the aggregated transmission of uplink data is guaranteed.
  • FIG. 4 is a block diagram showing the structure of a data transmission apparatus provided by an exemplary embodiment.
  • the data transmission device can be implemented as a whole or a part of the terminal in FIG. 1 by a dedicated hardware circuit, or a combination of hardware and software.
  • the data transmission device includes:
  • the receiving module 420 is configured to receive a quality of service QOS level mapping table delivered by the access network device, where the QOS level mapping table includes a correspondence between the quality of service level identifier QCI and the access level AC.
  • the receiving module 420 is configured to receive a QCI configured by the access network device as a radio bearer, where the radio bearer is a radio bearer established between the terminal and the access network device, and the radio bearer is used to transmit the first uplink data.
  • the processing module 440 is configured to query an AC corresponding to the QCI according to the QOS level mapping table
  • the sending module 460 is configured to send, by using an AC, the second uplink data to the access network device by using a wireless local area network (WLAN) link;
  • WLAN wireless local area network
  • the first uplink data and the second uplink data are data that are transmitted by using aggregation.
  • the aggregate transmission refers to an LWA aggregate transmission or an eLWA aggregate transmission.
  • the receiving module 420 is configured to receive system information broadcast by the access network device, where the designated system information block SIB of the system information carries a QoS level mapping table, and specifies the SIB. It is the original SIB or the new SIB in the system information.
  • the sending module 460 is configured to send, by using a WLAN link, second uplink data to the access network device, where the QOS control domain in the medium access control MAC frame header of the second uplink data carries the AC. .
  • the apparatus further includes:
  • the receiving module 420 is further configured to receive a QOS level mapping table updated by the access network device, where the updated QOS level mapping table is updated by the access network device according to the network parameter;
  • the network parameter includes at least one of a network congestion parameter, a data packet transmission rate, a data packet delay parameter, and a data packet loss parameter.
  • FIG. 5 is a block diagram showing the structure of a data transmission apparatus provided by an exemplary embodiment.
  • the data transmission device can be implemented as a whole or a part of the access network device in FIG. 1 by a dedicated hardware circuit, or a combination of hardware and software.
  • the data transmission device includes:
  • the sending module 520 is configured to send a quality of service QOS level mapping table to the terminal, where the QOS level mapping table includes a correspondence between the quality of service level identifier QCI and the access level AC;
  • the sending module 520 is configured to configure a QCI to the radio bearer corresponding to the terminal, where the radio bearer is a radio bearer established between the terminal and the access network device, and the radio bearer is used to transmit the first uplink data.
  • the receiving module 540 is configured to receive second uplink data that is sent by the terminal through the WLAN link of the wireless local area network, and the AC corresponding to the second uplink data is an AC corresponding to the QCI in the QOS level mapping table;
  • the first uplink data and the second uplink data are data that are transmitted by using aggregation.
  • the sending module 520 is configured to broadcast a QOS level mapping table in the specified system information block SIB of the system information, where the SIB is the original SIB or the newly added SIB in the system information.
  • the device further includes:
  • the processing module 560 is configured to acquire network parameters, where the network parameters include: at least one of a network congestion parameter, a data packet transmission rate, a data packet delay parameter, and a data packet loss parameter;
  • the processing module 560 is configured to update the QOS level mapping table according to the network parameter
  • the sending module 540 is configured to send the updated QOS level mapping table to the terminal.
  • FIG. 6 shows a schematic structural diagram of a terminal 140 provided by an exemplary embodiment.
  • the terminal 140 includes a processor 61, a memory 62, a transmitter 63, and a receiver 64.
  • the processor 61 is connected to the memory 62.
  • the processor 61 includes one or more processing cores, and the processor 61 executes various functional applications and information processing by running software programs and units.
  • the memory 62 can be used to store one or more program instructions for implementing at least one software program and module.
  • the memory 62 can store an operating system 64, an application module 65 required for at least one function.
  • the processor 61 is operative to execute program instructions in the memory 62 to implement the steps performed by the terminal 140 in the method embodiments above.
  • memory 62 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • the transmitter 63 includes a modem unit and a multiple input multiple output (MIMO) antenna, and the MIMO antenna is an antenna that supports multi-antenna port transceiving.
  • the MIMO antenna comprises at least two transmit antennas.
  • the transmitter 63 is used to implement data and signaling transmission.
  • Receiver 66 includes the same or similar structure as transmitter 63.
  • the receiver 66 includes a modem unit and a MIMO antenna, and the MIMO antenna includes at least two receive antennas.
  • the structure of the terminal 140 shown in FIG. 6 does not constitute a limitation on the terminal 140, and may include more or less components or combinations of certain components, or different component arrangements. .
  • FIG. 7 shows a schematic structural diagram of an access network device 110 provided by an exemplary embodiment.
  • the access network device 110 includes a processor 71, a memory 72, a transmitter 73, and a receiver 74.
  • the processor 71 is coupled to the memory 72.
  • the processor 71 includes one or more processing cores, and the processor 71 executes various functional applications and information processing by running software programs and units.
  • the memory 72 can be used to store one or more program instructions for implementing at least one software program and module.
  • the memory 72 can store an operating system 74, an application module 75 required for at least one function.
  • the processor 71 is operative to execute program instructions in the memory 72 to implement the steps performed by the access network device 110 in the method embodiments above.
  • memory 72 can be any type of volatile or non-volatile storage device or Combined implementations such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable programmable read only memory (EPROM), programmable read only memory (PROM), read only Memory (ROM), magnetic memory, flash memory, disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable programmable read only memory
  • PROM programmable read only memory
  • ROM read only Memory
  • magnetic memory magnetic memory
  • flash memory disk or optical disk.
  • the transmitter 73 includes a modem unit and a multiple input multiple output (MIMO) antenna, and the MIMO antenna is an antenna that supports multi-antenna port transceiving.
  • the MIMO antenna comprises at least two transmit antennas.
  • the transmitter 73 is used to implement data and signaling transmissions.
  • Receiver 76 includes the same or similar structure as transmitter 73.
  • the receiver 76 comprises a modem unit and a MIMO antenna, and the MIMO antenna comprises at least two receive antennas.
  • the structure of the access network device 110 shown in FIG. 7 does not constitute a limitation on the access network device 110, and may include more or less components or combinations of certain components than illustrated. , or different parts layout.
  • FIG. 8 shows a block diagram of a data transmission system provided by an exemplary embodiment.
  • the data transmission system includes: an access network device 82 and a terminal 84;
  • the access network device 82 includes a data transmission device as shown in FIG. 5; the terminal 84 includes a data transmission device as shown in FIG.
  • the access network device 82 is an access network device as shown in FIG. 7; the terminal 84 is the terminal shown in FIG. 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种数据传输方法、数据传输装置及系统,涉及通信领域,该方法包括:终端接收接入网设备下发的QOS等级映射表,QOS等级映射表包括QCI和AC之间的对应关系;终端接收接入网设备为无线承载配置的QCI,无线承载用于传输第一上行数据;终端根据QOS等级映射表,查询与该QCI对应的AC;终端使用该AC通过WLAN链路向接入网设备发送第二上行数据;其中,第一上行数据和第二上行数据是采用聚合传输的数据。本公开达到了终端在移动通信链路和WLAN链路上,能够使用相同或相似的QOS等级进行上行数据传输,从而在双流上都能够保证服务质量的效果。

Description

数据传输方法、数据传输装置及系统 技术领域
本公开涉及通信领域,特别涉及一种数据传输方法、数据传输装置及系统。
背景技术
长期演进-无线局域网聚合(LTE-WLAN Aggregations,LWA)是一种同时利用长期演进(Long Term Evolution,LTE)网络和无线局域网(Wireless Local Area Networks,WLAN)网络进行数据传输的技术。
限于时间因素,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)目前仅讨论了LWA的下行数据传输,该下行数据传输过程包括:演进型基站(evolutional Node B,eNB)利用LWA进行下行数据传输时,eNB通过LTE链路将一部分下行数据传输至用户设备(User Equipment,UE)的同时,根据UE的介质访问控制(Medium Access Control,MAC)地址,通过WLAN链路将剩余部分下行数据传输至UE;UE对接收到的两部分数据进行聚合,从而实现数据的下行传输。
但目前对于LWA场景下的上行数据传输,尚不存在完整的解决方案。在LWA场景下的上行数据传输过程中,如何保证服务质量(Quality of Service,QOS)也是一大难题。
发明内容
本公开提供了一种数据传输方法、数据传输装置及系统。所述技术方案如下:
第一方面,提供了一种数据传输方法,该数据传输方法包括:
终端接收接入网设备下发的服务质量QOS等级映射表,QOS等级映射表包括服务质量等级标识QCI和接入等级AC之间的对应关系;
终端接收接入网设备为无线承载配置的QCI,无线承载是终端与接入网设备之间建立的无线承载,无线承载用于传输第一上行数据;
终端根据QOS等级映射表,查询与QCI对应的AC;
终端使用AC通过无线局域网WLAN链路向接入网设备发送第二上行数据;
其中,第一上行数据和第二上行数据是采用聚合传输的数据。
在可选的实施例中,终端接收接入网设备下发的服务质量QOS等级映射表,包括:
终端接收接入网设备广播的系统信息,系统信息的指定系统信息块SIB中包含QOS等级映射表,指定SIB是系统信息中原有的SIB或新增的SIB。
在可选的实施例中,终端使用AC通过无线局域网WLAN链路向接入网设备发送第二上行数据,包括:
终端通过WLAN链路向接入网设备发送第二上行数据,第二上行数据的MAC帧头的QOS控制域中携带有AC。
在可选的实施例中,该方法还包括:
终端接收接入网设备更新的QOS等级映射表,更新的QOS等级映射表是接入网设备根据网络参数所更新的;
其中,网络参数包括:网络拥堵参数、数据包传输速率、数据包延迟参数、数据包丢包参数中的至少一种。
根据本公开的第二方面,提供了一种数据传输方法,该数据传输方法包括:
接入网设备向终端发送服务质量QOS等级映射表,QOS等级映射表包括服务质量等级标识QCI和接入等级AC之间的对应关系;
接入网设备向与终端对应的无线承载配置QCI,无线承载是终端与接入网设备之间建立的无线承载,无线承载用于传输第一上行数据;
接入网设备接收终端通过无线局域网WLAN链路发送的第二上行数据,第二上行数据对应的AC是在QOS等级映射表中与QCI对应的AC;
其中,第一上行数据和第二上行数据是采用聚合传输的数据。
在可选的实施例中,接入网设备向终端发送的服务质量QOS等级映射表,包括:
接入网设备在系统信息的指定系统信息块SIB中广播QOS等级映射表,指定SIB是系统信息中原有的SIB或新增的SIB。
在可选的实施例中,该数据传输方法,还包括:
接入网设备获取网络参数,网络参数包括:网络拥堵参数、数据包传输速率、数据包延迟参数、数据包丢包参数中的至少一种;
接入网设备根据网络参数更新QOS等级映射表;
接入网设备向终端发送更新后的QOS等级映射表。
根据本公开的第三方面,提供了一种数据传输装置,该数据传输装置包括:
接收模块,被配置为接收接入网设备下发的服务质量QOS等级映射表,QOS等级映射表包括服务质量等级标识QCI和接入等级AC之间的对应关系;
接收模块,被配置为接收接入网设备为无线承载配置的QCI,无线承载是终端与接入网设备之间建立的无线承载,无线承载用于传输第一上行数据;
处理模块,被配置为根据QOS等级映射表,查询与QCI对应的AC;
发送模块,被配置为使用AC通过无线局域网WLAN链路向接入网设备发送第二上行数据;
其中,第一上行数据和第二上行数据是采用聚合传输的数据。
在可选的实施例中,接收模块,被配置为接收接入网设备广播的系统信息,系统信息的指定系统信息块SIB中包含QOS等级映射表,指定SIB是系统信息中原有的SIB或新增的SIB。
在可选的实施例中,发送模块,被配置为通过WLAN链路向接入网设备发送第二上行数据,第二上行数据的MAC帧头的QOS控制域中携带有AC。
在可选的实施例中,该装置还包括:
接收模块,还被配置为接收接入网设备更新的QOS等级映射表,更新的QOS等级映射表是接入网设备根据网络参数所更新的;
其中,网络参数包括:网络拥堵参数、数据包传输速率、数据包延迟参数、数据包丢包参数中的至少一种。
根据本公开的第四方面,提供了一种数据传输装置,该数据传输装置包括:
发送模块,被配置为向终端发送服务质量QOS等级映射表,QOS等级映射表包括服务质量等级标识QCI和接入等级AC之间的对应关系;
发送模块,被配置为向与终端对应的无线承载配置QCI,无线承载是终端与接入网设备之间建立的无线承载,无线承载用于传输第一上行数据;
接收模块,被配置为接收终端通过无线局域网WLAN链路发送的第二上行数据,第二上行数据对应的AC是在QOS等级映射表中与QCI对应的AC;
其中,第一上行数据和第二上行数据是采用聚合传输的数据。
在可选的实施例中,发送模块,被配置为在系统信息的指定系统信息块SIB中广播QOS等级映射表,指定SIB是系统信息中原有的SIB或新增的SIB。
在可选的实施例中,该装置,还包括:
处理模块,被配置为获取网络参数,网络参数包括:网络拥堵参数、数据包传输速率、数据包延迟参数、数据包丢包参数中的至少一种;
处理模块,被配置为根据网络参数更新QOS等级映射表;
发送模块,被配置为向终端发送更新后的QOS等级映射表。
根据本公开的第五方面,提供了一种终端,该终端包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
接收接入网设备下发的服务质量QOS等级映射表,QOS等级映射表包括服务质量等级标识QCI和接入等级AC之间的对应关系;
接收接入网设备为无线承载配置的QCI,无线承载是终端与接入网设备之间建立的无线承载,无线承载用于传输第一上行数据;
根据QOS等级映射表,查询与QCI对应的AC;
使用AC通过无线局域网WLAN链路向接入网设备发送第二上行数据;
其中,第一上行数据和第二上行数据是采用聚合传输的数据。
根据本公开的第六方面,提供了一种接入网设备,该接入网设备包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
向终端发送服务质量QOS等级映射表,QOS等级映射表包括服务质量等级标识QCI和接入等级AC之间的对应关系;
向与终端对应的无线承载配置QCI,无线承载是终端与接入网设备之间建立的无线承载,无线承载用于传输第一上行数据;
接收终端通过无线局域网WLAN链路发送的第二上行数据,第二上行数据对应的AC是在QOS等级映射表中与QCI对应的AC;
其中,第一上行数据和第二上行数据是采用聚合传输的数据。
根据本公开的第七方面,提供了一种数据传输系统,该系统包括:接入网设备和终端;
接入网设备,包括如第四方面的数据传输装置;终端,包括如第三方面的数据传输装置;或,
接入网设备是如第六方面的接入网设备;终端是如第五方面的终端。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过由接入网设备向终端配置QOS等级映射表和QCI,终端在QOS等级映射表中查询与QCI对应的AC,终端根据QCI在移动通信链路(比如LTE链路)上向接入网设备发送第一上行数据,根据AC在WLAN链路上向接入网设备发送第二上行数据;解决了在LWA场景下的上行数据传输中,如何保证QOS要求的问题;达到了终端在移动通信链路和WLAN链路上,能够使用相同或相似的QOS等级进行上行数据传输,从而在双流上都能够保证服务质量的效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示意性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1示出了本公开一示意性实施例所提供的数据传输系统的结构示意图;
图2示出了一示例性实施例所提供的数据传输方法的流程图;
图3示出了另一示例性实施例所提供的数据传输方法的流程图;
图4示出了一示例性实施例所提供的数据传输装置的结构方框图;
图5示出了另一示例性实施例所提供的数据传输装置的结构方框图。
图6示出了一示例性实施例所提供的终端的结构示意图;
图7示出了一示例性实施例所提供的接入网设备的结构示意图;
图8示出了一示例性实施例所提供的数据传输系统的框图。
具体实施方式
这里将详细地对示意性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示意性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本文中提及的该“模块”被认为是存储在存储器中的能够实现某些功能 的程序或指令;或者,该“模块”被认为是指按照逻辑划分的功能性结构,由纯硬件实现,或者,软硬件的结合实现。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。符号“/”一般表示前后关联对象是一种“或”的关系。
为了方便理解,下面对本公开实施例所涉及的名词进行解释。
接入网设备:在移动通信系统中,用于提供移动通信网络接入功能的网元。
在不同的移动通信系统中,接入网设备具有相同或相似的功能,但可以具有不同的名称或具体实现形式。可选地,接入网设备是全球移动通信系统(Global System for Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(BTS,Base Transceiver Station)。可选的,接入网设备是通用移动通信系统(Universal Mobile Telecommunications System,UMTS)中的基站(NodeB)。可选的,接入网设备是长期演进(Long Term Evolution,LTE)中的演进型基站(evolutional Node B,eNB或e-NodeB)。在实际组网中,接入网设备的具体实现形式可以是宏基站、微基站、微微基站、直放站等。
终端:在移动通信系统中由用户所使用的电子设备。
在不同的移动通信系统中,终端具有相同或相似的功能,但可以具有不同的名称或具体实现形式。可选地,终端可以是订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户装备(User Device)、或用户设备(User Equipment,UE)。在实际组网中,终端的具体实现形式可以是手机、平板电脑、智能家电、智能仪器、物联网设备、车联网设备等等。本公开实施例对终端的具体数量和具体安装位置不做限定。
无线局域网终结点(WLAN Termination,WT):是在LWA系统中定义的逻辑网元,具有对WLAN无线接入点(Access Point,AP)的管理功能。
在LWA系统中,WT与eNB一一对应相连,且通常固设在一起。一个 WT可以同时与多个WLAN AP相连,并负责监控、管理与其相连的各个WLAN AP。LWA系统中,接入网设备通过WLAN链路向终端传输下行数据包,或,通过WLAN链路接收终端传输的上行数据包时,该下行数据包和上行数据包均通过与接入网设备相连的WT。
AP:在WLAN中,用于向终端提供无线局域网接入能力的节点。
图1示出了本公开一示意性实施例所提供的数据传输系统的结构示意图,该数据传输系统中包括:接入网设备110、WT120、WLAN AP130以及终端140。
可选地,接入网设备110是LTE中的eNB。该接入网设备110具有通过LTE链路和WLAN链路发送下行数据的功能,该接入网设备110还具有通过LTE链路和WLAN链路接收上行数据的功能。假设通过LTE链路传输的是第一下行数据和第一上行数据,通过WLAN链路传输的第二下行数据和第二上行数据,则接入网设备110能够将来自核心网的数据封装成第一下行数据和第二下行数据,并通过LTE链路将第一下行数据发送给终端,通过WLAN链路将第二下行数据发送给终端;接入网设备110还能够通过LTE链路接收第一上行数据,通过WLAN链路接收第二上行数据,将接收到的第一上行数据和第二上行数据进行聚合,并将聚合后的上行数据发送至核心网。
接入网设备110与WT120一一对应相连,通常情况下接入网设备110可以与WT120固设在一起,比如,形成在同一主板上;或,接入网设备110与WT120通过光纤相连。如图1所示,接入网设备110与WT120对应相连。
WT120具有发送第二下行数据和接收第二上行数据的功能。WT120可以同时与多个WLAN AP130相连,接收各个WLAN AP130发送的第二上行数据或向相连的WLAN AP130传输第二下行数据。本公开实施例对WT120连接的WLAN AP130的数量不做限定。
WLAN AP130具有发送第二下行数据和接收第二上行数据的功能。在实际组网中,WLAN AP130可以是无线路由器、无线网关一类的电子设备。WLAN AP130可以同时与多个WT120相连。
终端140具有发送第一上行数据和第二上行数据,接收第一下行数据和第二下行数据的功能。此外,终端140还具有LWA功能,也即当接收到的下行数据中包括第一下行数据和第二下行数据数据时,终端140能够对第一下行数据和第二下行数据数据进行聚合;终端140还具有将上行数据划分为第一上行 数据和第二上行数据,通过LTE链路向接入网设备110发送第一上行数据,通过WLAN链路向接入网设备110发送第二上行数据的功能。本公开实施例对终端140的具体数量和具体位置不做限定。
图2示出了一示例性实施例提供的数据传输方法的流程图。本实施例以该数据传输方法应用于图1所示的数据传输系统来举例说明,该方法包括:
步骤201,接入网设备向终端发送QOS等级映射表;
QOS等级映射表包括服务质量等级标识(QoS Class Identifier,QCI)和接入等级(Access Category,AC)之间的对应关系。
QCI是在移动通信系统中表示QoS等级的参数。可选地,移动通信系统是LTE系统。
AC是在WLAN系统中表示QoS等级的参数。
步骤202,终端接收接入网设备下发的QOS等级映射表;
步骤203,接入网设备向与终端对应的无线承载配置QCI;
无线承载是终端与接入网设备之间建立的无线承载,无线承载用于传输第一上行数据。可选地,无线承载是指数据无线承载(Data Radio Bearer,DRB)。接入网设备会为每个无线承载配置各自对应的QCI。
步骤204,终端接收接入网设备为无线承载配置的QCI;
步骤205,终端根据QOS等级映射表,查询与QCI对应的AC;
步骤206,终端使用AC通过WLAN链路向接入网设备发送第二上行数据;
步骤207,接入网设备接收终端通过WLAN链路发送的第二上行数据;
该第二上行数据所对应的AC是终端根据QCI在QoS等级映射表中查询得到的。
其中,第一上行数据和第二上行数据是采用聚合传输的数据。
综上所述,本实施例提供的数据传输方法,通过由接入网设备向终端配置QOS等级映射表和QCI,终端在QOS等级映射表中查询与QCI对应的AC,终端根据QCI在移动通信链路(比如LTE链路)上向接入网设备发送第一上行数据,根据AC在WLAN链路上向接入网设备发送第二上行数据;解决了在LWA场景下的上行数据传输中,如何保证QOS要求的问题;达到了终端在移动通信链路和WLAN链路上,能够使用相同或相似的QOS等级进行上行数据传输,从而在双流上都能够保证服务质量的效果。
图3示出了本公开另一示例性的实施例所提供的数据传输方法的流程图。本实施例以该数据传输方法应用于图1所示的数据传输系统来举例说明,该方法包括:
步骤301,接入网设备在系统信息的指定系统信息块中广播QoS等级映射表;
QOS等级映射表包括:QCI和AC之间的对应关系。
QCI是在移动通信系统中表示QoS等级的参数。在LTE系统中,接入网设备会向无线承载(Radio Bearer)分配QCI,并根据该QCI为该无线承载进行传输资源的分配和调度。无线承载是用于传输与业务对应的数据的逻辑通道。在LTE系统中,QCI的范围是1-9,分别对应不同的资源类型、不同的优先级、不同的时延和不同的丢包率。
示意性的,表一示出了QCI的数值、优先级、时延、丢包率和示例业务之间的对应关系。
表一
Figure PCTCN2016087578-appb-000001
AC是在WLAN系统中表示QoS等级的参数。在WLAN系统中,在介质访问控制(Medium Access Control,MAC)层会向每个数据包分配AC,然后终端、WLAN AP和WT会根据每个数据包的AC进行传输资源的分配和调度。比如,WLAN AP按照AC的优先级从高到低的顺序,将各个数据包划分至 AC-VO(Voice,语音流)、AC-VI(Video,视频流)、AC-BE(Best-effort,尽力而为流)、AC-BK(Back-ground,背景流)四个优先级队列,保证越高优先级队列中的数据包,抢占信道的能力越高。
示意性的,表二示出了一种QoS等级映射表。
表二
QCI AC
1、3、5 AC-VO
2 AC-VI
6、7 AC-BE
4、8、9 AC-BK
由于QCI的取值范围为1-9,而AC的种类为4种,接入网设备可以将两个或两个以上的QCI与同一个AC建立对应关系。
需要说明的是,表二仅为示意性说明,根据不同的实施例,表二可以是其它结构,本公开对此不加以限定。
接入网设备将QoS等级映射表通过系统信息进行广播。可选地,接入网设备向覆盖范围内的所有终端广播QoS等级映射表;可选地,接入网设备向覆盖范围内的一个或几个终端广播QoS等级映射表。
系统信息包括若干个系统信息块(System Informaion Block,SIB)。目前的LTE系统的系统信息中,包括18个SIB。可选地,接入网设备在系统信息的指定SIB中广播QoS等级映射表。示意性的,指定SIB是目前的LTE系统中已有的SIB,比如SIB1;指定SIB是目前的LTE系统中新增的SIB,比如SIB19。
步骤302,终端接收接入网设备广播的系统信息,系统信息的指定SIB中携带有QOS等级映射表;
步骤303,接入网设备向与终端对应的无线承载配置QCI;
终端在接入LTE网络时,终端会与接入网设备建立无线资源控制(Radio Resource Control,RRC)连接,在该RRC连接中建立至少一个无线承载。该无线承载还可称为:演进分组系统(Evolved Packet System,EPS)承载,无线承载包括:信令无线承载(Signalling Radio Bearer,SRB)和数据无线承载(Data Radio Bearer,DRB)。SRB用于传输信令,DRB用于传输数据。
接入网设备会为每个无线承载配置各自对应的QCI。以DRB为例,根据 业务的类型,接入网设备会为每个DRB分配不同的DCI。
比如,一个DRB是用于传输语音会话业务的承载,则接入网设备会为该DRB分配DCI=1。
步骤304,终端接收接入网设备为无线承载配置的QCI;
步骤305,终端根据QCI通过移动通信链路向接入网设备发送第一上行数据;
可选地,移动通信链路是LTE链路。或者,移动通信链路是5G中的传输链路。在不同的实施例中,链路还可以称为连接、承载、通道、隧道等其它任何可能的名称,但本领域技术人员应当知晓,这些名词均代表用于在移动通信系统中传输数据的一种途径,不构成对链路这一名词的含义的限定。
可选地,接入网设备根据无线承载的QCI,向该无线承载分配和调度传输资源,终端根据该传输资源向接入网设备发送第一上行数据。
步骤306,接入网设备接收终端通过移动通信链路发送的第一上行数据。
步骤307,终端根据QoS等级映射表,查询与QCI对应的AC;
比如,无线承载的QCI为1,则终端根据QoS等级映射表,查询到的AC为AC-VO。
步骤308,终端使用AC通过WLAN链路向接入网设备发送第二上行数据;
可选地,终端通过WLAN链路向接入网设备发送第二上行数据,第二上行数据的MAC帧头中的QOS控制域中携带有AC。
示意性的,表三示出了MAC帧的帧结构。该MAC帧是电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11e所规定的MAC帧格式。
表三
Figure PCTCN2016087578-appb-000002
其中,帧控制域至QoS控制域为802.11e MAC帧的帧头(MAC Header),其余部分为802.11e MAC帧的帧实体(MAC Body)。地址1用于指示数据帧的接收者,地址2用于指示数据帧的发送者,地址3用于指示数据帧的目的地址,地址4用于指示数据帧的源地址。QoS控制域占用两个字节,用于携带AC。
对于第二上行数据中的每个数据包,在MAC帧的帧头部分都携带有该 AC,以便WLAN AP和WT根据该AC对数据包进行相应QoS的发送。
步骤309,接入网设备接收终端通过WLAN链路发送的第二上行数据。
可选地,WLAN网络采用非授权频谱。
可选地,第二上行数据先从终端发送至WLAN AP,再由WLAN AP发送至WT,再由WT转发至接入网设备。
可选地,接入网设备接收WT转发的第二上行数据。
步骤310,接入网设备将第一上行数据和第二上行数据进行聚合;
步骤311,接入网设备获取网络参数;
由于网络参数是随时间变化的参数,接入网设备实时获取网络参数,该网络参数用于表征接入网设备与终端之间的网络优劣情况。可选地,该网络参数用于表征移动通信网络的网络优劣情况;可选地,该网络参数用于表征WLAN链路的网络优劣情况。
该网络参数包括但不限于:网络拥堵参数、数据包传输速率、数据包延迟参数、数据包丢包参数中的至少一种。
本公开实施例对网络参数的具体形式不加以限定。
步骤312,接入网设备根据网络参数更新QOS等级映射表;
示意性的,网络参数包括WLAN网络的拥堵参数,在WLAN网络的拥堵参数大于第一阈值时,将至少一个QCI所对应的AC调低一个级别,以保证终端的第二上行数据能及时传输至接入网设备进行聚合。
示意性的,网络参数包括WLAN网络的数据包传输速率,在WLAN网络的数据包传输速率大于第二阈值时,将至少一个QCI所对应的AC调高一个级别,以保证终端的第二上行数据能及时传输至接入网设备进行聚合。
示意性的,网络参数包括数据包延迟参数和数据包丢包参数,在数据包延迟参数或数据包丢包参数超过第三阈值时,将至少一个QCI所对应的AC调高一个级别。
本公开实施例对接入网设备更新QoS等级映射表的方式不加以限定。
步骤313,接入网设备向终端发送更新后的QoS等级映射表。
可选地,接入网设备在系统信息的指定SIB中广播更新后的QOS等级映射表,指定SIB是系统信息中原有的SIB或新增的SIB。
步骤314,终端接收接入网设备发送的更新后的QoS等级映射表。
可选地,终端接收接入网设备广播的系统信息,系统信息的指定SIB中携 带有更新后的QoS等级映射表。
综上所述,本实施例提供的数据传输方法,通过由接入网设备向终端配置QOS等级映射表和QCI,终端在QOS等级映射表中查询与QCI对应的AC,终端根据QCI在移动通信链路(比如LTE链路)上向接入网设备发送第一上行数据,根据AC在WLAN链路上向接入网设备发送第二上行数据;解决了在LWA场景下的上行数据传输中,如何保证QOS要求的问题;达到了终端在移动通信链路和WLAN链路上,能够使用相同或相似的QOS等级进行上行数据传输,从而在双流上都能够保证服务质量的效果。
本实施例提供的数据传输方法,通过接入网设备根据网络参数更新QOS等级映射表,向终端发送更新后的QOS等级映射表;使得该QOS等级映射表能够动态更新,更加适应实时的网络情况,从而保证上行数据的聚合传输的服务质量。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图4示出了一示例性实施例所提供的数据传输装置的结构方框图。该数据传输装置可以通过专用硬件电路,或,硬件与软件的组合实现成为图1中的终端的全部或一部分。该数据传输装置包括:
接收模块420,被配置为接收接入网设备下发的服务质量QOS等级映射表,QOS等级映射表包括服务质量等级标识QCI和接入等级AC之间的对应关系;
接收模块420,被配置为接收接入网设备为无线承载配置的QCI,无线承载是终端与接入网设备之间建立的无线承载,无线承载用于传输第一上行数据;
处理模块440,被配置为根据QOS等级映射表,查询与QCI对应的AC;
发送模块460,被配置为使用AC通过无线局域网WLAN链路向接入网设备发送第二上行数据;
其中,第一上行数据和第二上行数据是采用聚合传输的数据。该聚合传输是指LWA聚合传输或eLWA聚合传输。
在可选的实施例中,接收模块420,被配置为接收接入网设备广播的系统信息,系统信息的指定系统信息块SIB中携带有QoS等级映射表,指定SIB 是系统信息中原有的SIB或新增的SIB。
在可选的实施例中,发送模块460,被配置为通过WLAN链路向接入网设备发送第二上行数据,第二上行数据的介质访问控制MAC帧头中的QOS控制域中携带有AC。
在可选的实施例中,该装置还包括:
接收模块420,还被配置为接收接入网设备更新的QOS等级映射表,更新的QOS等级映射表是接入网设备根据网络参数所更新的;
其中,网络参数包括:网络拥堵参数、数据包传输速率、数据包延迟参数、数据包丢包参数中的至少一种。
图5示出了一示例性实施例所提供的数据传输装置的结构方框图。该数据传输装置可以通过专用硬件电路,或,硬件与软件的组合实现成为图1中的接入网设备的全部或一部分。该数据传输装置包括:
发送模块520,被配置为向终端发送服务质量QOS等级映射表,QOS等级映射表包括服务质量等级标识QCI和接入等级AC之间的对应关系;
发送模块520,被配置为向与终端对应的无线承载配置QCI,无线承载是终端与接入网设备之间建立的无线承载,无线承载用于传输第一上行数据;
接收模块540,被配置为接收终端通过无线局域网WLAN链路发送的第二上行数据,第二上行数据对应的AC是在QOS等级映射表中与QCI对应的AC;
其中,第一上行数据和第二上行数据是采用聚合传输的数据。
在可选的实施例中,发送模块520,被配置为在系统信息的指定系统信息块SIB中广播QOS等级映射表,指定SIB是系统信息中原有的SIB或新增的SIB。
在可选的实施例中,该装置,还包括:
处理模块560,被配置为获取网络参数,网络参数包括:网络拥堵参数、数据包传输速率、数据包延迟参数、数据包丢包参数中的至少一种;
处理模块560,被配置为根据网络参数更新QOS等级映射表;
发送模块540,被配置为向终端发送更新后的QOS等级映射表。
图6示出了一示例性实施例所提供的终端140的结构示意图。该终端140包括:处理器61、存储器62、发射器63和接收器64。
处理器61与存储器62相连。
处理器61包括一个或者一个以上处理核心,处理器61通过运行软件程序以及单元,从而执行各种功能应用以及信息处理。
存储器62可用于存储一个或一个以上的程序指令,该一个或一个以上的程序指令用于实现至少一个软件程序以及模块。存储器62可存储操作系统64、至少一个功能所需的应用程序模块65。处理器61用于执行存储器62中的程序指令,以实现如上方法实施例中由终端140所执行的步骤。
此外,存储器62可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
发射器63包括:调制解调单元和多输入多输出(Multiple Input Multiple Output,MIMO)天线,MIMO天线是支持多天线端口收发的天线。可选地,MIMO天线包括至少两个发射天线。可选地,发射器63用于实现对数据以及信令传输。
接收器66包括与发射器63相同或类似的结构。可选地,接收器66包括调制解调单元和MIMO天线,MIMO天线包括至少两个接收天线。
本领域技术人员可以理解,图6中所示出的终端140的结构并不构成对终端140的限定,可以包括比图示更多或更少的部件或组合某些部件,或者不同的部件布置。
图7示出了一示例性实施例所提供的接入网设备110的结构示意图。该接入网设备110包括:处理器71、存储器72、发射器73和接收器74。
处理器71与存储器72相连。
处理器71包括一个或者一个以上处理核心,处理器71通过运行软件程序以及单元,从而执行各种功能应用以及信息处理。
存储器72可用于存储一个或一个以上的程序指令,该一个或一个以上的程序指令用于实现至少一个软件程序以及模块。存储器72可存储操作系统74、至少一个功能所需的应用程序模块75。处理器71用于执行存储器72中的程序指令,以实现如上方法实施例中由接入网设备110所执行的步骤。
此外,存储器72可以由任何类型的易失性或非易失性存储设备或者它们 的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
发射器73包括:调制解调单元和多输入多输出(Multiple Input Multiple Output,MIMO)天线,MIMO天线是支持多天线端口收发的天线。可选地,MIMO天线包括至少两个发射天线。可选地,发射器73用于实现对数据以及信令传输。
接收器76包括与发射器73相同或类似的结构。可选地,接收器76包括调制解调单元和MIMO天线,MIMO天线包括至少两个接收天线。
本领域技术人员可以理解,图7中所示出的接入网设备110的结构并不构成对接入网设备110的限定,可以包括比图示更多或更少的部件或组合某些部件,或者不同的部件布置。
图8示出了一示例性实施例所提供的数据传输系统的框图。该数据传输系统包括:接入网设备82和终端84;
该接入网设备82包括如图5所示的数据传输装置;终端84包括如图4所示的数据传输装置。
或,该接入网设备82是如图7所示的接入网设备;终端84是图6所示的终端。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示意性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (17)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    终端接收接入网设备下发的服务质量QOS等级映射表,所述QOS等级映射表包括服务质量等级标识QCI和接入等级AC之间的对应关系;
    所述终端接收所述接入网设备为无线承载配置的所述QCI,所述无线承载是所述终端与所述接入网设备之间建立的无线承载,所述无线承载用于传输第一上行数据;
    所述终端根据所述QOS等级映射表,查询与所述QCI对应的所述AC;
    所述终端使用所述AC通过无线局域网WLAN链路向所述接入网设备发送第二上行数据;
    其中,所述第一上行数据和所述第二上行数据是采用聚合传输的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述终端接收接入网设备下发的服务质量QOS等级映射表,包括:
    所述终端接收所述接入网设备广播的系统信息,所述系统信息的指定系统信息块SIB中携带有所述QoS等级映射表,所述指定SIB是所述系统信息中原有的SIB或新增的SIB。
  3. 根据权利要求1所述的方法,其特征在于,所述终端使用所述AC通过无线局域网WLAN链路向所述接入网设备发送第二上行数据,包括:
    所述终端通过所述WLAN链路向所述接入网设备发送所述第二上行数据,所述第二上行数据的介质访问控制MAC帧头中的QOS控制域中携带有所述AC。
  4. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述接入网设备更新的所述QOS等级映射表,所述更新的所述QOS等级映射表是所述接入网设备根据网络参数所更新的;
    其中,所述网络参数包括:网络拥堵参数、数据包传输速率、数据包延迟参数、数据包丢包参数中的至少一种。
  5. 一种数据传输方法,其特征在于,所述方法包括:
    接入网设备向终端发送服务质量QOS等级映射表,所述QOS等级映射表包括服务质量等级标识QCI和接入等级AC之间的对应关系;
    所述接入网设备向与所述终端对应的无线承载配置所述QCI,所述无线承载是所述终端与所述接入网设备之间建立的无线承载,所述无线承载用于传输第一上行数据;
    所述接入网设备接收所述终端通过无线局域网WLAN链路发送的第二上行数据,所述第二上行数据对应的所述AC是在所述QOS等级映射表中与所述QCI对应的AC;
    其中,所述第一上行数据和所述第二上行数据是采用聚合传输的数据。
  6. 根据权利要求5所述的方法,其特征在于,所述接入网设备向终端发送的服务质量QOS等级映射表,包括:
    所述接入网设备在系统信息的指定系统信息块SIB中广播所述QOS等级映射表,所述指定SIB是所述系统信息中原有的SIB或新增的SIB。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法,还包括:
    所述接入网设备获取网络参数,所述网络参数包括:网络拥堵参数、数据包传输速率、数据包延迟参数、数据包丢包参数中的至少一种;
    所述接入网设备根据所述网络参数更新所述QOS等级映射表;
    所述接入网设备向所述终端发送更新后的所述QOS等级映射表。
  8. 一种数据传输装置,其特征在于,所述装置包括:
    接收模块,被配置为接收接入网设备下发的服务质量QOS等级映射表,所述QOS等级映射表包括服务质量等级标识QCI和接入等级AC之间的对应关系;
    所述接收模块,被配置为接收所述接入网设备为无线承载配置的所述QCI,所述无线承载是所述终端与所述接入网设备之间建立的无线承载,所述无线承载用于传输第一上行数据;
    处理模块,被配置为根据所述QOS等级映射表,查询与所述QCI对应的所述AC;
    发送模块,被配置为使用所述AC通过无线局域网WLAN链路向所述接入 网设备发送第二上行数据;
    其中,所述第一上行数据和所述第二上行数据是采用聚合传输的数据。
  9. 根据权利要求8所述的装置,其特征在于,所述接收模块,被配置为接收所述接入网设备广播的系统信息,所述系统信息的指定系统信息块SIB中携带有所述QoS等级映射表,所述指定SIB是所述系统信息中原有的SIB或新增的SIB。
  10. 根据权利要求8所述的装置,其特征在于,所述发送模块,被配置为通过所述WLAN链路向所述接入网设备发送所述第二上行数据,所述第二上行数据的介质访问控制MAC帧头中的QOS控制域中携带有所述AC。
  11. 根据权利要求8或9所述的装置,其特征在于,所述装置还包括:
    所述接收模块,还被配置为接收所述接入网设备更新的所述QOS等级映射表,所述更新的所述QOS等级映射表是所述接入网设备根据网络参数所更新的;
    其中,所述网络参数包括:网络拥堵参数、数据包传输速率、数据包延迟参数、数据包丢包参数中的至少一种。
  12. 一种数据传输装置,其特征在于,所述装置包括:
    发送模块,被配置为向终端发送服务质量QOS等级映射表,所述QOS等级映射表包括服务质量等级标识QCI和接入等级AC之间的对应关系;
    所述发送模块,被配置为向与所述终端对应的无线承载配置所述QCI,所述无线承载是所述终端与所述接入网设备之间建立的无线承载,所述无线承载用于传输第一上行数据;
    接收模块,被配置为接收所述终端通过无线局域网WLAN链路发送的第二上行数据,所述第二上行数据对应的所述AC是在所述QOS等级映射表中与所述QCI对应的AC;
    其中,所述第一上行数据和所述第二上行数据是采用聚合传输的数据。
  13. 根据权利要求12所述的装置,其特征在于,
    所述发送模块,被配置为在系统信息的指定系统信息块SIB中广播所述 QOS等级映射表,所述指定SIB是所述系统信息中原有的SIB或新增的SIB。
  14. 根据权利要求12或13所述的装置,其特征在于,所述装置,还包括:
    所述处理模块,被配置为获取网络参数,所述网络参数包括:网络拥堵参数、数据包传输速率、数据包延迟参数、数据包丢包参数中的至少一种;
    所述处理模块,被配置为根据所述网络参数更新所述QOS等级映射表;
    所述发送模块,被配置为向所述终端发送更新后的所述QOS等级映射表。
  15. 一种终端,其特征在于,所述终端包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收接入网设备下发的服务质量QOS等级映射表,所述QOS等级映射表包括服务质量等级标识QCI和接入等级AC之间的对应关系;
    接收所述接入网设备为无线承载配置的所述QCI,所述无线承载是所述终端与所述接入网设备之间建立的无线承载,所述无线承载用于传输第一上行数据;
    根据所述QOS等级映射表,查询与所述QCI对应的所述AC;
    使用所述AC通过无线局域网WLAN链路向所述接入网设备发送第二上行数据;
    其中,所述第一上行数据和所述第二上行数据是采用聚合传输的数据。
  16. 一种接入网设备,其特征在于,所述接入网设备包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    向终端发送服务质量QOS等级映射表,所述QOS等级映射表包括服务质量等级标识QCI和接入等级AC之间的对应关系;
    向与所述终端对应的无线承载配置所述QCI,所述无线承载是所述终端与所述接入网设备之间建立的无线承载,所述无线承载用于传输第一上行数据;
    接收所述终端通过无线局域网WLAN链路发送的第二上行数据,所述第二 上行数据对应的所述AC是在所述QOS等级映射表中与所述QCI对应的AC;
    其中,所述第一上行数据和所述第二上行数据是采用聚合传输的数据。
  17. 一种数据传输系统,其特征在于,所述系统包括:接入网设备和终端;
    所述接入网设备,包括如权利要求12至14任一所述的数据传输装置;所述终端,包括如权利要求8至11任一所述的数据传输装置;
    或,
    所述接入网设备是如权利要求16所述的接入网设备;所述终端是如权利要求15所述的终端。
PCT/CN2016/087578 2016-06-29 2016-06-29 数据传输方法、数据传输装置及系统 WO2018000220A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/087578 WO2018000220A1 (zh) 2016-06-29 2016-06-29 数据传输方法、数据传输装置及系统
CN201680000730.9A CN106134274A (zh) 2016-06-29 2016-06-29 数据传输方法、数据传输装置及系统
JP2017508484A JP2018521518A (ja) 2016-06-29 2016-06-29 データ伝送方法、データ伝送装置及びシステム
US16/229,311 US10778590B2 (en) 2016-06-29 2018-12-21 Method, apparatus, and system for data transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/087578 WO2018000220A1 (zh) 2016-06-29 2016-06-29 数据传输方法、数据传输装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/229,311 Continuation US10778590B2 (en) 2016-06-29 2018-12-21 Method, apparatus, and system for data transmission

Publications (1)

Publication Number Publication Date
WO2018000220A1 true WO2018000220A1 (zh) 2018-01-04

Family

ID=57271510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087578 WO2018000220A1 (zh) 2016-06-29 2016-06-29 数据传输方法、数据传输装置及系统

Country Status (4)

Country Link
US (1) US10778590B2 (zh)
JP (1) JP2018521518A (zh)
CN (1) CN106134274A (zh)
WO (1) WO2018000220A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201908775VA (en) * 2017-03-22 2019-10-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Uplink transmission method, terminal device and network device
KR102334214B1 (ko) * 2017-05-15 2021-12-02 삼성전자주식회사 QoS(Quality of Service) 정보를 제어하는 방법 및 장치
CA3066511A1 (en) * 2017-08-11 2019-02-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, transmitting end device, and receiving end device
CN107517482B (zh) * 2017-09-28 2021-05-04 北京小米移动软件有限公司 数据传输方法及装置
US11258877B2 (en) * 2018-07-26 2022-02-22 Netapp, Inc. Methods for managing workloads in a storage system and devices thereof
WO2021062700A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 数据传输的方法、装置及计算机可读存储介质
CN116530144A (zh) * 2021-01-29 2023-08-01 Oppo广东移动通信有限公司 服务质量参数处理方法、终端设备、网络功能实体和网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150043486A1 (en) * 2013-08-09 2015-02-12 Qualcomm Incorporated Disjoint bearer routing
CN105165095A (zh) * 2013-04-29 2015-12-16 高通股份有限公司 Lte-wlan集中式下行链路调度器
CN105379351A (zh) * 2013-07-01 2016-03-02 高通股份有限公司 用于在WLAN上针对与蜂窝网络上的承载相关的话务启用服务质量(QoS)的技术

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100738545B1 (ko) * 2005-12-29 2007-07-11 삼성전자주식회사 무선랜 서비스 타입에 따른 큐오에스 보장 시스템 및 그방법
EP2428063B1 (en) * 2009-05-04 2017-12-27 Telefonaktiebolaget LM Ericsson (publ) Improved handover in a radio communications network
US8988997B2 (en) * 2012-06-08 2015-03-24 Telefonaktiebolaget L M Ericsson (Publ) Communication network congestion control using allocation and retention priority
CN103974325B (zh) * 2013-01-31 2018-04-27 华为技术有限公司 多制式网络融合的方法、设备及系统
US9474067B2 (en) * 2013-03-26 2016-10-18 Qualcomm Incorporated WLAN uplink scheduler for LTE-WLAN aggregation
FI127364B (en) * 2013-05-10 2018-04-30 Cloudstreet Oy MANAGEMENT OF WIRELESS COMMUNICATION CAPACITY
JP2015012591A (ja) * 2013-07-02 2015-01-19 株式会社Nttドコモ ユーザ装置、通信システム、及びバックオフ制御方法
US9578647B2 (en) * 2013-08-29 2017-02-21 Telefonaktiebolaget Lm Ericsson (Publ) 3GPP bearer-based QoS model support on WiFi
US10462192B2 (en) * 2014-09-10 2019-10-29 Apple Inc. Radio resource management for packet-switched voice communication
US10129811B2 (en) * 2015-01-20 2018-11-13 Parallel Wireless, Inc. Multi-RAT heterogenous carrier aggregation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105165095A (zh) * 2013-04-29 2015-12-16 高通股份有限公司 Lte-wlan集中式下行链路调度器
CN105379351A (zh) * 2013-07-01 2016-03-02 高通股份有限公司 用于在WLAN上针对与蜂窝网络上的承载相关的话务启用服务质量(QoS)的技术
US20150043486A1 (en) * 2013-08-09 2015-02-12 Qualcomm Incorporated Disjoint bearer routing
CN105453640A (zh) * 2013-08-09 2016-03-30 高通股份有限公司 不相交的承载路由

Also Published As

Publication number Publication date
US20190124012A1 (en) 2019-04-25
US10778590B2 (en) 2020-09-15
CN106134274A (zh) 2016-11-16
JP2018521518A (ja) 2018-08-02

Similar Documents

Publication Publication Date Title
US10973000B2 (en) Message sending method and apparatus
CN109565703B (zh) 用于管理无线通信网络中的数据通信的方法和设备
WO2018000220A1 (zh) 数据传输方法、数据传输装置及系统
JP6669853B2 (ja) D2d通信システムにおいてバッファ状態報告を行う方法及びその装置
WO2019057154A1 (zh) 数据传输方法、终端设备和网络设备
US20190230682A1 (en) Data transmission method, apparatus, and system
US20150124646A1 (en) Device-to-device communication method and apparatus
WO2019214184A1 (zh) 通信方法和设备
US20200128431A1 (en) Method for transmitting tcp ack packet in wireless communication system and a device therefor
US20230116578A1 (en) Data transmission method and apparatus
US20220303825A1 (en) Data transmission method and apparatus
CN111277993B (zh) 支持时间敏感通信的方法、通信设备及介质
TW202019205A (zh) 一種資源配置方法及裝置、終端
WO2020191785A1 (zh) 一种车联网系统中的通信方法及终端设备、网络设备
US20230388850A1 (en) Communication method and apparatus
WO2021000701A1 (zh) 一种通信方法及相关设备
TW202002700A (zh) 一種上行資料傳輸方法及相關設備
CN116017727A (zh) 传输bsr的方法及装置
WO2018054336A1 (zh) 消息的发送方法和装置
EP3481098B1 (en) Information delivery method, data sending method, apparatus and system
US10098138B1 (en) Systems and methods for configuring a scheduler
US20230217426A1 (en) Resource allocation method and apparatus and system
WO2023131067A1 (zh) 一种频域资源配置方法及装置、通信设备
WO2023116403A1 (zh) 一种缓存状态报告发送方法及通信装置
CN118019052A (zh) 一种数据传输方法、设备及存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017508484

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906622

Country of ref document: EP

Kind code of ref document: A1