WO2020191785A1 - 一种车联网系统中的通信方法及终端设备、网络设备 - Google Patents

一种车联网系统中的通信方法及终端设备、网络设备 Download PDF

Info

Publication number
WO2020191785A1
WO2020191785A1 PCT/CN2019/080272 CN2019080272W WO2020191785A1 WO 2020191785 A1 WO2020191785 A1 WO 2020191785A1 CN 2019080272 W CN2019080272 W CN 2019080272W WO 2020191785 A1 WO2020191785 A1 WO 2020191785A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
parameter
network device
channel occupancy
occupancy rate
Prior art date
Application number
PCT/CN2019/080272
Other languages
English (en)
French (fr)
Inventor
赵振山
卢前溪
林晖闵
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980079406.4A priority Critical patent/CN113170351A/zh
Priority to PCT/CN2019/080272 priority patent/WO2020191785A1/zh
Publication of WO2020191785A1 publication Critical patent/WO2020191785A1/zh
Priority to US17/480,465 priority patent/US11800543B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and specifically relate to a communication method, terminal equipment, and network equipment in a car networking system.
  • the communication method of the Vehicle to Everything (V2X) system adopts a sidelink (SL) transmission technology, which is different from the traditional wireless communication system in which data is received or sent through network equipment.
  • the V2X system uses terminals
  • the device-to-device (D2D) direct communication method has higher spectrum efficiency and lower transmission delay.
  • the terminal device can work in both transmission mode 1 and transmission mode 2 at the same time.
  • the terminal device can use the transmission resources allocated by the network device to transmit sideline data based on transmission mode 1, and the terminal device can also independently select a transmission resource from the resource pool to transmit sideline data based on mode 2.
  • the network equipment is not clear about the transmission resources selected by the terminal equipment, the network equipment cannot allocate appropriate transmission resources to the terminal equipment, so that the side-line data transmitted by the terminal equipment may be congested, resulting in the Internet of Vehicles system The reliability of side-line data transmission is reduced.
  • the embodiments of the present application provide a communication method, terminal equipment, and network equipment in an Internet of Vehicles system to improve the reliability of sideline data transmission in the Internet of Vehicles system.
  • a communication method in a car networking system including:
  • the terminal device sends the channel occupancy rate of the terminal device to the network device.
  • Another communication method in the Internet of Vehicles system including:
  • the network device receives the channel occupancy rate of the terminal device sent by the terminal device;
  • the network device performs transmission resource allocation control processing of the terminal device according to the channel occupancy rate of the terminal device.
  • a communication method in a car networking system including:
  • the terminal device obtains the transmission parameter range configured by the network device according to at least one of the channel busy ratio and the fifth parameter of the side line data;
  • the terminal device selects a transmission parameter from the transmission parameter range, and transmits the side row data.
  • the fourth aspect provides another communication method in the Internet of Vehicles system, including:
  • the network device configures a transmission parameter range for the terminal device according to at least one of the channel busy ratio and the fifth parameter of the side row data, so that the terminal device can select transmission parameters from the transmission parameter range, and transmit the side row data
  • a terminal device which is used to execute the method in the first aspect or its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each implementation manner thereof.
  • a network device configured to execute the method in the second aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing second aspect or each implementation manner thereof.
  • a communication device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute any one of the above-mentioned first aspect to the above-mentioned second aspect or the method in each implementation manner thereof.
  • a terminal device which is used to execute the method in the third aspect or its implementation manners.
  • the terminal device includes a functional module for executing the method in the third aspect or its implementation manners.
  • a network device configured to execute the method in the fourth aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing fourth aspect or each implementation manner thereof.
  • a communication device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute any one of the foregoing third aspect to the foregoing fourth aspect or the method in each implementation manner thereof.
  • a chip is provided for implementing any one of the foregoing first aspect to the foregoing fourth aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first aspect to the above-mentioned fourth aspect or its implementation Methods.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the foregoing first aspect to the foregoing fourth aspect or the method in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the first aspect to the fourth aspect above or the method in each implementation manner thereof.
  • a computer program which, when run on a computer, causes the computer to execute any one of the above-mentioned first aspect to the above-mentioned fourth aspect or the method in each implementation manner thereof.
  • the terminal device sends the channel occupancy rate of the terminal device to the network device, so that the network device can clearly know the channel usage of the terminal device, and then allocate appropriate transmission resources to the terminal device , It can avoid the congestion of the side-line data transmitted by the terminal equipment, thereby improving the reliability of the side-line data transmission in the car networking system.
  • the network device configures the transmission parameter range for the terminal device according to at least one of the channel busy ratio and the fifth parameter of the sideline data, so that the terminal device can according to the transmission parameter range
  • the transmission parameters are acquired, and the side row data is transmitted, thereby realizing congestion control of the terminal device.
  • FIG. 1A is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 1B is a schematic diagram of a V2X system architecture provided by an embodiment of the present application.
  • FIG. 2A is a schematic diagram of a communication method in an Internet of Vehicles system provided by an embodiment of the present application.
  • FIG. 2B is a schematic diagram of a communication method in a car networking system provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of another communication method in a vehicle networking system provided by an embodiment of the present application.
  • Fig. 4A is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 4B is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 4C is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 5 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of another terminal device provided by an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of another network device provided by an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1A.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or a wireless controller in Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNodeB evolved base station in an LTE system
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wear
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN public switched telephone networks
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • the direct communication from terminal device to terminal device is adopted, which has higher spectrum efficiency and lower transmission delay.
  • the access network device can communicate based on the Uu interface, or it can also communicate directly based on the PC5 interface, as shown in Figure 1B.
  • Figure 1A exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 with communication functions and a terminal device 120, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the application.
  • transmission mode A Two transmission modes are defined in 3GPP, namely transmission mode A and transmission mode B.
  • Transmission mode A The transmission resources of the terminal equipment are allocated by the network equipment.
  • the terminal equipment transmits sideline data on the sideline link according to the transmission resources allocated by the network equipment; the network equipment can allocate transmission resources for a single transmission to the terminal , It can also allocate semi-static transmission transmission resources for the terminal.
  • Transmission mode B The terminal device autonomously selects a transmission resource in the resource pool to transmit sideline data.
  • a congestion control mechanism is introduced in the LTE-V2X system.
  • CBR channel busy ratio
  • CR Channel occupancy ratio
  • the terminal device calculates the ratio of the transmission resources that exceed a certain threshold to the total transmission resources within a certain period of time by the sidelink received signal strength indicator (S-RSSI). This parameter is used to describe the overall resource utilization of the system.
  • the terminal device can calculate the S-RSSI on each subband in the time period [n-100,n-1] time unit, if it exceeds the threshold, the number of occupied resources +1, and calculate the time period [n-100,n- 1]
  • the ratio of the total number of occupied resources in a time unit to the total number of subbands in the time period is the CBR of the terminal device.
  • the time unit may be a time slot, or may also be a subframe, etc.; a subband includes N physical resource blocks (PRBs) continuous in the frequency domain.
  • PRBs physical resource blocks
  • CR Used to evaluate the amount of resources occupied by the terminal device itself. This parameter is the sum of the transmission resources used by the terminal equipment in the time period [na,n-1] and the transmission resources to be used in the time period [n,n+b] time unit, and the time period [na,n+ b] The ratio of all transmission resources in a time unit. This parameter is used to describe the amount of resources used by the terminal device.
  • the time unit may be a time slot, or may also be a subframe or the like.
  • the terminal equipment uses 2 subbands in the time period [na,n-1] time unit, and will use 1 subband in the time period [n,n+b] time unit, so the terminal is in the time period [na
  • the usage of the transmission resource in the time unit of n+b] is 3 subbands, divided by the number of all subbands in the time unit of the time period [n,n+b] is the channel occupancy rate of the terminal device.
  • transmission mode 3 that is, the above transmission mode A
  • transmission mode 4 that is, the above transmission mode B
  • the terminal can only work in one of the transmission modes at the same time.
  • transmission mode 3 the transmission resources used by the terminal device are all configured by the network device, because the network device can know how much transmission resources the terminal device uses, so the network device can control the channel occupancy rate of the terminal device through resource allocation but does not exceed the maximum CR restriction:
  • transmission mode 4 the terminal device selects transmission resources autonomously, so the terminal device can learn CR. When the used transmission resource exceeds the CR limit, the terminal device discards the data packet.
  • network equipment and terminal equipment can respectively control the usage of transmission resources to prevent the channel occupancy rate from exceeding the limit.
  • transmission mode 1 that is, the above transmission mode A
  • transmission mode 2 that is, the above transmission mode B
  • the terminal can work in both transmission mode 1 and transmission mode 2, for example, terminal equipment Broadcast transmission and unicast transmission are carried out at the same time, and transmission resources are selected based on transmission mode 2 during broadcast transmission, and transmission resources are selected based on transmission mode 1 for unicast transmission.
  • the network equipment can allocate transmission resources for the terminal equipment, and at the same time, the terminal equipment can also independently select transmission resources.
  • the network equipment is not clear about the transmission resources selected by the terminal equipment, the network equipment cannot allocate appropriate transmission resources to the terminal equipment, so that the side-line data transmitted by the terminal equipment may be congested, resulting in the Internet of Vehicles system The reliability of side-line data transmission is reduced.
  • FIG. 2A is a schematic flowchart of a communication method 200 in a vehicle networking system provided by an embodiment of the application, as shown in FIG. 2A.
  • the terminal device sends the channel occupancy ratio (Channel Occupancy Ratio, CR) of the terminal device to the network device.
  • Channel Occupancy Ratio, CR Channel Occupancy Ratio
  • the network device involved in this application may be a mobility management device, for example, the access and mobility management function (Access and Mobility Management) in the 5G core network (Next Generation Core Network, NGCN) Function, AMF) or 4G core network, that is, the mobility management entity (Mobility Management Entity, MME) in the Evolved Packet Core Network (EPC), or it can also be a policy control device, such as a vehicle networking control function entity (Vehicle to Everything Control Function, V2X CF) or Policy Control Function (Policy Control Function, PCF), etc.
  • V2X CF vehicle networking control function entity
  • Policy Control Function Policy Control Function
  • the network structure not only supports V2X CF as an independent network element, but also supports the function of V2X CF to be carried in the PCF, which is not particularly limited in this embodiment.
  • the channel occupancy rate of the terminal device may be the channel occupancy rate of the terminal device operating in the first transmission mode, or may also be the terminal device
  • the channel occupancy rate operating in the second transmission mode may also be the channel occupancy rate of the terminal device operating in the first transmission mode and the second transmission mode, which is not particularly limited in this embodiment.
  • the first transmission mode, transmission mode A refers to the transmission mode in which the network device allocates transmission resources to the terminal device
  • the second transmission mode, transmission mode B refers to the terminal device autonomously Select the transmission mode of the transmission resource.
  • the second transmission mode may also refer to a transmission mode in which another terminal device (for example, a group head terminal) allocates transmission resources to the terminal device.
  • another terminal device for example, a group head terminal
  • the channel occupancy rate of the terminal device may be carried in terminal equipment assistance information (UEAssistanceInformation), or may also be carried in radio resource control (Radio Resource Control).
  • the Resource Control (RRC) signaling may also be carried in a Buffer Status Report (BSR), or may also be carried in other messages sent to the network device, which is not particularly limited in this embodiment.
  • the channel occupancy rate of the terminal device may include the channel occupancy rate of the terminal device in a time period [n-p, n+q] time unit.
  • the terminal device may make statistics of the channel occupancy rate of the terminal device within the time unit of the time period [n-p, n+q].
  • the parameter p can be 0 or a positive integer
  • the parameter q can be -1, 0 or a positive integer
  • the parameter n is the time when the terminal device measures CR, or the time when the terminal device sends CR to the network device.
  • the time unit may be a time slot, or may also be a subframe or the like.
  • the parameter p may be a protocol agreement, or may also be configured for the network device, or may also be independently selected by the terminal device, which is not particularly limited in this embodiment.
  • the terminal device may further send the parameter p to the network device.
  • the network device can learn the start time of the statistical time period corresponding to the received channel occupancy rate of the terminal device.
  • the parameter q may be a protocol agreement, or may also be configured for the network device, or may also be independently selected by the terminal device, which is not particularly limited in this embodiment.
  • the terminal device may further send the parameter q to the network device.
  • the network device can learn the end time of the statistical time period corresponding to the received channel occupancy rate of the terminal device.
  • the terminal device may specifically further send the parameter p and the parameter q to the network device at the same time. In this way, the network device can learn the start time and end time of the statistical time period corresponding to the received channel occupancy rate of the terminal device.
  • the channel occupancy rate of the terminal device may be that the terminal device operates in the first transmission mode in the time period [np, n+q] time unit
  • the channel occupancy rate may also be the channel occupancy rate of the terminal device operating in the second transmission mode in the time period [np, n+q] time unit, or may also be the channel occupancy rate in the time period [np, n+ q]
  • the channel occupancy rate of the terminal device operating in the first transmission mode and the second transmission mode in a time unit which is not particularly limited in this embodiment.
  • the time unit may be a time slot, or may also be a subframe or the like.
  • the first transmission mode, transmission mode A refers to the transmission mode in which the network device allocates transmission resources to the terminal device
  • the second transmission mode, transmission mode B refers to the terminal device autonomously Select the transmission mode of the transmission resource.
  • the second transmission mode may also refer to a transmission mode in which another terminal device (for example, a group head terminal) allocates transmission resources to the terminal device.
  • another terminal device for example, a group head terminal
  • the terminal device may further obtain the channel occupancy rate of each level for different levels of the first parameter of the side row data.
  • the channel occupancy rate of the service of a certain level when calculating the channel occupancy rate of the service of a certain level, the channel occupancy rate of the service lower or higher than the level is also included.
  • the first parameter may include but is not limited to at least one of the following parameters: priority, reliability, delay, transmission rate, communication distance, quality of service (QoS) class identifier (QoS Class Identified, QCI), QoS flow identifier (QoS Flow Identifier, QFI), and PC5 interface Qos index (PC5Qos Index, PQI).
  • QoS quality of service
  • QCI QoS Class Identified, QCI
  • QoS flow identifier QoS Flow Identifier, QFI
  • PC5Qos Index, PQI PC5 interface Qos index
  • the terminal device may calculate the corresponding channel occupancy rate for services of different levels of priority.
  • the first parameter is QCI
  • each QCI may correspond to a parameter set
  • the defined QCI index range is [0 7]
  • the terminal device may respectively index the indexes corresponding to different QCIs Calculate its corresponding channel occupancy rate.
  • the terminal device may use multiple methods to send these channel occupancy rates to the network device.
  • the terminal device may specifically send all levels of channel occupancy rates to the network device.
  • the terminal device may send all 8 calculation results to the network device.
  • the terminal device may specifically send a partial level of channel occupancy to the network device.
  • the terminal device calculates the channel occupancy rates corresponding to the services of 8 levels of priority, and then selects only part of the calculation results, for example, the channel occupancy rate corresponding to the services of priority levels 0-3, and sends it to The network equipment.
  • the terminal device may specifically send the channel occupancy rate of the level indicated by the configuration information to the network device according to the configuration information.
  • the configuration information is sent by the network device.
  • the configuration information sent by the network device may instruct the terminal device to send the channel occupancy rate corresponding to all levels of services, or may also instruct the terminal device to send the channel occupancy rate corresponding to some levels of services, or may also indicate The terminal device sends a channel occupancy rate corresponding to a certain level of service.
  • the configuration information sent by the network device may include a threshold, and the terminal device sends a channel occupancy rate corresponding to a service higher or lower than the threshold level.
  • the terminal device in 210, if the first trigger condition is met, the terminal device can be triggered to execute 210, that is, the terminal device sends the terminal device to the network device The channel occupancy rate.
  • the first trigger condition may include but is not limited to at least one of the following:
  • the terminal device receives the first indication information sent by the network device
  • the first trigger condition is whether the terminal device receives the first indication information sent by the network device. If the terminal device receives the first indication information sent by the network device, the first trigger condition is satisfied. Then, the terminal device may specifically send the channel occupancy rate of the terminal device to the network device according to the first indication information. Wherein, the first indication information may be sent by the network device.
  • the network device may specifically send the first indication information to the terminal device to instruct the terminal device to send the channel occupancy rate of the terminal device to the network device.
  • the terminal device may send the channel occupancy rate of the terminal device to the network device according to the first indication information.
  • the network device may specifically send the first indication information to the terminal device through at least one of a system broadcast message, high-level signaling, and physical layer signaling.
  • the existing Master Information Block (MIB) or System Information Block (SIB) in the system broadcast message can be used to carry the first indication information, or a new SIB can be added to carry the first indication. information.
  • MIB Master Information Block
  • SIB System Information Block
  • the high-level signaling may be a radio physical resource control (Radio Resource Control, RRC) message.
  • RRC Radio Resource Control
  • the first indication information may be carried by an Information Element (IE) in the RRC message.
  • the RRC message It may be an RRC message in the prior art, for example, an RRC connection reconfiguration (RRC CONNECTION RECONFIGURATION) message, etc., which is not limited in this embodiment.
  • the IE of the existing RRC message is extended to carry the first indication information, Or the RRC message may also be different from the existing RRC message in the prior art.
  • the high-level signaling may be a Media Access Control (MAC) Control Element (CE) message, and specifically, a new MAC CE message may be added to carry the first indication information.
  • MAC Media Access Control
  • CE Control Element
  • the physical layer signaling may be downlink control information (Downlink control information, DCI), and specifically may carry the first indication information through the DCI.
  • DCI Downlink control information
  • the first indication information may further include at least one of a parameter p and a parameter q, which is used to indicate the time period corresponding to the channel occupancy rate of the terminal device sent by the terminal device [np, n +q] Time unit.
  • the time unit may be a time slot, or may also be a subframe or the like.
  • the first indication information may further instruct the terminal device to send to the network device the channel occupancy rate in which transmission mode the terminal device works.
  • the first indication information may further instruct the terminal device to send the channel occupancy rate of the terminal device in the first transmission mode to the network device.
  • the first indication information may further instruct the terminal device to send to the network device the channel occupancy rate of the terminal device operating in the second transmission mode.
  • the first indication information may further instruct the terminal device to send to the network device the channel occupancy rate of the terminal device operating in the first transmission mode and the second transmission mode.
  • the first indication information may further indicate which level of the channel occupancy rate of the first parameter of the sideline data sent by the terminal device to the network device, that is, instruct the terminal device to send information to the network device. At least one level of channel occupancy rate of the first parameter of the side line data sent by the network device.
  • the first indication information may further instruct the terminal device to send all levels of channel occupancy rates of the first parameter to the network device.
  • the first indication information may further indicate that the terminal device sends a partial-level channel occupancy rate of the first parameter to the network device.
  • the first indication information may further instruct the terminal device to send a certain level of channel occupancy rate of the first parameter to the network device.
  • the first indication information may further instruct the terminal device to send the channel busy ratio to the network device.
  • the first trigger condition is whether the channel occupancy rate of the terminal device is greater than a first threshold. If the channel occupancy rate of the terminal device is greater than the first threshold, and the first trigger condition is satisfied, then the terminal device may send the channel occupancy rate of the terminal device to the network device.
  • the first threshold may be a uniform value, or may also be multiple different values.
  • different first parameters may correspond to different first thresholds, which is not particularly limited in this embodiment.
  • the first threshold may be a protocol agreement, or may also be configured for the network device, which is not particularly limited in this embodiment.
  • the terminal device may be triggered to execute 210.
  • the terminal device may be triggered to execute 210.
  • the terminal device may further send a second threshold to the network device.
  • the second indication information is used to indicate that the channel occupancy rate of the terminal device is greater than the first threshold, or the channel busy ratio measured by the terminal device is greater than the second threshold.
  • the second indication information may be carried in terminal equipment assistance information (UEAssistanceInformation), or may also be carried in radio resource control (Radio Resource Control, RRC) signaling, or may also be carried in a buffer status report ( Buffer Status Report, BSR), or may also be carried in other messages, which is not particularly limited in this embodiment.
  • USAssistanceInformation terminal equipment assistance information
  • RRC Radio Resource Control
  • BSR Buffer Status Report
  • the first trigger condition is whether the channel busy ratio measured by the terminal device is greater than a second threshold. If the channel busy ratio measured by the terminal device is greater than the second threshold, and the first trigger condition is met, the terminal device may send the channel occupancy rate of the terminal device to the network device.
  • the second threshold may be a protocol agreement, or may also be configured for the network device, which is not particularly limited in this embodiment.
  • the first trigger condition is a reporting period. If the reporting period is met, the first trigger condition is met. Then, the terminal device may specifically send the channel occupancy rate of the terminal device to the network device according to the reporting period.
  • the reporting period may be a protocol agreement, or may also be configured for the network device, which is not particularly limited in this embodiment.
  • the first trigger condition is that a timer expires. If the timer expires, the first trigger condition is satisfied. Then, the terminal device may specifically send the channel occupancy rate of the terminal device to the network device.
  • the timer may be a protocol agreement, or may also be configured for the network device, which is not particularly limited in this embodiment.
  • the first trigger condition is whether the counter reaches the third threshold. If the counter reaches the third threshold, the first trigger condition is satisfied. Then, the terminal device may specifically send the channel occupancy rate of the terminal device to the network device based on the counter.
  • the terminal device when the terminal device sends the channel occupancy rate of the terminal device to the network device, the counter is triggered, and the counter is updated in each time unit (such as a time slot or subframe). When the counter reaches the third threshold, the terminal device sends the The network device sends the channel occupancy rate of the terminal device.
  • the third threshold of the counter may be a protocol agreement, or may also be configured for the network device, which is not particularly limited in this embodiment.
  • the counter starts to count.
  • the counter can be set to an initial value, such as 20, and the counter is decremented in each time unit (such as a time slot or subframe) 1.
  • the terminal device sends the channel occupancy rate of the terminal device to the network device again, and resets the counter.
  • a counter starts to count.
  • the counter can be set to an initial value, such as 0, in each time unit (such as a time slot or subframe). ) Counter 1.
  • the terminal device sends the channel occupancy rate of the terminal device to the network device again.
  • the initial value of the counter may be a protocol agreement, or may also be configured for the network device, which is not particularly limited in this embodiment.
  • the terminal device may further perform congestion control.
  • the fourth threshold may be a protocol agreement, or may also be configured for the network device, or may also be determined for the terminal device, which is not particularly limited in this embodiment.
  • the network device may specifically configure the fourth threshold, such as a maximum CR, and when the CR calculated by the terminal device exceeds the maximum CR, the terminal device may perform congestion control.
  • the fourth threshold such as a maximum CR
  • the terminal device may specifically receive the third parameter and the fourth parameter sent by the network device, and further, the terminal device may determine the fourth threshold according to the third parameter and the fourth parameter .
  • the third parameter may be a maximum CR (CR limit)
  • the fourth parameter may be an offset value
  • the terminal device may specifically perform congestion control according to the first criterion.
  • the first criterion may specifically include multiple operation modes, which are not particularly limited in this embodiment.
  • the terminal device may specifically use one or more first criteria to perform congestion control.
  • the first criterion may be: the terminal device may specifically perform congestion control according to the third indication information; the third indication information may be sent by the network device.
  • the terminal device may specifically transmit the sideline data transmitted based on the first transmission mode and discard the sideline data transmitted based on the second transmission mode according to the processing mode indicated by the third indication information.
  • the first transmission mode, transmission mode A may refer to the transmission mode in which the network device allocates transmission resources for the terminal device;
  • the second transmission mode, transmission mode B may refer to the terminal device Independently select the transmission mode of the transmission resource.
  • the indication information may indicate a fifth threshold, then the terminal device may perform congestion control according to the fifth parameter of the side row data and the fifth threshold indicated by the third indication information.
  • the fifth parameter may include, but is not limited to, at least one of the following parameters: priority, reliability, time delay, transmission rate, communication distance, QCI, QFI, and PQI.
  • the terminal device may discard the side row data if the priority of the side row data is lower than the fifth threshold.
  • the terminal device may discard the side line data if the delay requirement parameter of the side line data is greater than the fifth threshold.
  • the terminal device may discard the side row data if the transmission rate requirement parameter of the side row data is less than the fifth threshold.
  • the first criterion may be: the terminal device may specifically transmit the sideline data transmitted based on the first transmission mode first, and discard the sideline data transmitted based on the second transmission mode.
  • the first transmission mode, transmission mode A may refer to the transmission mode in which the network device allocates transmission resources for the terminal device;
  • the second transmission mode, transmission mode B may refer to the terminal device Independently select the transmission mode of the transmission resource.
  • the second transmission mode may also refer to a transmission mode in which another terminal device (for example, a group head terminal) allocates transmission resources to the terminal device.
  • another terminal device for example, a group head terminal
  • the first criterion may be: the terminal device may specifically perform congestion control according to the second parameter of the transmitted sideline data.
  • the second parameter may include but is not limited to at least one of the following parameters: priority, reliability, time delay, transmission rate, communication distance, QCI, QFI, and PQI.
  • the first criterion may be: the terminal device may specifically discard part of the side row data according to the second parameter of the transmitted side row data to perform congestion control.
  • the terminal device can transmit high-priority side-line data first and discard low-priority side-line data; if the CR statistics are not prioritized, that is, the channel occupancy rate CR of all priority services is counted together. Then the terminal device can perform congestion control according to the priority of the side row data.
  • the terminal device may preferentially transmit the first type of side line data and discard the second type of side line data.
  • Class side row data if the delay parameter of the first type of side line data is 10 ms, and the delay parameter of the second type of side line data is 20 ms, the terminal device may preferentially transmit the first type of side line data and discard the second type of side line data. Class side row data.
  • the terminal device may preferentially transmit the first type of side data. Row data, discard the second type of side row data.
  • the first criterion may be: the terminal device may specifically discard the transmitted sideline data until the channel occupancy rate of the terminal device is less than or equal to the fourth threshold.
  • the terminal device may further send fourth indication information to the network device, where the fourth indication information is used to instruct the terminal device The channel occupancy rate of is greater than the fourth threshold.
  • the fourth indication information may be carried in terminal equipment assistance information (UEAssistanceInformation), or may also be carried in radio resource control (Radio Resource Control, RRC) signaling, or may also be carried in a buffer status report ( Buffer Status Report, BSR), or may also be carried in other messages, which is not particularly limited in this embodiment.
  • USAssistanceInformation terminal equipment assistance information
  • RRC Radio Resource Control
  • BSR Buffer Status Report
  • the terminal device can specifically use the congestion control transmission parameter to perform congestion control.
  • the transmission parameters for congestion control may include but are not limited to at least one of the following parameters: Modulation and Coding Scheme (MCS), number of PRBs, number of subbands, number of retransmissions, and maximum channel occupancy rate .
  • MCS Modulation and Coding Scheme
  • the transmission parameter may be a parameter range
  • the terminal device may specifically select corresponding transmission parameters within the parameter range to perform sideline data transmission, so as to realize congestion control.
  • a network device configures a table, and the elements in the table can be determined according to the level of CBR and the fifth parameter.
  • the elements in the table are the configured transmission parameters, such as the range of MCS, the range of PRB numbers, and the range of subband numbers. Range of retransmission times, maximum channel occupancy rate.
  • the terminal device may perform congestion control according to the transmission parameter configured by the network device. For example, the terminal device reselects the transmission parameter, and the reselected transmission parameter has a smaller number of PRBs, or a smaller number of subbands, or a higher MCS level, or a smaller number of retransmissions.
  • the transmission parameter for congestion control may be a protocol agreement, or may also be configured for the network device, which is not particularly limited in this embodiment.
  • the transmission parameter for congestion control is configured by the network device according to the CBR of the terminal device.
  • the transmission parameter for congestion control is configured by the network device according to the fifth parameter of the sideline data.
  • the transmission parameter for congestion control is a fifth parameter configuration of the network device according to the CBR of the terminal device and the side line data.
  • the fifth parameter may include but is not limited to at least one of the following parameters: priority, PQI, QCI, QFI, bearer, logical channel, communication distance, transmission rate, and reliability.
  • Priority It can be the ProSe Per-Packet Priority (PPPP) of neighboring services, and its value range is [0,7]. The lower the value of PPPP, the higher the priority.
  • PPPP ProSe Per-Packet Priority
  • Network equipment can configure transmission parameters for different PQI parameters. Among them, one PQI index corresponds to a set of parameters.
  • the transmission parameter configured by the network device may be configured according to a certain parameter in the PQI.
  • Network equipment can configure transmission parameters for different QCI parameters.
  • Network equipment can configure transmission parameters for different QFI parameters.
  • Bearer Network equipment can configure transmission parameters for different bearers.
  • the network device can configure transmission parameters for different logical channels.
  • Network devices can configure transmission parameters for different communication ranges.
  • Transmission rate (data rate): Network equipment can configure transmission parameters for different transmission rates.
  • Network equipment can configure transmission parameters for different reliability.
  • the terminal device may further directly discard the transmitted sideline data until the terminal device The channel occupancy rate of is less than or equal to the sixth threshold.
  • the sixth threshold may be a protocol agreement, or may also be configured for the network device, which is not particularly limited in this embodiment.
  • the network device may specifically configure the sixth threshold.
  • the terminal device may directly discard the transmitted sideline data until the terminal device’s channel is occupied.
  • the rate is less than or equal to the sixth threshold.
  • the network device After the network device receives the channel occupancy rate of the terminal device sent by the terminal device, the network device performs transmission resource allocation control processing of the terminal device according to the channel occupancy rate of the terminal device.
  • the network device can allocate appropriate transmission resources to the terminal device operating in the first transmission mode, that is, the transmission mode A, according to the received channel occupancy rate of the terminal device, so as to effectively avoid the occurrence of congestion.
  • the terminal device may further send the channel busy ratio to the network device before, at the same time or after executing 210.
  • the channel busy ratio may be measured by the terminal device.
  • the channel busy ratio measured by the terminal device can also be sent to the network device, so that the network device can learn the channel busy rate and the terminal device at the same time.
  • the terminal device A works in transmission mode 1 and transmission mode 2 at the same time as an example to describe in detail the technical solution provided by this application, as shown in FIG. 2B.
  • the gNB configures congestion control transmission parameters for the terminal device A and the terminal device B.
  • the transmission parameters for congestion control may include but are not limited to at least one of the following parameters: MCS, number of PRBs, number of subbands, number of retransmissions, and maximum CR.
  • the gNB allocates transmission resources for the terminal device A.
  • the terminal device A uses the allocated transmission resources to send sideline data to the terminal device B using the transmission parameters selected in the transmission parameter range configured by the gNB and/or the transmission parameters allocated by the gNB.
  • Terminal device A independently selects transmission resources.
  • the terminal device A uses the independently selected transmission resource and the transmission parameter selected in the transmission parameter range configured by the gNB to send the side line data to the terminal device B.
  • the terminal device A determines whether the first trigger condition is satisfied.
  • the terminal device A determines whether it needs to send the CR of the terminal device A according to the first instruction information sent by the gNB. If yes, the first trigger condition is met.
  • the terminal device A determines whether the CR of the terminal device A is greater than the first threshold. If yes, the first trigger condition is met.
  • the terminal device A determines whether the CBR is greater than the second threshold. If yes, the first trigger condition is met.
  • the terminal device A determines whether the reporting period is reached. If yes, the first trigger condition is met.
  • the terminal device A determines whether the timer expires. If yes, the first trigger condition is met.
  • the terminal device A determines whether the timer reaches the third threshold. If yes, the first trigger condition is met.
  • the terminal device A sends the CR of the terminal device A to the gNB.
  • terminal device A determines that the CR of terminal device A is greater than the first threshold, then in 236, terminal device A may further send second indication information to the gNB to indicate that the CR of terminal device A is greater than the first threshold.
  • the terminal device A may further send the CBR measured by the terminal device A to the gNB.
  • the gNB may perform transmission resource allocation control processing on the terminal device A according to the CR of the terminal device A.
  • the terminal device A judges whether the congestion control condition is satisfied.
  • the terminal device A determines whether the CR of the terminal device A is greater than the fourth threshold. If so, the congestion control conditions are met.
  • the terminal device A performs congestion control according to the first criterion.
  • the gNB can clearly know the channel usage of the terminal device A, and then allocate appropriate transmission resources to the terminal device A, it can avoid the congestion of the sideline data transmitted by the terminal device A, thereby improving the middle side of the car networking system. The reliability of data transmission.
  • the terminal device sends the channel occupancy rate of the terminal device to the network device, so that the network device can clearly know the channel usage of the terminal device, and then allocate appropriate transmission resources to the terminal device, which can avoid Congestion occurs in the side-line data transmitted by the terminal equipment, which improves the reliability of the side-line data transmission in the car networking system.
  • FIG. 3 is a schematic flowchart of a communication method 300 in an Internet of Vehicles system provided by an embodiment of the application, as shown in FIG. 3.
  • the network device configures a transmission parameter range for the terminal device according to at least one of the channel busy ratio and the fifth parameter of the side line data.
  • the terminal device selects a transmission parameter from the transmission parameter range, and transmits the side row data.
  • the network device involved in this application may be a mobility management device, for example, the access and mobility management function (Access and Mobility Management) in the 5G core network (Next Generation Core Network, NGCN) Function, AMF) or 4G core network, that is, the mobility management entity (Mobility Management Entity, MME) in the Evolved Packet Core Network (EPC), or it can also be a policy control device, such as a vehicle networking control function entity (Vehicle to Everything Control Function, V2X CF) or Policy Control Function (Policy Control Function, PCF), etc.
  • V2X CF vehicle networking control function entity
  • Policy Control Function Policy Control Function
  • the network structure not only supports V2X CF as an independent network element, but also supports the function of V2X CF to be carried in the PCF, which is not particularly limited in this embodiment.
  • the transmission parameters configured by the network device for the terminal device may include but are not limited to at least one of the following parameters: Modulation and Coding Scheme (MCS), number of PRBs, number of subbands, number of retransmissions, and maximum Channel occupancy rate.
  • MCS Modulation and Coding Scheme
  • the transmission parameter may be a parameter range
  • the terminal device may specifically select corresponding transmission parameters within the parameter range to perform sideline data transmission, so as to realize congestion control.
  • a network device configures a table, and the elements in the table can be determined according to the level of CBR and the fifth parameter.
  • the elements in the table are the configured transmission parameters, such as the range of MCS, the range of PRB numbers, and the range of subband numbers. Range of retransmission times, maximum channel occupancy rate.
  • the transmission parameter is the CBR configuration of the network device according to the terminal device.
  • the transmission parameter is a fifth parameter configuration of the network device according to sideline data.
  • the transmission parameter is a fifth parameter configuration of the network device according to the CBR of the terminal device and sideline data.
  • the fifth parameter may include but is not limited to at least one of the following parameters: priority, PQI, QCI, QFI, bearer, logical channel, communication distance, transmission rate, and reliability.
  • Priority It can be the ProSe Per-Packet Priority (PPPP) of neighboring services, and its value range is [0,7]. The lower the value of PPPP, the higher the priority.
  • PPPP ProSe Per-Packet Priority
  • Network equipment can configure transmission parameters for different PQI parameters. Among them, one PQI index corresponds to a set of parameters.
  • the transmission parameter configured by the network device may be configured according to a certain parameter in the PQI.
  • Network equipment can configure transmission parameters for different QCI parameters.
  • Network equipment can configure transmission parameters for different QFI parameters.
  • Bearer Network equipment can configure transmission parameters for different bearers.
  • the network device can configure transmission parameters for different logical channels.
  • Network devices can configure transmission parameters for different communication ranges.
  • Transmission rate (data rate): Network equipment can configure transmission parameters for different transmission rates.
  • Network equipment can configure transmission parameters for different reliability.
  • the network device configures the transmission parameter range for the terminal device according to at least one of the channel busy ratio and the fifth parameter of the sideline data, so that the terminal device can obtain the transmission parameter according to the transmission parameter range,
  • the side line data is transmitted, thereby realizing congestion control of the terminal device.
  • FIG. 4A is a schematic block diagram of a terminal device 400 according to an embodiment of the present application, as shown in FIG. 4A.
  • This embodiment provides a terminal device 400 for executing the method executed by the terminal device in the embodiment corresponding to FIG. 2A.
  • the terminal device 400 includes functional modules for executing the method executed by the terminal device in the embodiment corresponding to FIG. 2A.
  • the terminal device 400 may include a sending unit 410, configured to send the channel occupancy rate of the terminal device to the network device.
  • the network device involved in this application may be a mobility management device, for example, the access and mobility management function (Access and Mobility Management) in the 5G core network (Next Generation Core Network, NGCN) Function, AMF) or 4G core network, that is, the mobility management entity (Mobility Management Entity, MME) in the Evolved Packet Core Network (EPC), or it can also be a policy control device, such as a vehicle networking control function entity (Vehicle to Everything Control Function, V2X CF) or Policy Control Function (Policy Control Function, PCF), etc.
  • V2X CF vehicle networking control function entity
  • Policy Control Function Policy Control Function
  • the network structure not only supports V2X CF as an independent network element, but also supports the function of V2X CF to be carried in the PCF, which is not particularly limited in this embodiment.
  • the channel occupancy rate of the terminal device may be the channel occupancy rate of the terminal device operating in the first transmission mode, or may also be the terminal device
  • the channel occupancy rate operating in the second transmission mode may also be the channel occupancy rate of the terminal device operating in the first transmission mode and the second transmission mode, which is not particularly limited in this embodiment.
  • the first transmission mode, transmission mode A refers to the transmission mode in which the network device allocates transmission resources to the terminal device
  • the second transmission mode, transmission mode B refers to the terminal device autonomously Select the transmission mode of the transmission resource.
  • the second transmission mode may also refer to a transmission mode in which another terminal device (for example, a group head terminal) allocates transmission resources to the terminal device.
  • another terminal device for example, a group head terminal
  • the channel occupancy rate of the terminal device may include the channel occupancy rate of the terminal device in a time period [n-p, n+q] time unit.
  • the terminal device may make statistics of the channel occupancy rate of the terminal device within the time unit of the time period [n-p, n+q].
  • the parameter p can be 0 or a positive integer
  • the parameter q can be -1, 0 or a positive integer
  • the parameter n is the time when the terminal device measures CR, or the time when the terminal device sends CR to the network device.
  • the time unit may be a time slot, or may also be a subframe or the like.
  • the parameter p may be a protocol agreement, or may also be configured for the network device, or may also be independently selected by the terminal device, which is not particularly limited in this embodiment.
  • the sending unit 410 may be further configured to send the parameter p to the network device.
  • the network device can learn the start time of the statistical time period corresponding to the received channel occupancy rate of the terminal device.
  • the parameter q may be a protocol agreement, or may also be configured for the network device, or may also be independently selected by the terminal device, which is not particularly limited in this embodiment.
  • the sending unit 410 may be further configured to send the parameter q to the network device.
  • the network device can learn the end time of the statistical time period corresponding to the received channel occupancy rate of the terminal device.
  • the sending unit 410 may be further configured to send the parameter p and the parameter q to the network device at the same time. In this way, the network device can learn the start time and end time of the statistical time period corresponding to the received channel occupancy rate of the terminal device.
  • the channel occupancy rate of the terminal device may be that the terminal device operates in the first transmission mode in the time period [np, n+q] time unit
  • the channel occupancy rate may also be the channel occupancy rate of the terminal device operating in the second transmission mode in the time period [np,n+q] time unit, or it may also be the channel occupancy rate in the time period [np,n+q] q]
  • the channel occupancy rate of the terminal device operating in the first transmission mode and the second transmission mode in a time unit which is not particularly limited in this embodiment.
  • the time unit may be a time slot, or may also be a subframe or the like.
  • the first transmission mode, transmission mode A refers to the transmission mode in which the network device allocates transmission resources to the terminal device
  • the second transmission mode, transmission mode B refers to the terminal device autonomously Select the transmission mode of the transmission resource.
  • the second transmission mode may also refer to a transmission mode in which another terminal device (for example, a group head terminal) allocates transmission resources to the terminal device.
  • another terminal device for example, a group head terminal
  • the sending unit 410 may be further used for different levels of the first parameter of the side line data to obtain the channel occupancy rate of each level respectively.
  • the channel occupancy rate of the service of a certain level when calculating the channel occupancy rate of the service of a certain level, the channel occupancy rate of the service lower or higher than the level is also included.
  • the first parameter may include but is not limited to at least one of the following parameters: priority, reliability, delay, transmission rate, communication distance, quality of service (QoS) class identifier (QoS Class Identified, QCI), QoS flow identifier (QoS Flow Identifier, QFI), and PC5 interface Qos index (PC5Qos Index, PQI).
  • QoS quality of service
  • QCI QoS Class Identified, QCI
  • QoS flow identifier QoS Flow Identifier, QFI
  • PC5Qos Index, PQI PC5 interface Qos index
  • the sending unit 410 may be specifically configured to send all levels of channel occupancy rates to the network device.
  • the sending unit 410 may be specifically configured to send a partial level of channel occupancy to the network device.
  • the sending unit 410 may be specifically configured to send the channel occupancy rate of the level indicated by the configuration information to the network device according to the configuration information; wherein the configuration information is the The network device sends.
  • the sending unit 410 may be specifically configured to send the channel occupancy rate of the terminal device to the network device if the first trigger condition is satisfied.
  • the first trigger condition may include but is not limited to at least one of the following:
  • the terminal device receives the first indication information sent by the network device
  • the first indication information may further include at least one of a parameter p and a parameter q, which is used to indicate the time period corresponding to the channel occupancy rate of the terminal device sent by the sending unit 410 [ np,n+q] time unit.
  • the time unit may be a time slot, or may also be a subframe or the like.
  • the first indication information may further indicate at least one of the following:
  • the sending unit 410 sends the channel occupancy rate of the terminal device operating in the first transmission mode to the network device;
  • the sending unit 410 sends the channel occupancy rate of the terminal device operating in the second transmission mode to the network device; and.
  • the sending unit 410 sends the channel occupancy rate of at least one level of the first parameter of the sideline data to the network device.
  • the first parameter may include but is not limited to at least one of the following parameters: priority, reliability, time delay, transmission rate, communication distance, QCI, QFI, and PQI.
  • the first threshold, the second threshold, and the third threshold may be agreed upon by agreement, or may also be configured for the network device, which is not particularly limited in this embodiment.
  • the first indication information may further instruct the terminal device to send the channel busy ratio to the network device.
  • the sending unit 410 may be further configured to send second indication information to the network device, where the second indication information is used to indicate that the channel occupancy rate of the terminal device is greater than the first threshold , Or used to indicate that the channel busy ratio measured by the terminal device is greater than the second threshold.
  • the terminal device provided in this embodiment may further include a first transmission unit 420, configured to determine the channel of the terminal device The occupancy rate is greater than the fourth threshold, and congestion control is performed.
  • the fourth threshold may be a protocol agreement, or may also be configured for the network device, or may also be determined for the terminal device, which is not particularly limited in this embodiment.
  • the first transmission unit 420 may be specifically configured to receive the third parameter and the fourth parameter sent by the network device; and determine the fourth threshold according to the third parameter and the fourth parameter.
  • the first transmission unit 420 may be specifically configured to perform congestion control according to the first criterion.
  • the first criterion may specifically include multiple operation modes, which are not particularly limited in this embodiment.
  • the terminal device may specifically use one or more first criteria to perform congestion control.
  • the first criterion may be: the first transmission unit 420 may specifically perform congestion control according to the third indication information; the third indication information may be sent by the network device.
  • the first transmission unit 420 may be specifically configured to preferentially transmit sideline data transmitted based on the first transmission mode, and discard the sideline data transmitted based on the second transmission mode according to the processing mode indicated by the third indication information. data.
  • the first transmission mode, transmission mode A may refer to the transmission mode in which the network device allocates transmission resources for the terminal device;
  • the second transmission mode, transmission mode B may refer to the terminal device Independently select the transmission mode of the transmission resource.
  • the second transmission mode may also refer to a transmission mode in which another terminal device (for example, a group head terminal) allocates transmission resources to the terminal device.
  • another terminal device for example, a group head terminal
  • the first transmission unit 420 may be specifically configured to perform congestion control according to the fifth parameter of the side row data and the fifth threshold indicated by the third indication information.
  • the fifth parameter may include, but is not limited to, at least one of the following parameters: priority, reliability, time delay, transmission rate, communication distance, QCI, QFI, and PQI.
  • the first criterion may be: the first transmission unit 420 may specifically transmit the sideline data transmitted based on the first transmission mode first, and discard the sideline data transmitted based on the second transmission mode.
  • the first transmission mode, transmission mode A may refer to the transmission mode in which the network device allocates transmission resources for the terminal device;
  • the second transmission mode, transmission mode B may refer to the terminal device Independently select the transmission mode of the transmission resource.
  • the second transmission mode may also refer to a transmission mode in which another terminal device (for example, a group head terminal) allocates transmission resources to the terminal device.
  • another terminal device for example, a group head terminal
  • the first criterion may be: the first transmission unit 420 may specifically perform congestion control according to the second parameter of the transmitted side row data.
  • the second parameter may include but is not limited to at least one of the following parameters: priority, reliability, time delay, transmission rate, communication distance, QCI, QFI, and PQI.
  • the first criterion may be: the first transmission unit 420 may specifically discard the transmitted sideline data until the channel occupancy rate of the terminal device is less than or equal to the fourth threshold.
  • the sending unit 410 may be further configured to send fourth indication information to the network device, where the fourth indication information is used to indicate The channel occupancy rate of the terminal device is greater than the fourth threshold.
  • the first transmission unit 420 may specifically use congestion control transmission parameters to perform congestion control.
  • the transmission parameters for congestion control may include but are not limited to at least one of the following parameters: Modulation and Coding Scheme (MCS), number of PRBs, number of subbands, number of retransmissions, and maximum channel occupancy rate .
  • MCS Modulation and Coding Scheme
  • the transmission parameter may be a parameter range, and the first transmission unit 420 may specifically select a corresponding transmission parameter within the parameter range to perform sideline data transmission, so as to implement congestion control.
  • the transmission parameter for congestion control may be a protocol agreement, or may also be configured for the network device, which is not particularly limited in this embodiment.
  • the transmission parameter for congestion control may be configured by the network device according to at least one of the channel busy ratio and the fifth parameter, which is not particularly limited in this embodiment.
  • the fifth parameter may include but is not limited to at least one of the following parameters: priority, PQI, QCI, QFI, bearer, logical channel, communication distance, transmission rate, and reliability.
  • the terminal device provided in this embodiment may further include a second transmission unit 430, configured to: If the rate is greater than the sixth threshold, the transmitted sideline data is discarded until the channel occupancy rate of the terminal device is less than or equal to the sixth threshold.
  • the sixth threshold may be a protocol agreement, or may also be configured for the network device, which is not particularly limited in this embodiment.
  • the sending unit 410 may be further configured to send a channel busy ratio to the network device, where the channel busy ratio is measured by the terminal device owned.
  • the terminal device sends the channel occupancy rate of the terminal device to the network device through the sending unit, so that the network device can clearly know the channel usage of the terminal device, and then allocate appropriate transmission resources to the terminal device. It can avoid the congestion of the side-line data transmitted by the terminal device, thereby improving the reliability of the side-line data transmission in the car networking system.
  • FIG. 5A is a schematic block diagram of a network device 500 according to an embodiment of the present application, as shown in FIG. 5A. This embodiment provides a network device for executing the method in the embodiment corresponding to FIG. 3.
  • the network device 500 includes functional modules for executing the method in the embodiment corresponding to FIG. 3.
  • the network device 500 may include a receiving unit 510 and a control unit 520.
  • the receiving unit 510 may be used to receive the channel occupancy rate of the terminal device sent by the terminal device;
  • the control unit 520 may be used to perform transmission resource allocation control of the terminal device according to the channel occupancy rate of the terminal device deal with.
  • the network device involved in this application may be a mobility management device, for example, the access and mobility management function (Access and Mobility Management) in the 5G core network (Next Generation Core Network, NGCN) Function, AMF) or 4G core network, that is, the mobility management entity (Mobility Management Entity, MME) in the Evolved Packet Core Network (EPC), or it can also be a policy control device, such as a vehicle networking control function entity (Vehicle to Everything Control Function, V2X CF) or Policy Control Function (Policy Control Function, PCF), etc.
  • V2X CF vehicle networking control function entity
  • Policy Control Function Policy Control Function
  • the network structure not only supports V2X CF as an independent network element, but also supports the function of V2X CF to be carried in the PCF, which is not particularly limited in this embodiment.
  • the channel occupancy rate of the terminal device may be the channel occupancy rate of the terminal device operating in the first transmission mode, or may also be the terminal device
  • the channel occupancy rate operating in the second transmission mode may also be the channel occupancy rate of the terminal device operating in the first transmission mode and the second transmission mode, which is not particularly limited in this embodiment.
  • the first transmission mode, transmission mode A refers to the transmission mode in which the network device allocates transmission resources to the terminal device
  • the second transmission mode, transmission mode B refers to the terminal device autonomously Select the transmission mode of the transmission resource.
  • the second transmission mode may also refer to a transmission mode in which another terminal device (for example, a group head terminal) allocates transmission resources to the terminal device.
  • another terminal device for example, a group head terminal
  • the channel occupancy rate of the terminal device may include the channel occupancy rate of the terminal device in a time period [n-p, n+q] time unit.
  • the terminal device may make statistics of the channel occupancy rate of the terminal device within the time unit of the time period [n-p, n+q].
  • the parameter p can be 0 or a positive integer
  • the parameter q can be -1, 0 or a positive integer
  • the parameter n is the time when the terminal device measures CR, or the time when the terminal device sends CR to the network device.
  • the time unit may be a time slot, or may also be a subframe or the like.
  • the parameter p may be a protocol agreement, or may also be configured for the network device, or may also be independently selected by the terminal device, which is not particularly limited in this embodiment.
  • the receiving unit 510 may be further configured to receive the parameter p sent by the terminal device.
  • the network device can learn the start time of the statistical time period corresponding to the received channel occupancy rate of the terminal device.
  • the parameter q may be a protocol agreement, or may also be configured for the network device, or may also be independently selected by the terminal device, which is not particularly limited in this embodiment.
  • the receiving unit 510 may be further configured to receive the parameter q sent by the terminal device.
  • the network device can learn the end time of the statistical time period corresponding to the received channel occupancy rate of the terminal device.
  • the receiving unit 510 may be further configured to receive the parameter p and the parameter q simultaneously sent by the terminal device. In this way, the network device can learn the start time and end time of the statistical time period corresponding to the received channel occupancy rate of the terminal device.
  • the channel occupancy rate of the terminal device may be that the terminal device operates in the first transmission mode in the time period [np, n+q] time unit
  • the channel occupancy rate may also be the channel occupancy rate of the terminal device operating in the second transmission mode in the time period [np, n+q] time unit, or may also be the channel occupancy rate in the time period [np, n+ q]
  • the channel occupancy rate of the terminal device operating in the first transmission mode and the second transmission mode in a time unit which is not particularly limited in this embodiment.
  • the time unit may be a time slot, or may also be a subframe or the like.
  • the first transmission mode, transmission mode A refers to the transmission mode in which the network device allocates transmission resources to the terminal device
  • the second transmission mode, transmission mode B refers to the terminal device autonomously Select the transmission mode of the transmission resource.
  • the second transmission mode may also refer to a transmission mode in which another terminal device (for example, a group head terminal) allocates transmission resources to the terminal device.
  • another terminal device for example, a group head terminal
  • the receiving unit 510 may be specifically configured to
  • the first parameter may include but is not limited to at least one of the following parameters: priority, reliability, delay, transmission rate, communication distance, quality of service (QoS) class identifier (QoS Class Identified, QCI), QoS flow identifier (QoS Flow Identifier, QFI), and PC5 interface Qos index (PC5Qos Index, PQI).
  • QoS quality of service
  • QCI QoS Class Identified, QCI
  • QoS flow identifier QoS Flow Identifier, QFI
  • PC5Qos Index, PQI PC5 interface Qos index
  • the receiving unit 510 may be specifically configured to receive the channel occupancy rate of the terminal device sent by the terminal device if the first trigger condition is satisfied.
  • the first trigger condition may include but is not limited to at least one of the following:
  • the terminal device receives the first indication information sent by the network device
  • the first indication information may further include at least one of a parameter p and a parameter q, which are used to indicate the time period corresponding to the channel occupancy rate of the terminal device sent by the terminal device [np ,n+q] Time unit.
  • the time unit may be a time slot, or may also be a subframe or the like.
  • the first indication information may further indicate at least one of the following:
  • the terminal device sends the channel occupancy rate of the terminal device operating in the second transmission mode to the network device; and.
  • the terminal device sends the channel occupancy rate of at least one level of the first parameter of the sideline data to the network device.
  • the first parameter may include but is not limited to at least one of the following parameters: priority, reliability, time delay, transmission rate, communication distance, QCI, QFI, and PQI.
  • the first threshold, the second threshold, and the third threshold may be agreed upon by a protocol, or may also be configured for the network device, which is not particularly limited in this embodiment.
  • the receiving unit 510 may be further configured to receive second indication information sent by the terminal device, where the second indication information is used to indicate that the channel occupancy rate of the terminal device is greater than the first The threshold, or used to indicate that the channel busy ratio measured by the terminal device is greater than the second threshold.
  • control unit 520 may be further configured to configure a fourth threshold, so that if the channel occupancy rate of the terminal device is greater than the fourth threshold, The terminal device performs congestion control; or sends a third parameter and a fourth parameter to the terminal device for the terminal device to determine the fourth threshold according to the third parameter and the fourth parameter, to If the channel occupancy rate of the terminal device is greater than the fourth threshold, the terminal device performs congestion control.
  • control unit 520 may be further configured to send third indication information to the terminal device, so that the terminal device can perform congestion control according to the third indication information.
  • the third indication information may be used to indicate
  • the terminal device preferentially transmits the sideline data transmitted based on the first transmission mode, and discards the sideline data transmitted based on the second transmission mode;
  • the fifth threshold is for the terminal device to perform congestion control according to the fifth parameter of the side row data and the fifth threshold.
  • the first transmission mode, transmission mode A may refer to the transmission mode in which the network device allocates transmission resources for the terminal device;
  • the second transmission mode, transmission mode B may refer to the terminal device Independently select the transmission mode of the transmission resource.
  • the second transmission mode may also refer to a transmission mode in which another terminal device (for example, a group head terminal) allocates transmission resources to the terminal device.
  • another terminal device for example, a group head terminal
  • the receiving unit 510 may be further configured to receive fourth indication information sent by the terminal device, where the fourth indication information is used to indicate that the channel occupancy rate of the terminal device is greater than the fourth indication information. Threshold.
  • the terminal device may specifically use the congestion control transmission parameter to perform congestion control.
  • the transmission parameters for congestion control may include but are not limited to at least one of the following parameters: Modulation and Coding Scheme (MCS), number of PRBs, number of subbands, number of retransmissions, and maximum channel occupancy rate .
  • MCS Modulation and Coding Scheme
  • the transmission parameter may be a parameter range
  • the terminal device may specifically select corresponding transmission parameters within the parameter range to perform sideline data transmission, so as to realize congestion control.
  • the transmission parameter for congestion control may be a protocol agreement, or may also be configured for the network device, which is not particularly limited in this embodiment.
  • the transmission parameter for congestion control may be configured by the network device according to at least one of the channel busy ratio and the fifth parameter, which is not particularly limited in this embodiment.
  • the fifth parameter may include but is not limited to at least one of the following parameters: priority, PQI, QCI, QFI, bearer, logical channel, communication distance, transmission rate, and reliability.
  • control unit 520 may be further configured to configure a sixth threshold, so that if the channel occupancy rate of the terminal device is greater than the sixth threshold, The terminal device discards the transmitted sideline data until the channel occupancy rate of the terminal device is less than or equal to the sixth threshold.
  • the receiving unit 510 may be further configured to receive the channel busy ratio sent by the terminal device, where the channel busy ratio is the terminal device Measured.
  • the network device receives the channel occupancy rate of the terminal device sent by the terminal device through the receiving unit, so that the network device can clearly know the channel usage of the terminal device, and then the control unit allocates appropriate
  • the transmission resources can avoid congestion of the side-line data transmitted by the terminal equipment, thereby improving the reliability of the side-line data transmission in the car networking system.
  • FIG. 6 is a schematic block diagram of another terminal device 600 according to an embodiment of the present application, as shown in FIG. 6.
  • This embodiment provides a terminal device 600 for executing the method executed by the terminal device in the embodiment corresponding to FIG. 3.
  • the terminal device 600 includes functional modules for executing the method executed by the terminal device in the embodiment corresponding to FIG. 3.
  • the terminal device 600 may include an acquisition unit 610 and a transmission unit 620.
  • the acquiring unit 610 is configured to acquire the transmission parameter range configured by the network device according to at least one of the channel busy ratio and the fifth parameter of the side line data;
  • the transmission unit 620 is configured to select transmission parameters from the transmission parameter range , Transmit the side row data.
  • the fifth parameter may include, but is not limited to, at least one of the following parameters: priority, reliability, time delay, transmission rate, communication distance, QCI, QFI, and PQI.
  • the network device involved in this application may be a mobility management device, for example, the access and mobility management function (Access and Mobility Management) in the 5G core network (Next Generation Core Network, NGCN) Function, AMF) or 4G core network, that is, the mobility management entity (Mobility Management Entity, MME) in the Evolved Packet Core Network (EPC), or it can also be a policy control device, such as a vehicle networking control function entity (Vehicle to Everything Control Function, V2X CF) or Policy Control Function (Policy Control Function, PCF), etc.
  • V2X CF vehicle networking control function entity
  • Policy Control Function Policy Control Function
  • the acquisition unit acquires at least one of the fifth parameter of the channel busy ratio and sideline data by the network device, and configures the transmission parameter range for the terminal device, so that the transmission unit can acquire the transmission parameter according to the transmission parameter range. , To transmit the side row data, thereby realizing congestion control of the terminal device.
  • FIG. 7 is a schematic block diagram of another network device 700 provided by an embodiment of the present application, as shown in FIG. 7.
  • This embodiment provides a network device for executing the method executed by the network device in the embodiment corresponding to FIG. 3.
  • the network device 700 includes functional modules for executing the method executed by the network device in the embodiment corresponding to FIG. 3.
  • the network device 700 may include a configuration unit 710, configured to configure a transmission parameter range for the terminal device according to at least one of the channel busy ratio and the fifth parameter of the sideline data, so that the terminal device can move from within the transmission parameter range. Select transmission parameters and transmit the side row data.
  • the fifth parameter may include, but is not limited to, at least one of the following parameters: priority, reliability, time delay, transmission rate, communication distance, QCI, QFI, and PQI.
  • the network device involved in this application may be a mobility management device, for example, the access and mobility management function (Access and Mobility Management) in the 5G core network (Next Generation Core Network, NGCN) Function, AMF) or 4G core network, that is, the mobility management entity (Mobility Management Entity, MME) in the Evolved Packet Core Network (EPC), or it can also be a policy control device, such as a vehicle networking control function entity (Vehicle to Everything Control Function, V2X CF) or Policy Control Function (Policy Control Function, PCF), etc.
  • V2X CF vehicle networking control function entity
  • Policy Control Function Policy Control Function
  • the network device configures the transmission parameter range for the terminal device according to at least one of the channel busy ratio and the fifth parameter of the sideline data through the configuration unit, so that the terminal device can obtain transmission according to the transmission parameter range. Parameters and transmit the sideline data, thereby realizing congestion control of the terminal device.
  • FIG. 8 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 shown in FIG. 8 includes a processor 810, and the processor 810 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 800 may further include a memory 820.
  • the processor 810 can call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 800 may specifically be a network device in an embodiment of the present application, and the communication device 800 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 800 may specifically be a terminal device of an embodiment of the present application, and the communication device 800 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • FIG. 9 is a schematic structural diagram of a chip 900 according to an embodiment of the present application.
  • the chip 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 900 may further include a memory 920.
  • the processor 910 may call and run a computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the chip 900 may further include an input interface 930.
  • the processor 910 can control the input interface 930 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 900 may further include an output interface 940.
  • the processor 910 can control the output interface 940 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 10 is a schematic block diagram of a communication system 1000 provided by an embodiment of the present application. As shown in FIG. 10, the communication system 1000 includes a terminal device 1010 and a network device 1020.
  • the terminal device 1010 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 1020 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • it is not here. Repeat it again.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. , I won’t repeat it here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

一种车联网系统中的通信方法及终端设备、网络设备,可以提高车联网系统中侧行数据传输的可靠性。一种车联网系统中的通信方法包括:终端设备向网络设备发送所述终端设备的信道占用率。

Description

一种车联网系统中的通信方法及终端设备、网络设备 技术领域
本申请实施例涉及通信技术领域,具体涉及一种车联网系统中的通信方法及终端设备、网络设备。
背景技术
车联网(Vehicle to Everything,V2X)系统的通信方式采用一种侧行链路(Sidelink,SL)传输技术,与传统的无线通信系统中数据通过网络设备接收或者发送的方式不同,V2X系统采用终端设备到终端设备(Device to Device,D2D)直接通信的方式,因此具有更高的频谱效率以及更低的传输时延。
在基于新无线(New Radio,NR)系统等无线通信系统的车联网(NR-V2X)系统中,终端设备可以同时工作在传输模式1和传输模式2这两种传输模式。终端设备可以基于传输模式1,使用网络设备分配的传输资源进行侧行数据的传输,终端设备还可以基于模式2,在资源池中自主选取一个传输资源进行侧行数据的传输。
然而,由于网络设备并不清楚终端设备所选取的传输资源,使得网络设备无法为终端设备分配合适的传输资源,使得终端设备传输的侧行数据可能会发生拥塞现象,从而导致了车联网系统中侧行数据传输的可靠性的降低。
发明内容
本申请实施例提供一种车联网系统中的通信方法及终端设备、网络设备,用以提高车联网系统中侧行数据传输的可靠性。
第一方面,提供了一种车联网系统中的通信方法,包括:
终端设备向网络设备发送所述终端设备的信道占用率。
第二方面,提供了另一种车联网系统中的通信方法,包括:
网络设备接收终端设备发送的所述终端设备的信道占用率;
所述网络设备根据所述终端设备的信道占用率,进行所述终端设备的传输资源分配控制处理。
第三方面,提供了一种车联网系统中的通信方法,包括:
终端设备获取网络设备根据信道繁忙比率和侧行数据的第五参数中的至少一项配置的传输参数范围;
所述终端设备从所述传输参数范围内选取传输参数,传输所述侧行数据。
第四方面,提供了另一种车联网系统中的通信方法,包括:
网络设备根据信道繁忙比率和侧行数据的第五参数中的至少一项,为终端设备配置传输参数范围,以供所述终端设备从所述传输参数范围内选取传输参数,传输所述侧行数据
第五方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第六方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第七方面,提供了一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面至上述第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种终端设备,用于执行上述第三方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第三方面或其各实现方式中的方法的功能模块。
第九方面,提供了一种网络设备,用于执行上述第四方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第四方面或其各实现方式中的方法的功能模块。
第十方面,提供了一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第三方面至上述第四方面中的任一方面或其各实现方式中的方法。
第十一方面,提供了一种芯片,用于实现上述第一方面至上述第四方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至上述第四方面中的任一方面或其各实现方式中的方法。
第十二方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至上述第四方面中的任一方面或其各实现方式中的方法。
第十三方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至上述第四方面中的任一方面或其各实现方式中的方法。
第十四方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至上述第四方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,一方面,通过终端设备向网络设备发送所述终端设备的信道占用率,使得所述网络设备能够清楚获知所述终端设备的信道使用情况,进而为终端设备分配合适的传输资源,能够避免终端设备传输的侧行数据发生拥塞现象,从而提高了车联网系统中侧行数据传输的可靠性。
通过上述技术方案,另一方面,通过网络设备根据信道繁忙比率和侧行数据的第五参数中的至少一项,为终端设备配置传输参数范围,使得所述终端设备能够根据所述传输参数范围获取传输参数,传输所述侧行数据,从而实现了终端设备的拥塞控制。
附图说明
图1A是本申请实施例提供的一种通信系统架构的示意性图。
图1B是本申请实施例提供的一种V2X系统架构的示意性图。
图2A是本申请实施例提供的一种车联网系统中的通信方法的示意性图。
图2B是本申请实施例提供的一种车联网系统中的通信方法的示意性图。
图3是本申请实施例提供的另一种车联网系统中的通信方法的示意性图。
图4A是本申请实施例提供的一种终端设备的示意性框图。
图4B是本申请实施例提供的一种终端设备的示意性框图。
图4C是本申请实施例提供的一种终端设备的示意性框图。
图5是本申请实施例提供的一种网络设备的示意性框图。
图6是本申请实施例提供的另一种终端设备的示意性框图。
图7是本申请实施例提供的另一种网络设备的示意性框图。
图8是本申请实施例提供的一种通信设备的示意性框图。
图9是本申请实施例提供的一种芯片的示意性框图。
图10是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1A所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入技术(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
在车联网(Vehicle to Everything,V2X)系统中,采用终端设备到终端设备直接通信的方式,具有更高的频谱效率以及更低的传输时延。终端设备与终端设备之间,可以基于Uu接口,由接入网设备进行中转通信,或者还可以基于PC5接口,进行直接通信,如图1B。
图1A示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1A示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在3GPP定义了两种传输模式,即传输模式A和传输模式B。
传输模式A:终端设备的传输资源是由网络设备分配的,终端设备根据网络设备分配的传输资源在侧行链路上进行侧行数据的传输;网络设备可以为终端分配单次传输的传输资源,也可以为终端分配半静态传输的传输资源。
传输模式B:终端设备在资源池中自主选取一个传输资源进行侧行数据的传输。
当系统中的用户数很多时,会导致系统发生拥塞现象,使得用户之间的冲突增大,降低系统的整体性能,因此,在LTE-V2X系统中引入了拥塞控制机制。在LTE-V2X系统中引入两个和拥塞控制相关的计算量,即信道繁忙比率(Channel Busy Ratio,CBR)和信道占用率(Channel Occupancy Ratio,CR)。
CBR:终端设备计算一段时间内侧行接收信号强度指示(Sidelink Received Signal Strength Indicator,S-RSSI)超过某一门限的传输资源占该段时间内总的传输资源的比率。该参数用于描述系统整体的资源利用率。终端设备可以计算时间段[n-100,n-1]时间单元内每个子带上的S-RSSI,如果超过门限,则被占用的资源数+1,计算时间段[n-100,n-1]时间单元内总的被占用的资源数与该时间段内总的子带数的比值就是终端设备的CBR。其中,时间单元,可以为时隙,或者还可以为子帧等;一个子带包括N个频域连续的物理资源块(Physical Resource Block,PRB)。
CR:用于评估终端设备自身占用的资源量。该参数是终端设备在时间段[n-a,n-1]内使用的传输资源以及在时间段[n,n+b]时间单元内将要使用的传输资源的总和,与时间段[n-a,n+b]时间单元内所有的传输资源的比值。该参数用于描述该终端设备使用的资源量。其中,时间单元,可以为时隙,或者还可以为子帧等。例如,终端设备在时间段[n-a,n-1]时间单元内使用了2个子带,在时间段[n,n+b]时间单元内将要使用1个子带,因此该终端在时间段[n-a,n+b]时间单元内的传输资源的使用量是3个子带,除以该时间段[n,n+b]时间单元内所有子带的个数就是终端设备的信道占用率。
在LTE-V2X系统中,定义了两种传输模式:传输模式3(即上述传输模式A)和传输模式4(即上述传输模式B),终端在同一个时刻只能工作在其中一种传输模式。在传输模式3中,终端设备使用的传输资源都是网络设备配置的,因为网络设备可以获知 该终端设备使用了多少传输资源,因此网络设备可以通过资源分配控制终端设备的信道占用率不过超过最大CR限制;在传输模式4中,终端设备通过自主选取传输资源,因此终端设备可以获知CR,当使用的传输资源超过CR限制时,终端设备会丢弃数据包。
因此,在传输模式3和传输模式4中,网络设备和终端设备可以分别控制传输资源的使用情况,避免信道占用率超过限制。
但是,在NR-V2X系统中,引入了传输模式1(即上述传输模式A)和传输模式2(即上述传输模式B),终端可以同时工作在传输模式1和传输模式2,例如,终端设备同时进行广播传输和单播传输,广播传输时基于传输模式2选取传输资源,单播传输是基于传输模式1选取传输资源。此时,网络设备可以为终端设备分配传输资源,同时,终端设备也可以自主选取传输资源。
然而,由于网络设备并不清楚终端设备所选取的传输资源,使得网络设备无法为终端设备分配合适的传输资源,使得终端设备传输的侧行数据可能会发生拥塞现象,从而导致了车联网系统中侧行数据传输的可靠性的降低。
图2A为本申请实施例提供的一种车联网系统中的通信方法200的示意性流程图,如图2A所示。
210、终端设备向网络设备发送所述终端设备的信道占用率(Channel Occupancy Ratio,CR)。
本申请中所涉及的所述网络设备,可以为移动性管理设备,例如,5G核心网即下一代核心网(Next Generation Core Network,NGCN)中的接入和移动性管理功能(Access and Mobility Management Function,AMF)或4G核心网即演进分组核心网(Evolved Packet Core Network,EPC)中的移动性管理实体(Mobility Management Entity,MME),或者还可以为策略控制设备,例如,车联网控制功能实体(Vehicle to Everything Control Function,V2X CF)或策略控制功能实体(Policy Control Function,PCF)等,本实施例对此不进行特别限定。
其中,网络结构中既支持V2X CF是独立网元,也支持将V2X CF的功能携带在PCF中,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述终端设备的信道占用率可以为所述终端设备工作在第一传输模式下的信道占用率,或者还可以为所述终端设备工作在第二传输模式下的信道占用率,或者还可以为所述终端设备工作在第一传输模式和第二传输模式下的信道占用率,本实施例对此不进行特别限定。其中,所述第一传输模式即传输模式A,是指所述网络设备为所述终端设备分配传输资源的传输模式;以及所述第二传输模式即传输模式B,是指所述终端设备自主选取传输资源的传输模式。
可选地,所述第二传输模式,还可以是指其他终端设备(例如是组头终端)为所述终端设备分配传输资源的传输模式。
可选地,在本实施例的一个可能的实现方式中,在210中,所述终端设备的信道占用率可以携带在终端设备辅助信息(UEAssistanceInformation)中,或者还可以携带在无线资源控制(Radio Resource Control,RRC)信令中,或者还可以携带在缓冲状态报告(Buffer Status Report,BSR),或者还可以携带在其他发送给网络设备的消息中,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述终端设备的信道占用率可以包括在时间段[n-p,n+q]时间单元内所述终端设备的信道占用率。终端设备可以在时间段[n-p,n+q]时间单元内,统计所述终端设备的信道占用率。其中,参数p可以为0或正整数,参数q可以为-1、0或正整数,参数n是所述终端设备测量CR的时刻,或者是所述终端设备向网络设备发送CR的时刻。其中,时间单元,可以为时隙,或者还可以为子帧等。
其中,所述参数p可以为协议约定,或者还可以为所述网络设备配置,或者还可以 所述终端设备自主选取,本实施例对此不进行特别限定。
例如,终端设备自主选取所述参数p之后,所述终端设备还可以进一步向所述网络设备发送所述参数p。这样,网络设备就能够获知所接收的所述终端设备的信道占用率所对应的统计时间段的开始时间。
类似地,所述参数q可以为协议约定,或者还可以为所述网络设备配置,或者还可以所述终端设备自主选取,本实施例对此不进行特别限定。
例如,终端设备自主选取所述参数q之后,所述终端设备还可以进一步向所述网络设备发送所述参数q。这样,网络设备就能够获知所接收的所述终端设备的信道占用率所对应的统计时间段的结束时间。
可以理解的是,如果终端自主选取所述参数p和所述参数q,那么,所述终端设备具体还可以进一步向所述网络设备同时发送所述参数p和所述参数q。这样,网络设备就能够获知所接收的所述终端设备的信道占用率所对应的统计时间段的开始时间和结束时间。
可选地,在本实施例的一个可能的实现方式中,所述终端设备的信道占用率可以为在时间段[n-p,n+q]时间单元内所述终端设备工作在第一传输模式下的信道占用率,或者还可以为在时间段[n-p,n+q]时间单元内所述终端设备工作在第二传输模式下的信道占用率,或者还可以为在时间段[n-p,n+q]时间单元内所述终端设备工作在第一传输模式和第二传输模式下的信道占用率,本实施例对此不进行特别限定。其中,时间单元,可以为时隙,或者还可以为子帧等。其中,所述第一传输模式即传输模式A,是指所述网络设备为所述终端设备分配传输资源的传输模式;以及所述第二传输模式即传输模式B,是指所述终端设备自主选取传输资源的传输模式。
可选地,所述第二传输模式,还可以是指其他终端设备(例如是组头终端)为所述终端设备分配传输资源的传输模式。
可选地,在本实施例的一个可能的实现方式中,在210之前,所述终端设备还可以进一步对侧行数据的第一参数的不同等级,分别获得每个等级的信道占用率。
可选地,在计算某一等级的业务的信道占用率时,同时包括低于或高于该等级的业务的信道占用率。
其中,所述第一参数可以包括但不限于下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、服务质量(Quality of Service,QoS)类标识符(QoS Class Identified,QCI)、QoS流标识符(QoS Flow Identifier,QFI)、以及PC5接口Qos索引(PC5Qos Index,PQI)。
例如,所述第一参数为优先级,并且定义的优先级的等级范围是[0 7],则所述终端设备则可以分别对优先级的不同等级的业务,计算其对应的信道占用率。
或者,再例如,所述第一参数为QCI,每个QCI可以对应一个参数集合,并且定义的QCI的索引范围是[0 7],则所述终端设备则可以分别对对应着不同QCI的索引的业务,计算其对应的信道占用率。
在获得第一参数的每个等级的信道占用率之后,所述终端设备可以采用多种方式,将这些信道占用率发送给网络设备。
在一个具体的实现过程中,在210中,所述终端设备具体可以向所述网络设备发送全部等级的信道占用率。
例如,所述终端设备计算了8个等级的优先级的业务对应的信道占用率,则可以将全部的8个计算结果全部发送给所述网络设备。
在另一个具体的实现过程中,在210中,所述终端设备具体可以向所述网络设备发送部分等级的信道占用率。
例如,所述终端设备计算了8个等级的优先级的业务对应的信道占用率,则只选取其中的部分计算结果,例如,优先级的等级0-3的业务对应的信道占用率,发送给所述 网络设备。
在另一个具体的实现过程中,在210中,所述终端设备具体可以根据配置信息,向所述网络设备发送所述配置信息所指示的等级的信道占用率。其中,所述配置信息为所述网络设备发送。
例如,网络设备所发送的配置信息,可以指示所述终端设备发送全部等级的业务对应的信道占用率,或者还可以指示所述终端设备发送部分等级的业务对应的信道占用率,或者还可以指示所述终端设备发送某个等级的业务对应的信道占用率。
或者,再例如,网络设备所发送的配置信息可以包括一个门限,所述终端设备发送高于或者低于该门限等级的业务对应的信道占用率。
可选地,在本实施例的一个可能的实现方式中,在210中,若满足第一触发条件,则可以触发所述终端设备执行210,即所述终端设备向网络设备发送所述终端设备的信道占用率。
其中,所述第一触发条件,可以包括但不限于下列中的至少一项:
所述终端设备是否接收到所述网络设备发送的第一指示信息;
所述终端设备的信道占用率是否大于第一门限;
所述终端设备测量的信道繁忙比率是否大于第二门限;
上报周期;
计时器超时;以及
计数器是否到达第三门限。
在一个具体的实现过程中,所述第一触发条件为所述终端设备是否接收到所述网络设备发送的第一指示信息。若所述终端设备接收到所述网络设备发送的第一指示信息,则满足所述第一触发条件。那么,所述终端设备具体可以根据第一指示信息,向所述网络设备发送所述终端设备的信道占用率。其中,所述第一指示信息可以为所述网络设备发送。
具体来说,网络设备具体可以向所述终端设备发送所述第一指示信息,用以指示所述终端设备向所述网络设备发送所述终端设备的信道占用率。
所述终端设备在接收所述第一指示信息后,则可以根据所述第一指示信息,向所述网络设备发送所述终端设备的信道占用率。
具体来说,所述网络设备具体可以通过系统广播消息、高层信令和物理层信令中的至少一项,向所述终端设备发送所述第一指示信息。
例如,具体可以采用系统广播消息中现有的主信息块(Master Information Block,MIB)或系统信息块(System Information Block,SIB)携带第一指示信息,或者还可以增加新的SIB携带第一指示信息。
或者,再例如,所述高层信令可以是无线物理资源控制(Radio Resource Control,RRC)消息,具体可以通过RRC消息中的信息元素(Information Element,IE)携带第一指示信息,所述RRC消息可以为现有技术中的RRC消息,例如,RRC连接重配置(RRC CONNECTION RECONFIGURATION)消息等,本实施例对此不进行限定,通过对已有的RRC消息的IE进行扩展携带第一指示信息,或者所述RRC消息也可以为不同于现有技术中已有的RRC消息。
或者,再例如,所述高层信令可以是媒体访问控制(Media Access Control,MAC)控制元素(Control Element,CE)消息,具体还可以通过增加新的MAC CE消息携带第一指示信息。
或者,再例如,所述物理层信令可以是下行控制信息(Downlink control information,DCI),具体可以通过DCI携带第一指示信息。
在实现过程中,所述第一指示信息中还可以进一步包含参数p和参数q中的至少一项,用于指示终端设备发送的该终端设备的信道占用率所对应的时间段[n-p,n+q]时间单 元。其中,时间单元,可以为时隙,或者还可以为子帧等。
在实现过程中,所述第一指示信息,还可以进一步指示所述终端设备向所述网络设备发送所述终端设备工作在哪种传输模式下的信道占用率。
例如,所述第一指示信息,还可以进一步指示所述终端设备向所述网络设备发送所述终端设备工作在第一传输模式下的信道占用率。
或者,再例如,所述第一指示信息,还可以进一步指示所述终端设备向所述网络设备发送所述终端设备工作在第二传输模式下的信道占用率。
或者,再例如,所述第一指示信息,还可以进一步指示所述终端设备向所述网络设备发送所述终端设备工作在第一传输模式和第二传输模式下的信道占用率。
在实现过程中,所述第一指示信息,还可以进一步指示所述终端设备向所述网络设备发送侧行数据的第一参数的哪种等级的信道占用率,即指示所述终端设备向所述网络设备发送侧行数据的第一参数的至少一个等级的信道占用率。
例如,所述第一指示信息,还可以进一步指示所述终端设备向所述网络设备发送第一参数的全部等级的信道占用率。
或者,再例如,所述第一指示信息,还可以进一步指示所述终端设备向所述网络设备发送第一参数的部分等级的信道占用率。
或者,再例如,所述第一指示信息,还可以进一步指示所述终端设备向所述网络设备发送第一参数的某个等级的信道占用率。
在实现过程中,所述第一指示信息,还可以进一步指示所述终端设备向所述网络设备发送信道繁忙比率。
在另一个具体的实现过程中,所述第一触发条件为所述终端设备的信道占用率是否大于第一门限。若所述终端设备的信道占用率大于第一门限,则满足所述第一触发条件,那么,所述终端设备则可以向所述网络设备发送所述终端设备的信道占用率。
所述第一门限,可以为一个统一的数值,或者还可以为多个不同的数值,例如,不同的第一参数可以对应不同的第一门限,本实施例对此不进行特别限定。
其中,所述第一门限可以为协议约定,或者还可以为所述网络设备配置,本实施例对此不进行特别限定。
例如,若所述终端设备工作在第二传输模式下的信道占用率大于所述第一门限,则可以触发所述终端设备执行210。
或者,再例如,若所述终端设备工作在第一传输模式和第二传输模式下的信道占用率大于所述第一门限,则可以触发所述终端设备执行210。
在实现过程中,若所述终端设备的信道占用率大于第一门限,或者所述终端设备测量的信道繁忙比率大于所述第二门限,所述终端设备还可以进一步向所述网络设备发送第二指示信息,所述第二指示信息用于指示所述终端设备的信道占用率大于所述第一门限,或者所述终端设备测量的信道繁忙比率大于所述第二门限。
具体来说,所述第二指示信息可以携带在终端设备辅助信息(UEAssistanceInformation)中,或者还可以携带在无线资源控制(Radio Resource Control,RRC)信令中,或者还可以携带在缓冲状态报告(Buffer Status Report,BSR),或者还可以携带在其他消息中,本实施例对此不进行特别限定。
在另一个具体的实现过程中,所述第一触发条件为所述终端设备测量的信道繁忙比率是否大于第二门限。若所述终端设备测量的信道繁忙比率大于第二门限,则满足所述第一触发条件,那么,所述终端设备则可以向所述网络设备发送所述终端设备的信道占用率。
其中,所述第二门限可以为协议约定,或者还可以为所述网络设备配置,本实施例对此不进行特别限定。
在另一个具体的实现过程中,所述第一触发条件为上报周期。若满足所述上报周期, 则满足所述第一触发条件。那么,所述终端设备具体可以根据上报周期,向所述网络设备发送所述终端设备的信道占用率。
其中,所述上报周期可以为协议约定,或者还可以为所述网络设备配置,本实施例对此不进行特别限定。
在另一个具体的实现过程中,所述第一触发条件为计时器超时。若计时器超时,则满足所述第一触发条件。那么,所述终端设备具体可以向所述网络设备发送所述终端设备的信道占用率。
其中,所述计时器可以为协议约定,或者还可以为所述网络设备配置,本实施例对此不进行特别限定。
在另一个具体的实现过程中,所述第一触发条件为计数器是否到达第三门限。若计数器到达第三门限,则满足所述第一触发条件。那么,所述终端设备具体可以基于计数器,向所述网络设备发送所述终端设备的信道占用率。
例如,当终端设备向网络设备发送所述终端设备的信道占用率时,触发计数器,在每个时间单元(例如时隙或子帧)更新计数器,当计数器到达第三门限时,终端设备再次向网络设备发送所述终端设备的信道占用率。
其中,所述计数器的第三门限可以为协议约定,或者还可以为所述网络设备配置,本实施例对此不进行特别限定。
例如,当终端设备向网络设备发送所述终端设备的信道占用率时,启动计数器开始计时,该计数器可以设置一个初始值,例如20,在每个时间单元(例如时隙或子帧)计数器减1,当计数器减到第三门限,例如0时,终端设备再次向网络设备发送所述终端设备的信道占用率,并且重置计数器。
或者,再例如,当终端设备向网络设备发送所述终端设备的信道占用率时,启动计数器开始计时,该计数器可以设置一个初始值,例如0,在每个时间单元(例如时隙或子帧)计数器1,当计数器加到第三门限,例如20时,终端设备再次向网络设备发送所述终端设备的信道占用率。
其中,所述计数器的初始值可以为协议约定,或者还可以为所述网络设备配置,本实施例对此不进行特别限定。
可以理解的是,可以结合采用上述一个或多个实现过程中的实现方式,触发所述终端设备执行210,即所述终端设备向所述网络设备发送所述终端设备的信道占用率。
可选地,在本实施例的一个可能的实现方式中,若所述终端设备的信道占用率大于第四门限,所述终端设备还可以进一步进行拥塞控制。
其中,所述第四门限可以为协议约定,或者还可以为所述网络设备配置,或者还可以为所述终端设备确定,本实施例对此不进行特别限定。
具体来说,所述网络设备具体可以配置所述第四门限,例如最大CR,当终端设备计算的CR超过该最大CR时,终端设备则可以进行拥塞控制。
具体来说,所述终端设备具体可以接收网络设备发送的第三参数和第四参数,进而,所述终端设备则可以根据所述第三参数和所述第四参数,确定所述第四门限。
例如,第三参数可以为最大CR(CR limit),第四参数可以为一个偏移值,所述终端设备具体可以根据该最大CR和偏移值,确定第四门限。如,最大CR是0.6,偏移值是0.1,则第四门限是0.6-0.1=0.5。当终端设备计算的CR超过0.5时,则可以进行拥塞控制。
具体来说,若所述终端设备的信道占用率大于第四门限,所述终端设备具体可以根据第一准则,进行拥塞控制。
其中,所述第一准则具体可以包括多种操作方式,本实施例对此不进行特别限定。终端设备具体可以采用一种或多种第一准则,进行拥塞控制。
在一个具体的实现过程中,第一准则可以为:所述终端设备具体可以根据第三指示 信息,进行拥塞控制;所述第三指示信息可以为所述网络设备发送。
例如,所述终端设备具体可以根据所述第三指示信息所指示的处理方式,优先传输基于第一传输模式传输的侧行数据,丢弃基于第二传输模式传输的侧行数据。
其中,所述第一传输模式即传输模式A,可以是指所述网络设备为所述终端设备分配传输资源的传输模式;所述第二传输模式即传输模式B,可以是指所述终端设备自主选取传输资源的传输模式。
或者,再例如,所述指示信息可以指示第五门限,那么,所述终端设备则可以根据侧行数据的第五参数和所述第三指示信息所指示的第五门限,进行拥塞控制。
其中,所述第五参数可以包括但不限于下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
例如,若侧行数据的优先级低于第五门限,所述终端设备则可以丢弃该侧行数据。
或者,再例如,如果侧行数据的时延需求参数大于第五门限,所述终端设备则可以丢弃该侧行数据。
或者,再例如,如果侧行数据的传输速率需求参数小于第五门限,所述终端设备则可以丢弃该侧行数据。
另一个具体的实现过程中,第一准则可以为:所述终端设备具体可以优先传输基于第一传输模式传输的侧行数据,丢弃基于第二传输模式传输的侧行数据。
其中,所述第一传输模式即传输模式A,可以是指所述网络设备为所述终端设备分配传输资源的传输模式;所述第二传输模式即传输模式B,可以是指所述终端设备自主选取传输资源的传输模式。
可选地,所述第二传输模式,还可以是指其他终端设备(例如是组头终端)为所述终端设备分配传输资源的传输模式。
在另一个具体的实现过程中,第一准则可以为:所述终端设备具体可以根据传输的侧行数据的第二参数,进行拥塞控制。
其中,所述第二参数可以包括但不限于下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
具体来说,第一准则可以为:所述终端设备具体可以根据传输的侧行数据的第二参数,通过丢弃部分侧行数据,来进行拥塞控制。
例如,终端设备可以优先传输高优先级的侧行数据,丢弃低优先级的侧行数据;如果CR的统计是不区分优先级的,即所有优先级业务的信道占用率CR是一起统计的,则终端设备可以根据侧行数据的优先级进行拥塞控制。
或者,再例如,如果第一类侧行数据的时延参数是10ms,第二类侧行数据的时延参数是20ms,所述终端设备则可以优先传输第一类侧行数据,丢弃第二类侧行数据。
或者,再例如,如果第一类侧行数据的传输速率参数是10M b/s,第二类侧行数据的传输速率参数是2M b/s,所述终端设备则可以优先传输第一类侧行数据,丢弃第二类侧行数据。
在另一个具体的实现过程中,第一准则可以为:所述终端设备具体可以丢弃传输的侧行数据,直到所述终端设备的信道占用率小于或等于所述第四门限。
在实现方式中,若所述终端设备的信道占用率大于第四门限,所述终端设备还可以进一步向所述网络设备发送第四指示信息,所述第四指示信息用于指示所述终端设备的信道占用率大于所述第四门限。
具体来说,所述第四指示信息可以携带在终端设备辅助信息(UEAssistanceInformation)中,或者还可以携带在无线资源控制(Radio Resource Control,RRC)信令中,或者还可以携带在缓冲状态报告(Buffer Status Report,BSR),或者还可以携带在其他消息中,本实施例对此不进行特别限定。
在实现方式中,若所述终端设备的信道占用率大于第四门限,所述终端设备具体可 以利用拥塞控制的传输参数,进行拥塞控制。
其中,所述拥塞控制的传输参数可以包括但不限于下列参数中的至少一种:调制编码方案(Modulation and Coding Scheme,MCS)、PRB数、子带数、重传次数、以及最大信道占用率。
其中,所述传输参数,可以是一个参数范围,所述终端设备具体可以在该参数范围内选取相应的传输参数进行侧行数据的传输,以实现拥塞控制。
例如,网络设备配置一个表格,根据CBR和第五参数的等级可以确定表格中的元素,表格中的元素是配置的传输参数,例如是MCS的范围,PRB数的范围,子带数的范围,重传次数的范围,最大信道占用率。
当所述终端设备的信道占用率大于第四门限时,所述终端设备可以根据所述网络设备配置的传输参数进行拥塞控制。例如,所述终端设备重新选取传输参数,重新选取的传输参数具有更少的PRB数,或者更少的子带数,或者更高的MCS等级,或者更少的重传次数等。
其中,所述拥塞控制的传输参数可以为协议约定,或者还可以为所述网络设备配置,本实施例对此不进行特别限定。
例如,所述拥塞控制的传输参数为所述网络设备根据所述终端设备的CBR配置。
或者,再例如,所述拥塞控制的传输参数为所述网络设备根据侧行数据的第五参数配置。
或者,再例如,所述拥塞控制的传输参数为所述网络设备根据所述终端设备的CBR和侧行数据的第五参数配置。
在NR-V2X中,会引入不同的QoS参数,因此,网络设备需要根据新的QoS参数即第五参数配置传输参数。
其中,所述第五参数可以包括但不限于下列参数中的至少一种:优先级、PQI、QCI、QFI、承载、逻辑信道、通信距离、传输速率、以及可靠性。
优先级:可以为邻近业务每业务包优先级(ProSe Per-Packet Priority,PPPP),其取值范围是[0,7],PPPP的值越低,表示优先级越高。
PQI:网络设备可以为不同的PQI参数配置传输参数。其中,一个PQI索引对应一组参数,可选地,网络设备配置的传输参数可以是根据PQI中的某一个参数进行配置。
QCI:网络设备可以为不同的QCI参数配置传输参数。
QFI:网络设备可以为不同的QFI参数配置传输参数。
承载(Bearer):网络设备可以为不同的承载配置传输参数。
逻辑信道(logical Channel):网络设备可以为不同的逻辑信道配置传输参数。
通信距离(Communication Range):网络设备可以为不同的通信距离配置传输参数。
传输速率(data rate):网络设备可以为不同的传输速率配置传输参数。
可靠性:网络设备可以为不同的可靠性配置传输参数。
可选地,在本实施例的一个可能的实现方式中,若所述终端设备的信道占用率大于第六门限,所述终端设备还可以进一步直接丢弃传输的侧行数据,直到所述终端设备的信道占用率小于或等于所述第六门限。
其中,所述第六门限可以为协议约定,或者还可以为所述网络设备配置,本实施例对此不进行特别限定。
具体来说,所述网络设备具体可以配置所述第六门限,当终端设备计算的CR超过该第六门限时,终端设备则可以直接丢弃传输的侧行数据,直到所述终端设备的信道占用率小于或等于所述第六门限。
220、所述网络设备接收所述终端设备发送的所述终端设备的信道占用率后,所述网络设备根据所述终端设备的信道占用率,进行所述终端设备的传输资源分配控制处理。
网络设备具体可以根据所接收的终端设备的信道占用率,为工作在第一传输模式即传输模式A的终端设备分配合适的传输资源,从而能够有效避免拥塞现象的发生。
可选地,在本实施例的一个可能的实现方式中,所述终端设备在执行210的之前,同时或者之后,还可以进一步向所述网络设备发送信道繁忙比率。其中,所述信道繁忙比率可以是所述终端设备测量得到的。
这样,通过终端设备向网络设备发送所述终端设备的信道占用率的基础上,还可以向网络设备发送该终端设备所测量的信道繁忙比率,使得网络设备能够同时获知信道繁忙比率和该终端设备的信道占用率这两个参数,进而进行拥塞控制,例如,重新配置传输参数等。
下面将以NR-V2X系统中,终端设备A同时工作在传输模式1和传输模式2进行举例,详细说明本申请所提供的技术方案,如图2B所示。
230、gNB为终端设备A和终端设备B配置拥塞控制的传输参数。
其中,所述拥塞控制的传输参数可以包括但不限于下列参数中的至少一种:MCS、PRB数、子带数、重传次数、以及最大CR。
231、gNB为终端设备A分配传输资源。
232、终端设备A使用分配的传输资源,利用在gNB配置的传输参数范围中所选取的传输参数和/或利用gNB分配的传输参数,向终端设备B发送侧行数据。
233、终端设备A自主选取传输资源。
234、终端设备A使用自主选取的传输资源,利用在gNB配置的传输参数范围中所选取的传输参数,向终端设备B发送侧行数据。
235、终端设备A判断是否满足第一触发条件。
例如,终端设备A根据gNB发送的第一指示信息,判断是否需要发送终端设备A的CR。若是,则满足第一触发条件。
或者,再例如,终端设备A判断终端设备A的CR是否大于第一门限。若是,则满足第一触发条件。
或者,再例如,终端设备A判断CBR是否大于第二门限。若是,则满足第一触发条件。
或者,再例如,终端设备A判断是否到达上报周期。若是,则满足第一触发条件。
或者,再例如,终端设备A判断计时器是否超时。若是,则满足第一触发条件。
或者,再例如,终端设备A判断计时器是否到达第三门限。若是,则满足第一触发条件。
236、若满足第一触发条件,终端设备A向gNB发送终端设备A的CR。
若235中,终端设备A判断终端设备A的CR大于第一门限,则在236中,终端设备A还可以进一步向gNB发送第二指示信息,用以指示终端设备A的CR大于第一门限。
可选地,终端设备A还可以进一步向gNB发送该终端设备A所测量的CBR。
237、gNB接收到终端设备A发送的终端设备A的CR之后,则可以根据该终端设备A的CR,对终端设备A进行传输资源分配控制处理。
238、终端设备A判断是否满足拥塞控制条件。
具体地,终端设备A判断终端设备A的CR是否大于第四门限。若是,则满足拥塞控制条件。
239、若满足拥塞控制条件,终端设备A根据第一准则,进行拥塞控制。
第一准则的详细描述可以参见前面相关的内容。
至此,由于gNB能够清楚获知所述终端设备A的信道使用情况,进而为终端设备A分配合适的传输资源,能够避免终端设备A传输的侧行数据发生拥塞现象,从而提高了车联网系统中侧行数据传输的可靠性。
本实施例中,通过终端设备向网络设备发送所述终端设备的信道占用率,使得所述网络设备能够清楚获知所述终端设备的信道使用情况,进而为终端设备分配合适的传输资源,能够避免终端设备传输的侧行数据发生拥塞现象,从而提高了车联网系统中侧行数据传输的可靠性。
图3为本申请实施例提供的一种车联网系统中的通信方法300的示意性流程图,如图3所示。
310、网络设备根据信道繁忙比率和侧行数据的第五参数中的至少一项,为终端设备配置传输参数范围。
320、所述终端设备从所述传输参数范围内选取传输参数,传输所述侧行数据。
本申请中所涉及的所述网络设备,可以为移动性管理设备,例如,5G核心网即下一代核心网(Next Generation Core Network,NGCN)中的接入和移动性管理功能(Access and Mobility Management Function,AMF)或4G核心网即演进分组核心网(Evolved Packet Core Network,EPC)中的移动性管理实体(Mobility Management Entity,MME),或者还可以为策略控制设备,例如,车联网控制功能实体(Vehicle to Everything Control Function,V2X CF)或策略控制功能实体(Policy Control Function,PCF)等,本实施例对此不进行特别限定。
其中,网络结构中既支持V2X CF是独立网元,也支持将V2X CF的功能携带在PCF中,本实施例对此不进行特别限定。
其中,网络设备为终端设备所配置的传输参数可以包括但不限于下列参数中的至少一种:调制编码方案(Modulation and Coding Scheme,MCS)、PRB数、子带数、重传次数、以及最大信道占用率。
其中,所述传输参数,可以是一个参数范围,所述终端设备具体可以在该参数范围内选取相应的传输参数进行侧行数据的传输,以实现拥塞控制。
例如,网络设备配置一个表格,根据CBR和第五参数的等级可以确定表格中的元素,表格中的元素是配置的传输参数,例如是MCS的范围,PRB数的范围,子带数的范围,重传次数的范围,最大信道占用率。
例如,所述传输参数为所述网络设备根据所述终端设备的CBR配置。
或者,再例如,所述传输参数为所述网络设备根据侧行数据的第五参数配置。
或者,再例如,所述传输参数为所述网络设备根据所述终端设备的CBR和侧行数据的第五参数配置。
在NR-V2X中,会引入不同的QoS参数,因此,网络设备需要根据新的QoS参数即第五参数配置传输参数。
其中,所述第五参数可以包括但不限于下列参数中的至少一种:优先级、PQI、QCI、QFI、承载、逻辑信道、通信距离、传输速率、以及可靠性。
优先级:可以为邻近业务每业务包优先级(ProSe Per-Packet Priority,PPPP),其取值范围是[0,7],PPPP的值越低,表示优先级越高。
PQI:网络设备可以为不同的PQI参数配置传输参数。其中,一个PQI索引对应一组参数,可选地,网络设备配置的传输参数可以是根据PQI中的某一个参数进行配置。
QCI:网络设备可以为不同的QCI参数配置传输参数。
QFI:网络设备可以为不同的QFI参数配置传输参数。
承载(Bearer):网络设备可以为不同的承载配置传输参数。
逻辑信道(logical Channel):网络设备可以为不同的逻辑信道配置传输参数。
通信距离(Communication Range):网络设备可以为不同的通信距离配置传输参数。
传输速率(data rate):网络设备可以为不同的传输速率配置传输参数。
可靠性:网络设备可以为不同的可靠性配置传输参数。
本实施例中,通过网络设备根据信道繁忙比率和侧行数据的第五参数中的至少一项,为终端设备配置传输参数范围,使得所述终端设备能够根据所述传输参数范围获取传输参数,传输所述侧行数据,从而实现了终端设备的拥塞控制。
图4A是本申请实施例提供的一种终端设备400的示意性框图,如图4A所示。本实施例提供了一种终端设备400,用于执行图2A对应的实施例中终端设备执行的方法。
具体地,该终端设备400包括用于执行图2A对应的实施例中终端设备执行的方法的功能模块。终端设备400可以包括发送单元410,用于向网络设备发送所述终端设备的信道占用率。
本申请中所涉及的所述网络设备,可以为移动性管理设备,例如,5G核心网即下一代核心网(Next Generation Core Network,NGCN)中的接入和移动性管理功能(Access and Mobility Management Function,AMF)或4G核心网即演进分组核心网(Evolved Packet Core Network,EPC)中的移动性管理实体(Mobility Management Entity,MME),或者还可以为策略控制设备,例如,车联网控制功能实体(Vehicle to Everything Control Function,V2X CF)或策略控制功能实体(Policy Control Function,PCF)等,本实施例对此不进行特别限定。
其中,网络结构中既支持V2X CF是独立网元,也支持将V2X CF的功能携带在PCF中,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述终端设备的信道占用率可以为所述终端设备工作在第一传输模式下的信道占用率,或者还可以为所述终端设备工作在第二传输模式下的信道占用率,或者还可以为所述终端设备工作在第一传输模式和第二传输模式下的信道占用率,本实施例对此不进行特别限定。其中,所述第一传输模式即传输模式A,是指所述网络设备为所述终端设备分配传输资源的传输模式;以及所述第二传输模式即传输模式B,是指所述终端设备自主选取传输资源的传输模式。
可选地,所述第二传输模式,还可以是指其他终端设备(例如是组头终端)为所述终端设备分配传输资源的传输模式。
可选地,在本实施例的一个可能的实现方式中,所述终端设备的信道占用率可以包括在时间段[n-p,n+q]时间单元内所述终端设备的信道占用率。终端设备可以在时间段[n-p,n+q]时间单元内,统计所述终端设备的信道占用率。其中,参数p可以为0或正整数,参数q可以为-1、0或正整数,参数n是所述终端设备测量CR的时刻,或者是所述终端设备向网络设备发送CR的时刻。其中,时间单元,可以为时隙,或者还可以为子帧等。
其中,所述参数p可以为协议约定,或者还可以为所述网络设备配置,或者还可以所述终端设备自主选取,本实施例对此不进行特别限定。
例如,终端设备自主选取所述参数p之后,所述发送单元410,还可以进一步用于向所述网络设备发送所述参数p。这样,网络设备就能够获知所接收的所述终端设备的信道占用率所对应的统计时间段的开始时间。
类似地,所述参数q可以为协议约定,或者还可以为所述网络设备配置,或者还可以所述终端设备自主选取,本实施例对此不进行特别限定。
例如,终端设备自主选取所述参数q之后,所述发送单元410,还可以进一步用于向所述网络设备发送所述参数q。这样,网络设备就能够获知所接收的所述终端设备的信道占用率所对应的统计时间段的结束时间。
可以理解的是,如果终端自主选取所述参数p和所述参数q,那么,所述发送单元410,还可以进一步用于向所述网络设备同时发送所述参数p和所述参数q。这样,网络设备就能够获知所接收的所述终端设备的信道占用率所对应的统计时间段的开始时间和结束时间。
可选地,在本实施例的一个可能的实现方式中,所述终端设备的信道占用率可以为 在时间段[n-p,n+q]时间单元内所述终端设备工作在第一传输模式下的信道占用率,或者还可以为在时间段[n-p,n+q]时间单元内所述终端设备工作在第二传输模式下的信道占用率,或者还可以为在时间段[n-p,n+q]时间单元内所述终端设备工作在第一传输模式和第二传输模式下的信道占用率,本实施例对此不进行特别限定。其中,时间单元,可以为时隙,或者还可以为子帧等。其中,所述第一传输模式即传输模式A,是指所述网络设备为所述终端设备分配传输资源的传输模式;以及所述第二传输模式即传输模式B,是指所述终端设备自主选取传输资源的传输模式。
可选地,所述第二传输模式,还可以是指其他终端设备(例如是组头终端)为所述终端设备分配传输资源的传输模式。
可选地,在本实施例的一个可能的实现方式中,所述发送单元410,还可以进一步用于对侧行数据的第一参数的不同等级,分别获得每个等级的信道占用率。
可选地,在计算某一等级的业务的信道占用率时,同时包括低于或高于该等级的业务的信道占用率。
其中,所述第一参数可以包括但不限于下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、服务质量(Quality of Service,QoS)类标识符(QoS Class Identified,QCI)、QoS流标识符(QoS Flow Identifier,QFI)、以及PC5接口Qos索引(PC5Qos Index,PQI)。
在一个具体的实现过程中,所述发送单元410,具体可以用于向所述网络设备发送全部等级的信道占用率。
在另一个具体的实现过程中,所述发送单元410,具体可以用于向所述网络设备发送部分等级的信道占用率。
在另一个具体的实现过程中,所述发送单元410,具体可以用于根据配置信息,向所述网络设备发送所述配置信息所指示的等级的信道占用率;其中,所述配置信息为所述网络设备发送。
可选地,在本实施例的一个可能的实现方式中,所述发送单元410,具体可以用于若满足第一触发条件,向网络设备发送所述终端设备的信道占用率。
其中,所述第一触发条件,可以包括但不限于下列中的至少一项:
所述终端设备是否接收到所述网络设备发送的第一指示信息;
所述终端设备的信道占用率是否大于第一门限;
所述终端设备测量的信道繁忙比率是否大于第二门限;
上报周期;
计时器超时;以及
计数器是否到达第三门限。
在实现过程中,所述第一指示信息中还可以进一步包含参数p和参数q中的至少一项,用于指示所述发送单元410发送的该终端设备的信道占用率所对应的时间段[n-p,n+q]时间单元。其中,时间单元,可以为时隙,或者还可以为子帧等。
在实现过程中,所述第一指示信息,还可以进一步指示下列中的至少一项:
所述发送单元410向所述网络设备发送所述终端设备工作在第一传输模式下的信道占用率;
所述发送单元410向所述网络设备发送所述终端设备工作在第二传输模式下的信道占用率;以及。
所述发送单元410向所述网络设备发送侧行数据的第一参数的至少一个等级的信道占用率。
其中,所述第一参数可以包括但不限于下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
其中,所述第一门限、第二门限和第三门限可以为协议约定,或者还可以为所述网 络设备配置,本实施例对此不进行特别限定。
在实现过程中,所述第一指示信息,还可以进一步指示所述终端设备向所述网络设备发送信道繁忙比率。
在实现过程中,所述发送单元410,还可以进一步用于向所述网络设备发送第二指示信息,所述第二指示信息用于指示所述终端设备的信道占用率大于所述第一门限,或者用于指示所述终端设备测量的信道繁忙比率大于所述第二门限。
可选地,在本实施例的一个可能的实现方式中,如图4B所示,本实施例所提供的终端设备还还可以进一步包括第一传输单元420,用于若所述终端设备的信道占用率大于第四门限,进行拥塞控制。
其中,所述第四门限可以为协议约定,或者还可以为所述网络设备配置,或者还可以为所述终端设备确定,本实施例对此不进行特别限定。
具体来说,所述第一传输单元420,具体可以用于接收网络设备发送的第三参数和第四参数;以及根据所述第三参数和所述第四参数,确定所述第四门限。
具体来说,所述第一传输单元420,具体可以用于根据第一准则,进行拥塞控制。
其中,所述第一准则具体可以包括多种操作方式,本实施例对此不进行特别限定。终端设备具体可以采用一种或多种第一准则,进行拥塞控制。
在一个具体的实现过程中,第一准则可以为:所述第一传输单元420具体可以根据第三指示信息,进行拥塞控制;所述第三指示信息可以为所述网络设备发送。
例如,所述第一传输单元420,具体可以用于根据所述第三指示信息所指示的处理方式,优先传输基于第一传输模式传输的侧行数据,丢弃基于第二传输模式传输的侧行数据。
其中,所述第一传输模式即传输模式A,可以是指所述网络设备为所述终端设备分配传输资源的传输模式;所述第二传输模式即传输模式B,可以是指所述终端设备自主选取传输资源的传输模式。
可选地,所述第二传输模式,还可以是指其他终端设备(例如是组头终端)为所述终端设备分配传输资源的传输模式。
或者,再例如,所述第一传输单元420,具体可以用于根据侧行数据的第五参数和所述第三指示信息所指示的第五门限,进行拥塞控制。
其中,所述第五参数可以包括但不限于下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
另一个具体的实现过程中,第一准则可以为:所述第一传输单元420具体可以优先传输基于第一传输模式传输的侧行数据,丢弃基于第二传输模式传输的侧行数据。
其中,所述第一传输模式即传输模式A,可以是指所述网络设备为所述终端设备分配传输资源的传输模式;所述第二传输模式即传输模式B,可以是指所述终端设备自主选取传输资源的传输模式。
可选地,所述第二传输模式,还可以是指其他终端设备(例如是组头终端)为所述终端设备分配传输资源的传输模式。
在另一个具体的实现过程中,第一准则可以为:所述第一传输单元420具体可以根据传输的侧行数据的第二参数,进行拥塞控制。
其中,所述第二参数可以包括但不限于下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
在另一个具体的实现过程中,第一准则可以为:所述第一传输单元420具体可以丢弃传输的侧行数据,直到所述终端设备的信道占用率小于或等于所述第四门限。
在实现方式中,若所述终端设备的信道占用率大于第四门限,所述发送单元410,还可以进一步用于向所述网络设备发送第四指示信息,所述第四指示信息用于指示所述终端设备的信道占用率大于所述第四门限。
在实现方式中,若所述终端设备的信道占用率大于第四门限,所述第一传输单元420具体可以利用拥塞控制的传输参数,进行拥塞控制。
其中,所述拥塞控制的传输参数可以包括但不限于下列参数中的至少一种:调制编码方案(Modulation and Coding Scheme,MCS)、PRB数、子带数、重传次数、以及最大信道占用率。
其中,所述传输参数,可以是一个参数范围,所述第一传输单元420具体可以在该参数范围内选取相应的传输参数进行侧行数据的传输,以实现拥塞控制。
其中,所述拥塞控制的传输参数可以为协议约定,或者还可以为所述网络设备配置,本实施例对此不进行特别限定。
例如,所述拥塞控制的传输参数可以为所述网络设备根据信道繁忙比率和第五参数中的至少一项配置,本实施例对此不进行特别限定。
其中,所述第五参数可以包括但不限于下列参数中的至少一种:优先级、PQI、QCI、QFI、承载、逻辑信道、通信距离、传输速率、以及可靠性。
可选地,在本实施例的一个可能的实现方式中,如图4C所示,本实施例所提供的终端设备还可以进一步包括第二传输单元430,用于若所述终端设备的信道占用率大于第六门限,丢弃传输的侧行数据,直到所述终端设备的信道占用率小于或等于所述第六门限。
其中,所述第六门限可以为协议约定,或者还可以为所述网络设备配置,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述发送单元410,还可以进一步用于向所述网络设备发送信道繁忙比率,其中,所述信道繁忙比率是所述终端设备测量得到的。
本实施例中,终端设备通过发送单元向网络设备发送所述终端设备的信道占用率,使得所述网络设备能够清楚获知所述终端设备的信道使用情况,进而为终端设备分配合适的传输资源,能够避免终端设备传输的侧行数据发生拥塞现象,从而提高了车联网系统中侧行数据传输的可靠性。
图5A是本申请实施例提供的一种网络设备500的示意性框图,如图5A所示。本实施例提供了一种网络设备,用于执行图3对应的实施例中的方法。
具体地,该网络设备500包括用于执行图3对应的实施例中的方法的功能模块。网络设备500可以包括接收单元510和控制单元520。其中,接收单元510,可以用于接收终端设备发送的所述终端设备的信道占用率;控制单元520,可以用于根据所述终端设备的信道占用率,进行所述终端设备的传输资源分配控制处理。
本申请中所涉及的所述网络设备,可以为移动性管理设备,例如,5G核心网即下一代核心网(Next Generation Core Network,NGCN)中的接入和移动性管理功能(Access and Mobility Management Function,AMF)或4G核心网即演进分组核心网(Evolved Packet Core Network,EPC)中的移动性管理实体(Mobility Management Entity,MME),或者还可以为策略控制设备,例如,车联网控制功能实体(Vehicle to Everything Control Function,V2X CF)或策略控制功能实体(Policy Control Function,PCF)等,本实施例对此不进行特别限定。
其中,网络结构中既支持V2X CF是独立网元,也支持将V2X CF的功能携带在PCF中,本实施例对此不进行特别限定。
可选地,在本实施例的一个可能的实现方式中,所述终端设备的信道占用率可以为所述终端设备工作在第一传输模式下的信道占用率,或者还可以为所述终端设备工作在第二传输模式下的信道占用率,或者还可以为所述终端设备工作在第一传输模式和第二传输模式下的信道占用率,本实施例对此不进行特别限定。其中,所述第一传输模式即传输模式A,是指所述网络设备为所述终端设备分配传输资源的传输模式;以及所述第 二传输模式即传输模式B,是指所述终端设备自主选取传输资源的传输模式。
可选地,所述第二传输模式,还可以是指其他终端设备(例如是组头终端)为所述终端设备分配传输资源的传输模式。
可选地,在本实施例的一个可能的实现方式中,所述终端设备的信道占用率可以包括在时间段[n-p,n+q]时间单元内所述终端设备的信道占用率。终端设备可以在时间段[n-p,n+q]时间单元内,统计所述终端设备的信道占用率。其中,参数p可以为0或正整数,参数q可以为-1、0或正整数,参数n是所述终端设备测量CR的时刻,或者是所述终端设备向网络设备发送CR的时刻。其中,时间单元,可以为时隙,或者还可以为子帧等。
其中,所述参数p可以为协议约定,或者还可以为所述网络设备配置,或者还可以所述终端设备自主选取,本实施例对此不进行特别限定。
例如,终端设备自主选取所述参数p之后,所述接收单元510,还可以进一步用于接收所述终端设备发送的所述参数p。这样,网络设备就能够获知所接收的所述终端设备的信道占用率所对应的统计时间段的开始时间。
类似地,所述参数q可以为协议约定,或者还可以为所述网络设备配置,或者还可以所述终端设备自主选取,本实施例对此不进行特别限定。
例如,终端设备自主选取所述参数q之后,所述接收单元510,还可以进一步用于接收所述终端设备发送的所述参数q。这样,网络设备就能够获知所接收的所述终端设备的信道占用率所对应的统计时间段的结束时间。
可以理解的是,如果终端自主选取所述参数p和所述参数q,那么,所述接收单元510,还可以进一步用于接收所述终端设备同时发送的所述参数p和所述参数q。这样,网络设备就能够获知所接收的所述终端设备的信道占用率所对应的统计时间段的开始时间和结束时间。
可选地,在本实施例的一个可能的实现方式中,所述终端设备的信道占用率可以为在时间段[n-p,n+q]时间单元内所述终端设备工作在第一传输模式下的信道占用率,或者还可以为在时间段[n-p,n+q]时间单元内所述终端设备工作在第二传输模式下的信道占用率,或者还可以为在时间段[n-p,n+q]时间单元内所述终端设备工作在第一传输模式和第二传输模式下的信道占用率,本实施例对此不进行特别限定。其中,时间单元,可以为时隙,或者还可以为子帧等。其中,所述第一传输模式即传输模式A,是指所述网络设备为所述终端设备分配传输资源的传输模式;以及所述第二传输模式即传输模式B,是指所述终端设备自主选取传输资源的传输模式。
可选地,所述第二传输模式,还可以是指其他终端设备(例如是组头终端)为所述终端设备分配传输资源的传输模式。
可选地,在本实施例的一个可能的实现方式中,所述接收单元510,具体可以用于
接收所述终端设备发送的侧行数据的第一参数的全部等级的信道占用率;或者
接收所述终端设备发送的侧行数据的第一参数的部分等级的信道占用率;或者
接收所述终端设备根据配置信息发送的配置信息所指示的第一参数的等级的信道占用率;其中,所述配置信息为所述网络设备发送。
其中,所述第一参数可以包括但不限于下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、服务质量(Quality of Service,QoS)类标识符(QoS Class Identified,QCI)、QoS流标识符(QoS Flow Identifier,QFI)、以及PC5接口Qos索引(PC5Qos Index,PQI)。
可选地,在本实施例的一个可能的实现方式中,所述接收单元510,具体可以用于接收若满足第一触发条件,所述终端设备发送的所述终端设备的信道占用率。
其中,所述第一触发条件,可以包括但不限于下列中的至少一项:
所述终端设备是否接收到所述网络设备发送的第一指示信息;
所述终端设备的信道占用率是否大于第一门限;
所述终端设备测量的信道繁忙比率是否大于第二门限;
上报周期;
计时器超时;以及
计数器是否到达第三门限。
在实现过程中,所述第一指示信息中还可以进一步包含参数p和参数q中的至少一项,用于指示所述终端设备发送的该终端设备的信道占用率所对应的时间段[n-p,n+q]时间单元。其中,时间单元,可以为时隙,或者还可以为子帧等。
在实现过程中,所述第一指示信息,还可以进一步指示下列中的至少一项:
所述终端设备向所述网络设备发送所述终端设备工作在第一传输模式下的信道占用率;
所述终端设备向所述网络设备发送所述终端设备工作在第二传输模式下的信道占用率;以及。
所述终端设备向所述网络设备发送侧行数据的第一参数的至少一个等级的信道占用率。
其中,所述第一参数可以包括但不限于下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
其中,所述第一门限、第二门限和第三门限可以为协议约定,或者还可以为所述网络设备配置,本实施例对此不进行特别限定。
在实现过程中,所述接收单元510,还可以进一步用于接收所述终端设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备的信道占用率大于所述第一门限,或者用于指示所述终端设备测量的信道繁忙比率大于所述第二门限。
可选地,在本实施例的一个可能的实现方式中,所述控制单元520,还可以进一步用于配置第四门限,以供若所述终端设备的信道占用率大于所述第四门限,所述终端设备进行拥塞控制;或者向所述终端设备发送第三参数和第四参数,以供所述终端设备根据所述第三参数和所述第四参数,确定所述第四门限,以供若所述终端设备的信道占用率大于所述第四门限,所述终端设备进行拥塞控制。
在一个具体的实现过程中,所述控制单元520,还可以进一步用于向所述终端设备发送第三指示信息,以供所述终端设备根据所述第三指示信息,进行拥塞控制。
例如,所述第三指示信息,可以用于指示
所述终端设备优先传输基于第一传输模式传输的侧行数据,丢弃基于第二传输模式传输的侧行数据;或者
第五门限,以供所述终端设备根据侧行数据的第五参数和所述第五门限,进行拥塞控制。
其中,所述第一传输模式即传输模式A,可以是指所述网络设备为所述终端设备分配传输资源的传输模式;所述第二传输模式即传输模式B,可以是指所述终端设备自主选取传输资源的传输模式。
可选地,所述第二传输模式,还可以是指其他终端设备(例如是组头终端)为所述终端设备分配传输资源的传输模式。
在实现方式中,所述接收单元510,还可以进一步用于接收所述终端设备发送的第四指示信息,所述第四指示信息用于指示所述终端设备的信道占用率大于所述第四门限。
在实现方式中,若所述终端设备的信道占用率大于第四门限,所述终端设备具体可以利用拥塞控制的传输参数,进行拥塞控制。
其中,所述拥塞控制的传输参数可以包括但不限于下列参数中的至少一种:调制编码方案(Modulation and Coding Scheme,MCS)、PRB数、子带数、重传次数、以 及最大信道占用率。
其中,所述传输参数,可以是一个参数范围,所述终端设备具体可以在该参数范围内选取相应的传输参数进行侧行数据的传输,以实现拥塞控制。
其中,所述拥塞控制的传输参数可以为协议约定,或者还可以为所述网络设备配置,本实施例对此不进行特别限定。
例如,所述拥塞控制的传输参数可以为所述网络设备根据信道繁忙比率和第五参数中的至少一项配置,本实施例对此不进行特别限定。
其中,所述第五参数可以包括但不限于下列参数中的至少一种:优先级、PQI、QCI、QFI、承载、逻辑信道、通信距离、传输速率、以及可靠性。
可选地,在本实施例的一个可能的实现方式中,所述控制单元520,还可以进一步用于配置第六门限,以供若所述终端设备的信道占用率大于所述第六门限,所述终端设备丢弃传输的侧行数据,直到所述终端设备的信道占用率小于或等于所述第六门限。
可选地,在本实施例的一个可能的实现方式中,所述接收单元510,还可以进一步用于接收所述终端设备发送的信道繁忙比率,其中,所述信道繁忙比率是所述终端设备测量得到的。
本实施例中,网络设备通过接收单元接收终端设备发送的所述终端设备的信道占用率,使得所述网络设备能够清楚获知所述终端设备的信道使用情况,进而由控制单元为终端设备分配合适的传输资源,能够避免终端设备传输的侧行数据发生拥塞现象,从而提高了车联网系统中侧行数据传输的可靠性。
图6是本申请实施例提供的另一种终端设备600的示意性框图,如图6所示。本实施例提供了一种终端设备600,用于执行图3对应的实施例中终端设备执行的方法。
具体地,该终端设备600包括用于执行图3对应的实施例中终端设备执行的方法的功能模块。终端设备600可以包括获取单元610和传输单元620。其中,获取单元610,用于获取网络设备根据信道繁忙比率和侧行数据的第五参数中的至少一项配置的传输参数范围;传输单元620,用于从所述传输参数范围内选取传输参数,传输所述侧行数据。
其中,所述第五参数可以包括但不限于下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
本申请中所涉及的所述网络设备,可以为移动性管理设备,例如,5G核心网即下一代核心网(Next Generation Core Network,NGCN)中的接入和移动性管理功能(Access and Mobility Management Function,AMF)或4G核心网即演进分组核心网(Evolved Packet Core Network,EPC)中的移动性管理实体(Mobility Management Entity,MME),或者还可以为策略控制设备,例如,车联网控制功能实体(Vehicle to Everything Control Function,V2X CF)或策略控制功能实体(Policy Control Function,PCF)等,本实施例对此不进行特别限定。
本实施例中,通过获取单元获取网络设备根据信道繁忙比率和侧行数据的第五参数中的至少一项,为终端设备配置传输参数范围,使得传输单元能够根据所述传输参数范围获取传输参数,传输所述侧行数据,从而实现了终端设备的拥塞控制。
图7是本申请实施例提供的另一种网络设备700的示意性框图,如图7所示。本实施例提供了一种网络设备,用于执行图3对应的实施例中网络设备执行的方法。
具体地,该网络设备700包括用于执行图3对应的实施例中网络设备执行的方法的功能模块。网络设备700可以包括配置单元710,用于根据信道繁忙比率和侧行数据的第五参数中的至少一项,为终端设备配置传输参数范围,以供所述终端设备从所述传输参数范围内选取传输参数,传输所述侧行数据。
其中,所述第五参数可以包括但不限于下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
本申请中所涉及的所述网络设备,可以为移动性管理设备,例如,5G核心网即下一代核心网(Next Generation Core Network,NGCN)中的接入和移动性管理功能(Access and Mobility Management Function,AMF)或4G核心网即演进分组核心网(Evolved Packet Core Network,EPC)中的移动性管理实体(Mobility Management Entity,MME),或者还可以为策略控制设备,例如,车联网控制功能实体(Vehicle to Everything Control Function,V2X CF)或策略控制功能实体(Policy Control Function,PCF)等,本实施例对此不进行特别限定。
本实施例中,网络设备通过配置单元根据信道繁忙比率和侧行数据的第五参数中的至少一项,为终端设备配置传输参数范围,使得所述终端设备能够根据所述传输参数范围获取传输参数,传输所述侧行数据,从而实现了终端设备的拥塞控制。
图8是本申请实施例提供的一种通信设备800示意性结构图。图8所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,通信设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,如图8所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备800具体可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备800具体可为本申请实施例的终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的芯片900的示意性结构图。图9所示的芯片900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,芯片900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,该芯片900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图10是本申请实施例提供的一种通信系统1000的示意性框图。如图10所示,该通信系统1000包括终端设备1010和网络设备1020。
其中,该终端设备1010可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1020可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (133)

  1. 一种车联网系统中的通信方法,其特征在于,包括:
    终端设备向网络设备发送所述终端设备的信道占用率。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备的信道占用率包括在时间段[n-p,n+q]时间单元内所述终端设备的信道占用率,其中,参数p为0或正整数,参数q为-1、0或正整数。
  3. 根据权利要求2所述的方法,其特征在于,所述参数p为协议约定、所述网络设备配置或者所述终端设备自主选取;所述参数q为协议约定、所述网络设备配置或者所述终端设备自主选取。
  4. 根据权利要求3所述的方法,其特征在于,所述参数p为所述终端设备自主选取;所述方法还包括:
    所述终端设备向所述网络设备发送所述参数p。
  5. 根据权利要求3所述的方法,其特征在于,所述参数q为所述终端设备自主选取;所述方法还包括:
    所述终端设备向所述网络设备发送所述参数q。
  6. 根据权利要求2所述的方法,其特征在于,所述终端设备的信道占用率包括下列中的至少一项:
    在时间段[n-p,n+q]时间单元内所述终端设备工作在第一传输模式下的信道占用率,所述第一传输模式,是指所述网络设备为所述终端设备分配传输资源的传输模式;以及
    在时间段[n-p,n+q]时间单元内所述终端设备工作在第二传输模式下的信道占用率,所述第二传输模式,是指所述终端设备自主选取传输资源的传输模式。
  7. 根据权利要求1所述的方法,其特征在于,所述终端设备向网络设备发送所述终端设备的信道占用率之前,还包括:
    所述终端设备对侧行数据的第一参数的不同等级,分别获得每个等级的信道占用率。
  8. 根据权利要求7所述的方法,其特征在于,所述第一参数包括下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
  9. 根据权利要求7所述的方法,其特征在于,所述终端设备向网络设备发送所述终端设备的信道占用率,包括:
    所述终端设备向所述网络设备发送全部等级的信道占用率;或者
    所述终端设备向所述网络设备发送部分等级的信道占用率;或者
    所述终端设备根据配置信息,向所述网络设备发送所述配置信息所指示的等级的信道占用率;其中,所述配置信息为所述网络设备发送。
  10. 根据权利要求1所述的方法,其特征在于,所述终端设备向网络设备发送所述终端设备的信道占用率,包括:
    若满足第一触发条件,所述终端设备向网络设备发送所述终端设备的信道占用率。
  11. 根据权利要求10所述的方法,其特征在于,所述第一触发条件,包括下列中的至少一项:
    所述终端设备是否接收到所述网络设备发送的第一指示信息;
    所述终端设备的信道占用率是否大于第一门限;
    所述终端设备测量的信道繁忙比率是否大于第二门限;
    上报周期;
    计时器超时;以及
    计数器是否到达第三门限。
  12. 根据权利要求11所述的方法,其特征在于,所述第一指示信息中包含参数p和参数q中的至少一项,用于指示所述终端设备发送的该终端设备的信道占用率所对应 的时间段[n-p,n+q]时间单元。
  13. 根据权利要求11所述的方法,其特征在于,所述第一指示信息,还用于指示下列中的至少一项:
    所述终端设备向所述网络设备发送所述终端设备工作在第一传输模式下的信道占用率;
    所述终端设备向所述网络设备发送所述终端设备工作在第二传输模式下的信道占用率;以及。
    所述终端设备向所述网络设备发送侧行数据的第一参数的至少一个等级的信道占用率。
  14. 根据权利要求13所述的方法,其特征在于,所述第一参数包括下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
  15. 根据权利要求11所述的方法,其特征在于,所述第一门限、第二门限和第三门限为协议约定或者所述网络设备配置。
  16. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第二指示信息,所述第二指示信息用于指示所述终端设备的信道占用率大于所述第一门限,或者用于指示所述终端设备测量的信道繁忙比率大于所述第二门限。
  17. 根据权利要求1~16任一权利要求所述的方法,其特征在于,所述方法还包括:
    若所述终端设备的信道占用率大于第四门限,所述终端设备进行拥塞控制。
  18. 根据权利要求17所述的方法,其特征在于,所述第四门限为协议约定、所述网络设备配置或者所述终端设备确定。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收网络设备发送的第三参数和第四参数;
    所述终端设备根据所述第三参数和所述第四参数,确定所述第四门限。
  20. 根据权利要求17所述的方法,其特征在于,所述终端设备进行拥塞控制,包括:
    所述终端设备根据第一准则,进行拥塞控制。
  21. 根据权利要求20所述的方法,其特征在于,所述第一准则,包括下列中的至少一项:
    所述终端设备根据第三指示信息,进行拥塞控制;所述第三指示信息为所述网络设备发送;或者
    所述终端设备优先传输基于第一传输模式传输的侧行数据,丢弃基于第二传输模式传输的侧行数据;或者
    所述终端设备根据传输的侧行数据的第二参数,进行拥塞控制;或者
    所述终端设备丢弃传输的侧行数据,直到所述终端设备的信道占用率小于或等于所述第四门限。
  22. 根据权利要求21所述的方法,其特征在于,所述终端设备根据第三指示信息,进行拥塞控制,包括:
    所述终端设备根据所述第三指示信息所指示的处理方式,优先传输基于第一传输模式传输的侧行数据,丢弃基于第二传输模式传输的侧行数据;或者
    所述终端设备根据侧行数据的第五参数和所述第三指示信息所指示的第五门限,进行拥塞控制。
  23. 根据权利要求21或22所述的方法,其特征在于,
    所述第一传输模式,是指所述网络设备为所述终端设备分配传输资源的传输模式;
    所述第二传输模式,是指所述终端设备自主选取传输资源的传输模式。
  24. 根据权利要求21所述的方法,其特征在于,所述第二参数包括下列参数中的 至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
  25. 根据权利要求17~25任一权利要求所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第四指示信息,所述第四指示信息用于指示所述终端设备的信道占用率大于所述第四门限。
  26. 根据权利要求17所述的方法,其特征在于,所述拥塞控制的传输参数包括下列参数中的至少一种:MCS、PRB数、子带数、重传次数、以及最大信道占用率。
  27. 根据权利要求17所述的方法,其特征在于,所述拥塞控制的传输参数为协议约定或者所述网络设备配置。
  28. 根据权利要求27所述的方法,其特征在于,所述拥塞控制的传输参数为所述网络设备根据信道繁忙比率和第五参数中的至少一项配置。
  29. 根据权利要求22或28所述的方法,其特征在于,所述第五参数包括下列参数中的至少一种:优先级、PQI、QFI、承载、逻辑信道、通信距离、传输速率、以及可靠性。
  30. 根据权利要求1~16任一权利要求所述的方法,其特征在于,所述方法还包括:
    若所述终端设备的信道占用率大于第六门限,所述终端设备丢弃传输的侧行数据,直到所述终端设备的信道占用率小于或等于所述第六门限。
  31. 根据权利要求30所述的方法,其特征在于,所述第六门限为协议约定或者所述网络设备配置。
  32. 根据权利要求1~31任一权利要求所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送信道繁忙比率,其中,所述信道繁忙比率是所述终端设备测量得到的。
  33. 一种车联网系统中的通信方法,其特征在于,包括:
    网络设备接收终端设备发送的所述终端设备的信道占用率;
    所述网络设备根据所述终端设备的信道占用率,进行所述终端设备的传输资源分配控制处理。
  34. 根据权利要求33所述的方法,其特征在于,所述终端设备的信道占用率包括在时间段[n-p,n+q]时间单元内所述终端设备的信道占用率,其中,参数p为0或正整数,参数q为-1、0或正整数。
  35. 根据权利要求34所述的方法,其特征在于,所述参数p为协议约定、所述网络设备配置或者所述终端设备自主选取;所述参数q为协议约定、所述网络设备配置或者所述终端设备自主选取。
  36. 根据权利要求35所述的方法,其特征在于,所述参数p为所述终端设备自主选取;所述方法还包括:
    所述网络设备接收所述终端设备发送的所述参数p。
  37. 根据权利要求35所述的方法,其特征在于,所述参数q为所述终端设备自主选取;所述方法还包括:
    所述网络设备接收所述终端设备发送的所述参数q。
  38. 根据权利要求34所述的方法,其特征在于,所述终端设备的信道占用率包括下列中的至少一项:
    在时间段[n-p,n+q]时间单元内所述终端设备工作在第一传输模式下的信道占用率,所述第一传输模式,是指所述网络设备为所述终端设备分配传输资源的传输模式;以及
    在时间段[n-p,n+q]时间单元内所述终端设备工作在第二传输模式下的信道占用率,所述第二传输模式,是指所述终端设备自主选取传输资源的传输模式。
  39. 根据权利要求33所述的方法,其特征在于,所述网络设备接收终端设备发送的所述终端设备的信道占用率,包括:
    所述网络设备接收所述终端设备发送的侧行数据的第一参数的全部等级的信道占用率;或者
    所述网络设备接收所述终端设备发送的侧行数据的第一参数的部分等级的信道占用率;或者
    所述网络设备接收所述终端设备根据配置信息发送的配置信息所指示的第一参数的等级的信道占用率;其中,所述配置信息为所述网络设备发送。
  40. 根据权利要求39所述的方法,其特征在于,所述第一参数包括下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
  41. 根据权利要求33所述的方法,其特征在于,所述网络设备接收终端设备发送的所述终端设备的信道占用率,包括:
    所述网络设备接收若满足第一触发条件,所述终端设备发送的所述终端设备的信道占用率。
  42. 根据权利要求41所述的方法,其特征在于,所述第一触发条件,包括下列中的至少一项:
    所述终端设备是否接收到所述网络设备发送的第一指示信息;
    所述终端设备的信道占用率是否大于第一门限;
    所述终端设备测量的信道繁忙比率是否大于第二门限;
    上报周期;
    计时器超时;以及
    计数器是否到达第三门限。
  43. 根据权利要求42所述的方法,其特征在于,所述第一指示信息中包含参数p和参数q中的至少一项,用于指示所述终端设备发送的该终端设备的信道占用率所对应的时间段[n-p,n+q]时间单元。
  44. 根据权利要求42所述的方法,其特征在于,所述第一指示信息,还用于指示下列中的至少一项:
    所述终端设备向所述网络设备发送所述终端设备工作在第一传输模式下的信道占用率;
    所述终端设备向所述网络设备发送所述终端设备工作在第二传输模式下的信道占用率;以及。
    所述终端设备向所述网络设备发送侧行数据的第一参数的至少一个等级的信道占用率。
  45. 根据权利要求44所述的方法,其特征在于,所述第一参数包括下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
  46. 根据权利要求42所述的方法,其特征在于,所述第一门限、第二门限和第三门限为协议约定或者所述网络设备配置。
  47. 根据权利要求42所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备的信道占用率大于所述第一门限,或者用于指示所述终端设备测量的信道繁忙比率大于所述第二门限。
  48. 根据权利要求33~47任一权利要求所述的方法,其特征在于,所述方法还包括:
    所述网络设备配置第四门限,以供若所述终端设备的信道占用率大于所述第四门限,所述终端设备进行拥塞控制;或者
    所述网络设备向所述终端设备发送第三参数和第四参数,以供所述终端设备根据所述第三参数和所述第四参数,确定所述第四门限,以供若所述终端设备的信道占用率大于所述第四门限,所述终端设备进行拥塞控制。
  49. 根据权利要求33~47任一权利要求所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三指示信息,以供所述终端设备根据所述第三指示信息,进行拥塞控制。
  50. 根据权利要求49所述的方法,其特征在于,所述第三指示信息,用于指示
    所述终端设备优先传输基于第一传输模式传输的侧行数据,丢弃基于第二传输模式传输的侧行数据;或者
    第五门限,以供所述终端设备根据侧行数据的第五参数和所述第五门限,进行拥塞控制。
  51. 根据权利要求50所述的方法,其特征在于,
    所述第一传输模式,是指所述网络设备为所述终端设备分配传输资源的传输模式;
    所述第二传输模式,是指所述终端设备自主选取传输资源的传输模式。
  52. 根据权利要求48~51任一权利要求所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第四指示信息,所述第四指示信息用于指示所述终端设备的信道占用率大于所述第四门限。
  53. 根据权利要求48或49所述的方法,其特征在于,所述拥塞控制的传输参数包括下列参数中的至少一种:MCS、PRB数、子带数、重传次数、以及最大信道占用率。
  54. 根据权利要求48或49所述的方法,其特征在于,所述拥塞控制的传输参数为协议约定或者所述网络设备配置。
  55. 根据权利要求54所述的方法,其特征在于,所述拥塞控制的传输参数为所述网络设备根据信道繁忙比率和第五参数中的至少一项配置。
  56. 根据权利要求50或55所述的方法,其特征在于,所述第五参数包括下列参数中的至少一种:优先级、PQI、QFI、承载、逻辑信道、通信距离、传输速率、以及可靠性。
  57. 根据权利要求33~47任一权利要求所述的方法,其特征在于,所述方法还包括:
    所述网络设备配置第六门限,以供若所述终端设备的信道占用率大于所述第六门限,所述终端设备丢弃传输的侧行数据,直到所述终端设备的信道占用率小于或等于所述第六门限。
  58. 根据权利要求33~57任一权利要求所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的信道繁忙比率,其中,所述信道繁忙比率是所述终端设备测量得到的。
  59. 一种车联网系统中的通信方法,其特征在于,包括:
    终端设备获取网络设备根据信道繁忙比率和侧行数据的第五参数中的至少一项配置的传输参数范围;
    所述终端设备从所述传输参数范围内选取传输参数,传输所述侧行数据。
  60. 根据权利要求59所述的方法,其特征在于,所述第五参数包括下列参数中的至少一种:优先级、PQI、QFI、承载、逻辑信道、通信距离、传输速率、以及可靠性。
  61. 一种车联网系统中的通信方法,其特征在于,包括:
    网络设备根据信道繁忙比率和侧行数据的第五参数中的至少一项,为终端设备配置传输参数范围,以供所述终端设备从所述传输参数范围内选取传输参数,传输所述侧行数据。
  62. 根据权利要求61所述的方法,其特征在于,所述第五参数包括下列参数中的至少一种:优先级、PQI、QFI、承载、逻辑信道、通信距离、传输速率、以及可靠性。
  63. 一种终端设备,其特征在于,包括:
    发送单元,用于向网络设备发送所述终端设备的信道占用率。
  64. 根据权利要求63所述的终端设备,其特征在于,所述终端设备的信道占用率包括在时间段[n-p,n+q]时间单元内所述终端设备的信道占用率,其中,参数p为0或正整数,参数q为-1、0或正整数。
  65. 根据权利要求64所述的终端设备,其特征在于,所述参数p为协议约定、所述网络设备配置或者所述终端设备自主选取;所述参数q为协议约定、所述网络设备配置或者所述终端设备自主选取。
  66. 根据权利要求65所述的终端设备,其特征在于,所述参数p为所述终端设备自主选取;所述发送单元,还用于
    向所述网络设备发送所述参数p。
  67. 根据权利要求65所述的终端设备,其特征在于,所述参数q为所述终端设备自主选取;所述发送单元,还用于
    向所述网络设备发送所述参数q。
  68. 根据权利要求64所述的终端设备,其特征在于,所述终端设备的信道占用率包括下列中的至少一项:
    在时间段[n-p,n+q]时间单元内所述终端设备工作在第一传输模式下的信道占用率,所述第一传输模式,是指所述网络设备为所述终端设备分配传输资源的传输模式;以及
    在时间段[n-p,n+q]时间单元内所述终端设备工作在第二传输模式下的信道占用率,所述第二传输模式,是指所述终端设备自主选取传输资源的传输模式。
  69. 根据权利要求63所述的终端设备,其特征在于,所述发送单元,还用于
    对侧行数据的第一参数的不同等级,分别获得每个等级的信道占用率。
  70. 根据权利要求69所述的终端设备,其特征在于,所述第一参数包括下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
  71. 根据权利要求69所述的终端设备,其特征在于,所述发送单元,具体用于
    向所述网络设备发送全部等级的信道占用率;或者
    向所述网络设备发送部分等级的信道占用率;或者
    根据配置信息,向所述网络设备发送所述配置信息所指示的等级的信道占用率;其中,所述配置信息为所述网络设备发送。
  72. 根据权利要求63所述的终端设备,其特征在于,所述发送单元,具体用于
    若满足第一触发条件,向网络设备发送所述终端设备的信道占用率。
  73. 根据权利要求72所述的终端设备,其特征在于,所述第一触发条件,包括下列中的至少一项:
    所述终端设备是否接收到所述网络设备发送的第一指示信息;
    所述终端设备的信道占用率是否大于第一门限;
    所述终端设备测量的信道繁忙比率是否大于第二门限;
    上报周期;
    计时器超时;以及
    计数器是否到达第三门限。
  74. 根据权利要求73所述的终端设备,其特征在于,所述第一指示信息中包含参数p和参数q中的至少一项,用于指示所述发送单元发送的该终端设备的信道占用率所对应的时间段[n-p,n+q]时间单元。
  75. 根据权利要求73所述的终端设备,其特征在于,所述第一指示信息,还用于指示下列中的至少一项:
    所述发送单元向所述网络设备发送所述终端设备工作在第一传输模式下的信道占用率;
    所述发送单元向所述网络设备发送所述终端设备工作在第二传输模式下的信道占用率;以及。
    所述发送单元向所述网络设备发送侧行数据的第一参数的至少一个等级的信道占用率。
  76. 根据权利要求75所述的终端设备,其特征在于,所述第一参数包括下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
  77. 根据权利要求73所述的终端设备,其特征在于,所述第一门限、第二门限和第三门限为协议约定或者所述网络设备配置。
  78. 根据权利要求73所述的终端设备,其特征在于,所述发送单元,还用于
    向所述网络设备发送第二指示信息,所述第二指示信息用于指示所述终端设备的信道占用率大于所述第一门限,或者用于指示所述终端设备测量的信道繁忙比率大于所述第二门限。
  79. 根据权利要求63~78任一权利要求所述的终端设备,其特征在于,所述终端设备还包括第一传输单元,用于
    若所述终端设备的信道占用率大于第四门限,进行拥塞控制。
  80. 根据权利要求79所述的终端设备,其特征在于,所述第四门限为协议约定、所述网络设备配置或者所述终端设备确定。
  81. 根据权利要求80所述的终端设备,其特征在于,所述第一传输单元,具体用于
    接收网络设备发送的第三参数和第四参数;以及根据所述第三参数和所述第四参数,确定所述第四门限。
  82. 根据权利要求79所述的终端设备,其特征在于,所述第一传输单元,具体用于
    根据第一准则,进行拥塞控制。
  83. 根据权利要求82所述的终端设备,其特征在于,所述第一准则,包括下列中的至少一项:
    所述控制单元根据第三指示信息,进行拥塞控制;所述第三指示信息为所述网络设备发送;或者
    所述控制单元优先传输基于第一传输模式传输的侧行数据,丢弃基于第二传输模式传输的侧行数据;或者
    所述控制单元根据传输的侧行数据的第二参数,进行拥塞控制;或者
    所述控制单元丢弃传输的侧行数据,直到所述终端设备的信道占用率小于或等于所述第四门限。
  84. 根据权利要求83所述的终端设备,其特征在于,所述第一传输单元,具体用于
    根据所述第三指示信息所指示的处理方式,优先传输基于第一传输模式传输的侧行数据,丢弃基于第二传输模式传输的侧行数据;或者
    根据侧行数据的第五参数和所述第三指示信息所指示的第五门限,进行拥塞控制。
  85. 根据权利要求83或84所述的终端设备,其特征在于,
    所述第一传输模式,是指所述网络设备为所述终端设备分配传输资源的传输模式;
    所述第二传输模式,是指所述终端设备自主选取传输资源的传输模式。
  86. 根据权利要求83所述的终端设备,其特征在于,所述第二参数包括下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
  87. 根据权利要求79~87任一权利要求所述的终端设备,其特征在于,所述发送单元,还用于
    向所述网络设备发送第四指示信息,所述第四指示信息用于指示所述终端设备的信 道占用率大于所述第四门限。
  88. 根据权利要求79所述的终端设备,其特征在于,所述拥塞控制的传输参数包括下列参数中的至少一种:MCS、PRB数、子带数、重传次数、以及最大信道占用率。
  89. 根据权利要求79所述的终端设备,其特征在于,所述拥塞控制的传输参数为协议约定或者所述网络设备配置。
  90. 根据权利要求89所述的终端设备,其特征在于,所述拥塞控制的传输参数为所述网络设备根据信道繁忙比率和第五参数中的至少一项配置。
  91. 根据权利要求84或90所述的终端设备,其特征在于,所述第五参数包括下列参数中的至少一种:优先级、PQI、QFI、承载、逻辑信道、通信距离、传输速率、以及可靠性。
  92. 根据权利要求63~78任一权利要求所述的终端设备,其特征在于,所述终端设备还包括第二传输单元,用于
    若所述终端设备的信道占用率大于第六门限,丢弃传输的侧行数据,直到所述终端设备的信道占用率小于或等于所述第六门限。
  93. 根据权利要求92所述的终端设备,其特征在于,所述第六门限为协议约定或者所述网络设备配置。
  94. 根据权利要求63~93任一权利要求所述的终端设备,其特征在于,所述发送单元,还用于
    向所述网络设备发送信道繁忙比率,其中,所述信道繁忙比率是所述终端设备测量得到的。
  95. 一种网络设备,其特征在于,包括:
    接收单元,用于接收终端设备发送的所述终端设备的信道占用率;
    控制单元,用于根据所述终端设备的信道占用率,进行所述终端设备的传输资源分配控制处理。
  96. 根据权利要求95所述的网络设备,其特征在于,所述终端设备的信道占用率包括在时间段[n-p,n+q]时间单元内所述终端设备的信道占用率,其中,参数p为0或正整数,参数q为-1、0或正整数。
  97. 根据权利要求96所述的网络设备,其特征在于,所述参数p为协议约定、所述网络设备配置或者所述终端设备自主选取;所述参数q为协议约定、所述网络设备配置或者所述终端设备自主选取。
  98. 根据权利要求97所述的网络设备,其特征在于,所述参数p为所述终端设备自主选取;所述接收单元,还用于
    接收所述终端设备发送的所述参数p。
  99. 根据权利要求97所述的网络设备,其特征在于,所述参数q为所述终端设备自主选取;所述接收单元,还用于
    接收所述终端设备发送的所述参数q。
  100. 根据权利要求96所述的网络设备,其特征在于,所述终端设备的信道占用率包括下列中的至少一项:
    在时间段[n-p,n+q]时间单元内所述终端设备工作在第一传输模式下的信道占用率,所述第一传输模式,是指所述网络设备为所述终端设备分配传输资源的传输模式;以及
    在时间段[n-p,n+q]时间单元内所述终端设备工作在第二传输模式下的信道占用率,所述第二传输模式,是指所述终端设备自主选取传输资源的传输模式。
  101. 根据权利要求95所述的网络设备,其特征在于,所述接收单元,具体用于
    接收所述终端设备发送的侧行数据的第一参数的全部等级的信道占用率;或者
    接收所述终端设备发送的侧行数据的第一参数的部分等级的信道占用率;或者
    接收所述终端设备根据配置信息发送的配置信息所指示的第一参数的等级的信道 占用率;其中,所述配置信息为所述网络设备发送。
  102. 根据权利要求101所述的网络设备,其特征在于,所述第一参数包括下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
  103. 根据权利要求95所述的网络设备,其特征在于,所述接收单元,具体用于
    接收若满足第一触发条件,所述终端设备发送的所述终端设备的信道占用率。
  104. 根据权利要求103所述的网络设备,其特征在于,所述第一触发条件,包括下列中的至少一项:
    所述终端设备是否接收到所述网络设备发送的第一指示信息;
    所述终端设备的信道占用率是否大于第一门限;
    所述终端设备测量的信道繁忙比率是否大于第二门限;
    上报周期;
    计时器超时;以及
    计数器是否到达第三门限。
  105. 根据权利要求104所述的网络设备,其特征在于,所述第一指示信息中包含参数p和参数q中的至少一项,用于指示所述终端设备发送的该终端设备的信道占用率所对应的时间段[n-p,n+q]时间单元。
  106. 根据权利要求104所述的网络设备,其特征在于,所述第一指示信息,还用于指示下列中的至少一项:
    所述终端设备向所述网络设备发送所述终端设备工作在第一传输模式下的信道占用率;
    所述终端设备向所述网络设备发送所述终端设备工作在第二传输模式下的信道占用率;以及。
    所述终端设备向所述网络设备发送侧行数据的第一参数的至少一个等级的信道占用率。
  107. 根据权利要求106所述的网络设备,其特征在于,所述第一参数包括下列参数中的至少一种:优先级、可靠性、时延、传输速率、通信距离、QCI、QFI、以及PQI。
  108. 根据权利要求104所述的网络设备,其特征在于,所述第一门限、第二门限和第三门限为协议约定或者所述网络设备配置。
  109. 根据权利要求104所述的网络设备,其特征在于,所述接收单元,还用于
    接收所述终端设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备的信道占用率大于所述第一门限,或者用于指示所述终端设备测量的信道繁忙比率大于所述第二门限。
  110. 根据权利要求95~109任一权利要求所述的网络设备,其特征在于,所述控制单元,还用于
    配置第四门限,以供若所述终端设备的信道占用率大于所述第四门限,所述终端设备进行拥塞控制;或者
    向所述终端设备发送第三参数和第四参数,以供所述终端设备根据所述第三参数和所述第四参数,确定所述第四门限,以供若所述终端设备的信道占用率大于所述第四门限,所述终端设备进行拥塞控制。
  111. 根据权利要求95~109任一权利要求所述的网络设备,其特征在于,所述控制单元,还用于
    向所述终端设备发送第三指示信息,以供所述终端设备根据所述第三指示信息,进行拥塞控制。
  112. 根据权利要求111所述的网络设备,其特征在于,所述第三指示信息,用于指示
    所述终端设备优先传输基于第一传输模式传输的侧行数据,丢弃基于第二传输模式 传输的侧行数据;或者
    第五门限,以供所述终端设备根据侧行数据的第五参数和所述第五门限,进行拥塞控制。
  113. 根据权利要求112所述的网络设备,其特征在于,
    所述第一传输模式,是指所述网络设备为所述终端设备分配传输资源的传输模式;
    所述第二传输模式,是指所述终端设备自主选取传输资源的传输模式。
  114. 根据权利要求110~113任一权利要求所述的网络设备,其特征在于,所述接收单元,还用于
    接收所述终端设备发送的第四指示信息,所述第四指示信息用于指示所述终端设备的信道占用率大于所述第四门限。
  115. 根据权利要求110或111所述的网络设备,其特征在于,所述拥塞控制的传输参数包括下列参数中的至少一种:MCS、PRB数、子带数、重传次数、以及最大信道占用率。
  116. 根据权利要求110或111所述的网络设备,其特征在于,所述拥塞控制的传输参数为协议约定或者所述网络设备配置。
  117. 根据权利要求116所述的网络设备,其特征在于,所述拥塞控制的传输参数为所述网络设备根据信道繁忙比率和第五参数中的至少一项配置。
  118. 根据权利要求112或117所述的网络设备,其特征在于,所述第五参数包括下列参数中的至少一种:优先级、PQI、QFI、承载、逻辑信道、通信距离、传输速率、以及可靠性。
  119. 根据权利要求95~109任一权利要求所述的网络设备,其特征在于,所述控制单元,还用于
    配置第六门限,以供若所述终端设备的信道占用率大于所述第六门限,所述终端设备丢弃传输的侧行数据,直到所述终端设备的信道占用率小于或等于所述第六门限。
  120. 根据权利要求95~119任一权利要求所述的网络设备,其特征在于,所述接收单元,还用于
    接收所述终端设备发送的信道繁忙比率,其中,所述信道繁忙比率是所述终端设备测量得到的。
  121. 一种终端设备,其特征在于,包括:
    获取单元,用于获取网络设备根据信道繁忙比率和侧行数据的第五参数中的至少一项配置的传输参数范围;
    传输单元,用于从所述传输参数范围内选取传输参数,传输所述侧行数据。
  122. 根据权利要求121所述的终端设备,其特征在于,所述第五参数包括下列参数中的至少一种:优先级、PQI、QFI、承载、逻辑信道、通信距离、传输速率、以及可靠性。
  123. 一种网络设备,其特征在于,包括:
    配置单元,用于根据信道繁忙比率和侧行数据的第五参数中的至少一项,为终端设备配置传输参数范围,以供所述终端设备从所述传输参数范围内选取传输参数,传输所述侧行数据。
  124. 根据权利要求123所述的网络设备,其特征在于,所述第五参数包括下列参数中的至少一种:优先级、PQI、QFI、承载、逻辑信道、通信距离、传输速率、以及可靠性。
  125. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1~62中任一项所述的方法。
  126. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程 序,使得安装有所述芯片的设备执行如权利要求1~32、59、60中任一项所述的方法。
  127. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求33~58、61、62中任一项所述的方法。
  128. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1~32、59、60中任一项所述的方法。
  129. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求33~58、61、62中任一项所述的方法。
  130. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1~32、59、60中任一项所述的方法。
  131. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求33~58、61、62中任一项所述的方法。
  132. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1~32、59、60中任一项所述的方法。
  133. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求33~58、61、62中任一项所述的方法。
PCT/CN2019/080272 2019-03-28 2019-03-28 一种车联网系统中的通信方法及终端设备、网络设备 WO2020191785A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980079406.4A CN113170351A (zh) 2019-03-28 2019-03-28 一种车联网系统中的通信方法及终端设备、网络设备
PCT/CN2019/080272 WO2020191785A1 (zh) 2019-03-28 2019-03-28 一种车联网系统中的通信方法及终端设备、网络设备
US17/480,465 US11800543B2 (en) 2019-03-28 2021-09-21 Communication method in V2X system, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080272 WO2020191785A1 (zh) 2019-03-28 2019-03-28 一种车联网系统中的通信方法及终端设备、网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/480,465 Continuation US11800543B2 (en) 2019-03-28 2021-09-21 Communication method in V2X system, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2020191785A1 true WO2020191785A1 (zh) 2020-10-01

Family

ID=72609629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080272 WO2020191785A1 (zh) 2019-03-28 2019-03-28 一种车联网系统中的通信方法及终端设备、网络设备

Country Status (3)

Country Link
US (1) US11800543B2 (zh)
CN (1) CN113170351A (zh)
WO (1) WO2020191785A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220141639A1 (en) * 2019-07-15 2022-05-05 Huawei Technologies Co., Ltd. V2x communication method, apparatus, and storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11540224B2 (en) * 2020-02-11 2022-12-27 Qualcomm Incorporated Vehicle-to-everything (V2X) inter-user equipment (UE) coordination
US11546835B2 (en) * 2020-07-15 2023-01-03 Qualcomm Incorporated Channel occupancy management of new radio sidelink in a star topology of user equipment
WO2023115306A1 (zh) * 2021-12-21 2023-06-29 Oppo广东移动通信有限公司 拥塞控制的方法和终端设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024286A (zh) * 2016-11-04 2018-05-11 北京三星通信技术研究有限公司 用于无线通信中的拥塞控制的方法和设备
US20180234973A1 (en) * 2017-02-10 2018-08-16 Lg Electronics Inc. Method and apparatus for calculating channel occupancy ratio in wireless communication system
CN108541017A (zh) * 2017-03-02 2018-09-14 中兴通讯股份有限公司 一种无线资源配置的方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014183083A1 (en) * 2013-05-10 2014-11-13 Huawei Technologies Co., Ltd. Systems and methods for network adaptation support in wireless network
WO2017193392A1 (zh) * 2016-05-13 2017-11-16 广东欧珀移动通信有限公司 通信方法、网络设备和终端设备
BR112019001028A2 (pt) * 2016-08-11 2019-05-14 Panasonic Intellectual Property Corporation Of America método, aparelho e sistema de comunicação sem fio
EP3579631B1 (en) * 2017-02-02 2024-01-31 LG Electronics Inc. Method by which terminal measures channel occupancy ratio (cr) and performs transmission in wireless communication system, and device
CN109963265A (zh) * 2017-12-26 2019-07-02 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
WO2020067842A1 (ko) * 2018-09-28 2020-04-02 엘지전자 주식회사 Nr v2x에서 혼잡 제어를 수행하는 방법 및 장치
CN113228777A (zh) * 2018-12-21 2021-08-06 Idac控股公司 实现不同类型的同时传输的过程

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024286A (zh) * 2016-11-04 2018-05-11 北京三星通信技术研究有限公司 用于无线通信中的拥塞控制的方法和设备
US20180234973A1 (en) * 2017-02-10 2018-08-16 Lg Electronics Inc. Method and apparatus for calculating channel occupancy ratio in wireless communication system
CN108541017A (zh) * 2017-03-02 2018-09-14 中兴通讯股份有限公司 一种无线资源配置的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRAUNHOFER HHI ET AL.: "Resource Pool Sharing between Mode 3 and Mode 4 UEs", 3GPP TSG RAN WG2 MEETING #101BIS R2-1805403, 5 April 2018 (2018-04-05), XP051415030 *
QUALCOMM INC.: "On remaining issues in TX carrier selection for CA in eV2X", 3GPP TSG-RAN2 MEETING 101BIS R2-1804873, 6 April 2018 (2018-04-06), XP051415698 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220141639A1 (en) * 2019-07-15 2022-05-05 Huawei Technologies Co., Ltd. V2x communication method, apparatus, and storage medium
US11751039B2 (en) * 2019-07-15 2023-09-05 Huawei Technologies Co., Ltd. V2X communication method, apparatus, and storage medium

Also Published As

Publication number Publication date
US11800543B2 (en) 2023-10-24
CN113170351A (zh) 2021-07-23
US20220007369A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
TWI805641B (zh) D2d通訊中資源配置的方法、終端設備和網路設備
WO2021062978A1 (zh) 数据传输的方法和设备
WO2020191769A1 (zh) 传输侧行信道的方法和终端设备
WO2021016973A1 (zh) 一种信息传输方法、电子设备及存储介质
WO2020191785A1 (zh) 一种车联网系统中的通信方法及终端设备、网络设备
CN114173420A (zh) 通信方法和设备
US11963173B2 (en) Data transmission method and terminal device
WO2020093335A1 (zh) 传输侧行链路数据的方法和终端设备
US20210127305A1 (en) Communication Method and Related Device
WO2021012167A1 (zh) 一种资源处理方法、设备及存储介质
WO2021134863A1 (zh) 选择资源的方法及设备
WO2020113433A1 (zh) 一种处理调度请求的方法及装置、终端
TW202019205A (zh) 一種資源配置方法及裝置、終端
WO2020056560A1 (zh) 一种通信方法、终端设备和网络设备
WO2022151242A1 (zh) 一种数据传输方法、电子设备及存储介质
WO2020124534A1 (zh) 数据传输的方法和设备
WO2020087854A1 (zh) 无线通信方法和设备
WO2020087212A1 (zh) 侧行链路中确定传输模式的方法、终端设备和网络设备
US20210258961A1 (en) Data transmission method and device
JPWO2019214301A5 (zh)
WO2020087289A1 (zh) 一种资源配置方法、网络设备及终端设备
TW202037126A (zh) 確定上行控制訊息傳輸資源個數的方法、裝置及程式
WO2020077745A1 (zh) 一种连接配置方法、设备及存储介质
WO2020061773A1 (zh) 一种反馈资源分配方法、终端设备及网络设备
TW202015470A (zh) 無線通訊方法和通信設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921793

Country of ref document: EP

Kind code of ref document: A1