WO2021027860A1 - 路由方法、bsr的生成方法、装置和存储介质 - Google Patents

路由方法、bsr的生成方法、装置和存储介质 Download PDF

Info

Publication number
WO2021027860A1
WO2021027860A1 PCT/CN2020/108794 CN2020108794W WO2021027860A1 WO 2021027860 A1 WO2021027860 A1 WO 2021027860A1 CN 2020108794 W CN2020108794 W CN 2020108794W WO 2021027860 A1 WO2021027860 A1 WO 2021027860A1
Authority
WO
WIPO (PCT)
Prior art keywords
routing
communication node
route
list
information
Prior art date
Application number
PCT/CN2020/108794
Other languages
English (en)
French (fr)
Inventor
邹伟
陈琳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/635,019 priority Critical patent/US20220303209A1/en
Priority to KR1020227007683A priority patent/KR20220044328A/ko
Priority to EP20851552.8A priority patent/EP4016930A4/en
Publication of WO2021027860A1 publication Critical patent/WO2021027860A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • H04L45/745Address table lookup; Address filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1001Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
    • H04L67/1004Server selection for load balancing
    • H04L67/1008Server selection for load balancing based on parameters of servers, e.g. available memory or workload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5019Ensuring fulfilment of SLA
    • H04L41/5025Ensuring fulfilment of SLA by proactively reacting to service quality change, e.g. by reconfiguration after service quality degradation or upgrade
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • This application relates to a wireless communication network, such as a routing method, a buffer status report (Buffer Status Report, BSR) generating method, device, and storage medium.
  • BSR Buffer Status Report
  • 3rd Generation Partnership Project 3rd Generation Partnership Project, 3GPP is studying the fifth generation of mobile communication technology (5th Generation, 5G) will achieve greater throughput, more user connections, lower latency, and more High reliability, and lower power consumption (including network side equipment and user terminals).
  • integrated access backhaul Integrated Access and Backhaul, IAB
  • IAB integrated Access and Backhaul
  • Its goal is to enable one or more IAB nodes to use the local mobile terminal (Mobile Terminal, MT) to pass the new radio ( The New Radio (NR) air interface is connected to the parent node, and a multi-hop wireless self-backhaul network is formed on this basis.
  • the use of wireless self-backhauling IAB technology is one of the important technology choices to reduce investment costs. Among them, the backhaul link and the access link use the same wireless transmission technology, share the same frequency band, and reuse resources through time division or frequency division.
  • each IAB node includes a Distributed Unit (DU) function part and an MT function part.
  • DU is used to serve the terminal (User Equipment, UE) of this node and the MT of the next hop node, and establish a radio link layer control (Radio Link Control, RLC) connection with it; and the function of MT is equivalent to a UE , Used to access the parent node of the previous hop through the NR Uu interface of NR and establish an RLC connection with it.
  • DU Distributed Unit
  • MT Radio Link Control
  • IAB Donor can use the wireless access capability of the local MT to access the parent node of the previous hop, and the parent node can be connected to the previous hop node again, until finally connected to the IAB Donor, IAB Donor It can also be called a next-generation base station (next Generation NodeB, gNodeB).
  • the IAB Donor includes a Donor Centralized Unit (CU) and multiple Donor DUs. Each Donor DU is connected to the Donor CU in a wired manner.
  • the Donor CU and the Donor DU, as well as the Donor CU and the DU of each IAB node are connected through an enhanced F1 interface.
  • an IAB node can be connected to multiple parent nodes.
  • 3GPP defines a new Backhaul Adaptation Protocol (BAP) layer above the RLC layer to control the delivery of service flows in the IAB network.
  • BAP Backhaul Adaptation Protocol
  • the functions of the BAP layer mainly include routing and bearer mapping.
  • the routing identifier contained in the BAP subheader of each data packet selects the next hop connection for the aforementioned data packet.
  • This selection process can be implemented in a routing table, that is, a mapping table between a routing identifier and a next hop is configured, and then the corresponding next hop is found according to the routing identifier.
  • each route identifier may include the BAP address of the target node, or may further include a specific BAP path ID (path ID).
  • the IAB network cannot realize load sharing among various routes.
  • This application provides a routing method, a BSR generation method, a device, and a storage medium, which can implement load sharing routing methods.
  • the embodiment of the present application provides a routing method, including:
  • the first communication node obtains load information
  • the first communication node sends routing configuration information to the second communication node; wherein the routing configuration information includes identifications of data with different granularities and routing lists configured for data with different granularities according to the load information.
  • the embodiment of the present application provides a routing method, including:
  • the second communication node sends load information to the first communication node
  • the second communication node receives routing configuration information sent by the first communication node; wherein the routing configuration information includes identifications of data with different granularities, and the first communication node has different granularities according to the load information.
  • the routing list of the data configuration is not limited to the routing configuration information.
  • the embodiment of the present application provides a routing method, including:
  • the second communication node sends routing status information; wherein, the routing status information includes: a routing identifier and status information of the route to which the routing identifier belongs.
  • the embodiment of the present application provides a routing method, including:
  • the first communication node sends routing status information; wherein, the routing status information includes: a routing identifier and status information of the route to which the routing identifier belongs.
  • the embodiment of the application provides a method for generating a BSR, including:
  • the communication node generates a BSR according to the data buffered in the BAP entity.
  • An embodiment of the present application provides a routing device, including a processor, configured to implement the routing method of any of the foregoing embodiments when a computer program is executed.
  • An embodiment of the present application provides a BSR generating apparatus, including a processor, which is configured to implement the BSR generating method of any of the foregoing embodiments when a computer program is executed.
  • the embodiment of the present application provides a storage medium, and the storage medium stores a computer program, and when the computer program is executed by a processor, any routing method or BSR generation method in the embodiments of the present application is implemented.
  • FIG. 1 is a schematic diagram of an application scenario of a routing method provided by an embodiment
  • FIG. 2 is a flowchart of a routing method provided by an embodiment
  • 3A is a signaling interaction diagram corresponding to the routing method provided in the embodiment shown in FIG. 2;
  • 3B is another signaling interaction diagram corresponding to the routing method provided by the embodiment shown in FIG. 2;
  • FIG. 4 is a flowchart of another routing method provided by an embodiment
  • FIG. 5 is a flowchart of yet another routing method provided by an embodiment
  • FIG. 6A is a signaling interaction diagram corresponding to the routing method provided by the embodiment shown in FIG. 5;
  • 6B is another signaling interaction diagram corresponding to the routing method provided by the embodiment shown in FIG. 5;
  • FIG. 7 is a flowchart of still another routing method provided by an embodiment
  • FIG. 8A is a signaling interaction diagram corresponding to the routing method provided by the embodiment shown in FIG. 7; FIG.
  • FIG. 8B is another signaling interaction diagram corresponding to the routing method provided by the embodiment shown in FIG. 7; FIG.
  • FIG. 9 is a schematic structural diagram of a routing device provided by an embodiment.
  • FIG. 10 is a schematic structural diagram of another routing device provided by an embodiment
  • FIG. 11 is a schematic structural diagram of yet another routing device provided by an embodiment
  • FIG. 12 is a schematic structural diagram of still another routing device provided by an embodiment
  • FIG. 13 is a schematic structural diagram of another routing device provided by an embodiment.
  • the routing method provided in this embodiment can be applied to a communication system composed of a first communication node and a second communication node.
  • the communication system can be the Global System for Mobile Communications (GSM), General Packet Radio Service (GPRS) system, Code Division Multiple Access (CDMA) system, CDMA2000 system, Wideband Code Division Multiple Access (WCDMA) system, Long Term Evolution (LTE) system, Long Term Evolution Advanced (LTE-A) system, or Global Microwave Access Interoperability ( World Interoperability for Microwave Access, WiMAX) system, etc.
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • WiMAX World Interoperability for Microwave Access
  • the communication system may be an IAB communication system.
  • Fig. 1 is a schematic diagram of an application scenario of a routing method provided
  • the first communication node in this application may be the Donor CU in the IAB Donor in the IAB network
  • the second communication node may be the IAB node in the IAB network or the Donor DU in the IAB Donor.
  • the DU in the IAB node (IAB Node) provides access services for subordinate UEs
  • the MT in the IAB node is connected to the parent node of the upper level.
  • the above-mentioned MT serves as a special access user of the parent node and shares the access bandwidth with other common access users (UE) of the parent node.
  • the IAB Donor can include one Donor CU and multiple Donor DUs.
  • the IAB Donor is connected to the Next Generation Core (NGC).
  • NGC Next Generation Core
  • Donor DUs are connected to Donor CU through wires.
  • the Donor CU and the Donor DU, as well as the Donor CU and the DU of each IAB node are connected through an enhanced F1 interface (F1*). Therefore, a one-hop or multi-hop data bearer needs to be established between the DU of the IAB node and the Donor CU of the IAB Donor to transmit F1 interface messages.
  • the data bearer performs data transmission through the wireless NR Uu bearer between the MT and DU of each hop. Therefore, for a multi-hop F1 bearer, each IAB node in the middle needs to forward the received F1 message.
  • This forwarding process can be implemented by the IP layer or the Adapt layer at the intermediate IAB node.
  • the IP layer or the Adapt layer can forward the data packet to the next hop NR Uu bearer according to the destination address of the received data packet (such as the destination IAB Node ID) or other information.
  • data also needs to be forwarded between the NR Uu bearer and the F1/F1*-U bearer.
  • each IAB node can forward each data bearer of the previous hop one-to-one to a data bearer of the next hop, or multiple data bearers of the previous hop can be forwarded many-to-one It is transmitted on a data bearer of the next hop.
  • 3GPP has named the aforementioned Adapt layer as the BAP layer.
  • the present application provides a routing method that receives load information sent by a second communication node through a first communication node, and sends routing configuration information including a routing list determined for data of different granularities according to the load information to the second communication node, The routing method of load sharing is realized, and finally load balancing is realized, which improves the reliability and transmission efficiency of the communication system.
  • Fig. 2 is a flowchart of a routing method provided by an embodiment. As shown in Figure 2, the routing method provided in this embodiment includes the following steps:
  • Step 201 The first communication node obtains load information.
  • the first communication node in this embodiment may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station in LTE (evolved Node B, eNB), or a relay station or an access point, or a base station in a 5th generation (5 Generation, 5G) system, or a Donor CU in an IAB Donor in an IAB network, etc., are not limited here.
  • the first communication node obtains load information of the network.
  • the first communication node obtains load information of the second communication node.
  • the second communication node may be a device that provides users with voice and/or other service data connectivity, a handheld device with wireless connection function, or other processing device connected to a wireless modem, or it may be an IAB node in an IAB network Or Donor DU in IAB Donor.
  • the first communication node obtains load information of other communication nodes except the second communication node.
  • the first communication node may send a load information acquisition request to the second communication node, and the second communication node sends the load information to the first communication node after receiving the load information acquisition request sent by the first communication node.
  • the second communication node may periodically report load information to the first communication node.
  • the second communication node may send load information to the first communication node through F1 interface Application Protocol (AP) signaling.
  • AP Application Protocol
  • the load information in this embodiment may include at least one of the following: wireless transmission resource information, hardware processing resource information, and cache resource information.
  • the load information in this embodiment may include at least one of the following: wireless transmission resource information of the second communication node, hardware processing resource information of the second communication node, and cache resource information of the second communication node.
  • Step 202 The first communication node sends routing configuration information to the second communication node.
  • the routing configuration information includes identifications of data with different granularities and a routing list configured for data with different granularities according to load information.
  • the first communication node determines a routing list for data of different granularities according to the load information, includes the routing list in the routing configuration information, and sends the routing configuration information to the second communication node .
  • the identifiers of data of different granularities include at least one of the following: the identifier of Radio Bearers (RB), the identifier of the UE, the identifier of the second communication node, and the Quality of Service (QoS) category Logo.
  • RB Radio Bearers
  • QoS Quality of Service
  • the routing list may include one or more routing identifiers.
  • the route identification may include at least one of the following: the number of the route, the address of the route destination node, and the address of the route source node.
  • the radio bearer identifier includes at least one of the following: General Packet Radio Service Tunneling Protocol (GTP) for transmitting radio bearer data.
  • GTP General Packet Radio Service Tunneling Protocol
  • TEID Tunnel Endpoint Identifier
  • IP Internet Protocol
  • the second communication node identifier includes at least one of the following: the identifier of the DU in the second communication node, the IP address of the DU in the second communication node, the identifier of the MT in the second communication node, and the first 2.
  • the IP address of the MT in the communication node includes at least one of the following: the identifier of the DU in the second communication node, the IP address of the DU in the second communication node, the identifier of the MT in the second communication node, and the first 2. The IP address of the MT in the communication node.
  • the QoS category identifier includes at least one of the following: the value of the Differentiated Services Code Point (DSCP) field of the IP data packet that transmits the QoS category data, and the IP that transmits the QoS category data
  • DSCP Differentiated Services Code Point
  • DRB Data Radio Bearers
  • the first communication node sends routing configuration information to the second communication node through new F1AP signaling.
  • the communication system is an IAB system
  • the first communication node sends routing configuration information to the DU of the second communication node through new F1AP signaling.
  • the new F1AP signaling in this embodiment refers to sending a new AP message on the F1 interface.
  • the first communication node adds the foregoing routing configuration information to the existing F1AP signaling, and sends the added F1AP signaling to the second communication node.
  • the existing F1AP signaling in this embodiment refers to the existing F1AP signaling in the related art.
  • the first communication node adds the routing configuration information to the terminal context setup request message (UE CONTEXT SETUP request) in the existing F1AP signaling, and sends the added information to the second communication node
  • the first communication node adds the above routing configuration information to the DRB information element (DRB to Be Setup Item Information Element) to be established in the terminal context setup request message, and sends it to the second communication
  • the node sends F1AP signaling after adding information.
  • the first communication node sends routing configuration information to the second communication node through a new radio resource control (Radio Resource Control, RRC) message.
  • RRC Radio Resource Control
  • the communication system is an IAB system
  • the first communication node sends routing configuration information to the MT of the second communication node through a new RRC message.
  • the new RRC message in this embodiment refers to a newly sent RRC message.
  • the first communication node adds routing configuration information to an existing RRC message and sends it to the second communication node.
  • the existing RRC message in this embodiment refers to the existing RRC message in related technologies.
  • the second communication node may feed back a response message to the first communication node. After that, data of different granularities that need to be transmitted in the second communication node can be transmitted according to the route corresponding to the route list in the route configuration information.
  • routing method will be described by taking the system to which the routing method provided in this embodiment is applied is an IAB system as an example.
  • FIG. 3A is a signaling interaction diagram corresponding to the routing method provided by the embodiment shown in FIG. 2.
  • the routing configuration information is uplink routing configuration information.
  • the second communication node is an access IAB node.
  • the signaling interaction process includes the following steps:
  • Step 301 The access IAB node sends load information, and the first communication node (Donor CU) receives the load information sent by the access IAB node.
  • the access IAB node sends load information through F1AP signaling.
  • Step 302 Donor CU sends uplink routing configuration information to the access IAB node.
  • Donor CU can use new F1AP signaling, add uplink routing configuration information to existing F1AP signaling, new RRC messages, or add uplink routing configuration information to existing RRC messages to access IAB nodes Send uplink routing configuration information.
  • Step 303 After the access IAB node receives the uplink routing configuration information, it sends a response message to the Donor CU to confirm receipt of the uplink routing configuration information.
  • Step 304 The data with different granularities of the uplink transmission accessed in the IAB node is transmitted according to the route corresponding to the route list in the uplink route configuration information.
  • FIG. 3B is another signaling interaction diagram corresponding to the routing method provided by the embodiment shown in FIG. 2.
  • the routing configuration information is downlink routing configuration information.
  • the second communication node is Donor DU.
  • the information exchange process includes the following steps:
  • Step 311 Donor DU sends load information, and Donor CU receives load information sent by Donor DU.
  • Donor DU sends load information through F1AP signaling.
  • Step 312 Donor CU sends downlink routing configuration information to Donor DU.
  • the Donor CU may send the downlink routing configuration information to the Donor DU through new F1AP signaling or adding downlink routing configuration information to the existing F1AP signaling.
  • Step 313 After the Donor DU receives the downlink routing configuration information, it sends a response message to the Donor CU to confirm receipt of the downlink routing configuration information.
  • Step 314 The data with different granularities of the downlink transmission in the Donor DU is transmitted according to the route corresponding to the route list in the downlink route configuration information.
  • the routing configuration information further includes at least one of the following: the nature of the route corresponding to the routing list; the nature of the routing includes at least one of active and standby; the priority of the route corresponding to the routing list; A list of QoS identifiers that can be supported by the route; the alternate route identifier corresponding to the route identifier in the route list; the remaining number of hops from the second communication node to the destination node in the route corresponding to the route list.
  • one of the routing lists can be determined to be the main routing list, and the other routing lists are List of alternate routes.
  • the route identifier therein may have a corresponding alternate route identifier.
  • the second communication node can select the route corresponding to the target routing list according to the routing configuration information Perform business data transmission.
  • RLF Radio Link Failure
  • load information is obtained through the first communication node, and the first communication node sends routing configuration information to the second communication node.
  • the routing configuration information includes the identification of data with different granularities and the information of different granularities according to the load information.
  • the data-determined routing list realizes the load-sharing routing method, finally realizes load balancing, and improves the reliability and transmission efficiency of the communication system.
  • Fig. 4 is a flowchart of another routing method provided by an embodiment. As shown in Figure 4, the routing method provided in this embodiment includes the following steps:
  • Step 401 The second communication node sends load information to the first communication node.
  • Step 401 is an optional step in this embodiment.
  • the second communication node may send load information to the first communication node.
  • other communication nodes may send load information to the first communication node.
  • the load information may include at least one of the following: wireless transmission resource information of the second communication node, hardware processing resource information of the second communication node, and cache resource information of the second communication node.
  • the second communication node may send load information to the first communication node through F1AP signaling.
  • Step 402 The second communication node receives the routing configuration information sent by the first communication node.
  • the routing configuration information includes identifiers of data of different granularities and a routing list configured by the first communication node for data of different granularities according to the load information.
  • the identification of data with different granularities includes at least one of the following: the identification of the radio bearer, the identification of the UE, the identification of the second communication node, and the identification of the QoS category.
  • radio bearer identifier the second communication node identifier, and the QoS category identifier are the same as those in the embodiment shown in FIG. 2 and will not be repeated here.
  • the routing list may include one or more routing identifiers.
  • the route identification may include at least one of the following: the number of the route, the address of the route destination node, and the address of the route source node.
  • the second communication node may receive the information sent by the first communication node through new F1AP signaling, adding the routing configuration information to the existing F1AP signaling, a new RRC message, or adding the routing configuration information to the existing RRC message Routing configuration information.
  • the routing configuration information in this embodiment may include uplink routing configuration information, and may also include downlink routing configuration information.
  • the second communication node may feed back a response message to the first communication node. After that, data of different granularities that need to be transmitted in the second communication node can be transmitted according to the route corresponding to the route list in the route configuration information.
  • the routing configuration information further includes at least one of the following: the nature of the route corresponding to the routing list; the nature of the routing includes at least one of active and standby; the priority of the route corresponding to the routing list; A list of QoS identifiers that can be supported by the route; the alternate route identifier corresponding to the route identifier in the route list; the remaining number of hops from the second communication node to the destination node in the route corresponding to the route list.
  • routing method based on routing configuration information
  • the routing method provided in this embodiment further includes the following steps:
  • Step 403 After the second communication node determines that the current state of the wireless link has changed, it selects the route corresponding to the target route list for service data transmission according to the route configuration information.
  • the current wireless link status change may be that the current wireless link fails, the current wireless link recovers from the failure, or the current wireless link parameters change.
  • the above parameters may be the reference signal received power (RSRP) of the current radio link, the signal to interference plus noise ratio (SINR), the transmission delay, and the packet error rate (Packet Error). Rate, PER) etc.
  • the second communication node may determine the target routing list according to the default standby relationship.
  • the route identifier in the route list may include the destination node and/or path identifier.
  • routing lists with the same destination node can be used as a routing list group.
  • other routing lists in the group can be used as backup routing lists for the failed routing list.
  • all upstream routing lists can be used as a routing list group.
  • the second communication node may use the backup routing list as the target routing list.
  • the second communication node may determine the target routing list according to the routing configuration information.
  • the second communication node determines the target route list according to the priority of the route corresponding to the route list, and performs service data transmission on the route corresponding to the target route list.
  • the second communication node may determine the target route list in the order of priority of the route list, and perform service data transmission on the route corresponding to the target route list.
  • the routing list with the top N priorities can be determined as the target routing list.
  • N is an integer greater than or equal to 1.
  • the second communication node determines the target routing list according to the remaining number of hops between the second communication node and the destination node in the route corresponding to the routing list, and performs service data transmission on the route corresponding to the target routing list.
  • the second communication node may determine a route list whose remaining hop count from the second communication node to the destination node in the route corresponding to the route list is less than a preset threshold as the target route list.
  • the second communication node may compare the remaining number of hops between the second communication node and the destination node in the route corresponding to the routing list and the number of remaining hops between the second communication node and the destination node in the route corresponding to the current wireless link The route list whose difference is less than the preset difference threshold is determined as the target route list.
  • the second communication node determines the target route list according to the QoS identification list that the route corresponding to the route list can support, and performs service data transmission on the route corresponding to the target route list.
  • the second communication node may determine a routing list that can satisfy the QoS of the data to be transmitted as the target routing list according to the QoS of the data to be transmitted and the QoS identification list that the route corresponding to the routing list can support.
  • the second communication node determines the target routing list according to the local wireless link information and the routing configuration information, and performs service data transmission on the route corresponding to the target routing list.
  • the second communication node may determine the target routing list according to local wireless link information, for example, at least one of link quality information, transmission delay information, and transmission reliability information of the wireless link.
  • the link quality information of the wireless link may be RSRP and/or SINR of the wireless link.
  • the transmission reliability information of the wireless link may be the average packet error rate of transmission.
  • the local wireless link information may be the wireless link information of the next hop of the standby route corresponding to the standby route list.
  • the second communication node when the second communication node determines that the traffic volume on the current wireless link is greater than a specified traffic volume threshold, it selects routes corresponding to multiple target routing lists for service data transmission; the second communication node determines the current wireless link When the traffic volume on the link is less than or equal to the above-mentioned traffic volume threshold, a route corresponding to the target route list is selected for service data transmission.
  • the specific process of selecting routes corresponding to multiple target routing lists for service data transmission may be: the second communication node evenly distributes the data to be transmitted to the routes corresponding to the multiple target routing lists for service data transmission; Alternatively, the second communication node distributes the data to be transmitted to routes corresponding to multiple target route lists according to the distribution ratio for service data transmission.
  • the second communication node is based on the priority of the routing list, the remaining number of hops from the destination node of the second communication node in the route corresponding to the routing list, the QoS identification list that the routing corresponding to the routing list can support, and the local wireless At least one item in the link information determines the allocation ratio.
  • the first communication node configures the allocation ratio to the second communication node.
  • the distribution ratio may be supported by the second communication node according to the priority of the routes corresponding to multiple target routing lists, the remaining hops of the second communication node from the destination node in the route corresponding to the target routing list, and the route corresponding to the target routing list. At least one of the QoS identification list and the local wireless link information is determined.
  • the second communication node can switch the data whose QoS of the data meets the preset condition among the data to be transmitted to the route corresponding to the target route list for transmission.
  • the second communication node sends load information to the first communication node, and the second communication node receives the routing configuration information sent by the first communication node.
  • the second communication node determines that the current wireless link status changes After that, according to the routing configuration information, select the route corresponding to the target routing list for service data transmission.
  • it realizes the routing method of load sharing.
  • the state of the wireless link in the route changes, it can be timely Determine the target route list, and use the route corresponding to the target route list to continue data transmission.
  • Fig. 5 is a flowchart of yet another routing method provided by an embodiment. As shown in Figure 5, the routing method provided in this embodiment includes the following steps:
  • Step 501 The second communication node sends routing status information.
  • the routing status information includes: routing identification and status information of the route to which the routing identification belongs.
  • the routing status information further includes at least one of the following: the route to which the route identifier belongs is reachable, the route to which the route identifier belongs is unreachable, the number of hops of the route to which the route identifier belongs, and the transmission cost per hop.
  • the cost of each hop transmission may include at least one of the following: increased delay required for transmission, processing capability of hardware required for transmission, and radio resources required for transmission.
  • the routing status information further includes the direction information of the continued transmission, that is, the transmission to the upstream node or the downstream node.
  • other second communication nodes or first communication nodes After receiving the routing status information, other second communication nodes or first communication nodes transmit the routing status information in the upstream direction to its parent node, and transmit the routing status information in the downstream direction to its child nodes.
  • the second communication node generates the routing status information to be sent according to the status change of the local wireless link.
  • the local wireless link status change may be a failure of the local wireless link, recovery from a failure, or a change in the parameters of the local wireless link.
  • the aforementioned parameters may be RSRP, SINR, transmission delay, PER, etc. of the local wireless link.
  • the routing identifier in the routing status information may include the routing identifier that the wireless link to the next hop is a faulty link.
  • the second communication node sends the routing state information to its neighboring second communication node through BAP layer signaling.
  • the adjacent second communication node may be a child node or a parent node of the second communication node.
  • the neighboring second communication node After the neighboring second communication node receives the routing status information, it filters the routing status information to form the routing status information to be sent, and then sends it to its neighboring second communication node to realize the routing status information. Jump transmission.
  • the affected route identifier here refers to the route identifier of the link whose state changes the wireless link to the next hop.
  • the second communication node sends the routing status information to the first communication node through new F1AP signaling, existing F1AP signaling, new RRC message, or existing RRC message .
  • the second communication node realizes sending the routing status information to the first communication node by adding routing status information to the existing F1AP signaling.
  • the second communication node implements sending the routing state information to the first communication node by adding routing status information to the existing RRC message.
  • the first communication node may send the routing status information to each of the other second communication nodes.
  • the first communication node sends to each other second communication node the affected routing identifiers related to each other second communication node in the routing status information and the affected routing identifiers belong to Status information of the route.
  • the second communication node generates the routing status information to be sent according to the received routing status information.
  • the second communication node filters the received routing status information according to the locally affected routing identifiers to form routing status information. That is, the received routing status information is filtered out of the routing identifiers and corresponding status information that are not locally affected, and the final routing status information to be sent includes the routing identifiers and local affected routing identifiers locally affected by the second communication node.
  • the second communication node sends the routing state information to its neighboring second communication node through BAP layer signaling.
  • the second communication node sends the routing status information to the first communication node through new F1AP signaling, existing F1AP signaling, new RRC message, or existing RRC message .
  • the system to which the routing method provided in this embodiment is applied is an IAB system to describe the above routing method.
  • FIG. 6A is a signaling interaction diagram corresponding to the routing method provided by the embodiment shown in FIG. 5.
  • the routing status information is uplink routing status information.
  • the second communication node is an IAB node or Donor DU.
  • the following takes the second communication node as an intermediate IAB node A as an example for description.
  • the signaling interaction process includes the following steps:
  • Step 601 The intermediate IAB node B detects a state change of a radio link with Donor DU1, and generates uplink routing state information.
  • Step 602 The intermediate IAB node B sends the uplink routing status information to the intermediate IAB node A of its child nodes.
  • Step 603 After receiving the uplink route status information, the intermediate IAB node A obtains the affected route identifier, and switches the data on the route to which the affected route identifier belongs to the route transmission corresponding to the target route list. At the same time, the intermediate IAB node A filters the received uplink routing status information to form the uplink routing status information to be sent.
  • the intermediate IAB node A updates the used route identifier for the radio bearer, UE, access IAB node, or QoS category that uses the affected route.
  • the intermediate IAB node A updates the BAP sub-header of the data packet sent to the affected route after receiving the above-mentioned uplink routing status information; optionally, the above-mentioned update includes the update of the routing identification information in the BAP sub-header.
  • Step 604 The intermediate IAB node A sends the uplink routing status information formed by the intermediate IAB node A to its child node access IAB node C.
  • Step 605 After the access IAB node C receives the uplink routing status information sent by the intermediate IAB node A, it obtains the affected route identifier, and switches the data on the route to which the affected route identifier belongs to the route corresponding to the target route list transmission.
  • FIG. 6B is another signaling interaction diagram corresponding to the routing method provided in the embodiment shown in FIG. 5.
  • the routing status information is downlink routing status information.
  • the second communication node is an IAB node or Donor DU.
  • the following takes the second communication node as an intermediate IAB node B as an example for description.
  • the signaling interaction process includes the following steps:
  • Step 611 The intermediate IAB node A detects that a radio link between the access IAB node C and the state has changed, and generates downlink routing state information.
  • Step 612 The intermediate IAB node A sends downlink routing status information to the intermediate IAB node B of its parent node.
  • Step 613 After receiving the downlink route status information, the intermediate IAB node B obtains the affected route identifier, and switches the data on the route to which the affected route identifier belongs to the route transmission corresponding to the target route list. At the same time, the intermediate IAB node B filters the received downlink routing status information to form the downlink routing status information to be sent.
  • the intermediate IAB node B updates the used route identifier for the DRB, UE, access IAB node, or QoS service type that uses the affected route.
  • the intermediate IAB node B updates the BAP sub-header of the data packet sent to the affected route after receiving the above-mentioned downlink routing status information; optionally, the above-mentioned update includes the update of the routing identification information in the BAP sub-header.
  • Step 614 The intermediate IAB node B sends the downlink routing status information formed by the intermediate IAB node B to its parent node Donor DU1.
  • Step 615 After the Donor DU1 receives the downlink route status information sent by the intermediate IAB node B, it obtains the affected route identifier, and switches the data on the route to which the affected route identifier belongs to the route transmission corresponding to the target route list.
  • the routing method provided in this embodiment sends routing status information through the second communication node, where the routing status information includes: the routing identifier and the status information of the route to which the routing identifier belongs, so as to realize the transmission of the routing status information and facilitate the communication nodes Determining the status information of the route improves the reliability of data transmission.
  • Fig. 7 is a flowchart of still another routing method provided by an embodiment. As shown in Figure 7, the routing method provided in this embodiment includes the following steps:
  • Step 701 The first communication node sends routing status information.
  • the routing status information includes: routing identification and status information of the route to which the routing identification belongs.
  • the routing status information further includes at least one of the following: the route to which the route identifier belongs is reachable, the route to which the route identifier belongs is unreachable, the number of hops of the route to which the route identifier belongs, and the transmission cost per hop.
  • the cost of each hop transmission may include at least one of the following: increased delay required for transmission, processing capability of hardware required for transmission, and radio resources required for transmission.
  • the first communication node sends the routing status information to the second communication node.
  • the first communication node sends the routing status information to the second communication node through F1AP signaling.
  • the method before step 701, the method further includes: the first communication node generates routing status information according to the status change of the wireless link reported by the second communication node.
  • the second communication node when it discovers a status change of the local wireless link, it may report the wireless link status information to the first communication node.
  • the second communication node is an IAB node
  • the MT of the second communication node reports radio link status information to the first communication node through RRC signaling
  • the second communication node The DU of the node reports wireless link status information to the first communication node through F1AP signaling.
  • the second communication node is a Donor DU
  • the second communication node reports the radio link state information to the first communication node through F1AP signaling.
  • the first communication node generates routing status information according to the wireless link status information reported by the second communication node, and sends it to each second communication node.
  • the first communication node may send to each second communication node a routing identifier and corresponding status information related only to it.
  • the communication system is an IAB system
  • the first communication node if the second communication node is an IAB node, the first communication node notifies the second communication node of its related uplink routing identifier and corresponding status information.
  • the second communication node if the second communication node is a Donor DU, the first communication node notifies the second communication node of the downlink routing identifier and corresponding status information related thereto.
  • the method further includes: the first communication node generates routing status information according to the routing status information reported by the second communication node.
  • the first communication node after receiving the wireless link status information, configures new next hop information for some routing identifiers.
  • the first communication node after receiving the radio link state information, updates the used route identifier for the radio bearer, UE, access IAB node, or QoS category that uses the affected route.
  • the system to which the routing method provided in this embodiment is applied is an IAB system to describe the above routing method.
  • FIG. 8A is another signaling interaction diagram corresponding to the routing method provided by the embodiment shown in FIG. 7.
  • the routing status information is downlink routing status information.
  • the second communication node is the intermediate IAB node A and the first communication node is the Donor CU as an example.
  • the signaling interaction process includes the following steps:
  • Step 621 The intermediate IAB node A detects that a link between it and the access IAB node C has changed in state.
  • Step 622 The intermediate IAB node A sends radio link status information to the Donor CU.
  • the MT of the intermediate IAB node A sends radio link state information to the Donor CU through RRC signaling.
  • the DU of the intermediate IAB node A sends radio link state information to the Donor CU through F1AP signaling.
  • the second communication node when the second communication node is a Donor DU, when the Donor DU finds that a wireless link has a status change, it sends the wireless link status information to the Donor CU through F1AP signaling.
  • Step 623 Donor CU sends downlink routing status information to Donor DU1 and IAB nodes.
  • the Donor CU may send downlink routing status information through F1AP signaling.
  • the Donor CU can send its related affected routing identification and the status information of the route to which the affected routing identification belongs to each IAB node and Donor DU1.
  • the Donor CU may configure new next hop information for some routing identifiers after receiving the radio link status information.
  • the Donor CU can configure a new primary and/or backup routing identifier for the affected radio bearer, UE, access IAB section or QoS category.
  • Donor DU1 and IAB nodes After the Donor DU1 and IAB nodes receive the downlink route status information, they obtain the affected route identifier, and switch the data on the route to which the affected route identifier belongs to the route transmission corresponding to the target route list.
  • the IAB node and the Donor DU1 after receiving the downlink routing status information, update the used route identifier for the radio bearer, UE, access IAB node, or QoS category that uses the affected route.
  • the IAB node and the Donor DU1 update the BAP sub-header of the data packet sent to the affected route after receiving the above-mentioned downlink routing status information; optionally, the above-mentioned update includes the update of the routing identification information in the BAP sub-header.
  • the Donor CU notifies the Donor DU and IAB nodes of the downlink routing status information.
  • FIG. 8B is another signaling interaction diagram corresponding to the routing method provided by the embodiment shown in FIG. 5, and in FIG. 8B, the routing status information is uplink routing status information.
  • the second communication node is the intermediate IAB node B and the first communication node is the Donor CU as an example.
  • the signaling interaction process includes the following steps:
  • Step 631 The intermediate IAB node B detects that a link between it and Donor DU1 has changed in state.
  • Step 632 The intermediate IAB node B sends radio link state information to the Donor CU.
  • Step 633 Donor CU sends uplink routing status information to Donor DU1 and IAB node.
  • the Donor CU can send to each IAB node and Donor DU1 the affected routing identifier and the status information of the route to which the affected routing identifier belongs.
  • Donor DU1 and IAB nodes After the Donor DU1 and IAB nodes receive the uplink route status information, they obtain the affected route identifier, and switch the data on the route to which the affected route identifier belongs to the route transmission corresponding to the target route list.
  • the IAB node and the Donor DU1 after receiving the uplink routing status information, update the used route identifier for the radio bearer, UE, access IAB node, or QoS category that uses the affected route.
  • the IAB node and the Donor DU1 update the BAP sub-header of the data packet sent to the affected route after receiving the above-mentioned uplink routing status information; optionally, the above-mentioned update includes the update of the routing identification information in the BAP sub-header.
  • the Donor CU notifies the Donor DU and IAB nodes of the uplink routing status information.
  • the routing method provided in this embodiment sends routing status information through the first communication node, where the routing status information includes: the routing identifier and the status information of the route to which the routing identifier belongs, which realizes the transmission of routing status information and facilitates the determination of each communication node
  • the routing status information improves the reliability of data transmission.
  • This application also provides a buffer status report (Buffer Status Report, BSR) generating method, which includes: a communication node generates a BSR according to data buffered in a BAP entity.
  • BSR Buffer Status Report
  • the communication node may consider the amount of data cached in the BAP entity when generating the BSR.
  • the data cached in the BAP entity may be data associated with the BAP entity, or data identified as being processed by the BAP layer.
  • the data buffered in the BAP entity is data associated with a designated route or a designated radio link control (Radio Link Control, RLC) entity.
  • RLC Radio Link Control
  • the BAP entity Since data on different routes will eventually be sent through different RLC entities, the BAP entity needs to count the amount of data cached according to the sending RLC entity or route identifier, and then notify the local DU and/or the local MT of the media access Control (Media Access Control, MAC) entity. After receiving the above information, the MAC entity may also report the amount of data buffered in the BAP entity in the BSR. For example, the data volume of the logical link group in the final BSR report may include data cached in each RLC entity in the logical link group and data cached in the BAP entity associated with the above-mentioned RLC entity.
  • Media Access Control Media Access Control
  • the data cached in the BAP entity associated with the above-mentioned RLC entity may be associated with an RLC entity through the identification of its transmission route. That is, there is a mapping from the route identifier to the RLC entity identifier, and the BAP layer or the MAC layer counts the amount of data cached in the BAP entity associated with an RLC entity according to the above mapping.
  • the RLC entity is required to notify the BAP entity to delete the corresponding data after receiving an ACKnowledgement (ACK) from the air interface. Or, the data is deleted from the buffer of the BAP entity immediately after being transmitted to the RLC entity. At this time, the RLC entity needs to transmit the unsuccessfully sent data to the BAP entity after sending the RLF, and then perform subsequent processing.
  • ACK ACKnowledgement
  • the communication node generates the BSR according to the data volume of the data buffered in the BAP entity.
  • the communication node generates the BSR according to the data buffered in the BAP entity and the data buffered in the designated RLC entity.
  • FIG. 9 is a schematic structural diagram of a routing device provided by an embodiment. As shown in FIG. 9, the routing device provided in this embodiment includes the following modules: a receiving module 71 and a sending module 72.
  • the receiving module 71 is configured to receive load information sent by the second communication node.
  • the sending module 72 is configured to send routing configuration information to the second communication node.
  • the routing configuration information includes a routing list determined for data of different granularities according to the load information.
  • the receiving module 71 is an optional module of the routing device.
  • the sending module 72 is configured to send the routing configuration information to the second communication node through F1AP signaling.
  • the sending module 72 is configured to add the routing configuration information to the existing F1AP signaling and send it to the second communication node.
  • the routing configuration information is added to the terminal context establishment request message in the existing F1AP signaling or the DRB information element to be established in the message, and sent to the second communication node.
  • the sending module 72 is configured to send the routing configuration information to the second communication node through a new RRC message.
  • the sending module 72 is configured to add the routing configuration information to an existing RRC message, and send the RRC message after adding the routing configuration information to the second communication node.
  • the routing list includes at least one of the following: a routing list configured for a radio bearer, a routing list configured for a UE, a routing list configured for a second communication node, and a routing list configured for QoS category data.
  • the routing list includes the identification of the radio bearer, and the identification of the radio bearer includes at least one of the following: the TEID of the GTP data packet that transmits the radio bearer data, the first The IP address of a communication node, the IP address of the CU of the first communication node, the IP address of the second communication node, the IP address of the MT of the second communication node, the IP address of the DU of the second communication node, and the transmission of wireless bearer data Flow label information in the IP packet header.
  • the routing list includes the second communication node identifier, and the second communication node identifier includes at least one of the following: The ID of the DU, the IP address of the DU in the second communication node, the ID of the MT in the second communication node, and the IP address of the MT in the second communication node.
  • the routing list includes the identification of the QoS category, and the identification of the QoS category includes at least one of the following: IP data packets that transmit data of the QoS category The value of the DSCP field, the flow label information of the IP data packet that transmits the data of the QoS type, the IP address of the IP data packet that transmits the data of the QoS type, and the 5QI of the DRB to which the data packet of the QoS type belongs.
  • the routing configuration information further includes at least one of the following: the nature of the route corresponding to the routing list; wherein the nature of the routing includes at least one of active and standby; the priority of the route corresponding to the routing list; The QoS identification list that the route corresponding to the routing list can support; the alternate routing identification corresponding to the routing identification in the routing list; the remaining number of hops between the second communication node and the destination node in the route corresponding to the routing list.
  • the routing device provided in this embodiment is used to implement the routing method of the embodiment shown in FIG. 2, the implementation principle of the routing device provided in this embodiment is similar, and will not be repeated here.
  • FIG. 10 is a schematic structural diagram of another routing device provided by an embodiment. As shown in FIG. 10, the routing device provided in this embodiment includes the following modules: a sending module 81 and a receiving module 82.
  • the sending module 81 is configured to send load information to the first communication node.
  • the receiving module 82 is configured to receive routing configuration information sent by the first communication node.
  • the routing configuration information includes a routing list determined by the first communication node for data of different granularities according to the load information.
  • the sending module 81 is an optional module of the routing device.
  • the routing configuration information further includes at least one of the following: the nature of the route corresponding to the routing list; the nature of the routing includes at least one of active and standby; the priority of the route corresponding to the routing list; and the routing list
  • the QoS identifier list that the corresponding route can support; the alternate route identifier corresponding to the route identifier in the route list; the remaining number of hops from the second communication node to the destination node in the route corresponding to the route list.
  • the device further includes: a selection module configured to, after the routing device determines that the current wireless link has a status change, according to the routing configuration information, select the route corresponding to the target routing list for service data transmission .
  • the selection module is configured to: determine the target routing list according to the priority of the route corresponding to the routing list, and perform service data transmission on the route corresponding to the target routing list.
  • the selection module is configured to: determine the target routing list according to the remaining number of hops between the routing device and the destination node in the route corresponding to the routing list, and perform processing on the route corresponding to the target routing list Business data transmission.
  • the selection module is configured to: determine the target route list according to the QoS identification list that the route corresponding to the route list can support, and perform service data transmission on the route corresponding to the target route list .
  • the selection module is configured to: determine the target routing list according to local wireless link information and the routing configuration information, and perform service data transmission on the route corresponding to the target routing list.
  • the selection module is configured to select the route corresponding to the target route list for service data transmission in the following manner: when it is determined that the current traffic volume on the wireless link is greater than a specific traffic volume threshold, select The routes corresponding to multiple target route lists perform service data transmission; when it is determined that the current business volume on the wireless link is less than or equal to the above-mentioned service volume threshold, a route corresponding to a target route list is selected for service data transmission.
  • the selection module is configured to select routes corresponding to multiple target routing lists for service data transmission in the following manner: evenly distribute the data to be transmitted to the routes corresponding to the multiple target routing lists. Service data transmission; or, according to the priority of the routing list, the remaining hops of the second communication node from the destination node in the routing corresponding to the routing list, the QoS identification list that the routing corresponding to the routing list can support, and the local wireless link information At least one item of determines a distribution ratio, and distributes the data to be transmitted to routes corresponding to the multiple target routing lists according to the distribution ratio for service data transmission.
  • the routing device provided in this embodiment is used to implement the routing method of the embodiment shown in FIG. 4, and the implementation principle of the routing device provided in this embodiment is similar, and will not be repeated here.
  • FIG. 11 is a schematic structural diagram of yet another routing device provided by an embodiment. As shown in FIG. 11, the routing device provided in this embodiment includes the following modules: a sending module 91.
  • the sending module 91 is configured to send routing status information.
  • the routing status information includes: routing identification and status information of the route to which the routing identification belongs.
  • the sending module 91 is configured to send the routing status information to its neighboring second communication node through BAP layer signaling.
  • the sending module 91 is configured to send the routing status information to the first communication node through new F1AP signaling, existing F1AP signaling, new RRC message or existing RRC message.
  • the device further includes: a first generating module configured to generate the routing status information to be sent according to the received routing status information.
  • the first generating module is configured to: filter the received routing status information according to the locally affected routing identification to form the routing status information.
  • the device further includes: a second generating module configured to generate the routing status information to be sent according to the status change of the local wireless link.
  • the routing device provided in this embodiment is used to implement the routing method of the embodiment shown in FIG. 5, and the implementation principle of the routing device provided in this embodiment is similar, and will not be repeated here.
  • FIG. 12 is a schematic structural diagram of still another routing device provided by an embodiment. As shown in FIG. 12, the routing device provided in this embodiment includes a sending module 94.
  • the sending module 94 is configured to send routing status information.
  • the routing status information includes: routing identification and status information of the route to which the routing identification belongs.
  • the device further includes: a first generating module configured to generate the routing status information according to the wireless link status information reported by the second communication node.
  • the device further includes: a second generating module configured to generate the routing status information according to the routing status information reported by the second communication node.
  • the routing device provided in this embodiment is used to implement the routing method of the embodiment shown in FIG. 7, and the implementation principle of the routing device provided in this embodiment is similar, and will not be repeated here.
  • This embodiment also provides a BSR generating device.
  • the BSR generating apparatus provided in this embodiment includes a generating module, which is used to generate a BSR according to data cached in the BAP entity.
  • the data cached in the BAP entity is data associated with a designated route or a designated RLC entity.
  • the generating module is configured to generate the BSR according to the data volume of the data buffered in the BAP entity.
  • the generating module is configured to generate the BSR according to data cached in the BAP entity and data cached in the specific RLC entity.
  • the BSR generating apparatus provided in this embodiment is used in the BSR generating method of the foregoing embodiment, and the implementation principle of the BSR generating apparatus provided in this embodiment is similar, and will not be repeated here.
  • FIG. 13 is a schematic structural diagram of still another routing device provided by an embodiment.
  • the terminal includes a processor 92.
  • it further includes a memory 93, a power supply component 95, a receiver 96, a transmitter 97, and an antenna 98.
  • the number of processors 92 in the routing device may be one or more.
  • One processor 92 is taken as an example in FIG. 13; the processor 92, memory 93, power supply component 95, receiver 96, and transmitter 97 in the routing device It can be connected via a bus or other means. In FIG. 13, connection via a bus is taken as an example.
  • the receiver 96 and the transmitter 97 are connected to an antenna 98.
  • the memory 93 can be used to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the routing method in the embodiments of Figures 1 to 7 of this application (for example, in a routing device).
  • the processor 92 executes various functional applications and data processing of the routing device by running the software programs, instructions, and modules stored in the memory 93, that is, realizes the aforementioned routing method.
  • the memory 93 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the routing device.
  • the memory 93 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the power supply component 95 provides power for each module of the routing device.
  • the power supply component 95 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the routing device.
  • the transmitter 97 is configured to transmit signals to other devices through the antenna 98
  • the receiver 96 is configured to receive signals from other devices through the antenna 98.
  • the receiver 96 obtains load information through the antenna 98
  • the transmitter 97 transmits the routing configuration information to the second communication node through the antenna 98.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are executed by a computer processor, they are used to execute the routing method or the BSR generation method provided by any embodiment of the present application.
  • user terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicle-mounted mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • the embodiments of the present application may be implemented by executing computer program instructions by a data processor of a mobile device, for example, in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions can be assembly instructions, instruction set architecture (Instruction Set Architecture, ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • the block diagram of any logical flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented by any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Versatile Disc (DVD) or (Compact Disk, CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FGPA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FGPA programmable logic devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种路由方法、BSR的生成方法、装置和存储介质。该方法包括:第一通信节点获取负荷信息,所述第一通信节点向所述第二通信节点发送路由配置信息,其中,所述路由配置信息包括不同粒度的数据的标识和根据所述负荷信息,为不同粒度的数据配置的路由列表。

Description

路由方法、BSR的生成方法、装置和存储介质
本申请要求在2019年08月13日提交中国专利局、申请号为201910745684.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络,例如涉及一种路由方法、缓存状态报告(Buffer Status Report,BSR)生成方法、装置和存储介质。
背景技术
在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)正在研究的第五代移动通信技术(5th Generation,5G)将实现更大的吞吐量,更多的用户连接,更低时延,更高可靠性,和更低功耗(包括网络侧设备和用户终端)。3GPP的讨论中,综合接入回传(Integrated Access and Backhaul,IAB)技术很受重视,其目标是:使一个或多个IAB节点利用位于本地的移动终端(Mobile Terminal,MT)通过新无线电(New Radio,NR)空中接口连接到母节点,并在此基础上形成多跳的无线自回传网络。采用无线自回传的IAB技术,是减少投资成本的重要技术选择之一。其中,回传链路和接入链路使用相同的无线传输技术,共用同一频带,通过时分或频分方式复用资源。
3GPP的讨论中,每个IAB节点包含一个分布式单元(Distributed Unit,DU)功能部分和一个MT功能部分。其中,DU用于服务本节点的终端(User Equipment,UE)和下一跳节点的MT,并和其建立无线链路层控制(Radio Link Control,RLC)连接;而MT的功能相当于一个UE,用于通过NR的NR Uu接口接入上一跳的母节点,并和其建立RLC连接。所以,不同的IAB节点可以利用本地MT的无线接入能力接入到上一跳的母节点,该母节点又可以再连接到上一跳节点,直至最终连接到IAB宿主(Donor),IAB Donor又可以称为下 一代基站(next Generation NodeB,gNodeB)。IAB Donor包括一个Donor中心单元(Centralized Unit,CU)和多个Donor DU。各个Donor DU分别以有线方式连接到Donor CU。Donor CU和Donor DU,以及Donor CU和各个IAB节点的DU之间通过增强的F1接口进行连接。为了提高可靠性,一个IAB节点可以连接到多个母节点。这样,许多个IAB节点相互连接后就形成了一个复杂的IAB网络。3GPP在RLC层之上定义了一个新的回传适配协议(Backhaul Adaptation Protocol,BAP)层来控制IAB网络中业务流的传递。BAP层的功能主要包括路由和承载映射等。
无线接入网(Radio Access Network,RAN)2#106次会议中提出IAB网络中进行路由的基本方法:即每个数据包的BAP子头中包含有路由标识(route ID),BAP层会根据每个数据包的BAP子头中所包含的路由标识为上述数据包选择下一跳连接。这个选择过程可以通过路由表的方式实现,即配置好一个路由标识和下一跳的映射表,然后根据路由标识找到相应的下一跳。RAN2#106会议的结论中,每个路由标识可以包含有目标节点的BAP地址,也可以进一步包含具体的BAP路径标识(path ID)。
IAB网络中无法实现各条路由之间的负荷分担。
发明内容
本申请提供一种路由方法、BSR的生成方法、装置和存储介质,可以实现负荷分担的路由方式。
本申请实施例提供一种路由方法,包括:
第一通信节点获取负荷信息;
所述第一通信节点向所述第二通信节点发送路由配置信息;其中,所述路由配置信息包括不同粒度的数据的标识和根据所述负荷信息,为不同粒度的数 据配置的路由列表。
本申请实施例提供一种路由方法,包括:
第二通信节点向第一通信节点发送负荷信息;
所述第二通信节点接收所述第一通信节点发送的路由配置信息;其中,所述路由配置信息包括不同粒度的数据的标识和所述第一通信节点根据所述负荷信息,为不同粒度的数据配置的路由列表。
本申请实施例提供一种路由方法,包括:
第二通信节点发送路由状态信息;其中,所述路由状态信息包括:路由标识和所述路由标识所属的路由的状态信息。
本申请实施例提供一种路由方法,包括:
第一通信节点发送路由状态信息;其中,所述路由状态信息包括:路由标识和所述路由标识所属的路由的状态信息。
本申请实施例提供一种BSR的生成方法,包括:
通信节点根据BAP实体中缓存的数据,生成BSR。
本申请实施例提供一种路由装置,包括:处理器,所述处理器用于在执行计算机程序时实现上述任意实施例的路由方法。
本申请实施例提供一种BSR生成装置,包括:处理器,所述处理器用于在执行计算机程序时实现上述任意实施例的BSR生成方法。
本申请实施例提供了一种存储介质,存储介质存储有计算机程序,计算机程序被处理器执行时实现本申请实施例中的任意一种路由方法或者BSR的生成方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1为一实施例提供的路由方法应用场景的示意图;
图2为一实施例提供的一种路由方法的流程图;
图3A为图2所示实施例提供的路由方法对应的一种信令交互图;
图3B为图2所示实施例提供的路由方法对应的另一种信令交互图;
图4为一实施例提供的另一种路由方法的流程图;
图5为一实施例提供的又一种路由方法的流程图;
图6A为图5所示实施例提供的路由方法对应的一种信令交互图;
图6B为图5所示实施例提供的路由方法对应的另一种信令交互图;
图7为一实施例提供的再一种路由方法的流程图;
图8A为图7所示实施例提供的路由方法对应的一种信令交互图;
图8B为图7所示实施例提供的路由方法对应的又一种信令交互图;
图9为一实施例提供的一种路由装置的结构示意图;
图10为一实施例提供的另一种路由装置的结构示意图;
图11为一实施例提供的又一种路由装置的结构示意图;
图12为一实施例提供的再一种路由装置的结构示意图;
图13为一实施例提供的另一种路由装置的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本实施例提供的路由方法可以应用于由第一通信节点和第二通信节点构成的通信系统中。该通信系统可以是全球移动通信系统(Global System for Mobile Communications,GSM)、通用分组无线业务(General Packet Radio Service,GPRS)系统、码分多址(Code Division Multiple Access,CDMA)系统、CDMA2000系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、长期演进(Long Term Evolution,LTE)系统、高级长期演进(Long Term Evolution Advanced,LTE-A)系统或全球微波接入互操作性(World Interoperability for Microwave Access,WiMAX)系统等。示例性地,该通信系统可以是IAB通信系统。图1为一实施例提供的路由方法应用场景的示意图。示例性地,本申请 中的第一通信节点可以是IAB网络中的IAB Donor中的Donor CU,第二通信节点可以是IAB网络中的IAB节点或者IAB Donor中的Donor DU。如图1所示,IAB节点(IAB Node)中的DU为下属UE提供接入服务,IAB节点中的MT和上一级的母节点相联。上述MT作为母节点的特殊接入用户,和母节点的其他普通接入用户(UE)共享接入带宽。IAB Donor可以包含一个Donor CU和多个Donor DU。IAB Donor与下一代核心网(Next Generation Core,NGC)连接。多个Donor DU通过有线连接到Donor CU。Donor CU和Donor DU,以及Donor CU和各个IAB节点的DU之间通过增强的F1接口(F1*)进行连接。所以,IAB节点的DU和IAB Donor的Donor CU之间需要建立一条一跳或多跳的数据承载来传输F1接口的消息。在每一跳,该数据承载又是通过各跳的MT和DU之间的无线NR Uu承载进行数据传输。所以,对于多跳的F1承载,中间的各个IAB节点需要对收到的F1消息进行转发。这个转发过程在中间IAB节点可以由IP层或适配(Adapt)层实现。IP层或Adapt层可以根据收到的数据包的目的地址(如目的IAB Node ID)或其他信息将数据包转发到下一跳的NR Uu承载中。除此之外,在接入侧的IAB节点,数据也需要在NR Uu承载和F1/F1*-U承载之间进行转发。上述的数据转发过程中,各个IAB节点可以将上一跳的每一个数据承载一对一地转发到下一跳的一个数据承载,也可以将多个上一跳的数据承载多对一地转发到下一跳的一个数据承载上进行传输。3GPP已经为上述的Adapt层取名为BAP层。当一个IAB节点去往目的IAB节点的路由有多条时,IAB网络无法实现各条路由之间的负荷分担。
本申请提供一种路由方法,通过第一通信节点接收第二通信节点发送的负荷信息,并将包括根据负荷信息,为不同粒度的数据确定的路由列表的路由配置信息发送给第二通信节点,实现了负荷分担的路由方式,最终实现负载均衡,提高了通信系统的可靠性和传输效率。
图2为一实施例提供的一种路由方法的流程图。如图2所述,本实施例提供的路由方法包括如下步骤:
步骤201:第一通信节点获取负荷信息。
本实施例中的第一通信节点可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE中的演进型基站(evolved Node B,eNB),或者中继站或接入点, 或者第5代(5Generation,5G)系统中的基站,或者IAB网络中的IAB Donor中的Donor CU等,在此并不限定。
一实施例中,第一通信节点获取网络的负荷信息。
一实施例中,第一通信节点获取第二通信节点的负荷信息。第二通信节点可以是向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,或者,可以是IAB网络中的IAB节点或者IAB Donor中的Donor DU。
一实施例中,第一通信节点获取除第二通信节点之外的其他通信节点的负荷信息。
一实施例中,第一通信节点可以向第二通信节点发送负荷信息获取请求,第二通信节点在接收到第一通信节点发送的负荷信息获取请求后,向第一通信节点发送负荷信息。
另一实施例中,第二通信节点可以定时向第一通信节点上报负荷信息。
可选地,第二通信节点可以通过F1接口应用协议(Application Protocol,AP)信令向第一通信节点发送负荷信息。
可选地,本实施例中的负荷信息可以包括以下至少一项:无线传输资源信息、硬件处理资源信息以及缓存资源信息。
可选地,本实施例中的负荷信息可以包括以下至少一项:第二通信节点的无线传输资源信息、第二通信节点的硬件处理资源信息以及第二通信节点的缓存资源信息。
步骤202:第一通信节点向第二通信节点发送路由配置信息。
路由配置信息包括不同粒度的数据的标识和根据负荷信息,为不同粒度的数据配置的路由列表。
一实施例中,第一通信节点在获取到负荷信息后,根据负荷信息,为不同粒度的数据确定路由列表,并将路由列表包含在路由配置信息中,向第二通信节点发送该路由配置信息。
一实施例中,不同粒度的数据的标识包括以下至少一种:无线承载(Radio Bearers,RB)的标识、UE的标识、第二通信节点的标识、以及服务质量(Quality  of Service,QoS)类别的标识。
一实施例中,路由列表可以包括一个或多个路由标识。路由标识可以包括以下至少一项:路由的编号、路由目的节点的地址以及路由源节点的地址。
一种实现方式中,无线承载的标识包括以下至少一项:传输无线承载数据的通用分组无线业务隧道协议(General Packet Radio Service Tunneling Protocol,GTP)数据包的隧道端标识(Tunnel Endpoint Identifier,TEID)、第一通信节点的互联网协议(Internet Protocol,IP)地址、第一通信节点的CU的IP地址、第二通信节点的IP地址、第二通信节点的MT的IP地址、第二通信节点的DU的IP地址以及传输无线承载数据的IP数据包包头中的流标签信息(Flow Label)。
另一种实现方式中,第二通信节点标识包括以下至少一项:第二通信节点中的DU的标识,第二通信节点中的DU的IP地址,第二通信节点中的MT的标识,第二通信节点中的MT的IP地址。
又一种实现方式中,QoS类别的标识包括以下至少一项:传输QoS类别的数据的IP数据包的差分服务代码点(Differentiated Services Code Point,DSCP)字段的值,传输QoS类别的数据的IP数据包的流标签信息,传输QoS类别的数据的IP数据包的IP地址,QoS类别的数据包所属的数据无线承载(Data Radio Bearers,DRB)的第五代通信QoS标识符(5G QoS Indicator,5QI)。
一实施例中,第一通信节点通过新的F1AP信令,向第二通信节点发送路由配置信息。当该通信系统为IAB系统时,第一通信节点通过新的F1AP信令,向第二通信节点的DU发送路由配置信息。本实施例中的新的F1AP信令指的是在F1接口上发送新的AP消息。
另一实施例中,第一通信节点在已有的F1AP信令中添加上述路由配置信息,向第二通信节点发送添加信息后的F1AP信令。本实施例中的已有的F1AP信令指的是相关技术中已有的F1AP信令。
基于该实施例:一种实现方式中,第一通信节点在已有的F1AP信令中的终端上下文建立请求消息(UE CONTEXT SETUP request)中添加上述路由配置信息,向第二通信节点发送添加信息后的F1AP信令;另一种实现方式中,第一通信节点在终端上下文建立请求消息的待建立的DRB信息单元(DRB to Be Setup Item Information Element)中添加上述路由配置信息,向第二通信节点发送添加 信息后的F1AP信令。
又一实施例中,第一通信节点通过新的无线资源控制(Radio Resoruce Control,RRC)消息,向第二通信节点发送路由配置信息。当该通信系统为IAB系统时,第一通信节点通过新的RRC消息,向第二通信节点的MT发送路由配置信息。本实施例中的新的RRC消息指的是新发送的RRC消息。
再一实施例中,第一通信节点在已有的RRC消息中添加路由配置信息,发送给第二通信节点。本实施例中的已有的RRC消息指的是相关技术中已有的RRC消息。
本实施例中,第二通信节点在接收到路由配置信息后,可以向第一通信节点反馈响应消息。之后,第二通信节点中需要传输的不同粒度的数据就可以按照路由配置信息中的路由列表所对应的路由进行传输。
以下以本实施例提供的路由方法应用的系统为IAB系统为例,对上述路由方法进行说明。
图3A为图2所示实施例提供的路由方法对应的一种信令交互图。在图3A中,该路由配置信息为上行路由配置信息。在该场景中,第二通信节点为接入IAB节点。如图3A所示,该信令交互过程包括以下步骤:
步骤301:接入IAB节点发送负荷信息,第一通信节点(Donor CU)接收接入IAB节点发送的负荷信息。
示例性地,接入IAB节点通过F1AP信令发送负荷信息。
步骤302:Donor CU向接入IAB节点发送上行路由配置信息。
示例性地,Donor CU可以通过新的F1AP信令、在已有的F1AP信令中添加上行路由配置信息、新的RRC消息或者在已有的RRC消息中添加上行路由配置信息向接入IAB节点发送上行路由配置信息。
步骤303:接入IAB节点接收到上行路由配置信息后,向Donor CU发送响应消息,确认收到上行路由配置信息。
步骤304:接入IAB节点中的上行传输的不同粒度的数据按照上行路由配置信息中的路由列表对应的路由进行传输。
图3B为图2所示实施例提供的路由方法对应的另一种信令交互图。在图3B 中,该路由配置信息为下行路由配置信息。在该场景中,第二通信节点为Donor DU。如图3B所示,该信息交互过程包括以下步骤:
步骤311:Donor DU发送负荷信息,Donor CU接收Donor DU发送的负荷信息。
示例性地,Donor DU通过F1AP信令发送负荷信息。
步骤312:Donor CU向Donor DU发送下行路由配置信息。
示例性地,Donor CU可以通过新的F1AP信令或者在已有的F1AP信令中添加下行路由配置信息向Donor DU发送下行路由配置信息。
步骤313:Donor DU接收到下行路由配置信息后,向Donor CU发送响应消息,确认收到下行路由配置信息。
步骤314:Donor DU中的下行传输的不同粒度的数据按照下行路由配置信息中的路由列表对应的路由进行传输。
在一实施例中,路由配置信息还包括以下至少一项:路由列表对应的路由的性质;路由的性质包括主用和备用中的至少一种;路由列表对应的路由的优先级;路由列表对应的路由所能支持的QoS标识列表;路由列表中的路由标识对应的备用路由标识;路由列表对应的路由中第二通信节点距离目的节点的剩余跳数。
需要说明的是,与路由配置信息中包括路由列表对应的路由的性质相对应的,针对具有相同源节点和目的节点的路由列表,可以确定其中一个路由列表为主用路由列表,其他路由列表为备用路由列表。与路由配置信息中包括路由列表中的路由标识对应的备用路由标识相对应的,对于一个路由列表来说,其中的路由标识可以具有对应的备用路由标识。
基于路由配置信息还包括上述信息的实施例,在第二通信节点的当前无线链路失败(Radio Link Failure,RLF)后,第二通信节点可以根据路由配置信息,选择目标路由列表所对应的路由进行业务数据传输。第二通信节点如何根据路由配置信息,选择目标路由列表所对应的路由进行业务数据传输的具体过程,将在以下实施例中进行说明。
本实施例提供的路由方法,通过第一通信节点获取负荷信息,第一通信节 点向第二通信节点发送路由配置信息,路由配置信息包括不同粒度的数据的标识和根据负荷信息,为不同粒度的数据确定的路由列表,实现了负荷分担的路由方式,最终实现负载均衡,提高了通信系统的可靠性和传输效率。
图4为一实施例提供的另一种路由方法的流程图。如图4所示,本实施例提供的路由方法包括如下步骤:
步骤401:第二通信节点向第一通信节点发送负荷信息。
步骤401为本实施例可选的步骤。
一实施例中,可以是第二通信节点向第一通信节点发送负荷信息。
另一实施例中,可以是其他通信节点向第一通信节点发送负荷信息。
在一实施例中,负荷信息可以包括以下至少一项:第二通信节点的无线传输资源信息、第二通信节点的硬件处理资源信息以及第二通信节点的缓存资源信息。
在一实施例中,第二通信节点可以通过F1AP信令向第一通信节点发送负荷信息。
步骤402:第二通信节点接收第一通信节点发送的路由配置信息。
路由配置信息包括不同粒度的数据的标识和第一通信节点根据负荷信息,为不同粒度的数据配置的路由列表。
在一实施例中,不同粒度的数据的标识包括以下至少一种:无线承载的标识、UE的标识、第二通信节点的标识、以及QoS类别的标识。
无线承载的标识、第二通信节点标识以及QoS类别的标识的具体实现方式与图2所示的实施例中的相同,此处不再赘述。
一实施例中,路由列表可以包括一个或多个路由标识。路由标识可以包括以下至少一项:路由的编号、路由目的节点的地址以及路由源节点的地址。
第二通信节点可以接收第一通信节点通过新的F1AP信令、在已有的F1AP信令中添加上述路由配置信息、新的RRC消息或者在已有的RRC消息中添加上述路由配置信息发送的路由配置信息。
与图2所示实施例相类似地,本实施例中的路由配置信息可以包括上行路 由配置信息,也可以包括下行路由配置信息。
第二通信节点在接收到路由配置信息后,可以向第一通信节点反馈响应消息。之后,第二通信节点中需要传输的不同粒度的数据就可以按照路由配置信息中的路由列表所对应的路由进行传输。
在一实施例中,路由配置信息还包括以下至少一项:路由列表对应的路由的性质;路由的性质包括主用和备用中的至少一种;路由列表对应的路由的优先级;路由列表对应的路由所能支持的QoS标识列表;路由列表中的路由标识对应的备用路由标识;路由列表对应的路由中第二通信节点距离目的节点的剩余跳数。
基于路由配置信息的上述实现方法,可选地,本实施例提供的路由方法还包括以下步骤:
步骤403:当第二通信节点确定当前无线链路发生状态变化之后,根据路由配置信息,选择目标路由列表所对应的路由进行业务数据传输。
可选地,当前无线链路状态变化可以是当前无线链路出现故障、当前无线链路从故障中恢复或者当前无线链路的参数发生变化。可选地,上述参数可以是当前无线链路的参考信号接收功率(Reference Signal Received Power,RSRP),信号噪声干扰比(Signal to Interference plus Noise Ratio,SINR),传输延迟,包出错率(Packet Error Rate,PER)等。
一实施例中,第二通信节点可以根据缺省的备用关系,确定目标路由列表。在该实施例中,路由列表中的路由标识可以包括目的节点和/或路径标识。可选地,可以将目的节点相同的路由列表作为一个路由列表组。当组内一个路由列表对应的路由发生故障或者状态改变,该组内的其他路由列表可以作为该发生故障的路由列表的备用路由列表。可选地,可以将所有上行路由列表作为一个路由列表组。在该实施例中,第二通信节点可以将备用路由列表作为目标路由列表。
另一实施例中,第二通信节点可以根据路由配置信息,确定目标路由列表。
一种实现方式中,第二通信节点根据路由列表对应的路由的优先级,确定目标路由列表,在目标路由列表对应的路由进行业务数据传输。
在该实现方式中,第二通信节点可以按路由列表的优先级的顺序,确定目 标路由列表,在目标路由列表对应的路由进行业务数据传输。例如,可以将优先级排在前N个的路由列表,确定为目标路由列表。N为大于或者等于1的整数。
另一种实现方式中,第二通信节点根据路由列表对应的路由中第二通信节点距离目的节点的剩余跳数,确定目标路由列表,在目标路由列表对应的路由进行业务数据传输。
在该实现方式中,可选地,第二通信节点可以将路由列表对应的路由中第二通信节点距离目的节点的剩余跳数小于预设阈值的路由列表,确定为目标路由列表。可选地,第二通信节点可以将路由列表对应的路由中,第二通信节点距离目的节点的剩余跳数与当前无线链路对应的路由中,第二通信节点距离目的节点的剩余跳数的差值小于预设差值阈值的路由列表,确定为目标路由列表。
又一种实现方式中,第二通信节点根据路由列表对应的路由所能支持的QoS标识列表,确定目标路由列表,在目标路由列表对应的路由进行业务数据传输。
在该实现方式中,第二通信节点可以根据待传输的数据的QoS以及路由列表对应的路由所能支持的QoS标识列表,将能满足待传输的数据的QoS的路由列表确定为目标路由列表。
再一种实现方式中,第二通信节点根据本地无线链路信息以及路由配置信息,确定目标路由列表,在目标路由列表对应的路由进行业务数据传输。
在该实现方式中,第二通信节点可以根据本地无线链路信息,例如,无线链路的链路质量信息、传输延迟信息以及传输可靠性信息中的至少一种,确定目标路由列表。无线链路的链路质量信息可以是无线链路的RSRP和/或SINR。无线链路的传输可靠性信息可以是传输的平均包出错率。本地无线链路信息可以是备用路由列表对应的备用路由的下一跳的的无线链路信息。
一种实施例中,第二通信节点确定当前无线链路上的业务量大于一个指定的业务量阈值时,选择多个目标路由列表所对应的路由进行业务数据传输;第二通信节点确定当前无线链路上的业务量小于或者等于上述业务量阈值时,选择一个目标路由列表所对应的路由进行业务数据传输。
基于上述实施例,选择多个目标路由列表所对应的路由进行业务数据传输的具体过程可以为:第二通信节点将待传输的数据平均分配至多个目标路由列 表所对应的路由进行业务数据传输;或者,第二通信节点将待传输的数据按照分配比例分配至多个目标路由列表所对应的路由进行业务数据传输。一种实现方式中,第二通信节点根据路由列表的优先级、路由列表对应的路由中第二通信节点距离目的节点的剩余跳数、路由列表对应的路由所能支持的QoS标识列表以及本地无线链路信息中的至少一项确定分配比例。另一种实现方式中,第一通信节点向第二通信节点配置该分配比例。
该分配比例可以是第二通信节点根据多个目标路由列表对应的路由的优先级、目标路由列表对应的路由中第二通信节点距离目的节点的剩余跳数、目标路由列表对应的路由所能支持的QoS标识列表以及本地无线链路信息中的至少一项确定的。
基于上述实施例,第二通信节点可以将待传输的数据中数据的QoS满足预设条件的数据,切换到目标路由列表对应的路由进行传输。
本实施例提供的路由方法,通过第二通信节点向第一通信节点发送负荷信息,第二通信节点接收第一通信节点发送的路由配置信息,当第二通信节点确定当前无线链路发生状态变化之后,根据路由配置信息,选择目标路由列表所对应的路由进行业务数据传输,一方面,实现了负荷分担的路由方式,另一方面,在路由中的无线链路出现状态改变时,能够及时地确定出目标路由列表,并利用目标路由列表对应的路由继续进行数据传输。
图5为一实施例提供的又一种路由方法的流程图。如图5所示,本实施例提供的路由方法包括如下步骤:
步骤501:第二通信节点发送路由状态信息。
路由状态信息包括:路由标识和路由标识所属的路由的状态信息。
一实施例中,路由状态信息中还包括以下至少一项:路由标识所属的路由可达、路由标识所属的路由不可达、路由标识所属的路由的跳数以及每跳传输时的代价。示例性地,每跳传输时的代价可以包括以下至少一项:传输需要增加的时延、传输需要的硬件的处理能力以及传输需要占用的无线资源。
一实施例中,路由状态信息还包括继续传递的方向信息,即,往上游节点或者下游节点进行传递。其他第二通信节点或者第一通信节点收到该路由状态信息后,将上行方向的路由状态信息传输给其母节点,将下行方向的路由状态 信息传输给其子节点。
一实施例中,第二通信节点根据本地无线链路发生的状态变化,生成其所要发送的路由状态信息。在该实施例中,本地无线链路状态变化可以是本地无线链路发生故障、从故障中恢复或者本地无线链路的参数发生变化。可选地,上述参数可以是本地无线链路的RSRP,SINR,传输延迟,PER等。路由状态信息中的路由标识可以包括去下一跳的无线链路是故障链路的路由标识。
在该实施例的一种实现方式中,第二通信节点通过BAP层信令向其相邻的第二通信节点发送该路由状态信息。相邻的第二通信节点可以是该第二通信节点的子节点或者母节点。相邻的第二通信节点接收到该路由状态信息后,对该路由状态信息进行过滤,形成其所要发送的路由状态信息,再发送给其相邻的第二通信节点,实现路由状态信息的逐跳传输。在该过程中,如果一个第二通信节点在接收到路由状态信息后,发现本地并没有受影响的路由标识,则不再继续传输该路由状态信息。这里的受影响的路由标识指的是去下一跳的无线链路是发生状态改变的链路的路由标识。
在该实施例的另一种实现方式中,第二通信节点通过新的F1AP信令、已有的F1AP信令、新的RRC消息或者已有的RRC消息向第一通信节点发送该路由状态信息。第二通信节点通过在已有的F1AP信令中添加路由状态信息,实现向第一通信节点发送路由状态信息。第二通信节点通过在已有的RRC消息中添加路由状态信息,实现向第一通信节点发送路由状态信息。第一通信节点在接收到该路由状态信息后,可以向各其他第二通信节点发送该路由状态信息。或者,第一通信节点在接收到该路由状态信息后,向各其他第二通信节点发送该路由状态信息中与各其他第二通信节点相关的受影响的路由标识以及受影响的路由标识所属的路由的状态信息。
另一实施例中,第二通信节点根据接收到的路由状态信息,生成其所要发送的路由状态信息。第二通信节点根据本地受影响的路由标识,对接收到的路由状态信息进行过滤后,形成路由状态信息。即,将接收到的路由状态信息中不属于本地受影响的路由标识及对应的状态信息过滤掉,最终形成的要发送的路由状态信息中包括第二通信节点本地受影响的路由标识及本地受影响的路由标识所属的路由的状态信息。
在该实施例的一种实现方式中,第二通信节点通过BAP层信令向其相邻的第二通信节点发送该路由状态信息。
在该实施例的另一种实现方式中,第二通信节点通过新的F1AP信令、已有的F1AP信令、新的RRC消息或者已有的RRC消息向第一通信节点发送该路由状态信息。
以下以本实施例提供的路由方法应用的系统为IAB系统,对上述路由方法进行说明。
图6A为图5所示实施例提供的路由方法对应的一种信令交互图。在图6A中,该路由状态信息为上行路由状态信息。在该场景中,第二通信节点为IAB节点或者Donor DU,以下以第二通信节点为中间IAB节点A为例进行说明。如图6A所示,该信令交互过程包括以下步骤:
步骤601:中间IAB节点B检测到和Donor DU1之间的一条无线链路发生状态变化,生成上行路由状态信息。
步骤602:中间IAB节点B向其子节点中间IAB节点A发送上行路由状态信息。
步骤603:中间IAB节点A在接收到上行路由状态信息后,获取受影响的路由标识,将受影响的路由标识所属的路由上的数据切换至目标路由列表所对应的路由传输。同时,中间IAB节点A对接收到的上行路由状态信息进行过滤,形成要发送的上行路由状态信息。
可选地,中间IAB节点A在接收到上行路由状态信息后,为使用受影响的路由的无线承载、UE、接入IAB节点或者QoS类别更新所使用的路由标识。中间IAB节点A在收到上述上行路由状态信息后对于发往受影响的路由的数据包的BAP子头进行更新;可选地,上述更新包括BAP子头中路由标识信息的更新。
步骤604:中间IAB节点A向其子节点接入IAB节点C发送中间IAB节点A形成的上行路由状态信息。
步骤605:接入IAB节点C接收到中间IAB节点A发送的上行路由状态信息后,获取受影响的路由标识,将受影响的路由标识所属的路由上的数据切换至目标路由列表所对应的路由传输。
通过上述过程,实现了上行路由状态信息的逐跳传输。
图6B为图5所示实施例提供的路由方法对应的另一种信令交互图。在图6B中,该路由状态信息为下行路由状态信息。在该场景中,第二通信节点为IAB节点或者Donor DU,以下以第二通信节点为中间IAB节点B为例进行说明。如图6B所示,该信令交互过程包括以下步骤:
步骤611:中间IAB节点A检测到和接入IAB节点C之间的一条无线链路发生状态变化,生成下行路由状态信息。
步骤612:中间IAB节点A向其母节点中间IAB节点B发送下行路由状态信息。
步骤613:中间IAB节点B在接收到下行路由状态信息后,获取受影响的路由标识,将受影响的路由标识所属的路由上的数据切换至目标路由列表所对应的路由传输。同时,中间IAB节点B对接收到的下行路由状态信息进行过滤,形成要发送的下行路由状态信息。
可选地,中间IAB节点B在接收到下行路由状态信息后,为使用受影响的路由的DRB、UE、接入IAB节点或者QoS业务类型更新所使用的路由标识。中间IAB节点B在收到上述下行路由状态信息后对于发往受影响的路由的数据包的BAP子头进行更新;可选地,上述更新包括BAP子头中路由标识信息的更新。
步骤614:中间IAB节点B向其母节点Donor DU1发送中间IAB节点B形成的下行路由状态信息。
步骤615:Donor DU1接收到中间IAB节点B发送的下行路由状态信息后,获取受影响的路由标识,将受影响的路由标识所属的路由上的数据切换至目标路由列表所对应的路由传输。
通过上述过程,实现了下行路由状态信息的逐跳传输。
本实施例提供的路由方法,通过第二通信节点发送路由状态信息,其中,路由状态信息包括:路由标识和路由标识所属的路由的状态信息,实现了路由的状态信息的传输,便于各通信节点确定路由的状态信息,提高了数据传输的可靠性。
图7为一实施例提供的再一种路由方法的流程图。如图7所示,本实施例提供的路由方法包括如下步骤:
步骤701:第一通信节点发送路由状态信息。
路由状态信息包括:路由标识和路由标识所属的路由的状态信息。
一实施例中,路由状态信息中还包括以下至少一项:路由标识所属的路由可达、路由标识所属的路由不可达、路由标识所属的路由的跳数以及每跳传输时的代价。示例性地,每跳传输时的代价可以包括以下至少一项:传输需要增加的时延、传输需要的硬件的处理能力以及传输需要占用的无线资源。
一实施例中,第一通信节点向第二通信节点发送该路由状态信息。第一通信节点通过F1AP信令向第二通信节点发送该路由状态信息。
一实施例中,在步骤701之前,该方法还包括:第一通信节点根据第二通信节点报告的无线链路发生的状态变化,生成路由状态信息。可选地,当第二通信节点发现本地无线链路发生的状态变化,可以向第一通信节点报告该无线链路状态信息。
当该通信系统为IAB系统时,一实现方式中,如果第二通信节点为IAB节点,第二通信节点的MT通过RRC信令向第一通信节点报告无线链路状态信息,或者,第二通信节点的DU通过F1AP信令向第一通信节点报告无线链路状态信息。另一实现方式中,如果第二通信节点为Donor DU,第二通信节点通过F1AP信令向第一通信节点报告无线链路状态信息。
在该实施例中,第一通信节点根据第二通信节点报告的无线链路状态信息,生成路由状态信息,并发送给各第二通信节点。
可选地,第一通信节点可以向各第二通信节点发送只与其相关的路由标识及对应的状态信息。当该通信系统为IAB系统时,一实现方式中,如果第二通信节点为IAB节点,第一通信节点向第二通信节点通知与其相关的上行路由标识及对应的状态信息。另一实现方式中,如果第二通信节点为Donor DU,第一通信节点向第二通信节点通知与其相关的下行路由标识及对应的状态信息。
另一实施例中,在步骤701之前,该方法还包括:第一通信节点根据第二通信节点报告的路由状态信息,生成路由状态信息。
一实施例中,第一通信节点在接收到无线链路状态信息后,为一些路由标识配置新的下一跳信息。
一实施例中,第一通信节点在收到无线链路状态信息后,为使用受影响的路由的无线承载、UE、接入IAB节点或者QoS类别更新所使用的路由标识。
以下以本实施例提供的路由方法应用的系统为IAB系统,对上述路由方法进行说明。
图8A为图7所示实施例提供的路由方法对应的又一种信令交互图。在图8A中,该路由状态信息为下行路由状态信息。以下以第二通信节点为中间IAB节点A、第一通信节点为Donor CU为例进行说明。如图8A所示,该信令交互过程包括以下步骤:
步骤621:中间IAB节点A检测到其和接入IAB节点C之间的一条链路发生状态变化。
步骤622:中间IAB节点A向Donor CU发送无线链路状态信息。
可选地,中间IAB节点A的MT通过RRC信令向Donor CU发送无线链路状态信息。或者,中间IAB节点A的DU通过F1AP信令向Donor CU发送无线链路状态信息。
可选地,当第二通信节点为Donor DU时,当Donor DU发现一条无线链路发生状态变化,其通过F1AP信令向Donor CU发送无线链路状态信息。
步骤623:Donor CU向Donor DU1和IAB节点发送下行路由状态信息。
可选地,Donor CU可以通过F1AP信令发送下行路由状态信息。Donor CU可以向各IAB节点和Donor DU1发送其相关的受影响的路由标识以及受影响的路由标识所属的路由的状态信息。
可选地,Donor CU在收到无线链路状态信息后,可以为一些路由标识配置新的下一跳信息。可选地,Donor CU在收到下行路由状态信息后可以为受影响的无线承载、UE、接入IAB节或QoS类别,配置新的主用和/或备用路由标识。
Donor DU1和IAB节点接收到下行路由状态信息后,获取受影响的路由标识,将受影响的路由标识所属的路由上的数据切换至目标路由列表所对应的路由传输。
可选地,IAB节点和Donor DU1在接收到下行路由状态信息后,为使用受影响的路由的无线承载、UE、接入IAB节点或者QoS类别更新所使用的路由标识。IAB节点和Donor DU1在收到上述下行路由状态信息后对于发往受影响的路由的数据包的BAP子头进行更新;可选地,上述更新包括BAP子头中路由标识信息的更新。
通过上述过程,实现了Donor CU向Donor DU和IAB节点通知下行路由状态信息。
图8B为图5所示实施例提供的路由方法对应的再一种信令交互图,在图8B中,该路由状态信息为上行路由状态信息。以下以第二通信节点为中间IAB节点B、第一通信节点为Donor CU为例进行说明。如图8B所示,该信令交互过程包括以下步骤:
步骤631:中间IAB节点B检测到其和Donor DU1之间的一条链路发生状态变化。
步骤632:中间IAB节点B向Donor CU发送无线链路状态信息。
步骤633:Donor CU向Donor DU1和IAB节点发送上行路由状态信息。
Donor CU可以向各IAB节点和Donor DU1发送与其相关的受影响的路由标识以及受影响的路由标识所属的路由的状态信息。
Donor DU1和IAB节点接收到上行路由状态信息后,获取受影响的路由标识,将受影响的路由标识所属的路由上的数据切换至目标路由列表所对应的路由传输。
可选地,IAB节点和Donor DU1在接收到上行路由状态信息后,为使用受影响的路由的无线承载、UE、接入IAB节点或者QoS类别更新所使用的路由标识。IAB节点和Donor DU1在收到上述上行路由状态信息后对于发往受影响的路由的数据包的BAP子头进行更新;可选地,上述更新包括BAP子头中路由标识信息的更新。
通过上述过程,实现了Donor CU向Donor DU和IAB节点通知上行路由状态信息。
本实施例提供的路由方法,通过第一通信节点发送路由状态信息,其中, 路由状态信息包括:路由标识和路由标识所属的路由的状态信息,实现了路由状态信息的传输,便于各通信节点确定路由的状态信息,提高了数据传输的可靠性。
本申请还提供一种缓存状态报告(Buffer Status Report,BSR)生成方法,包括:通信节点根据BAP实体中缓存的数据,生成BSR。
即,通信节点在产生BSR时可以考虑在BAP实体中缓存的数据量。
可选地,BAP实体中缓存的数据可以是和BAP实体相关联的数据,或标识为正在进行BAP层处理的数据。
可选地,BAP实体中缓存的数据是与指定的路由或指定的无线链路控制(Radio Link Control,RLC)实体相关联的数据。
由于不同的路由上的数据最终会通过不同的RLC实体发送,所以BAP实体需要按发送RLC实体或路由标识对缓存的数据分别统计数据量,然后通知给本地DU和/或本地的MT的媒体访问控制(Media Access Control,MAC)实体。MAC实体在收到上述信息后,可以将BAP实体中缓存的数据量也在BSR中进行汇报。比如,最终BSR报告中的逻辑链路组的数据量可以包括该逻辑链路组中每个RLC实体中缓存的数据和与上述RLC实体相关联的在BAP实体中所缓存的数据。可选地,与上述RLC实体相关联的在BAP实体中所缓存的数据可以通过其传输路由的标识和一个RLC实体进行关联。即存在一个路由标识到RLC实体标识的映射,BAP层或MAC层根据上述映射统计与一个RLC实体相关联的在BAP实体中所缓存的数据量。
这时,为了及时删除已经成功发送的数据,要求RLC实体在收到空口的确认(ACKnowledgement,ACK)后通知BAP实体对相应数据进行删除。或者,数据在传输给RLC实体后立即从BAP实体的缓存中删除。这时RLC实体需要在发送RLF后,先将未成功发送的数据传输给BAP实体,然后才进行后续处理。
一实施例中,通信节点根据BAP实体中缓存的数据的数据量,生成BSR。
一实施例中,通信节点根据BAP实体中缓存的数据以及指定的RLC实体中缓存的数据,生成BSR。
图9为一实施例提供的一种路由装置的结构示意图。如图9所示,本实施例提供的路由装置包括如下模块:接收模块71和发送模块72。
接收模块71,被配置为接收第二通信节点发送的负荷信息。
发送模块72,被配置为向所述第二通信节点发送路由配置信息。
所述路由配置信息包括根据所述负荷信息,为不同粒度的数据确定的路由列表。
可选地,接收模块71为该路由装置可选的模块。
一种实现方式中,所述发送模块72是设置为:通过F1AP信令,向所述第二通信节点发送所述路由配置信息。
另一种实现方式中,所述发送模块72是设置为:在已有的F1AP信令中添加所述路由配置信息,发送给所述第二通信节点。可选地,在所述已有的F1AP信令中的终端上下文建立请求消息或者在所述消息的待建立的DRB信息单元中添加所述路由配置信息,发送给所述第二通信节点。
又一种实现方式中,所述发送模块72是设置为:通过新的RRC消息,向所述第二通信节点发送所述路由配置信息。
再一种实现方式中,所述发送模块72是设置为:在已有的RRC消息中添加所述路由配置信息,将添加所述路由配置信息后的RRC消息发送给所述第二通信节点。
一实施例中,所述路由列表包括以下至少一项:为无线承载配置的路由列表、为UE配置的路由列表、为第二通信节点配置的路由列表以及为QoS类别的数据配置的路由列表。
一种实现方式中,与路由列表包括为无线承载配置的路由列表相应的,路由列表包括无线承载的标识,无线承载的标识包括以下至少一项:传输无线承载数据的GTP数据包的TEID、第一通信节点的IP地址、第一通信节点的CU的IP地址、第二通信节点的IP地址、第二通信节点的MT的IP地址、第二通信节点的DU的IP地址以及传输无线承载数据的IP数据包包头中的流标签信息。
另一种实现方式中,与路由列表包括为第二通信节点配置的路由列表的相应的,路由列表包括第二通信节点标识,第二通信节点标识包括以下至少一项:第二通信节点中的DU的标识,第二通信节点中的DU的IP地址,第二通信节 点中的MT的标识,第二通信节点中的MT的IP地址。
又一种实现方式中,与路由列表包括为QoS类别的数据配置的路由列表相应的,路由列表包括QoS类别的标识,QoS类别的标识包括以下至少一项:传输QoS类别的数据的IP数据包的DSCP字段的值,传输QoS类别的数据的IP数据包的流标签信息,传输QoS类别的数据的IP数据包的IP地址,QoS类别的数据包所属的DRB的5QI。
一实施例中,所述路由配置信息还包括以下至少一项:路由列表对应的路由的性质;其中,路由的性质包括主用和备用中的至少一种;路由列表对应的路由的优先级;路由列表对应的路由所能支持的QoS标识列表;路由列表中的路由标识对应的备用路由标识;路由列表对应的路由中第二通信节点距离目的节点的剩余跳数。
本实施例提供的路由装置用于实现图2所示实施例的路由方法,本实施例提供的路由装置实现原理类似,此处不再赘述。
图10为一实施例提供的另一种路由装置的结构示意图。如图10所示,本实施例提供的路由装置包括如下模块:发送模块81和接收模块82。
发送模块81,被配置为向第一通信节点发送负荷信息。
接收模块82,被配置为接收所述第一通信节点发送的路由配置信息。
所述路由配置信息包括所述第一通信节点根据所述负荷信息,为不同粒度的数据确定的路由列表。
可选地,发送模块81为该路由装置可选的模块。
一实施例中,所述路由配置信息还包括以下至少一项:路由列表对应的路由的性质;路由的性质包括主用和备用中的至少一种;路由列表对应的路由的优先级;路由列表对应的路由所能支持的QoS标识列表;路由列表中的路由标识对应的备用路由标识;路由列表对应的路由中第二通信节点距离目的节点的剩余跳数。
一实施例中,该装置还包括:选择模块,被配置为当所述路由装置确定当前无线链路发生状态变化之后,根据所述路由配置信息,选择目标路由列表所对应的路由进行业务数据传输。
一实现方式中,所述选择模块是设置为:根据所述路由列表对应的路由的优先级,确定所述目标路由列表,在所述目标路由列表对应的路由进行业务数据传输。
另一实现方式中,所述选择模块是设置为:根据所述路由列表对应的路由中路由装置距离目的节点的剩余跳数,确定所述目标路由列表,在所述目标路由列表对应的路由进行业务数据传输。
又一实现方式中,所述选择模块是设置为:根据所述路由列表对应的路由所能支持的QoS标识列表,确定所述目标路由列表,在所述目标路由列表对应的路由进行业务数据传输。
再一实现方式中,所述选择模块是设置为:根据本地无线链路信息以及所述路由配置信息,确定所述目标路由列表,在所述目标路由列表对应的路由进行业务数据传输。
一实施例中,所述选择模块是设置为通过如下方式选择目标路由列表所对应的路由进行业务数据传输:当确定所述当前无线链路上的业务量大于一个特定的业务量阈值时,选择多个目标路由列表所对应的路由进行业务数据传输;当确定所述当前无线链路上的业务量小于或者等于上述业务量阈值时,选择一个目标路由列表所对应的路由进行业务数据传输。
一实施例中,所述选择模块是设置为通过如下方式选择多个目标路由列表所对应的路由进行业务数据传输:将待传输的数据平均分配至所述多个目标路由列表所对应的路由进行业务数据传输;或者,根据路由列表的优先级、路由列表对应的路由中第二通信节点距离目的节点的剩余跳数、路由列表对应的路由所能支持的QoS标识列表以及本地无线链路信息中的至少一项确定分配比例,将所述待传输的数据按照所述分配比例分配至所述多个目标路由列表所对应的路由进行业务数据传输。
本实施例提供的路由装置用于实现图4所示实施例的路由方法,本实施例提供的路由装置实现原理类似,此处不再赘述。
图11为一实施例提供的又一种路由装置的结构示意图。如图11所示,本实施例提供的路由装置包括如下模块:发送模块91。
发送模块91,被配置为发送路由状态信息。
所述路由状态信息包括:路由标识和路由标识所属的路由的状态信息。
一实施例中,所述发送模块91是设置为:通过BAP层信令向其相邻的第二通信节点发送所述路由状态信息。
一实施例中,所述发送模块91是设置为:通过新的F1AP信令、已有的F1AP信令、新的RRC消息或者已有的RRC消息向第一通信节点发送所述路由状态信息。
一实施例中,所述装置还包括:第一生成模块,被配置为根据接收到的路由状态信息,生成其所要发送的所述路由状态信息。一种实现方式中,所述第一生成模块是设置为:根据本地受影响的路由标识,对接收到的路由状态信息进行过滤后,形成所述路由状态信息。
一实施例中,所述装置还包括:第二生成模块,被配置为根据本地无线链路发生的状态变化,生成其所要发送的所述路由状态信息。
本实施例提供的路由装置用于实现图5所示实施例的路由方法,本实施例提供的路由装置实现原理类似,此处不再赘述。
图12为一实施例提供的再一种路由装置的结构示意图。如图12所示,本实施例提供的路由装置包括发送模块94。
发送模块94,被配置为发送路由状态信息。
所述路由状态信息包括:路由标识和所述路由标识所属的路由的状态信息。
一实施例中,该装置还包括:第一生成模块,被配置为根据第二通信节点报告的无线链路状态信息,生成所述路由状态信息。
另一实施例中,该装置还包括:第二生成模块,被配置为根据第二通信节点报告的路由状态信息,生成所述路由状态信息。
本实施例提供的路由装置用于实现图7所示实施例的路由方法,本实施例提供的路由装置实现原理类似,此处不再赘述。
本实施例还提供一种BSR生成装置。本实施例提供的BSR生成装置包括生成模块,用于根据BAP实体中缓存的数据,生成BSR。
一实施例中,所述BAP实体中缓存的数据是与指定的路由或指定的RLC实体相关联的数据。
一实施例中,所述生成模块是设置为:根据所述BAP实体中缓存的数据的数据量,生成所述BSR。
一实施例中,所述生成模块是设置为:根据所述BAP实体中缓存的数据以及所述特定的RLC实体中缓存的数据,生成所述BSR。
本实施例提供的BSR生成装置用于上述实施例的BSR生成方法,本实施例提供的BSR生成装置实现原理类似,此处不再赘述。
图13为一实施例提供的再一种路由装置的结构示意图。如图13所示,该终端包括处理器92。可选地,还包括存储器93、电源组件95、接收器96、发送器97以及天线98。该路由装置中处理器92的数量可以是一个或多个,图13中以一个处理器92为例;该路由装置中的处理器92与存储器93、电源组件95、接收器96以及发送器97可以通过总线或其他方式连接,图13中以通过总线连接为例。接收器96与发送器97与天线98连接。
存储器93作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请图1-图7实施例中的路由方法对应的程序指令/模块(例如,路由装置中的接收模块71和发射模块72,或者,路由装置中的发送模块81和接收模块82,或者,路由装置中的发送模块91,或者,路由装置中的发送模块94)。处理器92通过运行存储在存储器93中的软件程序、指令以及模块,从而执行路由装置的各种功能应用以及数据处理,即实现上述的路由方法。
存储器93可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据路由装置的使用所创建的数据等。此外,存储器93可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
电源组件95为路由装置的各模块提供电力。电源组件95可以包括电源管理系统,一个或多个电源,及其他为路由装置生成、管理和分配电力相关联的组件。发送器97被配置通过天线98向其他装置发送信号,接收器96被配置为通过天线98从其他装置接收信号。示例性地,在本实施例中,接收器96通过天线98获取负荷信息,发送器97通过天线98向第二通信节点发送路由配置信 息。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行本申请任意实施例所提供的路由方法或者BSR生成方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Versatile Disc,DVD)或(Compact Disk,CD)光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。

Claims (30)

  1. 一种路由方法,包括:
    第一通信节点获取负荷信息;
    所述第一通信节点向所述第二通信节点发送路由配置信息;其中,所述路由配置信息包括不同粒度的数据的标识和根据所述负荷信息为不同粒度的数据配置的路由列表。
  2. 根据权利要求1所述的方法,其中,所述路由列表包括:至少一个路由标识,其中,所述路由标识包括以下至少一项:路由的编号,路由目的节点的地址,路由源节点的地址。
  3. 根据权利要求1或2所述的方法,其中,所述不同粒度的数据的标识包括以下至少一项:
    无线承载的标识;
    终端UE的标识;
    第二通信节点的标识;
    服务质量QoS类别的标识。
  4. 根据权利要求3所述的方法,其中,所述无线承载的标识包括以下至少一项:
    传输无线承载数据的通用分组无线业务隧道协议GTP数据包的隧道端标识TEID;
    第一通信节点的互联网协议IP地址;
    第一通信节点的中心单元CU的IP地址;
    第二通信节点的IP地址;
    第二通信节点的移动终端MT的IP地址;
    第二通信节点的分布式单元DU的IP地址;
    传输无线承载数据的IP数据包包头中的流标签信息。
  5. 根据权利要求3所述的方法,其中,所述第二通信节点的标识包括以下至少一项:
    所述第二通信节点中的DU的标识;
    所述第二通信节点中的DU的IP地址;
    所述第二通信节点中的MT的标识;
    所述第二通信节点中的MT的IP地址。
  6. 根据权利要求3所述的方法,其中,所述QoS类别的标识包括以下至少一项:
    传输所述QoS类别的数据的IP数据包的差分服务代码点DSCP字段的值;
    传输所述QoS类别的数据的IP数据包的流标签信息;
    传输所述QoS类别的数据的IP数据包的IP地址;
    所述QoS类别的数据包所属的DRB的第五代通信QoS标识符。
  7. 根据权利要求1所述的方法,其中,所述路由配置信息还包括以下至少一项:
    路由列表对应的路由的性质;其中,所述路由的性质包括主用和备用中的至少一种;
    路由列表对应的路由的优先级;
    路由列表对应的路由所能支持的QoS标识列表;
    路由列表中的路由标识对应的备用路由标识;
    路由列表对应的路由中第二通信节点距离目的节点的剩余跳数。
  8. 根据权利要求1所述的方法,其中,所述第一通信节点向所述第二通信节点发送路由配置信息,包括:
    所述第一通信节点通过新的F1接口应用协议F1AP信令,向所述第二通信节点发送所述路由配置信息;或者,
    所述第一通信节点在已有的F1AP信令中添加所述路由配置信息,将添加所述路由配置信息后的F1AP信令发送给所述第二通信节点;或者,
    所述第一通信节点在已有的F1AP信令中的终端上下文建立请求消息或者在已有的F1AP信令中的终端上下文建立请求消息的待建立的数据无线承载DRB信息单元中添加所述路由配置信息,将添加所述路由配置信息后的F1AP信令发送给所述第二通信节点;或者,
    所述第一通信节点通过新的无线资源控制RRC消息,向所述第二通信节点发送所述路由配置信息;或者,
    所述第一通信节点在已有的RRC消息中添加所述路由配置信息,将添加所述路由配置信息后的RRC消息发送给所述第二通信节点。
  9. 一种路由方法,包括:
    第二通信节点接收第一通信节点发送的路由配置信息;其中,所述路由配置信息包括不同粒度的数据的标识和所述第一通信节点根据所述负荷信息为不同粒度的数据配置的路由列表。
  10. 根据权利要求9所述的方法,其中,所述路由配置信息还包括以下至少一项:
    路由列表对应的路由的性质;其中,所述路由的性质包括主用和备用中的至少一种;
    路由列表对应的路由的优先级;
    路由列表对应的路由所能支持的服务质量QoS标识列表;
    路由列表中的路由标识对应的备用路由标识;
    路由列表对应的路由中第二通信节点距离目的节点的剩余跳数。
  11. 根据权利要求10所述的方法,在所述第二通信节点接收所述第一通信节点发送的路由配置信息之后,还包括:
    所述第二通信节点确定当前无线链路发生状态变化之后,根据所述路由配置信息,选择目标路由列表所对应的路由进行业务数据传输。
  12. 根据权利要求11所述的方法,其中,所述根据所述路由配置信息,选择目标路由列表所对应的路由进行业务数据传输,包括:
    所述第二通信节点根据所述路由列表对应的路由的优先级,确定所述目标路由列表,在所述目标路由列表对应的路由进行业务数据传输。
  13. 根据权利要求11所述的方法,其中,所述根据所述路由配置信息,选择目标路由列表所对应的路由进行业务数据传输,包括:
    所述第二通信节点根据所述路由列表对应的路由中第二通信节点距离目的节点的剩余跳数,确定所述目标路由列表,在所述目标路由列表对应的路由进行业务数据传输。
  14. 根据权利要求11所述的方法,其中,所述根据所述路由配置信息,选 择目标路由列表所对应的路由进行业务数据传输,包括:
    所述第二通信节点根据所述路由列表对应的路由所能支持的QoS标识列表,确定所述目标路由列表,在所述目标路由列表对应的路由进行业务数据传输。
  15. 根据权利要求11所述的方法,其中,所述根据所述路由配置信息,选择目标路由列表所对应的路由进行业务数据传输,包括:
    所述第二通信节点根据本地无线链路信息以及所述路由配置信息,确定所述目标路由列表,在所述目标路由列表对应的路由进行业务数据传输。
  16. 根据权利要求11所述的方法,其中,所述选择目标路由列表所对应的路由进行业务数据传输,包括:
    在所述第二通信节点确定所述当前无线链路上的业务量大于一个指定的业务量阈值的情况下,选择多个目标路由列表所对应的路由进行业务数据传输;
    在所述第二通信节点确定所述当前无线链路上的业务量小于或者等于所述业务量阈值的情况下,选择一个目标路由列表所对应的路由进行业务数据传输。
  17. 根据权利要求16所述的方法,其中,所述选择多个目标路由列表所对应的路由进行业务数据传输,包括:
    所述第二通信节点将待传输的数据平均分配至所述多个目标路由列表所对应的路由进行业务数据传输;或者,
    所述第二通信节点根据路由列表对应的路由的优先级、路由列表对应的路由中第二通信节点距离目的节点的剩余跳数、路由列表对应的路由所能支持的QoS标识列表以及本地无线链路信息中的至少一项确定分配比例,将所述待传输的数据按照所述分配比例分配至所述多个目标路由列表所对应的路由进行业务数据传输。
  18. 一种路由方法,包括:
    第二通信节点发送路由状态信息;其中,所述路由状态信息包括:路由标识和所述路由标识所属的路由的状态信息。
  19. 根据权利要求18所述的方法,其中,所述第二通信节点发送路由状态信息,包括:
    所述第二通信节点通过回传适配协议BAP层信令向与所述第二通信节点相邻的第二通信节点发送所述路由状态信息。
  20. 根据权利要求18所述的方法,其中,所述第二通信节点发送路由状态信息,包括:
    所述第二通信节点通过新的F1接口应用协议F1AP信令、已有的F1AP信令、新的无线资源控制RRC消息或者已有的RRC消息向第一通信节点发送所述路由状态信息。
  21. 根据权利要求18所述的方法,所述第二通信节点发送路由状态信息之前,还包括:
    所述第二通信节点根据接收到的路由状态信息,生成所述第二通信节点所要发送的所述路由状态信息;或者,
    所述第二通信节点根据本地无线链路发生的状态变化,生成所述第二通信节点所要发送的所述路由状态信息。
  22. 一种路由方法,包括:
    第一通信节点发送路由状态信息;其中,所述路由状态信息包括:路由标识和所述路由标识所属的路由的状态信息。
  23. 根据权利要求22所述的方法,所述第一通信节点发送路由状态信息之前,还包括:
    所述第一通信节点根据第二通信节点报告的无线链路状态信息,生成所述路由状态信息;或者,
    所述第一通信节点根据第二通信节点报告的路由状态信息,生成所述路由状态信息。
  24. 一种缓存状态报告BSR的生成方法,包括:
    通信节点根据回传适配协议BAP实体中缓存的数据,生成BSR。
  25. 根据权利要求24所述的方法,其中,所述BAP实体中缓存的数据是与指定的路由或与指定的无线链路控制RLC实体相关联的数据。
  26. 根据权利要求24所述的方法,其中,所述通信节点根据BAP实体中缓存的数据,生成BSR,包括:
    所述通信节点根据所述BAP实体中缓存的数据的数据量,生成所述BSR。
  27. 根据权利要求25所述的方法,其中,所述通信节点根据BAP实体中缓存的数据,生成BSR,包括:
    所述通信节点根据所述BAP实体中缓存的数据以及所述指定的RLC实体中缓存的数据,生成所述BSR。
  28. 一种路由装置,包括:处理器,所述处理器设置为在执行计算机程序时实现如权利要求1-23中任一项所述的路由方法。
  29. 一种缓存状态报告BSR的生成装置,包括:处理器,所述处理器设置为在执行计算机程序时实现如权利要求24-27中任一项所述的路由方法。
  30. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-23中任一项所述的路由方法或者实现如权利要求24-27中任一项所述的缓存状态报告BSR的生成方法。
PCT/CN2020/108794 2019-08-13 2020-08-13 路由方法、bsr的生成方法、装置和存储介质 WO2021027860A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/635,019 US20220303209A1 (en) 2019-08-13 2020-08-13 Routing method, BSR generation method and device, and storage medium
KR1020227007683A KR20220044328A (ko) 2019-08-13 2020-08-13 라우팅 방법, bsr의 생성 방법, 장치 및 저장 매체
EP20851552.8A EP4016930A4 (en) 2019-08-13 2020-08-13 ROUTING METHOD, BSR GENERATION METHOD APPARATUS AND STORAGE MEDIA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910745684.0A CN110581778A (zh) 2019-08-13 2019-08-13 一种路由方法、bsr的生成方法、装置和存储介质
CN201910745684.0 2019-08-13

Publications (1)

Publication Number Publication Date
WO2021027860A1 true WO2021027860A1 (zh) 2021-02-18

Family

ID=68811130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108794 WO2021027860A1 (zh) 2019-08-13 2020-08-13 路由方法、bsr的生成方法、装置和存储介质

Country Status (5)

Country Link
US (1) US20220303209A1 (zh)
EP (1) EP4016930A4 (zh)
KR (1) KR20220044328A (zh)
CN (1) CN110581778A (zh)
WO (1) WO2021027860A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581778A (zh) * 2019-08-13 2019-12-17 中兴通讯股份有限公司 一种路由方法、bsr的生成方法、装置和存储介质
US11751100B2 (en) * 2019-09-10 2023-09-05 Intel Corporation Techniques for integrated access and backhaul (IAB) nodes
CN115004658B (zh) * 2020-01-17 2024-04-12 华为技术有限公司 一种通信方法及装置
WO2021179146A1 (en) * 2020-03-09 2021-09-16 Nec Corporation Methods, devices, and medium for communication
CN113518382B (zh) * 2020-04-10 2023-07-28 华为技术有限公司 一种流量控制方法和装置
CN114630344A (zh) * 2020-12-11 2022-06-14 维沃移动通信有限公司 重路由方法及装置、通信设备
CN114650549A (zh) * 2020-12-18 2022-06-21 大唐移动通信设备有限公司 Iab节点的数据处理方法、装置及iab节点
US11812346B2 (en) * 2021-03-12 2023-11-07 Verizon Patent And Licensing Inc. System and method for controlling and managing integrated access and backhaul
US11818034B1 (en) * 2022-04-25 2023-11-14 Arista Networks, Inc. Hardware backup failure mechanism for multipath next hop shrinking

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1939012A (zh) * 2004-03-30 2007-03-28 英国电讯有限公司 数据网络、赋予和提供路径特性描述量度的方法和反馈节点
WO2015062021A1 (zh) * 2013-10-31 2015-05-07 华为技术有限公司 发送节点及其缓存状态上报方法
CN105282036A (zh) * 2014-06-18 2016-01-27 深圳市中兴微电子技术有限公司 一种路由节点、路由交换方法及系统
CN105681216A (zh) * 2016-04-27 2016-06-15 赛特斯信息科技股份有限公司 Nfv架构下网络业务接入控制和负载均衡的系统及方法
CN109982380A (zh) * 2019-04-03 2019-07-05 成都中科微信息技术研究院有限公司 一种电力无线通信系统中的传输模式选择方法
US20190223078A1 (en) * 2018-03-28 2019-07-18 Alexander Sirotkin Next generation node-b (gnb) for integrated access and backhaul (iab) relay in new radio (nr) networks
CN110581778A (zh) * 2019-08-13 2019-12-17 中兴通讯股份有限公司 一种路由方法、bsr的生成方法、装置和存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015113283A1 (zh) * 2014-01-29 2015-08-06 华为技术有限公司 节点间通信处理方法及路由确定节点
US10405231B2 (en) * 2017-04-24 2019-09-03 Motorola Mobility Llc Switching between packet duplication operating modes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1939012A (zh) * 2004-03-30 2007-03-28 英国电讯有限公司 数据网络、赋予和提供路径特性描述量度的方法和反馈节点
WO2015062021A1 (zh) * 2013-10-31 2015-05-07 华为技术有限公司 发送节点及其缓存状态上报方法
CN105282036A (zh) * 2014-06-18 2016-01-27 深圳市中兴微电子技术有限公司 一种路由节点、路由交换方法及系统
CN105681216A (zh) * 2016-04-27 2016-06-15 赛特斯信息科技股份有限公司 Nfv架构下网络业务接入控制和负载均衡的系统及方法
US20190223078A1 (en) * 2018-03-28 2019-07-18 Alexander Sirotkin Next generation node-b (gnb) for integrated access and backhaul (iab) relay in new radio (nr) networks
CN109982380A (zh) * 2019-04-03 2019-07-05 成都中科微信息技术研究院有限公司 一种电力无线通信系统中的传输模式选择方法
CN110581778A (zh) * 2019-08-13 2019-12-17 中兴通讯股份有限公司 一种路由方法、bsr的生成方法、装置和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4016930A4 *

Also Published As

Publication number Publication date
US20220303209A1 (en) 2022-09-22
KR20220044328A (ko) 2022-04-07
CN110581778A (zh) 2019-12-17
EP4016930A4 (en) 2022-10-19
EP4016930A1 (en) 2022-06-22

Similar Documents

Publication Publication Date Title
WO2021027860A1 (zh) 路由方法、bsr的生成方法、装置和存储介质
CN110351024B (zh) 数据传输方法和装置
US11419010B2 (en) Information transmission method and apparatus
CA2904023C (en) Sending data rate information to a wireless access network node
CN111586749B (zh) 一种下行缓存状态反馈方法及装置
KR20190008983A (ko) 무선 통신 시스템에서 반영식 서비스 품질(QoS)를 수행하기 위한 방법 및 이를 위한 장치
WO2020038172A1 (zh) 一种流量控制的方法及装置
JP2020504517A (ja) 無線通信システムにおいてサービス品質(QoS)フロー基盤のULパケットを送信する方法及びそのための装置
JP2018510553A (ja) アクセス制御装置、システム、及び方法
EP3136779B1 (en) Cell and method and system for bandwidth management of backhaul network of cell
US10172040B2 (en) Apparatus for routing traffic in a plurality of cell groups each including two or more cells
WO2018082597A1 (zh) 拥塞控制方法及装置、基站
KR20180011112A (ko) 모바일 오퍼레이터 네트워크에서의 인터넷 프로토콜 주소 보존 방법 및 장치
WO2020192654A1 (zh) 配置无线链路控制rlc承载的方法和装置
WO2016087436A1 (en) Method and device for a connectionless bearer service
WO2022082602A1 (en) Method and apparatus for packet rerouting
WO2020042986A1 (zh) 一种多跳数据传输方法及装置
US20230038925A1 (en) Qos flow configuration for user equipment to user equipment communications
KR20230088430A (ko) 리라우팅 방법 및 장치, 통신기기
JP2023546399A (ja) ルーティング選択方法、装置及びシステム
WO2022205251A1 (zh) 信息收发方法,数据发送方法以及装置
WO2023068254A1 (ja) 通信制御方法及び中継ノード
WO2023130231A1 (zh) Iab节点设备、iab宿主设备以及拓扑退行方法
WO2023150976A1 (zh) Iab宿主设备以及传输迁移管理方法
WO2022153989A1 (ja) 通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227007683

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020851552

Country of ref document: EP

Effective date: 20220314