WO2023130231A1 - Iab节点设备、iab宿主设备以及拓扑退行方法 - Google Patents

Iab节点设备、iab宿主设备以及拓扑退行方法 Download PDF

Info

Publication number
WO2023130231A1
WO2023130231A1 PCT/CN2022/070174 CN2022070174W WO2023130231A1 WO 2023130231 A1 WO2023130231 A1 WO 2023130231A1 CN 2022070174 W CN2022070174 W CN 2022070174W WO 2023130231 A1 WO2023130231 A1 WO 2023130231A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
donor
iab
address
unit
Prior art date
Application number
PCT/CN2022/070174
Other languages
English (en)
French (fr)
Inventor
路杨
Original Assignee
富士通株式会社
路杨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 路杨 filed Critical 富士通株式会社
Priority to PCT/CN2022/070174 priority Critical patent/WO2023130231A1/zh
Publication of WO2023130231A1 publication Critical patent/WO2023130231A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the embodiment of the present application relates to the communication field.
  • Ultra-dense networks are one of the goals of 5G. Deploying an NR network that does not require wired backhaul is essential for achieving 5G ultra-dense Networking is very important. Since 5G mmWave reduces the coverage area of the cell, the wireless self-backhaul system requires multiple hops to meet the deployment requirements. 5G's high bandwidth, massive multiple-input multiple-output (MIMO) and beam system make it easier for 5G than LTE to develop a wireless self-backhaul system for ultra-dense NR cells. In order to develop this multi-hop system with wireless self-backhaul, 3GPP started the research and standardization of the integrated access and backhaul (IAB, Integrated access and backhaul) project in Rel-16.
  • IAB integrated access and backhaul
  • FIG. 1 is a schematic diagram of the IAB system.
  • the access and backhaul use the Uu air interface wireless transmission of NR
  • the relay node supports both access and backhaul functions
  • the relay node multiplexes the access link (access link) and the backhaul link (backhaul link) in the time domain, frequency domain or air domain
  • the access link and the backhaul link can use the same or different frequency bands.
  • a relay node refers to an IAB-node (IAB node), which supports both access and backhaul functions.
  • IAB node The last hop access node on the network side is called IAB-donnor (IAB host), which supports gNB function and supports IAB-node access. All UE data can be transmitted back to IAB-donor via IAB-node via one or more hops.
  • IAB-node The function of IAB-node is divided into two parts, one part is gNB-DU function, called IAB-DU (distribution unit), and the other part is UE function, called IAB-MT (mobile terminal).
  • the IAB-DU realizes the function of the network side equipment, connects to the downstream child IAB-node (child IAB node or simply called the child node), provides NR air interface access to the UE and the downstream child IAB-node and communicates with the IAB donor-CU (host centralized Units) have F1 connections established between them.
  • IAB-MT implements part of the terminal equipment functions and connects to the upstream parent IAB-node (parent IAB node or simply referred to as parent node) or IAB donor-DU.
  • IAB-MT includes physical layer, layer 2, RRC (Radio Resource Control, wireless resource control) and NAS (Non-Access Stratum, non-access stratum) layer functions, and is also indirectly connected to the IAB Donor-CU and the core network (Core Network, CN).
  • RRC Radio Resource Control, wireless resource control
  • NAS Non-Access Stratum, non-access stratum
  • the IAB-node can access the network through an independent networking (SA, Standalone) mode or a non-independent networking (EN-DC, E-UTRA-NRDualConnectivity) mode.
  • SA independent networking
  • EN-DC non-independent networking
  • FIG. 2 is a schematic diagram of an IAB architecture in SA mode.
  • Fig. 3 is a schematic diagram of the IAB architecture of the EN-DC mode.
  • Fig. 4 is a schematic diagram of an IAB node (IAB-node), a parent node (parent IAB-node) and a child node (child IAB-node).
  • IAB-node IAB node
  • parent IAB-node parent node
  • child IAB-node child node
  • the IAB-DU of the IAB node is connected to the IAB-MT of the child node as the network side
  • the IAB-MT of the IAB node is connected to the IAB-DU of the parent node as the terminal side.
  • Figure 5 is a schematic diagram of the F1 user plane (F1-U) protocol stack between the IAB-DU and the IAB donor-CU.
  • Figure 6 is a schematic diagram of the F1 control plane (F1-C) protocol stack between the IAB-DU and the IAB donor-CU.
  • F1-U and F1-C are established on the transport (IP) layer between IAB-DU and IAB donor-CU, and in Figure 5 and Figure 6, the two-hop wireless backhaul and one-hop wired backhaul.
  • the transport (IP) layer is carried on the Backhaul Adaptive Protocol (BAP) sublayer, and the BAP entity in the IAB-node realizes the routing function of the IAB system, and the IAB donor-CU provides the routing table.
  • BAP PDU Protocol Data Unit
  • RLC Radio Link Control
  • Multiple RLC channels of the backhaul link can be configured by the IAB-donor to carry different priorities and QoS (Quality of Service) ) business, the BAP entity maps the BAP PDU to different backhaul RLC channels.
  • the inventors have found that after migrating nodes migrate from the network topology domain of the source dornor-CU to the network topology domain of the target dornor-CU, it is possible to migrate from the network topology domain of the target dornor-CU back to the source dornor-CU
  • the network topology domain of the CU may be called topology regression.
  • the migrating node may change the donor-DU after the topology degrades, which will cause the upstream data of the migrating node to fail to be sent to the donor-CU.
  • the donor-DU after the topology degeneration has the IP address filtering function, it will be discarded Uplink data containing the IP address assigned by the donor-DU before topology degradation, thus resulting in longer transmission delay and service interruption time.
  • embodiments of the present application provide an IAB node device, an IAB host device, and a topology regression method.
  • a topology regression method is provided. After the transmission path of the uplink service of the IAB node is migrated from the first donor-CU to the second donor-CU, the second donor-CU The centralized unit is migrated back to the first host centralized unit, the method comprising:
  • the IAB node or sub-node receives the path migration configuration of the uplink data sent by the network device.
  • the IAB node or child node applies the path migration configuration
  • the IAB-DU of the IAB node maintains an F1 connection with the first donor-CU.
  • an IAB node device after the transmission path of its uplink service is migrated from the first centralized host unit to the second centralized host unit, and then migrated from the second centralized host unit back to the The first host centralized unit, the device includes:
  • a receiving unit which receives the path migration configuration of the uplink data sent by the network device
  • a processing unit which applies the path migration configuration; wherein, the IAB-DU of the IAB node maintains an F1 connection with the first hosting centralized unit.
  • a topology regression method is provided. After the transmission path of the uplink service of the IAB node is migrated from the first donor-CU to the second donor-CU, the second The host centralized unit is migrated back to the first host centralized unit, the method comprising:
  • the first donor-CU receives the topology regression request sent by the second donor-CU.
  • Path migration configuration for sending uplink data by the first donor-CU
  • the IAB-DU of the IAB node maintains an F1 connection with the first donor-CU.
  • an IAB hosting device is provided, after the transmission path of the uplink service of the IAB node is migrated from the first hosting centralized unit to the second hosting centralized unit, and then migrated back from the second hosting centralized unit
  • the device includes:
  • a receiving unit which receives the topology regression request sent by the second central master unit
  • a sending unit which sends path migration configuration of uplink data
  • the IAB-DU of the IAB node maintains an F1 connection with the first host centralized unit.
  • an IAB system including an IAB host device and an IAB node device;
  • the transmission path of the uplink service of the IAB node device is migrated from the first centralized host unit to the second centralized host unit, it is migrated from the second centralized host unit back to the first centralized host unit; wherein, the IAB node
  • the device receives the path migration configuration of the uplink data sent by the network device; and applies the path migration configuration; wherein, the IAB-DU of the IAB node maintains an F1 connection with the first host centralized unit.
  • the IAB node or sub-node receives the path migration configuration of the uplink data sent by the network device; and the IAB node or sub-node applies the path migration configuration; wherein, the IAB-DU of the IAB node and The first donor-CU maintains the F1 connection.
  • the problem of discarded uplink data can be reduced or avoided, transmission delay and service interruption time can be reduced.
  • Fig. 1 is a schematic diagram of the IAB system
  • FIG. 2 is a schematic diagram of the IAB architecture of the SA mode
  • FIG. 3 is a schematic diagram of the IAB architecture of the EN-DC mode
  • Fig. 4 is a schematic diagram of a parent node (parent IAB-node) and a child node (child IAB-node);
  • Fig. 5 is a schematic diagram of the F1-U protocol stack of the IAB system
  • Fig. 6 is a schematic diagram of the F1-C protocol stack of the IAB system
  • Fig. 7 is a schematic diagram of IAB system routing
  • Fig. 8 is a schematic diagram of network topology self-adaptation
  • FIG. 9 is a schematic diagram of topology degradation in an embodiment of the present application.
  • FIG. 10 is another schematic diagram of topology regression in the embodiment of the present application.
  • FIG. 11 is a schematic diagram of a topology regression method according to an embodiment of the present application.
  • FIG. 12 is an example diagram of topology degradation in the embodiment of the present application.
  • FIG. 13 is another example diagram of topology degradation in the embodiment of the present application.
  • Fig. 14 is a signaling flow chart of topology regression in the embodiment of the present application
  • FIG. 15 is another signaling flow chart of topology degradation in the embodiment of the present application.
  • FIG. 16 is a schematic diagram of an IAB node device according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of an IAB host device according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of an IAB device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or time order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having” and the like refer to the presence of stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network conforming to any of the following communication standards, such as New Radio (NR, New Radio), Long Term Evolution (LTE, Long Term Evolution), Enhanced Long-term evolution (LTE-A, LTE-Advanced), wideband code division multiple access (WCDMA, Wideband Code Division Multiple Access), high-speed packet access (HSPA, High-Speed Packet Access), etc.
  • NR New Radio
  • New Radio Long Term Evolution
  • LTE-A Long-term evolution
  • LTE-A Long-term evolution
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, 6G, etc., and/or other communication protocols that are currently known or will be developed in the future.
  • 1G generation
  • 2G 2.5G
  • 2.75G 3G
  • 4G 4G
  • 4.5G future 5G, 6G, etc.
  • future 5G, 6G, etc. and/or other communication protocols that are currently known or will be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) and so on.
  • the base station may include but not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base station (gNB), etc., and may also include Remote Radio Head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low-power node (such as femto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power node such as femto, pico, etc.
  • base station may include some or all of their functions, each base station may provide communication coverage for a particular geographic area.
  • the term "cell” can refer to a base station and/or its coverage area depending on the context in which the term is used.
  • the term "User Equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services, and may also be called “Terminal Equipment” (TE, Terminal Equipment).
  • a terminal device may be fixed or mobile, and may also be referred to as a mobile station (MS, Mobile Station), terminal, user, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc. wait.
  • the terminal equipment may include but not limited to the following equipment: Cellular Phone (Cellular Phone), Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication equipment, handheld equipment, machine type communication equipment, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • Cellular Phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication equipment
  • handheld equipment machine type communication equipment
  • laptop computer Cordless phones
  • Cordless phones smartphones, smart watches, digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measurement, such as but not limited to: a machine type communication (MTC, Machine Type Communication) terminal, Vehicle communication terminal, device to device (D2D, Device to Device) terminal, machine to machine (M2M, Machine to Machine) terminal, etc.
  • MTC Machine Type Communication
  • Vehicle communication terminal device to device (D2D, Device to Device) terminal
  • M2M Machine to Machine
  • the routing function of the IAB system is implemented by the BAP layer, and each IAB-node saves routing configuration (BH routing configuration) and RLC channel mapping configuration (BH RLC Channel Mapping Configuration).
  • the BAP entity performs routing according to the routing configuration, the RLC channel mapping configuration and the routing ID in the BAP layer packet header. Routing ID contains the destination BAP address and route identification.
  • the routing configuration includes the mapping relationship between the Routing ID and the BAP address of the next (next-hop) node.
  • the RLC channel mapping configuration includes the mapping relationship between the BAP address of the previous-hop (prior-hop) node, the RLC channel ID of the ingress link, and the BAP address of the next-hop node and the RLC channel ID of the egress link.
  • Fig. 7 is a schematic diagram of IAB system routing.
  • the next-hop node BAP address can be found from the routing configuration through the routing ID of the data packet header. Both the BAP address of the last hop node and the RLC channel ID of the ingress link are known. In this way, after the BAP address of the next hop node is determined, the RLC channel ID of the egress link can be found through the RLC channel mapping configuration based on the BAP address of the previous hop node + the RLC channel ID of the ingress link + the BAP address of the next hop node.
  • IAB-donor DU saves routing configuration (BH routing configuration) and downlink RLC channel mapping configuration (Downlink Traffic to BH RLC Channel Mapping Configuration).
  • the IAB-donor DU is routed according to the routing configuration, RLC channel mapping configuration and the Routing ID in the BAP layer packet header.
  • Routing configuration includes the mapping relationship between Routing ID and next node address.
  • the downlink RLC channel mapping configuration includes the mapping relationship between the target IP address, DSCP (Differentiated Services Code Point, Differentiated Services Code Point) and the address of the next-hop node and the RLC channel ID of the egress link.
  • DSCP Differentiated Services Code Point
  • the IAB-donor DU can find the next-hop node address from the routing configuration according to the Routing ID in the data packet header. In this way, after the address of the next-hop node is determined, the RLC channel ID of the egress link is found from the downlink RLC channel mapping configuration according to the IP address and DSCP of the data packet.
  • Rel-16NR has standardized the topology adaptation process when the IAB-node moves under the same donor-CU.
  • FIG. 8 is a schematic diagram of intra-CU (intra-CU) topology adaptation.
  • the donor-CU configures the path migration related configuration for the IAB-node through the RRC reconfiguration message, so that the IAB-node performs the migration of the F1 transmission path .
  • Path migration-related configurations include updating the default backhaul RLC channel (default BH RLC channel) for uplink F1-C, F1-U and non-F1 data, updating the default BAP routing ID (default BAP routing ID), and updating Update of IP address routed to Donor-DU.
  • the configuration related to the above-mentioned path migration is applied.
  • the configuration related to the path migration is also performed in the same way.
  • 3GPP R17 supports topology adaptation when IAB-node moves under different donor-CUs, and the migrating node (migrating node) can be served from the parent of the source dornor-CU (also called F1-terminating CU or first dornor-CU). The node switches to the parent node served by the target dornor-CU (also called non-F1-terminating CU or second dornor-CU).
  • the migration node After the migration node is switched from the F1-terminating CU to the non-F1-terminating CU, only the RRC connection of the IAB-MT is switched to the non-F1-terminating CU, and the F1 interface still belongs to the F1-terminating CU.
  • the RRC connection still belongs to the F1-terminating CU, and the migration node can also be called the boundary node at this time.
  • the routing ID of the F1 and non-F1 data of the boundary node and the routing ID of the F1 or non-F1 data of the child node can remain unchanged, but the boundary node needs to replace the original routing ID of the uplink service with the target routing ID.
  • the original routing ID belongs to the topology domain of the F1-terminating CU, and its destination BAP address is the original donor-DU under the F1-terminating CU.
  • the routing ID belongs to the topology domain of the non-F1-terminating CU, and its destination BAP address is non - The target donor-DU under the F1-terminating CU.
  • the boundary node may switch back to the F1-terminating CU from the non-F1-terminating CU, that is, perform topology regression.
  • the boundary node switches back to the F1-terminating CU, the boundary node no longer needs to replace the original routing ID with the routing ID of the non-F1-terminating CU domain, but it needs to have routing configuration for the original routing ID and from boudanry node to F1-terminating BH RLC channel mapping configuration of the parent node on the CU side.
  • FIG. 9 is a schematic diagram of topology degradation according to an embodiment of the present application. As shown in Figure 9, after the IAB node 3 migrates from the dornor-DU 1 of the source dornor-CU to the dornor-DU 2 of the target dornor-CU, it regresses from the dornor-DU 2 of the target dornor-CU to the dornor-DU of the source dornor-CU dornor-DU1.
  • the upstream data carrying the IP address assigned by the donor-CU 2 on the target dornor-CU side cannot be sent to the source dornor-CU because it will be blocked by the source dornor-CU. - The donor-DU 2 on the CU side is discarded. The discarded uplink data will be retransmitted by the UE, thus causing long transmission delay and service interruption time.
  • the inventor also found that when the boundary node switches back to the F1-terminating CU, if the donor-DU of the boundary node after switching back is different from the original donor-DU, the uplink data generated by the migrated node and its child nodes according to the original routing ID will fail. Sent to the F1-terminating CU, resulting in long transmission delay and service interruption time.
  • FIG. 10 is another schematic diagram of topology degradation in the embodiment of the present application.
  • the IAB node 3 migrates from the dornor-DU 1 of the source dornor-CU to the dornor-DU 2 of the target dornor-CU, it then regresses from the dornor-DU 2 of the target dornor-CU to that of the source dornor-CU dornor-DU3.
  • the donor-DU 3 after the switchback is different from the original donor-DU 1, which will cause the uplink data generated by the migration node and child nodes according to the original routing ID to be unable to be sent to the source dornor-CU.
  • the uplink data generated according to the original routing ID carries the BAP address of donor-DU 1, which is different from the BAP address of donor-DU 3, these uplink data will be discarded by the target donor-DU 3. The discarded uplink data will be retransmitted by the UE, thus causing long transmission delay and service interruption time.
  • the IAB node or sub-node of the embodiment of the present application switches back to the first donor-CU from the second donor-CU before the IAB-MT of the IAB node switches back to the first donor-CU Afterwards, the path migration configuration of the uplink data sent by the network device is received, which will be described in detail below.
  • the migration node is an IAB node
  • the IAB node device includes the IAB node or its child nodes.
  • the embodiment of the present application provides a topology regression method, which is described from the IAB node or sub-node side. Wherein, after the transmission path of the uplink service of the IAB node is migrated from the first donor-CU to the second donor-CU, it is migrated from the second donor-CU back to the first donor-CU.
  • FIG. 11 is a schematic diagram of a topology regression method according to an embodiment of the present application. As shown in Figure 11, the method includes:
  • the IAB node or sub-node receives the path migration configuration of the uplink data sent by the network device.
  • the IAB node or sub-node applies the path migration configuration; wherein, the IAB-DU of the IAB node maintains an F1 connection with the first donor-CU.
  • FIG. 11 only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of various operations can be appropriately adjusted, and some other operations can be added or some of them can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the above description in FIG. 11 .
  • the following describes the case where the transmission path of the uplink service (including F1-C, F1-U and non-F1 service) of the IAB node is migrated from the first donor-CU to the second donor-CU.
  • the network device When the uplink service of the IAB node is migrated from the F1-terminating CU to the non-F1-terminating CU, the network device will rewrite the mapping relationship between the original routing ID and the target routing ID, that is, the routing identifier rewriting information between host centralized units (BAP Header Rewriting Information ) is configured to the IAB node.
  • BAP Header Rewriting Information the routing identifier rewriting information between host centralized units
  • the IAB node forwards uplink data, replace the original routing ID with the target routing ID. Since the target routing ID belongs to the non-F1-terminating CU domain, the IAB node needs to perform routing information based on the target routing ID and the topology domain of the target donor-CU. Routing. Therefore, the network device will configure the IAB node with the routing information that the BAP address of the next hop node belongs to the topology domain of the non-F1-terminating CU (the BAP address of the next hop node of the egress link in the routing information before path migration belongs to the topology of the F1-terminating CU area).
  • the network device Since the BAP address of the previous hop node of the IAB node belongs to the topological domain of the F1-terminating CU, and the BAP address of the next hop node belongs to the topological domain of the non-F1-terminating CU, the network device will reconfigure the RLC channel mapping information in the IAB node (The previous hop node address and the next hop node address in the RLC channel mapping information before path migration belong to the topology domain of the F1-terminating CU).
  • the following further describes the embodiment of the present application through different scenarios in which the transmission path of the uplink service (including F1-C, F1-U and non-F1 service) of the IAB node is migrated from the second donor-CU back to the first donor-CU.
  • a switching scenario is taken as an example for illustration, wherein, before the IAB-MT of the IAB node is switched from the second donor-CU back to the first donor-CU or after the IAB-MT is switched back to the first donor-CU, Path migration configuration for receiving uplink data sent by network devices.
  • Path migration configuration for receiving uplink data sent by network devices.
  • it is necessary to migrate the transmission path of all uplink services of the IAB node from the second donor-CU back to the first donor-CU.
  • the transmission path of the uplink service of the IAB node is migrated from the first donor-DU of the first donor-CU to the second donor-DU of the second donor-CU, from the second donor-CU -
  • the second donor-DU of the CU migrates back to the first donor-DU of the first donor-CU.
  • the path migration configuration is sent to the IAB node or sub-node by the first donor-CU through a F1AP message or an RRC message.
  • the path migration configuration includes: adding a routing configuration for indicating the mapping relationship between the first routing identifier and the next-hop node BAP address of the IAB node, And increase the first hop node BAP address for indicating the IAB node, the entrance link radio link control (RLC) channel identification and the next hop node BAP address of the IAB node and the mapping relationship between the exit link RLC channel identification - RLC channel mapping configuration;
  • RLC radio link control
  • the first routing identifier, the previous hop node BAP address of the IAB node and the next hop node BAP address of the IAB node belong to the network topology domain of the first Donor-CU, and the destination BAP address of the first routing identifier is the first donor-DU’s BAP address.
  • the network device when the boundary node is switched back to the F1-terminating CU from the non-F1-terminating CU, if the parent node after switching still uses the original donor-DU, the network device only needs to transfer the original routing ID to the F1-terminating CU
  • the routing information of the topology domain and the RLC channel mapping information from the boundary node to the parent node after switching are configured to the boundary node.
  • the IAB node or child node receives the path migration configuration before the IAB-MT performs handover from the second donor-CU back to the first donor-CU.
  • the network device needs to configure routing information and switchback for the original routing ID belonging to the F1-terminating CU topology domain before the boundary node performs switchback. Then, the RLC channel mapping information from the boundary node to the parent node (both the address of the previous hop node and the address of the next hop node belong to the topology domain of the F1-terminating CU). Therefore, a non-F1-terminating CU can initiate topology regression before or during failback preparation, so that these parameters can be applied after the switchback is completed.
  • the path migration configuration further includes: releasing the donor-CU routing identifier rewriting configuration used to indicate the mapping relationship between the first routing identifier and the second routing identifier, and releasing the routing identifier rewriting configuration used to indicate the second routing identifier and the IAB
  • the routing configuration of the mapping relationship between the BAP address of the next hop node of the node, or the release is used to indicate the previous hop node address of the IAB node, the RLC channel identifier of the ingress link, and the next hop node BAP address of the IAB node and the egress link
  • the second RLC channel mapping configuration of the mapping relationship between the RLC channel identifiers
  • the last hop node BAP address of the first routing identifier and the IAB node belongs to the network topology domain of the first donor-CU, and the destination BAP address of the first routing identifier is the BAP address of the first donor-DU; the second routing identifier and The next-hop node BAP address of the IAB node belongs to the network topology domain of the second donor-CU, and the destination BAP address of the second routing identifier is the BAP address of the second donor-DU.
  • the path migration configuration may include one of release routing identifier rewriting configuration, release routing configuration, and release second RLC channel mapping configuration, or any two, or all three configurations. This application does not limited to this.
  • FIG. 12 is an example diagram of topology degradation in the embodiment of the present application.
  • IAB node 3 (including IAB-MT 3 and IAB-DU 3) is a migration node, and the transmission path of its business is migrated from the donor-DU 1 of the source donor-CU to the donor-DU of the target donor-CU 2.
  • the donor-DU 2 of the target donor-CU is migrated back to the donor-DU 1 of the source donor-CU.
  • the routing ID of the uplink service of the IAB node 3 and the uplink service of the child nodes can remain unchanged, that is, still Use the routing ID whose destination address is dornor-DU 1.
  • routing ID has been explained above, and the situation of IP address will be explained below.
  • the IAB node or sub-node receives the configuration information sent by the first donor-CU, and the configuration information is used for configuration anchoring to the first donor-DU
  • the IP address of the second donor-DU replaces the configuration information anchored to the IP address of the second donor-DU; wherein, the IP address is used for F1 user plane data, F1 control plane data or non-F1 data of the IAB node or sub-node.
  • the migration node needs to change the IP address carried by the upstream traffic to the first donor-DU Assigned IP address. Therefore, the donor-CU configures the IP address allocated by the target donor-DU to the migrating node before the migrating node performs the handover.
  • IP address anchored to IAB donor-DU can be understood as “IP address assigned by donor-DU” or “routable via donor-DU Transport Network Layer (TNL) address (TNL address(es)that is(are)routable via the IAB-donor-DU)", the above terms can be replaced with each other, and this application is not limited thereto.
  • TNL Transport Network Layer
  • the routing ID of services can remain unchanged in the migration node and child nodes, but the IP address anchored to the second donor-DU needs to be replaced with the IP address anchored to the first donor-DU .
  • the IAB node and sub-nodes select the IP address to use according to the address of the first donor-DU, so the configuration of the IP address of the service needs to target the BAP address of the first donor-DU, including adding an anchor to the first donor-DU IP address and release is anchored to the IP address of the second donor-DU.
  • the configuration information is IP address configuration information for the BAP address of the first donor-DU.
  • the configuration information is used to modify the IP address anchored to the second donor-DU for the BAP address of the first donor-DU to the IP address anchored to the first donor-DU.
  • the IAB node or child node receives the configuration information before the IAB-MT performs a switch from the second donor-CU back to the first donor-CU.
  • the IAB node or child node replaces the IP address anchored to the second donor with the IP address anchored to the first donor-DU when the IAB-MT switches from the second donor-CU back to the first donor-CU. - The IP address of the DU.
  • the migrating node needs to immediately apply the IP address assigned by the first donor-DU when the handover is completed.
  • the above “replacement” can also be understood as "adding the IP address anchored to the first donor-DU and releasing the IP address anchored to the second donor-DU".
  • the configuration information of the IAB node is sent by the owner centralized unit through a handover command radio resource control (RRC) message or an RRC reconfiguration message.
  • RRC radio resource control
  • the configuration information of the sub-node is sent by the host centralized unit through an RRC reconfiguration message.
  • the network device needs to allocate the IP address assigned by the donor-DU of the F1-terminating CU to the boundary node before the boundary node performs switching Configured to the boundary node, so that the IP address will be applied immediately when the boundary node completes the switchover.
  • the network device needs to configure the IP address assigned to the child node by the donor-DU under the F1-terminating CU to the child node before the boundary node performs the switchover, so that the child node can immediately apply the allocated IP address when the boundary node completes the switchover.
  • the boundary node can send an instruction to the child node to make the child node apply the configuration of the above IP address; or, before the switchover is completed, the parent node of the child node caches the above IP address configured for the child node until the boundary The node completes the switchback and then sends it to the child node.
  • the transmission path of the uplink service of the IAB node is migrated from the first donor-DU of the first donor-CU to the second donor-DU of the second donor-CU, from the second donor-DU of the second donor-CU
  • the donor-DU migrates back to the third donor-DU of the first donor-CU.
  • the path migration configuration includes: adding an inter-donor-DU routing identifier re-routing used to indicate the mapping relationship between the first routing identifier and the third routing identifier Write configuration, increase the routing configuration used to indicate the mapping relationship between the third routing identifier and the next-hop node BAP address of the IAB node, and increase the BAP address of the last-hop node and the entry link RLC channel identifier used to indicate the IAB node
  • the first routing identifier, the third routing identifier, the BAP address of the previous hop node of the IAB node and the BAP address of the next hop node of the IAB node belong to the network topology domain of the first donor-CU, and the destination BAP address of the third routing identifier is the first donor-CU.
  • the BAP address of the three donor-DUs, the destination BAP address identified by the first route is the BAP address of the first donor-DU.
  • the IAB node or child node receives the path migration configuration before the IAB-MT performs handover from the second donor-CU back to the third donor-CU.
  • the path migration configuration further includes: releasing the donor-CU routing identifier rewriting configuration used to indicate the mapping relationship between the first routing identifier and the second routing identifier, and releasing the routing identifier rewriting configuration used to indicate the second routing identifier and the IAB
  • the last hop node BAP address of the first routing identifier and the IAB node belongs to the network topology domain of the first donor-CU, and the destination BAP address of the first routing identifier is the BAP address of the first donor-DU; the second routing identifier and The next-hop node BAP address of the IAB node belongs to the network topology domain of the second donor-CU, and the destination BAP address of the second routing identifier is the BAP address of the second donor-DU.
  • the path migration configuration may include one of release routing identifier rewriting configuration, release routing configuration, and release second RLC channel mapping configuration, or any two, or all three configurations. This application does not limited to this.
  • FIG. 13 is another example diagram of topology degradation in the embodiment of the present application.
  • IAB node 3 (including IAB-MT 3 and IAB-DU 3) is a migration node, and its service transmission path is migrated from donor-DU1 of the source donor-CU to donor-DU 2 of the target donor-CU After that, migrate from donor-DU 2 of the target donor-CU back to donor-DU 3 of the source donor-CU.
  • the routing ID of the uplink service of IAB node 3 and the uplink service of child nodes can remain unchanged, as shown in The solid line on the right part is shown.
  • the IAB node since the IAB node has received the mapping relationship information (inter-donor-DU rewriting information) sent by the network device, the IAB node can rewrite (rewrite) the first routing identifier carried in the BAP header of the uplink data ) is the third route identifier.
  • IAB node 3 needs to replace the original routing ID of the uplink business of the uplink business and child nodes (such as IAB node 4 and IAB node 5 shown in the figure) with the target routing ID .
  • the destination BAP address of the original routing ID is donor-DU 1 of the source donor-CU
  • the destination BAP address of the routing ID after replacement is donor-DU 3 of the source donor-CU.
  • route selection and backhaul RLC channel selection can be performed according to the target routing ID, and the donor-CU updates the routing information in the migration node (because the original routing information does not include the available routes for the target routing ID ) and RLC channel mapping information.
  • the migrating node can apply inter-donor-DU rewriting information, new routing information and RLC channel mapping information when handover is completed or configuration is received.
  • the donor-CU may instruct the migrating node to first cache the above-mentioned path migration configuration, and apply the above-mentioned path migration configuration when the IAB-MT completes the handover.
  • routing ID has been explained above, and the situation of IP address will be explained below.
  • the IAB node or child node in order to migrate traffic back to the first donor-CU, receives an IP address configured to replace the IP address anchored in the second donor-DU with the IP address anchored in the third donor-DU configuration information; wherein, the IP address is used for F1 user plane data, F1 control plane data or non-F1 data of the IAB node or sub-node.
  • donor-DU 3 has the IP address filtering function, it will discard uplink data containing IP addresses assigned by other donor-DUs, and the migration node needs to change the IP address carried in the uplink F1-U data to donor-DU 3 Assigned IP address. Therefore, the donor-CU configures the IP address assigned by the donor-DU 3 of F1-U to the migration node before the migration node performs the handover.
  • IP address anchored to IAB donor-DU can be understood as “IP address assigned by donor-DU” or “routable via donor-DU Transport Network Layer (TNL) address (TNL address(es)that is(are)routable via the IAB-donor-DU)", the above terms can be replaced with each other, and this application is not limited thereto.
  • TNL Transport Network Layer
  • the IAB node or child node receives the above configuration information before the IAB-MT performs switching from the second donor-CU back to the first donor-CU.
  • the routing ID of services can remain unchanged in the migration node and child nodes, but the IP address anchored to the second Donor-DU needs to be replaced with the IP address anchored to the third Donor-DU .
  • the IAB node and sub-nodes select the IP address used according to the address of the first Donor-DU, so the configuration of the IP address of the service needs to target the BAP address of the first Donor-DU, including adding anchors to the third donor-DU IP address and release is anchored to the IP address of the second donor-DU.
  • the configuration information is IP address configuration information for the BAP address of the first donor-DU.
  • the configuration information is used to modify the IP address anchored to the second donor-DU for the BAP address of the first donor-DU to the IP address anchored to the third donor-DU.
  • the IAB node or child node replaces the IP address anchored to the second donor with the IP address anchored to the third donor-DU when the IAB-MT switches from the second donor-CU back to the first donor-CU. - The IP address of the DU.
  • the migrating node needs to immediately apply the IP address assigned by donor-DU 3 when the switchover is completed.
  • the above “replacement” can also be understood as "adding the IP address anchored to the third donor-DU and releasing the IP address anchored to the second donor-DU".
  • the configuration information of the IAB node is sent by the owner centralized unit through a handover command radio resource control (RRC) message or an RRC reconfiguration message.
  • RRC radio resource control
  • the configuration information of the sub-node is sent by the host centralized unit through an RRC reconfiguration message.
  • the IAB node or sub-node receives the path migration configuration of the uplink data sent by the network device; and the IAB node or The child node applies the path migration configuration; wherein, the IAB-DU of the IAB node maintains an F1 connection with the first donor-CU.
  • the IAB-DU of the IAB node maintains an F1 connection with the first donor-CU.
  • the IAB node or sub-node receives the path migration configuration of the uplink data sent by the network device; and the IAB node or sub-node applies the path migration configuration; wherein, the IAB-MT of the IAB node and the A dual connection is established between the first donor-CU and the second donor-CU, and the IAB-DU of the IAB node maintains an F1 connection with the first donor-CU.
  • the IAB-MT of the IAB node and the A dual connection is established between the first donor-CU and the second donor-CU, and the IAB-DU of the IAB node maintains an F1 connection with the first donor-CU.
  • the transmission paths of services of some IAB nodes may be migrated from the second donor-CU back to the first donor-CU.
  • the IAB node or sub-node receives the path migration configuration of the uplink data sent by the network device; and the IAB node or sub-node applies the path migration configuration; wherein, the IAB-DU of the IAB node is related to the The first donor-CU maintains the F1 connection.
  • the problem of discarded uplink data can be reduced or avoided, transmission delay and service interruption time can be reduced.
  • the embodiment of the present application provides a topology regression method, which is described from the side of the host central unit. The same content as the embodiment of the first aspect will not be repeated.
  • the transmission path of the uplink service of the IAB node is migrated from the first donor-CU to the second donor-CU, it is migrated from the second donor-CU back to the first donor-CU unit.
  • the first donor-CU receives the topology regression request sent by the second donor-CU; and the first donor-CU sends uplink data path migration configuration; wherein, the IAB-DU of the IAB node maintains an F1 connection with the first donor-CU.
  • the transmission path of the uplink service of the IAB node is migrated from the first donor-DU of the first donor-CU to the second donor-DU of the second donor-CU, from the second donor-CU -
  • the second donor-DU of the CU migrates back to the first donor-DU of the first donor-CU.
  • the transmission path of the uplink service of the IAB node is migrated from the first donor-DU of the first donor-CU to the second donor-DU of the second donor-CU, from the second donor-DU of the second donor-CU
  • the donor-DU migrates back to the third donor-DU of the first donor-CU.
  • the first donor-CU sends the path migration configuration to the IAB node or the child node through an F1AP message or an RRC message.
  • the topology regression request includes an IP address anchored to the second donor-DU for the BAP address of the first donor-DU; wherein the IP address is used for the F1 user plane of the IAB node or child node data, F1 control plane data or non-F1 data.
  • the first donor-CU sends to the second donor-CU configuration information configured to replace the IP address anchored to the second donor-DU with the IP address anchored to the first donor-DU, or It is used to configure configuration information for replacing the IP address anchored in the second donor-DU with the IP address anchored in the third donor-DU.
  • the first donor-CU sends the path migration configuration of the uplink data before or after the IAB-MT of the IAB node switches from the second donor-CU back to the first donor-CU or after switching back to the first donor-CU.
  • the second donor-CU sends a topology regression request to the first donor-CU after sending the switch request for the IAB-MT to switch back to the first donor-CU.
  • Fig. 14 is a signaling flow chart of topology degradation in the embodiment of the present application, which exemplarily shows that when an IAB node (boundary node) is switched back to an F1-terminating CU from a non-F1-terminating CU, topology degradation is performed after switching preparations Case.
  • the boundary node sends a measurement report to the target donor-CU, triggering the non-F1-terminating CU (target donor-CU) to initiate a handover preparation for switching back to the F1-terminating CU (source donor-CU).
  • the target donor-CU sends a UE context release request for the boudary node-MT to the source donor-CU.
  • the target donor-CU sends a topology regression request Xn message (for the UA (UE-associated message) of the boundary node and uses the XnAP identity of the boundary node) to the source donor-CU.
  • Xn message for the UA (UE-associated message) of the boundary node and uses the XnAP identity of the boundary node
  • XnAP identity for the migration node, requesting to allocate IP addresses for F1 or non-F1 services; for child nodes, requesting to allocate IP addresses for F1 and non-F1 services.
  • the boundary node switches back to the original donor-DU, configure the boundary node with routing information for the original routing ID in the F1-terminated CU topology domain, configure new RLC channel mapping information belonging to the F1-terminating CU topology, and request the original donor -DU allocates IP addresses for the F1 and non-F1 services of the boundary node, and requests the original donor-DU to allocate IP addresses for the F1 and non-F1 services of the child nodes.
  • the boundary node is not switched back to the original donor-DU, configure the inter-donor-DU rewriting information of the F1-terminating CU domain for the boundary node, and configure the inter-donor-DU rewriting information for the replaced target routing ID in the F1-terminating CU topology domain for the boundary node Routing information, configure the new RLC channel mapping information belonging to the F1-terminating CU topology, request the new donor-DU to allocate IP addresses for the F1 and non-F1 services of the boundary node, and request the new donor-DU for the F1 and non-F1 services of the child nodes Assign IP addresses.
  • the source donor-CU uses the F1AP message to send the above inter-donor-DU rewriting information, routing information and RLC channel mapping information to the boundary node, and release the following configuration: BAP Header Rewriting Information, routing information of the Non-F1-terminating CU domain, The RLC channel mapping information of the last-hop node address belonging to the F1-terminating CU topology and the next-hop node address belonging to the non-F1-terminating CU topology.
  • the source donor-CU sends an RRC reconfiguration message to the boundary node (including the new donor-DU or the IP address allocated by the original donor-DU under the F1-terninating-CU for F1 and non-F1 services).
  • the source donor-CU sends an RRC reconfiguration message (including the IP address assigned to the new donor-DU or the original donor-DU under the F1-terninating-CU for F1 and non-F1 services) to the child node.
  • RRC reconfiguration message including the IP address assigned to the new donor-DU or the original donor-DU under the F1-terninating-CU for F1 and non-F1 services
  • the source donor-CU updates the routing information and the RLC channel mapping information on the nodes on the original path.
  • the source donor-CU sends a topology regression response Xn message to the target donor-CU. (for the UA (UE-associated message) of the boundary node and use the XnAP identity of the boundary node).
  • the target donor-CU/source dornor-CU releases the XnAP identity for the boundary node.
  • the second donor-CU includes the topology regression request in the handover request for the IAB-MT to switch back to the first donor-CU.
  • the configuration information is included in an RRC reconfiguration message included in a handover request response message for the IAB-MT to switch back to the first donor-CU.
  • Fig. 15 is another signaling flow chart of topology degradation in the embodiment of the present application, which exemplarily shows that when the IAB node (boundary node) switches back to the F1-terminating CU from the non-F1-terminating CU, it is performed while preparing for the switchover The case of topological regression. That is, the switch request message contains a topology fallback request, which can reduce uplink data discard and service interruption compared with Figure 14 .
  • the boundary node sends a measurement report to the target donor-CU, triggering the non-F1-terminating CU (target donor-CU) to initiate a handover preparation for switching back to the F1-terminating CU (source donor-CU).
  • the handover request message includes a topology fallback request, which may include the following information: for the migration node, request for allocation of IP addresses for F1 or non-F1 services; for child nodes, request for allocation of IP addresses for F1 and non-F1 services.
  • the boundary node switches back to the original donor-DU, configure the boundary node with the routing information for the original routing ID in the F1-terminated CU topology domain, configure the new RLC channel mapping information belonging to the F1-terminating CU topology, and request the original
  • the donor-DU allocates IP addresses for the F1 and non-F1 services of the boundary node, and requests the original donor-DU to allocate IP addresses for the F1 and non-F1 services of the child nodes.
  • the boundary node is not switched back to the original donor-DU, configure the inter-donor-DU rewriting information of the F1-terminating CU domain for the boundary node, and configure the route for the replaced routing ID in the F1-terninated CU topology domain for the boundary node Information, configure new RLC channel mapping information belonging to the F1-terminating CU topology, request the new donor-DU to allocate IP addresses for the F1 and non-F1 services of the boundary node, and request the new donor-DU to allocate F1 and non-F1 services for the child nodes IP address.
  • the source donor-CU uses the F1AP message to send the above inter-donor-DU rewriting information, routing information and RLC channel mapping information to the boundary node, and release the following configuration: BAP Header Rewriting Information, routing table of the Non-F1-terminating CU domain, The RLC channel mapping information of the last-hop node address belonging to the F1-terminating CU topology and the next-hop node address belonging to the non-F1-terminating CU topology.
  • the source donor-CU sends an RRC reconfiguration message (including the IP address assigned to the new donor-DU or the original donor-DU under the F1-terminating-CU for F1 and non-F1 services) to the child node.
  • RRC reconfiguration message including the IP address assigned to the new donor-DU or the original donor-DU under the F1-terminating-CU for F1 and non-F1 services
  • the source donor-CU sends a handover request response Xn message to the target donor-CU, including a handover command RRC message for the boundary node.
  • the target donor-CU sends a switching command RRC reconfiguration message to the boundary node (including the new donor-DU under the F1-terminating-CU for F1 and non-F1 services or the IP address allocated by the original donor-DU).
  • the source donor-CU updates the routing table and the RLC channel mapping table on the nodes on the original path.
  • the configured IP address is applied when the boundary node completes the switchover.
  • the child node applies the configured IP address when the boundary node completes the switchover.
  • the source donor-CU sends a UE context release request for the boudary node-MT to the target donor-CU.
  • the source donor-CU/target dornor-CU releases the XnAP identity for the boundary node.
  • the second donor-CU sends a topology regression request to the first donor-CU before sending a switch request for the IAB-MT to switch back to the first donor-CU.
  • topology regression is performed before handover preparation, the signaling flow is similar to that shown in Figure 15. Differences include, for example, that the topology fallback request is a separate Xn message. In addition, because it is an independent Xn message, the topology regression request can instruct the source donor-CU to carry the assigned IP address in the handover command RRC message contained in the handover preparation response instead of carrying it in the topology regression response message, thus, boundary The configured IP address can be applied immediately when the node completes the switchover.
  • the switching scene is schematically described above, but the present application is not limited thereto.
  • the re-establishment scenario and the dual-connection scenario will be described below, and the same content will not be repeated.
  • the first donor-CU after the IAB-MT of the IAB node is re-established to the second donor-CU, the first donor-CU sends the path migration configuration of uplink data.
  • the first donor-CU can trigger the second donor-CU to initiate a topology fallback request.
  • the first donor-CU sends the second donor-CU
  • the CU requests to obtain the context information of the IAB-MT, it triggers the second donor-CU to initiate a topology fallback request.
  • the IAB-MT of the IAB node establishes dual connectivity with the first donor-CU and the second donor-CU.
  • the topology regression request includes identification information of a service whose transmission path is migrated from the second donor-CU back to the first donor-CU.
  • the path migration configuration of the uplink data sent by the network device is received; and the IAB node or sub-node The node applies the path migration configuration; wherein, the IAB-DU of the IAB node maintains an F1 connection with the first donor-CU.
  • the embodiment of the present application provides an IAB node device, and the same contents as those in the first and second embodiments are not repeated here.
  • the device may be, for example, an IAB node or sub-node in the IAB system, or may be one or some components, components or modules configured in the IAB node or sub-node.
  • FIG. 16 is a schematic diagram of an IAB node device according to an embodiment of the present application.
  • the IAB node device 1600 includes: a receiving unit 1601 and a processing unit 1602 .
  • the receiving unit 1601 receives the path migration configuration of the uplink data sent by the network device; and the processing unit 1602 applies the path migration configuration; wherein, the IAB-DU of the IAB node maintains an F1 connection with the first Donor-CU.
  • the transmission path of the uplink service of the IAB node is migrated from the first donor-DU of the first donor-CU to the second donor-DU of the second donor-CU, from the second donor-CU -
  • the second donor-DU of the CU migrates back to the first donor-DU of the first donor-CU.
  • the path migration configuration is sent by the first donor-CU to the IAB node or sub-node through an F1AP message or an RRC message.
  • the path migration configuration includes: adding a routing configuration used to indicate the mapping relationship between the first routing identifier and the next-hop node BAP address of the IAB node, and adding a routing configuration used to indicate the IAB node
  • the first routing identifier, the previous hop node BAP address of the IAB node and the next hop node BAP address of the IAB node belong to the network topology domain of the first Donor-CU, and the destination BAP address of the first routing identifier is the first donor-DU’s BAP address.
  • the receiving unit 1601 receives the path migration configuration before the IAB-MT performs switching from the second donor-CU back to the first donor-CU.
  • the path migration configuration further includes: releasing the donor-CU inter-CU routing identifier rewriting configuration used to indicate the mapping relationship between the first routing identifier and the second routing identifier, releasing the configuration used to indicate the second routing identifier and the second routing identifier
  • the routing configuration of the mapping relationship between the BAP address of the next hop node of the IAB node, or the release is used to indicate the previous hop node address of the IAB node, the ingress link RLC channel identifier and the next hop of the IAB node
  • the first routing identifier and the last hop node BAP address of the IAB node belong to the network topology domain of the first donor-CU, and the destination BAP address of the first routing identifier is the first donor-CU
  • the BAP address of the DU; the second routing identifier and the next-hop node BAP address of the IAB node belong to the network topology domain of the second donor-CU, and the destination BAP address of the second routing identifier is the first The BAP address of the two donor-DUs.
  • the receiving unit 1601 further receives configuration information configured to replace the IP address anchored in the second donor-DU with the IP address anchored in the first donor-DU; wherein, the The IP address is used for F1 user plane data, F1 control plane data or non-F1 data of the IAB node or the child node.
  • the receiving unit 1601 receives the configuration information before the IAB-MT performs switching from the second donor-CU back to the first donor-CU;
  • the processing unit 1602 replaces the IP address anchored in the first donor-DU with the IP address anchored in the first donor-CU when the switch of the IAB-MT from the second donor-CU back to the first donor-CU is completed. Two IP addresses of the donor-DU.
  • the configuration information of the IAB node is sent through a handover command radio resource control (RRC) message or an RRC reconfiguration message, and the configuration information of the subnode is sent through an RRC reconfiguration message.
  • RRC radio resource control
  • the configuration information is IP address configuration information for the BAP address of the first donor-DU.
  • the configuration information modifies the IP address anchored to the second donor-DU for the BAP address of the first donor-DU to the IP address anchored to the first donor-DU.
  • the transmission path of the uplink service of the IAB node is migrated from the first donor-DU of the first donor-CU to the second donor-DU of the second donor-CU, from the second donor-DU of the second donor-CU The donor-DU is migrated back to the third donor-DU of the first donor-CU;
  • the path migration configuration is sent by the first donor-CU to the IAB node or sub-node through the F1AP message.
  • the path migration configuration includes: adding an inter-donor-DU routing identifier rewriting configuration used to indicate the mapping relationship between the first routing identifier and the third routing identifier, adding a configuration used to indicate the third routing identifier and the The routing configuration of the mapping relationship between the next hop node BAP address of the IAB node, and the addition of the BAP address of the previous hop node for indicating the IAB node, the RLC channel identifier of the ingress link and the next hop node of the IAB node The first RLC channel mapping configuration of the mapping relationship between the BAP address and the egress link RLC channel identifier;
  • the first routing identifier, the third routing identifier, the previous hop node BAP address of the IAB node, and the next hop node BAP address of the IAB node belong to the network topology domain of the first donor-CU, and the The destination BAP address of the third routing identifier is the BAP address of the third donor-DU, and the destination BAP address of the first routing identifier is the BAP address of the first donor-DU.
  • the receiving unit 1601 receives the path migration configuration before the IAB-MT switches from the second donor-CU back to the third donor-CU.
  • the path migration configuration further includes: releasing the donor-CU inter-CU routing identifier rewriting configuration used to indicate the mapping relationship between the first routing identifier and the second routing identifier, releasing the configuration used to indicate the second routing identifier and the second routing identifier
  • the routing configuration of the mapping relationship between the BAP address of the next hop node of the IAB node, or the release is used to indicate the previous hop node address of the IAB node, the ingress link RLC channel identifier and the next hop of the IAB node
  • the first routing identifier and the last hop node BAP address of the IAB node belong to the network topology domain of the first donor-CU, and the destination BAP address of the first routing identifier is the first donor-CU
  • the BAP address of the DU; the second routing identifier and the next-hop node BAP address of the IAB node belong to the network topology domain of the second donor-CU, and the destination BAP address of the second routing identifier is the first The BAP address of the two donor-DUs.
  • the receiving unit 1601 further receives configuration information configured to replace the IP address anchored in the second donor-DU with the IP address anchored in the third donor-DU; wherein, the The IP address is used for F1 user plane data, F1 control plane data or non-F1 data of the IAB node or the child node.
  • the receiving unit 1601 receives configuration information before the IAB-MT performs switching from the second donor-CU back to the first donor-CU;
  • the processing unit 1602 replaces the IP address anchored in the second donor-DU with the IP address anchored in the third donor-DU when the IAB-MT is switched back to the first donor-CU from the second donor-CU.
  • the configuration information of the IAB node is sent through a handover command radio resource control (RRC) message or an RRC reconfiguration message, and the configuration information of the subnode is sent through an RRC reconfiguration message.
  • RRC radio resource control
  • the configuration information is IP address configuration information for the BAP address of the first donor-DU.
  • the configuration information modifies the IP address anchored to the second donor-DU for the BAP address of the first donor-DU to the IP address anchored to the third donor-DU.
  • the IAB node device 1600 in the embodiment of the present application may also include other components or modules, and for specific content of these components or modules, reference may be made to related technologies.
  • FIG. 16 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc.; the implementation of the present application is not limited thereto.
  • the IAB node or sub-node receives the path migration configuration of the uplink data sent by the network device; and the IAB node or sub-node applies the path migration configuration; wherein, the IAB-DU of the IAB node is related to the The first donor-CU maintains the F1 connection.
  • the problem of discarded uplink data can be reduced or avoided, transmission delay and service interruption time can be reduced.
  • the embodiment of the present application provides an IAB host device, and the same contents as those in the first to third embodiments are not repeated here.
  • the device may be, for example, the IAB donor-CU in the IAB system, or may be one or some components or components or modules configured in the IAB donor-CU.
  • the IAB system includes IAB-donor equipment and IAB nodes. After the transmission path of the uplink service of the IAB node is migrated from the first centralized hosting unit to the second centralized hosting unit, it is migrated from the second centralized hosting unit back to the first centralized hosting unit.
  • FIG. 17 is a schematic diagram of an IAB host device according to an embodiment of the present application.
  • the IAB host device 1700 includes: a receiving unit 1701 and a sending unit 1702 .
  • the receiving unit 1701 receives the topology regression request sent by the second donor-CU; and the sending unit 1702 sends the path migration configuration of uplink data; wherein, the IAB-DU of the IAB node maintains an F1 connection with the first donor-CU.
  • the sending unit 1702 sends the path migration configuration to the IAB node or sub-node through an F1AP message or an RRC message.
  • the topology regression request includes an IP address anchored to the second donor-DU for the BAP address of the first donor-DU; wherein the IP address is used for the F1 user plane of the IAB node or child node data, F1 control plane data or non-F1 data.
  • the second donor-CU sends a topology regression request to the first donor-CU before sending the switch request for the IAB-MT to switch back to the first donor-CU; or, the second donor-CU will The topology regression request is included in the switch request for the IAB-MT to switch back to the first donor-CU; or, after the second donor-CU sends the switch request for the IAB-MT to switch back to the first donor-CU, Send a topology regression request to the first donor-CU.
  • the sending unit 1702 sends to the second donor-CU configuration information for configuring to replace the IP address anchored in the second donor-DU with the IP address anchored in the first donor-DU, or for Configure the IP address anchored in the third donor-DU to replace the configuration information anchored in the IP address of the second donor-DU;
  • the configuration information is included in the RRC reconfiguration message included in the handover request response message for the IAB-MT handover back to the first donor-CU.
  • the IAB host device 1700 in the embodiment of the present application may also include other components or modules, and for specific content of these components or modules, reference may be made to related technologies.
  • FIG. 17 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc.; the implementation of the present application is not limited thereto.
  • the IAB node or sub-node receives the path migration configuration of the uplink data sent by the network device; and The IAB node or sub-node applies the path migration configuration; wherein, the IAB-DU of the IAB node maintains an F1 connection with the first donor-CU.
  • An embodiment of the present application provides a communication system, including a donor device and an IAB node (IAB-node); for the network architecture of the donor device and the IAB node, reference may also be made to related technologies, and descriptions are omitted here.
  • IAB-node IAB node
  • the embodiment of the present application also provides an IAB device, and the IAB device may be an IAB host device or an IAB node device (IAB node or sub-node).
  • IAB device may be an IAB host device or an IAB node device (IAB node or sub-node).
  • an IAB device 1800 may include: a processor (such as a central processing unit CPU) 1801 and a memory 1802 ; the memory 1802 is coupled to the processor 1801 .
  • the memory 1802 can store various data; in addition, it also stores a program 1805 for information processing, and executes the program 1805 under the control of the central processing unit 1801 .
  • the processor 1801 may be configured to execute a program to implement the topology regression method in the embodiment of the first aspect.
  • the processor 1801 may be configured to perform the following control: receive the path migration configuration of the uplink data sent by the network device; and apply the path migration configuration; wherein, the IAB-DU of the IAB node and the first donor-CU Keep F1 connected.
  • the processor 1801 may be configured to execute a program to implement the topology regression method in the embodiment of the second aspect.
  • the processor 1801 may be configured to perform the following control: receive the topology regression request sent by the second donor-CU; and send the path migration configuration of the uplink data; wherein, the IAB-DU of the IAB node is related to the first donor-CU The CU maintains the F1 connection.
  • the IAB device 1800 may further include: a transceiver 1803 and an antenna 1804 ; wherein, the functions of the above components are similar to those of the prior art, and will not be repeated here. It should be noted that the IAB device 1800 does not necessarily include all components shown in FIG. 18 ; in addition, the IAB device 1800 may also include components not shown in FIG. 18 , and reference may be made to the prior art.
  • the embodiment of the present application also provides a computer-readable program, wherein when the program is executed in the IAB node device, the program causes the computer to execute the topology regression method in the embodiment of the first aspect in the IAB node device .
  • the embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the topology regression method in the embodiment of the first aspect in the IAB node device.
  • the embodiment of the present application also provides a computer-readable program, wherein when the program is executed in the IAB host device, the program causes the computer to execute the topology regression method in the embodiment of the second aspect in the IAB host device .
  • the embodiment of the present application also provides a storage medium storing a computer-readable program, wherein the computer-readable program causes the computer to execute the topology regression method in the embodiment of the second aspect in the IAB host device.
  • the above devices and methods in this application can be implemented by hardware, or by combining hardware and software.
  • the present application relates to a computer-readable program that, when executed by a logic component, enables the logic component to realize the above-mentioned device or constituent component, or enables the logic component to realize the above-mentioned various methods or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the present application also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, and the like.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in the figure and/or one or more combinations of the functional block diagrams may correspond to each software module or each hardware module of the computer program flow.
  • These software modules may respectively correspond to the steps shown in the figure.
  • These hardware modules for example, can be realized by solidifying these software modules by using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium, or it can be an integral part of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or large-capacity flash memory device.
  • One or more of the functional blocks described in the accompanying drawings and/or one or more combinations of the functional blocks can be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in this application ), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors processor, one or more microprocessors in communication with a DSP, or any other such configuration.
  • a topology regression method after the transmission path of the uplink service of the IAB node migrates from the first donor-CU to the second donor-CU, then migrates from the second donor-CU back to the first donor-CU A centralized unit of hosting, the method comprising:
  • the IAB node or sub-node receives the path migration configuration of the uplink data sent by the network device.
  • the IAB node or child node applies the path migration configuration
  • the IAB-DU of the IAB node maintains an F1 connection with the first donor-CU.
  • the path migration configuration includes: adding a routing configuration for indicating the mapping relationship between the first routing identifier and the next-hop node BAP address of the IAB node, And increase between the previous hop node BAP address, the ingress link radio link control (RLC) channel identification and the next hop node BAP address of the IAB node and the egress link RLC channel identification for indicating the IAB node The first RLC channel mapping configuration of the mapping relationship;
  • RLC radio link control
  • the first routing identifier, the previous hop node BAP address of the IAB node, and the next hop node BAP address of the IAB node belong to the network topology domain of the first Donor-CU, and the first routing identifier's
  • the destination BAP address is the BAP address of the first donor-DU.
  • the path migration configuration further includes: releasing the donor-CU routing identifier rewriting configuration used to indicate the mapping relationship between the first routing identifier and the second routing identifier, releasing Routing configuration for indicating the mapping relationship between the second routing identifier and the BAP address of the next-hop node of the IAB node, or release for indicating the last-hop node address of the IAB node, the ingress link RLC channel identifier
  • the first routing identifier and the last hop node BAP address of the IAB node belong to the network topology domain of the first donor-CU, and the destination BAP address of the first routing identifier is the first donor-CU
  • the BAP address of the DU; the second routing identifier and the next-hop node BAP address of the IAB node belong to the network topology domain of the second donor-CU, and the destination BAP address of the second routing identifier is the first The BAP address of the two donor-DUs.
  • the IAB node or sub-node receives configuration information for configuring to replace the IP address anchored in the second donor-DU with the IP address anchored in the first donor-DU; wherein the IP address uses F1 user plane data, F1 control plane data or non-F1 data on the IAB node or the child node.
  • the IAB node or child node replaces the IP address anchored in the second donor-DU with the IP address anchored in the first donor-DU.
  • the path migration configuration includes: adding an inter-donor-DU routing identifier rewriting configuration for indicating the mapping relationship between the first routing identifier and the third routing identifier, Add the routing configuration used to indicate the mapping relationship between the third routing identifier and the next-hop node BAP address of the IAB node, and add the BAP address of the last-hop node and the ingress link RLC channel for indicating the IAB node
  • the first routing identifier, the third routing identifier, the previous hop node BAP address of the IAB node, and the next hop node BAP address of the IAB node belong to the network topology domain of the first donor-CU, and the The destination BAP address of the third routing identifier is the BAP address of the third donor-DU, and the destination BAP address of the first routing identifier is the BAP address of the first donor-DU.
  • the path migration configuration further includes: releasing the inter-donor-CU routing identifier rewriting configuration used to indicate the mapping relationship between the first routing identifier and the second routing identifier, releasing Routing configuration for indicating the mapping relationship between the second routing identifier and the BAP address of the next-hop node of the IAB node, or release for indicating the last-hop node address of the IAB node, the ingress link RLC channel identifier
  • the first routing identifier and the last hop node BAP address of the IAB node belong to the network topology domain of the first donor-CU, and the destination BAP address of the first routing identifier is the first donor-CU
  • the BAP address of the DU; the second routing identifier and the next-hop node BAP address of the IAB node belong to the network topology domain of the second donor-CU, and the destination BAP address of the second routing identifier is the first The BAP address of the two donor-DUs.
  • the IAB node or sub-node receives configuration information for configuring to replace the IP address anchored in the second donor-DU with the IP address anchored in the third donor-DU; wherein the IP address uses F1 user plane data, F1 control plane data or non-F1 data on the IAB node or the child node.
  • the IAB node or child node replaces the IP address anchored in the second donor-DU with the IP address anchored in the third donor-DU.
  • the path migration configuration includes: adding a routing configuration for indicating the mapping relationship between the first routing identifier and the next-hop node BAP address of the IAB node, And increase between the previous hop node BAP address, the ingress link radio link control (RLC) channel identification and the next hop node BAP address of the IAB node and the egress link RLC channel identification for indicating the IAB node The first RLC channel mapping configuration of the mapping relationship;
  • RLC radio link control
  • the first routing identifier, the previous hop node BAP address of the IAB node, and the next hop node BAP address of the IAB node belong to the network topology domain of the first Donor-CU, and the first routing identifier's
  • the destination BAP address is the BAP address of the first donor-DU.
  • the path migration configuration further includes: releasing the donor-CU routing identifier rewriting configuration used to indicate the mapping relationship between the first routing identifier and the second routing identifier, releasing Routing configuration for indicating the mapping relationship between the second routing identifier and the BAP address of the next-hop node of the IAB node, or release for indicating the last-hop node address of the IAB node, the ingress link RLC channel identifier
  • the first routing identifier and the last hop node BAP address of the IAB node belong to the network topology domain of the first donor-CU, and the destination BAP address of the first routing identifier is the first donor-CU
  • the BAP address of the DU; the second routing identifier and the next-hop node BAP address of the IAB node belong to the network topology domain of the second donor-CU, and the destination BAP address of the second routing identifier is the first The BAP address of the two donor-DUs.
  • the IAB node or sub-node receives configuration information for configuring to replace the IP address anchored in the second donor-DU with the IP address anchored in the first donor-DU; wherein the IP address uses F1 user plane data, F1 control plane data or non-F1 data on the IAB node or the child node.
  • the configuration information is IP address configuration information for the BAP address of the first donor-DU.
  • the path migration configuration includes: adding an inter-donor-DU routing identifier rewriting configuration for indicating the mapping relationship between the first routing identifier and the third routing identifier, Add the routing configuration used to indicate the mapping relationship between the third routing identifier and the next-hop node BAP address of the IAB node, and add the BAP address of the last-hop node and the ingress link RLC channel for indicating the IAB node
  • the first routing identifier, the third routing identifier, the previous hop node BAP address of the IAB node, and the next hop node BAP address of the IAB node belong to the network topology domain of the first donor-CU, and the The destination BAP address of the third routing identifier is the BAP address of the third donor-DU, and the destination BAP address of the first routing identifier is the BAP address of the first donor-DU.
  • the path migration configuration further includes: releasing the donor-CU routing identifier rewriting configuration used to indicate the mapping relationship between the first routing identifier and the second routing identifier, releasing Routing configuration for indicating the mapping relationship between the second routing identifier and the BAP address of the next-hop node of the IAB node, or release for indicating the last-hop node address of the IAB node, the ingress link RLC channel identifier
  • the first routing identifier and the last hop node BAP address of the IAB node belong to the network topology domain of the first donor-CU, and the destination BAP address of the first routing identifier is the first donor-CU
  • the BAP address of the DU; the second routing identifier and the next-hop node BAP address of the IAB node belong to the network topology domain of the second donor-CU, and the destination BAP address of the second routing identifier is the first The BAP address of the two donor-DUs.
  • the IAB node or sub-node receives configuration information for configuring to replace the IP address anchored in the second donor-DU with the IP address anchored in the third donor-DU; wherein the IP address uses F1 user plane data, F1 control plane data or non-F1 data on the IAB node or the child node.
  • the configuration information is IP address configuration information for the BAP address of the first donor-DU.
  • the path migration configuration includes: adding a routing configuration for indicating the mapping relationship between the first routing identifier and the next-hop node BAP address of the IAB node, And increase between the previous hop node BAP address, the ingress link radio link control (RLC) channel identification and the next hop node BAP address of the IAB node and the egress link RLC channel identification for indicating the IAB node The first RLC channel mapping configuration of the mapping relationship;
  • RLC radio link control
  • the first routing identifier, the previous hop node BAP address of the IAB node, and the next hop node BAP address of the IAB node belong to the network topology domain of the first Donor-CU, and the first routing identifier's
  • the destination BAP address is the BAP address of the first donor-DU.
  • the path migration configuration further includes: releasing the inter-donor-CU routing identifier rewriting configuration used to indicate the mapping relationship between the first routing identifier and the second routing identifier, releasing Routing configuration for indicating the mapping relationship between the second routing identifier and the BAP address of the next-hop node of the IAB node, or release for indicating the last-hop node address of the IAB node, the ingress link RLC channel identifier
  • the first routing identifier and the last hop node BAP address of the IAB node belong to the network topology domain of the first donor-CU, and the destination BAP address of the first routing identifier is the first donor-CU
  • the BAP address of the DU; the second routing identifier and the next-hop node BAP address of the IAB node belong to the network topology domain of the second donor-CU, and the destination BAP address of the second routing identifier is the first The BAP address of the two donor-DUs.
  • the IAB node or sub-node receives configuration information for configuring to replace the IP address anchored in the second donor-DU with the IP address anchored in the first donor-DU; wherein the IP address uses F1 user plane data, F1 control plane data or non-F1 data on the IAB node or the child node.
  • configuration information is IP address configuration information for the BAP address of the first donor-DU.
  • the path migration configuration includes: adding an inter-donor-DU routing identifier rewriting configuration for indicating the mapping relationship between the first routing identifier and the third routing identifier, Add the routing configuration used to indicate the mapping relationship between the third routing identifier and the next-hop node BAP address of the IAB node, and add the BAP address of the last-hop node and the ingress link RLC channel for indicating the IAB node
  • the first routing identifier, the third routing identifier, the previous hop node BAP address of the IAB node, and the next hop node BAP address of the IAB node belong to the network topology domain of the first donor-CU, and the The destination BAP address of the third routing identifier is the BAP address of the third donor-DU, and the destination BAP address of the first routing identifier is the BAP address of the first donor-DU.
  • the path migration configuration further includes: releasing the donor-CU routing identifier rewriting configuration used to indicate the mapping relationship between the first routing identifier and the second routing identifier, releasing Routing configuration for indicating the mapping relationship between the second routing identifier and the BAP address of the next-hop node of the IAB node, or release for indicating the last-hop node address of the IAB node, the ingress link RLC channel identifier
  • the first routing identifier and the last hop node BAP address of the IAB node belong to the network topology domain of the first donor-CU, and the destination BAP address of the first routing identifier is the first donor-CU
  • the BAP address of the DU; the second routing identifier and the next-hop node BAP address of the IAB node belong to the network topology domain of the second donor-CU, and the destination BAP address of the second routing identifier is the first The BAP address of the two donor-DUs.
  • the IAB node or sub-node receives configuration information for configuring to replace the IP address anchored in the second donor-DU with the IP address anchored in the third donor-DU; wherein the IP address uses F1 user plane data, F1 control plane data or non-F1 data on the IAB node or the child node.
  • configuration information is IP address configuration information for the BAP address of the first donor-DU.
  • a topology regression method after the transmission path of the uplink service of the IAB node is migrated from the first donor-CU to the second donor-CU, it is migrated from the second donor-CU back to the first donor-CU A centralized unit of hosting, the method comprising:
  • the first donor-CU receives the topology regression request sent by the second donor-CU.
  • Path migration configuration for sending uplink data by the first donor-CU
  • the IAB-DU of the IAB node maintains an F1 connection with the first donor-CU.
  • the IP address is used for F1 user plane data, F1 control plane data or non-F1 data of the IAB node or sub-node.
  • the first donor-CU sends to the second donor-CU configuration information for configuring to replace the IP address anchored to the second donor-DU with the IP address anchored to the first donor-DU , or configured to replace the IP address anchored in the second donor-DU with the IP address anchored in the third donor-DU.
  • topology regression request includes identification information of a service whose transmission path migrates from the second donor-CU back to the first donor-CU.
  • An IAB node device including a memory and a processor, the memory stores a computer program, wherein the processor is configured to execute the computer program to implement the method described in any one of Supplements 1 to 54 Topological regression methods.
  • An IAB donor device including a memory and a processor, the memory stores a computer program, wherein the processor is configured to execute the computer program to achieve any one of Supplementary Notes 55 to 69 The topological regression method described.
  • a communication system including an IAB donor device and an IAB node (IAB-node) device; wherein, the IAB node device is configured to perform the topology regression method described in any one of Supplementary Notes 1 to 54, The IAB host device is configured to execute the topology regression method described in any one of Supplements 55 to 69.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种IAB节点设备、IAB宿主设备以及拓扑退行方法。IAB节点的上行业务的传输路径从第一宿主集中单元迁移到第二宿主集中单元后,从第二宿主集中单元迁移回第一宿主集中单元,方法包括:IAB节点或子节点接收网络设备发送的上行数据的路径迁移配置(1101);以及IAB节点或子节点应用路径迁移配置;其中,IAB节点的IAB-DU与第一donor-CU保持F1连接(1102)。

Description

IAB节点设备、IAB宿主设备以及拓扑退行方法 技术领域
本申请实施例涉及通信领域。
背景技术
未来无缝的蜂窝网络部署需要非常灵活和超密集的新无线(NR,new radio)小区部署,超密集网络是5G的目标之一,部署一个无需有线回传的NR网络对于实现5G的超密集网络非常重要。由于5G毫米波使小区覆盖范围缩小,无线自回传系统需要多跳才能满足部署需求。5G的高带宽、大规模多输入多输出(MIMO)和波束系统使5G比LTE更容易开发超密集NR小区的无线自回传系统,为了开发这种带有无线自回传的多跳系统,3GPP在Rel-16开始了集成的接入和回传(IAB,Integrated access and backhaul)项目的研究和标准化。
图1是IAB系统的一示意图,如图1所示,在IAB系统中,接入和回传采用NR的Uu空口无线传输,中继节点同时支持接入(access)和回传(backhaul)功能,中继节点在时域、频域或空域上复用接入链路(access link)和回传链路(backhaul link),接入链路和回传链路可以使用相同或不同的频段。
在IAB网络架构如下,中继节点指的是IAB-node(IAB节点),其同时支持接入和回传功能。网络侧最后一跳接入节点称为IAB-donnor(IAB宿主),其支持gNB功能并支持IAB-node接入。所有的UE数据可以通过一跳或多跳经由IAB-node回传到IAB-donor。
IAB-node的功能分为两部分,一部分是gNB-DU功能,称作IAB-DU(分布单元),另一部分是UE功能,称作IAB-MT(移动终端)。IAB-DU实现网络侧设备功能,连接到下游的child IAB-node(子IAB节点或简称为子节点),对UE以及下游child IAB-node提供NR空口接入并与IAB donor-CU(宿主集中单元)之间建立有F1连接。IAB-MT实现部分终端设备功能,连接到上游的parent IAB-node(父IAB节点或简称为父节点)或IAB donor-DU,IAB-MT包括物理层、层二、RRC(Radio Resource Control,无线资源控制)和NAS(Non-Access Stratum,非接入层)层功能,还间接地连接到IAB Donor-CU以及核心网(Core Network,CN)。
在IAB系统中,IAB-node可以通过独立组网(SA,Standalone)模式或非独立组网(EN-DC,E-UTRA-NRDualConnectivity)模式接入网络。图2是SA模式的IAB架构的示意图。图3是EN-DC模式的IAB架构的示意图。
图4是一个IAB节点(IAB-node)与父节点(parent IAB-node)和子节点(child IAB-node)的示意图。如图4所示,IAB节点的IAB-DU作为网络侧与子节点的IAB-MT连接,IAB节点的IAB-MT作为终端侧与父节点的IAB-DU连接。
图5是IAB-DU和IAB donor-CU之间的F1用户面(F1-U)协议栈的示意图。图6是IAB-DU和IAB donor-CU之间的F1控制面(F1-C)协议栈的示意图。如图5和图6所示,F1-U和F1-C是建立在IAB-DU和IAB donor-CU之间的传输(IP)层之上,图5和图6中经过两跳无线回传和一跳有线回传。
在回传链路上,传输(IP)层承载在回传自适应协议(BAP)子层上,IAB-node中的BAP实体实现IAB系统的路由功能,由IAB donor-CU提供路由表。BAP PDU(协议数据单元)在回传链路的RLC(无线链路控制)信道中传输,回传链路的多个RLC信道可以被IAB-donor配置为承载不同的优先级和QoS(服务质量)的业务,由BAP实体将BAP PDU映射到不同的回传RLC信道上。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的,不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,迁移节点(migrating node)在从源dornor-CU的网络拓扑域迁移到目标dornor-CU的网络拓扑域后,有可能从该目标dornor-CU的网络拓扑域再迁移回源dornor-CU的网络拓扑域,可称为拓扑退行。迁移节点(migrating node)在拓扑退行后可能改变了donor-DU,会导致迁移节点的上行数据无法发送到donor-CU,另外,如果拓扑退行后的donor-DU有IP地址过滤功能,还会丢弃包含由拓扑退行前的donor-DU所分配的IP地址的上行数据,因此导致较长的传输时延和服务中断时间。
为了解决上述问题的至少之一,本申请实施例提供一种IAB节点设备、IAB宿主设备以及拓扑退行方法。
根据本申请实施例的一方面,提供一种拓扑退行方法,IAB节点的上行业务的传 输路径从第一宿主集中单元(donor-CU)迁移到第二宿主集中单元后,从所述第二宿主集中单元迁移回所述第一宿主集中单元,所述方法包括:
IAB节点或子节点接收网络设备发送的上行数据的路径迁移配置;以及
所述IAB节点或子节点应用所述路径迁移配置;
其中,所述IAB节点的IAB-DU与所述第一donor-CU保持F1连接。
根据本申请实施例的另一方面,提供一种IAB节点设备,其上行业务的传输路径从第一宿主集中单元迁移到第二宿主集中单元后,从所述第二宿主集中单元迁移回所述第一宿主集中单元,所述设备包括:
接收部,其接收网络设备发送的上行数据的路径迁移配置;以及
处理部,其应用所述路径迁移配置;其中,所述IAB节点的IAB-DU与所述第一宿主集中单元保持F1连接。
根据本申请实施例的另一方面,提供一种拓扑退行方法,IAB节点的上行业务的传输路径从第一宿主集中单元(donor-CU)迁移到第二宿主集中单元后,从所述第二宿主集中单元迁移回所述第一宿主集中单元,所述方法包括:
所述第一donor-CU接收所述第二donor-CU发送的拓扑退行请求;以及
所述第一donor-CU发送上行数据的路径迁移配置;
其中,所述IAB节点的IAB-DU与所述第一donor-CU保持F1连接。
根据本申请实施例的另一方面,提供一种IAB宿主设备,IAB节点的上行业务的传输路径从第一宿主集中单元迁移到第二宿主集中单元后,从所述第二宿主集中单元迁移回所述第一宿主集中单元,所述设备包括:
接收部,其接收所述第二宿主集中单元发送的拓扑退行请求;以及
发送部,其发送上行数据的路径迁移配置;
其中,所述IAB节点的IAB-DU与所述第一宿主集中单元保持F1连接。
根据本申请实施例的另一方面,提供一种IAB系统,包括IAB宿主设备和IAB节点设备;
所述IAB节点设备的上行业务的传输路径从第一宿主集中单元迁移到第二宿主集中单元后,从所述第二宿主集中单元迁移回所述第一宿主集中单元;其中,所述IAB节点设备接收网络设备发送的上行数据的路径迁移配置;以及应用所述路径迁移配置;其中,所述IAB节点的IAB-DU与所述第一宿主集中单元保持F1连接。
本申请实施例的有益效果之一在于:IAB节点或子节点接收网络设备发送的上行数据的路径迁移配置;以及IAB节点或子节点应用所述路径迁移配置;其中,IAB节点的IAB-DU与所述第一donor-CU保持F1连接。由此,能够减少或避免上行数据被丢弃的问题,降低传输时延和减小服务中断时间。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附附记的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是IAB系统的一示意图;
图2是SA模式的IAB架构的一示意图;
图3是EN-DC模式的IAB架构的一示意图;
图4是父节点(parent IAB-node)和子节点(child IAB-node)的一示意图;
图5是IAB系统的F1-U协议栈的一示意图;
图6是IAB系统的F1-C协议栈的一示意图;
图7是IAB系统路由的一示意图;
图8是网络拓扑自适应的一示意图;
图9是本申请实施例的拓扑退行的一示意图;
图10是本申请实施例的拓扑退行的另一示意图;
图11是本申请实施例的拓扑退行方法的一示意图;
图12是本申请实施例的拓扑退行的一示例图;
图13是本申请实施例的拓扑退行的另一示例图;
图14是本申请实施例的拓扑退行的一信令流程图
图15是本申请实施例的拓扑退行的另一信令流程图;
图16是本申请实施例的IAB节点设备的一示意图;
图17是本申请实施例的IAB宿主设备的一示意图;
图18是本申请实施例的IAB设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附附记的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如新无线(NR,New Radio)、长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband  Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、6G等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、 机器到机器(M2M,Machine to Machine)终端,等等。
IAB系统的路由功能由BAP层实现,每个IAB-node节点保存有路由配置(BH routing configuration)和RLC信道映射配置(BH RLC Channel Mapping Configuration)。BAP实体根据路由配置、RLC信道映射配置和BAP层数据包头中的路由标识(Routing ID)进行路由。Routing ID包含目的BAP地址和路径标识。
路由配置包含Routing ID与下一条(next-hop)节点BAP地址的映射关系。RLC信道映射配置包含上一跳(prior-hop)节点BAP地址、入口链路RLC信道ID和下一跳节点BAP地址与出口链路RLC信道ID的映射关系。
图7是IAB系统路由的一示意图。如图7所示,对于每个数据包,可以通过数据包头的routing ID从路由配置查找到下一跳节点BAP地址。上一跳节点BAP地址、入口链路RLC信道ID都是已知的。这样,下一跳节点BAP地址确定之后,就可以通过RLC信道映射配置,根据上一跳节点BAP地址+入口链路RLC信道ID+下一跳节点BAP地址查到出口链路RLC信道ID。
IAB-donor DU保存有路由配置(BH routing configuration)和下行RLC信道映射配置(Downlink Traffic to BH RLC Channel Mapping Configuration)。IAB-donor DU根据路由配置、RLC信道映射配置和BAP层数据包头中的Routing ID进行路由。路由配置包含Routing ID与下一条节点地址的映射关系。下行RLC信道映射配置包含目标IP地址、DSCP(Differentiated Services Code Point,差分服务代码点)和下一跳节点地址与出口链路RLC信道ID的映射关系。
对于每个到达IAB-donor DU的下行数据包,IAB-donor DU可根据数据包头中的Routing ID从路由配置查到下一跳节点地址。这样,下一跳节点地址确定之后,再根据数据包的IP地址和DSCP,从下行RLC信道映射配置查到出口链路RLC信道ID。
以上示意性说明了IAB系统的路由,以下再说明IAB系统的网络拓扑的更新。Rel-16NR已经对IAB-node在同一个donor-CU下移动时拓扑自适应(topology adaptation)过程进行了标准化。
图8是CU内(intra-CU)拓扑自适应的一示意图。IAB-node改变父节点(从IAB-node 1改变为IAB-node 2)时,donor-CU通过RRC重配置消息为IAB-node配置路径迁移相关的配置,使IAB-node进行F1传输路径的迁移。
路径迁移相关的配置包括对上行F1-C、F1-U和非F1数据的默认回传RLC信道 (default BH RLC channel)的更新,对默认BAP路由标识(default BAP routing ID)的更新,以及对路由至Donor-DU的IP地址的更新。IAB-node接入到新的父节点时开始应用上述路径迁移相关的配置,对于IAB-node的子节点,也通过相同的方法进行路径迁移相关的配置。
3GPP R17支持IAB-node在不同donor-CU下移动时的拓扑自适应,迁移节点(migrating node)可以从源dornor-CU(也可称为F1-terminating CU或第一dornor-CU)服务的父节点切换到目标dornor-CU(也可称为non-F1-terminating CU或第二dornor-CU)服务的父节点。
迁移节点从F1-terminating CU切换到non-F1-terminating CU后,只是IAB-MT的RRC连接切换到non-F1-terminating CU,F1接口仍然属于F1-terminating CU,其服务的子节点和UE的RRC连接仍属于F1-terminating CU,此时迁移节点也可称为boundary node。
boundary node的F1及非F1数据的routing ID和子节点的F1或非F1数据的routing ID可以保持不变,但是boundary node需要将上行业务的原来routing ID替换成目标routing ID。其中,原来routing ID属于F1-terminating CU的拓扑域,其目的BAP地址为F1-terminating CU下的原来donor-DU,替换后routing ID属于non-F1-terminating CU拓扑域,其目的BAP地址为non-F1-terminating CU下的目标donor-DU。
另外,boundary node可能从non-F1-terminating CU重新切换回F1-terminating CU,即进行拓扑退行。boundary node切换回F1-terminating CU时,boundary node不再需要把原来routing ID替换成non-F1-terminating CU域的routing ID,但是需要具有针对原来routing ID的路由配置和从boudanry node到F1-terminating CU侧的父节点的BH RLC信道映射配置。
发明人发现,boundary node切换回F1-terminating CU时,如果F1-terminating CU的donor-DU有IP地址过滤功能,会导致携带non-F1-terminating CU侧的donor-DU分配的IP地址的上行数据无法发送到dornor-CU,从而导致较长的传输时延和服务中断时间。
图9是本申请实施例的拓扑退行的一示意图。如图9所示,IAB节点3从源dornor-CU的dornor-DU 1迁移到目标dornor-CU的dornor-DU 2后,从目标dornor-CU 的dornor-DU 2再退行到源dornor-CU的dornor-DU 1。如果源dornor-CU的donor-DU 1具有IP地址过滤功能,则会导致携带目标dornor-CU侧的donor-CU 2分配的IP地址的上行数据无法发送到源dornor-CU,因为会被源dornor-CU侧的donor-DU 2丢弃。被丢弃的上行数据会被UE重传,因此导致较长的传输时延和服务中断时间。
此外,发明人还发现,boundary node切换回F1-terminating CU时,如果boundary node回切后的donor-DU与原donor-DU不同,会导致迁移节点及子节点根据原来routing ID产生的上行数据无法发送到F1-terminating CU,从而导致较长的传输时延和服务中断时间。
图10是本申请实施例的拓扑退行的另一示意图。如图10所示,IAB节点3从源dornor-CU的dornor-DU 1迁移到目标dornor-CU的dornor-DU 2后,从目标dornor-CU的dornor-DU 2再退行到源dornor-CU的dornor-DU 3。回切后的donor-DU 3与原来的donor-DU 1不同,会导致迁移节点及子节点根据原来的routing ID产生的上行数据无法发送到源dornor-CU。因为根据原来的routing ID产生的上行数据携带的是donor-DU 1的BAP地址,与donor-DU 3的BAP地址不同,这些上行数据会被目标donor-DU 3丢弃。被丢弃的上行数据会被UE重传,因此导致较长的传输时延和服务中断时间。
针对以上问题或相似问题的至少之一,本申请实施例的IAB节点或子节点在IAB节点的IAB-MT从第二donor-CU切换回第一donor-CU之前或切换回第一donor-CU之后,接收网络设备发送的上行数据的路径迁移配置,以下进行详细说明。在本申请实施例中,在没有特别说明的情况下,迁移节点为IAB节点,IAB节点设备包括IAB节点或其子节点。
第一方面的实施例
本申请实施例提供一种拓扑退行方法,从IAB节点或子节点侧进行说明。其中,IAB节点的上行业务的传输路径从第一宿主集中单元(donor-CU)迁移到第二宿主集中单元后,从所述第二宿主集中单元迁移回所述第一宿主集中单元。
图11是本申请实施例的拓扑退行方法的一示意图。如图11所示,该方法包括:
1101,IAB节点或子节点接收网络设备发送的上行数据的路径迁移配置;以及
1102,IAB节点或子节点应用所述路径迁移配置;其中,IAB节点的IAB-DU与 第一donor-CU保持F1连接。
值得注意的是,以上附图11仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图11的记载。
以下对IAB节点的上行业务(包括F1-C、F1-U和non-F1业务)的传输路径从第一宿主集中单元(donor-CU)迁移到第二宿主集中单元的情况进行说明。
IAB节点的上行业务从F1-terminating CU迁移到non-F1-terminating CU时,网络设备会将原来routing ID和目标routing ID的映射关系,即宿主集中单元间路由标识重写信息(BAP Header Rewriting Information)配置给IAB节点。
之后IAB节点转发上行数据时,将原来routing ID替换成目标routing ID,由于目标routing ID属于non-F1-terminating CU域,IAB节点需要根据目标routing ID和目标donor-CU的拓扑域的路由信息进行路由选择。因此网络设备会给IAB节点配置下一跳节点BAP地址属于non-F1-terminating CU的拓扑域的路由信息(路径迁移前的路由信息中egress link下一跳节点BAP地址属于F1-terminating CU的拓扑域)。
由于IAB节点的上一跳节点BAP地址属于F1-terminating CU的拓扑域,下一跳节点BAP地址属于non-F1-terminating CU的拓扑域,因此网络设备会重配IAB节点中的RLC信道映射信息(路径迁移前的RLC信道映射信息中上一跳节点地址和下一跳节点地址都属于F1-terminating CU的拓扑域)。
以下通过IAB节点上行业务(包括F1-C、F1-U和non-F1业务)的传输路径从第二donor-CU迁移回第一donor-CU的不同场景,进一步对本申请实施例进行说明。以下先以切换场景为例进行说明,其中,IAB节点或子节点在所述IAB节点的IAB-MT从第二donor-CU切换回第一donor-CU之前或切换回第一donor-CU之后,接收网络设备发送的上行数据的路径迁移配置。在切换场景中,需要将IAB节点的全部上行业务的传输路径由第二donor-CU迁移回第一donor-CU。
在一些实施例中,IAB节点的上行业务的传输路径从第一donor-CU的第一宿主分布单元(donor-DU)迁移到第二donor-CU的第二donor-DU后,从第二donor-CU的第二donor-DU迁移回第一donor-CU的第一donor-DU。
在一些实施例中,路径迁移配置由第一donor-CU通过F1AP消息或RRC消息发 送给IAB节点或子节点。
在一些实施例中,针对需要切换回第一donor-CU的上行业务,路径迁移配置包括:增加用于指示第一路由标识与IAB节点的下一跳节点BAP地址之间映射关系的路由配置,以及增加用于指示IAB节点的上一跳节点BAP地址、入口链路无线链路控制(RLC)信道标识和IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第一RLC信道映射配置;
第一路由标识、IAB节点的上一跳节点BAP地址和IAB节点的下一跳节点BAP地址属于第一Donor-CU的网络拓扑域,第一路由标识的目的BAP地址为第一donor-DU的BAP地址。
例如,当boundary node从non-F1-terminating CU切换回到F1-terminating CU时,如果切换后的父节点还是使用原来的donor-DU,网络设备只需要将针对原来routing ID的属于F1-terminating CU拓扑域的路由信息以及从boundary node到切换后的父节点的RLC信道映射信息(上一跳节点地址和下一跳节点地址都属于F1-terminating CU域)配置给boundary node。
在一些实施例中,IAB节点或子节点在IAB-MT执行从第二donor-CU切换回第一donor-CU之前,接收路径迁移配置。
此外,为了避免回切后没有可用的路由或出口RLC信道而造成上行数据丢失,网络设备需要在boundary node执行回切之前配置针对原来routing ID的属于F1-terminating CU拓扑域的路由信息以及回切后从boundary node到父节点的RLC信道映射信息(上一跳节点地址和下一跳节点地址都属于F1-terminating CU的拓扑域)。所以,non-F1-terminating CU可以在回切准备之前或回切准备时发起拓扑退行,以便完成回切后应用这些参数。
针对迁移回第一donor-CU的上行业务,需要释放对应的路由标识重写标识、路由信息以及RLC信道映射信息。在一些实施例中,路径迁移配置还包括:释放用于指示第一路由标识与第二路由标识之间映射关系的donor-CU间路由标识重写配置,释放用于指示第二路由标识与IAB节点的下一跳节点的BAP地址之间映射关系的路由配置,或者释放用于指示IAB节点的上一跳节点地址、入口链路RLC信道标识和IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第二RLC信道映射配置;
其中,第一路由标识和IAB节点的上一跳节点BAP地址属于第一donor-CU的网络拓扑域,第一路由标识的目的BAP地址为第一donor-DU的BAP地址;第二路由标识和IAB节点的下一跳节点BAP地址属于第二donor-CU的网络拓扑域,第二路由标识的目的BAP地址为所述第二donor-DU的BAP地址。
例如,路径迁移配置中可以包括释放路由标识重写配置、释放路由配置、释放第二RLC信道映射配置中的其中一种,也可以是任意两种,还可以是全部三种配置,本申请不限于此。
图12是本申请实施例的拓扑退行的一示例图。如图12所示,IAB节点3(包括IAB-MT 3和IAB-DU 3)为迁移节点,其业务的传输路径从源donor-CU的donor-DU 1迁移到目标donor-CU的donor-DU 2。IAB节点3的IAB-MT 3切换完成后,再从目标donor-CU的donor-DU 2迁移回源donor-CU的donor-DU 1。
如图12的右边部分的实线所示,IAB节点3的上行业务及子节点(例如图中所示的IAB节点4和IAB节点5等)的上行业务的routing ID可以保持不变,即仍然使用目的地址为dornor-DU 1的routing ID。
以上对于routing ID的情况进行了说明,以下再对IP地址的情况进行说明。
在一些实施例中,为了将业务迁移回第一donor-CU,IAB节点或子节点接收第一donor-CU发送的配置信息,所述配置信息被用于配置用锚定于第一donor-DU的IP地址替换锚定于第二donor-DU的IP地址的配置信息;其中,所述IP地址用于IAB节点或子节点的F1用户面数据、F1控制面数据或非F1数据。
例如,如果第一donor-DU具有源IP地址过滤功能,也即会丢弃包含由其他donor-DU分配的IP地址的上行数据,迁移节点需要将上行业务携带的IP地址修改为第一donor-DU分配的IP地址。因此,donor-CU将目标donor-DU分配的IP地址在迁移节点执行切换之前配置给迁移节点。
在本申请实施例中,“锚定于donor-DU的IP地址(IP address anchored to IAB donor-DU)”可以理解为“由donor-DU分配的IP地址”或者“经由donor-DU可路由的传输网络层(TNL)地址(TNL address(es)that is(are)routable via the IAB-donor-DU)”,以上术语可以相互替换,本申请不限于此。
业务(包括上行和下行业务)的routing ID在迁移节点及子节点中可以保持不变,但锚定于第二donor-DU的IP地址需要被替换为锚定于第一donor-DU的IP地址。而 IAB节点及子节点是根据第一donor-DU的地址选择使用的IP地址,因此对业务的IP地址的配置需要针对第一donor-DU的BAP地址,包括增加锚定于第一donor-DU的IP地址和释放锚定于第二donor-DU的IP地址。
在一些实施例中,配置信息为针对第一donor-DU的BAP地址的IP地址配置信息。例如,该配置信息用于将针对第一donor-DU的BAP地址的锚定于第二donor-DU的IP地址修改为锚定于第一donor-DU的IP地址。
在一些实施例中,IAB节点或子节点在IAB-MT执行从第二donor-CU切换回第一donor-CU之前,接收配置信息。
在一些实施例中,IAB节点或子节点在IAB-MT从第二donor-CU切换回第一donor-CU完成时,用锚定于第一donor-DU的IP地址替换锚定于第二donor-DU的IP地址。
例如,迁移节点需要在完成切换时,立即应用第一donor-DU分配的IP地址。再例如,上述“替换”还可以理解为“增加锚定于第一donor-DU的IP地址和释放锚定于第二donor-DU的IP地址”。
在一些实施例中,IAB节点的配置信息由宿主集中单元通过切换命令无线资源控制(RRC)消息或者RRC重配置消息发送。子节点的配置信息由宿主集中单元通过RRC重配置消息发送。
例如,如果F1-terminating CU下的donor-DU有IP地址过滤功能,为了减少上行数据的丢弃,网络设备需要将F1-terminating CU的donor-DU为boundary node分配的IP地址在boundary node执行切换之前配置给boundary node,以便boundary node完成切换时立即应用该IP地址。
此外,网络设备需要将F1-terminating CU下的donor-DU为子节点分配的IP地址在boundary node执行切换之前配置给子节点,以便子节点在boundary node完成切换时立即应用该分配的IP地址。
再例如,在完成回切时boundary node可以给子节点发送指示,使子节点应用上述IP地址的配置;或者,在切换完成前由子节点的父节点缓存为子节点配置的上述IP地址,直到boundary node完成回切再发送给子节点。
以上示意性说明了迁移节点的上行业务的传输路径迁移回原dornor-DU的情况,以下再对迁移节点的上行业务传输路径迁移回其他dornor-DU的情况进行说明。
在一些实施例中,IAB节点的上行业务的传输路径从第一donor-CU的第一donor-DU迁移到第二donor-CU的第二donor-DU后,从第二donor-CU的第二donor-DU迁移回第一donor-CU的第三donor-DU。
在一些实施例中,针对迁移回第一donor-CU的上行业务,所述路径迁移配置包括:增加用于指示第一路由标识与第三路由标识之间映射关系的donor-DU间路由标识重写配置,增加用于指示第三路由标识与IAB节点的下一跳节点BAP地址之间映射关系的路由配置,以及增加用于指示IAB节点的上一跳节点BAP地址、入口链路RLC信道标识和IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第一RLC信道映射配置;
第一路由标识、第三路由标识、IAB节点的上一跳节点BAP地址和IAB节点的下一跳节点BAP地址属于第一donor-CU的网络拓扑域,第三路由标识的目的BAP地址为第三donor-DU的BAP地址,第一路由标识的目的BAP地址为第一donor-DU的BAP地址。
在一些实施例中,IAB节点或子节点在IAB-MT执行从第二donor-CU切换回第三donor-CU之前,接收所述路径迁移配置。
针对迁移回第一donor-CU的上行业务,需要释放对应的路由标识重写标识、路由信息以及RLC信道映射信息。在一些实施例中,路径迁移配置还包括:释放用于指示第一路由标识与第二路由标识之间映射关系的donor-CU间路由标识重写配置,释放用于指示第二路由标识与IAB节点的下一跳节点的BAP地址之间映射关系的路由配置,或者释放用于指示IAB节点的上一跳节点地址、入口链路RLC信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第二RLC信道映射配置;
其中,第一路由标识和IAB节点的上一跳节点BAP地址属于第一donor-CU的网络拓扑域,第一路由标识的目的BAP地址为第一donor-DU的BAP地址;第二路由标识和IAB节点的下一跳节点BAP地址属于第二donor-CU的网络拓扑域,第二路由标识的目的BAP地址为第二donor-DU的BAP地址。
例如,路径迁移配置中可以包括释放路由标识重写配置、释放路由配置、释放第二RLC信道映射配置中的其中一种,也可以是任意两种,还可以是全部三种配置,本申请不限于此。
图13是本申请实施例的拓扑退行的另一示例图。如图13所示,IAB节点3(包括IAB-MT 3和IAB-DU 3)为迁移节点,其业务的传输路径从源donor-CU的donor-DU1迁移到目标donor-CU的donor-DU 2后,再从目标donor-CU的donor-DU 2迁移回源donor-CU的donor-DU 3。
IAB节点3的IAB-MT 3回切完成后,IAB节点3的上行业务及子节点(例如图中所示的IAB节点4和IAB节点5等)的上行业务的routing ID可以保持不变,如右边部分的实线所示。
在一些实施例中,由于IAB节点已经接收到网络设备发送的映射关系信息(inter-donor-DU rewriting information),IAB节点可以将上行数据的BAP头部中携带的第一路由标识重写(rewrite)为第三路由标识。
例如,如图13中右边部分的虚线所示,IAB节点3需要将上行业务和子节点(例如图中所示的IAB节点4和IAB节点5等)的上行业务的原来routing ID替换成目标routing ID。其中,原来routing ID的目的BAP地址为源donor-CU的donor-DU 1,替换后routing ID的目的BAP地址为源donor-CU的donor-DU 3。
再例如,源routing ID替换成目标routing ID后,可以根据目标routing ID进行路由选择和backhaul RLC信道选择,donor-CU更新迁移节点中的路由信息(因为原来路由信息不包含目标routing ID可用的路由)和RLC信道映射信息。
迁移节点可以在完成切换或接收到配置时,应用inter-donor-DU rewriting information、新路由信息和RLC信道映射信息。donor-CU可以指示迁移节点先缓存上述路径迁移配置,并在IAB-MT完成切换时应用上述路径迁移配置。
以上对于routing ID的情况进行了说明,以下再对IP地址的情况进行说明。
在一些实施例中,为了将业务迁移回第一donor-CU,IAB节点或子节点接收用于配置用锚定于第三donor-DU的IP地址替换锚定于第二donor-DU的IP地址的配置信息;其中,所述IP地址用于IAB节点或子节点的F1用户面数据、F1控制面数据或非F1数据。
例如,如果donor-DU 3具有IP地址过滤功能,也即会丢弃包含由其他donor-DU分配的IP地址的上行数据,迁移节点需要将上行F1-U数据携带的IP地址修改为donor-DU 3分配的IP地址。因此,donor-CU将F1-U的donor-DU 3分配的IP地址在迁移节点执行切换之前配置给迁移节点。
在本申请实施例中,“锚定于donor-DU的IP地址(IP address anchored to IAB donor-DU)”可以理解为“由donor-DU分配的IP地址”或者“经由donor-DU可路由的传输网络层(TNL)地址(TNL address(es)that is(are)routable via the IAB-donor-DU)”,以上术语可以相互替换,本申请不限于此。
在一些实施例中,IAB节点或子节点在IAB-MT执行从第二donor-CU切换回第一donor-CU之前,接收上述配置信息。
业务(包括上行和下行业务)的routing ID在迁移节点及子节点中可以保持不变,但锚定于第二Donor-DU的IP地址需要被替换为锚定于第三Donor-DU的IP地址。而IAB节点及子节点是根据第一Donor-DU的地址选择使用的IP地址,因此对业务的IP地址的配置需要针对第一Donor-DU的BAP地址,包括增加锚定于第三donor-DU的IP地址和释放锚定于第二donor-DU的IP地址。
在一些实施例中,配置信息为针对第一donor-DU的BAP地址的IP地址配置信息。例如,该配置信息用于将针对第一donor-DU的BAP地址的锚定于第二donor-DU的IP地址修改为锚定于第三donor-DU的IP地址。
在一些实施例中,IAB节点或子节点在IAB-MT从第二donor-CU切换回第一donor-CU完成时,用锚定于第三donor-DU的IP地址替换锚定于第二donor-DU的IP地址。
例如,迁移节点需要在完成切换时,立即应用donor-DU 3分配的IP地址。再例如,上述“替换”还可以理解为“增加锚定于第三donor-DU的IP地址和释放锚定于第二donor-DU的IP地址”。
在一些实施例中,IAB节点的配置信息由宿主集中单元通过切换命令无线资源控制(RRC)消息或者RRC重配置消息发送。子节点的配置信息由宿主集中单元通过RRC重配置消息发送。
以上以切换场景为例进行了示意性说明,以下再对重建立场景和双连接场景进行说明。与以上切换场景相同的内容,此处不再赘述。
在一些实施例中,IAB节点或子节点在所述IAB节点的IAB-MT重建立到所述第二donor-CU后,接收网络设备发送的上行数据的路径迁移配置;以及所述IAB节点或子节点应用所述路径迁移配置;其中,所述IAB节点的IAB-DU与所述第一donor-CU保持F1连接。在重建立场景中,需要将IAB节点的全部业务的传输路径由 第二donor-CU迁移回第一donor-CU。
在一些实施例中,IAB节点或子节点接收网络设备发送的上行数据的路径迁移配置;以及所述IAB节点或子节点应用所述路径迁移配置;其中,所述IAB节点的IAB-MT与所述第一donor-CU和所述第二donor-CU建立有双连接,所述IAB节点的IAB-DU与所述第一donor-CU保持F1连接。在双连接场景下,可以只将部分IAB节点的业务的传输路径由第二donor-CU迁移回第一donor-CU。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,IAB节点或子节点接收网络设备发送的上行数据的路径迁移配置;以及所述IAB节点或子节点应用所述路径迁移配置;其中,所述IAB节点的IAB-DU与所述第一donor-CU保持F1连接。由此,能够减少或避免上行数据被丢弃的问题,降低传输时延和减小服务中断时间。
第二方面的实施例
本申请实施例提供一种拓扑退行方法,从宿主集中单元侧进行说明。与第一方面的实施例相同的内容不再赘述。
在一些实施例中,IAB节点的上行业务的传输路径从第一宿主集中单元(donor-CU)迁移到第二宿主集中单元后,从所述第二宿主集中单元迁移回所述第一宿主集中单元。第一donor-CU接收第二donor-CU发送的拓扑退行请求;以及第一donor-CU发送上行数据的路径迁移配置;其中,IAB节点的IAB-DU与第一donor-CU保持F1连接。
在一些实施例中,IAB节点的上行业务的传输路径从第一donor-CU的第一宿主分布单元(donor-DU)迁移到第二donor-CU的第二donor-DU后,从第二donor-CU的第二donor-DU迁移回第一donor-CU的第一donor-DU。
在一些实施例中,IAB节点的上行业务的传输路径从第一donor-CU的第一donor-DU迁移到第二donor-CU的第二donor-DU后,从第二donor-CU的第二donor-DU迁移回第一donor-CU的第三donor-DU。
在一些实施例中,第一donor-CU将路径迁移配置通过F1AP消息或RRC消息发 送给IAB节点或所述子节点。
在一些实施例中,拓扑退行请求包含针对第一donor-DU的BAP地址的锚定于第二donor-DU的IP地址;其中,所述IP地址被用于IAB节点或子节点的F1用户面数据、F1控制面数据或非F1数据。
在一些实施例中,第一donor-CU向第二donor-CU发送用于配置用锚定于第一donor-DU的IP地址替换锚定于第二donor-DU的IP地址的配置信息,或者用于配置用锚定于第三donor-DU的IP地址替换锚定于第二donor-DU的IP地址的配置信息。
以下先以切换场景为例进行说明。
在一些实施例中,第一donor-CU在IAB节点的IAB-MT从第二donor-CU切换回第一donor-CU之前或切换回第一donor-CU之后,发送上行数据的路径迁移配置。
在一些实施例中,第二donor-CU在发送针对IAB-MT切换回第一donor-CU的切换请求之后,向第一donor-CU发送拓扑退行请求。
图14是本申请实施例的拓扑退行的一信令流程图,示例性示出了IAB节点(boundary node)从non-F1-terminating CU切换回F1-terminating CU时,在切换准备之后进行拓扑退行的情况。
-boundary node向目标donor-CU发送测量报告,触发non-F1-terminating CU(目标donor-CU))发起回切到F1-terminating CU(源donor-CU)的切换准备。
-boundary node完成回切后,目标donor-CU向源donor-CU发送针对boudary node-MT的UE上下文释放请求。
-目标donor-CU向源donor-CU发送拓扑退行请求Xn消息(针对boundary node的UA(UE-associated消息)并使用boundary node的XnAP标识)。包括:对迁移节点,请求为F1或非F1业务分配IP地址;对子节点,请求为F1和非F1业务分配IP地址。
-如果boundary node切换回原来的donor-DU,给boundary node配置针对原来routing ID在F1-terninated CU拓扑域中的路由信息,配置新的属于F1-terminating CU拓扑的RLC信道映射信息,请求原来donor-DU为boundary node的F1和非F1业务分配IP地址,请求原来donor-DU为子节点的F1和非F1业务分配IP地址。
如果boundary node不是切换回原来的donor-DU,给boundary node配置F1-terminating CU域的inter-donor-DU rewriting information,给boundary node配置针 对替换后的目标routing ID在F1-terninating CU拓扑域中的路由信息,配置新的属于F1-terminating CU拓扑的RLC信道映射信息,请求新donor-DU为boundary node的F1和非F1业务分配IP地址,请求新donor-DU为子节点的F1和非F1业务分配IP地址。
-源donor-CU使用F1AP消息向boundary node发送以上inter-donor-DU rewriting information、路由信息及RLC信道映射信息,并释放以下配置:BAP Header Rewriting Information,Non-F1-terminating CU域的路由信息,上一跳节点地址属于F1-terminating CU拓扑并且下一跳节点地址属于non-F1-terminating CU拓扑的RLC信道映射信息。
-源donor-CU向boundary node发送RRC重配置消息(包含用于F1和非F1业务的F1-terninating-CU下的新donor-DU或原donor-DU分配的IP地址)。
-源donor-CU向子节点发送RRC重配置消息(包含用于F1和非F1业务的F1-terninating-CU下的新donor-DU或原donor-DU分配的IP地址)。
-(可选地)源donor-CU对原路径上的节点进行路由信息和RLC信道映射信息更新。
-boundary node应用配置的IP地址。
-子节点应用配置的IP地址。
-源donor-CU向目标donor-CU发送拓扑退行响应Xn消息。(针对boundary node的UA(UE-associated消息)并使用boundary node的XnAP标识)。
-目标donor-CU/源dornor-CU释放针对boundary node的XnAP标识。
以上信令过程仅示意性对本申请实施例进行了说明,但本申请不限于此,关于信令的更具体的内容,还可以参考相关技术。
在一些实施例中,第二donor-CU将拓扑退行请求包含在针对IAB-MT切换回第一donor-CU的切换请求中。
在一些实施例中,所述配置信息包含于针对所述IAB-MT切换回所述第一donor-CU的切换请求响应消息包含的RRC重配置消息中。
图15是本申请实施例的拓扑退行的另一信令流程图,示例性示出了IAB节点(boundary node)从non-F1-terminating CU切换回F1-terminating CU时,在切换准备的同时进行拓扑退行的情况。即,切换请求消息中包含拓扑回退请求,与图14相比 能够减少上行数据丢弃和服务中断。
-boundary node向目标donor-CU发送测量报告,触发non-F1-terminating CU(目标donor-CU)发起回切到F1-terminating CU(源donor-CU)的切换准备。
切换请求消息中包含拓扑回退请求,可以包括以下信息:对迁移节点,请求为F1或非F1业务分配IP地址;对子节点,请求为F1和非F1业务分配IP地址。
-如果boundary node切换回原来的donor-DU,则给boundary node配置针对原来routing ID在F1-terninated CU拓扑域中的路由信息,配置新的属于F1-terminating CU拓扑的RLC信道映射信息,请求原来donor-DU为boundary node的F1和非F1业务分配IP地址,请求原来donor-DU为子节点的F1和非F1业务分配IP地址。
如果boundary node不是切换回原来的donor-DU,则给boundary node配置F1-terminating CU域的inter-donor-DU rewriting information,给boundary node配置针对替换后routing ID在F1-terninated CU拓扑域中的路由信息,配置新的属于F1-terminating CU拓扑的RLC信道映射信息,请求新donor-DU为boundary node的F1和非F1业务分配IP地址,请求新donor-DU为子节点的F1和非F1业务分配IP地址。
-源donor-CU使用F1AP消息向boundary node发送以上inter-donor-DU rewriting information、路由信息及RLC信道映射信息,并释放以下配置:BAP Header Rewriting Information,Non-F1-terminating CU域的路由表,上一跳节点地址属于F1-terminating CU拓扑并且下一跳节点地址属于non-F1-terminating CU拓扑的RLC信道映射信息。
-源donor-CU向子节点发送RRC重配置消息(包含用于F1和非F1业务的F1-terminating-CU下的新donor-DU或原donor-DU分配的IP地址)。
-源donor-CU向目标donor-CU发送切换请求响应Xn消息,包含针对boundary node的切换命令RRC消息。
-目标donor-CU向boundary node发送切换命令RRC重配置消息(包含用于F1和非F1业务的F1-terminating-CU下的新donor-DU或原donor-DU分配的IP地址)。
-boundary node执行切换的随机接入过程。
-(可选地)源donor-CU对原路径上的节点进行路由表和RLC信道映射表更新。
-boundary node完成切换时应用配置的IP地址。
-子节点在boundary node完成切换时应用配置的IP地址。
-boundary node完成回切后,源donor-CU向目标donor-CU发送针对boudary node-MT的UE上下文释放请求。
-源donor-CU/目标dornor-CU释放针对boundary node的XnAP标识。
以上信令过程仅示意性对本申请实施例进行了说明,但本申请不限于此,关于信令的更具体的内容,还可以参考相关技术。
在一些实施例中,第二donor-CU在发送针对IAB-MT切换回第一donor-CU的切换请求之前,向第一donor-CU发送拓扑退行请求。
如果在切换准备之前进行拓扑退行,信令流程与图15类似。不同之处例如包括拓扑退行请求是独立的Xn消息。此外,因为是独立的Xn消息,拓扑退行请求可以指示源donor-CU在切换准备响应中包含的切换命令RRC消息中携带分配的IP地址,而不是在拓扑退行响应消息中携带,由此,boundary node完成切换时可以立即应用配置的IP地址。
以上对于切换场景进行了示意性说明,但本申请不限于此。以下再对重建立场景和双连接场景进行说明,相同的内容不再赘述。
在一些实施例中,第一donor-CU在IAB节点的IAB-MT重建立到第二donor-CU后,发送上行数据的路径迁移配置。在该类场景中,第一donor-CU可以触发第二donor-CU发起拓扑回退请求,例如,当IAB-MT重建立到第一donor-CU时,第一donor-CU向第二donor-CU请求获取IAB-MT的上下文信息时,触发第二donor-CU发起拓扑回退请求。
在一些实施例中,IAB节点的IAB-MT与第一donor-CU和第二donor-CU建立有双连接。在该类场景下,例如拓扑退行请求包含传输路径从第二donor-CU迁移回第一donor-CU的业务的标识信息。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,IAB节点或子节点的上行业务传输路径由第二donor-CU迁移回第一donor-CU时,接收网络设备发送的上行数据的路径迁移配置;以及所述IAB节点或子节点应用所述路径迁移配置;其中,所述IAB节点的IAB-DU与所述第一donor-CU保持F1连接。由此,能够减少或避免上行数据被丢弃的问题,降低传输时 延和减小服务中断时间。
第三方面的实施例
本申请实施例提供一种IAB节点设备,与第一、二方面的实施例相同的内容不再赘述。该设备例如可以是IAB系统中的IAB节点或子节点,也可以是配置于该IAB节点或子节点中的某个或某些部件或者组件或者模块。该IAB节点设备的上行业务的传输路径从第一宿主集中单元迁移到第二宿主集中单元后,从第二宿主集中单元迁移回第一宿主集中单元。
图16是本申请实施例的IAB节点设备的一示意图。如图16所示,IAB节点设备1600包括:接收部1601和处理部1602。接收部1601接收网络设备发送的上行数据的路径迁移配置;以及处理部1602应用所述路径迁移配置;其中,IAB节点的IAB-DU与第一Donor-CU保持F1连接。
在一些实施例中,IAB节点的上行业务的传输路径从第一donor-CU的第一宿主分布单元(donor-DU)迁移到第二donor-CU的第二donor-DU后,从第二donor-CU的第二donor-DU迁移回第一donor-CU的第一donor-DU。
在一些实施例中,路径迁移配置由第一donor-CU通过F1AP消息或RRC消息发送给IAB节点或子节点。
在一些实施例中,路径迁移配置包括:增加用于指示第一路由标识与所述IAB节点的下一跳节点BAP地址之间映射关系的路由配置,以及增加用于指示所述IAB节点的上一跳节点BAP地址、入口链路无线链路控制(RLC)信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第一RLC信道映射配置;
第一路由标识、IAB节点的上一跳节点BAP地址和IAB节点的下一跳节点BAP地址属于第一Donor-CU的网络拓扑域,第一路由标识的目的BAP地址为第一donor-DU的BAP地址。
在一些实施例中,接收部1601在IAB-MT执行从第二donor-CU切换回第一donor-CU之前,接收路径迁移配置。
在一些实施例中,路径迁移配置还包括:释放用于指示第一路由标识与第二路由标识之间映射关系的donor-CU间路由标识重写配置,释放用于指示第二路由标识与 所述IAB节点的下一跳节点的BAP地址之间映射关系的路由配置,或者释放用于指示所述IAB节点的上一跳节点地址、入口链路RLC信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第二RLC信道映射配置;
其中,所述第一路由标识和所述IAB节点的上一跳节点BAP地址属于所述第一donor-CU的网络拓扑域,所述第一路由标识的目的BAP地址为所述第一donor-DU的BAP地址;所述第二路由标识和所述IAB节点的下一跳节点BAP地址属于所述第二donor-CU的网络拓扑域,所述第二路由标识的目的BAP地址为所述第二donor-DU的BAP地址。
在一些实施例中,接收部1601还接收用于配置用锚定于所述第一donor-DU的IP地址替换锚定于所述第二donor-DU的IP地址的配置信息;其中,所述IP地址用于所述IAB节点或所述子节点的F1用户面数据、F1控制面数据或非F1数据。
在一些实施例中,接收部1601在所述IAB-MT执行从所述第二donor-CU切换回所述第一donor-CU之前,接收所述配置信息;
处理部1602在所述IAB-MT从所述第二donor-CU切换回所述第一donor-CU完成时,用锚定于所述第一donor-DU的IP地址替换锚定于所述第二donor-DU的IP地址。
在一些实施例中,IAB节点的配置信息通过切换命令无线资源控制(RRC)消息或者RRC重配置消息发送,子节点的配置信息通过RRC重配置消息发送。
在一些实施例中,配置信息为针对第一donor-DU的BAP地址的IP地址配置信息。例如,该配置信息将针对第一donor-DU的BAP地址的锚定于第二donor-DU的IP地址修改为锚定于第一donor-DU的IP地址。
在一些实施例中,IAB节点的上行业务的传输路径从第一donor-CU的第一donor-DU迁移到第二donor-CU的第二donor-DU后,从第二donor-CU的第二donor-DU迁移回第一donor-CU的第三donor-DU;
路径迁移配置由第一donor-CU通过F1AP消息发送给IAB节点或子节点。
在一些实施例中,路径迁移配置包括:增加用于指示第一路由标识与第三路由标识之间映射关系的donor-DU间路由标识重写配置,增加用于指示第三路由标识与所述IAB节点的下一跳节点BAP地址之间映射关系的路由配置,以及增加用于指示所述IAB节点的上一跳节点BAP地址、入口链路RLC信道标识和所述IAB节点的下 一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第一RLC信道映射配置;
所述第一路由标识、第三路由标识、所述IAB节点的上一跳节点BAP地址和所述IAB节点的下一跳节点BAP地址属于所述第一donor-CU的网络拓扑域,所述第三路由标识的目的BAP地址为所述第三donor-DU的BAP地址,所述第一路由标识的目的BAP地址为所述第一donor-DU的BAP地址。
在一些实施例中,接收部1601在IAB-MT执行从第二donor-CU切换回第三donor-CU之前,接收路径迁移配置。
在一些实施例中,路径迁移配置还包括:释放用于指示第一路由标识与第二路由标识之间映射关系的donor-CU间路由标识重写配置,释放用于指示第二路由标识与所述IAB节点的下一跳节点的BAP地址之间映射关系的路由配置,或者释放用于指示所述IAB节点的上一跳节点地址、入口链路RLC信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第二RLC信道映射配置;
其中,所述第一路由标识和所述IAB节点的上一跳节点BAP地址属于所述第一donor-CU的网络拓扑域,所述第一路由标识的目的BAP地址为所述第一donor-DU的BAP地址;所述第二路由标识和所述IAB节点的下一跳节点BAP地址属于所述第二donor-CU的网络拓扑域,所述第二路由标识的目的BAP地址为所述第二donor-DU的BAP地址。
在一些实施例中,接收部1601还接收用于配置用锚定于所述第三donor-DU的IP地址替换锚定于所述第二donor-DU的IP地址的配置信息;其中,所述IP地址用于所述IAB节点或所述子节点的F1用户面数据、F1控制面数据或非F1数据。
在一些实施例中,接收部1601在所述IAB-MT执行从第二donor-CU切换回第一donor-CU之前,接收配置信息;
处理部1602在IAB-MT从第二donor-CU切换回第一donor-CU完成时,用锚定于第三donor-DU的IP地址替换锚定于第二donor-DU的IP地址。
在一些实施例中,IAB节点的配置信息通过切换命令无线资源控制(RRC)消息或者RRC重配置消息发送,子节点的配置信息通过RRC重配置消息发送。
在一些实施例中,配置信息为针对第一donor-DU的BAP地址的IP地址配置信息。例如,该配置信息将针对第一donor-DU的BAP地址的锚定于第二donor-DU的 IP地址修改为锚定于第三donor-DU的IP地址。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的IAB节点设备1600还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图16中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,IAB节点或子节点接收网络设备发送的上行数据的路径迁移配置;以及所述IAB节点或子节点应用所述路径迁移配置;其中,所述IAB节点的IAB-DU与所述第一donor-CU保持F1连接。由此,能够减少或避免上行数据被丢弃的问题,降低传输时延和减小服务中断时间。
第四方面的实施例
本申请实施例提供一种IAB宿主设备,与第一至三方面的实施例相同的内容不再赘述。该设备例如可以是IAB系统中的IAB donor-CU,也可以是配置于该IAB donor-CU中的某个或某些部件或者组件或者模块。
该IAB系统包括IAB-donor设备和IAB节点。IAB节点的上行业务的传输路径从第一宿主集中单元迁移到第二宿主集中单元后,从第二宿主集中单元迁移回第一宿主集中单元。
图17是本申请实施例的IAB宿主设备的一示意图。如图17所示,IAB宿主设备1700包括:接收部1701和发送部1702。接收部1701接收第二donor-CU发送的拓扑退行请求;以及发送部1702发送上行数据的路径迁移配置;其中,IAB节点的IAB-DU与第一donor-CU保持F1连接。
在一些实施例中,发送部1702将路径迁移配置通过F1AP消息或RRC消息发送给IAB节点或子节点。
在一些实施例中,拓扑退行请求包含针对第一donor-DU的BAP地址的锚定于第二donor-DU的IP地址;其中,所述IP地址被用于IAB节点或子节点的F1用户面数据、F1控制面数据或非F1数据。
在一些实施例中,第二donor-CU在发送针对所述IAB-MT切换回第一donor-CU的切换请求之前,向第一donor-CU发送拓扑退行请求;或者,第二donor-CU将拓扑退行请求包含在针对所述IAB-MT切换回第一donor-CU的切换请求中;或者,第二donor-CU在发送针对所述IAB-MT切换回第一donor-CU的切换请求之后,向第一donor-CU发送拓扑退行请求。
在一些实施例中,发送部1702向第二donor-CU发送用于配置用锚定于第一donor-DU的IP地址替换锚定于第二donor-DU的IP地址的配置信息,或者用于配置用锚定于第三donor-DU的IP地址替换锚定于第二donor-DU的IP地址的配置信息;
在一些实施例中,配置信息包含于针对所述IAB-MT切换回第一donor-CU的切换请求响应消息包含的RRC重配置消息中。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的IAB宿主设备1700还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图17中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,IAB节点或子节点在所述IAB节点的上行业务传输路径由第二donor-CU迁移回第一donor-CU时,接收网络设备发送的上行数据的路径迁移配置;以及所述IAB节点或子节点应用所述路径迁移配置;其中,所述IAB节点的IAB-DU与所述第一donor-CU保持F1连接。由此,能够减少或避免上行数据被丢弃的问题,降低传输时延和减小服务中断时间。
第五方面的实施例
本申请实施例提供了一种通信系统,包括宿主(donor)设备和IAB节点(IAB-node);关于宿主(donor)设备、IAB节点的网络架构还可以参考相关技术,此处省略说明。
本申请实施例还提供一种IAB设备,该IAB设备可以是IAB宿主设备,也可以是IAB节点设备(IAB节点或者子节点)。
图18是本申请实施例的IAB设备的示意图。如图18所示,IAB设备1800可以包括:处理器(例如中央处理器CPU)1801和存储器1802;存储器1802耦合到处理器1801。其中该存储器1802可存储各种数据;此外还存储信息处理的程序1805,并且在中央处理器1801的控制下执行该程序1805。
例如,处理器1801可以被配置为执行程序而实现如第一方面的实施例中的拓扑退行方法。例如,处理器1801可以被配置为进行如下的控制:接收网络设备发送的上行数据的路径迁移配置;以及应用所述路径迁移配置;其中,所述IAB节点的IAB-DU与第一donor-CU保持F1连接。
再例如,处理器1801可以被配置为执行程序而实现如第二方面的实施例中的拓扑退行方法。例如,处理器1801可以被配置为进行如下的控制:接收第二donor-CU发送的拓扑退行请求;以及发送上行数据的路径迁移配置;其中,所述IAB节点的IAB-DU与第一donor-CU保持F1连接。
此外,如图18所示,IAB设备1800还可以包括:收发机1803和天线1804等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,IAB设备1800也并不是必须要包括图18中所示的所有部件;此外,IAB设备1800还可以包括图18中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机可读程序,其中当在IAB节点设备中执行所述程序时,所述程序使得计算机在所述IAB节点设备中执行第一方面的实施例中的拓扑退行方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在IAB节点设备中执行第一方面的实施例中的拓扑退行方法。
本申请实施例还提供一种计算机可读程序,其中当在IAB宿主设备中执行所述程序时,所述程序使得计算机在所述IAB宿主设备中执行第二方面的实施例中的拓 扑退行方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在IAB宿主设备中执行第二方面的实施例中的拓扑退行方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这 些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1.一种拓扑退行方法,IAB节点的上行业务的传输路径从第一宿主集中单元(donor-CU)迁移到第二宿主集中单元后,从所述第二宿主集中单元迁移回所述第一宿主集中单元,所述方法包括:
IAB节点或子节点接收网络设备发送的上行数据的路径迁移配置;以及
所述IAB节点或子节点应用所述路径迁移配置;
其中,所述IAB节点的IAB-DU与所述第一donor-CU保持F1连接。
2.根据附记1所述的方法,其中,所述IAB节点或子节点在所述IAB节点的IAB-MT从所述第二donor-CU切换回所述第一donor-CU之前或切换回所述第一donor-CU之后,接收所述网络设备发送的上行数据的路径迁移配置。
3.根据附记2所述的方法,其中,所述IAB节点的上行业务的传输路径从第一donor-CU的第一宿主分布单元(donor-DU)迁移到第二donor-CU的第二donor-DU后,从所述第二donor-CU的第二donor-DU迁移回所述第一donor-CU的第一donor-DU。
4.根据附记3所述的方法,其中,所述路径迁移配置由所述第一donor-CU通过F1AP消息或者RRC消息发送给所述IAB节点或子节点。
5.根据附记3或4所述的方法,其中,所述路径迁移配置包括:增加用于指示第一路由标识与所述IAB节点的下一跳节点BAP地址之间映射关系的路由配置,以及增加用于指示所述IAB节点的上一跳节点BAP地址、入口链路无线链路控制(RLC)信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第一RLC信道映射配置;
所述第一路由标识、所述IAB节点的上一跳节点BAP地址和所述IAB节点的下一跳节点BAP地址属于所述第一Donor-CU的网络拓扑域,所述第一路由标识的目的BAP地址为所述第一donor-DU的BAP地址。
6.根据附记5所述的方法,其中,所述IAB节点或子节点在所述IAB-MT执行从所述第二donor-CU切换回所述第一donor-CU之前,接收所述路径迁移配置。
7.根据附记5所述的方法,其中,所述路径迁移配置还包括:释放用于指示第一路由标识与第二路由标识之间映射关系的donor-CU间路由标识重写配置,释放用于指示第二路由标识与所述IAB节点的下一跳节点的BAP地址之间映射关系的路由配置,或者释放用于指示所述IAB节点的上一跳节点地址、入口链路RLC信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第二RLC信道映射配置;
其中,所述第一路由标识和所述IAB节点的上一跳节点BAP地址属于所述第一donor-CU的网络拓扑域,所述第一路由标识的目的BAP地址为所述第一donor-DU的BAP地址;所述第二路由标识和所述IAB节点的下一跳节点BAP地址属于所述第二donor-CU的网络拓扑域,所述第二路由标识的目的BAP地址为所述第二donor-DU的BAP地址。
8.根据附记5至7任一项所述的方法,其中,所述方法还包括:
所述IAB节点或子节点接收用于配置用锚定于所述第一donor-DU的IP地址替换锚定于所述第二donor-DU的IP地址的配置信息;其中,所述IP地址用于所述IAB节点或所述子节点的F1用户面数据、F1控制面数据或非F1数据。
9.根据附记8所述的方法,其中,所述IAB节点或子节点在所述IAB-MT执行从所述第二donor-CU切换回所述第一donor-CU之前,接收所述配置信息。
10.根据附记8所述的方法,其中,所述方法还包括:
所述IAB节点或子节点用锚定于所述第一donor-DU的IP地址替换锚定于所述第二donor-DU的IP地址。
11.根据附记8至10任一项所述的方法,其中,所述IAB节点的所述配置信息通过切换命令无线资源控制(RRC)消息或者RRC重配置消息发送,所述子节点的所述配置信息通过RRC重配置消息发送。
12.根据附记8至11任一项所述的方法,其中,所述配置信息为针对所述第一donor-DU的BAP地址的IP地址配置信息。
13.根据附记12所述的方法,其中,所述配置信息用于将针对所述第一donor-DU的BAP地址的锚定于所述第二donor-DU的IP地址修改为锚定于所述第一donor-DU的IP地址。
14.根据附记2所述的方法,其中,所述IAB节点的上行业务的传输路径从第 一donor-CU的第一donor-DU迁移到第二donor-CU的第二donor-DU后,从所述第二donor-CU的第二donor-DU迁移回所述第一donor-CU的第三donor-DU。
15.根据附记14所述的方法,其中,所述路径迁移配置由所述第一donor-CU通过F1AP消息或RRC消息发送给所述IAB节点或子节点。
16.根据附记14或15所述的方法,其中,所述路径迁移配置包括:增加用于指示第一路由标识与第三路由标识之间映射关系的donor-DU间路由标识重写配置,增加用于指示第三路由标识与所述IAB节点的下一跳节点BAP地址之间映射关系的路由配置,以及增加用于指示所述IAB节点的上一跳节点BAP地址、入口链路RLC信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第一RLC信道映射配置;
所述第一路由标识、第三路由标识、所述IAB节点的上一跳节点BAP地址和所述IAB节点的下一跳节点BAP地址属于所述第一donor-CU的网络拓扑域,所述第三路由标识的目的BAP地址为所述第三donor-DU的BAP地址,所述第一路由标识的目的BAP地址为所述第一donor-DU的BAP地址。
17.根据附记14至16任一项所述的方法,其中,所述IAB节点或子节点在所述IAB-MT执行从所述第二donor-CU切换回所述第三donor-CU之前,接收所述路径迁移配置。
18.根据附记16所述的方法,其中,所述路径迁移配置还包括:释放用于指示第一路由标识与第二路由标识之间映射关系的donor-CU间路由标识重写配置,释放用于指示第二路由标识与所述IAB节点的下一跳节点的BAP地址之间映射关系的路由配置,或者释放用于指示所述IAB节点的上一跳节点地址、入口链路RLC信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第二RLC信道映射配置;
其中,所述第一路由标识和所述IAB节点的上一跳节点BAP地址属于所述第一donor-CU的网络拓扑域,所述第一路由标识的目的BAP地址为所述第一donor-DU的BAP地址;所述第二路由标识和所述IAB节点的下一跳节点BAP地址属于所述第二donor-CU的网络拓扑域,所述第二路由标识的目的BAP地址为所述第二donor-DU的BAP地址。
19.根据附记16至19任一项所述的方法,其中,所述方法还包括:
所述IAB节点或子节点接收用于配置用锚定于所述第三donor-DU的IP地址替换锚定于所述第二donor-DU的IP地址的配置信息;其中,所述IP地址用于所述IAB节点或所述子节点的F1用户面数据、F1控制面数据或非F1数据。
20.根据附记19所述的方法,其中,所述IAB节点或子节点在所述IAB-MT执行从所述第二donor-CU切换回所述第一donor-CU之前,接收所述配置信息。
21.根据附记19所述的方法,其中,所述方法还包括:
所述IAB节点或子节点用所述锚定于第三donor-DU的IP地址替换所述锚定于第二donor-DU的IP地址。
22.根据附记19至21任一项所述的方法,其中,所述IAB节点的所述配置信息通过切换命令无线资源控制(RRC)消息或者RRC重配置消息发送,所述子节点的所述配置信息通过RRC重配置消息发送。
23.根据附记19至22任一项所述的方法,其中,所述配置信息为针对第一donor-DU的BAP地址的IP地址配置信息。
24.根据附记23所述的方法,其中,所述配置信息用于将针对所述第一donor-DU的BAP地址的锚定于所述第二donor-DU的IP地址修改为锚定于所述第三donor-DU的IP地址。
25.根据附记1所述的方法,其中,所述IAB节点或子节点在所述IAB节点的IAB-MT重建立到所述第二donor-CU后,接收所述网络设备发送的上行数据的路径迁移配置。
26.根据附记25所述的方法,其中,所述IAB节点的上行业务的传输路径从第一donor-CU的第一宿主分布单元(donor-DU)迁移到第二donor-CU的第二donor-DU后,从所述第二donor-CU的第二donor-DU迁移回所述第一donor-CU的第一donor-DU。
27.根据附记26所述的方法,其中,所述路径迁移配置由所述第一donor-CU通过F1AP消息或者RRC消息发送给所述IAB节点或子节点。
28.根据附记26或27所述的方法,其中,所述路径迁移配置包括:增加用于指示第一路由标识与所述IAB节点的下一跳节点BAP地址之间映射关系的路由配置,以及增加用于指示所述IAB节点的上一跳节点BAP地址、入口链路无线链路控制(RLC)信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识 之间映射关系的第一RLC信道映射配置;
所述第一路由标识、所述IAB节点的上一跳节点BAP地址和所述IAB节点的下一跳节点BAP地址属于所述第一Donor-CU的网络拓扑域,所述第一路由标识的目的BAP地址为所述第一donor-DU的BAP地址。
29.根据附记28所述的方法,其中,所述路径迁移配置还包括:释放用于指示第一路由标识与第二路由标识之间映射关系的donor-CU间路由标识重写配置,释放用于指示第二路由标识与所述IAB节点的下一跳节点的BAP地址之间映射关系的路由配置,或者释放用于指示所述IAB节点的上一跳节点地址、入口链路RLC信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第二RLC信道映射配置;
其中,所述第一路由标识和所述IAB节点的上一跳节点BAP地址属于所述第一donor-CU的网络拓扑域,所述第一路由标识的目的BAP地址为所述第一donor-DU的BAP地址;所述第二路由标识和所述IAB节点的下一跳节点BAP地址属于所述第二donor-CU的网络拓扑域,所述第二路由标识的目的BAP地址为所述第二donor-DU的BAP地址。
30.根据附记28或29所述的方法,其中,所述方法还包括:
所述IAB节点或子节点接收用于配置用锚定于所述第一donor-DU的IP地址替换锚定于所述第二donor-DU的IP地址的配置信息;其中,所述IP地址用于所述IAB节点或所述子节点的F1用户面数据、F1控制面数据或非F1数据。
31.根据附记30所述的方法,其中,所述配置信息为针对所述第一donor-DU的BAP地址的IP地址配置信息。
32.根据附记31所述的方法,其中,所述配置信息用于将针对所述第一donor-DU的BAP地址的锚定于所述第二donor-DU的IP地址修改为锚定于所述第一donor-DU的IP地址。
33.根据附记25所述的方法,其中,所述IAB节点的上行业务的传输路径从第一donor-CU的第一donor-DU迁移到第二donor-CU的第二donor-DU后,从所述第二donor-CU的第二donor-DU迁移回所述第一donor-CU的第三donor-DU。
34.根据附记33所述的方法,其中,所述路径迁移配置由所述第一donor-CU通过F1AP消息或RRC消息发送给所述IAB节点或子节点。
35.根据附记33或34所述的方法,其中,所述路径迁移配置包括:增加用于指示第一路由标识与第三路由标识之间映射关系的donor-DU间路由标识重写配置,增加用于指示第三路由标识与所述IAB节点的下一跳节点BAP地址之间映射关系的路由配置,以及增加用于指示所述IAB节点的上一跳节点BAP地址、入口链路RLC信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第一RLC信道映射配置;
所述第一路由标识、第三路由标识、所述IAB节点的上一跳节点BAP地址和所述IAB节点的下一跳节点BAP地址属于所述第一donor-CU的网络拓扑域,所述第三路由标识的目的BAP地址为所述第三donor-DU的BAP地址,所述第一路由标识的目的BAP地址为所述第一donor-DU的BAP地址。
36.根据附记35所述的方法,其中,所述路径迁移配置还包括:释放用于指示第一路由标识与第二路由标识之间映射关系的donor-CU间路由标识重写配置,释放用于指示第二路由标识与所述IAB节点的下一跳节点的BAP地址之间映射关系的路由配置,或者释放用于指示所述IAB节点的上一跳节点地址、入口链路RLC信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第二RLC信道映射配置;
其中,所述第一路由标识和所述IAB节点的上一跳节点BAP地址属于所述第一donor-CU的网络拓扑域,所述第一路由标识的目的BAP地址为所述第一donor-DU的BAP地址;所述第二路由标识和所述IAB节点的下一跳节点BAP地址属于所述第二donor-CU的网络拓扑域,所述第二路由标识的目的BAP地址为所述第二donor-DU的BAP地址。
37.根据附记35或36所述的方法,其中,所述方法还包括:
所述IAB节点或子节点接收用于配置用锚定于所述第三donor-DU的IP地址替换锚定于所述第二donor-DU的IP地址的配置信息;其中,所述IP地址用于所述IAB节点或所述子节点的F1用户面数据、F1控制面数据或非F1数据。
38.根据附记37所述的方法,其中,所述配置信息为针对所述第一donor-DU的BAP地址的IP地址配置信息。
39.根据附记38所述的方法,其中,所述配置信息用于将针对所述第一donor-DU的BAP地址的锚定于所述第二donor-DU的IP地址修改为锚定于所述第三donor-DU 的IP地址。
40.根据附记1所述的方法,其中,所述IAB节点的IAB-MT与所述第一donor-CU和所述第二donor-CU建立有双连接。
41.根据附40所述的方法,其中,所述IAB节点的上行业务的传输路径从第一donor-CU的第一宿主分布单元(donor-DU)迁移到第二donor-CU的第二donor-DU后,从所述第二donor-CU的第二donor-DU迁移回所述第一donor-CU的第一donor-DU。
42.根据附记41所述的方法,其中,所述路径迁移配置由所述第一donor-CU通过F1AP消息或者RRC消息发送给所述IAB节点或子节点。
43.根据附记41或42所述的方法,其中,所述路径迁移配置包括:增加用于指示第一路由标识与所述IAB节点的下一跳节点BAP地址之间映射关系的路由配置,以及增加用于指示所述IAB节点的上一跳节点BAP地址、入口链路无线链路控制(RLC)信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第一RLC信道映射配置;
所述第一路由标识、所述IAB节点的上一跳节点BAP地址和所述IAB节点的下一跳节点BAP地址属于所述第一Donor-CU的网络拓扑域,所述第一路由标识的目的BAP地址为所述第一donor-DU的BAP地址。
44.根据附记43所述的方法,其中,所述路径迁移配置还包括:释放用于指示第一路由标识与第二路由标识之间映射关系的donor-CU间路由标识重写配置,释放用于指示第二路由标识与所述IAB节点的下一跳节点的BAP地址之间映射关系的路由配置,或者释放用于指示所述IAB节点的上一跳节点地址、入口链路RLC信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第二RLC信道映射配置;
其中,所述第一路由标识和所述IAB节点的上一跳节点BAP地址属于所述第一donor-CU的网络拓扑域,所述第一路由标识的目的BAP地址为所述第一donor-DU的BAP地址;所述第二路由标识和所述IAB节点的下一跳节点BAP地址属于所述第二donor-CU的网络拓扑域,所述第二路由标识的目的BAP地址为所述第二donor-DU的BAP地址。
45.根据附记43或44所述的方法,其中,所述方法还包括:
所述IAB节点或子节点接收用于配置用锚定于所述第一donor-DU的IP地址替换锚定于所述第二donor-DU的IP地址的配置信息;其中,所述IP地址用于所述IAB节点或所述子节点的F1用户面数据、F1控制面数据或非F1数据。
46.根据附记45所述的方法,其中,所述配置信息为针对所述第一donor-DU的BAP地址的IP地址配置信息。
47.根据附记46所述的方法,其中,所述配置信息用于将针对所述第一donor-DU的BAP地址的锚定于所述第二donor-DU的IP地址修改为锚定于所述第一donor-DU的IP地址。
48.根据附记40所述的方法,其中,所述IAB节点的上行业务的传输路径从第一donor-CU的第一donor-DU迁移到第二donor-CU的第二donor-DU后,从所述第二donor-CU的第二donor-DU迁移回所述第一donor-CU的第三donor-DU。
49.根据附记48所述的方法,其中,所述路径迁移配置由所述第一donor-CU通过F1AP消息或RRC消息发送给所述IAB节点或子节点。
50.根据附记48或49所述的方法,其中,所述路径迁移配置包括:增加用于指示第一路由标识与第三路由标识之间映射关系的donor-DU间路由标识重写配置,增加用于指示第三路由标识与所述IAB节点的下一跳节点BAP地址之间映射关系的路由配置,以及增加用于指示所述IAB节点的上一跳节点BAP地址、入口链路RLC信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第一RLC信道映射配置;
所述第一路由标识、第三路由标识、所述IAB节点的上一跳节点BAP地址和所述IAB节点的下一跳节点BAP地址属于所述第一donor-CU的网络拓扑域,所述第三路由标识的目的BAP地址为所述第三donor-DU的BAP地址,所述第一路由标识的目的BAP地址为所述第一donor-DU的BAP地址。
51.根据附记50所述的方法,其中,所述路径迁移配置还包括:释放用于指示第一路由标识与第二路由标识之间映射关系的donor-CU间路由标识重写配置,释放用于指示第二路由标识与所述IAB节点的下一跳节点的BAP地址之间映射关系的路由配置,或者释放用于指示所述IAB节点的上一跳节点地址、入口链路RLC信道标识和所述IAB节点的下一跳节点BAP地址与出口链路RLC信道标识之间映射关系的第二RLC信道映射配置;
其中,所述第一路由标识和所述IAB节点的上一跳节点BAP地址属于所述第一donor-CU的网络拓扑域,所述第一路由标识的目的BAP地址为所述第一donor-DU的BAP地址;所述第二路由标识和所述IAB节点的下一跳节点BAP地址属于所述第二donor-CU的网络拓扑域,所述第二路由标识的目的BAP地址为所述第二donor-DU的BAP地址。
52.根据附记50或51所述的方法,其中,所述方法还包括:
所述IAB节点或子节点接收用于配置用锚定于所述第三donor-DU的IP地址替换锚定于所述第二donor-DU的IP地址的配置信息;其中,所述IP地址用于所述IAB节点或所述子节点的F1用户面数据、F1控制面数据或非F1数据。
53.根据附记52所述的方法,其中,所述配置信息为针对所述第一donor-DU的BAP地址的IP地址配置信息。
54.根据附记53所述的方法,其中,所述配置信息用于将针对所述第一donor-DU的BAP地址的锚定于所述第二donor-DU的IP地址修改为锚定于所述第三donor-DU的IP地址。
55.一种拓扑退行方法,IAB节点的上行业务的传输路径从第一宿主集中单元(donor-CU)迁移到第二宿主集中单元后,从所述第二宿主集中单元迁移回所述第一宿主集中单元,所述方法包括:
所述第一donor-CU接收所述第二donor-CU发送的拓扑退行请求;以及
所述第一donor-CU发送上行数据的路径迁移配置;
其中,所述IAB节点的IAB-DU与所述第一donor-CU保持F1连接。
56.根据附记55所述的方法,其中,所述IAB节点的上行业务的传输路径从第一donor-CU的第一宿主分布单元(donor-DU)迁移到第二donor-CU的第二donor-DU后,从所述第二donor-CU的第二donor-DU迁移回所述第一donor-CU的第一donor-DU。
57.根据附记55所述的方法,其中,所述IAB节点的上行业务的传输路径从第一donor-CU的第一donor-DU迁移到第二donor-CU的第二donor-DU后,从所述第二donor-CU的第二donor-DU迁移回所述第一donor-CU的第三donor-DU。
58.根据附记55至57任一项所述的方法,其中,所述第一donor-CU将所述路径迁移配置通过F1AP消息或RRC消息发送给所述IAB节点或所述子节点。
59.根据附记55至58任一项所述的方法,其中,所述拓扑退行请求包含针对所述第一donor-DU的BAP地址的锚定于所述第二donor-DU的IP地址;
其中,所述IP地址被用于所述IAB节点或子节点的F1用户面数据、F1控制面数据或非F1数据。
60.根据附记55至59任一项所述的方法,其中,所述方法还包括:
所述第一donor-CU向所述第二donor-CU发送用于配置用锚定于所述第一donor-DU的IP地址替换锚定于所述第二donor-DU的IP地址的配置信息,或者用于配置用锚定于所述第三donor-DU的IP地址替换锚定于所述第二donor-DU的IP地址的配置信息。
61.根据附记55至60任一项所述的方法,其中,所述第一donor-CU在所述IAB节点的IAB-MT从所述第二donor-CU切换回所述第一donor-CU之前或切换回所述第一donor-CU之后,发送上行数据的路径迁移配置。
62.根据附记61所述的方法,其中,所述第二donor-CU在发送针对所述IAB-MT切换回所述第一donor-CU的切换请求之前向所述第一donor-CU发送所述拓扑退行请求。
63.根据附记61所述的方法,其中,所述第二donor-CU将所述拓扑退行请求包含在针对所述IAB-MT切换回所述第一donor-CU的切换请求中。
64.根据附记63所述的方法,其中,所述配置信息包含于针对所述IAB-MT切换回所述第一donor-CU的切换请求响应消息包含的RRC重配置消息中。
65.根据附记61所述的方法,其中,所述第二donor-CU在发送针对所述IAB-MT切换回所述第一donor-CU的切换请求之后向所述第一donor-CU发送所述拓扑退行请求。
66.根据附记55至60任一项所述的方法,其中,所述第一donor-CU在所述IAB节点的IAB-MT重建立到所述第二donor-CU后,发送上行数据的路径迁移配置。
67.根据附记66所述的方法,其中,所述第一donor-CU触发所述第二donor-CU向所述第一donor-CU发送所述拓扑退行请求。
68.根据附记55至60任一项所述的方法,其中,所述IAB节点的IAB-MT与所述第一donor-CU和所述第二donor-CU建立有双连接。
69.根据附记68所述的方法,其中,所述拓扑退行请求包含传输路径从所述第 二donor-CU迁移回所述第一donor-CU的业务的标识信息。
70.一种IAB节点设备,包括存储器和处理器,所述存储器存储有计算机程序,其中,所述处理器被配置为执行所述计算机程序而实现如附记1至54任一项所述的拓扑退行方法。
71.一种IAB宿主(donor)设备,包括存储器和处理器,所述存储器存储有计算机程序,其中,所述处理器被配置为执行所述计算机程序而实现如附记55至69任一项所述的拓扑退行方法。
72.一种通信系统,包括IAB宿主(donor)设备和IAB节点(IAB-node)设备;其中,所述IAB节点设备被配置为执行附记1至54任一项所述的拓扑退行方法,所述IAB宿主设备被配置为执行附记55至69任一项所述的拓扑退行方法。

Claims (20)

  1. 一种集成的接入和回传IAB节点设备,其上行业务的传输路径从第一宿主集中单元迁移到第二宿主集中单元后,从所述第二宿主集中单元迁移回所述第一宿主集中单元,所述设备包括:
    接收部,其接收网络设备发送的上行数据的路径迁移配置;以及
    处理部,其应用所述路径迁移配置;其中,所述IAB节点的IAB-DU与所述第一宿主集中单元保持F1连接。
  2. 根据权利要求1所述的设备,其中,所述IAB节点的上行业务的传输路径从第一宿主集中单元的第一宿主分布单元迁移到第二宿主集中单元的第二宿主分布单元后,从所述第二宿主集中单元的第二宿主分布单元迁移回所述第一宿主集中单元的第一宿主分布单元;
    所述路径迁移配置由所述第一宿主集中单元通过F1AP消息或者无线资源控制消息发送给所述IAB节点或子节点。
  3. 根据权利要求2所述的设备,其中,所述路径迁移配置包括:增加用于指示第一路由标识与所述IAB节点的下一跳节点回传自适应协议地址之间映射关系的路由配置,以及增加用于指示所述IAB节点的上一跳节点回传自适应协议地址、入口链路无线链路控制信道标识和所述IAB节点的下一跳节点回传自适应协议地址与出口链路无线链路控制信道标识之间映射关系的第一无线链路控制信道映射配置;
    所述第一路由标识、所述IAB节点的上一跳节点回传自适应协议地址和所述IAB节点的下一跳节点回传自适应协议地址属于所述第一宿主集中单元的网络拓扑域,所述第一路由标识的目的回传自适应协议地址为所述第一宿主分布单元的回传自适应协议地址。
  4. 根据权利要求3所述的设备,其中,所述接收部在所述IAB-MT执行从所述第二宿主集中单元切换回所述第一宿主集中单元之前,接收所述路径迁移配置;
    所述路径迁移配置还包括:释放用于指示第一路由标识与第二路由标识之间映射关系的宿主集中单元间路由标识重写配置,释放用于指示第二路由标识与所述IAB节点的下一跳节点的回传自适应协议地址之间映射关系的路由配置,或者释放用于指示所述IAB节点的上一跳节点地址、入口链路无线链路控制信道标识和所述IAB节 点的下一跳节点回传自适应协议地址与出口链路无线链路控制信道标识之间映射关系的第二无线链路控制信道映射配置;
    其中,所述第一路由标识和所述IAB节点的上一跳节点回传自适应协议地址属于所述第一宿主集中单元的网络拓扑域,所述第一路由标识的目的回传自适应协议地址为所述第一宿主分布单元的回传自适应协议地址;所述第二路由标识和所述IAB节点的下一跳节点回传自适应协议地址属于所述第二宿主集中单元的网络拓扑域,所述第二路由标识的目的回传自适应协议地址为所述第二宿主分布单元的回传自适应协议地址。
  5. 根据权利要求3所述的设备,其中,所述接收部还接收用于配置用锚定于所述第一宿主分布单元的IP地址替换锚定于所述第二宿主分布单元的IP地址的配置信息;其中,所述IP地址用于所述IAB节点或所述子节点的F1用户面数据、F1控制面数据或非F1数据。
  6. 根据权利要求5所述的设备,其中,所述接收部在所述IAB-MT执行从所述第二宿主集中单元切换回所述第一宿主集中单元之前,接收所述配置信息;
    所述处理部用锚定于所述第一宿主分布单元的IP地址替换锚定于所述第二宿主分布单元的IP地址。
  7. 根据权利要求5所述的设备,其中,所述IAB节点的所述配置信息通过切换命令无线资源控制消息或者无线资源控制重配置消息发送,所述子节点的所述配置信息通过无线资源控制重配置消息发送。
  8. 根据权利要求5所述的设备,其中,所述配置信息为针对所述第一宿主分布单元的回传自适应协议地址的IP地址配置信息;
    所述配置信息用于将针对所述第一宿主分布单元的回传自适应协议地址的锚定于所述第二宿主分布单元的IP地址修改为锚定于所述第一宿主分布单元的IP地址。
  9. 根据权利要求1所述的设备,其中,所述IAB节点的上行业务的传输路径从第一宿主集中单元的第一宿主分布单元迁移到第二宿主集中单元的第二宿主分布单元后,从所述第二宿主集中单元的第二宿主分布单元迁移回所述第一宿主集中单元的第三宿主分布单元;
    所述路径迁移配置由所述第一宿主集中单元通过F1AP消息或者无线资源控制消息发送给所述IAB节点或子节点。
  10. 根据权利要求9所述的设备,其中,所述路径迁移配置包括:增加用于指示第一路由标识与第三路由标识之间映射关系的宿主分布单元间路由标识重写配置,增加用于指示第三路由标识与所述IAB节点的下一跳节点回传自适应协议地址之间映射关系的路由配置,以及增加用于指示所述IAB节点的上一跳节点回传自适应协议地址、入口链路无线链路控制信道标识和所述IAB节点的下一跳节点回传自适应协议地址与出口链路无线链路控制信道标识之间映射关系的第一无线链路控制信道映射配置;
    所述第一路由标识、第三路由标识、所述IAB节点的上一跳节点回传自适应协议地址和所述IAB节点的下一跳节点回传自适应协议地址属于所述第一宿主集中单元的网络拓扑域,所述第三路由标识的目的回传自适应协议地址为所述第三宿主分布单元的回传自适应协议地址,所述第一路由标识的目的回传自适应协议地址为所述第一宿主分布单元的回传自适应协议地址。
  11. 根据权利要求10所述的设备,其中,所述接收部在所述IAB-MT执行从所述第二宿主集中单元切换回所述第三宿主集中单元之前,接收所述路径迁移配置;
    所述路径迁移配置还包括:释放用于指示第一路由标识与第二路由标识之间映射关系的宿主集中单元间路由标识重写配置,释放用于指示第二路由标识与所述IAB节点的下一跳节点的回传自适应协议地址之间映射关系的路由配置,或者释放用于指示所述IAB节点的上一跳节点地址、入口链路无线链路控制信道标识和所述IAB节点的下一跳节点回传自适应协议地址与出口链路无线链路控制信道标识之间映射关系的第二无线链路控制信道映射配置;
    其中,所述第一路由标识和所述IAB节点的上一跳节点回传自适应协议地址属于所述第一宿主集中单元的网络拓扑域,所述第一路由标识的目的回传自适应协议地址为所述第一宿主分布单元的回传自适应协议地址;所述第二路由标识和所述IAB节点的下一跳节点回传自适应协议地址属于所述第二宿主集中单元的网络拓扑域,所述第二路由标识的目的回传自适应协议地址为所述第二宿主分布单元的回传自适应协议地址。
  12. 根据权利要求10所述的设备,其中,所述接收部还接收用于配置用锚定于所述第三宿主分布单元的IP地址替换锚定于所述第二宿主分布单元的IP地址的配置信息;其中,所述IP地址用于所述IAB节点或所述子节点的F1用户面数据、F1控 制面数据或非F1数据。
  13. 根据权利要求12所述的设备,其中,所述接收部在所述IAB-MT执行从所述第二宿主集中单元切换回所述第一宿主集中单元之前,接收所述配置信息;
    所述处理部用所述锚定于第三宿主分布单元的IP地址替换所述锚定于第二宿主分布单元的IP地址。
  14. 根据权利要求12所述的设备,其中,所述IAB节点的所述配置信息通过切换命令无线资源控制消息或者无线资源控制重配置消息发送,所述子节点的所述配置信息通过无线资源控制重配置消息发送。
  15. 根据权利要求12所述的设备,其中,所述配置信息为针对所述第一宿主分布单元的回传自适应协议地址的IP地址配置信息;
    所述配置信息用于将针对所述第一宿主分布单元的回传自适应协议地址的锚定于所述第二宿主分布单元的IP地址修改为锚定于所述第三宿主分布单元的IP地址。
  16. 一种IAB宿主设备,IAB节点的上行业务的传输路径从第一宿主集中单元迁移到第二宿主集中单元后,从所述第二宿主集中单元迁移回所述第一宿主集中单元,所述设备包括:
    接收部,其接收所述第二宿主集中单元发送的拓扑退行请求;以及
    发送部,其发送上行数据的路径迁移配置;
    其中,所述IAB节点的IAB-DU与所述第一宿主集中单元保持F1连接。
  17. 根据权利要求16所述的设备,其中,所述发送部将所述路径迁移配置通过F1AP消息或者无线资源控制消息发送给所述IAB节点或子节点;
    所述拓扑退行请求包含针对所述第一宿主分布单元的回传自适应协议地址的锚定于所述第二宿主分布单元的IP地址;其中,所述IP地址被用于所述IAB节点或子节点的F1用户面数据、F1控制面数据或非F1数据。
  18. 根据权利要求16所述的设备,其中,所述发送部向所述第二宿主集中单元发送用于配置用锚定于所述第一宿主分布单元的IP地址替换锚定于所述第二宿主分布单元的IP地址的配置信息,或者用于配置用锚定于第三宿主分布单元的IP地址替换锚定于所述第二宿主分布单元的IP地址的配置信息。
  19. 根据权利要求16所述的设备,其中,所述发送部在所述IAB节点的IAB-MT从所述第二宿主集中单元切换回所述第一宿主集中单元之前或切换回所述第一宿主 集中单元之后,发送上行数据的路径迁移配置;
    或者,所述发送部在所述IAB节点的IAB-MT重建立到所述第二宿主集中单元后,发送上行数据的路径迁移配置;
    或者,所述IAB节点的IAB-MT与所述第一宿主集中单元和所述第二宿主集中单元建立有双连接。
  20. 一种集成的接入和回传IAB系统,包括IAB宿主设备和IAB节点设备;
    所述IAB节点设备的上行业务的传输路径从第一宿主集中单元迁移到第二宿主集中单元后,从所述第二宿主集中单元迁移回所述第一宿主集中单元;其中,所述IAB节点设备接收网络设备发送的上行数据的路径迁移配置;以及应用所述路径迁移配置;其中,所述IAB节点的IAB-DU与所述第一宿主集中单元保持F1连接。
PCT/CN2022/070174 2022-01-04 2022-01-04 Iab节点设备、iab宿主设备以及拓扑退行方法 WO2023130231A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070174 WO2023130231A1 (zh) 2022-01-04 2022-01-04 Iab节点设备、iab宿主设备以及拓扑退行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070174 WO2023130231A1 (zh) 2022-01-04 2022-01-04 Iab节点设备、iab宿主设备以及拓扑退行方法

Publications (1)

Publication Number Publication Date
WO2023130231A1 true WO2023130231A1 (zh) 2023-07-13

Family

ID=87072758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070174 WO2023130231A1 (zh) 2022-01-04 2022-01-04 Iab节点设备、iab宿主设备以及拓扑退行方法

Country Status (1)

Country Link
WO (1) WO2023130231A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536350A (zh) * 2019-02-14 2019-12-03 中兴通讯股份有限公司 Iab链路控制方法、通信单元、计算机可读存储介质
WO2020067736A1 (en) * 2018-09-27 2020-04-02 Lg Electronics Inc. Method and apparatus for preventing loss of uplink data in wireless communication system
CN113271176A (zh) * 2020-02-14 2021-08-17 华为技术有限公司 网络编码方法和通信装置
CN113556794A (zh) * 2020-04-23 2021-10-26 华为技术有限公司 通信方法、装置及系统
WO2021219299A1 (en) * 2020-04-27 2021-11-04 Sony Group Corporation Cost-based route selection for iab node migration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067736A1 (en) * 2018-09-27 2020-04-02 Lg Electronics Inc. Method and apparatus for preventing loss of uplink data in wireless communication system
CN110536350A (zh) * 2019-02-14 2019-12-03 中兴通讯股份有限公司 Iab链路控制方法、通信单元、计算机可读存储介质
CN113271176A (zh) * 2020-02-14 2021-08-17 华为技术有限公司 网络编码方法和通信装置
CN113556794A (zh) * 2020-04-23 2021-10-26 华为技术有限公司 通信方法、装置及系统
WO2021219299A1 (en) * 2020-04-27 2021-11-04 Sony Group Corporation Cost-based route selection for iab node migration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Support for NR IAB", 3GPP DRAFT; S2-1907203-SUPPORT FOR NR_IAB V6, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Sapparo, Japan, USA; 20190624 - 20190628, 18 June 2019 (2019-06-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 8, XP051752172 *

Similar Documents

Publication Publication Date Title
US11477703B2 (en) Method for establishing a fronthaul interface, method for performing access for a UE, method and apparatus for performing a handover for a UE, data forwarding method, user equipment and base station
WO2021027860A1 (zh) 路由方法、bsr的生成方法、装置和存储介质
CN116548011A (zh) 一种通信方法及相关设备
CN116438835A (zh) 用于施主间移动的方法和装置
WO2016161785A1 (zh) 跨MeNB切换方法、装置及基站
US20230345326A1 (en) Group migrating method and apparatus and system
US20230308975A1 (en) Group migration method and apparatus and system
WO2020042986A1 (zh) 一种多跳数据传输方法及装置
CN113728676A (zh) 在集成接入和回程网络中的子节点处和父节点处的资源对准
CN115136651A (zh) 切换方法和通信装置
WO2024031289A1 (zh) 网络节点的通信方法、移动节点的通信方法、移动节点和宿主设备
WO2023130231A1 (zh) Iab节点设备、iab宿主设备以及拓扑退行方法
US20230247697A1 (en) First node, second node and methods performed thereby for handling transmissions in a communications network
WO2023130232A1 (zh) Iab节点设备、iab宿主设备以及路径迁移方法
WO2023150975A1 (zh) Iab宿主设备以及传输迁移回退方法
WO2023150976A1 (zh) Iab宿主设备以及传输迁移管理方法
WO2023150974A1 (zh) Iab宿主设备以及传输迁移管理方法
WO2023010364A1 (zh) 集成的接入和回传的通信装置以及方法
WO2023197184A1 (zh) Iab宿主设备以及传输地址配置方法
WO2024026803A1 (zh) 移动节点的配置方法和宿主设备
WO2023197185A1 (zh) Iab节点设备、iab宿主设备以及传输地址确定方法
WO2022236644A1 (zh) 发送和接收信号的方法、装置和通信系统
WO2024026804A1 (zh) 移动节点的配置方法、移动节点和宿主设备
WO2023184542A1 (zh) 配置信息的方法、装置和通信系统
WO2022205251A1 (zh) 信息收发方法,数据发送方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917709

Country of ref document: EP

Kind code of ref document: A1