WO2024031289A1 - 网络节点的通信方法、移动节点的通信方法、移动节点和宿主设备 - Google Patents

网络节点的通信方法、移动节点的通信方法、移动节点和宿主设备 Download PDF

Info

Publication number
WO2024031289A1
WO2024031289A1 PCT/CN2022/110976 CN2022110976W WO2024031289A1 WO 2024031289 A1 WO2024031289 A1 WO 2024031289A1 CN 2022110976 W CN2022110976 W CN 2022110976W WO 2024031289 A1 WO2024031289 A1 WO 2024031289A1
Authority
WO
WIPO (PCT)
Prior art keywords
donor
node
iab
migration
mobile node
Prior art date
Application number
PCT/CN2022/110976
Other languages
English (en)
French (fr)
Inventor
易粟
路杨
贾美艺
Original Assignee
富士通株式会社
易粟
路杨
贾美艺
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 易粟, 路杨, 贾美艺 filed Critical 富士通株式会社
Priority to PCT/CN2022/110976 priority Critical patent/WO2024031289A1/zh
Publication of WO2024031289A1 publication Critical patent/WO2024031289A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the embodiments of this application relate to the field of communications.
  • Ultra-dense networks are one of the goals of 5G. Deploying an NR network without wired backhaul is crucial to achieving ultra-dense 5G. Networking is very important. Since 5G millimeter wave reduces cell coverage, the wireless self-backhaul system requires multiple hops to meet deployment requirements. 5G's high bandwidth, massive multiple-input multiple-output (MIMO), and beam systems make it easier than LTE to develop wireless self-backhaul systems for ultra-dense NR cells. In order to develop this multi-hop system with wireless self-backhaul, 3GPP started the research and standardization of the Integrated access and backhaul (IAB) project in Rel-16.
  • IAB Integrated access and backhaul
  • access and backhaul adopt NR Uu air interface wireless transmission.
  • the relay node supports both access and backhaul functions.
  • the relay node is multiplexed in the time domain, frequency domain or air domain.
  • the access link and backhaul link can use the same or different frequency bands.
  • the relay node refers to the IAB-node (IAB node), which supports both access and backhaul functions.
  • IAB node The last hop access node on the network side is called IAB-donnor (IAB host), which supports gNB function and IAB-node access. All UE data can be transmitted back to the IAB-donor via the IAB-node through one or more hops.
  • IAB-node The function of IAB-node is divided into two parts. One part is the gNB-DU function, called IAB-DU (distribution unit), and the other part is the UE function, called IAB-MT (mobile terminal).
  • IAB-DU implements network side equipment functions, serves one or more cells and is connected to the downstream child IAB-node (sub-IAB node or simply child node), provides NR air interface access to UE and downstream child IAB-node and communicates with An F1 connection is established between IAB donor-CU (host centralized unit).
  • IAB-MT implements some terminal equipment functions and is connected to the upstream parent IAB-node (parent IAB node or simply parent node) or IAB donor-DU.
  • IAB-MT includes physical layer, layer 2, RRC (Radio Resource Control, wireless Resource Control) and NAS (Non-Access Stratum, non-access layer) layer functions are also indirectly connected to IAB Donor-CU and Core Network (Core Network,
  • FIG. 1 is a schematic diagram of the IAB architecture in SA mode.
  • Figure 2 is a schematic diagram of the IAB architecture in EN-DC mode.
  • IAB-node can access the network through independent networking (SA, Standalone) mode or non-independent networking (EN-DC, E-UTRA-NR Dual Connectivity) mode.
  • SA independent networking
  • EN-DC non-independent networking
  • E-UTRA-NR Dual Connectivity E-UTRA-NR Dual Connectivity
  • FIG 3 is a schematic diagram of an IAB node (IAB-node), parent node (parent IAB-node) and child node (child IAB-node).
  • IAB-node IAB node
  • parent IAB-node parent node
  • child IAB-node child node
  • the IAB-DU of the IAB node is connected to the IAB-MT of the child node as the network side
  • the IAB-MT of the IAB node is connected to the IAB-DU of the parent node as the terminal side.
  • Figure 4 is a schematic diagram of the F1 user plane (F1-U) protocol stack between IAB-DU and IAB donor-CU.
  • Figure 5 is a schematic diagram of the F1 control plane (F1-C) protocol stack between IAB-DU and IAB donor-CU.
  • F1-U and F1-C are built on the transport (IP) layer between IAB-DU and IAB donor-CU. In Figures 4 and 5, they pass through two-hop wireless backhaul. and one-hop wired backhaul.
  • the transport (IP) layer is carried on the backhaul adaptive protocol (BAP) sublayer.
  • BAP adaptive protocol
  • the BAP entity in the IAB-node implements the routing function of the IAB system, and the IAB donor-CU provides the routing table.
  • BAP PDU Protocol Data Unit
  • RLC Radio Link Control
  • Multiple RLC channels of the backhaul link can be configured by the IAB-donor to carry different priorities and QoS (Quality of Service).
  • QoS Quality of Service
  • RLF radio link failure
  • embodiments of the present application provide a communication method for a network node, a communication method for a mobile node, a mobile node, and a host device.
  • a communication method of a network node in which the first donor-CU is the F1 termination donor-CU of the mobile node, and the second donor-CU is the migration or wireless link of the mobile node.
  • the methods include:
  • the first donor-CU receives first indication information, where the first indication information includes identification information related to the third donor-CU;
  • the first donor-CU sends second indication information indicating the context of the traffic to the third donor-CU.
  • a host device is provided, wherein the host device is the F1 termination donor-CU of the mobile node, and the second donor-CU is the migration or radio link failure (RLF) of the mobile node. ) is the non-F1 terminated donor-CU before recovery, and the third donor-CU is the non-F1 terminated donor-CU after migration of the mobile node or RLF recovery;
  • RLF radio link failure
  • the host device includes:
  • a receiving unit that receives first indication information, where the first indication information includes identification information related to the third donor-CU;
  • the sending unit is configured to send second indication information indicating the context of the traffic to the third donor-CU.
  • a communication method of a network node in which the first donor-CU is the F1 termination donor-CU of the mobile node, and the second donor-CU is the migration or wireless link of the mobile node.
  • the methods include:
  • the second donor-CU sends first indication information to the first donor-CU, where the first indication information includes identification information related to the third donor-CU.
  • a host device in which the first donor-CU is the F1 terminating donor-CU of the mobile node, and the host device is the migration or radio link failure (RLF) of the mobile node. ) is the non-F1 terminated donor-CU before recovery, and the third donor-CU is the non-F1 terminated donor-CU after migration of the mobile node or RLF recovery;
  • RLF radio link failure
  • the host device includes:
  • a sending unit that sends first indication information to the first donor-CU, where the first indication information includes identification information related to the third donor-CU.
  • a communication method of a network node in which the first donor-CU is the F1 termination donor-CU of the mobile node, and the second donor-CU is the migration or wireless link of the mobile node.
  • the methods include:
  • the third donor-CU receives the second indication information for indicating the context of the traffic sent by the first donor-CU according to the identification information; wherein the identification information is related to the third donor-CU and is included in Within the first indication information received by the first donor-CU.
  • a host device in which the first donor-CU is the F1 termination donor-CU of the mobile node, and the second donor-CU is the migration of the mobile node or wireless link failure ( The non-F1 terminated donor-CU before RLF) recovery, the host device is the non-F1 terminated donor-CU after the mobile node migration or RLF recovery;
  • the host device includes:
  • a receiving unit that receives the second indication information for indicating the context of the traffic sent by the first donor-CU according to the identification information; wherein the identification information is related to the third donor-CU and is included in the third donor-CU.
  • the identification information is related to the third donor-CU and is included in the third donor-CU.
  • the first donor-CU receives the first indication information
  • the first indication information includes identification information related to the third donor-CU
  • the first donor-CU receives the first indication information according to the identification information.
  • the information sends second indication information for indicating the context of the traffic to the third donor-CU.
  • Figure 1 is a schematic diagram of the IAB architecture in SA mode
  • Figure 2 is a schematic diagram of the IAB architecture in EN-DC mode
  • Figure 3 is a schematic diagram of the parent node (parent IAB-node) and the child node (child IAB-node);
  • Figure 4 is a schematic diagram of the F1-U protocol stack of the IAB system
  • Figure 5 is a schematic diagram of the F1-C protocol stack of the IAB system
  • Figure 6 is a schematic diagram of a mobility scenario according to an embodiment of the present application.
  • Figure 7 is a schematic diagram of topology adaptation within an m-CU according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of a communication method of a network node according to an embodiment of the present application.
  • Figure 9 is a signaling flow chart of topology adaptation in an embodiment of the present application.
  • Figure 10 is another signaling flow chart of topology adaptation according to the embodiment of the present application.
  • Figure 11 is another signaling flow chart of topology adaptation according to the embodiment of the present application.
  • Figure 12 is a signaling flow chart of RLF recovery according to the embodiment of the present application.
  • Figure 13 is a schematic diagram of a communication method of a network node according to an embodiment of the present application.
  • Figure 14 is a schematic diagram of a communication method of a network node according to an embodiment of the present application.
  • Figure 15 is a schematic diagram of a communication method of a mobile node according to an embodiment of the present application.
  • Figure 16 is a schematic diagram of a host device according to an embodiment of the present application.
  • Figure 17 is a schematic diagram of a host device according to an embodiment of the present application.
  • Figure 18 is a schematic diagram of a host device according to an embodiment of the present application.
  • Figure 19 is a schematic diagram of a mobile node according to an embodiment of the present application.
  • Figure 20 is a schematic diagram of an IAB device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be used by these terms. restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprises,” “includes,” “having” and the like refer to the presence of stated features, elements, elements or components but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network that complies with any of the following communication standards, such as New Radio (NR, New Radio), Long Term Evolution (LTE, Long Term Evolution), Enhanced Long-term evolution (LTE-A, LTE-Advanced), wideband code division multiple access (WCDMA, Wideband Code Division Multiple Access), high-speed packet access (HSPA, High-Speed Packet Access), etc.
  • NR New Radio
  • LTE Long Term Evolution
  • LTE-A Long-term evolution
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to the communication protocol at any stage.
  • it can include but is not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and the future. 5G, 6G, etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to a device in a communication system that connects a terminal device to a communication network and provides services to the terminal device.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, wireless network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), IAB host, etc.
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • IAB host etc.
  • it may also include Remote Radio Head (RRH, Remote Radio). Head), remote wireless unit (RRU, Remote Radio Unit), relay or low-power node (such as femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay or low-power node such as femto, pico, etc.
  • base station may include some or all of their functions, each of which may provide communications coverage to a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” refers to a device that accesses a communication network through a network device and receives network services, and may also be called a "Terminal Equipment” (TE, Terminal Equipment).
  • Terminal equipment can be fixed or mobile, and can also be called mobile station (MS, Mobile Station), terminal, user, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc. wait.
  • the terminal equipment may include but is not limited to the following equipment: cellular phone (Cellular Phone), personal digital assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication equipment, handheld device, machine-type communication equipment, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • cellular phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication equipment
  • handheld device machine-type communication equipment
  • laptop computer Cordless phones
  • Cordless phones smartphones, smart watches, digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measuring.
  • the terminal device can include but is not limited to: Machine Type Communication (MTC) terminals, Vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • vehicles equipped with mobile base station relays can provide a high opportunity to improve cellular coverage and capacity when and where needed.
  • These vehicles either follow a known or predictable route, such as buses, trams, etc.; or they are placed in convenient locations, such as outside stadiums, hot spots, or emergency scenes.
  • These relays use 5G wireless backhaul to the macro network, which can truly provide better 5G coverage and connectivity to nearby UEs.
  • Vehicle relays are obviously also very suitable for improving the connection performance of users or devices in their own vehicles, including scenarios such as passengers in buses, cars, taxis or trains, temporary/professional personnel or equipment. Other target scenarios include vehicle relays that can be used to serve user equipment with no or very poor macro coverage.
  • Moving vehicles are equipped with small vehicle base station relays to provide 5G coverage and communications to adjacent UEs inside and/or outside the vehicle, and are wirelessly connected to the 5G network through RAN (host) nodes.
  • IAB-MT can be migrated to a different parent node under IAB-donor-CU.
  • the collocated IAB-DU and the IAB-DU of the descendant node maintain the F1 connection with the original IAB-donor-CU.
  • This migration is called inter-donor partial migration.
  • the IAB node that migrates this IAB-MT to the new IAB-donor-CU is the border IAB node.
  • F1 traffic for IAB-DU and descendant nodes is routed via the BAP layer of the IAB topology to which IAB-MT migrates.
  • an IAB node in SA mode When an IAB node in SA mode declares a backhaul link RLF, it can perform RLF recovery on the parent node under a different IAB-donor-CU. Like partial migration between hosts, the collocated IAB-DU and the IAB-DU of the descendant node can maintain the F1 connection with the original IAB-donor-CU.
  • the mobility of mobile IAB (mobile IAB, mIAB) or mobile relay in a larger area faces a challenge, that is, when it changes the IAB host, the PDCP (packet data convergence protocol, packet data convergence protocol) of the UE it serves and RRC connections will be affected. Therefore, the UE in the vehicle, even if it is stationary, may experience mobility bands due to idle state (because of the need to adjust the TA value to the value assigned by the new gNB, change the PDCP endpoint and security for the user plane) and connected state. This results in greater signaling overhead.
  • PDCP packet data convergence protocol, packet data convergence protocol
  • FIG. 6 is a schematic diagram of a mobility scenario according to an embodiment of the present application.
  • the mIAB's DU is served by a CU covering a larger area, the root cause of these mobility-related signaling can be eliminated.
  • it is an advanced method to provide a dedicated mobile control unit (can be called m-CU) for the mIAB hosting function to control the UE connected to the mIAB.
  • m-CU dedicated mobile control unit
  • This enables the mIAB to move within a sizable RAN coverage area without changing the m-CU. Therefore, mIAB movement between IAB hosts can be invisible to UEs connected to the mIAB, as long as the controller is located in the same m-CU.
  • intra-m-CU intra-m-CU
  • RLF recovery mIAB migration and RLF recovery
  • the m-CU may be a dedicated IAB-donor-CU, that is, an F1-terminating donor-CU of an IAB node or IAB-DU.
  • Partial migration of IAB nodes within m-CU means that IAB-MT can be migrated to a different IAB-donor-CU or its parent node below.
  • the RRC connection of IAB-MT is migrated from the source IAB-donor-CU to the target IAB-donor-CU, and the collocated IAB-DU remains the same as the original IAB-donor-CU (that is, m-CU). F1 connection.
  • IAB-MT can continuously migrate to different IAB-donor-CU or its parent node.
  • the F1 traffic of IAB-DU is routed through the BAP layer of the IAB topology that IAB-MT migrates to.
  • the mIAB node declares the backhaul link RLF, it can perform RLF recovery on the parent node under a different IAB-donor-CU.
  • the collocated IAB-DU can maintain its F1 connection with the original m-CU. If the source IAB-donor-CU of the mIAB-MT is an m-CU, the migration process within the m-CU of the mIAB is the partial migration/RLF recovery process defined by Rel-17.
  • Figure 7 is a schematic diagram of topology adaptation within an m-CU according to an embodiment of the present application. As shown in Figure 7, if the mIAB's source IAB-donor-CU is not m-CU, the mIAB's intra-m-CU migration process can also be considered as a partial migration process between non-F1 terminated hosts, that is, changing the non-F1 terminated host. the process of.
  • the IAB node device includes a migration node or its child node.
  • mobile nodes are not limited to IAB nodes.
  • relays network-controlled repeaters (NCR, Network-controlled repeater), etc. are also applicable.
  • the embodiment of the present application provides a communication method for a network node, which is explained from the first donor-CU side.
  • the first donor-CU is the F1-terminated donor-CU of the mobile node
  • the second donor-CU is the non-F1-terminated donor-CU before migration or radio link failure (RLF) recovery of the mobile node, which can also be called the source donor-CU.
  • the CU is either the initial donor-CU
  • the third donor-CU is the non-F1 terminated donor-CU after the mobile node migration or RLF recovery, which can also be called the target donor-CU or a new donor-CU.
  • Figure 8 is a schematic diagram of a communication method of a network node according to an embodiment of the present application. As shown in Figure 8, the method includes:
  • the first donor-CU receives first indication information, where the first indication information includes identification information related to the third donor-CU; and
  • the first donor-CU sends second indication information indicating the context of the traffic to the third donor-CU.
  • the first donor-CU is an F1 terminating donor-CU of multiple mobile nodes in a designated area; F1 connections of the multiple mobile nodes always terminate at the first donor-CU. That is, the first donor-CU is the m-CU described in Figure 7.
  • IAB node 3 performs topology adaptation within the m-CU.
  • IAB node 3 is connected to IAB-donor 1 (donor-CU in Figure 7) through the parent node IAB node 1 (the parent node IAB node 1 is not required, and can also be directly connected to IAB-donor).
  • IAB-donor 1 donor-CU in Figure 7
  • 1 and donor-DU 1 are collectively referred to.
  • Figure 7 shows the CU-DU separation situation; it can also be a centralized situation, CU and DU are on one node), that is, the source IAB-donor of IAB-MT 3 is IAB-donor 1 (the second donor-CU), that is, the RRC connection end point of IAB-MT 3 is IAB-donor 1.
  • IAB-donor 1 is also called the non-F1 terminated host of IAB node 3.
  • the F1 termination host of IAB node 3 is m-CU (first donor-CU) in Figure 7.
  • the F1 traffic of IAB-DU 3, that is, the UE traffic of IAB node 3, reaches m-CU via IAB-MT 3 and IAB-donor 1.
  • IAB node 3 will migrate to the right topology diagram in Figure 7.
  • IAB node 3 is connected to IAB-donor 2 (the collective name of donor-CU 2 and donor-DU 2 in Figure 7) through the parent node IAB node 2 (the parent node IAB node 2 is not required and can also be directly connected to IAB-donor) , that is, the target IAB-donor of IAB-MT 3 is IAB-donor 2 (the third donor-CU), that is, the RRC connection end point of IAB-MT 3 is IAB-donor 2.
  • IAB-donor 2 becomes the non-F1 termination host of IAB node 3.
  • the F1 termination host of IAB node 3 is still the m-CU in Figure 7.
  • the F1 traffic of IAB-DU3, that is, the UE traffic of IAB node 3, reaches m-CU via IAB-MT 3 and IAB-donor 2.
  • the first donor-CU receives the donor-DU sent by the mobile node and the mobile node is anchored in the third donor-CU (for example, donor-DU 2 in Figure 7) address information on.
  • the second indication information is sent through a transmission migration management request message, and the second indication information includes downlink address information to enable the third donor-CU to configure or modify downlink mapping.
  • the first donor-CU receives a transmission migration management response message sent by the third donor-CU, and the transmission migration management response message includes mapping information of traffic to be offloaded and/or the third donor-CU. Layer 2 information in the topology of three donor-CUs.
  • the first donor-CU sends uplink backhaul information of traffic to the mobile node.
  • the first indication information is sent by the second donor-CU through a transmission migration modification request message; the first donor-CU sends a transmission migration modification response message to the second donor-CU.
  • the transmission migration modification request message includes the global identity of the target cell of the mobile node or the global node identity of the target host node.
  • the target cell global identity of the mobile node or the global node identity of the target host node is included in the traffic release information element carried by the transmission migration modification request message.
  • the transmission migration modification request message may also include a reason for traffic release.
  • the reason for traffic release includes: the mobile node performs inter-host handover (handover), or the mobile node performs inter-host radio link failure (RLF) recovery.
  • topology adaptation process of the embodiment of the present application will be further exemplified below through signaling interaction.
  • Figure 9 is a signaling flow chart of topology adaptation according to an embodiment of the present application.
  • the migrated IAB node (the aforementioned IAB node 3) has changed the non-F1 termination host and maintained the F1 termination host.
  • Figure 9 assumes that the migration node has parent nodes in the source path and target path, as well as intermediate nodes between the parent node and the IAB-donor. These nodes do not need to exist, so the parent node of the migrated node is IAB-donor.
  • the process includes:
  • the source IAB-donor-CU sends an Xn HANDOVER REQUEST message to the target IAB-donor-CU.
  • This message can contain the TNL (transport network layer) address information of the migrating IAB node in the RRC container.
  • the target IAB-donor-CU sends a UE CONTEXT SETUP REQUEST message to the IAB-DU of the target parent node to create a UE context for migrating IAB-MT and establish signaling and optional data for migrating IAB-MT.
  • the bearer used by the traffic is not limited to a UE CONTEXT SETUP REQUEST message.
  • the IAB-DU of the target parent node replies the UE CONTEXT SETUP RESPONSE message to the target IAB-donor-CU.
  • the target IAB-donor-CU performs admission control and provides the new RRC configuration as part of the HANDOVER REQUEST ACKNOWLEDGE message.
  • the RRC configuration contains the migration node's BAP address in the target IAB-donor-CU's topology, the default BH RLC channel, and the default BAP route identifier used for upstream F1-C/non-F1 traffic mapping on the target path. configuration.
  • the RRC configuration may contain the migrating node's new TNL address(es) anchored on the target IAB-donor-DU.
  • the source IAB-donor-CU sends a UE CONTEXT MODIFICATION REQUEST message to the source parent node IAB-DU, which contains the RRCReconfiguration message received from the target IAB-donor-CU.
  • the source parent node IAB-DU forwards the received RRCReconfiguration message to the migrating IAB-MT.
  • the source parent node IAB-DU replies to the source IAB-donor-CU with a UE CONTEXT MODIFICATION RESPONSE message.
  • the migration IAB-MT performs a random access process to the target parent node IAB-DU.
  • the migration IAB-MT responds to the target parent node IAB-DU with the RRCReconfigurationComplete message.
  • the target parent node IAB-DU sends a UL RRC MESSAGE TRANSFER message to the target IAB-donor-CU, which carries the received RRCReconfigurationComplete message.
  • the target IAB-donor-CU triggers the path switching process for the migrating IAB-MT.
  • the target IAB-donor-CU sends a UE CONTEXT RELEASE message to the source IAB-donor-CU.
  • both the source IAB-donor-CU and the target IAB-donor-CU need to save the migration as long as the target path is used to transport traffic between the migration node and the source IAB-donor-CU.
  • the XnAP UE ID of the node If the source IAB-donor-CU is not m-CU, the target path does not need to transmit the traffic between the migration node and the source IAB-donor-CU (that is, the traffic of the migration node does not pass through the source IAB-donor-CU), the source IAB- donor-CU can release the XnAP UE ID of the migrating node.
  • the source IAB-donor-CU may release routing entries for the BH RLC channel and BAP sublayer on the source path from the source parent node of the migrating IAB node to the source IAB-donor-DU.
  • the target IAB-donor-CU configures the BH RLC channel and routing entries of the BAP sublayer on the target path from the migrating IAB node to the target IAB-donor-DU, as well as the routing entries about the migrating IAB node on the target IAB-donor-DU. Downstream mapping of the destination path. These configurations support the transportation of F1-C traffic on the destination path.
  • the F1-C connection between the migrating IAB node and the m-CU is switched to the target path by using the new TNL address information of the migrating IAB node.
  • the migrating IAB node can report the new TNL address it wants to use for F1-U traffic to the m-CU through the gNB-DU CONFIGURATION UPDATE message.
  • the migrating IAB node can use MOBIKE (IETF RFC 4555) to migrate the IPsec tunnel to a new IP external address.
  • MOBIKE IETF RFC 4555
  • the migration IAB-DU initiates the gNB-DU Configuration Update process of F1AP.
  • the IAB-donor-CU can derive the existing internal IP address (for example, for SCTP-stream control transmission protocol association) and the downlink F-TEID. (Fully qualified Tunnel Endpoint Identifier) can be reused.
  • the new TNL address information of the migrating IAB can be used to create a new SCTP association between the migrating IAB node and the F1 terminating IAB-donor-CU.
  • the migrating IAB node sends F1AP's gNB-DU CONFIGURATION UPDATE message to the F1 terminating IAB-donor-CU (m-CU).
  • the message can include the new (external) IP address and corresponding IP address in order to switch F1-U traffic to the target path.
  • New (internal) IP address can be used to create a new SCTP association between the migrating IAB node and the F1 terminating IAB-donor-CU.
  • the source IAB-donor-CU sends an IAB TRANSPORT MIGRATION MODIFICATION REQUEST message to m-CU to request that all offloaded traffic be released.
  • This message may contain the node identification (or target cell identification) of the target IAB-donor-CU, the reason for the release of traffic offloading, etc.
  • m-CU sends an IAB TRANSPORT MIGRATION MANAGEMENT REQUEST message to the target IAB-donor-CU to provide the context of the traffic that needs to be offloaded.
  • This message may contain new downlink TNL address information, which is used for the target IAB-donor-CU to configure or modify the downlink mapping on the IAB-donor-DU.
  • the target IAB-donor-CU can configure or modify the routing entries of the BH RLC channel and BAP sublayer between the migrating IAB node and the target IAB-donor-CU on the target path, as well as the routing entries on the target IAB-donor-DU. Downstream mapping of the target path for migrating IAB nodes. These configurations can support user plane and non-user plane traffic transport on the destination path.
  • the target IAB-donor-CU replies to the m-CU with an IAB Transport Migration Management Response message, which provides mapping information for the traffic to be offloaded.
  • This message contains Layer 2 information for the target IAB-donor-CU topology that is necessary to configure the traffic upstream mapping indicated in 918 for the migrating IAB node.
  • This message contains the DSCP (Differentiated Services Code Point)/IPv6 flow label value used to configure the downstream mapping of the traffic indicated in 918.
  • DSCP Differentiated Services Code Point
  • the F1-U connection of the migrated IAB node to m-CU is switched by using the new TNL address of the migrated IAB node.
  • the m-CU provides updated uplink backhaul information for the traffic indicated in 918 to the IAB-DU of the migrating IAB node based on the uplink backhaul information received from the target IAB-donor-CU in 1020.
  • m-CU can also update uplink backhaul information associated with non-user plane traffic. This step may use UE-associated signaling or non-UE-associated signaling on the E1 and/or F1 interface.
  • the implementation must ensure that possible contention phenomena are avoided, that is, conflicting configurations cannot be performed simultaneously using the UE association process and the non-UE association process.
  • m-CU can request more traffic offloading, or request modification or release of offloaded traffic.
  • the target IAB-donor-CU can reject the m-CU's request to add or modify traffic offloading in whole or in part.
  • the target IAB-donor-CU may use the TRANSPORT MIGRATION MODIFICATION REQUEST message to request modifications to the Layer 2 transport of offloaded traffic in the target IAB-donor-CU's topology.
  • m-CU reconfigures the uplink backhaul mapping based on the request and confirms the modification through the IAB TRANSPORT MIGRATION MODIFICATION RESPONSE message.
  • the target IAB-donor-CU can further reconfigure the TNL address of the migrating IAB node through RRC.
  • 916 enhances the existing IAB TRANSPORT MIGRATION MODIFICATION REQUEST message.
  • This XnAP message is sent by the non-F1 terminating IAB-donor-CU of the border IAB node to the F1 terminating IAB-donor-CU.
  • the purpose is to modify or release (for example, for the purpose of traffic rollback) the migration traffic of the border IAB node. configuration.
  • the enhanced part can be to add a new IE or field to the message, such as adding a new field to the Traffic To Be Released Information IE to indicate that the sender is the non-F1 termination of the IAB node.
  • the host switches the IAB node to the target host and notifies the target host node of the node ID or the cell ID of the target cell.
  • Table 1 shows an example of traffic released information elements in the embodiment of the present application, which is the enhanced Traffic To Be Released Information IE.
  • Target Cell Global ID can be added to the Full Release group to indicate the target cell global identity (CGI) of the IAB node. It can also be replaced by a global NG-RAN node identifier indicating the target host node. This field is called Target Global NG-RAN Node ID, for example.
  • the F1 termination host of the IAB node can know the target IAB host of the IAB node through the received message.
  • the F1 termination host node of the IAB node receives the target cell identifier or the node identifier of the target IAB host, it can perform the IAB transmission migration management process on the target host node and migrate the F1 traffic of IAB node 3 to the topology of the target host node.
  • the value can be HO (handover), indicating that the migrating IAB node has switched between hosts.
  • New values can be defined in XnAP's Cause IE, such as Handover.
  • the first indication information is sent by the second donor-CU through a migration notification message in an XnAP message.
  • the first donor-CU sends a migration notification confirmation message to the second donor-CU.
  • the relocation notification message includes the global identity of the target cell of the mobile node or the global node identity of the target host node.
  • the migration notification message includes a migration reason.
  • the migration reasons include: the mobile node performs inter-host handover (handover), or the mobile node performs inter-host radio link failure (RLF) recovery.
  • topology adaptation process of the embodiment of the present application will be further exemplified below through signaling interaction.
  • Figure 10 is another signaling flow chart of topology adaptation according to an embodiment of the present application.
  • the migrated IAB node (the aforementioned IAB node 3) has changed the non-F1 termination host and maintained the F1 termination host.
  • Figure 10 assumes that the migration node has parent nodes in both the source path and the target path, as well as intermediate nodes between the parent node and IAB-donor. These nodes do not need to exist, so the parent node of the migrated node is IAB-donor.
  • FIG. 10 The process shown in Figure 10 is basically the same as Figure 9, and the specific content will not be described again.
  • 916 and 917 in Figure 9 are changed into a new basic Xn process (as shown in 1016 and 1017). It can be a type 1 (class 1) basic process or a type 2 basic process.
  • the purpose of this new Xn process is the same as 916 and 917 in Figure 9, which is used by the source IAB host node to notify the m-CU that the IAB-MT of IAB node 3 has been switched to the target IAB host. This process can be called IAB Migration notification process.
  • the non-F1 terminating IAB-donor-CU of the border IAB node sends a notification message to the F1 terminating IAB-donor-CU, such as the IAB MIGRATION NOTIFICATION message.
  • the message contains the F1 terminating IAB host UE XnAP ID, non-F1 terminated IAB host UE XnAP ID, and can also include the global identity of the target cell, the reason for the notification, etc.
  • Table 2 shows an example of information elements in the notification message in this embodiment of the present application.
  • m-CU does not need to reply to the message. If it is a type 1 basic process, m-CU also needs to reply to the sender, such as replying to the IAB MIGRATION NOTIFICATION ACKNOWLEDGE message. This message indicates that the IAB MIGRATION NOTIFICATION message has been successfully received. In this message, the source IAB host node can also be instructed to release the XnAP UE ID of the migration node saved by the source IAB host node.
  • the first indication information is sent by the mobile node through an F1AP message.
  • the F1AP message is a gNB-DU configuration update message
  • the gNB configuration update message includes: address information of the mobile node anchored on the donor-DU of the third donor-CU and the first indication. information.
  • the F1AP message includes the global identity of the target cell of the mobile IAB node or the global node identity of the target host node.
  • the F1AP message includes a migration reason.
  • the migration reasons include: the mobile node performs inter-host handover (handover), or the mobile node performs inter-host radio link failure (RLF) recovery.
  • handover the mobile node performs inter-host handover
  • RLF radio link failure
  • topology adaptation process of the embodiment of the present application will be further exemplified below through signaling interaction.
  • Figure 11 is another signaling flow chart of topology adaptation according to the embodiment of the present application.
  • the migrated IAB node (the aforementioned IAB node 3) has changed the non-F1 termination host and maintained the F1 termination host.
  • Figure 11 assumes that the migration node has parent nodes in the source path and target path, as well as intermediate nodes between the parent node and IAB-donor. These nodes do not need to exist, so the parent node of the migrated node is IAB-donor.
  • the process shown in Figure 11 is basically the same as Figure 9, and the specific content will not be described again.
  • the m-CU can be notified through the DU of the border IAB node, notifying that the MT of the border IAB node has been switched to the cell of the target IAB host node.
  • This can be achieved by F1AP signaling from the boundary IAB-DU to the m-CU.
  • the gNB-DU CONFIGURATION UPDATE message of F1AP can be enhanced to report to the m-CU the global identity of the target cell of the migrated IAB-MT.
  • the F1-C connection between the migrating IAB node and the m-CU is switched to the target path by using the new TNL address information of the migrating IAB node.
  • the migrating IAB node can report the new TNL address it wants to use for F1-U traffic to the m-CU through the gNB-DU CONFIGURATION UPDATE message.
  • the migrating IAB-DU can also report the global identity of the target cell of the migrating IAB-MT.
  • Table 3 shows an example of a modified gNB-DU CONFIGURATION UPDATE message.
  • IAB Migration Target Cell CGI IE add the indication information of the IAB-MT target cell in the message, such as called IAB Migration Target Cell CGI IE.
  • the target cell CGI of this IAB node migration is obtained by the migrating IAB-MT from the SIB1 message of the target cell.
  • PLMN-Identity Public Land Mobile Network-Identity, public land mobile network identity
  • cellIdentity cell identity
  • the IE can also be replaced with the identifier of the target host node, such as the global NG-RAN node identifier.
  • the IE is, for example, called IAB Migration Target Global NG-RAN Node ID.
  • This global node identity can also be obtained by the PLMN-Identity and cellIdentity (cell identity) obtained by the migrating IAB-MT from the SIB1 message of the target cell.
  • the message can also contain IAB Migration Cause IE.
  • new values can be defined in F1AP's Cause IE, such as Handover.
  • IAB nodes may be migrated within m-CU due to traffic offloading or node movement. Traffic offloading or mobility performed by the migrating IAB node during the topology adaptation process within the m-CU can all be rolled back.
  • a non-F1 terminated IAB-donor-CU can initiate a full traffic fallback to the m-CU by performing the XnAP handover preparation process.
  • migrating IAB-MT switches to m-CU
  • the IAB-DU traffic of the migrating IAB node is routed through the m-CU topology.
  • the F1 termination host and RRC termination node of the migrated IAB node are both m-CU, which means that the partial migration is completed.
  • the non-F1 terminated IAB-donor-CU can also initiate the rollback of all traffic to the previous source IAB-donor-CU by executing the XnAP handover preparation process.
  • This process is equivalent to performing topology adaptation within the m-CU again, and the process is consistent with the aforementioned embodiment.
  • the traffic of the IAB-DU of the migrated IAB node is rerouted through the previous source path.
  • the first donor-CU requests the third donor-CU to release all offload traffic or release part of the offload traffic by transmitting a migration management request message.
  • the m-CU can initiate a full traffic rollback by requesting the non-F1 terminated IAB-donor-CU to release all offloaded traffic.
  • This request is to send an IAB TRANSPORT MIGRATION MANAGEMENT REQUEST message to the non-F1 terminated IAB-donor-CU.
  • This message can trigger the XnAP handover preparation process for migrating IAB-MT to m-CU.
  • m-CU can also request the offloaded traffic of the non-F1 terminated IAB-donor-CU release part through the IAB TRANSPORT MIGRATION MANAGEMENT REQUEST message.
  • the RLF recovery will be schematically explained below.
  • the IAB node's return radio link failure (RLF) recovery process in the m-CU can enable the IAB node to detect the return RLF and terminate the IAB-donor-CU while keeping the m-CU at F1. , restore to the parent node under another IAB-donor-CU. At this time, the restored IAB node becomes a boundary node.
  • the RLF recovery process of IAB-MT is the same as the inter-host backhaul RLF recovery process in the prior art, such as steps 1201-1213 in Figure 12.
  • the second donor-CU of the IAB node is also called the initial donor-CU
  • the third donor-CU is also called the new donor-CU.
  • Figures 9 to 11 can be adaptively modified to the corresponding IAB nodes. RLF recovery process within m-CU.
  • Figure 12 is a signaling diagram of the RLF recovery process in this embodiment of the present application.
  • the corresponding steps in 1218 are the same as the corresponding steps in Figures 9 to 11 (for example, 914 to 922, or 1014 to 1022, or 1114 to 1120), and will not be described again here.
  • the Cause value in the corresponding embodiments indicates the reason for releasing all traffic, or the reason for migration.
  • the cause value of the RLF recovery process can be RLF recovery, indicating that the IAB node has performed RLF recovery between hosts.
  • the new IAB-donor-CU may use the TRANSPORT MIGRATION MODIFICATION REQUEST message to request modifications to the Layer 2 transport of offloaded traffic in the new IAB-donor-CU's topology.
  • m-CU reconfigures the uplink backhaul mapping based on the request and confirms the modification through the IAB TRANSPORT MIGRATION MODIFICATION RESPONSE message.
  • the new IAB-donor-CU can further reconfigure the TNL address of the restored IAB node through RRC.
  • the traffic rollback process of the IAB node restored by RLF is the same as the aforementioned rollback process of the migrated node.
  • problems such as migration, RLF recovery, and traffic rollback between non-F1 host nodes of the IAB node can be solved, thereby supporting the movement of the IAB node within the control area of the m-CU and ensuring the service of the mobile IAB node to the UE. quality.
  • the first donor-CU receives first indication information, where the first indication information includes identification information related to the third donor-CU; and the first donor-CU sends a request to the third donor based on the identification information. - the CU sends second indication information indicating the context of the traffic.
  • the mobile node can be supported to move within the control area without causing service interruption, and the service quality of the mobile node to the user equipment is ensured.
  • the embodiment of the present application provides a communication method for a network node, which is explained from the second donor-CU side, and the same content as the embodiment of the first aspect will not be described again.
  • the first donor-CU is the F1 terminated donor-CU of the mobile node
  • the second donor-CU is the non-F1 terminated donor-CU before the mobile node migrates or radio link failure (RLF) recovery
  • the third donor-CU is The non-F1 terminated donor-CU after migration of the mobile node or RLF recovery.
  • Figure 13 is a schematic diagram of a communication method of a network node according to an embodiment of the present application. As shown in Figure 13, the method includes:
  • the second donor-CU sends first indication information to the first donor-CU, where the first indication information includes identification information related to the third donor-CU.
  • the first indication information is sent by the second donor-CU by transmitting a migration modification request message; as shown in Figure 13, the method may further include:
  • the second donor-CU receives the transmission migration modification response message sent by the first donor-CU.
  • the transmission relocation modification request message includes the target cell global identity of the mobile node or the global node identity of the target host node.
  • the target cell global identity of the mobile node or the global node identity of the target host node is included in the traffic release information element carried by the transmission migration modification request message.
  • the transmission migration modification request message includes a traffic release reason.
  • the reason for traffic release includes: the mobile node performs inter-host handover (handover), or the mobile node performs inter-host radio link failure (RLF) recovery.
  • handover the mobile node performs inter-host handover
  • RLF radio link failure
  • the first indication information is sent by the second donor-CU through a migration notification message in an XnAP message.
  • the second donor-CU receives the migration notification confirmation message sent by the first donor-CU.
  • the migration notification message includes the global identity of the target cell of the mobile node or the global node identity of the target host node.
  • the migration notification message includes a migration reason.
  • the migration reason includes: the mobile node performs inter-host handover (handover), or the mobile node performs inter-host radio link failure (RLF) recovery.
  • handover the mobile node performs inter-host handover
  • RLF radio link failure
  • the second donor-CU sends first indication information to the first donor-CU, where the first indication information includes identification information related to the third donor-CU; wherein the identification information is
  • the first donor-CU is configured to send second indication information indicating the context of the traffic to the third donor-CU.
  • the embodiment of the present application provides a communication method for a network node, which is explained from the third donor-CU side, and the same content as the first and second embodiments will not be described again.
  • the first donor-CU is the F1 terminated donor-CU of the mobile node
  • the second donor-CU is the non-F1 terminated donor-CU before the mobile node migrates or radio link failure (RLF) recovery
  • the third donor-CU is The non-F1 terminated donor-CU after migration of the mobile node or RLF recovery.
  • Figure 14 is a schematic diagram of a communication method of a network node according to an embodiment of the present application. As shown in Figure 14, the method includes:
  • the third donor-CU receives the second indication information for indicating the context of the traffic sent by the first donor-CU according to the identification information; wherein the identification information is related to the third donor-CU and is included in the Within the first indication information received by the first donor-CU.
  • the second indication information is sent by transmitting a migration management request message.
  • the method may also include:
  • the third donor-CU configures or modifies the downlink mapping according to the downlink address information included in the second indication information.
  • the third donor-CU sends a transmission migration management response message to the first donor-CU, where the transmission migration management response message includes mapping information of traffic to be offloaded and/or the third donor-CU Layer 2 information in the topology of donor-CU.
  • the third donor-CU initiates traffic fallback of a mobile terminal (MT) handover of the mobile node to the first donor-CU.
  • MT mobile terminal
  • the traffic of the distribution unit (DU) of the mobile node is carried out through the topology of the first donor-CU. routing.
  • the third donor-CU initiates traffic rollback of the mobile terminal of the mobile node to the second donor-CU.
  • traffic of the distribution unit of the mobile node is routed through the topology of the second donor-CU in the event that the mobile node's mobile terminal is handed over to the second donor-CU.
  • the third donor-CU receives the second indication information for indicating the context of the traffic sent by the first donor-CU according to the identification information; wherein the identification information is related to the third donor-CU and Included in the first indication information received by the first donor-CU.
  • the embodiment of the present application provides a communication method for a mobile node, which will be described from the mobile node side, and the same content as the embodiments of the first to third aspects will not be described again.
  • the first donor-CU is the F1 terminated donor-CU of the mobile node
  • the second donor-CU is the non-F1 terminated donor-CU before the mobile node migrates or radio link failure (RLF) recovery
  • the third donor-CU is The non-F1 terminated donor-CU after migration of the mobile node or RLF recovery.
  • Figure 15 is a schematic diagram of a communication method of a mobile node according to an embodiment of the present application. As shown in Figure 15, the method includes:
  • the F1-C connection between the mobile node and the first donor-CU is switched to the target path by using the address information of the mobile node anchored on the donor-DU of the third donor-CU.
  • the method may further include:
  • the mobile node sends the address information of the mobile node anchored on the donor-DU of the third donor-CU to the first donor-CU.
  • the mobile node sends first indication information to the first donor-CU, where the first indication information includes identification information related to the third donor-CU; wherein the identification information Used by the first donor-CU to send second indication information indicating the context of the traffic to the third donor-CU.
  • the mobile node's F1-U connection to the first donor-CU is switched using the mobile node's address anchored on the donor-DU of the third donor-CU.
  • the mobile node receives the uplink backhaul information of the traffic sent by the first donor-CU.
  • the first indication information is sent by the mobile node through an F1AP message.
  • the F1AP message is a gNB-DU configuration update message
  • the gNB configuration update message includes: the address information of the mobile node anchored on the donor-DU of the third donor-CU and the the first instruction information.
  • the F1AP message includes the global identity of the target cell of the mobile IAB node or the global node identity of the target host node.
  • the F1AP message includes a migration reason.
  • the migration reasons include: the mobile node performs inter-host handover (handover), or the mobile node performs inter-host radio link failure (RLF) recovery.
  • handover the mobile node performs inter-host handover
  • RLF radio link failure
  • the F1-C connection between the mobile node and the first donor-CU is switched to the target path by using the address information of the mobile node anchored on the donor-DU of the third donor-CU. .
  • the mobile node can be supported to move within the control area without causing service interruption, and the service quality of the mobile node to the user equipment is ensured.
  • the device may be, for example, the IAB donor-CU in the IAB system (such as the first donor-CU in the embodiments of the first to fourth aspects), or it may be some or some components configured in the IAB donor-CU. Or components or modules.
  • the host device is the F1 terminated donor-CU of the mobile node
  • the second donor-CU is the non-F1 terminated donor-CU before migration of the mobile node or radio link failure (RLF) recovery
  • the third donor-CU is the Describe the non-F1 terminated donor-CU after mobile node migration or RLF recovery.
  • FIG 16 is a schematic diagram of a host device according to an embodiment of the present application. As shown in Figure 16, host device 1600 includes:
  • the receiving unit 1601 receives first indication information, where the first indication information includes identification information related to the third donor-CU; and
  • the sending unit 1602 sends second indication information indicating the context of the traffic to the third donor-CU.
  • the host device is an F1 terminating donor-CU of multiple mobile nodes in a designated area; F1 connections of the multiple mobile nodes are always terminated at the host device.
  • the receiving unit 1601 also receives the address information sent by the mobile node and anchored on the donor-DU of the third donor-CU.
  • the second indication information is sent through a transmission migration management request message, and the second indication information includes downlink address information to enable the third donor-CU to configure or modify downlink mapping;
  • the receiving unit 1601 also receives a transmission migration management response message sent by the third donor-CU.
  • the transmission migration management response message includes mapping information of traffic to be offloaded and/or layers in the topology of the third donor-CU. 2 information.
  • the sending unit 1602 also sends the uplink backhaul information of the traffic to the mobile node.
  • the first indication information is sent by the second donor-CU by transmitting a migration modification request message
  • the sending unit 1602 also sends a transmission migration modification response message to the second donor-CU.
  • the transmission migration modification request message includes the target cell global identity of the mobile node or the global node identity of the target host node;
  • the target cell global identity of the mobile node or the global node identity of the target host node is included in the traffic release information element carried by the transmission migration modification request message.
  • the transmission migration modification request message includes a reason for traffic release
  • the reason for traffic release includes: the mobile node performs inter-host handover (handover), or the mobile node performs inter-host radio link failure (RLF) recovery.
  • handover the mobile node performs inter-host handover
  • RLF radio link failure
  • the first indication information is sent by the second donor-CU through a migration notification message in the XnAP message;
  • the sending unit 1602 also sends a migration notification confirmation message to the second donor-CU.
  • the migration notification message includes the global identity of the target cell of the mobile node or the global node identity of the target host node.
  • the migration notification message includes a reason for traffic release
  • the reason for traffic release includes: the mobile node performs inter-host handover (handover), or the mobile node performs inter-host radio link failure (RLF) recovery.
  • handover the mobile node performs inter-host handover
  • RLF radio link failure
  • the first indication information is sent by the mobile node through an F1AP message
  • the F1AP message is a gNB-DU configuration update message, and the gNB configuration update message includes: address information of the mobile node anchored on the donor-DU of the third donor-CU and the first indication information.
  • the F1AP message includes the migration reason
  • the migration reasons include: the mobile node performs inter-host handover (handover), or the mobile node performs inter-host radio link failure (RLF) recovery.
  • handover the mobile node performs inter-host handover
  • RLF radio link failure
  • the sending unit 1602 also requests the third donor-CU to release all offload traffic or release part of the offload traffic by transmitting a migration management request message.
  • the host device 1600 in this embodiment of the present application may also include other components or modules.
  • the specific content of these components or modules please refer to related technologies.
  • FIG. 16 only illustrates the connection relationships or signal directions between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connections can be used.
  • Each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • the first donor-CU receives first indication information, where the first indication information includes identification information related to the third donor-CU; and the first donor-CU sends a request to the third donor based on the identification information. - the CU sends second indication information indicating the context of the traffic.
  • the mobile node can be supported to move within the control area without causing service interruption, and the service quality of the mobile node to the user equipment is ensured.
  • the device may be, for example, the IAB donor-CU in the IAB system (such as the second donor-CU in the embodiments of the first to fourth aspects), or it may be some or some components configured in the IAB donor-CU. Or components or modules.
  • the first donor-CU is the F1 terminated donor-CU of the mobile node
  • the host device is the non-F1 terminated donor-CU of the mobile node before migration or radio link failure (RLF) recovery
  • the third donor-CU is the Describe the non-F1 terminated donor-CU after mobile node migration or RLF recovery.
  • FIG 17 is a schematic diagram of a host device according to an embodiment of the present application. As shown in Figure 17, host device 1700 includes:
  • the sending unit 1701 sends first indication information to the first donor-CU, where the first indication information includes identification information related to the third donor-CU.
  • the first indication information is sent by the second donor-CU by transmitting a migration modification request message; as shown in Figure 17, the host device 1700 may also include:
  • the receiving unit 1702 receives the transmission migration modification response message sent by the first donor-CU.
  • the first indication information is sent by the second donor-CU through the migration notification message in the XnAP message; the receiving unit 1702 also receives the migration notification confirmation message sent by the first donor-CU.
  • the host device 1700 in the embodiment of the present application may also include other components or modules.
  • the specific content of these components or modules please refer to related technologies.
  • FIG. 17 only illustrates the connection relationships or signal directions between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connections can be used.
  • Each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • the second donor-CU sends first indication information to the first donor-CU, where the first indication information includes identification information related to the third donor-CU; wherein the identification information is
  • the first donor-CU is configured to send second indication information indicating the context of the traffic to the third donor-CU.
  • the device may be, for example, the IAB donor-CU in the IAB system (such as the third donor-CU in the embodiments of the first to fourth aspects), or it may be some or some components configured in the IAB donor-CU. Or components or modules.
  • the first donor-CU is the F1 terminated donor-CU of the mobile node
  • the second donor-CU is the non-F1 terminated donor-CU before migration of the mobile node or radio link failure (RLF) recovery
  • the host device is the Describe the non-F1 terminated donor-CU after mobile node migration or RLF recovery.
  • FIG. 18 is a schematic diagram of a host device according to an embodiment of the present application. As shown in Figure 18, host device 1800 includes:
  • the receiving unit 1801 receives the second indication information sent by the first donor-CU according to the identification information to indicate the context of the traffic;
  • the identification information is related to the third donor-CU and is included in the first indication information received by the first donor-CU.
  • the second indication information is sent by transmitting a migration management request message.
  • the host device 1800 may also include:
  • the processing unit 1802 configures or modifies the downlink mapping according to the downlink address information included in the second indication information.
  • the host device 1800 may also include:
  • the sending unit 1803 sends a transmission migration management response message to the first donor-CU, where the transmission migration management response message includes mapping information of traffic to be offloaded and/or layer 2 information in the topology of the third donor-CU. .
  • the host device 1800 in this embodiment of the present application may also include other components or modules.
  • the specific content of these components or modules please refer to related technologies.
  • FIG. 18 only illustrates the connection relationships or signal directions between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connections can be used.
  • Each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • the third donor-CU receives the second indication information for indicating the context of the traffic sent by the first donor-CU according to the identification information; wherein the identification information is related to the third donor-CU and Includes first indication information received at the first donor-CU.
  • the mobile node can be supported to move within the control area without causing service interruption, and the service quality of the mobile node to the user equipment is ensured.
  • the embodiment of the present application provides a mobile node, and the same content as the first to fourth embodiments will not be described again.
  • the mobile node may be, for example, an IAB node in the IAB system (such as the mobile IAB node in the embodiments of the first to fourth aspects), or may be some or some components or components or modules configured in the IAB node.
  • FIG 19 is a schematic diagram of a mobile node according to an embodiment of the present application.
  • mobile node 1900 includes mobile terminal (MT) 1901 and distribution unit (DU) 1902.
  • the mobile terminal (MT) 1901 of the mobile node switches or RLF resumes from the second donor-CU to the third donor-CU.
  • the F1-C connection between the mobile node's distribution unit (DU) 1902 and the first donor-CU is created by using the mobile node's address anchored on the third donor-CU's donor-CU. Information switches to the target path.
  • the distribution unit (DU) 1902 of the mobile node sends address information of the mobile node anchored on the donor-DU of the third donor-CU to the first donor-CU.
  • the distribution unit (DU) 1902 of the mobile node sends first indication information to the first donor-CU, where the first indication information includes identification information related to the third donor-CU. .
  • the mobile node's Distribution Unit (DU) 1902 is connected to the first donor-CU's F1-U connection by using the mobile node's anchor on the third donor-CU's donor-DU. address to switch.
  • the distribution unit (DU) 1902 of the mobile node receives the uplink backhaul information of the traffic sent by the first donor-CU.
  • the first indication information is sent by the mobile node through an F1AP message.
  • the F1AP message is a gNB-DU configuration update message
  • the gNB configuration update message includes: the address information of the mobile node anchored on the donor-DU of the third donor-CU and the the first instruction information.
  • the F1AP message includes the global identity of the target cell of the mobile IAB node or the global node identity of the target host node.
  • the F1AP message includes a migration reason.
  • the migration reason includes: the mobile node performs inter-host handover (handover), or the mobile node performs inter-host radio link failure (RLF) recovery.
  • handover the mobile node performs inter-host handover
  • RLF radio link failure
  • the mobile node 1900 in the embodiment of the present application may also include other components or modules.
  • FIG. 19 only illustrates the connection relationships or signal directions between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connections can be used.
  • Each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • the F1-C connection between the mobile node and the first donor-CU uses the address information of the mobile node anchored on the donor-DU of the third donor-CU. Switch to the target path.
  • the mobile node can be supported to move within the control area without causing service interruption, and the service quality of the mobile node to the user equipment is ensured.
  • the embodiment of the present application provides a communication system, including a host (donor) device and a mobile node (such as an IAB-node); for the network architecture and specific content of the host (donor device) and IAB node, you can also refer to related technologies, here Omit description.
  • the communication system includes: a first donor-CU, a second donor-CU, a third donor-CU, a donor-DU of each donor-CU, and a mobile node.
  • Each donor-DU can perform operations corresponding to each donor-CU and the mobile node.
  • the first donor-CU is the F1 terminated donor-CU of the mobile node
  • the second donor-CU is the non-F1 terminated donor-CU before the mobile node migrates or radio link failure (RLF) recovery
  • the third donor-CU is The non-F1 terminated donor-CU after migration of the mobile node or RLF recovery.
  • the first donor-CU receives first indication information, the first indication information includes identification information related to the third donor-CU; and the first donor-CU sends to the third donor-CU Second indication information used to indicate the context of the traffic.
  • the second donor-CU sends first indication information to the first donor-CU, where the first indication information includes identification information related to the third donor-CU.
  • the third donor-CU receives the second indication information for indicating the context of the traffic sent by the first donor-CU according to the identification information; wherein the identification information is related to the third donor-CU and is included in Within the first indication information received by the first donor-CU.
  • the F1-C connection between the mobile node and the first donor-CU is switched to the target path by using the address information of the mobile node anchored on the donor-DU of the third donor-CU.
  • Embodiments of the present application also provide an IAB device, which may be an IAB host device or an IAB node (migration node or child node).
  • IAB device which may be an IAB host device or an IAB node (migration node or child node).
  • FIG 20 is a schematic diagram of an IAB device according to an embodiment of the present application.
  • IAB device 2000 may include: a processor (eg, central processing unit CPU) 2001 and a memory 2002; the memory 2002 is coupled to the processor 2001.
  • the memory 2002 can store various data; in addition, it also stores an information processing program 2005, and the program 2005 is executed under the control of the central processor 2001.
  • the processor 2001 may be configured to execute a program to implement the communication method of a network node as in the embodiment of the first aspect.
  • the processor 2001 may be configured to perform the following control: receive first indication information, the first indication information including identification information related to the third donor-CU; and send the third donor-CU for Second indication information indicating the context of the traffic.
  • the processor 2001 may be configured to execute a program to implement the communication method of the network node as in the embodiment of the second aspect.
  • the processor 2001 may be configured to perform the following control: sending first indication information to the first donor-CU, where the first indication information includes identification information related to the third donor-CU.
  • the processor 2001 may be configured to execute a program to implement the communication method of a network node as in the embodiment of the third aspect.
  • the processor 2001 may be configured to perform the following control: receive the second indication information for indicating the context of the traffic sent by the first donor-CU according to the identification information; wherein the identification information is related to the third donor-CU and included in the first indication information received by the first donor-CU.
  • the processor 2001 may be configured to execute a program to implement the communication method of the mobile node as in the embodiment of the fourth aspect.
  • the processor 2001 may be configured to perform the following control: the F1-C connection with the first donor-CU is switched to the third donor-CU by using the address information of the mobile node anchored on the donor-DU of the third donor-CU. Target path.
  • the IAB device 2000 may also include: a transceiver 2003, an antenna 2004, etc.; the functions of the above components are similar to those of the existing technology and will not be described again here. It is worth noting that the IAB device 2000 does not necessarily include all components shown in FIG. 20 ; in addition, the IAB device 2000 may also include components not shown in FIG. 20 , and reference may be made to the existing technology.
  • Embodiments of the present application also provide a computer-readable program, wherein when the program is executed in an IAB device, the program causes the computer to perform communication of the network nodes of the embodiments of the first to third aspects in the IAB device. method or a communication method of a mobile node according to an embodiment of the fourth aspect.
  • Embodiments of the present application also provide a storage medium storing a computer-readable program, wherein the computer-readable program causes the computer to execute the communication method of the network node of the embodiments of the first to third aspects or the fourth aspect in the IAB device.
  • the communication method of the mobile node of the embodiment is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to the network node, the embodiments of the first to third aspects or the fourth aspect in the IAB device.
  • the above devices and methods of this application can be implemented by hardware, or can be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by a logic component, enables the logic component to implement the apparatus or component described above, or enables the logic component to implement the various methods described above or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, etc.
  • This application also involves storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, etc.
  • the methods/devices described in connection with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow, or may correspond to each hardware module.
  • These software modules can respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by solidifying these software modules using a Field Programmable Gate Array (FPGA), for example.
  • FPGA Field Programmable Gate Array
  • the software module may be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or the large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings may be implemented as a general-purpose processor or a digital signal processor (DSP) for performing the functions described in this application. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any appropriate combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple microprocessors. processor, one or more microprocessors combined with DSP communications, or any other such configuration.
  • a communication method for a network node wherein the first donor-CU is the F1 terminated donor-CU of the mobile node, and the second donor-CU is the non-stop donor-CU before migration or radio link failure (RLF) recovery of the mobile node.
  • the F1 terminated donor-CU, and the third donor-CU is the non-F1 terminated donor-CU after migration of the mobile node or RLF recovery;
  • the methods include:
  • the first donor-CU receives first indication information, where the first indication information includes identification information related to the third donor-CU;
  • the first donor-CU sends second indication information indicating the context of the traffic to the third donor-CU.
  • the first donor-CU is an F1 terminating donor-CU of multiple mobile nodes in the designated area; the F1 connections of the multiple mobile nodes are always terminated in the first donor-CU.
  • One donor-CU is an F1 terminating donor-CU of multiple mobile nodes in the designated area; the F1 connections of the multiple mobile nodes are always terminated in the first donor-CU.
  • One donor-CU is an F1 terminating donor-CU of multiple mobile nodes in the designated area; the F1 connections of the multiple mobile nodes are always terminated in the first donor-CU.
  • One donor-CU is an F1 terminating donor-CU of multiple mobile nodes in the designated area; the F1 connections of the multiple mobile nodes are always terminated in the first donor-CU.
  • the first donor-CU receives the address information sent by the mobile node, and the mobile node is anchored on the donor-DU of the third donor-CU.
  • the first donor-CU receives a transmission migration management response message sent by the third donor-CU.
  • the transmission migration management response message includes mapping information of traffic to be offloaded and/or the topology of the third donor-CU. Layer 2 information in .
  • the first donor-CU sends uplink backhaul information of traffic to the mobile node.
  • the first donor-CU sends a transmission migration modification response message to the second donor-CU.
  • the reason for the traffic release includes: the mobile node performs inter-host handover (handover), or the mobile node performs inter-host radio link failure (RLF) recover.
  • handover the mobile node performs inter-host handover
  • RLF radio link failure
  • the first donor-CU sends a migration notification confirmation message to the second donor-CU.
  • the F1AP message is a gNB-DU configuration update message
  • the gNB configuration update message includes: the mobile node is anchored in the donor-CU of the third donor-CU.
  • the first donor-CU requests the third donor-CU to release all offloading traffic or release part of the offloading traffic by transmitting a migration management request message.
  • a communication method for a network node wherein the first donor-CU is the F1 terminated donor-CU of the mobile node, and the second donor-CU is the non-stop donor-CU before migration or radio link failure (RLF) recovery of the mobile node.
  • the F1 terminated donor-CU, and the third donor-CU is the non-F1 terminated donor-CU after migration of the mobile node or RLF recovery;
  • the methods include:
  • the third donor-CU receives the second indication information sent by the first donor-CU according to the identification information to indicate the context of the traffic;
  • the identification information is related to the third donor-CU and is included in the first indication information received by the first donor-CU.
  • the third donor-CU configures or modifies the downlink mapping according to the downlink address information included in the second indication information.
  • the third donor-CU sends a transmission migration management response message to the first donor-CU.
  • the transmission migration management response message includes the mapping information of the traffic to be offloaded and/or the topology of the third donor-CU. of layer 2 information.
  • the third donor-CU initiates traffic rollback of the mobile terminal (MT) of the mobile node to switch to the first donor-CU.
  • the third donor-CU initiates traffic rollback when the mobile terminal of the mobile node switches to the second donor-CU.
  • a communication method for a network node wherein the first donor-CU is the F1-terminating donor-CU of the mobile node, and the second donor-CU is the non-stop donor-CU before migration or radio link failure (RLF) recovery of the mobile node.
  • the F1 terminated donor-CU, and the third donor-CU is the non-F1 terminated donor-CU after migration of the mobile node or RLF recovery;
  • the methods include:
  • the second donor-CU sends first indication information to the first donor-CU, where the first indication information includes identification information related to the third donor-CU;
  • the identification information is used by the first donor-CU to send second indication information for indicating the context of the traffic to the third donor-CU.
  • the second donor-CU receives the transmission migration modification response message sent by the first donor-CU.
  • the second donor-CU receives the migration notification confirmation message sent by the first donor-CU.
  • a communication method for a mobile node wherein the first donor-CU is the F1 termination donor-CU of the mobile node, and the second donor-CU is the mobile node before migration or radio link failure (RLF) recovery.
  • the methods include:
  • the F1-C connection between the mobile node and the first donor-CU is switched to the target path by using the address information of the mobile node anchored on the donor-DU of the third donor-CU.
  • the mobile node sends the address information of the mobile node anchored on the donor-DU of the third donor-CU to the first donor-CU.
  • the mobile node sends first indication information to the first donor-CU, where the first indication information includes identification information related to the third donor-CU;
  • the identification information is used by the first donor-CU to send second indication information used to indicate the context of the traffic to the third donor-CU.
  • the mobile node's F1-U connection to the first donor-CU is switched by using the mobile node's address anchored on the donor-DU of the third donor-CU.
  • the mobile node receives the uplink return information of the traffic sent by the first donor-CU.
  • the F1AP message is a gNB-DU configuration update message
  • the gNB configuration update message includes: the mobile node is anchored in the donor-CU of the third donor-CU.
  • the migration reason includes: the mobile node performs inter-host handover (handover), or the mobile node performs inter-host radio link failure (RLF) recovery .
  • handover the mobile node performs inter-host handover
  • RLF radio link failure
  • a mobile node comprising a memory and a processor
  • the memory stores a computer program
  • the processor is configured to execute the computer program to implement the movement as described in any one of appendices 41 to 50
  • the communication method of the node
  • a host (donor) device comprising a memory and a processor, the memory storing a computer program, wherein the processor is configured to execute the computer program to implement any one of appendices 1 to 40 The communication method of the network nodes described above.
  • a communication system including: a first donor-CU, a second donor-CU, a third donor-CU and a mobile node; the first donor-CU is the F1 terminated donor-CU of the mobile node, and the second donor-CU It is the non-F1 terminated donor-CU before the mobile node migration or radio link failure (RLF) recovery, and the third donor-CU is the non-F1 terminated donor-CU after the mobile node migration or RLF recovery;
  • RLF radio link failure
  • the first donor-CU receives first indication information, the first indication information includes identification information related to the third donor-CU; and the first donor-CU sends to the third donor-CU second indication information used to indicate the context of the traffic;
  • the second donor-CU sends first indication information to the first donor-CU, where the first indication information includes identification information related to the third donor-CU;
  • the third donor-CU receives the second indication information for indicating the context of the traffic sent by the first donor-CU according to the identification information; wherein the identification information is related to the third donor-CU and is included in The first indication information received by the first donor-CU;
  • the F1-C connection between the mobile node and the first donor-CU is switched to the target path by using the address information of the mobile node anchored on the donor-DU of the third donor-CU.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种网络节点的通信方法、移动节点的通信方法、移动节点和宿主设备。该方法包括:第一donor-CU接收第一指示信息,所述第一指示信息包括与第三donor-CU相关的标识信息;以及第一donor-CU向第三donor-CU发送用于指示流量的上下文的第二指示信息。

Description

网络节点的通信方法、移动节点的通信方法、移动节点和宿主设备 技术领域
本申请实施例涉及通信领域。
背景技术
未来无缝的蜂窝网络部署需要非常灵活和超密集的新无线(NR,new radio)小区部署,超密集网络是5G的目标之一,部署一个无需有线回传的NR网络对于实现5G的超密集网络非常重要。由于5G毫米波使小区覆盖范围缩小,无线自回传系统需要多跳才能满足部署需求。5G的高带宽、大规模多输入多输出(MIMO)和波束系统使5G比LTE更容易开发超密集NR小区的无线自回传系统,为了开发这种带有无线自回传的多跳系统,3GPP在Rel-16开始了集成的接入和回传(IAB,Integrated access and backhaul)项目的研究和标准化。
在IAB系统中,接入和回传采用NR的Uu空口无线传输,中继节点同时支持接入(access)和回传(backhaul)功能,中继节点在时域、频域或空域上复用接入链路(access link)和回传链路(backhaul link),接入链路和回传链路可以使用相同或不同的频段。
在IAB网络架构如下,中继节点指的是IAB-node(IAB节点),其同时支持接入和回传功能。网络侧最后一跳接入节点称为IAB-donnor(IAB宿主),其支持gNB功能并支持IAB-node接入。所有的UE数据可以通过一跳或多跳经由IAB-node回传到IAB-donor。
IAB-node的功能分为两部分,一部分是gNB-DU功能,称作IAB-DU(分布单元),另一部分是UE功能,称作IAB-MT(移动终端)。IAB-DU实现网络侧设备功能,服务一个或多个小区并连接到下游的child IAB-node(子IAB节点或简称为子节点),对UE以及下游child IAB-node提供NR空口接入并与IAB donor-CU(宿主集中单元)之间建立有F1连接。IAB-MT实现部分终端设备功能,连接到上游的parent IAB-node(父IAB节点或简称为父节点)或IAB donor-DU,IAB-MT包括物理层、层二、RRC(Radio Resource Control,无线资源控制)和NAS(Non-Access Stratum,非接入层)层功能,还间接地连接到IAB Donor-CU以及核心网(Core Network,CN)。
图1是SA模式的IAB架构的示意图。图2是EN-DC模式的IAB架构的示意图。 在IAB系统中,IAB-node可以通过独立组网(SA,Standalone)模式或非独立组网(EN-DC,E-UTRA-NR Dual Connectivity)模式接入网络。
图3是一个IAB节点(IAB-node)与父节点(parent IAB-node)和子节点(child IAB-node)的示意图。如图3所示,IAB节点的IAB-DU作为网络侧与子节点的IAB-MT连接,IAB节点的IAB-MT作为终端侧与父节点的IAB-DU连接。
图4是IAB-DU和IAB donor-CU之间的F1用户面(F1-U)协议栈的示意图。图5是IAB-DU和IAB donor-CU之间的F1控制面(F1-C)协议栈的示意图。如图4和图5所示,F1-U和F1-C是建立在IAB-DU和IAB donor-CU之间的传输(IP)层之上,图4和图5中经过两跳无线回传和一跳有线回传。
在回传链路上,传输(IP)层承载在回传自适应协议(BAP)子层上,IAB-node中的BAP实体实现IAB系统的路由功能,由IAB donor-CU提供路由表。BAP PDU(协议数据单元)在回传链路的RLC(无线链路控制)信道中传输,回传链路的多个RLC信道可以被IAB-donor配置为承载不同的优先级和QoS(服务质量)的业务,由BAP实体将BAP PDU映射到不同的回传RLC信道上。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的,不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,目前已经提出移动节点可以在donor-CU内移动,但是具体如何进行迁移(migration)、切换(handover)和/或无线链路失败(RLF)恢复还没有被定义和支持。
为了解决上述问题的至少之一,本申请实施例提供一种网络节点的通信方法、移动节点的通信方法、移动节点和宿主设备。
根据本申请实施例的一方面,提供一种网络节点的通信方法,其中,第一donor-CU为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU;
所述方法包括:
所述第一donor-CU接收第一指示信息,所述第一指示信息包括与所述第三 donor-CU相关的标识信息;以及
所述第一donor-CU向所述第三donor-CU发送用于指示流量的上下文的第二指示信息。
根据本申请实施例的另一方面,提供一种宿主设备,其中,所述宿主设备为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU;
所述宿主设备包括:
接收部,其接收第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息;以及
发送部,其向所述第三donor-CU发送用于指示流量的上下文的第二指示信息。
根据本申请实施例的另一方面,提供一种网络节点的通信方法,其中,第一donor-CU为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU;
所述方法包括:
所述第二donor-CU向所述第一donor-CU发送第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息。
根据本申请实施例的另一方面,提供一种宿主设备,其中,第一donor-CU为移动节点的F1终止donor-CU,所述宿主设备为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU;
所述宿主设备包括:
发送部,其向所述第一donor-CU发送第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息。
根据本申请实施例的另一方面,提供一种网络节点的通信方法,其中,第一donor-CU为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU;
所述方法包括:
所述第三donor-CU接收所述第一donor-CU根据标识信息发送的用于指示流量的上下文的第二指示信息;其中,所述标识信息与所述第三donor-CU相关且包含在所述第一donor-CU接收的第一指示信息内。
根据本申请实施例的另一方面,提供一种宿主设备,其中,第一donor-CU为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,所述宿主设备为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU;
所述宿主设备包括:
接收部,其接收所述第一donor-CU根据标识信息发送的用于指示流量的上下文的第二指示信息;其中,所述标识信息与所述第三donor-CU相关且包含在所述第一donor-CU接收的第一指示信息内。
本申请实施例的有益效果之一在于:第一donor-CU接收第一指示信息,所述第一指示信息包括与第三donor-CU相关的标识信息;以及第一donor-CU根据所述标识信息向第三donor-CU发送用于指示流量的上下文的第二指示信息。由此,能够支持移动节点在控制区域内进行移动而不造成服务中断,保证移动节点对用户设备的服务质量。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附附记的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部 分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是SA模式的IAB架构的一示意图;
图2是EN-DC模式的IAB架构的一示意图;
图3是父节点(parent IAB-node)和子节点(child IAB-node)的一示意图;
图4是IAB系统的F1-U协议栈的一示意图;
图5是IAB系统的F1-C协议栈的一示意图;
图6是本申请实施例的移动性场景的一示意图;
图7是本申请实施例的m-CU内拓扑适应的一示意图;
图8是本申请实施例的网络节点的通信方法的一示意图;
图9是本申请实施例的拓扑适应的一信令流程图;
图10是本申请实施例的拓扑适应的另一信令流程图;
图11是本申请实施例的拓扑适应的另一信令流程图;
图12是本申请实施例的RLF恢复的一信令流程图;
图13是本申请实施例的网络节点的通信方法的一示意图;
图14是本申请实施例的网络节点的通信方法的一示意图;
图15是本申请实施例的移动节点的通信方法的一示意图;
图16是本申请实施例的宿主设备的一示意图;
图17是本申请实施例的宿主设备的一示意图;
图18是本申请实施例的宿主设备的一示意图;
图19是本申请实施例的移动节点的一示意图;
图20是本申请实施例的IAB设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附附记的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区 分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如新无线(NR,New Radio)、长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、6G等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),IAB宿主等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网 络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
目前,对5G蜂窝覆盖和连接的性能提升的需求越来越高,尤其是许多室外和移动的场景更加具有挑战性。在一些室外环境中,装备了移动基站中继(比如移动IAB)的车辆能够在需要的时候或地点对蜂窝覆盖和容量提供很高机会的提升。这些车辆要么遵循某个已知的或可以预测的路线,比如公交车,电车等;或者是放置在方便的位置,比如体育场外面,热点地区,或者应急现场。
这些中继使用了5G无线回传到宏网络,能够真正对邻近的UE提供更好的5G覆盖和连接。车辆中继显然也非常合适用于提高自身车辆内用户或设备的连接性能,包括的场景比如公交车、汽车、出租车或火车中的乘客,临时/专业的人员或设备。其他目标场景包括车辆中继可以用来服务没有或者只有非常差的宏覆盖的用户设备。移动的车辆装备了小的车载基站中继,对车内和/或车外邻近UE提供5G覆盖和通信,通过RAN(宿主)节点无线连接到5G网络。
以IAB节点为例,IAB-MT可以迁移到一个不同的IAB-donor-CU下面的父节点下。在这种情况下,并置的IAB-DU以及后裔节点的IAB-DU保持了和原来IAB-donor-CU的F1连接。这种迁移叫做宿主间部分迁移(inter-donor partial migration)。这个IAB-MT迁移到新的IAB-donor-CU的IAB节点就是边界IAB节点。在宿主间部分迁移之后,IAB-DU和后裔节点的F1流量经由IAB-MT迁移到的IAB拓扑的BAP层进行路由。
当SA模式的IAB节点声明回传链路RLF时,其可以在不同IAB-donor-CU下面 的父节点进行RLF恢复。和宿主间部分迁移一样,并置的IAB-DU以及后裔节点的IAB-DU可以保持和原来IAB-donor-CU的F1连接。
移动IAB(mobile IAB,mIAB)或者移动中继在一个较大区域的移动性面临一个挑战,那就是当它更换IAB宿主时,它服务的UE的PDCP(packet data convergence protocol,分组数据汇聚协议)和RRC连接都会受影响。因此,车辆内的UE,哪怕是静止的也可能会经历由于空闲态(因为需要将TA值调整到新的gNB分配的值,为用户平面改变PDCP的终点和安全)和连接态的移动性带来的较大的信令开销。
图6是本申请实施例的移动性场景的一示意图。如图6所示,如果mIAB的DU被一个覆盖更大区域的CU所服务,导致这些移动性相关的信令的根本原因可以被消除。简单来说,针对mIAB的宿主功能提供一个专有的移动控制单元(可以叫做m-CU)来控制连接到mIAB的UE是一个先进的方法。这可以使mIAB能在不改变m-CU的情况下在相当大的RAN覆盖区域内进行移动。因此,mIAB在IAB宿主间的移动可以对连接到mIAB的UE不可见,只要控制器位于同样的m-CU内。
但是,当m-CU不改变时,如何达到m-CU内(intra-m-CU)的IAB移动性,也就是mIAB的迁移和RLF恢复还没有被定义和支持。本申请实施例涉及m-CU内的mIAB的部分迁移过程,也就是m-CU内的拓扑适应过程。
在本申请实施例中,m-CU可以是专有的IAB-donor-CU,也就是IAB节点或IAB-DU的F1终止(F1-terminating)donor-CU。IAB节点在m-CU内的部分迁移是指IAB-MT可以迁移到一个不同的IAB-donor-CU或其下面的父节点下。在这种情况下,IAB-MT的RRC连接从源IAB-donor-CU迁移到了目标IAB-donor-CU,并置的IAB-DU保持了和原来IAB-donor-CU(也就是m-CU)的F1连接。
在mIAB进行移动的过程中,IAB-MT可以不停地迁移到不同的IAB-donor-CU或其下面的父节点下。而IAB-DU的F1流量经由IAB-MT迁移到的IAB拓扑的BAP层进行路由。类似地,mIAB节点声明回传链路RLF时,其可以在不同IAB-donor-CU下面的父节点进行RLF恢复。和m-CU内的部分迁移一样,并置的IAB-DU可以保持和原来m-CU的F1连接。如果mIAB-MT的源IAB-donor-CU就是m-CU,该mIAB的m-CU内的迁移过程就是Rel-17定义的部分迁移/RLF恢复过程。
图7是本申请实施例的m-CU内拓扑适应的一示意图。如图7所示,如果mIAB的源IAB-donor-CU不是m-CU,该mIAB的m-CU内迁移过程也可以认为是非F1终止宿主之间的部分迁移过程,也就是改变非F1终止宿主的过程。
在本申请实施例中,在没有特别说明的情况下,IAB节点设备包括迁移节点或其子节点。此外,移动节点不限于IAB节点,例如针对中继,网络控制转发器(NCR,Network-controlled repeater)等同样适用。
以下对本申请实施例进行进一步说明。
第一方面的实施例
本申请实施例提供一种网络节点的通信方法,从第一donor-CU侧进行说明。第一donor-CU为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,也可以叫做源donor-CU或者是初始donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU,也可以叫做目标donor-CU或者是新的donor-CU。
图8是本申请实施例的网络节点的通信方法的一示意图,如图8所示,该方法包括:
801,第一donor-CU接收第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息;以及
802,第一donor-CU向第三donor-CU发送用于指示流量的上下文的第二指示信息。
值得注意的是,以上附图8仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图8的记载。
在一些实施例中,所述第一donor-CU为指定区域内多个移动节点的F1终止donor-CU;所述多个移动节点的F1连接始终终止于所述第一donor-CU。即,第一donor-CU为图7所述的m-CU。
以图7为例,在m-CU内的拓扑适应过程中,IAB节点3(移动节点)进行m-CU内的拓扑适应。在图7的左边拓扑图中,IAB节点3通过父节点IAB节点1(父节点IAB节点1不是必须的,也可以直接连接到IAB-donor)连接到IAB-donor 1(图7中donor-CU 1和donor-DU 1的统称,图7中为CU-DU分离情况;也可以是集中式的情况,CU和DU在一个节点),也就是IAB-MT 3的源IAB-donor是IAB-donor 1(第二donor-CU),也即IAB-MT 3的RRC连接终点为IAB-donor 1。IAB-donor 1也 叫IAB节点3的非F1终止宿主。IAB节点3的F1终止宿主是图7中的m-CU(第一donor-CU)。IAB-DU 3的F1流量,也即IAB节点3的UE的流量都经由IAB-MT 3和IAB-donor 1,到达m-CU。
在IAB节点3的移动过程中,IAB节点3会迁移到图7的右边拓扑图情况。IAB节点3通过父节点IAB节点2(父节点IAB节点2不是必须的,也可以直接连接到IAB-donor)连接到IAB-donor 2(图7中donor-CU 2和donor-DU 2的统称),也就是IAB-MT 3的目标IAB-donor是IAB-donor 2(第三donor-CU),也即IAB-MT 3的RRC连接终点为IAB-donor 2。IAB-donor 2成为了IAB节点3的非F1终止宿主。IAB节点3的F1终止宿主仍然是图7中的m-CU。IAB-DU3的F1流量,也即IAB节点3的UE的流量都经由IAB-MT 3和IAB-donor 2,到达m-CU。
在一些实施例中,所述第一donor-CU接收所述移动节点发送的、所述移动节点锚定在所述第三donor-CU的donor-DU(例如图7中的donor-DU 2)上的地址信息。
在一些实施例中,所述第二指示信息通过传输迁移管理请求消息发送,所述第二指示信息包括下行地址信息以使得所述第三donor-CU配置或修改下行映射。
在一些实施例中,所述第一donor-CU接收所述第三donor-CU发送的传输迁移管理响应消息,所述传输迁移管理响应消息包括将卸载的流量的映射信息和/或所述第三donor-CU的拓扑中的层2信息。
在一些实施例中,所述第一donor-CU向所述移动节点发送流量的上行回传信息。
以上对于宿主间部分迁移进行了示意性说明,以下再对第一指示信息进行说明。
在一些实施方式中。第一指示信息由所述第二donor-CU通过传输迁移修改请求消息发送;所述第一donor-CU向所述第二donor-CU发送传输迁移修改响应消息。
其中,所述传输迁移修改请求消息包括所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识。例如,所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识被包含在所述传输迁移修改请求消息承载的流量被释放信元中。
此外,所述传输迁移修改请求消息中还可以包括流量释放原因。所述流量释放原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
以下再通过信令交互进一步示例性说明本申请实施例的拓扑适应过程。
图9是本申请实施例的拓扑适应的一信令流程图。
如图9所示,迁移的IAB节点(前述IAB节点3)进行了非F1终止宿主的改变, 保持了F1终止宿主。图9中假设了迁移节点在源路径和目标路径都有父节点以及父节点到IAB-donor之间的中间节点。这些节点可以不存在,这样迁移节点的父节点就是IAB-donor。
如图9所示,该流程包括:
901.源IAB-donor-CU给目标IAB-donor-CU发送Xn HANDOVER REQUEST消息。该消息可以在RRC容器中包含迁移IAB节点的TNL(transport network layer)地址信息。
902.目标IAB-donor-CU发送UE CONTEXT SETUP REQUEST消息给目标父节点的IAB-DU,用于为迁移IAB-MT创建UE上下文,以及建立用于迁移IAB-MT的信令和可选的数据流量使用的承载。
903.目标父节点的IAB-DU向目标IAB-donor-CU回复UE CONTEXT SETUP RESPONSE消息。
904.目标IAB-donor-CU执行准入控制并通过HANDOVER REQUEST ACKNOWLEDGE消息的部分内容提供新的RRC配置。该RRC配置包含该迁移节点在目标IAB-donor-CU的拓扑中的BAP地址、缺省的BH RLC信道以及用于目标路径上的上行F1-C/非F1流量映射的缺省的BAP路由标识配置。该RRC配置可以包含迁移节点锚定在目标IAB-donor-DU上的新的(一个或多个)TNL地址。
905.源IAB-donor-CU发送UE CONTEXT MODIFICATION REQUEST消息给源父节点IAB-DU,其中包含从目标IAB-donor-CU收到的RRCReconfiguration消息。
906.源父节点IAB-DU将收到的RRCReconfiguration消息转发给迁移IAB-MT。
907.源父节点IAB-DU向源IAB-donor-CU回复UE CONTEXT MODIFICATION RESPONSE消息。
908.迁移IAB-MT向目标父节点IAB-DU执行随机接入过程。
909.迁移IAB-MT向目标父节点IAB-DU响应RRCReconfigurationComplete消息。
910.目标父节点IAB-DU发送UL RRC MESSAGE TRANSFER消息给目标IAB-donor-CU,其中携带了收到的RRCReconfigurationComplete消息。
911.如果需要,目标IAB-donor-CU为迁移IAB-MT触发路径切换过程。
912.目标IAB-donor-CU发送UE CONTEXT RELEASE消息给源IAB-donor-CU。
如果源IAB-donor-CU是m-CU,只要目标路径被用来传输迁移节点和源 IAB-donor-CU之间的流量,源IAB-donor-CU和目标IAB-donor-CU都需要保存迁移节点的XnAP UE ID。如果源IAB-donor-CU不是m-CU,目标路径不需要传输迁移节点和源IAB-donor-CU之间的流量(也就是迁移节点的流量不经过源IAB-donor-CU),源IAB-donor-CU可以释放迁移节点的XnAP UE ID。
913.源IAB-donor-CU可以释放从迁移IAB节点的源父节点到源IAB-donor-DU的源路径上的BH RLC信道和BAP子层的路由条目。
914.目标IAB-donor-CU配置从迁移IAB节点到目标IAB-donor-DU的目标路径上的BH RLC信道和BAP子层的路由条目,以及目标IAB-donor-DU上的关于迁移IAB节点的目标路径的下行映射。这些配置支持F1-C流量在目标路径上的运输。
915.迁移IAB节点和m-CU之间的F1-C连接通过使用迁移IAB节点的新的TNL地址信息切换到目标路径。迁移IAB节点可以通过gNB-DU CONFIGURATION UPDATE消息向m-CU上报它想为F1-U流量使用的新的TNL地址。
假如使用IPsec隧道来进行TNL保护,迁移IAB节点可以使用MOBIKE(IETF RFC 4555)来将IPsec隧道迁移到新的IP外部地址。MOBIKE过程完成之后,迁移IAB-DU发起F1AP的gNB-DU Configuration Update过程,过程中IAB-donor-CU能够得出现有的内部IP地址(比如为了SCTP-stream control transmission protocol关联)和下行F-TEID(Fully qualified Tunnel Endpoint Identifier)是否能重用。
如果为F1-C流量配置了新的TNL地址,可以使用迁移IAB的新的TNL地址信息创建迁移IAB节点和F1终止IAB-donor-CU之间的新的SCTP关联。迁移IAB节点向F1终止IAB-donor-CU(m-CU)发送F1AP的gNB-DU CONFIGURATION UPDATE消息,消息可以包含为了将F1-U流量切换到目标路径的新的(外部)IP地址和对应的新的(内部)IP地址。
916.源IAB-donor-CU向m-CU发送IAB TRANSPORT MIGRATION MODIFICATION REQUEST消息来请求将卸载的流量全部释放。该消息可以含有目标IAB-donor-CU的节点标识(或目标小区标识),流量卸载释放的原因等。
917.m-CU向源IAB-donor-CU回复IAB TRANSPORT MIGRATION MODIFICATION RESPONSE消息。
918.m-CU发送IAB TRANSPORT MIGRATION MANAGEMENT REQUEST消息给目标IAB-donor-CU,用来提供需要卸载的流量的上下文。该消息可以包含新的下行TNL地址信息,用于目标IAB-donor-CU在IAB-donor-DU上配置或者修改下行 映射。
919.目标IAB-donor-CU可以配置或者修改目标路径上从迁移IAB节点到目标IAB-donor-CU之间的BH RLC信道和BAP子层的路由条目,以及目标IAB-donor-DU上的关于迁移IAB节点的目标路径的下行映射。这些配置可以支持目标路径上的用户平面和非用户平面流量运输。
920.目标IAB-donor-CU向m-CU回复IAB Transport Migration Management Response消息,该消息提供了即将卸载的流量的映射信息。该消息包含用于目标IAB-donor-CU拓扑中的层2信息,这些信息对于配置迁移IAB节点的在918中指示的流量上行映射是必要的。该消息包含用于配置918中指示的流量的下行映射的DSCP(Differentiated Services Code Point)/IPv6流标签(flow label)值。
921.迁移IAB节点到m-CU的F1-U连接通过使用迁移IAB节点的新TNL地址进行切换。m-CU基于在1020中从目标IAB-donor-CU收到的上行回传信息,向迁移IAB节点的IAB-DU提供更新的关于918中指示的流量的上行回传信息。m-CU也可以更新非用户平面流量关联的上行回传信息。本步骤可以在E1和/或F1接口使用UE关联的信令或者是非UE关联信令。实现时必须保证避免可能的竞争现象,也就是不能在使用UE关联过程和非UE关联过程中同时执行冲突的配置。
922.如果需要,可以重复执行918到921。这样m-CU能够请求更多的流量卸载,或者请求修改或者释放卸载的流量。目标IAB-donor-CU能全部或者部分拒绝m-CU的增加或修改流量卸载的请求。
目标IAB-donor-CU可以使用TRANSPORT MIGRATION MODIFICATION REQUEST消息来请求对目标IAB-donor-CU的拓扑中卸载流量的层2传输进行修改。m-CU基于请求重新配置上行回传映射,并通过IAB TRANSPORT MIGRATION MODIFICATION RESPONSE消息对修改进行确认。目标IAB-donor-CU可以进一步通过RRC对迁移IAB节点重新配置TNL地址。
以上信令过程仅示意性对本申请实施例进行了说明,但本申请不限于此,关于信令的更具体的内容,还可以参考相关技术。此外,例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图9的记载。
在本申请实施例中,916对现有IAB TRANSPORT MIGRATION MODIFICATION REQUEST消息进行了增强。该XnAP消息是边界IAB节点的非F1终止 IAB-donor-CU给F1终止IAB-donor-CU发的,目的是为了修改或者释放(比如为了流量回退的目的)边界IAB节点的迁移流量相关的配置。
例如,增强的部分可以是在该消息中增加新的IE或字段,比如在流量被释放信元(Traffic To Be Released Information IE)里面增加新的字段,表明发送方也就是IAB节点的非F1终止宿主作为IAB节点的源宿主,将该IAB节点切换到目标宿主并告知目标宿主节点的节点标识或者目标小区的小区标识。
表1示出了本申请实施例的流量被释放信元的一个例子,为增强的Traffic To Be Released Information IE。
表1
Figure PCTCN2022110976-appb-000001
如表1所示,可以在Full Release组中增加一个字段比如叫做Target Cell Global ID,用来指示IAB节点的目标小区全球标识(CGI)。也可以替换成指示目标宿主节点的全球NG-RAN节点标识,该字段比如叫做Target Global NG-RAN Node ID。
因为小区全球标识里含有全球NR-RAN节点标识,所以IAB节点的F1终止宿主可以通过收到的消息知道IAB节点的目标IAB宿主。当IAB节点的F1终止宿主节点收到目标小区标识或者目标IAB宿主的节点标识,可以对目标宿主节点进行IAB传输迁移管理过程,将IAB节点3的F1流量迁移到目标宿主节点的拓扑中去。
在Full Release组中还可以增加一个字段比如叫做Cause,表明全部释放流量的 原因,比如值可以为HO(handover),表明迁移IAB节点进行了宿主间的切换。可以在XnAP的Cause IE中定义新的值,比如Handover。
在另一些实施方式中,所述第一指示信息由所述第二donor-CU通过XnAP消息中的迁移通知消息发送。可选地,所述第一donor-CU向所述第二donor-CU发送迁移通知确认消息。
其中,所述迁移通知消息中包括所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识。此外,所述迁移通知消息中包括迁移原因。所述迁移原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
以下再通过信令交互进一步示例性说明本申请实施例的拓扑适应过程。
图10是本申请实施例的拓扑适应的另一信令流程图。
如图10所示,迁移的IAB节点(前述IAB节点3)进行了非F1终止宿主的改变,保持了F1终止宿主。图10中假设了迁移节点在源路径和目标路径都有父节点以及父节点到IAB-donor之间的中间节点。这些节点可以不存在,这样迁移节点的父节点就是IAB-donor。
图10所示的流程和图9基本一样,具体内容不再赘述。区别是将图9中916和917被改变为一个新的基本Xn过程(如1016和1017所示)。可以是类型1(class 1)基本过程,也可以是类型2基本过程。该新的Xn过程和图9中916和917的目的一样,是用于源IAB宿主节点给m-CU通知IAB节点3的IAB-MT已经切换到目标IAB宿主。该过程可以叫IAB Migration notification过程。
如图10所示,边界IAB节点的非F1终止IAB-donor-CU给F1终止IAB-donor-CU发送通知消息,比如叫做IAB MIGRATION NOTIFICATION消息,消息中除了包含消息类型、F1终止IAB宿主UE XnAP ID、非F1终止IAB宿主UE XnAP ID,还可以包含目标小区全球标识,通知的原因等。
表2示出了本申请实施例的通知消息中信元的一个例子。
表2
Figure PCTCN2022110976-appb-000002
如表2所示,IE具体内容和表1的对应字段一样。
如果是类型2基本过程,m-CU不需要回复消息。如果是类型1基本过程,m-CU还需回复发送方,比如回复IAB MIGRATION NOTIFICATION ACKNOWLEDGE消息。该消息表明成功收到IAB MIGRATION NOTIFICATION消息,也可以在该消息中给源IAB宿主节点指示可以释放源IAB宿主节点保存的迁移节点的XnAP UE ID。
在一些实施方式中,所述第一指示信息由所述移动节点通过F1AP消息发送。
例如,所述F1AP消息为gNB-DU配置更新消息,所述gNB配置更新消息包括:所述移动节点锚定在所述第三donor-CU的donor-DU上的地址信息以及所述第一指示信息。例如,所述F1AP消息中包括所述移动IAB节点的目标小区全局标识或目标 宿主节点的全局节点标识。
此外,所述F1AP消息中包括迁移原因。所述迁移原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
以下再通过信令交互进一步示例性说明本申请实施例的拓扑适应过程。
图11是本申请实施例的拓扑适应的另一信令流程图。
如图11所示,迁移的IAB节点(前述IAB节点3)进行了非F1终止宿主的改变,保持了F1终止宿主。图11中假设了迁移节点在源路径和目标路径都有父节点以及父节点到IAB-donor之间的中间节点。这些节点可以不存在,这样迁移节点的父节点就是IAB-donor。
图11所示的流程和图9基本一样,具体内容不再赘述。区别在于图11的1115中就可以通过边界IAB节点的DU来通知m-CU,告知该边界IAB节点的MT已经切换到目标IAB宿主节点的小区。这可以由边界IAB-DU到m-CU的F1AP信令来实现的。比如可以通过增强F1AP的gNB-DU CONFIGURATION UPDATE消息,来上报给m-CU该迁移IAB-MT的目标小区全球标识。
具体来说,在1115中,迁移IAB节点和m-CU之间的F1-C连接通过使用迁移IAB节点的新的TNL地址信息切换到目标路径。迁移IAB节点可以通过gNB-DU CONFIGURATION UPDATE消息向m-CU上报它想为F1-U流量使用的新的TNL地址。在gNB-DU CONFIGURATION UPDATE消息中,迁移IAB-DU还可以上报迁移IAB-MT的目标小区全球标识。
表3示出了修改的gNB-DU CONFIGURATION UPDATE消息的示例。
表3
Figure PCTCN2022110976-appb-000003
如表3所示,在消息中增加IAB-MT目标小区的指示信息,比如叫做IAB Migration Target Cell CGI IE,这个IAB节点迁移的目标小区CGI由迁移IAB-MT从目标小区的SIB1消息中获得的PLMN-Identity(Public Land Mobile Network-Identity,公共陆地移动网络标识)和cellIdentity(小区标识)组成。
和前面的实施方式类似,该IE也可以替换为目标宿主节点的标识,比如全球NG-RAN节点标识,该IE比如叫做IAB Migration Target Global NG-RAN Node ID。这个全球节点标识也可以由迁移IAB-MT从目标小区的SIB1消息中获得的PLMN-Identity和cellIdentity(小区标识)取得。消息中还可以包含IAB Migration Cause IE。和前面的实施方式类似,可以在F1AP的Cause IE中定义新的值,比如Handover。
如图11所示,图9中的916和917或者图10中的1016和1017可以去掉。
以上以切换(handover)为例对本申请实施例的拓扑适应过程进行了说明,以下再对回退(revocation)进行示意性说明。
IAB节点在m-CU内可能由于流量卸载原因或者是节点移动的原因会进行迁移。针对迁移IAB节点在m-CU内拓扑适应过程进行的流量卸载或者是移动性可以全部回退。
例如,非F1终止IAB-donor-CU可以通过执行XnAP切换准备过程发起到m-CU的全部流量回退。当迁移IAB-MT切换到m-CU,迁移IAB节点的IAB-DU的流量通过m-CU的拓扑进行路由。这时迁移IAB节点的F1终止宿主和RRC终止节点都是m-CU,也就是结束了部分迁移的状态。
再例如,非F1终结IAB-donor-CU也可以通过执行XnAP切换准备过程发起到先前的源IAB-donor-CU的全部流量回退。这个过程相当于再一次执行m-CU内的拓扑适应,过程和前述的实施例一致。迁移IAB节点的IAB-DU的流量重新通过以前的源路径进行路由。
在一些实施例中,第一donor-CU通过传输迁移管理请求消息来请求所述第三donor-CU释放所有的卸载流量或释放部分的卸载流量。
例如,m-CU能通过请求非F1终止IAB-donor-CU释放所有的卸载的流量发起全部流量回退。该请求是指向非F1终止IAB-donor-CU发送IAB TRANSPORT MIGRATION MANAGEMENT REQUEST消息。该消息可以触发迁移IAB-MT向m-CU切换的XnAP切换准备过程。
再例如,m-CU也可以通过IAB TRANSPORT MIGRATION MANAGEMENT REQUEST消息来请求非F1终止IAB-donor-CU释放部分的卸载的流量。
以下再对RLF恢复进行示意性说明。
IAB节点在m-CU内的回传无线链路失败(radio link failure,RLF)恢复过程可以使IAB节点检测到回传RLF时,在保持m-CU为F1终止IAB-donor-CU的情况下,恢复到另外一个IAB-donor-CU下面的父节点。这时恢复的IAB节点成为了边界节点。IAB-MT的RLF恢复过程和现有技术中的宿主间回传RLF恢复过程一样,如图12中的步骤1201-1213。在RLF恢复过程中,IAB节点的第二donor-CU也叫初始donor-CU,第三donor-CU也叫新的donor-CU。
在边界IAB节点的F1传输迁移过程中,采用和m-CU内的拓扑适应方法一样的步骤,和前面所述的实施例一致,图9至图11都可以适应性地修改为对应的IAB节点在m-CU内的RLF恢复过程。
图12是本申请实施例的RLF恢复过程的一信令示意图。如图12所示,1218中对应的步骤与图9至图11中相应的步骤(例如914至922,或者1014至1022,或者1114至1120)相同,在此不再赘述。对于对应的各实施例中的Cause值,表明全部释放流量的原因,或者是迁移原因,比如RLF恢复过程的cause值可以为RLF recovery,表明IAB节点进行了宿主间的RLF恢复。
新的IAB-donor-CU可以使用TRANSPORT MIGRATION MODIFICATION REQUEST消息来请求对新IAB-donor-CU的拓扑中卸载流量的层2传输进行修改。m-CU基于请求重新配置上行回传映射,并通过IAB TRANSPORT MIGRATION MODIFICATION RESPONSE消息对修改进行确认。新的IAB-donor-CU可以进一步通过RRC对恢复的IAB节点重新配置TNL地址。RLF恢复的IAB节点的流量回退过程和前述的迁移节点的回退过程一致。
通过上述实施例,能够解决IAB节点的非F1宿主节点间的迁移、RLF恢复、流量回退等问题,从而支持IAB节点在m-CU的控制区域内进行移动,保证移动IAB节点对UE的服务质量。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,第一donor-CU接收第一指示信息,所述第一指示信息包括 与第三donor-CU相关的标识信息;以及第一donor-CU根据所述标识信息向第三donor-CU发送用于指示流量的上下文的第二指示信息。由此,能够支持移动节点在控制区域内进行移动而不造成服务中断,保证移动节点对用户设备的服务质量。
第二方面的实施例
本申请实施例提供一种网络节点的通信方法,从第二donor-CU侧进行说明,与第一方面的实施例相同的内容不再赘述。第一donor-CU为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU。
图13是本申请实施例的网络节点的通信方法的一示意图,如图13所示,该方法包括:
1301,第二donor-CU向第一donor-CU发送第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息。
值得注意的是,以上附图13仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图13的记载。
在一些实施例中,所述第一指示信息由所述第二donor-CU通过传输迁移修改请求消息发送;如图13所示,所述方法还可以包括:
1302,第二donor-CU接收所述第一donor-CU发送的传输迁移修改响应消息。
在一些实施例中,所述传输迁移修改请求消息包括所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识。
在一些实施例中,所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识被包含在所述传输迁移修改请求消息承载的流量被释放信元中。
在一些实施例中,所述传输迁移修改请求消息中包括流量释放原因。
在一些实施例中,所述流量释放原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
在一些实施例中,所述第一指示信息由所述第二donor-CU通过XnAP消息中的迁移通知消息发送。
在一些实施例中,所述第二donor-CU接收所述第一donor-CU发送的迁移通知确认消息。
在一些实施例中,所述迁移通知消息中包括所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识。
在一些实施例中,所述迁移通知消息中包括迁移原因。
在一些实施例中,所述迁移原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,第二donor-CU向第一donor-CU发送第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息;其中,所述标识信息被所述第一donor-CU用于向所述第三donor-CU发送用于指示流量的上下文的第二指示信息。由此,能够支持移动节点在控制区域内进行移动而不造成服务中断,保证移动节点对用户设备的服务质量。
第三方面的实施例
本申请实施例提供一种网络节点的通信方法,从第三donor-CU侧进行说明,与第一、二方面的实施例相同的内容不再赘述。第一donor-CU为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU。
图14是本申请实施例的网络节点的通信方法的一示意图,如图14所示,该方法包括:
1401,第三donor-CU接收第一donor-CU根据标识信息发送的用于指示流量的上下文的第二指示信息;其中,所述标识信息与所述第三donor-CU相关且包含在所述第一donor-CU接收的第一指示信息内。
值得注意的是,以上附图14仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型, 而不仅限于上述附图14的记载。
在一些实施例中,所述第二指示信息通过传输迁移管理请求消息发送。如图14所示,所述方法还可以包括:
1402,第三donor-CU根据所述第二指示信息包括的下行地址信息来配置或修改下行映射。
在一些实施例中,所述第三donor-CU向所述第一donor-CU发送传输迁移管理响应消息,所述传输迁移管理响应消息包括将卸载的流量的映射信息和/或所述第三donor-CU的拓扑中的层2信息。
在一些实施例中,所述第三donor-CU发起所述移动节点的移动终端(MT)切换到所述第一donor-CU的流量回退。
在一些实施例中,在所述移动节点的移动终端切换到所述第一donor-CU的情况下,所述移动节点的分布单元(DU)的流量通过所述第一donor-CU的拓扑进行路由。
在一些实施例中,所述第三donor-CU发起所述移动节点的移动终端切换到所述第二donor-CU的流量回退。
在一些实施例中,在所述移动节点的移动终端切换到所述第二donor-CU的情况下,所述移动节点的分布单元的流量通过所述第二donor-CU的拓扑进行路由。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,第三donor-CU接收第一donor-CU根据标识信息发送的用于指示流量的上下文的第二指示信息;其中,所述标识信息与所述第三donor-CU相关且包括在所述第一donor-CU接收的第一指示信息内。由此,能够支持移动节点在控制区域内进行移动而不造成服务中断,保证移动节点对用户设备的服务质量。
第四方面的实施例
本申请实施例提供一种移动节点的通信方法,从移动节点侧进行说明,与第一至三方面的实施例相同的内容不再赘述。第一donor-CU为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU。
图15是本申请实施例的移动节点的通信方法的一示意图,如图15所示,该方法 包括:
1501,移动节点和第一donor-CU之间的F1-C连接通过使用所述移动节点的锚定在所述第三donor-CU的donor-DU上的地址信息切换到目标路径。
值得注意的是,以上附图15仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图15的记载。
在一些实施例中,如图15所示,所述方法还可以包括:
1502,所述移动节点向所述第一donor-CU发送所述移动节点锚定在所述第三donor-CU的donor-DU上的地址信息。
在一些实施例中,所述移动节点向所述第一donor-CU发送第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息;其中,所述标识信息被所述第一donor-CU用于向所述第三donor-CU发送用于指示流量的上下文的第二指示信息。
在一些实施例中,所述移动节点到第一donor-CU的F1-U连接通过使用所述移动节点的锚定在所述第三donor-CU的donor-DU上的地址进行切换。
在一些实施例中,所述移动节点接收所述第一donor-CU发送的流量的上行回传信息。
在一些实施例中,所述第一指示信息由所述移动节点通过F1AP消息发送。
在一些实施例中,所述F1AP消息为gNB-DU配置更新消息,所述gNB配置更新消息包括:所述移动节点锚定在所述第三donor-CU的donor-DU上的地址信息以及所述第一指示信息。
在一些实施例中,所述F1AP消息中包括所述移动IAB节点的目标小区全局标识或目标宿主节点的全局节点标识。
在一些实施例中,所述F1AP消息中包括迁移原因。所述迁移原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,移动节点和第一donor-CU之间的F1-C连接通过使用所述移动节点的锚定在所述第三donor-CU的donor-DU上的地址信息切换到目标路径。由此,能够支持移动节点在控制区域内进行移动而不造成服务中断,保证移动节点对用户设备的服务质量。
第五方面的实施例
本申请实施例提供一种宿主设备,与第一至四方面的实施例相同的内容不再赘述。该设备例如可以是IAB系统中的IAB donor-CU(如第一至四方面的实施例中的第一donor-CU),也可以是配置于该IAB donor-CU中的某个或某些部件或者组件或者模块。
所述宿主设备为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU。
图16是本申请实施例的宿主设备的一示意图。如图16所示,宿主设备1600包括:
接收部1601,其接收第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息;以及
发送部1602,其向第三donor-CU发送用于指示流量的上下文的第二指示信息。
在一些实施例中,所述宿主设备为指定区域内多个移动节点的F1终止donor-CU;所述多个移动节点的F1连接始终终止于所述宿主设备。
在一些实施例中,接收部1601还接收所述移动节点发送的、所述移动节点锚定在所述第三donor-CU的donor-DU上的地址信息。
在一些实施例中,所述第二指示信息通过传输迁移管理请求消息发送,所述第二指示信息包括下行地址信息以使得所述第三donor-CU配置或修改下行映射;
接收部1601还接收所述第三donor-CU发送的传输迁移管理响应消息,所述传输迁移管理响应消息包括将卸载的流量的映射信息和/或所述第三donor-CU的拓扑中的层2信息。
在一些实施例中,发送部1602还向所述移动节点发送流量的上行回传信息。
在一些实施例中,所述第一指示信息由所述第二donor-CU通过传输迁移修改请求消息发送;
发送部1602还向所述第二donor-CU发送传输迁移修改响应消息。
在一些实施例中,所述传输迁移修改请求消息包括所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识;
所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识被包含在所述传输迁移修改请求消息承载的流量被释放信元中。
在一些实施例中,所述传输迁移修改请求消息中包括流量释放原因;
所述流量释放原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
在一些实施例中,所述第一指示信息由所述第二donor-CU通过XnAP消息中的迁移通知消息发送;
发送部1602还向所述第二donor-CU发送迁移通知确认消息。
在一些实施例中,所述迁移通知消息中包括所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识。
在一些实施例中,所述迁移通知消息中包括流量释放原因;
所述流量释放原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
在一些实施例中,所述第一指示信息由所述移动节点通过F1AP消息发送;
所述F1AP消息为gNB-DU配置更新消息,所述gNB配置更新消息包括:所述移动节点锚定在所述第三donor-CU的donor-DU上的地址信息以及所述第一指示信息。
在一些实施例中,所述F1AP消息中包括迁移原因;
所述迁移原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
在一些实施例中,发送部1602还通过传输迁移管理请求消息来请求所述第三donor-CU释放所有的卸载流量或释放部分的卸载流量。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的宿主设备1600还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图16中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,第一donor-CU接收第一指示信息,所述第一指示信息包括与第三donor-CU相关的标识信息;以及第一donor-CU根据所述标识信息向第三donor-CU发送用于指示流量的上下文的第二指示信息。由此,能够支持移动节点在控制区域内进行移动而不造成服务中断,保证移动节点对用户设备的服务质量。
第六方面的实施例
本申请实施例提供一种宿主设备,与第一至四方面的实施例相同的内容不再赘述。该设备例如可以是IAB系统中的IAB donor-CU(如第一至四方面的实施例中的第二donor-CU),也可以是配置于该IAB donor-CU中的某个或某些部件或者组件或者模块。
第一donor-CU为移动节点的F1终止donor-CU,所述宿主设备为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU。
图17是本申请实施例的宿主设备的一示意图。如图17所示,宿主设备1700包括:
发送部1701,其向所述第一donor-CU发送第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息。
在一些实施例中,所述第一指示信息由所述第二donor-CU通过传输迁移修改请求消息发送;如图17所示,所述宿主设备1700还可以包括:
接收部1702,其接收所述第一donor-CU发送的传输迁移修改响应消息。
在一些实施例中,所述第一指示信息由所述第二donor-CU通过XnAP消息中的迁移通知消息发送;接收部1702还接收所述第一donor-CU发送的迁移通知确认消息。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的宿主设备1700还可以包括其它部件或者模块,关于这些部 件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图17中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,第二donor-CU向第一donor-CU发送第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息;其中,所述标识信息被所述第一donor-CU用于向所述第三donor-CU发送用于指示流量的上下文的第二指示信息。由此,能够支持移动节点在控制区域内进行移动而不造成服务中断,保证移动节点对用户设备的服务质量。
第七方面的实施例
本申请实施例提供一种宿主设备,与第一至四方面的实施例相同的内容不再赘述。该设备例如可以是IAB系统中的IAB donor-CU(如第一至四方面的实施例中的第三donor-CU),也可以是配置于该IAB donor-CU中的某个或某些部件或者组件或者模块。
第一donor-CU为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,所述宿主设备为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU。
图18是本申请实施例的宿主设备的一示意图。如图18所示,宿主设备1800包括:
接收部1801,其接收所述第一donor-CU根据标识信息发送的用于指示流量的上下文的第二指示信息;
其中,所述标识信息与所述第三donor-CU相关且包含在所述第一donor-CU接收的第一指示信息内。
在一些实施例中,所述第二指示信息通过传输迁移管理请求消息发送。如图18所示,所述宿主设备1800还可以包括:
处理部1802根据所述第二指示信息包括的下行地址信息来配置或修改下行映射。
在一些实施例中,如图18所示,所述宿主设备1800还可以包括:
发送部1803向所述第一donor-CU发送传输迁移管理响应消息,所述传输迁移管理响应消息包括将卸载的流量的映射信息和/或所述第三donor-CU的拓扑中的层2信 息。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的宿主设备1800还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图18中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,第三donor-CU接收第一donor-CU根据标识信息发送的用于指示流量的上下文的第二指示信息;其中,所述标识信息与所述第三donor-CU相关且包括在所述第一donor-CU接收的第一指示信息。由此,能够支持移动节点在控制区域内进行移动而不造成服务中断,保证移动节点对用户设备的服务质量。
第八方面的实施例
本申请实施例提供一种移动节点,与第一至四方面的实施例相同的内容不再赘述。该移动节点例如可以是IAB系统中的IAB节点(如第一至四方面的实施例中的移动IAB节点),也可以是配置于该IAB节点中的某个或某些部件或者组件或者模块。
图19是本申请实施例的移动节点的一示意图。如图19所示,移动节点1900包括移动终端(MT)1901和分布单元(DU)1902。所述移动节点的移动终端(MT)1901从所述第二donor-CU切换或者RLF恢复到所述第三donor-CU。
所述移动节点的分布单元(DU)1902和所述第一donor-CU之间的F1-C连接通过使用所述移动节点的锚定在所述第三donor-CU的donor-DU上的地址信息切换到目标路径。
在一些实施例中,所述移动节点的分布单元(DU)1902向所述第一donor-CU发送所述移动节点锚定在所述第三donor-CU的donor-DU上的地址信息。
在一些实施例中,所述移动节点的分布单元(DU)1902向所述第一donor-CU发送第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息。
在一些实施例中,所述移动节点的分布单元(DU)1902到第一donor-CU的F1-U连接通过使用所述移动节点的锚定在所述第三donor-CU的donor-DU上的地址进行切换。
在一些实施例中,所述移动节点的分布单元(DU)1902接收所述第一donor-CU发送的流量的上行回传信息。
在一些实施例中,所述第一指示信息由所述移动节点通过F1AP消息发送。
在一些实施例中,所述F1AP消息为gNB-DU配置更新消息,所述gNB配置更新消息包括:所述移动节点锚定在所述第三donor-CU的donor-DU上的地址信息以及所述第一指示信息。
在一些实施例中,所述F1AP消息中包括所述移动IAB节点的目标小区全局标识或目标宿主节点的全局节点标识。
在一些实施例中,所述F1AP消息中包括迁移原因。
在一些实施例中,所述迁移原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的移动节点1900还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图19中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
由上述实施例可知,所述移动节点和所述第一donor-CU之间的F1-C连接通过使用所述移动节点的锚定在所述第三donor-CU的donor-DU上的地址信息切换到目标路径。由此,能够支持移动节点在控制区域内进行移动而不造成服务中断,保证移动节点对用户设备的服务质量。
第九方面的实施例
本申请实施例提供了一种通信系统,包括宿主(donor)设备和移动节点(例如IAB-node);关于宿主(donor)设备、IAB节点的网络架构和具体内容还可以参考相关技术,此处省略说明。
在一些实施例中,该通信系统包括:第一donor-CU、第二donor-CU、第三donor-CU、各donor-CU的donor-DU和移动节点。各donor-DU可以实施与各donor-CU和移动节点相应的操作,具体可以参考相关技术,在此省略说明。
第一donor-CU为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU。
所述第一donor-CU接收第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息;以及所述第一donor-CU向所述第三donor-CU发送用于指示流量的上下文的第二指示信息。
所述第二donor-CU向所述第一donor-CU发送第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息。
所述第三donor-CU接收所述第一donor-CU根据标识信息发送的用于指示流量的上下文的第二指示信息;其中,所述标识信息与所述第三donor-CU相关且包含在所述第一donor-CU接收的第一指示信息内。
所述移动节点和所述第一donor-CU之间的F1-C连接通过使用所述移动节点的锚定在所述第三donor-CU的donor-DU上的地址信息切换到目标路径。
本申请实施例还提供一种IAB设备,该IAB设备可以是IAB宿主设备,也可以是IAB节点(迁移节点或者子节点)。
图20是本申请实施例的IAB设备的示意图。如图20所示,IAB设备2000可以包括:处理器(例如中央处理器CPU)2001和存储器2002;存储器2002耦合到处理器2001。其中该存储器2002可存储各种数据;此外还存储信息处理的程序2005,并且在中央处理器2001的控制下执行该程序2005。
例如,处理器2001可以被配置为执行程序而实现如第一方面的实施例中的网络节点的通信方法。例如,处理器2001可以被配置为进行如下的控制:接收第一指示信息,所述第一指示信息包括与第三donor-CU相关的标识信息;以及向所述第三donor-CU发送用于指示流量的上下文的第二指示信息。
再例如,处理器2001可以被配置为执行程序而实现如第二方面的实施例中的网 络节点的通信方法。例如,处理器2001可以被配置为进行如下的控制:向第一donor-CU发送第一指示信息,所述第一指示信息包括与第三donor-CU相关的标识信息。
再例如,处理器2001可以被配置为执行程序而实现如第三方面的实施例中的网络节点的通信方法。例如,处理器2001可以被配置为进行如下的控制:接收第一donor-CU根据标识信息发送的用于指示流量的上下文的第二指示信息;其中,所述标识信息与第三donor-CU相关且包括在所述第一donor-CU接收的第一指示信息内。
再例如,处理器2001可以被配置为执行程序而实现如第四方面的实施例中的移动节点的通信方法。例如,处理器2001可以被配置为进行如下的控制:和第一donor-CU之间的F1-C连接通过使用移动节点的锚定在第三donor-CU的donor-DU上的地址信息切换到目标路径。
此外,如图20所示,IAB设备2000还可以包括:收发机2003和天线2004等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,IAB设备2000也并不是必须要包括图20中所示的所有部件;此外,IAB设备2000还可以包括图20中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机可读程序,其中当在IAB设备中执行所述程序时,所述程序使得计算机在所述IAB设备中执行第一至三方面的实施例的网络节点的通信方法或第四方面的实施例的移动节点的通信方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在IAB设备中执行第一至三方面的实施例的网络节点的通信方法或第四方面的实施例的移动节点的通信方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用 现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1.一种网络节点的通信方法,其中,第一donor-CU为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU;
所述方法包括:
所述第一donor-CU接收第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息;以及
所述第一donor-CU向所述第三donor-CU发送用于指示流量的上下文的第二指示信息。
2.根据附记1所述的方法,其中,所述第一donor-CU为指定区域内多个移动节点的F1终止donor-CU;所述多个移动节点的F1连接始终终止于所述第一donor-CU。
3.根据附记1或2所述的方法,其中,所述方法还包括:
所述第一donor-CU接收所述移动节点发送的、所述移动节点锚定在所述第三donor-CU的donor-DU上的地址信息。
4.根据附记1至3任一项所述的方法,其中,所述第二指示信息通过传输迁移管理请求消息发送,所述第二指示信息包括下行地址信息以使得所述第三donor-CU配置或修改下行映射。
5.根据附记4所述的方法,其中,所述方法还包括:
所述第一donor-CU接收所述第三donor-CU发送的传输迁移管理响应消息,所述传输迁移管理响应消息包括将卸载的流量的映射信息和/或所述第三donor-CU的拓扑中的层2信息。
6.根据附记1至5任一项所述的方法,其中,所述方法还包括:
所述第一donor-CU向所述移动节点发送流量的上行回传信息。
7.根据附记1至6任一项所述的方法,其中,所述第一指示信息由所述第二donor-CU通过传输迁移修改请求消息发送;所述方法还包括:
所述第一donor-CU向所述第二donor-CU发送传输迁移修改响应消息。
8.根据附记7所述的方法,其中,所述传输迁移修改请求消息包括所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识。
9.根据附记8所述的方法,其中,所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识被包含在所述传输迁移修改请求消息承载的流量被释放信元中。
10.根据附记7至9任一项所述的方法,其中,所述传输迁移修改请求消息中包括流量释放原因。
11.根据附记10所述的方法,其中,所述流量释放原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
12.根据附记1至6任一项所述的方法,其中,所述第一指示信息由所述第二donor-CU通过XnAP消息中的迁移通知消息发送。
13.根据附记12所述的方法,其中,所述方法还包括:
所述第一donor-CU向所述第二donor-CU发送迁移通知确认消息。
14.根据附记12或13所述的方法,其中,所述迁移通知消息中包括所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识。
15.根据附记12至14任一项所述的方法,其中,所述迁移通知消息中包括迁移原因。
16.根据附记15所述的方法,其中,所述迁移原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
17.根据附记1至6任一项所述的方法,其中,所述第一指示信息由所述移动节点通过F1AP消息发送。
18.根据附记17所述的方法,其中,所述F1AP消息为gNB-DU配置更新消息,所述gNB配置更新消息包括:所述移动节点锚定在所述第三donor-CU的donor-DU上的地址信息以及所述第一指示信息。
19.根据附记17或18所述的方法,其中,所述F1AP消息中包括所述移动IAB节点的目标小区全局标识或目标宿主节点的全局节点标识。
20.根据附记17至19任一项所述的方法,其中,所述F1AP消息中包括迁移原因。
21.根据附记20所述的方法,其中,所述迁移原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
22.根据附记1至21任一项所述的方法,其中,所述方法还包括:
所述第一donor-CU通过传输迁移管理请求消息来请求所述第三donor-CU释放所有的卸载流量或释放部分的卸载流量。
23.一种网络节点的通信方法,其中,第一donor-CU为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU;
所述方法包括:
所述第三donor-CU接收所述第一donor-CU根据标识信息发送的用于指示流量的上下文的第二指示信息;
其中,所述标识信息与所述第三donor-CU相关且包含在所述第一donor-CU接收的第一指示信息内。
24.根据附记23所述的方法,其中,所述第二指示信息通过传输迁移管理请求消息发送,所述方法还包括:
所述第三donor-CU根据所述第二指示信息包括的下行地址信息来配置或修改下行映射。
25.根据附记24所述的方法,其中,所述方法还包括:
所述第三donor-CU向所述第一donor-CU发送传输迁移管理响应消息,所述传输迁移管理响应消息包括将卸载的流量的映射信息和/或所述第三donor-CU的拓扑中的层2信息。
26.根据附记23至25任一项所述的方法,其中,所述方法还包括:
所述第三donor-CU发起所述移动节点的移动终端(MT)切换到所述第一donor-CU的流量回退。
27.根据附记26所述的方法,其中,在所述移动节点的移动终端切换到所述第一donor-CU的情况下,所述移动节点的分布单元(DU)的流量通过所述第一donor-CU的拓扑进行路由。
28.根据附记23至25任一项所述的方法,其中,所述方法还包括:
所述第三donor-CU发起所述移动节点的移动终端切换到所述第二donor-CU的流量回退。
29.根据附记28所述的方法,其中,在所述移动节点的移动终端切换到所述第二donor-CU的情况下,所述移动节点的分布单元的流量通过所述第二donor-CU的拓扑进行路由。
30.一种网络节点的通信方法,其中,第一donor-CU为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU;
所述方法包括:
所述第二donor-CU向所述第一donor-CU发送第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息;
其中,所述标识信息被所述第一donor-CU用于向所述第三donor-CU发送用于指 示流量的上下文的第二指示信息。
31.根据附记30所述的方法,其中,所述第一指示信息由所述第二donor-CU通过传输迁移修改请求消息发送;所述方法还包括:
所述第二donor-CU接收所述第一donor-CU发送的传输迁移修改响应消息。
32.根据附记31所述的方法,其中,所述传输迁移修改请求消息包括所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识。
33.根据附记32所述的方法,其中,所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识被包含在所述传输迁移修改请求消息承载的流量被释放信元中。
34.根据附记31至33任一项所述的方法,其中,所述传输迁移修改请求消息中包括流量释放原因。
35.根据附记34所述的方法,其中,所述流量释放原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
36.根据附记30所述的方法,其中,所述第一指示信息由所述第二donor-CU通过XnAP消息中的迁移通知消息发送。
37.根据附记36所述的方法,其中,所述方法还包括:
所述第二donor-CU接收所述第一donor-CU发送的迁移通知确认消息。
38.根据附记36或37所述的方法,其中,所述迁移通知消息中包括所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识。
39.根据附记36至38任一项所述的方法,其中,所述迁移通知消息中包括迁移原因。
40.根据附记39所述的方法,其中,所述迁移原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
41.一种移动节点的通信方法,其中,第一donor-CU为所述移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU;
所述方法包括:
所述移动节点和所述第一donor-CU之间的F1-C连接通过使用所述移动节点的锚定在所述第三donor-CU的donor-DU上的地址信息切换到目标路径。
42.根据附记41所述的方法,其中,所述方法还包括:
所述移动节点向所述第一donor-CU发送所述移动节点锚定在所述第三donor-CU的donor-DU上的地址信息。
43.根据附记41或42所述的方法,其中,所述方法还包括:
所述移动节点向所述第一donor-CU发送第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息;
其中,所述标识信息被所述第一donor-CU用于向所述第三donor-CU发送用于指示流量的上下文的第二指示信息。
44.根据附记41至43任一项所述的方法,其中,所述方法还包括:
所述移动节点到第一donor-CU的F1-U连接通过使用所述移动节点的锚定在所述第三donor-CU的donor-DU上的地址进行切换。
45.根据附记41至44任一项所述的方法,其中,所述方法还包括:
所述移动节点接收所述第一donor-CU发送的流量的上行回传信息。
46.根据附记43所述的方法,其中,所述第一指示信息由所述移动节点通过F1AP消息发送。
47.根据附记46所述的方法,其中,所述F1AP消息为gNB-DU配置更新消息,所述gNB配置更新消息包括:所述移动节点锚定在所述第三donor-CU的donor-DU上的地址信息以及所述第一指示信息。
48.根据附记46或47所述的方法,其中,所述F1AP消息中包括所述移动IAB节点的目标小区全局标识或目标宿主节点的全局节点标识。
49.根据附记46至48任一项所述的方法,其中,所述F1AP消息中包括迁移原因。
50.根据附记49所述的方法,其中,所述迁移原因包括:所述移动节点进行了宿主间切换(handover),或者,所述移动节点进行了宿主间无线链路失败(RLF)恢复。
51.一种移动节点,包括存储器和处理器,所述存储器存储有计算机程序,其中,所述处理器被配置为执行所述计算机程序而实现如附记41至50任一项所述的移动节点的通信方法。
52.一种宿主(donor)设备,包括存储器和处理器,所述存储器存储有计算机程序,其中,所述处理器被配置为执行所述计算机程序而实现如附记1至40任一项所述的网络节点的通信方法。
53.一种通信系统,包括:第一donor-CU、第二donor-CU、第三donor-CU和移动节点;第一donor-CU为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败(RLF)恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者RLF恢复后的非F1终止donor-CU;
所述第一donor-CU接收第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息;以及所述第一donor-CU向所述第三donor-CU发送用于指示流量的上下文的第二指示信息;
所述第二donor-CU向所述第一donor-CU发送第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息;
所述第三donor-CU接收所述第一donor-CU根据标识信息发送的用于指示流量的上下文的第二指示信息;其中,所述标识信息与所述第三donor-CU相关且包括在所述第一donor-CU接收的第一指示信息;
所述移动节点和所述第一donor-CU之间的F1-C连接通过使用所述移动节点的锚定在所述第三donor-CU的donor-DU上的地址信息切换到目标路径。

Claims (20)

  1. 一种宿主设备,其中,所述宿主设备为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者无线链路失败恢复后的非F1终止donor-CU;
    所述宿主设备包括:
    接收部,其接收第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息;以及
    发送部,其向所述第三donor-CU发送用于指示流量的上下文的第二指示信息。
  2. 根据权利要求1所述的宿主设备,其中,所述宿主设备为指定区域内多个移动节点的F1终止donor-CU;所述多个移动节点的F1连接始终终止于所述宿主设备。
  3. 根据权利要求1所述的宿主设备,其中,所述接收部还接收所述移动节点发送的、所述移动节点锚定在所述第三donor-CU的donor-DU上的地址信息。
  4. 根据权利要求1所述的宿主设备,其中,所述第二指示信息通过传输迁移管理请求消息发送,所述第二指示信息包括下行地址信息以使得所述第三donor-CU配置或修改下行映射;
    所述接收部还接收所述第三donor-CU发送的传输迁移管理响应消息,所述传输迁移管理响应消息包括将卸载的流量的映射信息和/或所述第三donor-CU的拓扑中的层2信息。
  5. 根据权利要求1所述的宿主设备,其中,所述发送部还向所述移动节点发送流量的上行回传信息。
  6. 根据权利要求1所述的宿主设备,其中,所述第一指示信息由所述第二donor-CU通过传输迁移修改请求消息发送;
    所述发送部还向所述第二donor-CU发送传输迁移修改响应消息。
  7. 根据权利要求6所述的宿主设备,其中,所述传输迁移修改请求消息包括所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识;
    所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识被包含在所述传输迁移修改请求消息承载的流量被释放信元中。
  8. 根据权利要求6所述的宿主设备,其中,所述传输迁移修改请求消息中包括 流量释放原因;
    所述流量释放原因包括:所述移动节点进行了宿主间切换,或者,所述移动节点进行了宿主间无线链路失败恢复。
  9. 根据权利要求1所述的宿主设备,其中,所述第一指示信息由所述第二donor-CU通过XnAP消息中的迁移通知消息发送。
  10. 根据权利要求9所述的宿主设备,其中,所述迁移通知消息中包括所述移动节点的目标小区全局标识或目标宿主节点的全局节点标识。
  11. 根据权利要求9所述的宿主设备,其中,所述迁移通知消息中包括迁移原因;
    所述迁移原因包括:所述移动节点进行了宿主间切换,或者,所述移动节点进行了宿主间无线链路失败恢复。
  12. 根据权利要求1所述的宿主设备,其中,所述第一指示信息由所述移动节点通过F1AP消息发送;所述F1AP消息为gNB-DU配置更新消息。
  13. 根据权利要求12所述的宿主设备,其中,所述F1AP消息中包括迁移原因;
    所述迁移原因包括:所述移动节点进行了宿主间切换,或者,所述移动节点进行了宿主间无线链路失败恢复。
  14. 根据权利要求1所述的宿主设备,其中,
    所述发送部还通过传输迁移管理请求消息来请求所述第三donor-CU释放所有的卸载流量或释放部分的卸载流量。
  15. 一种宿主设备,其中,第一donor-CU为移动节点的F1终止donor-CU,所述宿主设备为所述移动节点迁移或者无线链路失败恢复前的非F1终止donor-CU,第三donor-CU为所述移动节点迁移或者无线链路失败恢复后的非F1终止donor-CU;
    所述宿主设备包括:
    发送部,其向所述第一donor-CU发送第一指示信息,所述第一指示信息包括与所述第三donor-CU相关的标识信息。
  16. 根据权利要求15所述的宿主设备,其中,所述第一指示信息由所述宿主设备通过传输迁移修改请求消息发送;所述宿主设备还包括:
    接收部,其接收所述第一donor-CU发送的传输迁移修改响应消息。
  17. 根据权利要求15所述的宿主设备,其中,所述第一指示信息由所述宿主设备通过XnAP消息中的迁移通知消息发送;
    所述宿主设备还包括:
    接收部,其接收所述第一donor-CU发送的迁移通知确认消息。
  18. 一种宿主设备,其中,第一donor-CU为移动节点的F1终止donor-CU,第二donor-CU为所述移动节点迁移或者无线链路失败恢复前的非F1终止donor-CU,所述宿主设备为所述移动节点迁移或者无线链路失败恢复后的非F1终止donor-CU;
    所述宿主设备包括:
    接收部,其接收所述第一donor-CU根据标识信息发送的用于指示流量的上下文的第二指示信息;
    其中,所述标识信息与所述宿主设备相关且包含在所述第一donor-CU接收的第一指示信息内。
  19. 根据权利要求18所述的宿主设备,其中,所述第二指示信息通过传输迁移管理请求消息发送,所述宿主设备还包括:
    处理部,其根据所述第二指示信息包括的下行地址信息来配置或修改下行映射。
  20. 根据权利要求19所述的宿主设备,其中,所述宿主设备还包括:
    发送部,其向所述第一donor-CU发送传输迁移管理响应消息,所述传输迁移管理响应消息包括将卸载的流量的映射信息和/或所述宿主设备的拓扑中的层2信息。
PCT/CN2022/110976 2022-08-08 2022-08-08 网络节点的通信方法、移动节点的通信方法、移动节点和宿主设备 WO2024031289A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110976 WO2024031289A1 (zh) 2022-08-08 2022-08-08 网络节点的通信方法、移动节点的通信方法、移动节点和宿主设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110976 WO2024031289A1 (zh) 2022-08-08 2022-08-08 网络节点的通信方法、移动节点的通信方法、移动节点和宿主设备

Publications (1)

Publication Number Publication Date
WO2024031289A1 true WO2024031289A1 (zh) 2024-02-15

Family

ID=89850254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110976 WO2024031289A1 (zh) 2022-08-08 2022-08-08 网络节点的通信方法、移动节点的通信方法、移动节点和宿主设备

Country Status (1)

Country Link
WO (1) WO2024031289A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2624001A (en) * 2022-11-03 2024-05-08 Canon Kk Migration of nodes in an IAB communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536350A (zh) * 2019-02-14 2019-12-03 中兴通讯股份有限公司 Iab链路控制方法、通信单元、计算机可读存储介质
WO2022078112A1 (zh) * 2020-10-16 2022-04-21 大唐移动通信设备有限公司 连接建立方法、装置、设备及存储介质
CN114449596A (zh) * 2020-11-03 2022-05-06 索尼公司 电子设备、无线通信方法和计算机可读存储介质
WO2022151086A1 (zh) * 2021-01-13 2022-07-21 富士通株式会社 集成的接入和回传的通信方法以及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536350A (zh) * 2019-02-14 2019-12-03 中兴通讯股份有限公司 Iab链路控制方法、通信单元、计算机可读存储介质
WO2022078112A1 (zh) * 2020-10-16 2022-04-21 大唐移动通信设备有限公司 连接建立方法、装置、设备及存储介质
CN114449596A (zh) * 2020-11-03 2022-05-06 索尼公司 电子设备、无线通信方法和计算机可读存储介质
WO2022151086A1 (zh) * 2021-01-13 2022-07-21 富士通株式会社 集成的接入和回传的通信方法以及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2624001A (en) * 2022-11-03 2024-05-08 Canon Kk Migration of nodes in an IAB communication system

Similar Documents

Publication Publication Date Title
US11477712B2 (en) Maintaining communication and signaling interfaces through a network role transition
CA2858184C (en) Communicating radio resource configuration information
EP2787763B1 (en) Methods and devices for providing simultaneous connectivity between multiple E-NodeBs and user equipment
EP3595359B1 (en) Handover apparatus and method
EP3567975B1 (en) Methods of operating network nodes in a communication network, and network nodes implementing the same
US20150063091A1 (en) Recovering connection in lte local area network for eps and local services
US10542473B2 (en) Wireless communication system, a wireless device, network nodes, and methods therein, for changing master node for the wireless device
KR20150058347A (ko) 3gpp에서 비-3gpp 오프로드를 인에이블하는 시스템 강화
CN103888959B (zh) 小小区通信的方法、系统及其设备
CN108184249B (zh) 回程链路的信息传输方法及系统、代理设备、接入设备
WO2020078220A1 (zh) 一种数据处理方法及装置、网络设备
WO2024031289A1 (zh) 网络节点的通信方法、移动节点的通信方法、移动节点和宿主设备
WO2017166291A1 (zh) 一种通信方法、终端、基站和移动性管理设备
CN116349293A (zh) Iab节点的移植方法及装置
WO2024026803A1 (zh) 移动节点的配置方法和宿主设备
WO2022082690A1 (zh) 群组切换的方法、装置和系统
WO2022236644A1 (zh) 发送和接收信号的方法、装置和通信系统
WO2023010364A1 (zh) 集成的接入和回传的通信装置以及方法
WO2023197184A1 (zh) Iab宿主设备以及传输地址配置方法
WO2022233008A1 (zh) 消息发送方法、装置和系统
WO2023010367A1 (zh) 终端设备的转移方法、装置和系统
WO2023197185A1 (zh) Iab节点设备、iab宿主设备以及传输地址确定方法
WO2023130232A1 (zh) Iab节点设备、iab宿主设备以及路径迁移方法
WO2023150975A1 (zh) Iab宿主设备以及传输迁移回退方法
US20230345326A1 (en) Group migrating method and apparatus and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954269

Country of ref document: EP

Kind code of ref document: A1