WO2018171546A1 - 用户设备和基站处执行的方法及相应的设备 - Google Patents

用户设备和基站处执行的方法及相应的设备 Download PDF

Info

Publication number
WO2018171546A1
WO2018171546A1 PCT/CN2018/079446 CN2018079446W WO2018171546A1 WO 2018171546 A1 WO2018171546 A1 WO 2018171546A1 CN 2018079446 W CN2018079446 W CN 2018079446W WO 2018171546 A1 WO2018171546 A1 WO 2018171546A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
pdcp
srb
packet repetition
drb
Prior art date
Application number
PCT/CN2018/079446
Other languages
English (en)
French (fr)
Inventor
肖芳英
刘仁茂
Original Assignee
夏普株式会社
肖芳英
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 肖芳英 filed Critical 夏普株式会社
Priority to EP18772510.6A priority Critical patent/EP3606274B1/en
Priority to US16/496,063 priority patent/US11026281B2/en
Priority to BR112019019535A priority patent/BR112019019535A2/pt
Priority to MX2019011164A priority patent/MX2019011164A/es
Publication of WO2018171546A1 publication Critical patent/WO2018171546A1/zh
Priority to CONC2019/0011607A priority patent/CO2019011607A2/es

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and more particularly, to a method performed at a user equipment UE and a corresponding UE and a method performed at the base station and a corresponding base station.
  • NTT DOCOMO proposed a new research project on 5G technology standards (see Non-patent literature: RP-160671) :New SID Proposal: Study on New Radio Access Technology), and approved.
  • the goal of the research project is to develop a new wireless (New Radio: NR) access technology to meet all 5G application scenarios, requirements and deployment environments.
  • NR mainly has three application scenarios: Enhanced Mobile Broadband (eMBB), Massive Machine Type Communication (mMTC) and Ultra reliable and low latency communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra reliable and low latency communications
  • the multiple connections may employ mechanisms such as packet repetition (also known as packet repetition) or link selection.
  • packet repetition also known as packet repetition
  • link selection At the 3GPP NR AdHoc conference held in January 2017, the packet repetition function supporting the user plane and the data plane in the NR-PDCP entity is achieved, the PDCP entity function of the sender supports the packet repetition, and the PDCP entity function of the receiver supports the deletion of the duplicate packet.
  • Packet Data Convergence Protocol PDCP
  • PDUs Packet Data Sheets
  • SDU Service Data Unit
  • a method performed at a UE includes receiving a medium access control MAC Control Element CE to indicate that the data radio bearer DRB is repeatedly enabled and/or de-enabled; if the packet repetition is configured and the packet repetition is enabled, the packet data
  • the convergence protocol PDCP entity sends a PDCP protocol data unit PDU to two radio link control RLC entities; and if the packet repetition is configured and the packet repetition is disabled, the PDCP entity sends the PDCP PDU to One of the two RLC entities.
  • the MAC CE includes a fixed length bitmap, and each bit in the bitmap corresponds to an ascending sequence of packet repeat DRB identifiers. A bit set to 1 in the bitmap indicates that the packet repetition of the corresponding DRB is enabled, and a bit set to 0 in the bitmap indicates that the packet repetition of the corresponding DRB is disabled.
  • a UE comprising: a receiving unit, configured to receive a medium access control MAC Control Element CE to indicate that a data radio bearer DRB is repeatedly enabled and/or disabled; and a unit, if the packet repetition is configured and the packet repetition is enabled, the packet data convergence protocol PDCP entity sends a PDCP protocol data unit PDU to two radio link control RLC entities; and if configured If the packet is repeated and the packet repetition is disabled, the PDCP entity sends the PDCP PDU to one of the two RLC entities.
  • the MAC CE includes a fixed length bitmap, and each bit in the bitmap corresponds to an ascending sequence of packet repeat DRB identifiers. The bit set to 1 in the bitmap indicates that the packet repetition of the corresponding DRB is enabled, and the bit set to 0 in the bitmap indicates that the packet repetition of the corresponding DRB is disabled.
  • a method performed at a base station includes transmitting a media access control MAC Control Element CE to indicate that the user equipment UE data radio bearer DRB packet is repeatedly enabled and/or de-enabled. If the packet repetition is configured and the packet repetition is enabled, the packet data convergence protocol PDCP entity of the UE transmits one PDCP protocol data unit PDU to two radio link control RLC entities. If the packet repetition is configured and the packet repetition is disabled, the PDCP entity sends the PDCP PDU to one of the two RLC entities.
  • the MAC CE includes a fixed length bitmap, and each bit in the bitmap corresponds to an ascending sequence of packet repeat DRB identifiers. A bit set to 1 in the bitmap indicates that the packet repetition of the corresponding DRB is enabled, and a bit set to 0 in the bitmap indicates that the packet repetition of the corresponding DRB is disabled.
  • a base station BS including: a sending unit, configured to send a media access control MAC Control Element CE, to indicate that the user equipment UE data radio bearer DRB packet repetition enable and/or disable can. If the packet repetition is configured and the packet repetition is enabled, the packet data convergence protocol PDCP entity of the UE transmits one PDCP protocol data unit PDU to two radio link control RLC entities; and if configured If the packet is repeated and the packet repetition is disabled, the PDCP entity sends the PDCP PDU to one of the two RLC entities.
  • the MAC CE includes a fixed length bitmap, and each bit in the bitmap corresponds to an ascending sequence of packet repeat DRB identifiers. A bit set to 1 in the bitmap indicates that the packet repetition of the corresponding DRB is enabled, and a bit set to 0 in the bitmap indicates that the packet repetition of the corresponding DRB is disabled.
  • a method performed at a user equipment UE comprising: receiving a packet data convergence protocol PDCP data protocol data unit PDU from a lower layer; if the PDCP data PDU has been previously received, And performing integrity verification on the PDCP data PDU; and indicating that the upper layer integrity check fails if the integrity check fails.
  • a user equipment UE comprising: a receiving unit, configured to receive a packet data convergence protocol PDCP data protocol data unit PDU from a lower layer; and a check unit, if the PDCP data PDU is used An integrity check is performed on the PDCP data PDU before being received; and an indication unit is configured to indicate that the upper layer integrity check fails if the integrity check fails.
  • Figure 1 shows a schematic diagram of packet repetition MCG separation DRB data transmission
  • 2 is a schematic diagram showing packet repetition SCG separation DRB data transmission
  • FIG. 3 shows a schematic diagram of a protocol architecture in a user equipment UE
  • FIG. 4 shows a flow diagram of a method 400 in a user equipment UE in accordance with an embodiment of the present disclosure
  • FIG. 5 shows a flow diagram of a method 500 in a user equipment UE in accordance with an embodiment of the present disclosure
  • FIG. 6 shows a flow diagram of a method 600 in a base station in accordance with an embodiment of the present disclosure
  • FIG. 7 shows a flow diagram of a method 700 in a user equipment UE in accordance with an embodiment of the present disclosure
  • Figure 8 shows a schematic diagram of a PDCP Control PDU
  • Figure 9 shows a schematic diagram of COUNT
  • FIG. 10 shows a schematic flow chart of a PDCP entity processing a received PDCP PDU.
  • FIG. 11 shows a schematic structural diagram of a UE 1100 according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of a base station 1200 according to an embodiment of the present disclosure.
  • FIG. 13 illustrates a flow diagram of a method 1300 performed at a user equipment UE, in accordance with an embodiment of the disclosure
  • FIG. 14 shows a flowchart of a method 1400 performed at a base station BS in accordance with an embodiment of the present disclosure
  • FIG. 15 shows a flowchart of a method 1500 performed at a user equipment UE, in accordance with an embodiment of the disclosure
  • FIG. 16 shows a schematic structural diagram of a UE 1600 according to an embodiment of the present disclosure
  • FIG. 17 shows a schematic configuration of a BS 1700 according to an embodiment of the present disclosure
  • FIG. 18 shows a schematic structural diagram of a UE 1800 according to an embodiment of the present disclosure.
  • RRC Radio Resource Control, radio resource control.
  • PDCP Packet Data Convergence Protocol, Packet Data Convergence Protocol.
  • the PDCP may represent NR or PDCP in LTE or eLTE, unless otherwise specified.
  • RLC Radio Link Control, radio link control.
  • the RLC may represent NR or RLC in LTE or eLTE, unless otherwise specified.
  • the MAC Medium Access Control, media access control.
  • the MAC may represent a NR or a MAC in LTE or eLTE, unless otherwise specified.
  • DTCH Dedicated Traffic Channel, dedicated traffic channel.
  • CCCH Common Control Channel, common control channel.
  • DCCH Dedicated Control Channel, dedicated control channel.
  • PDU Protocol Data Unit, protocol data unit.
  • SDU Service Data Unit, service data unit.
  • data received from the upper layer or sent to the upper layer is referred to as an SDU
  • data transmitted to the lower layer or received from the lower layer is referred to as a PDU
  • the data received by the PDCP entity from the upper layer or the data sent to the upper layer is called a PDCP SDU
  • the data received by the PDCP entity from the RLC entity or the data sent to the RLC entity is called a PDCP PDU (ie, an RLC SDU).
  • MeNB corresponding to E-UTRAN or base station of LTE or eLTE
  • MgNB base station corresponding to 5G-RAN or NR
  • S1-MME control node mobility management entity
  • the primary base station in the present disclosure is referred to as an MeNB. It should be noted that all schemes or definitions applicable to the MeNB are also applicable to the MgNB.
  • Secondary base station Secondary eNB, denoted as SeNB (corresponding to E-UTRAN or base station of LTE or eLTE) or SgNB (base station corresponding to 5G-RAN or NR).
  • SeNB corresponding to E-UTRAN or base station of LTE or eLTE
  • SgNB base station corresponding to 5G-RAN or NR.
  • a base station that does not serve as an MeNB providing additional radio resources to the UE.
  • the secondary base stations in the present disclosure are all referred to as SeNBs. It should be noted that all schemes or definitions applicable to the SeNB are also applicable to the SgNB.
  • Primary cell Primary Cell, PCell. A cell operating on the primary frequency on which the UE performs an initial connection setup procedure or initiates a connection re-establishment procedure or is designated as a primary cell in the handover procedure.
  • Primary and secondary cells Primary Secondary Cell, PSCell.
  • the SCG cell that the UE is used to perform random access is performed in performing the process of changing the SCG.
  • Secondary cell Secondary Cell, SCell.
  • a cell operating on a secondary frequency that can be configured after the RRC connection is established and can be used to provide additional radio resources.
  • Cell group Cell Group, CG, in a multi-connection, a group of serving cells or carriers associated with a primary base station or a secondary base station. It should be noted that the cell described in the present disclosure may also be referred to as a set of beam.
  • MCG Primary cell group
  • the MCG is composed of all serving cells; for a UE configured with multiple connections, the MCG is composed of a subset of serving cells (ie, a group of serving cells associated with the MeNB or the MgNB), which includes the PCell and 0 or 1 or more SCells.
  • Secondary cell group Secondary Cell Group, SCG.
  • SCG Secondary Cell Group
  • the SCG can contain one PSCell and can also contain one or more SCells.
  • Multi-connection The operation mode of the UE in the RRC connected state, where multiple cell groups are configured, the multiple cell groups include one MCG, one or more SCGs (ie, the UE is connected to multiple base stations). If only one MCG (or MeNB or MgNB) and one SCG (or SeNB or SgNB) are configured, it is called dual connectivity. That is, a UE with multiple receivers and/or transmitters in a connected state is configured to use EUTRAN and/or 5G-RAN radio resources provided by a plurality of different schedulers, which may pass non-ideal backhaul ( Non-ideal backhaul) or ideal backhaul connection.
  • the multiple connections described in this disclosure include dual connections. Multi-connection data transmission methods include but are not limited to: data repetition, link selection.
  • DRB Data Radio Bearer carrying user plane data
  • a data radio bearer carrying the user plane data or simply referred to as a data bearer.
  • the SRB Signalling Radio Bearer, signaling radio bearer.
  • the bearer may be used to transmit RRC messages and NAS messages or only to transmit RRC messages and NAS messages.
  • the SRB may include SRB0, SRB1, SRB1bis, and SRB2.
  • the SRB0 is used for the RRC message using the CCCH logical channel;
  • the SRB1 is used for the RRC message using the DCCH logical channel, and the RRC message may include the NAS message, and the SRB1 is also used to transmit the NAS message before the establishment of the SRB2.
  • the SRB1bis is used for the RRC message and the NAS message of the DCCH logical channel before the security activation, and the RRC message may include the NAS message.
  • SRB2 is used for RRC messages and NAS messages using DCCH logical channels, and the RRC messages include recorded measurement information (or measurement logs).
  • the bearer in the present disclosure may be a DRB or an SRB.
  • the radio protocol is located at the MeNB (or MgNB) and the SeNB (or SgNB) and utilizes the bearers of the MeNB (or MgNB) and SeNB (or SgNB) resources simultaneously.
  • MCG separation DRB If the PDCP entity that separates the DRB is located at the primary base station (that is, the data first arrives at the primary base station and is forwarded by the primary base station to the secondary base station to implement data separation in the primary base station), it is called MCG separation DRB; if the PDCP entity separating the DRB is located at the secondary base station (The data arrives at the secondary base station first, and the secondary base station forwards it to the primary base station to implement data separation in the secondary base station.) This is called SCG separation DRB. Unless otherwise specified, the separation DRB described in the present disclosure may be an MCG separation DRB or an SCG separation DRB.
  • the radio protocol is located at the MeNB (or MgNB) and the SeNB (or SgNB) and utilizes the bearers of the MeNB (or MgNB) and SeNB (or SgNB) resources simultaneously.
  • the PDCP entity and/or RRC separating the SRB are located in the primary base station (ie, signaling, which may also be referred to as data, forwarded by the primary base station to the secondary base station, and signaling is separated in the primary base station), it is referred to as MCG separation SRB;
  • the PDCP entity and/or the RRC that separates the SRBs are located in the secondary base station (ie, signaling, which may also be referred to as data, and is forwarded by the secondary base station to the primary base station to implement signaling separation in the secondary base station), and is referred to as an SCG separation SRB.
  • the isolated SRB described in the present disclosure may be an MCG separation SRB or an SCG separation SRB.
  • the separation carrier may be a separate SRB or a separate DRB.
  • the MCG split carrier can be an MCG split SRB or an MCG split DRB.
  • the SCG split bearer may be an SCG split SRB or an SCG split DRB.
  • Packet repetition It may also be referred to as data repetition (if not specifically stated, the data in the present disclosure may be control plane signaling or user plane data, respectively corresponding to SRB signaling and DRB data).
  • the same data or packet or packet, that is, PDCP PDU or PDCP SDU
  • MCG primary base station
  • SCG secondary base station
  • the provided resource transmission or the same data is sent to the lower layer (or RLC layer) located at the MCG or SCG or the PDCP entity sends the same PDCP PDU to the associated multiple lower layer entities (or RLC entities) or the same data in multiple different Bearer (upper transmission.
  • the PDCP entity sends duplicate or same PDCP PDUs to multiple RLC entities (or lower layer entities) and/or logical channels, and the MAC entities pass different carriers ( Or the serving cell) is sent to the receiving end; the receiving end PDCP entity is responsible for detecting and deleting duplicate PDCP PDUs or SDUs.
  • Packet Repeat Bearer Supports repeated bearer bearers in carrier aggregation or single-link mode, including packet repeat SRB and packet repeat DRB.
  • One PDCP entity of the bearer is associated with one or more RLC entities, multiple logical channels, and one or more MAC entities and the transmitting PDCP entity transmits duplicate or same PDCP PDUs to the one or more RLC entities ( Or a lower layer entity) and/or multiple logical channels, which are sent by the MAC entity to the receiving end through different carriers (or serving cells); the receiving end PDCP entity removes duplicate PDCP PDUs or SDUs from the underlying entity.
  • the packet is repeatedly separated and bearer: in the multi-connection mode, the duplicate bearer of the packet repetition is supported. In the transmitting mode, the same data is sent on multiple wireless protocols of the split bearer, including a packet repeat MCG split SRB, a packet repeat SCG split SRB, a packet repeat MCG split DRB, and a packet repeat SCG split DRB. If the packet is a duplicate MCG split bearer, the PDCP entity located at the primary base station or the MCG is responsible for packet repetition and/or repeated packet removal; if the packet repeats the SCG split bearer, the PDCP entity located at the secondary base station or the SCG is responsible for packet repetition. And/or repeat package removal.
  • pdcp-Config cell A configurable PDCP parameter containing the DRB.
  • rlc-Config cell Contains configuration information of the RLC entity corresponding to the SRB and the DRB.
  • logicalChannelIdentity cell Logical channel identifier
  • logicalChannelConfig cell Contains parameters used to configure the logical channel.
  • logicalChannelGroup A logical channel group identifier used to map a logical channel to a logical channel group for BSR reporting.
  • FIG. 1 is a schematic diagram of performing downlink packet repetition MCG separation DRB transmission between a base station and a user equipment UE. It should be understood that the same protocol architecture may be adopted for performing uplink packet repetition MCG split DRB transmission between the base station and the UE, except that data is transmitted from the UE to the base station, that is, the arrow in FIG. 1 is reversed. As shown in FIG. 1, data (eg, a Packet Data Convergence Protocol Data Unit (PDCP PDU)) is transmitted on multiple radio protocols (corresponding to a plurality of RLC entities associated with the same PDCP entity) separating the DRBs, utilizing the MeNB and SeNB resources.
  • PDCP PDU Packet Data Convergence Protocol Data Unit
  • each PDCP PDU is sent to the receiver through multiple RLC entities.
  • the interface between the MeNB and the SeNB can be written as Xn or Xx or X2.
  • the interfaces may be named differently depending on the type of MeNB and SeNB. For example, if the MeNB is an LTE eNB, the SeNB is a gNB, the interface is denoted as Xx, and if the MeNB is a gNB and the SeNB is an eLTE eNB, the interface is denoted as Xn.
  • the packet repetition MCG separation SRB adopts a similar protocol architecture, except that the upper layer entity that sends data to the PDCP entity is RRC, and the PDCP entity sends the data from the lower layer entity to the upper layer RRC entity.
  • FIG. 2 is a schematic diagram showing downlink packet repeat SCG separation DRB transmission between a base station and a user equipment UE. It should be understood that the same protocol architecture may be adopted for performing uplink packet repetition SCG split DRB transmission between the base station and the UE, except that data is transmitted from the UE to the base station, that is, the arrow in FIG. 2 is reversed. As shown in FIG. 2, data (eg, a Packet Data Convergence Protocol Protocol Data Unit (PDCP PDU)) is transmitted on a plurality of radio protocols (corresponding to a plurality of RLC entities associated with the same PDCP entity) separating the DRBs, utilizing the MeNB and SeNB resources.
  • PDCP PDU Packet Data Convergence Protocol Protocol Data Unit
  • each PDCP PDU is sent to the receiver through multiple RLC entities.
  • the interface between the MeNB and the SeNB can be written as Xn or Xx or X2.
  • the interfaces may be named differently depending on the type of MeNB and SeNB. For example, if the MeNB is an LTE eNB, the SeNB is a gNB, the interface is denoted as Xx, and if the MeNB is a gNB and the SeNB is an eLTE eNB, the interface is denoted as Xn.
  • the packet repetition SCG separation SRB adopts a similar protocol architecture, except that the upper layer entity that sends data to the PDCP entity is RRC, and the PDCP entity sends the data from the lower layer entity to the upper layer RRC entity.
  • Some embodiments of the present disclosure take the case that the data packet PDCP PDU or the SDU is repeatedly sent twice (that is, one PDCP entity associates two RLC entities and/or two logical channels), but the technical solution described in the present disclosure is not limited to the data packet.
  • a scenario in which a PDCP PDU or an SDU is repeatedly transmitted twice can be easily extended by those skilled in the art to repeatedly transmit multiple scenarios (ie, one PDCP entity associates multiple RLC entities and/or multiple logical channels).
  • FIG. 3 is a schematic diagram of a protocol architecture in a user equipment UE in a carrier aggregation scenario.
  • a PDCP entity of one DRB is associated with two RLC entities and two logical channels, one MAC entity.
  • the PDCP entity of one DRB is associated with two RLC entities and two logical channels and two MAC entities.
  • the RRC entity and the PDCP entity of one SRB are associated with two RLC entities and two logical channels and one MAC entity.
  • the RRC entity and the PDCP entity of one SRB are associated with two RLC entities and two logical channels and two MAC entities.
  • the enabling packet repetition function (also referred to as a PDCP packet repetition function or a bearer packet repetition function) in the present disclosure may also be expressed as configuring a PDCP entity to send the same PDCP PDU to the associated multiple lower layer entities or RLC entity. If the packet is a duplicate MCG split SRB or a packet repeat SCG split SRB, the packet repeat function is enabled such that the same PDCP PDU is sent through the MCG and SCG.
  • the de-enable packet repetition function may also be expressed as configuring the PDCP entity to send the same PDCP PDU to one or all of the associated lower layer entities (or RLC entities) to transmit only through one of the plurality of lower layer entities.
  • the PDCP PDU when receiving an instruction from the upper layer or the MAC layer or the lower layer to disable the PDCP packet repetition function, the PDCP PDU is transmitted only through the logical channel associated with the predefined logical channel identifier, or is identified by the logical channel identifier. Smaller or smallest or larger or largest logical channel associated RLC entity sends. If the packet is a duplicate MCG split SRB, the PDCP packet repetition function is disabled to enable the PDCP PDU to transmit or disable the PDCP packet repetition function only through the MCG or SCG, so that the PDCP PDU transmits or disables the PDCP packet repetition function only through the MCG to enable the PDCP.
  • the PDU is sent only through the SCG; if it is a packet repeat SCG split SRB, the packet repeat function is disabled to enable the PDCP PDU to send or disable the PDCP packet repeat function only through the SCG or MCG so that the PDCP PDU sends or disables the PDCP only through the MCG.
  • the packet repetition function causes the PDCP PDU to be sent only through the SCG.
  • FIG. 4 shows a flow diagram of a method 400 in a user equipment UE in accordance with an embodiment of the disclosure.
  • Method 400 is for establishing a packet repeat SRB.
  • step S410 the UE receives, from the base station, configuration information indicating whether the corresponding signaling radio bearer SRB supports packet repetition and the SRB supporting packet repetition.
  • the method 400 further includes: receiving, from the base station, the SRB identifier of the corresponding packet repetition SRB ( Not shown).
  • the indication identifier is the SRB identifier of the packet repetition SRB.
  • the UE can determine whether the corresponding SRB supports packet repetition by receiving the SRB identifier.
  • step S420 the UE establishes a corresponding packet repetition SRB according to the received configuration information.
  • the following describes an embodiment in which a user equipment establishes a packet repeating SRB in a carrier aggregation CA scenario.
  • the described embodiments are also applicable to establishing a packet to repeatedly separate SRBs.
  • the packet repeats the SRB and the corresponding unsupported packet repetition SRB (the SRB and the packet repeat SRB transmission the same data, achieving the same QoS/function, the difference being that one support packet repetition function, the other is not supported) using the same SRB
  • the identifier two logical channel identifiers are predefined for the packet repetition SRB, wherein the identifier of one logical channel is the same as the SRB that does not support packet repetition.
  • SRB1 that supports packet repetition and SRB1 that does not support packet repetition are named SRB1.
  • an indication flag is used in the RRC signaling to indicate whether to establish a packet repetition SRB or an SRB that does not support packet repetition. specifically,
  • Step 1 The user equipment receives the RRC signaling (for example, the RRC connection reconfiguration message) from the base station, where the RRC signaling may include an indication identifier, where the indication identifier is used to indicate that the corresponding SRB is a packet repetition SRB or The SRB supporting the packet repetition or the corresponding PDCP entity supports the PDCP PDU to be repeatedly transmitted two or more times or the corresponding PDCP entity supports the packet repetition function. For example, when the indication identifier takes a value of “1” or “TRUE” or “Setup” or the identifier appears, it indicates that the corresponding SRB is a PDCP entity corresponding to the SRB or the SRB supporting the packet repetition SRB or the support packet repetition function.
  • the indication identifier takes a value of “1” or “TRUE” or “Setup” or the identifier appears, it indicates that the corresponding SRB is a PDCP entity corresponding to the SRB or the SRB supporting the packet repetition SRB or the support packet repetition function.
  • Each PDCP PDU is repeatedly sent two or more times or the corresponding PDCP entity supports the packet repetition function; when the identifier takes a value of "0" or “FALSE” or “Release” or the identifier does not appear, the corresponding The SRB is not a packet repeating SRB or an SRB that does not support the packet repetition function or the corresponding PDCP entity does not repeatedly transmit the PDCP PDU or the corresponding PDCP entity does not support the packet repetition function or the corresponding PDCP entity sends the PDCP PDU to the associated multiple lower layer entities.
  • the RRC signaling further includes configuration information of the SRB supporting the packet repetition.
  • Step 2 The user equipment establishes a corresponding packet repetition SRB according to the packet repetition SRB configuration information included in the received RRC signaling. Specifically, the following operations can be included (the operation sequence can be changed):
  • - Optional apply the corresponding package to repeat the predefined configuration of the SRB. If the packet is repeatedly separated from the SRB, a predefined configuration in the MeNB or MCG and the SeNB or SCG is employed, respectively.
  • a PDCP entity if the PDCP entity needs to perform security configuration, configuring the PDCP entity according to the security configuration of the MCG. If the PDCP entity or the packet repetition SCG SRB or the packet repetition SCG separation SRB is established in the SCG, the PDCP entity is configured according to the security configuration of the SCG. Optionally, the PDCP entity is configured to enable the packet repetition function; or the PDCP entity is configured to enable the packet repetition function.
  • One or two RLC entities are established according to the rlc-Config contained in the RRC signaling, and the two RLC entities may adopt the same or different configurations. If a different configuration is used, the corresponding packet repetition SRB in the RRC signaling contains two rlc-Config cells.
  • the packet repeats the SRB and the corresponding unsupported packet repetition SRB (the SRB and the packet repeat SRB transmission the same data, achieving the same QoS/function, the difference being that one support packet repetition function, the other is not supported) using the same SRB Identification (srb-Identity),
  • the identifier of one logical channel of the packet repeating SRB is a predefined logical channel identifier (denoted as LCH_ID) corresponding to the packet repetitive SRB
  • the other logical channel identifier is a predefined logical channel identifier plus The value obtained by an offset (marked as offset).
  • the offset is a maximum configurable logical channel identifier, denoted as MAX_LCH_ID. specifically,
  • Step 1 The user equipment receives the RRC signaling (for example, the RRC connection reconfiguration message) from the base station, where the RRC signaling may include an indication identifier, where the indication identifier is used to indicate that the corresponding SRB is a packet repetition SRB or The SRB supporting the packet repetition or the corresponding PDCP entity supports the PDCP PDU to be repeatedly transmitted two or more times or the corresponding PDCP entity supports the packet repetition function. .
  • the indication identifier takes a value of “1” or “TRUE” or “Setup” or the identifier appears, it indicates that the corresponding SRB is a PDCP entity corresponding to the SRB or the SRB supporting the packet repetition SRB or the support packet repetition function.
  • Each PDCP PDU is repeatedly sent two or more times or the corresponding PDCP entity supports the packet repetition function; when the identifier takes a value of "0" or "FALSE” or “Release” or the identifier does not appear, the corresponding The SRB is not a packet repeating SRB or an SRB that does not support the packet repetition function or the corresponding PDCP entity does not support repeated transmission of the PDCP PDU or the corresponding PDCP entity does not support the packet repetition function.
  • the RRC signaling further includes configuration information of the SRB supporting the packet repetition.
  • Step 2 The user equipment establishes a corresponding packet repetition SRB according to the packet repetition SRB configuration information included in the received RRC signaling. Specifically, the following operations can be included (the operation sequence can be changed):
  • a PDCP entity if the PDCP entity needs to perform security configuration, configuring the PDCP entity according to the security configuration of the MCG. If the PDCP entity or the packet repetition SCG SRB or the packet repetition SCG separation SRB is established in the SCG, the PDCP entity is configured according to the security configuration of the SCG. Optionally, the PDCP entity is configured to enable the packet repetition function; or the PDCP entity is configured to enable the packet repetition function.
  • One or two RLC entities are established according to the rlc-Config contained in the RRC signaling, and the two RLC entities may adopt the same or different configurations. If a different configuration is used, the corresponding packet repetition SRB in the RRC signaling contains two rlc-Config cells.
  • the logical channel identifier of one of the logical channels is set to a predefined value LCH_ID, and the logical channel identifier of the other logical channel is set to LCH_ID+offset.
  • the logical channel identifier of the other logical channel is LCH_ID+MAX_LCH_ID. If it is still necessary to establish a third logical channel, the identifier of the corresponding logical channel can be set to LCH+2 (offset), and so on. That is, the logical channel identifiers of other logical channels are LCH_ID plus several times the offset.
  • the packet repeats the SRB and the corresponding unsupported packet repetition SRB (the SRB and the packet repeat SRB transmission the same data, achieving the same QoS/function, the difference being that one support packet repetition function, the other is not supported) using the same SRB Identification (srb-Identity), one logical channel identifier of the packet repeating SRB is a predefined logical channel identifier (denoted as LCH_ID) corresponding to the packet repetitive SRB, and another logical channel identifier is included in the RRC for configuring the packet repetition SRB.
  • LCH_ID logical channel identifier
  • Step 1 The user equipment receives the RRC signaling (for example, the RRC connection reconfiguration message) from the base station, where the RRC signaling may include an indication identifier, where the indication identifier is used to indicate that the corresponding SRB is a packet repetition SRB or The SRB supporting the packet repetition or the corresponding PDCP entity supports the PDCP PDU to be repeatedly transmitted two or more times or the corresponding PDCP entity supports the packet repetition function. For example, when the indication identifier takes a value of “1” or “TRUE” or “Setup” or the identifier appears, it indicates that the corresponding SRB is a PDCP entity corresponding to the SRB or the SRB supporting the packet repetition SRB or the support packet repetition function.
  • the indication identifier takes a value of “1” or “TRUE” or “Setup” or the identifier appears, it indicates that the corresponding SRB is a PDCP entity corresponding to the SRB or the SRB supporting the packet repetition SRB or the support packet repetition function.
  • Each PDCP PDU is repeatedly sent two or more times or the corresponding PDCP entity supports the packet repetition function; when the identifier takes a value of "0" or "FALSE” or “Release” or the identifier does not appear, the corresponding The SRB is not a packet repeating SRB or an SRB that does not support the packet repetition function or the corresponding PDCP entity does not support repeated transmission of the PDCP PDU or the corresponding PDCP entity does not support the packet repetition function.
  • the RRC signaling further includes configuration information of the SRB supporting the packet repetition.
  • Step 2 The user equipment establishes a corresponding packet repetition SRB according to the packet repetition SRB configuration information included in the received RRC signaling. Specifically, the following operations can be included (the operation sequence can be changed):
  • a PDCP entity if the PDCP entity needs to perform security configuration, configuring the PDCP entity according to the security configuration of the MCG. If the PDCP entity or the packet repetition SCG SRB or the packet repetition SCG separation SRB is established in the SCG, the PDCP entity is configured according to the security configuration of the SCG. Optionally, the PDCP entity is configured to enable the packet repetition function; or the PDCP entity is configured to enable the packet repetition function.
  • One or two RLC entities are established according to the rlc-Config contained in the RRC signaling, and the two RLC entities may adopt the same or different configurations. If a different configuration is used, the corresponding packet repetition SRB in the RRC signaling contains two rlc-Config cells.
  • the packet repeats the SRB and the corresponding unsupported packet repetition SRB (the SRB and the packet repeat SRB transmission the same data, achieving the same QoS/function, the difference being that one support packet repetition function, the other is not supported) using different SRBs
  • An identifier (srb-Identity), the SRB identifier is predefined, and the user may determine to establish a packet repetition SRB according to the SRB identifier.
  • the two logical channel identifiers may be different from the logical channel identifier of the SRB that does not support packet repetition or the identification of one of the logical channels and the unsupported packet repetition
  • the logical channel identifiers of the SRBs are the same (in this case, one logical channel identifier may be predefined for the packet repeating SRB, and the other logical channel identifier adopts a predefined logical channel identifier that duplicates the SRB with the corresponding unsupported packet).
  • Step 1 The user equipment receives the RRC signaling (for example, an RRC connection reconfiguration message) from the base station, where the RRC signaling includes an identifier of the packet repeating SRB to be established, and further includes configuration information of the SRB supporting the packet repetition.
  • the RRC signaling for example, an RRC connection reconfiguration message
  • Step 2 The user equipment establishes a corresponding packet repetition SRB according to the identifier of the repeated SRB and the corresponding configuration information included in the received RRC signaling. Specifically, the following operations can be included (the operation sequence can be changed):
  • the application corresponding to the SRB identifier repeats the predefined configuration of the SRB.
  • a PDCP entity if the PDCP entity needs to perform security configuration, configuring the PDCP entity according to the security configuration of the MCG. If the PDCP entity or the packet repetition SCG SRB or the packet repetition SCG separation SRB is established in the SCG, the PDCP entity is configured according to the security configuration of the SCG. Optionally, the PDCP entity is configured to enable the packet repetition function; or the PDCP entity is configured to enable the packet repetition function.
  • One or two RLC entities are established according to the rlc-Config contained in the RRC signaling, and the two RLC entities may adopt the same or different configurations. If different configurations are used, the corresponding packet repetition SRB in the RRC signaling contains two rlc-Config cells.
  • the packet repeats the SRB and the corresponding unsupported packet repetition SRB (the SRB and the packet repeat SRB transmission the same data, achieving the same QoS/function, the difference being that one support packet repetition function, the other is not supported) using different SRBs
  • An identifier (srb-Identity), the SRB identifier is predefined, and the user may determine to establish a packet repetition SRB according to the SRB identifier.
  • a logical channel identifier (denoted as LCH_ID) for the packet repeating SRB corresponding to the SRB identifier, the logical channel identifier being different from a predefined logical channel identifier corresponding to the unsupported packet repeating SRB or the logical channel identifier and corresponding
  • the predefined logical channel identifiers that do not support packet repetition SRB are the same.
  • Another logical channel identifier is a value obtained by adding a offset (denoted as offset) to the predefined logical channel identifier.
  • the offset is a maximum configurable logical channel identifier, denoted as MAX_LCH_ID. specifically,
  • Step 1 The user equipment receives the RRC signaling (for example, an RRC connection reconfiguration message) from the base station, where the RRC signaling includes an identifier of the packet repeating SRB to be established, and further includes configuration information of the SRB supporting the packet repetition.
  • the RRC signaling for example, an RRC connection reconfiguration message
  • Step 2 The user equipment establishes a corresponding packet repetition SRB according to the identifier of the packet repeating SRB and the packet repetition SRB configuration information included in the received RRC signaling. Specifically, the following operations can be included (the operation sequence can be changed):
  • the application corresponding to the SRB identifier repeats the predefined configuration of the SRB.
  • a PDCP entity if the PDCP entity needs to perform security configuration, configuring the PDCP entity according to the security configuration of the MCG. If the PDCP entity or the packet repetition SCG SRB or the packet repetition SCG separation SRB is established in the SCG, the PDCP entity is configured according to the security configuration of the SCG. Optionally, the PDCP entity is configured to enable the packet repetition function; or the PDCP entity is configured to enable the packet repetition function.
  • One or two RLC entities are established according to the rlc-Config contained in the RRC signaling, and the two RLC entities may adopt the same or different configurations. If a different configuration is used, the corresponding packet repetition SRB in the RRC signaling contains two rlc-Config cells.
  • the logical channel identifier of one of the logical channels is set to a predefined value LCH_ID, and the logical channel identifier of the other logical channel is set to LCH_ID+offset.
  • the logical channel identifier of the other logical channel is LCH_ID+MAX_LCH_ID. If it is still necessary to establish a third logical channel, the identifier of the corresponding logical channel can be set to LCH+2 (offset), and so on. That is, the logical channel identifiers of other logical channels are LCH_ID plus several times the offset.
  • FIG. 5 shows a flow diagram of a method 500 in a user equipment UE in accordance with an embodiment of the disclosure.
  • the method 500 is for reconfiguring whether the SRB supports packet repetition.
  • step S510 the UE receives an indication flag indicating whether the re-configured signaling radio bearer SRB supports packet repetition from the base station.
  • step S520 if the configured SRB does not support packet repetition, and the indication identifier indicates that the reconfigured SRB supports packet repetition, the UE reconfigures the configured SRB to support packet repetition.
  • the method 500 further includes: if the configured SRB supports packet repetition, and the indication identifier indicates that the reconfigured SRB does not support packet repetition, the UE reconfigures the configured SRB to an unsupported packet. Repeat (not shown).
  • the following describes an embodiment in which the user equipment reconfiguration packet repeats the SRB in the carrier aggregation CA scenario.
  • the SRB of the packet repetition and the corresponding SRB that does not support packet repetition adopt the same SRB identifier (the SRB transmits the same data as the packet repetition SRB, and implements the same QoS/function, and the difference lies in a support packet repetition function. The other does not support).
  • the user equipment receives an RRC message from the base station, where the message may be an RRC reconfiguration message, where the RRC reconfiguration message may be used for handover (the RRC message includes a cell mobilityControlInfo indicating handover) or Non-handover (the RRC message does not contain the cell mobilityControlInfo indicating the handover) scenario.
  • the RRC message includes an indication identifier (denoted as fullConfig), and the indication identifier is used to indicate that a full configuration is applied to the RRC reconfiguration message.
  • the RRC message further includes an SRB identifier that needs to be reconfigured. For example, the identifier of the SRB that needs to be reconfigured is included in the cell srb-ToAddModList.
  • the SRB that needs to be reconfigured may be associated with an indication flag, where the indication identifier is used to indicate that the reconfigured SRB is a packet repetition SRB or the corresponding PDCP entity supports the PDCP PDU to be repeatedly sent two or more times or correspondingly.
  • the PDCP entity supports the packet repetition function, that is, the user equipment reconfigures the configured SRB corresponding to the SRB identifier (also referred to as the existing or current SRB, which is the SRB that has been configured before the UE receives the RRC message) into a packet repetition.
  • SRB also referred to as the existing or current SRB, which is the SRB that has been configured before the UE receives the RRC message
  • the configured SRB may be a packet repetition SRB or an SRB that does not support packet repetition.
  • the indication identifier when the indication identifier takes a value of “1” or “TRUE” or “Setup” or the identifier appears, it indicates that the corresponding SRB is a PDCP entity corresponding to the SRB or the SRB supporting the packet repetition SRB or the support packet repetition function.
  • Each PDCP PDU is repeatedly sent twice or more times or the PDCP supports the packet repetition function; when the identifier takes a value of "0" or "FALSE” or "Release” or the identifier does not appear, it indicates that the corresponding SRB is not a packet.
  • the SRB or the corresponding PDCP entity that does not support the packet repetition function does not support the packet repetition function.
  • Step 2 For the SRB corresponding to the SRB identifier included in the RRC message, if the configured SRB is an SRB that does not support packet repetition, that is, reconfigures an SRB that does not support packet repetition to an SRB that supports packet repetition, proceed to The following operations (the order of operations can be changed):
  • the logical channel identifier of the logical channel may be set to one of the following (ie, the setting of the logical channel identifier of the newly established logical channel is the same as the method for setting the logical channel identifier given in the setup packet repetition SRB embodiment): The other predefined value corresponding to the SRB identifier, the predefined value corresponding to the SRB identifier plus an offset, and the logical channel identifier corresponding to the SRB identifier carried in the RRC message.
  • the following operations are performed (the sequence of operations can be changed):
  • the predefined configuration is a predefined configuration corresponding to the SRB that does not support packet repetition.
  • the SRB corresponds to a predefined value) other RLC entities outside the associated RLC entity.
  • the message may be an RRC reconfiguration message, where the RRC reconfiguration message may be used for handover (in the RRC message, including the cell mobility ControlInfo indicating handover) or non-handover (RRC message).
  • the cell mobilityControlInfo scenario indicating the handover is not included.
  • the RRC message includes an indication identifier (denoted as fullConfig), and the indication identifier is used to indicate that a full configuration is applied to the RRC reconfiguration message.
  • the RRC message further includes an SRB identifier that needs to be reconfigured. For example, the identifier of the SRB that needs to be reconfigured is included in the cell srb-ToAddModList.
  • the user equipment reconfigures the configured SRB corresponding to the SRB identifier (also referred to as the existing or current SRB, which is the SRB that has been configured before the UE receives the RRC message) into one.
  • SRBs with duplicate packets are not supported.
  • the configured SRB may be a packet repetition SRB or an SRB that does not support packet repetition. Specifically (the order of operations can be changed):
  • the predefined configuration is a predefined configuration corresponding to the SRB that does not support packet repetition.
  • the logical channel identifier of the logical channel is a predefined SRB corresponding to the packet repetition. Value) Other RLC entities outside the associated RLC entity.
  • a logical channel if the configured SRB is a packet repeat SRB. That is, the other logical channels except the logical channel corresponding to the packet repetition SRB are released, and the logical channel identifier of the logical channel is not a predefined value corresponding to the SRB that does not support packet repetition.
  • FIG. 6 shows a flow diagram of a method 600 in a base station in accordance with an embodiment of the disclosure.
  • the method 600 is configured to instruct the UE to enable and disable the PDCP packet repetition function.
  • the base station configures indication information to enable and/or disable the packet repetition function.
  • the indication information may utilize a newly defined PDCP Control PDU, or one or more bits of a defined PDCP Control PDU implementing other functions, or a newly defined MAC CE (Control Element, Control Element) ) and so on.
  • step S620 the base station sends the configured indication information to the user equipment UE to instruct the UE to enable or disable the packet repetition function.
  • FIG. 7 shows a flow diagram of a method 700 in a user equipment UE, in accordance with an embodiment of the disclosure.
  • the method 700 is for enabling and/or disabling the PDCP packet repetition function.
  • the UE receives indication information from the base station to enable and/or disable the packet repetition function.
  • the indication information may utilize a newly defined PDCP Control PDU, or one or more bits of a defined PDCP Control PDU implementing other functions, or a newly defined MAC CE (Control Element, Control Element) ) and so on.
  • step S720 the UE enables or disables the packet repetition function according to the received indication information.
  • Embodiments of enabling and deactivating PDCP packet repetition functions in which the The method can be applied to SRB (ie, packet repetition SRB and/or packet repetition separation SRB) and DRB (ie Packet repetition DRB and/or packet repetition separation DRB)
  • SRB packet repetition SRB and/or packet repetition separation SRB
  • DRB Packet repetition DRB and/or packet repetition separation DRB
  • a PDCP Control PDU is defined, the PDCP Control PDU is used to transmit indication information that enables and/or disables the PDCP entity packet repetition function.
  • Figure 8 shows an example format of a PDCP Control PDU.
  • D/C 1 bit, control PDU and data PDU indication information.
  • a value of 0 indicates that the corresponding PDU is a control PDU, and a value of 1 indicates that the corresponding PDU is a data PDU.
  • PDU type 3 bits, PDU type indication information. Different values correspond to different types of control PDUs. You can predefine a value for the control PDU that enables and disables the PDCP entity packet repetition function. For example, when the PDU type value is 011, the corresponding control is performed.
  • the PDU is a control PDU that enables enabling and/or de-enabled PDCP entity packet repetition functions.
  • R 1 bit, indicating reservation, the value can be set to 0, the receiver will ignore the bit information.
  • I 1 bit or more bits (“I” can also be represented by other symbols). Setting different values means enabling or disabling the packet repetition function of the PDCP entity. For example, it takes 1 bit. When the value is "0", the packet repetition function is disabled. A value of "1" indicates that the packet repetition function is enabled, and vice versa.
  • the PDCP control PDU used to disable the PDCP packet repetition function may further include an indication identifier (also referred to as a field).
  • the indication identifier is used to indicate whether the PDCP PDU is sent through the MCG or sent through the SCG after the packet repetition function is disabled. Alternatively, when the indication identifier is defined, "I" is not defined.
  • the user equipment reconfigures the PDCP entity according to the indication identifier, so that the PDCP PDU is sent only by the CG indicated in the indication identifier or not by the CG indicated in the indication identifier or by other CGs other than the CG indicated in the indication identifier. .
  • the PDCP entity packet repetition function is enabled or disabled using one or more of the defined PDCP Control PDUs that implement other functions.
  • the PDCP control PDU including the implementation of other functions and enabling or disabling the PDCP entity packet repetition function is defined as a new PDU type.
  • the reserved bit "R" in the PDCP Control PDU for PDCP Status Reporting carries information that enables or disables the PDCP Entity Packet Repeat function.
  • the PDCP control PDU that includes the PDCP status report and enables or disables the PDCP entity packet repetition function is defined as a new PDU type.
  • the reserved bit "R" in the PDCP Control PDU for the interspersed ROHC feedback packet is used to carry information that enables or disables the PDCP entity packet repetition function.
  • the PDCP control PDU including the interspersed ROHC feedback packet and the enabling or disabling PDCP entity packet repetition function is defined as a new PDU type.
  • a MAC CE (Control Element) is defined, which is used to enable and/or disable the packet repetition function (or the packet repetition function of the PDCP entity).
  • the MAC CE that is configured to enable and/or disable the packet repetition function (or the PDCP packet repetition function) pre-defines an indication identifier, which may be recorded as an LCID.
  • the LCID is used to indicate that the corresponding MAC CE is a MAC CE that enables and/or disables the packet repetition function.
  • the MAC CE includes a DRB identifier and/or an SRB identifier that enables a packet repetition function.
  • a DRB identifier and/or an SRB identifier is included in the MAC CE, it indicates that the DRB identifier is enabled (or disabled).
  • Corresponding package repeat function On the other hand, if a certain DRB identifier and/or SRB identifier is not included in the MAC CE, it may indicate that the corresponding packet repetition function is disabled (or enabled).
  • the DRB identifier and/or the SRB identifier included in the MAC CE are indicated to the upper layer (the RRC layer or the PDCP layer), and the upper layer enables or disables the corresponding information according to the indication information.
  • the packet repetition function of DRB and/or SRB is not repeated for the DRB identifier and/or the SRB identifier corresponding to the lower layer, and the packet repetition function of the corresponding DRB and/or SRB is disabled or enabled.
  • the MAC CE includes a bitmap.
  • the bitmap length is fixed or variable.
  • Each bit in the bitmap corresponds to one SRB and/or DRB (packet repeat SRB and/or packet repeat DRB).
  • Each bit in the bitmap takes a "0" or “1" corresponding to enable or enable (or 0 means enable, 1 means disable) a packet repeat function corresponding to SRB and/or DRB.
  • the length of the bitmap may be the maximum value of the SRB and/or DRB that the system can configure or the number of SRBs and DRBs configured by the base station for the UE or the number of configured packet repetition SRBs and/or packet repetition DRBs.
  • each bit in the bitmap is corresponding to the order of the DRB after the first SRB, and each bit in the bitmap is sequentially corresponding according to the SRB and/or the DRB identifier from small to large. It may correspond to the first bit from the left of the first byte of the bitmap to the right or from the first bit to the left of the last byte of the bitmap, that is, the first bit to the left of the first byte of the bitmap corresponds to the smallest mark. The first bit of the last byte of the SRB or bitmap corresponds to the largest DRB.
  • the first bit to the right 3 bits from the left of the first byte in the bitmap are sequentially associated with SRB2 and DRB1, DRB3.
  • the bits in the bitmap are sequentially corresponding to the SRB and DRB that the system can set to support the packet repetition function. It is assumed that SRB1 and SRB2 can be configured to support packet repetition and all DRBs can be configured to support packet repetition, assuming that the number of DRBs supported by the system is n.
  • the 2+n bits correspond to SRB1, SRB2, DRB1, DRB2, ..., DRBn, respectively.
  • DRBi represents the DRB of the "i" of the DRB identifier.
  • the packet repetition SRB and the packet repetition DRB are repeated MAC CE transmissions by different enable and/or de-enable packets.
  • different LCID values are predefined for the two MAC CEs.
  • the two use the same LCID value, but use a field in the MAC CE to indicate the type of the MAC CE, and use the different values of the field to indicate that the corresponding MAC CE is the enable of the packet repeated SRB. / or to enable the packet to repeat the MAC CE or the packet to repeat the DRB corresponding enable and / or to enable the packet to repeat the MAC CE.
  • the field is “0”, it indicates that the packet repeats the SRB corresponding to the enable and/or the de-enable packet repeats the MAC CE; if the field is “1”, it indicates that the packet repeats the DRB corresponding Can and/or disable the packet to repeat the MAC CE. vice versa.
  • the MAC CE can only be sent from the MAC corresponding to the MCG or the SCG. For example, if the packet repeats the MCG SRB or the packet repeats the MCG DRB, the corresponding MAC CE is sent through the MCG; if the packet repeats the SCG SRB or the packet repeats the SCG DRB, the corresponding MAC CE is sent through the SCG.
  • the PDCP packet repetition function is enabled or disabled based on the activation/deactivation of the MAC CE.
  • the indication information is sent to the upper layer.
  • the upper layer will enable or disable the packet repeat function according to the indication information.
  • the upper layer eg, RRC
  • Functional SRB and/or DRB packet repetition function if there are less than two Cells currently in the active state (ie, only PCell is in the active state, other cells are in the deactivated state), then the upper layer (eg, RRC) is disabled to enable Configure the packet repetition function of SRB and/or DRB that supports packet repetition.
  • the indication information indicates that more than one Cell is currently active or indicates the number of Cells currently in an active state.
  • the upper layer enables the packet repetition function of the SRB and/or DRB that has been configured to support the packet repetition function according to the indication information. If the number of cells (including PCell and SCell) currently in an active state is less than two, the upper layer (for example, RRC) is sent indication information indicating that the Cell currently in the active state is two or two or indicates the current The number of cells in the active state.
  • the upper layer disables the packet repetition function of the SRB and/or DRB that has been configured to support the packet repetition function according to the indication information.
  • the MAC layer when the MAC layer receives the MAC CE for activating or deactivating the SCell, only when the activated Cell (including the PCell and the SCell) changes from one to multiple and/or from multiple to one.
  • the indication information is sent to the upper layer, and the indication information is used to indicate the number of cells currently in the active state or to enable or disable the packet repetition function of the SRB and/or the DRB.
  • the upper layer will enable or disable the packet repeat function according to the indication information.
  • the MAC layer When only one Cell is in an active state, but the MAC layer receives data from two or more logical channels corresponding to the same packet repeat SRB or packet repetition DRB, the MAC layer indicates an error to the upper layer (for example, RRC) or indicates that there is only one Cell.
  • the MAC layer In the active state or instructing the upper layer to disable the packet repetition function, or the MAC layer transmits data from the two or more logical channels through one CC, or the MAC layer transmits only data of one of the logical channels (for example, the transmission comes from
  • the logical channel identifies the data of the smaller or smallest logical channel, or constructs a MAC CE, which is used to request the base station to activate the SCell.
  • the upper layer may perform the packet repetition function or send an RRC message to the base station after receiving the indication, and the RRC message is used to request the base station to activate the SCell.
  • the UE receives the PDCP data PDU from the base station, if the PDCP data PDU is a duplicate PDU or SDU, performs an integrity check on the PDCP PDU or SDU (if supported), and if the integrity check fails, indicates the upper layer ( For example, the RRC layer) integrity check failed. After receiving the indication, the upper layer performs RRC connection reestablishment.
  • Reordering_Window Indicates the size of the reordering window. Its size is related to the number of bits occupied by the PDCP SN and is half of the PDCP SN space.
  • RX_HFN The variable is used to indicate the value of the HFN that generated the COUNT value for the PDCP PDUs received by the particular PDCP entity.
  • Next_PDCP_RX_SN The variable is used to indicate the next desired PDCP SN at the receiving end of a particular PDCP entity.
  • PSCP SN PDCP sequence number, which can be the serial number of the PDCP SDU or PDU.
  • Maximum_PDCP_SN Maximum PDCP SN number, which is related to the number of bits occupied by the SN configured for the PDCP entity.
  • COUNT consists of HFN and PDCP SN, as shown in Figure 9.
  • Received PDCP SN The SN of the received PDCP PDU.
  • FIG. 10 shows a schematic flow chart of a PDCP entity processing a received PDCP PDU.
  • the user equipment receives a PDCP PDU from a base station (or lower layer).
  • step 1002 it is judged whether the received PDCP SN (received PDCP SN) satisfies received PDCP SN-Last_Submitted_PDCP_RX_SN>Reordering_Window? If yes, go to step 1003; otherwise, go to step 1004.
  • the received PDU is decrypted and integrity checked (if supported) using COUNT and the received PDCP SN, the COUNT being based on RX_HFN-1 (PDCP SDU obtained after decryption of the PDU); if integrity If the check fails, it indicates that the upper layer (for example, RRC) integrity check failed. Optionally, the obtained PDCP SDU is deleted. If the integrity check fails, the algorithm ends; if the integrity check is successful, then returns to step 1001.
  • RX_HFN-1 PDCP SDU obtained after decryption of the PDU
  • the received PDU is decrypted and integrity checked (if supported) using COUNT and the received PDCP SN, the COUNT is based on RX_HFN (PDCP SDU is obtained after PDU decryption); if integrity check Failure indicates that the upper layer (eg, RRC) integrity check failed. Optionally, the obtained PDCP SDU is deleted. If the integrity check fails, the algorithm ends; if the integrity check is successful, then returns to step 1001.
  • RX_HFN PDCP SDU is obtained after PDU decryption
  • RRC integrity check Failure indicates that the upper layer (eg, RRC) integrity check failed.
  • the obtained PDCP SDU is deleted. If the integrity check fails, the algorithm ends; if the integrity check is successful, then returns to step 1001.
  • step 1006 it is determined whether the received PDCP SN satisfies the received PDCP SN ⁇ Next_PDCP_RX_SN? If yes, go to step 1007; otherwise, go to step 1008.
  • the received PDU is decrypted and integrity checked (if supported) with COUNT and received PDCP SN, the COUNT is based on RX_HFN+1 (PDCP SDU is obtained after decryption of the PDU);
  • the received PDU is decrypted and integrity checked (if supported) with COUNT and received PDCP SN, which is based on RX_HFN (PDCP SDU is obtained after PDU decryption).
  • step 1010 if an integrity check is supported and the integrity check is successful or does not support integrity check, then step 1010 is performed. Otherwise, step 1014 is performed.
  • RX_HFN RX_HFN+1.
  • the resulting PDCP SDU is delivered to the upper layer.
  • Last_Submitted_PDCP_RX_SN is placed as the last PDCP SN that is delivered to the upper PDCP SDU. If the variable Last_Submitted_PDCP_RX_SN is not used, this step is not performed.
  • the received PDCP data PDU is deleted and the upper layer integrity check is failed.
  • step 1006 and the step 1010 are the received PDCP SN ⁇ Next_PDCP_RX_SN is equivalent to Next_PDCP_RX_SN-received PDCP SN>Reordering_Window.
  • FIG. 11 shows a schematic structural diagram of a UE 1100 according to an embodiment of the present disclosure.
  • the UE 1100 can be used to perform the method described with reference to FIG. 4, FIG. 5 or FIG.
  • the UE 1100 includes a transceiver 1101 for external communication; a processing unit or processor 1103, which may be a single unit or a combination of a plurality of units for performing different steps of the method; the memory 1105 Computer-executable instructions are stored therein, which, when executed by the processor 1103, cause the UE 1100 to perform the following operations corresponding to the method 400: receiving, via the transceiver 1101, a base station indicating whether the corresponding signaling radio bearer SRB supports The packet repeating indication identifier and the configuration information of the SRB supporting the duplicate of the packet; and establishing a corresponding packet repetition SRB according to the received configuration information.
  • the memory 1105 also stores instructions that cause the processor 1103 to: if the packet repeat SRB has the same SRB identity as the corresponding SRB that does not support packet repetition, then receive the corresponding packet repetition from the base station SRB's SRB ID.
  • the indication identifier is the SRB identifier of the packet repetition SRB.
  • the memory 1105 can also store computer-executable instructions that, when executed by the processor 1103, cause the UE 1100 to perform the following operations corresponding to the method 500: receiving, via the transceiver 1101, a signalling wireless from the base station indicating reconfiguration Whether the bearer SRB supports the indication of packet repetition; and if the configured SRB does not support packet repetition, and the indication identifier indicates that the reconfigured SRB supports packet repetition, the UE reconfigures the configured SRB to support packet repetition. .
  • the memory 1105 also stores instructions that cause the processor 1103 to: if the configured SRB supports packet duplication, and the indication flag indicates that the reconfigured SRB does not support packet duplication, then The configured SRB is reconfigured to not support packet duplication.
  • the memory 1105 can also store computer-executable instructions that, when executed by the processor 1103, cause the UE 1100 to perform the following operations corresponding to the method 700: receiving and/or disabling from the base station via the transceiver 1101 The indication information of the packet repetition function; and enabling or disabling the packet repetition function according to the received indication information.
  • FIG. 12 shows a schematic structural diagram of a base station 1200 according to an embodiment of the present disclosure.
  • Base station 1200 can be used to perform the method described with reference to FIG.
  • base station 1200 includes a transceiver 1201 for external communication; a processing unit or processor 1203, which may be a single unit or a combination of multiple units for performing different steps of the method; memory 1205 Having stored therein computer executable instructions that, when executed by the processor 1203, cause the base station 1200 to perform the following operations corresponding to the method 600: configuring the indication information to enable and/or disable the packet repetition function; The configured indication information is sent to the user equipment UE to instruct the UE to enable or disable the packet repetition function.
  • FIG. 13 shows a flow diagram of a method 1300 performed at a user equipment UE, in accordance with an embodiment of the disclosure.
  • step S1310 the UE receives the Medium Access Control MAC Control Element CE to indicate that the Packet Radio Repeat DRB is repeatedly enabled and/or disabled.
  • the packet data convergence protocol PDCP entity transmits one PDCP protocol data unit PDU to the two radio link control RLC entities in step S1320.
  • step S1330 the PDCP entity sends the PDCP PDU to one of the two RLC entities.
  • the MAC CE includes a fixed length bitmap, each bit in the bitmap corresponds to an ascending sequence of packet repetition DRB identifiers, and a bit set to 1 in the bitmap indicates that the corresponding DRB is enabled. The packet is repeated, and the bit set to 0 in the bitmap indicates that the packet repetition of the corresponding DRB is disabled.
  • FIG. 14 shows a flow diagram of a method 1400 performed at a base station BS in accordance with an embodiment of the disclosure.
  • the BS transmits a media access control MAC Control Element CE to indicate that the user equipment UE data radio bearer DRB packet is repeatedly enabled and/or de-enabled.
  • the packet data convergence protocol PDCP entity of the UE transmits one PDCP protocol data unit PDU to two radio link control RLC entities.
  • the PDCP entity sends the PDCP PDU to one of the two RLC entities.
  • the MAC CE includes a fixed length bitmap, each bit in the bitmap corresponds to an ascending sequence of packet repetition DRB identifiers, and a bit set to 1 in the bitmap indicates that the corresponding DRB is enabled. The packet is repeated, and the bit set to 0 in the bitmap indicates that the packet repetition of the corresponding DRB is disabled.
  • FIG. 15 shows a flow diagram of a method 1500 performed at a user equipment UE, in accordance with an embodiment of the disclosure.
  • step S1510 the UE receives a Packet Data Convergence Protocol PDCP Data Protocol Data Unit PDU from the lower layer.
  • the integrity check is performed on the PDCP data PDU in step S1520. If the PDCP data PDU has not been previously received, then the method ends.
  • step S1530 the upper layer integrity check is failed. If the integrity check is successful, the method ends.
  • FIG. 16 shows a schematic structural diagram of a UE 1600 according to an embodiment of the present disclosure.
  • the UE 1600 can be used to perform the method described with reference to FIG.
  • the UE 1600 includes a receiving unit 1610 for receiving a medium access control MAC Control Element CE to indicate that the data radio bearer DRB is repeatedly enabled and/or disabled; and a transmitting unit 1620 for configuring The packet repetition and the packet repetition being enabled, the packet data convergence protocol PDCP entity transmitting a PDCP protocol data unit PDU to two radio link control RLC entities; and if the packet is configured and the packet is configured The repetition is disabled, and the PDCP entity sends the PDCP PDU to one of the two RLC entities.
  • a receiving unit 1610 for receiving a medium access control MAC Control Element CE to indicate that the data radio bearer DRB is repeatedly enabled and/or disabled
  • a transmitting unit 1620 for configuring The packet repetition and the packet repetition being enabled, the packet data convergence protocol PDCP entity transmitting a PDCP protocol data unit PDU to two radio link control RLC entities; and if the packet is configured and the packet is configured The repetition is disabled, and the PDCP entity sends the PDCP PDU
  • the MAC CE includes a fixed length bitmap, each bit in the bitmap corresponds to an ascending sequence of packet repetition DRB identifiers, and a bit set to 1 in the bitmap indicates that the corresponding DRB is enabled. The packet is repeated, and the bit set to 0 in the bitmap indicates that the packet repetition of the corresponding DRB is disabled.
  • FIG. 17 shows a schematic structural diagram of a BS 1700 according to an embodiment of the present disclosure.
  • the BS 1700 can be used to perform the method described with reference to FIG.
  • the BS 1700 includes a sending unit 1710 for transmitting a media access control MAC control element CE to indicate that the user equipment UE data radio bearer DRB is repeatedly enabled and/or disabled.
  • the packet data convergence protocol PDCP entity of the UE transmits one PDCP protocol data unit PDU to two radio link control RLC entities.
  • the PDCP entity sends the PDCP PDU to one of the two RLC entities.
  • the MAC CE includes a fixed length bitmap, each bit in the bitmap corresponds to an ascending sequence of packet repetition DRB identifiers, and a bit set to 1 in the bitmap indicates that the corresponding DRB is enabled. The packet is repeated, and the bit set to 0 in the bitmap indicates that the packet repetition of the corresponding DRB is disabled.
  • FIG. 18 shows a schematic structural diagram of a UE 1800 according to an embodiment of the present disclosure.
  • the UE 1800 can be used to perform the method described with reference to FIG.
  • the UE 1800 includes a receiving unit 1810 for receiving a packet data convergence protocol PDCP data protocol data unit PDU from a lower layer, and a checking unit 1820 for if the PDCP data PDU has been previously received, Performing an integrity check on the PDCP data PDU; and an instructing unit 1830, for indicating that the upper layer integrity check fails if the integrity check fails.
  • a receiving unit 1810 for receiving a packet data convergence protocol PDCP data protocol data unit PDU from a lower layer
  • a checking unit 1820 for if the PDCP data PDU has been previously received, Performing an integrity check on the PDCP data PDU
  • an instructing unit 1830 for indicating that the upper layer integrity check fails if the integrity check fails.
  • the present disclosure also provides at least one computer storage medium in the form of a non-volatile or volatile memory, such as an electrically erasable programmable read only memory (EEPROM), a flash memory, and a hard drive.
  • EEPROM electrically erasable programmable read only memory
  • the computer executable instructions when executed by the processor 1103, cause the UE 1100 to perform actions such as those previously described in connection with Figures 4, 5, 7, 13, and 15, or cause the base station 1200 to perform when executed by the processor 1203. For example, the actions of the process previously described in connection with Figures 6 and 14.
  • the processor may be a single CPU (Central Processing Unit), but may also include two or more processors.
  • a processor can include a general purpose microprocessor; an instruction set processor and/or a related chipset and/or a special purpose microprocessor (eg, an application specific integrated circuit (ASIC)).
  • the processor may also include onboard memory for caching purposes.
  • the computer storage medium can be flash memory, random access memory (RAM), read only memory (ROM), or EEPROM.
  • Computer executable instructions or programs running on a device in accordance with the present invention may be a program that causes a computer to implement the functions of an embodiment of the present invention by controlling a central processing unit (CPU).
  • the program or information processed by the program may be temporarily stored in a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memory system.
  • Computer-executable instructions or programs for implementing the functions of various embodiments of the present invention may be recorded on a computer readable storage medium.
  • the corresponding functions can be realized by causing a computer system to read programs recorded on the recording medium and execute the programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as a peripheral device).
  • the "computer readable storage medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium of a short-term dynamic storage program, or any other recording medium readable by a computer.
  • circuitry e.g., monolithic or multi-chip integrated circuits.
  • Circuitry designed to perform the functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • a general purpose processor may be a microprocessor or any existing processor, controller, microcontroller, or state machine.
  • the above circuit may be a digital circuit or an analog circuit.
  • One or more embodiments of the present invention may also be implemented using these new integrated circuit technologies in the context of new integrated circuit technologies that have replaced existing integrated circuits due to advances in semiconductor technology.
  • the present invention is not limited to the above embodiment. Although various examples of the embodiments have been described, the invention is not limited thereto.
  • Fixed or non-mobile electronic devices installed indoors or outdoors can be used as terminal devices or communication devices such as AV devices, kitchen devices, cleaning devices, air conditioners, office equipment, vending machines, and other home appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种在用户设备UE处执行的方法及相应的UE。该方法包括:接收媒体访问控制MAC控制元素CE,以指示数据无线承载DRB的包重复使能和/或去使能;如果配置了所述包重复且所述包重复被使能,则分组数据汇聚协议PDCP实体发送一个PDCP协议数据单元PDU到二个无线链路控制RLC实体;以及如果配置了所述包重复且所述包重复被去使能,则所述PDCP实体发送所述PDCP PDU到所述二个RLC实体中的一个RLC实体;其中,所述MAC CE包含一个固定长度的位图,所述位图中的每一个比特对应一个升序排列的包重复DRB标识;以及所述位图中设为1的比特指示使能对应的所述DRB的所述包重复,所述位图中设为0的比特指示去使能对应的所述DRB的所述包重复。本公开还提供了另一种在UE处执行的方法及相应的UE以及一种在基站处执行的方法及相应的基站。

Description

用户设备和基站处执行的方法及相应的设备 技术领域
本公开涉及无线通信技术领域,更具体地,本公开涉及在用户设备UE处执行的方法及相应的UE以及在基站处执行的方法及相应的基站。
背景技术
2016年3月,在第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN#71次全会上,NTT DOCOMO提出了一个关于5G技术标准的新的研究项目(参见非专利文献:RP-160671:New SID Proposal:Study on New Radio Access Technology),并获批准。该研究项目的目的是开发一个新的无线(New Radio:NR)接入技术以满足5G的所有应用场景、需求和部署环境。NR主要有三个应用场景:增强的移动宽带通信(Enhanced mobile broadband:eMBB)、大规模机器类通信(massive Machine type communication:mMTC)和超可靠低延迟通信(Ultra reliable and low latency communications:URLLC)。
在2016年10月召开的3GPP RAN2#96次会议上达成为满足URLLC对可靠性的要求,对多连接(包括双连接)进行研究。所述多连接可以采用包重复(也称为分组重复)或连路选择等机制。在2017年1月召开的3GPP NR AdHoc会议上达成在NR-PDCP实体中支持用户面和数据面的包重复功能,发送端PDCP实体功能支持包重复,且接收端PDCP实体功能支持删除重复包。在2017年2月召开的3GPP RAN2#97次会议上达成在上行和下行均支持:在载波聚合中,包重复采用分组数据汇聚协议(PDCP)协议数据单(PDU)和/或服务数据单元(SDU)在多个逻辑信道上发送并使得重复的PDCP PDU通过不同的载波发送。
期望解决在支持包重复的多连接场景和载波聚合场景下的包重复承载所涉及的相关问题,包括信令无线承载SRB的配置和重配置、使能和去使能PDCP实体的包重复功能以及UE接收到来自包重复SRB的重复PDCP PDU如何处理的问题。
发明内容
根据本公开的第一方面,提供了一种在UE处执行的方法。该方法包括:接收媒体访问控制MAC控制元素CE,以指示数据无线承载DRB的包重复使能和/或去使能;如果配置了所述包重复且所述包重复被使能,则分组数据汇聚协议PDCP实体发送一个PDCP协议数据单元PDU到二个无线链路控制RLC实体;以及如果配置了所述包重复且所述包重复被去使能,则所述PDCP实体发送所述PDCP PDU到所述二个RLC实体中的一个RLC实体。所述MAC CE包含一个固定长度的位图,所述位图中的每一个比特对应一个升序排列的包重复DRB标识。所述位图中设为1的比特指示使能对应的所述DRB的所述包重复,所述位图中设为0的比特指示去使能对应的所述DRB的所述包重复。
根据本公开的第二方面,提供了一种UE,包括:接收单元,用于接收媒体访问控制MAC控制元素CE,以指示数据无线承载DRB的包重复使能和/或去使能;以及发送单元,用于如果配置了所述包重复且所述包重复被使能,则分组数据汇聚协议PDCP实体发送一个PDCP协议数据单元PDU到二个无线链路控制RLC实体;以及如果配置了所述包重复且所述包重复被去使能,则所述PDCP实体发送所述PDCP PDU到所述二个RLC实体中的一个RLC实体。所述MAC CE包含一个固定长度的位图,所述位图中的每一个比特对应一个升序排列的包重复DRB标识。所述位图中设为1的比特指示使能对应的所述DRB的所述包重复,所述位图中设为0的比特指示去使能对应的所述DRB的所述包重复
根据本公开的第三方面,提供了一种在基站处执行的方法。该方法包括:发送媒体访问控制MAC控制元素CE,以指示用户设备UE数据无线承载DRB的包重复使能和/或去使能。如果配置了所述包重复且所述包重复被使能,则所述UE的分组数据汇聚协议PDCP实体发送一个PDCP协议数据单元PDU到二个无线链路控制RLC实体。如果配置了所述包重复且所述包重复被去使能,则所述PDCP实体发送所述PDCP PDU到所述二个RLC实体中的一个RLC实体。所述MAC CE包含一个固定长度的位图,所述位图中的每一个比特对应一个升序排列的包重复DRB标识。所述位图中设为1的比特指示使能对应的所述DRB的所述 包重复,所述位图中设为0的比特指示去使能对应的所述DRB的所述包重复。
根据本公开的第四方面,提供了一种基站BS,包括:发送单元,用于发送媒体访问控制MAC控制元素CE,以指示用户设备UE数据无线承载DRB的包重复使能和/或去使能。如果配置了所述包重复且所述包重复被使能,则所述UE的分组数据汇聚协议PDCP实体发送一个PDCP协议数据单元PDU到二个无线链路控制RLC实体;以及如果配置了所述包重复且所述包重复被去使能,则所述PDCP实体发送所述PDCP PDU到所述二个RLC实体中的一个RLC实体。所述MAC CE包含一个固定长度的位图,所述位图中的每一个比特对应一个升序排列的包重复DRB标识。所述位图中设为1的比特指示使能对应的所述DRB的所述包重复,所述位图中设为0的比特指示去使能对应的所述DRB的所述包重复。
根据本公开的第五方面,提供了一种在用户设备UE处执行的方法,包括:接收来自下层的分组数据汇聚协议PDCP数据协议数据单元PDU;如果所述PDCP数据PDU之前已经被接收过,则对所述PDCP数据PDU进行完整性校验;以及如果所述完整性校验失败,则指示上层完整性校验失败。
根据本公开的第六方面,提供了一种用户设备UE,包括:接收单元,用于接收来自下层的分组数据汇聚协议PDCP数据协议数据单元PDU;校验单元,用于如果所述PDCP数据PDU之前已经被接收过,则对所述PDCP数据PDU进行完整性校验;以及指示单元,用于如果所述完整性校验失败,则指示上层完整性校验失败。
附图说明
通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:
图1示出了包重复MCG分离DRB数据传输的示意图;
图2示出了包重复SCG分离DRB数据传输的示意图;
图3示出了用户设备UE中协议架构的示意图;
图4示出了根据本公开实施例的用户设备UE中的方法400的流程图;
图5示出了根据本公开实施例的用户设备UE中的方法500的流程图;
图6示出了根据本公开实施例的基站中的方法600的流程图;
图7示出了根据本公开实施例的用户设备UE中的方法700的流程图;
图8示出了PDCP控制PDU的示意图;
图9示出了COUNT的示意图;
图10示出了PDCP实体处理接收到的PDCP PDU的示意流程图。
图11示出了根据本公开实施例的UE 1100的结构示意图;
图12示出了根据本公开实施例的基站1200的结构示意图;
图13示出了根据本公开实施例的在用户设备UE处执行的方法1300的流程图;
图14示出了根据本公开实施例的在基站BS处执行的方法1400的流程图;
图15示出了根据本公开实施例的在用户设备UE处执行的方法1500的流程图;
图16示出了根据本公开实施例的UE 1600的结构示意图;
图17示出了根据本公开实施例的BS 1700的结构示意;以及
图18示出了根据本公开实施例的UE 1800的结构示意图。
具体实施方式
下面结合附图和具体实施方式对本公开进行详细阐述。应当注意,本公开不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本公开没有直接关联的公知技术的详细描述,以防止对本公开的理解造成混淆。
下面描述本公开涉及的部分术语,如未特别说明,本公开涉及的术语采用此处定义。本公开给出的术语在NR、LTE和eLTE中可能采用不同的命名方式,但本公开中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
RRC:Radio Resource Control,无线资源控制。
PDCP:Packet Data Convergence Protocol,分组数据汇聚协议。在本公开中,如未特别说明,PDCP可以表示NR或LTE或eLTE中的PDCP。
RLC:Radio Link Control,无线链路控制。在本公开中,如未特别说 明,RLC可以表示NR或LTE或eLTE中的RLC。
MAC:Medium Access Control,媒体访问控制。在本公开中,如未特别说明,MAC可以表示NR或LTE或eLTE中的MAC。
DTCH:Dedicated Traffic Channel,专用业务信道。
CCCH:Common Control Channel,公共控制信道。
DCCH:Dedicated Control Channel,专用控制信道。
PDU:Protocol Data Unit,协议数据单元。
SDU:Service Data Unit,服务数据单元。
在本公开中,将从上层接收或发往上层的数据称为SDU,将发往下层或从下层接收的数据称为PDU。例如,PDCP实体从上层接收的数据或发往上层的数据称为PDCP SDU;PDCP实体从RLC实体接收到的数据或发往RLC实体的数据称为PDCP PDU(也就是RLC SDU)。
主基站:Master eNB,记为MeNB(对应E-UTRAN或LTE或eLTE的基站)或MgNB(对应5G-RAN或NR的基站)。在多连接中,至少终止于处理UE与核心网间交互的控制节点移动管理实体(记为S1-MME)的基站。本公开中主基站均记为MeNB,需要说明的是,所有适用于MeNB的方案或定义也适用于MgNB。
辅基站:Secondary eNB,记为SeNB(对应E-UTRAN或LTE或eLTE的基站)或SgNB(对应5G-RAN或NR的基站)。在多连接中,不作为MeNB,为UE提供额外的无线资源的基站。本公开中辅基站均记为SeNB,需要说明的是,所有适用于SeNB的方案或定义也适用于SgNB。
主小区:Primary Cell,PCell。工作在主频率上的小区,UE在其上执行初始连接建立过程或发起连接重建过程或在切换过程中被指定为主小区的小区。
主辅小区:Primary Secondary Cell,PSCell。在执行改变SCG的过程中指示UE用于执行随机接入的SCG小区。
辅小区:Secondary Cell,SCell。工作在辅频率上的小区,所述小区可在RRC连接建立之后配置且可用于提供额外的无线资源。
小区组:Cell Group,CG,在多连接中,关联到主基站或辅基站的一组服务小区或载波。需要说明的是,本公开所述的小区也可以称为光束集(a set of beam)。
主小区组:Master Cell Group,MCG。对于未配置多连接的UE,MCG由所有的服务小区组成;对于配置了多连接的UE,MCG由服务小区的子集组成(即关联到MeNB或MgNB的一组服务小区),其中包含PCell和0个或1个或多个SCell。
辅小区组:Secondary Cell Group,SCG。在多连接中,与SeNB或SgNB关联的一组服务小区。SCG可以包含一个PSCell,还可以包含一个或多个SCell
多连接:处于RRC连接态下UE的操作模式,配置了多个小区组,所述多个小区组包括一个MCG,一个或多个SCG(即UE连接到多个基站)。如果只配置了一个MCG(或MeNB或MgNB)和一个SCG(或SeNB或SgNB),则称为双连接。即处于连接态的具有多个接收机和/或发送机的UE被配置为使用由多个不同的调度器提供的EUTRAN和/或5G-RAN无线资源,所述调度器可以通过非理想回程(non-ideal backhaul)或理想回程(ideal backhaul)连接。本公开所述的多连接包括双连接。多连接数据传输方式包括但不限于:数据重复,连路选择。
DRB:Data Radio Bearer carrying user plane data,承载用户面数据的数据无线承载或简称数据承载。
SRB:Signalling Radio Bearer,信令无线承载。所述承载可以用于传输RRC消息和NAS消息或仅用于传输RRC消息和NAS消息。SRB可以包括SRB0、SRB1、SRB1bis和SRB2。其中,SRB0用于采用CCCH逻辑信道的RRC消息;SRB1用于采用DCCH逻辑信道的RRC消息,所述RRC消息中可能包含NAS消息,SRB1还用于在SRB2建立之前传输NAS消息。SRB1bis用于安全激活前采用DCCH逻辑信道的RRC消息和NAS消息,所述RRC消息中可能包含NAS消息。SRB2用于采用DCCH逻辑信道的RRC消息和NAS消息,所述RRC消息包括记录的测量信息(或称测量日志)。
本公开中的所述承载可以是DRB,也可以是SRB。
分离DRB:在多连接中,无线协议位于MeNB(或MgNB)和SeNB(或SgNB)且同时利用MeNB(或MgNB)和SeNB(或SgNB)资源的承载。如果分离DRB的PDCP实体位于主基站(即数据先到达主基站,由主基站转发给辅基站,实现数据在主基站中分离),则称为MCG分离DRB; 如果分离DRB的PDCP实体位于辅基站(即数据先到达辅基站,由辅基站转发给主基站,实现数据在辅基站中分离),则称为SCG分离DRB。如未特别说明,本公开中所述分离DRB可以是MCG分离DRB,也可以是SCG分离DRB。
分离SRB:在多连接中,无线协议位于MeNB(或MgNB)和SeNB(或SgNB)且同时利用MeNB(或MgNB)和SeNB(或SgNB)资源的承载。如果分离SRB的PDCP实体和/或RRC位于主基站(即信令,也可称为数据,由主基站转发给辅基站,实现信令在主基站中分离),则称为MCG分离SRB;如果分离SRB的PDCP实体和/或RRC位于辅基站(即信令,也可称为数据,由辅基站转发给主基站,实现信令在辅基站中分离),则称为SCG分离SRB。如未特别说明,本公开中所述分离SRB可以是MCG分离SRB,也可以是SCG分离SRB。
在本公开中,所述分离承载可以是分离SRB或分离DRB。MCG分离承载可以是MCG分离SRB或MCG分离DRB。SCG分离承载可以是SCG分离SRB或SCG分离DRB。
包重复:也可称为数据重复(如未特别说明,本公开中所述数据可以是控制面信令或用户面数据,分别对应SRB的信令和DRB的数据)。在多连接方式下,同一数据(或称为包或者分组,即PDCP PDU或PDCP SDU)在多个CG的服务小区进行传输,即同一数据同时利用主基站(或MCG)和辅基站(或SCG)提供的资源传输或同一数据分别发送到位于MCG或SCG的下层(或RLC层)或PDCP实体将同一PDCP PDU发送到关联的多个下层实体(或RLC实体)或相同的数据在多个不同的承载(上发送。在载波聚合或单连接方式下,PDCP实体将重复的或同一PDCP PDU发送到多个RLC实体(或称下层实体)和/或逻辑信道,由MAC实体通过不同的载波(或服务小区)发送给接收端;接收端PDCP实体负责检测并删除重复的PDCP PDU或SDU。
包重复承载:在载波聚合或单连接方式下,支持包重复的承载,包括包重复SRB和包重复DRB。所述承载的一个PDCP实体关联到一个或多个RLC实体、多个逻辑信道以及一个或多个MAC实体且发送端PDCP实体将重复的或同一PDCP PDU发送到所述一个或多个RLC实体(或下层实体)和/或多个逻辑信道,由MAC实体通过不同的载波(或服务小区)发送给 接收端;接收端PDCP实体将来自下层实体的重复的PDCP PDU或SDU移除。
包重复分离承载:在多连接方式下,支持包重复的分离承载。在所述发送方式中,同一数据在分离承载的多个无线协议上发送,包括包重复MCG分离SRB、包重复SCG分离SRB、包重复MCG分离DRB和包重复SCG分离DRB。如果是包重复MCG分离承载,则由位于主基站或MCG的PDCP实体负责包重复和/或重复包移除;如果是包重复SCG分离承载,则由位于辅基站或SCG的PDCP实体负责包重复和/或重复包移除。
pdcp-Config信元:包含DRB的可配置的PDCP参数。
rlc-Config信元:包含SRB和DRB对应的RLC实体的配置信息。
logicalChannelIdentity信元:逻辑信道标识。
logicalChannelConfig信元:包含用于配置逻辑信道的参数。
logicalChannelGroup信元:逻辑信道群标识,用于将逻辑信道映射到用于BSR上报的逻辑信道群。
图1示出了基站与用户设备UE之间进行下行包重复MCG分离DRB传输的示意图。应理解,对于基站与UE之间进行上行包重复MCG分离DRB传输可以采用同样的协议架构,只是数据从UE发送到基站,即,将图1中的箭头反向即可。如图1所示,数据(例如分组数据汇聚协议协议数据单元(PDCP PDU))在分离DRB的多个无线协议(对应于与同一PDCP实体相关联的多个RLC实体)上发送,利用MeNB和SeNB资源。在PDCP PDU数据重复多连接方式下,每个PDCP PDU经过多个RLC实体发送给接收方。MeNB和SeNB间的接口可以记为Xn或Xx或X2。根据MeNB和SeNB的不同类型,所述接口可以采用不同命名。例如,如果MeNB为LTE eNB,SeNB为gNB,则所述接口记为Xx;如果MeNB为gNB,SeNB为eLTE eNB,则所述接口记为Xn。相应的,包重复MCG分离SRB采用相似的协议架构,不同之处在于将数据发送给PDCP实体的上层实体是RRC,PDCP实体在接收到来自下层实体的数据后发送给上层的RRC实体。
图2示出了基站与用户设备UE之间进行下行包重复SCG分离DRB传输的示意图。应理解,对于基站与UE之间进行上行包重复SCG分离DRB传输可以采用同样的协议架构,只是数据从UE发送到基站,即,将图2中的箭头反向即可。如图2所示,数据(例如分组数据汇聚协议协议数据 单元(PDCP PDU))在分离DRB的多个无线协议(对应于与同一PDCP实体相关联的多个RLC实体)上发送,利用MeNB和SeNB资源。在PDCP PDU数据重复多连接方式下,每个PDCP PDU经过多个RLC实体发送给接收方。MeNB和SeNB间的接口可以记为Xn或Xx或X2。根据MeNB和SeNB的不同类型,所述接口可以采用不同命名。例如,如果MeNB为LTE eNB,SeNB为gNB,则所述接口记为Xx;如果MeNB为gNB,SeNB为eLTE eNB,则所述接口记为Xn。相应的,包重复SCG分离SRB采用相似的协议架构,不同之处在于将数据发送给PDCP实体的上层实体是RRC,PDCP实体在接收到来自下层实体的数据后发送给上层的RRC实体。
本公开部分实施例以数据包PDCP PDU或SDU重复发送两次为例(即一个PDCP实体关联两个RLC实体和/或两个逻辑信道),但本公开所述的技术方案并不限于数据包PDCP PDU或SDU重复发送两次的场景,本领域技术人员可以容易地扩展到重复发送多次场景(即一个PDCP实体关联多个RLC实体和/或多个逻辑信道)。
图3给出了载波聚合场景下用户设备UE中协议架构示意图。在图3(a)所示示意图中,一个DRB的PDCP实体关联到两个RLC实体和两个逻辑信道、一个MAC实体。在图3(b)所示示意图中,一个DRB的PDCP实体关联到两个RLC实体和两个逻辑信道、两个MAC实体。在图3(c)所示示意图中,一个SRB的RRC实体和PDCP实体关联到两个RLC实体和两个逻辑信道、一个MAC实体。在图3(d)所示示意图中,一个SRB的RRC实体和PDCP实体关联到两个RLC实体和两个逻辑信道、两个MAC实体。
如未特别说明,本公开中所述使能包重复功能(也可称PDCP包重复功能或承载包重复功能)也可以表述为配置PDCP实体将同一PDCP PDU发送到所关联的多个下层实体或RLC实体。如果是包重复MCG分离SRB或包重复SCG分离SRB,则使能包重复功能使得同一PDCP PDU通过MCG和SCG发送。去使能包重复功能也可以表述为配置PDCP实体将同一PDCP PDU发送到所关联的多个下层实体(或RLC实体)中的一个或所有PDCP PDU仅通过多个下层实体中的一个发送。例如,当接收到来自上层或MAC层或下层等的去使能PDCP的包重复功能的指令时,将PDCP PDU仅通过预定义的逻辑信道标识的逻辑信道关联的RLC实体发送或通过逻辑信道标识较小或最小或较大或最大的逻辑信道关联的RLC实体发送。 如果是包重复MCG分离SRB,则去使能PDCP包重复功能使得PDCP PDU仅通过MCG或SCG发送或去使能PDCP包重复功能使得PDCP PDU仅通过MCG发送或去使能PDCP包重复功能使得PDCP PDU仅通过SCG发送;如果是包重复SCG分离SRB,则去使能包重复功能使得PDCP PDU仅通过SCG或MCG发送或去使能PDCP包重复功能使得PDCP PDU仅通过MCG发送或去使能PDCP包重复功能使得PDCP PDU仅通过SCG发送。
图4示出了根据本公开实施例的用户设备UE中的方法400的流程图。方法400用于建立包重复SRB。
如图所示,在步骤S410,UE从基站接收指示对应的信令无线承载SRB是否支持包重复的指示标识和支持包重复的SRB的配置信息。
在一个实现方式中,如果包重复SRB与对应的不支持包重复的SRB具有相同的SRB标识(记为srb-Identity),那么方法400还包括:从基站接收对应的包重复SRB的SRB标识(未示出)。
在另一个实现方式中,如果包重复SRB与对应的不支持包重复的SRB具有不同的SRB标识,那么所述指示标识就是包重复SRB的SRB标识。换句话说,由于包重复SRB与对应的不支持包重复的SRB具有不同的SRB标识,所以UE接收到SRB标识就可以确定对应的SRB是否支持包重复。
在步骤S420,UE根据接收到的配置信息建立对应的包重复SRB。
下面描述载波聚合CA场景下,用户设备建立包重复SRB的实施例, 所述实施例也适用于建立包重复分离SRB。
实施例一
包重复SRB与对应的不支持包重复的SRB(所述SRB与包重复SRB传输相同的数据,实现同样的QoS/功能,其区别在于一个支持包重复功能,另一个不支持)采用相同的SRB标识,则为包重复SRB预定义两个逻辑信道标识,其中一个逻辑信道的标识与不支持包重复的SRB相同。例如,支持包重复的SRB1和不支持包重复的SRB1均命名为SRB1。此时,在RRC信令中用一个指示标识来指示建立包重复SRB还是不支持包重复的SRB。具体地,
步骤1:用户设备接收到来自基站的RRC信令(例如,RRC连接重配 置消息),所述RRC信令中可以包含一个指示标识,所述指示标识用于指示对应的SRB是包重复SRB或支持包重复的SRB或对应的PDCP实体支持PDCP PDU重复发送两次或多次或对应的PDCP实体支持包重复功能。例如,当所述指示标识取值为“1”或“TRUE”或“Setup”或所述标识出现时,表示对应的SRB是包重复SRB或支持包重复功能的SRB或SRB对应的PDCP实体支持每个PDCP PDU重复发送两次或多次或对应的PDCP实体支持包重复功能;当所述标识取值为“0”或“FALSE”或“Release”或所述标识不出现时,表示对应的SRB不是包重复SRB或是不支持包重复功能的SRB或对应的PDCP实体不重复发送PDCP PDU或对应的PDCP实体不支持包重复功能或对应的PDCP实体将PDCP PDU发送到关联的多个下层实体(或RLC实体)中的某一个。所述RRC信令中还包含支持包重复的SRB的配置信息。
步骤2:用户设备根据接收到的RRC信令中包含的包重复SRB配置信息建立对应的包重复SRB。具体可以包括以下操作(操作顺序可调换):
-可选的,应用对应包重复SRB的预定义配置。如果是包重复分离SRB,则分别采用MeNB或MCG和SeNB或SCG中的预定义配置。
-建立PDCP实体,如果所述PDCP实体需要进行安全配置,则对所述PDCP实体按照MCG的安全配置进行配置。如果是在SCG中建立PDCP实体或包重复SCG SRB或包重复SCG分离SRB,则按照SCG的安全配置配置PDCP实体。可选的,还包含配置PDCP实体使能包重复功能;或者,配置PDCP实体去使能包重复功能。
-根据RRC信令中包含的rlc-Config建立一个或两个RLC实体,所述两个RLC实体可以采用相同或不同的配置。如果采用不同的配置,则RRC信令中对应的包重复SRB包含两个rlc-Config信元。
-根据RRC信令中包含的logicalChannelConfig建立两个DCCH逻辑信道,将所述逻辑信道的逻辑信道标识分别设置为对应包重复SRB的两个预定义的值。如果是包重复分离SRB,则分别采用MeNB或MCG和SeNB或SCG中的预定义配置。
实施例二
包重复SRB与对应的不支持包重复的SRB(所述SRB与包重复SRB传 输相同的数据,实现同样的QoS/功能,其区别在于一个支持包重复功能,另一个不支持)采用相同的SRB标识(srb-Identity),包重复SRB的一个逻辑信道的标识为对应不支持包重复SRB的预定义的逻辑信道标识(记为LCH_ID),另一个逻辑信道标识为预定义的逻辑信道标识加上一个偏移(记为offset)得到的值。优选的,所述偏移为最大可配置的逻辑信道标识,记为MAX_LCH_ID。具体地,
步骤1:用户设备接收到来自基站的RRC信令(例如,RRC连接重配置消息),所述RRC信令中可以包含一个指示标识,所述指示标识用于指示对应的SRB是包重复SRB或支持包重复的SRB或对应的PDCP实体支持PDCP PDU重复发送两次或多次或对应的PDCP实体支持包重复功能。。例如,当所述指示标识取值为“1”或“TRUE”或“Setup”或所述标识出现时,表示对应的SRB是包重复SRB或支持包重复功能的SRB或SRB对应的PDCP实体支持每个PDCP PDU重复发送两次或多次或对应的PDCP实体支持包重复功能;当所述标识取值为“0”或“FALSE”或“Release”或所述标识不出现时,表示对应的SRB不是包重复SRB或不支持包重复功能的SRB或对应的PDCP实体不支持重复发送PDCP PDU或对应的PDCP实体不支持包重复功能。所述RRC信令中还包含支持包重复的SRB的配置信息。
步骤2:用户设备根据接收到的RRC信令中包含的包重复SRB配置信息建立对应的包重复SRB。具体可以包括以下操作(操作顺序可调换):
-可选的,应用对应包重复SRB的预定义配置。
-建立PDCP实体,如果所述PDCP实体需要进行安全配置,则对所述PDCP实体按照MCG的安全配置进行配置。如果是在SCG中建立PDCP实体或包重复SCG SRB或包重复SCG分离SRB,则按照SCG的安全配置配置PDCP实体。可选的,还包含配置PDCP实体使能包重复功能;或者,配置PDCP实体去使能包重复功能。
-根据RRC信令中包含的rlc-Config建立一个或两个RLC实体,所述两个RLC实体可以采用相同或不同的配置。如果采用不同的配置,则RRC信令中对应的包重复SRB包含两个rlc-Config信元。
-根据RRC信令中包含的logicalChannelConfig建立两个DCCH逻辑信道。将其中一个逻辑信道的逻辑信道标识设置为预定义的值LCH_ID,另一个逻辑信道的逻辑信道标识设置为LCH_ID+offset。 优选地,另一个逻辑信道的逻辑信道标识为LCH_ID+MAX_LCH_ID。如果还需要建立第3个逻辑信道,则对应的逻辑信道的标识可以设置为LCH+2(offset),依次类推。即,其它逻辑信道的逻辑信道标识为LCH_ID加上偏移的若干倍。
实施例三
包重复SRB与对应的不支持包重复的SRB(所述SRB与包重复SRB传输相同的数据,实现同样的QoS/功能,其区别在于一个支持包重复功能,另一个不支持)采用相同的SRB标识(srb-Identity),包重复SRB的一个逻辑信道标识为对应不支持包重复SRB的预定义的逻辑信道标识(记为LCH_ID),另一个逻辑信道标识包含在用于配置包重复SRB的RRC信令中。
步骤1:用户设备接收到来自基站的RRC信令(例如,RRC连接重配置消息),所述RRC信令中可以包含一个指示标识,所述指示标识用于指示对应的SRB是包重复SRB或支持包重复的SRB或对应的PDCP实体支持PDCP PDU重复发送两次或多次或对应的PDCP实体支持包重复功能。例如,当所述指示标识取值为“1”或“TRUE”或“Setup”或所述标识出现时,表示对应的SRB是包重复SRB或支持包重复功能的SRB或SRB对应的PDCP实体支持每个PDCP PDU重复发送两次或多次或对应的PDCP实体支持包重复功能;当所述标识取值为“0”或“FALSE”或“Release”或所述标识不出现时,表示对应的SRB不是包重复SRB或不支持包重复功能的SRB或对应的PDCP实体不支持重复发送PDCP PDU或对应的PDCP实体不支持包重复功能。所述RRC信令中还包含支持包重复的SRB的配置信息。
步骤2:用户设备根据接收到的RRC信令中包含的包重复SRB配置信息建立对应的包重复SRB。具体可以包括以下操作(操作顺序可调换):
-可选的,应用对应包重复SRB的预定义配置。
-建立PDCP实体,如果所述PDCP实体需要进行安全配置,则对所述PDCP实体按照MCG的安全配置进行配置。如果是在SCG中建立PDCP实体或包重复SCG SRB或包重复SCG分离SRB,则按照SCG的安全配置配置PDCP实体。可选的,还包含配置PDCP实体使能包重复功能;或者,配置PDCP实体去使能包重复功能。
-根据RRC信令中包含的rlc-Config建立一个或两个RLC实体,所述两个RLC实体可以采用相同或不同的配置。如果采用不同的配置,则RRC信令中对应的包重复SRB包含两个rlc-Config信元。
-根据RRC信令中包含的logicalChannelConfig建立两个DCCH逻辑信道,将其中一个逻辑信道的逻辑信道标识设置为预定义的值,另一个逻辑信道的逻辑信道标识设置为RRC信令中携带的对应值。
实施例四
包重复SRB与对应的不支持包重复的SRB(所述SRB与包重复SRB传输相同的数据,实现同样的QoS/功能,其区别在于一个支持包重复功能,另一个不支持)采用不同的SRB标识(srb-Identity),所述SRB标识是预定义的,用户根据所述SRB标识可以确定建立包重复SRB。为所述SRB标识对应的包重复SRB预定义两个逻辑信道标识,所述两个逻辑信道标识可以不同于不支持包重复的SRB的逻辑信道标识或者其中一个逻辑信道的标识与不支持包重复的SRB的逻辑信道标识相同(此时,可以为包重复SRB预定义一个逻辑信道标识,另一个逻辑信道标识采用与对应的不支持包重复SRB的预定义逻辑信道标识)。具体地,
步骤1:用户设备接收到来自基站的RRC信令(例如,RRC连接重配置消息),所述RRC信令中包含要建立的包重复SRB的标识,还包含支持包重复的SRB的配置信息。
步骤2:用户设备根据接收到的RRC信令中包含的包重复SRB的标识和对应的配置信息建立对应的包重复SRB。具体可以包括以下操作(操作顺序可调换):
-可选的,应用SRB标识对应的包重复SRB的预定义配置。
-建立PDCP实体,如果所述PDCP实体需要进行安全配置,则对所述PDCP实体按照MCG的安全配置进行配置。如果是在SCG中建立PDCP实体或包重复SCG SRB或包重复SCG分离SRB,则按照SCG的安全配置配置PDCP实体。可选的,还包含配置PDCP实体使能包重复功能;或者,配置PDCP实体去使能包重复功能。
-根据RRC信令中包含的rlc-Config建立一个或两个RLC实体,所述两个RLC实体可以采用相同或不同的配置。如果采用不同的配置, 则RRC信令中对应的包重复SRB包含两个rlc-Config信元。
-根据RRC信令中包含的logicalChannelConfig建立两个DCCH逻辑信道,将所述逻辑信道的逻辑信道标识分别设置为对应包重复SRB的两个预定义的值。
实施例五
包重复SRB与对应的不支持包重复的SRB(所述SRB与包重复SRB传输相同的数据,实现同样的QoS/功能,其区别在于一个支持包重复功能,另一个不支持)采用不同的SRB标识(srb-Identity),所述SRB标识是预定义的,用户根据所述SRB标识可以确定建立包重复SRB。为所述SRB标识对应的包重复SRB预定义一个逻辑信道标识(记为LCH_ID),所述逻辑信道标识不同于对应不支持包重复SRB的预定义的逻辑信道标识或者所述逻辑信道标识与对应不支持包重复SRB的预定义的逻辑信道标识相同。另一个逻辑信道标识为预定义的逻辑信道标识加上一个偏移(记为offset)得到的值。优选的,所述偏移为最大可配置的逻辑信道标识,记为MAX_LCH_ID。具体地,
步骤1:用户设备接收到来自基站的RRC信令(例如,RRC连接重配置消息),所述RRC信令中包含要建立的包重复SRB的标识,还包含支持包重复的SRB的配置信息。
步骤2:用户设备根据接收到的RRC信令中包含的包重复SRB的标识和包重复SRB配置信息建立对应的包重复SRB。具体可以包括以下操作(操作顺序可调换):
-可选的,应用SRB标识对应的包重复SRB的预定义配置。
-建立PDCP实体,如果所述PDCP实体需要进行安全配置,则对所述PDCP实体按照MCG的安全配置进行配置。如果是在SCG中建立PDCP实体或包重复SCG SRB或包重复SCG分离SRB,则按照SCG的安全配置配置PDCP实体。可选的,还包含配置PDCP实体使能包重复功能;或者,配置PDCP实体去使能包重复功能。
-根据RRC信令中包含的rlc-Config建立一个或两个RLC实体,所述两个RLC实体可以采用相同或不同的配置。如果采用不同的配置,则RRC信令中对应的包重复SRB包含两个rlc-Config信元。
-根据RRC信令中包含的logicalChannelConfig建立两个DCCH逻辑信道。将其中一个逻辑信道的逻辑信道标识设置为预定义的值LCH_ID,另一个逻辑信道的逻辑信道标识设置为LCH_ID+offset。优选地,另一个逻辑信道的逻辑信道标识为LCH_ID+MAX_LCH_ID。如果还需要建立第3个逻辑信道,则对应的逻辑信道的标识可以设置为LCH+2(offset),依次类推。即,其它逻辑信道的逻辑信道标识为LCH_ID加上偏移的若干倍。
图5示出了根据本公开实施例的用户设备UE中的方法500的流程图。方法500用于对SRB是否支持包重复进行重配置。
如图所示,在步骤S510,UE从基站接收指示重配置后的信令无线承载SRB是否支持包重复的指示标识。
在步骤S520,如果已配置的SRB不支持包重复,并且所述指示标识指示重配置后的SRB支持包重复,则UE将该已配置的SRB重配置为支持包重复。
在一个实现方式中,方法500还包括:如果已配置的SRB支持包重复,并且所述指示标识指示重配置后的SRB不支持包重复,则UE将该已配置的SRB重配置为不支持包重复(未示出)。
下面描述载波聚合CA场景下,用户设备重配置包重复SRB的实施例。
实施例一
本实施例中,包重复SRB和对应的不支持包重复的SRB采用相同的SRB标识(所述SRB与包重复SRB传输相同的数据,实现同样的QoS/功能,其区别在于一个支持包重复功能,另一个不支持)。
具体地,步骤1、用户设备接收到来自基站的RRC消息,所述消息可以为RRC重配置消息,所述RRC重配置消息可以是用于切换(RRC消息中包含指示切换的信元mobilityControlInfo)或非切换(RRC消息中不包含指示切换的信元mobilityControlInfo)场景。所述RRC消息中包含一个指示标识(记为fullConfig),所述指示标识用于指示将全配置(full configuration)应用于所述RRC重配置消息。所述RRC消息中还包含需要重配置的SRB标识,例如需要重配置的SRB的标识包含在信元srb-ToAddModList中。还 可以为所述需要重配置的SRB关联一个指示标志,所述指示标识用于指示重配置后的SRB是一个包重复SRB或对应的PDCP实体支持PDCP PDU重复发送两次或多次或对应的PDCP实体支持包重复功能,即,用户设备将SRB标识对应的已配置的SRB(也可称为已存在的或当前SRB,是UE接收到RRC消息前已经配置的SRB)重配置为一个包重复SRB。所述已配置的SRB可以是包重复SRB,也可以是不支持包重复的SRB。例如,当所述指示标识取值为“1”或“TRUE”或“Setup”或所述标识出现时,表示对应的SRB是包重复SRB或支持包重复功能的SRB或SRB对应的PDCP实体支持每个PDCP PDU重复发送两次或多次或PDCP支持包重复功能;当所述标识取值为“0”或“FALSE”或“Release”或所述标识不出现时,表示对应的SRB不是包重复SRB或不支持包重复功能的SRB或对应的PDCP实体不支持包重复功能。
步骤2、对于包含在RRC消息中的SRB标识对应的SRB,如果已配置的SRB是不支持包重复的SRB,即,将一个不支持包重复的SRB重配置为支持包重复的SRB,则进行以下操作(操作顺序可变更):
-将预定义配置应用到包重复SRB(可选)。
-配置PDCP实体使能或去使能包重复功能(可选)。
-为所述SRB标识对应的包重复SRB建立一个新的RLC实体和DCCH逻辑信道。可以将所述逻辑信道的逻辑信道标识设置为以下之一(即所述新建立的逻辑信道的逻辑信道标识的设定与建立包重复SRB实施例中给出的设置逻辑信道标识方法相同):所述SRB标识对应的另一个预定义的值、所述SRB标识对应的预定义的值加上一个偏移、RRC消息中携带的所述SRB标识对应的逻辑信道标识。
-将SRB标识对应的逻辑信道缺省(default)配置或默认配置应用于对应的SRB。可以将相同或不同的逻辑信道缺省配置应用于两个逻辑信道。也可以一个逻辑信道采用缺省配置,另一个逻辑信信道采用RRC消息中携带的logicalChannelConfig配置信息。
对于包含在RRC消息中的SRB标识对应的SRB,如果已配置的SRB是包重复SRB且RRC信令中不包含指示所述SRB为重复SRB的指示标识,即,将一个包重复SRB重配置为不支持包重复的SRB,则进行以下操作(操 作顺序可变更):
-配置PDCP实体去使能包重复功能(可选)。
-将SRB标识对应的预定义配置应用到SRB,所述SRB是不支持包重复的SRB,即,所述预定义配置是不支持包重复的SRB对应的预定义配置。
-释放一个RLC实体,即,释放除不支持包重复SRB对应的RLC实体外的其它RLC实体或释放除不支持包重复SRB对应的逻辑信道(所述逻辑信道的逻辑信道标识为不支持包重复的SRB对应的预定义值)关联的RLC实体外的其它RLC实体。
-释放一个逻辑信道,即,释放除不支持包重复SRB对应的逻辑信道外的其它逻辑信道。
-将SRB标识对应的RLC缺省(default)配置或默认配置应用于对应的SRB。
-将SRB标识对应的逻辑信道缺省配置或默认配置应用于对应的SRB。
实施例二
如果用户设备接收到来自基站的RRC消息,所述消息可以为RRC重配置消息,所述RRC重配置消息可以是用于切换(RRC消息中包含指示切换的信元mobilityControlInfo)或非切换(RRC消息中不包含指示切换的信元mobilityControlInfo)场景。所述RRC消息中包含一个指示标识(记为fullConfig),所述指示标识用于指示将全配置(full configuration)应用于所述RRC重配置消息。所述RRC消息中还包含需要重配置的SRB标识,例如需要重配置的SRB的标识包含在信元srb-ToAddModList中。对于RRC消息包含的SRB标识对应的SRB:用户设备将SRB标识对应的已配置的SRB(也可称为已存在的或当前SRB,是UE接收到RRC消息前已经配置的SRB)重配置为一个不支持包重复的SRB。所述已配置的SRB可以是包重复SRB,也可以是不支持包重复的SRB。具体地(操作顺序可变更):
-将SRB标识对应的预定义配置应用到SRB,所述SRB是不支持包重复的SRB,即所述预定义配置是不支持包重复的SRB对应的预定义配置。
-如果已配置的SRB是包重复SRB,则释放一个RLC实体。即,释放除不支持包重复SRB对应的RLC实体外的其它RLC实体或释放除不支持包重复SRB对应的逻辑信道(所述逻辑信道的逻辑信道标识为不支持包重复的SRB对应的预定义值)关联的RLC实体外的其它RLC实体。
-如果已配置的SRB是包重复SRB,则释放一个逻辑信道。即,释放除不支持包重复SRB对应的逻辑信道外的其它逻辑信道,所述逻辑信道的逻辑信道标识不是不支持包重复的SRB对应的预定义值。
-将SRB标识对应的RLC缺省(default)配置或默认配置应用于对应的SRB。
-将SRB标识对应的逻辑信道缺省配置或默认配置应用于对应的SRB。
-配置PDCP实体去使能包重复功能(可选)。
图6示出了根据本公开实施例的基站中的方法600的流程图。方法600用于指示UE使能和去使能PDCP包重复功能。
如图所示,在步骤S610,基站配置使能和/或去使能包重复功能的指示信息。例如,该指示信息可以利用新定义的PDCP控制PDU(PDCP Control PDU)、或者已定义的实现其它功能的PDCP控制PDU中的一个或多个比特、或者新定义的MAC CE(Control Element,控制元素)等表示。
在步骤S620,基站将所配置的指示信息发送给用户设备UE,以指示UE使能或去使能包重复功能。
图7示出了根据本公开实施例的用户设备UE中的方法700的流程图。方法700用于使能和/或去使能PDCP包重复功能。
如图所示,在步骤S710,UE从基站接收使能和/或去使能包重复功能的指示信息。例如,该指示信息可以利用新定义的PDCP控制PDU(PDCP Control PDU)、或者已定义的实现其它功能的PDCP控制PDU中的一个或多个比特、或者新定义的MAC CE(Control Element,控制元素)等表示。
在步骤S720,UE根据接收到的指示信息使能或去使能包重复功能。
下面描述使能和去使能PDCP包重复功能的实施例,所述实施例中的 方法可以应用于SRB(即包重复SRB和/或包重复分离SRB)和DRB(即 包重复DRB和/或包重复分离DRB)
实施例一
定义一个PDCP控制PDU(PDCP Control PDU),所述PDCP控制PDU用于传输使能和/或去使能PDCP实体包重复功能的指示信息。图8示出了PDCP控制PDU示例格式。“D/C”:1比特,控制PDU和数据PDU指示信息。取值为0表示对应的PDU为控制PDU,取值为1表示对应的PDU为数据PDU。“PDU type”:3比特,PDU类型指示信息。不同的取值对应不同类型的控制PDU,可以为使能和去使能PDCP实体包重复功能的控制PDU预定义一个值,例如,当“PDU type”取值为“011”时,对应的控制PDU为实现使能和/或去使能PDCP实体包重复功能的控制PDU。“R”:1比特,表示预留,值可以设置为0,接收端将忽略该比特信息。“I”:1比特或多个比特(也可以用其它符号表示“I”),设置不同的取值表示使能或去使能PDCP实体的包重复功能。例如,占1比特,当取值为“0”表示去使能包重复功能,取值为“1”表示使能包重复功能,反之亦然。
如果是包重复MCG SRB或包重复MCG DRB或包重复SCG SRB或包重复SCG DRB,则用于去使能PDCP包重复功能的PDCP控制PDU中还可以包含一个指示标识(也可称为字段),所述指示标识用于指示去使能包重复功能后,PDCP PDU通过MCG发送还是通过SCG发送。或者,定义所述指示标识时,不定义“I”。此时,用户设备根据所述指示标识重配置PDCP实体,使得PDCP PDU仅通过指示标识中指示的CG发送或者不通过指示标识中指示的CG发送或者通过指示标识中指示的CG外的其他CG发送。
实施例二
利用已定义的实现其它功能的PDCP控制PDU中的一个或多个比特来指示使能或去使能PDCP实体包重复功能。可选的,将所述包含实现其他功能和使能或去使能PDCP实体包重复功能的PDCP控制PDU定义为一个新的PDU类型。
优选的,利用用于PDCP状态报告的PDCP控制PDU中的保留比特“R” 来携带使能或去使能PDCP实体包重复功能的信息。可选的,将所述包含PDCP状态报告和使能或去使能PDCP实体包重复功能的PDCP控制PDU定义为一个新的PDU类型。
备选的,利用用于interspersed ROHC反馈包的PDCP控制PDU中的保留比特“R”来携带使能或去使能PDCP实体包重复功能的信息。可选的,将所述包含interspersed ROHC反馈包和使能或去使能PDCP实体包重复功能的PDCP控制PDU定义为一个新的PDU类型。
实施例三
定义一个MAC CE(Control Element,控制元素),所述MAC CE用于使能和/或去使能包重复功能(或PDCP实体的包重复功能)。可选的,为所述实现使能和/或去使能包重复功能(或PDCP包重复功能)的MAC CE预定义一个指示标识,可记为LCID。所述LCID用于指示对应的MAC CE是使能和/或去使能包重复功能的MAC CE。
优选的,所述MAC CE中包含使能包重复功能的DRB标识和/或SRB标识,当某个DRB标识和/或SRB标识包含在所述MAC CE中,则表示使能(或去使能)对应包重复功能。反之,如果某个DRB标识和/或SRB标识不包含在所述MAC CE中,则可以表示去使能(或使能)对应包重复功能。当MAC实体接收到所述MAC CE,则将所述MAC CE中包含的DRB标识和/或SRB标识指示给上层(RRC层或PDCP层),上层根据所述指示信息使能或去使能相应DRB和/或SRB的包重复功能。可选的,对于未被下层指示的DRB标识和/或SRB标识对应的包重复DRB和/或SRB,去使能或使能相应DRB和/或SRB的包重复功能。
备选的,所述MAC CE中包含一个位图。位图长度固定或可变。位图中的每一比特对应一个SRB和/或DRB(包重复SRB和/或包重复DRB)。位图中每一比特取“0”或“1”分别对应去使能或使能(或0表示使能,1表示去使能)对应SRB和/或DRB的包重复功能。位图的长度可以是系统所能配置的SRB和/或DRB的最大值或基站为UE配置的SRB和DRB数或配置的包重复SRB和/或包重复DRB数。可选的,按照先SRB后DRB的顺序对应位图中的各个比特,并且按照SRB和/或DRB标识从小到大的顺序依次对应位图中各个比特。可以按照从位图第1个字节左边第一比特 到右依次对应或从位图最后一个字节最右边第一比特到左依次对应,即位图第1个字节左边第一比特对应标识最小的SRB或位图最后一个字节最右边第一比特对应标识最大的DRB。例如,假设UE中配置了支持包重复功能的SRB2和DRB1、DRB3,则将位图中从第1个字节左边第一比特到右3比特依次对应SRB2和DRB1、DRB3。又例如,将位图中的各个比特依次对应系统可以设置为支持包重复功能的SRB和DRB。假设SRB1和SRB2可以配置为支持包重复功能且所有DRB都可以配置为支持包重复功能,假设系统支持的DRB数为n。则位图中从左边第一比特往右(或从右边最后一比特往左)2+n比特分别对应SRB1、SRB2、DRB1、DRB2、....、DRBn。其中,“DRBi”表示DRB标识的“i”的DRB。
备选的,包重复SRB和包重复DRB通过不同的使能和/或去使能包重复MAC CE发送。优选的,为所述两个MAC CE预定义不同的LCID值。备选的,两者使用相同的LCID值,但在所述MAC CE中用一个字段指示MAC CE的类型,通过该字段的不同取值来指示对应的MAC CE是包重复SRB对应的使能和/或去使能包重复MAC CE还是包重复DRB对应的使能和/或去使能包重复MAC CE。例如,如果所述字段为“0”,则表示是包重复SRB对应的使能和/或去使能包重复MAC CE;如果所述字段为“1”,则表示是包重复DRB对应的使能和/或去使能包重复MAC CE。反之亦然。
如果是包重复MCG SRB或包重复MCG DRB或包重复SCG SRB或包重复SCG DRB,可以预定义当使能或去使能包重复功能时,MAC CE只能从MCG或SCG对应的MAC发送。例如,如果是包重复MCG SRB或包重复MCG DRB,则对应的MAC CE通过MCG发送;如果是包重复SCG SRB或包重复SCG DRB,则对应的MAC CE通过SCG发送。
实施例四
基于激活/去激活MAC CE来使能或去使能PDCP包重复功能。当MAC层接收到用于激活或去激活SCell的基于激活/去激活MAC CE时,向上层发送指示信息。上层将根据所述指示信息使能或去使能包重复功能。
优选的,当接收到用于激活或去激活SCell的MAC CE时,如果当前处于激活状态的Cell(包含PCell和SCell)数目多于一个,则指示上层(例如RRC)使能已配置支持包重复功能的SRB和/或DRB的包重复功能;如 果当前处于激活态的Cell少于两个(即只有PCell处于激活态,其他Cell处于去激活态),则指示上层(例如RRC)去使能已配置支持包重复功能的SRB和/或DRB的包重复功能。
备选的,当接收到用于激活或去激活SCell的MAC CE时,如果当前处于激活状态的Cell(包含PCell和SCell)数目多于一个,则给上层(例如RRC)发送指示信息,所述指示信息指示当前处于激活状态的Cell多于一个或指示当前处于激活态的Cell数目。上层根据所述指示信息使能已配置支持包重复功能的SRB和/或DRB的包重复功能。如果当前处于激活状态的Cell(包含PCell和SCell)数目少于两个个,则给上层(例如RRC)发送指示信息,所述指示信息指示当前处于激活状态的Cell两于两个一个或指示当前处于激活态的Cell数目。上层根据所述指示信息去使能已配置支持包重复功能的SRB和/或DRB的包重复功能。
备选的,MAC层在接收到用于激活或去激活SCell的MAC CE时,只有当激活的Cell(包含PCell和SCell)从一个变为多个和/或从多个变为一个时,才向上层发送指示信息,所述指示信息用于指示当前处于激活态的Cell数或使能或去使能SRB和/或DRB的包重复功能。上层将根据所述指示信息使能或去使能包重复功能。
实施例五
当只有一个Cell处于激活态,但是MAC层接收到来自对应同一包重复SRB或包重复DRB的两个或多个逻辑信道的数据时,MAC层向上层(例如RRC)指示错误或指示只有一个Cell处于激活态或者指示上层去使能包重复功能,或者MAC层将来自所述两个或多个逻辑信道的数据通过一个CC发送,或者MAC层只发送其中一个逻辑信道的数据(例如,发送来自逻辑信道标识较小或最小的逻辑信道的数据),或者构建一个MAC CE,所述MAC CE用于请求基站激活SCell。如果MAC层向上层指示错误或指示只有一个Cell处于激活态,上层接收到所述指示后可以去使能包重复功能或向基站发送RRC消息,所述RRC消息用于请求基站激活SCell。
下面描述用户设备中包重复SRB的PDCP实体对接收到的PDCP PDU 的处理过程
UE接收来自基站的PDCP数据PDU,如果所述PDCP数据PDU是重复的PDU或SDU,对所述PDCP PDU或SDU进行完整性校验(如果支持),如果完整性校验失败,则指示上层(例如RRC层)完整性校验失败。上层接收到所述指示后,执行RRC连接重建。
下面描述的算法实施例涉及以下参数:
Last_Submitted_PDCP_RX_SN:对于映射到RLC AM的DRB对应的PDCP实体,所述变量用于指示上一次递交给上层的PDCP SDU的SN。在本公开实施例中,由于Last_Submitted_PDCP_RX_SN=Next_PDCP_RX_SN-1,故可以替换使用这两个变量。
Reordering_Window:指示重排序窗口的大小。其大小与PDCP SN所占比特数相关,是PDCP SN空间的一半。
RX_HFN:所述变量用于指示产生COUNT值的HFN的值,所述COUNT用于特定PDCP实体接收到的PDCP PDUs。
Next_PDCP_RX_SN:所述变量用于指示特定PDCP实体接收端下一个期望的PDCP SN。
PSCP SN:PDCP序列号,可以是PDCP SDU或PDU的序列号。
Maximum_PDCP_SN:最大PDCP SN号,所述最大PDCP SN号与为PDCP实体配置的SN所占比特数相关。
COUNT:由HFN和PDCP SN组成,如图9所示。
received PDCP SN:接收到的PDCP PDU的SN。
图10示出了PDCP实体处理接收到的PDCP PDU的示意流程图。
在步骤1001,用户设备接收来自基站(或下层)的PDCP PDU。
在步骤1002,判断received PDCP SN(接收到的PDCP SN)是否满足received PDCP SN-Last_Submitted_PDCP_RX_SN>Reordering_Window?如果是,则执行步骤1003;否则,执行步骤1004。
在步骤1003,利用COUNT和接收到的PDCP SN对所述接收到的PDU进行解密和完整性校验(如果支持),所述COUNT基于RX_HFN-1(PDU解密后得到PDCP SDU);如果完整性校验失败,则指示上层(例如RRC) 完整性校验失败。可选的,删除所述得到的PDCP SDU。如果完整性校验失败,则算法结束;如果完整性校验成功,则返回步骤1001。
在步骤1004,判断received PDCP SN是否满足0<=Last_Submitted_PDCP_RX_SN-receiVed PDCP SN<Reordering_Window?如果是,则执行步骤1005;否则,执行步骤1006。
在步骤1005,利用COUNT和接收到的PDCP SN对所述接收到的PDU进行解密和完整性校验(如果支持),所述COUNT基于RX_HFN(PDU解密后得到PDCP SDU);如果完整性校验失败,则指示上层(例如RRC)完整性校验失败。可选的,删除所述得到的PDCP SDU。如果完整性校验失败,则算法结束;如果完整性校验成功,则返回步骤1001。
在步骤1006,判断received PDCP SN是否满足received PDCP SN<Next_PDCP_RX_SN?如果是,则执行步骤1007;否则,执行步骤1008。
在步骤1007,利用COUNT和received PDCP SN对所述接收到的PDU进行解密和完整性校验(如果支持),所述COUNT基于RX_HFN+1(PDU解密后得到PDCP SDU);
在步骤1008,利用COUNT和received PDCP SN对所述接收到的PDU进行解密和完整性校验(如果支持),所述COUNT基于RX_HFN(PDU解密后得到PDCP SDU)。
在步骤1009,如果支持完整性校验且完整性校验成功或不支持完整性校验,则执行步骤1010。否则,执行步骤1014。
在步骤1010,如果received PDCP SN<Next_PDCP_RX_SN,则RX_HFN=RX_HFN+1。
在步骤1011,Next_PDCP_RX_SN t=received PDCP SN+1。如果Next_PDCP_RX_SN>Maximum_PDCP_SN,则Next_PDCP_RX_SN=0且RX_HFN=RX_HFN+1。
在步骤1012,将得到的PDCP SDU递交给上层。
在步骤1013,将Last_Submitted_PDCP_RX_SN置为最后一个递交给上层的PDCP SDU的PDCP SN。如果不采用变量Last_Submitted_PDCP_RX_SN,则不执行该步骤。
在步骤1014,删除接收到的PDCP数据PDU且指示上层完整性校验失败。
需要说明的是,步骤1002和1004的判断条件可调换执行顺序。步骤1006和步骤1010的判断条件received PDCP SN<Next_PDCP_RX_SN等价于Next_PDCP_RX_SN-received PDCP SN>Reordering_Window。
以下将参照图11对根据本公开实施例的UE的结构进行描述。图11示出了根据本公开实施例的UE 1100的结构示意图。UE 1100可以用于执行参考图4、图5或图7描述的方法。
如图11所示,UE 1100包括用于外部通信的收发机1101;处理单元或处理器1103,该处理器1103可以是单个单元或者多个单元的组合,用于执行方法的不同步骤;存储器1105,其中存储有计算机可执行指令,所述指令在被处理器1103执行时,使UE 1100执行与方法400相对应的以下操作:经由收发机1101从基站接收指示对应的信令无线承载SRB是否支持包重复的指示标识和支持包重复的SRB的配置信息;以及根据接收到的配置信息建立对应的包重复SRB。
在一个示例性实施例中,存储器1105还存储有使得处理器1103执行以下操作的指令:如果包重复SRB与对应的不支持包重复的SRB具有相同的SRB标识,那么从基站接收对应的包重复SRB的SRB标识。
在一个示例性实施例中,如果包重复SRB与对应的不支持包重复的SRB具有不同的SRB标识,那么所述指示标识是包重复SRB的SRB标识。
存储器1105也可以存储有计算机可执行指令,所述指令在被处理器1103执行时,使UE 1100执行与方法500相对应的以下操作:经由收发机1101从基站接收指示重配置后的信令无线承载SRB是否支持包重复的指示标识;以及如果已配置的SRB不支持包重复,并且所述指示标识指示重配置后的SRB支持包重复,则UE将该已配置的SRB重配置为支持包重复。
在一个示例性实施例中,存储器1105还存储有使得处理器1103执行以下操作的指令:如果已配置的SRB支持包重复,并且所述指示标识指示重配置后的SRB不支持包重复,则将该已配置的SRB重配置为不支持包重复。
存储器1105也可以存储有计算机可执行指令,所述指令在被处理器1103执行时,使UE 1100执行与方法700相对应的以下操作:经由收发机 1101从基站接收使能和/或去使能包重复功能的指示信息;以及根据接收到的指示信息使能或去使能包重复功能。
以下将参照图12对根据本公开实施例的基站的结构进行描述。图12示出了根据本公开实施例的基站1200的结构示意图。基站1200可以用于执行参考图6描述的方法。
如图12所示,基站1200包括用于外部通信的收发机1201;处理单元或处理器1203,该处理器1203可以是单个单元或者多个单元的组合,用于执行方法的不同步骤;存储器1205,其中存储有计算机可执行指令,所述指令在被处理器1203执行时,使基站1200执行与方法600相对应的以下操作:配置使能和/或去使能包重复功能的指示信息;以及将所配置的指示信息发送给用户设备UE,以指示UE使能或去使能包重复功能。
图13示出了根据本公开实施例的在用户设备UE处执行的方法1300的流程图。
如图所示,在步骤S1310,UE接收媒体访问控制MAC控制元素CE,以指示数据无线承载DRB的包重复使能和/或去使能。
如果配置了所述包重复且所述包重复被使能,则在步骤S1320,分组数据汇聚协议PDCP实体发送一个PDCP协议数据单元PDU到二个无线链路控制RLC实体。
如果配置了所述包重复且所述包重复被去使能,则在步骤S1330,所述PDCP实体发送所述PDCP PDU到所述二个RLC实体中的一个RLC实体。
所述MAC CE包含一个固定长度的位图,所述位图中的每一个比特对应一个升序排列的包重复DRB标识,并且所述位图中设为1的比特指示使能对应的所述DRB的所述包重复,所述位图中设为0的比特指示去使能对应的所述DRB的所述包重复。
图14示出了根据本公开实施例的在基站BS处执行的方法1400的流程图。
如图所示,在步骤S1410,BS发送媒体访问控制MAC控制元素CE,以指示用户设备UE数据无线承载DRB的包重复使能和/或去使能。
如果配置了所述包重复且所述包重复被使能,则所述UE的分组数据汇聚协议PDCP实体发送一个PDCP协议数据单元PDU到二个无线链路控制RLC实体。
如果配置了所述包重复且所述包重复被去使能,则所述PDCP实体发送所述PDCP PDU到所述二个RLC实体中的一个RLC实体。
所述MAC CE包含一个固定长度的位图,所述位图中的每一个比特对应一个升序排列的包重复DRB标识,以及所述位图中设为1的比特指示使能对应的所述DRB的所述包重复,所述位图中设为0的比特指示去使能对应的所述DRB的所述包重复。
图15示出了根据本公开实施例的在用户设备UE处执行的方法1500的流程图。
如图所示,在步骤S1510,UE接收来自下层的分组数据汇聚协议PDCP数据协议数据单元PDU。
如果所述PDCP数据PDU之前已经被接收过,则在步骤S1520,对所述PDCP数据PDU进行完整性校验。如果所述PDCP数据PDU之前未被接收过,则该方法结束。
如果所述完整性校验失败,则在步骤S1530,指示上层完整性校验失败。如果所述完整性校验成功,则该方法结束。
图16示出了根据本公开实施例的UE 1600的结构示意图。
UE 1600可以用于执行参考图13描述的方法。
如图16所示,UE1600包括接收单元1610,用于接收媒体访问控制MAC控制元素CE,以指示数据无线承载DRB的包重复使能和/或去使能;以及发送单元1620,用于如果配置了所述包重复且所述包重复被使能,则分组数据汇聚协议PDCP实体发送一个PDCP协议数据单元PDU到二个无线链路控制RLC实体;以及如果配置了所述包重复且所述包重复被去使能,则所述PDCP实体发送所述PDCP PDU到所述二个RLC实体中的一个RLC实体。
所述MAC CE包含一个固定长度的位图,所述位图中的每一个比特对 应一个升序排列的包重复DRB标识,以及所述位图中设为1的比特指示使能对应的所述DRB的所述包重复,所述位图中设为0的比特指示去使能对应的所述DRB的所述包重复。
图17示出了根据本公开实施例的BS 1700的结构示意图。
BS 1700可以用于执行参考图14描述的方法。
如图17所示,BS 1700包括发送单元1710,用于发送媒体访问控制MAC控制元素CE,以指示用户设备UE数据无线承载DRB的包重复使能和/或去使能。
如果配置了所述包重复且所述包重复被使能,则所述UE的分组数据汇聚协议PDCP实体发送一个PDCP协议数据单元PDU到二个无线链路控制RLC实体。
如果配置了所述包重复且所述包重复被去使能,则所述PDCP实体发送所述PDCP PDU到所述二个RLC实体中的一个RLC实体。
所述MAC CE包含一个固定长度的位图,所述位图中的每一个比特对应一个升序排列的包重复DRB标识,以及所述位图中设为1的比特指示使能对应的所述DRB的所述包重复,所述位图中设为0的比特指示去使能对应的所述DRB的所述包重复。
图18示出了根据本公开实施例的UE 1800的结构示意图。
UE 1800可以用于执行参考图15描述的方法。
如图18所示,UE 1800包括接收单元1810,用于接收来自下层的分组数据汇聚协议PDCP数据协议数据单元PDU;校验单元1820,用于如果所述PDCP数据PDU之前已经被接收过,则对所述PDCP数据PDU进行完整性校验;以及指示单元1830,用于如果所述完整性校验失败,则指示上层完整性校验失败。
本公开还提供至少一个具有非易失性或易失性存储器形式的计算机存储介质,例如电可擦除可编程只读存储器(EEPROM)、闪存和硬盘驱动。计算机可执行指令当被处理器1103执行时使得UE 1100执行例如之前结合图4、图5、图7、图13和图15描述的过程的动作,或者当被处理器1203 执行时使得基站1200执行例如之前结合图6和图14描述的过程的动作。
处理器可以是单个CPU(中央处理器),但是也可以包括两个或更多个处理器。例如,处理器可以包括通用微处理器;指令集处理器和/或相关芯片集和/或专用微处理器(例如,专用集成电路(ASIC))。处理器也可以包括用于高速缓存目的的板载存储器。例如,计算机存储介质可以是闪存、随机存取存储器(RAM)、只读存储器(ROM)或EEPROM。
运行在根据本发明的设备上的计算机可执行指令或者程序可以是通过控制中央处理单元(CPU)来使计算机实现本发明的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本发明各实施例功能的计算机可执行指令或程序可以记录在计算机可读存储介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读存储介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本发明的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本发明并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本发明并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、 空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (6)

  1. 一种在用户设备UE处执行的方法,包括:
    接收媒体访问控制MAC控制元素CE,以指示数据无线承载DRB的包重复使能和/或去使能;
    如果配置了所述包重复且所述包重复被使能,则分组数据汇聚协议PDCP实体发送一个PDCP协议数据单元PDU到二个无线链路控制RLC实体;以及
    如果配置了所述包重复且所述包重复被去使能,则所述PDCP实体发送所述PDCP PDU到所述二个RLC实体中的一个RLC实体;
    其中,所述MAC CE包含一个固定长度的位图,所述位图中的每一个比特对应一个升序排列的包重复DRB标识;以及
    所述位图中设为1的比特指示使能对应的所述DRB的所述包重复,所述位图中设为0的比特指示去使能对应的所述DRB的所述包重复。
  2. 一种用户设备UE,包括:
    接收单元,用于接收媒体访问控制MAC控制元素CE,以指示数据无线承载DRB的包重复使能和/或去使能;
    发送单元,用于如果配置了所述包重复且所述包重复被使能,则分组数据汇聚协议PDCP实体发送一个PDCP协议数据单元PDU到二个无线链路控制RLC实体;以及
    如果配置了所述包重复且所述包重复被去使能,则所述PDCP实体发送所述PDCP PDU到所述二个RLC实体中的一个RLC实体;
    其中,所述MAC CE包含一个固定长度的位图,所述位图中的每一个比特对应一个升序排列的包重复DRB标识;以及
    所述位图中设为1的比特指示使能对应的所述DRB的所述包重复,所述位图中设为0的比特指示去使能对应的所述DRB的所述包重复。
  3. 一种在基站BS处执行的方法,包括:
    发送媒体访问控制MAC控制元素CE,以指示用户设备UE数据无线承载DRB的包重复使能和/或去使能;
    如果配置了所述包重复且所述包重复被使能,则所述UE的分组数 据汇聚协议PDCP实体发送一个PDCP协议数据单元PDU到二个无线链路控制RLC实体;以及
    如果配置了所述包重复且所述包重复被去使能,则所述PDCP实体发送所述PDCP PDU到所述二个RLC实体中的一个RLC实体;
    其中,所述MAC CE包含一个固定长度的位图,所述位图中的每一个比特对应一个升序排列的包重复DRB标识;以及
    所述位图中设为1的比特指示使能对应的所述DRB的所述包重复,所述位图中设为0的比特指示去使能对应的所述DRB的所述包重复。
  4. 一种基站BS,包括:
    发送单元,用于发送媒体访问控制MAC控制元素CE,以指示用户设备UE数据无线承载DRB的包重复使能和/或去使能;
    如果配置了所述包重复且所述包重复被使能,则所述UE的分组数据汇聚协议PDCP实体发送一个PDCP协议数据单元PDU到二个无线链路控制RLC实体;以及
    如果配置了所述包重复且所述包重复被去使能,则所述PDCP实体发送所述PDCP PDU到所述二个RLC实体中的一个RLC实体;
    其中,所述MAC CE包含一个固定长度的位图,所述位图中的每一个比特对应一个升序排列的包重复DRB标识;以及
    所述位图中设为1的比特指示使能对应的所述DRB的所述包重复,所述位图中设为0的比特指示去使能对应的所述DRB的所述包重复。
  5. 一种在用户设备UE处执行的方法,包括:
    接收来自下层的分组数据汇聚协议PDCP数据协议数据单元PDU;
    如果所述PDCP数据PDU之前已经被接收过,则对所述PDCP数据PDU进行完整性校验;以及
    如果所述完整性校验失败,则指示上层完整性校验失败。
  6. 一种用户设备UE,包括:
    接收单元,用于接收来自下层的分组数据汇聚协议PDCP数据协议数据单元PDU;
    校验单元,用于如果所述PDCP数据PDU之前已经被接收过,则对所述PDCP数据PDU进行完整性校验;以及
    指示单元,用于如果所述完整性校验失败,则指示上层完整性校验失败。
PCT/CN2018/079446 2017-03-23 2018-03-19 用户设备和基站处执行的方法及相应的设备 WO2018171546A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18772510.6A EP3606274B1 (en) 2017-03-23 2018-03-19 Method executed in user equipment and base station and corresponding equipment
US16/496,063 US11026281B2 (en) 2017-03-23 2018-03-19 Method executed in user equipment and base station and corresponding devices
BR112019019535A BR112019019535A2 (pt) 2017-03-23 2018-03-19 método executado em estação-base e equipamento de usuário e dispositivos correspondentes
MX2019011164A MX2019011164A (es) 2017-03-23 2018-03-19 Metodo ejecutado en equipo de usuario y estacion base y dispositivos correspondientes.
CONC2019/0011607A CO2019011607A2 (es) 2017-03-23 2019-10-20 Método ejecutado en equipo de usuario y estación base y dispositivos correspondientes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710180715.3 2017-03-23
CN201710180715.3A CN108924948B (zh) 2017-03-23 2017-03-23 用户设备和基站处执行的方法及相应的设备

Publications (1)

Publication Number Publication Date
WO2018171546A1 true WO2018171546A1 (zh) 2018-09-27

Family

ID=63585050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079446 WO2018171546A1 (zh) 2017-03-23 2018-03-19 用户设备和基站处执行的方法及相应的设备

Country Status (7)

Country Link
US (1) US11026281B2 (zh)
EP (1) EP3606274B1 (zh)
CN (1) CN108924948B (zh)
BR (1) BR112019019535A2 (zh)
CO (1) CO2019011607A2 (zh)
MX (1) MX2019011164A (zh)
WO (1) WO2018171546A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180368132A1 (en) * 2017-06-15 2018-12-20 Alireza Babaei Packet Duplication Control
CN110856275A (zh) * 2019-11-07 2020-02-28 展讯通信(上海)有限公司 Drb的配置方法及相关装置
WO2020087258A1 (zh) * 2018-10-30 2020-05-07 Oppo广东移动通信有限公司 指示pdcp复制数据的状态的方法、终端设备和网络设备
CN111148157A (zh) * 2018-11-06 2020-05-12 电信科学技术研究院有限公司 一种重复传输的处理方法、装置及网络节点
WO2020159427A1 (en) * 2019-02-01 2020-08-06 Telefonaktiebolaget Lm Ericsson (Publ) First communication device, second communication device and methods performed therein for controlling transmission
US11026281B2 (en) * 2017-03-23 2021-06-01 Sharp Kabushiki Kaisha Method executed in user equipment and base station and corresponding devices
US20210345175A1 (en) * 2019-01-16 2021-11-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and communication device
US11228960B2 (en) 2018-11-12 2022-01-18 Nokia Technologies Oy Efficient signaling in multi-connectivity scenarios
EP3824662A4 (en) * 2018-10-24 2022-03-16 Nokia Technologies Oy CELL GROUP DISPLAY FROM PDCP DURING INTEGRITY VERIFICATION FAILURE
US20220104089A1 (en) * 2019-01-22 2022-03-31 Sharp Kabushiki Kaisha Handover method performed by user equipment, and user equipment
EP3949584A4 (en) * 2019-04-04 2022-12-28 QUALCOMM Incorporated CONTROL MESSAGE FOR DYNAMIC RADIO LINK CONTROL (RLC) ENTITY SELECTION

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102324214B1 (ko) * 2017-01-06 2021-11-12 삼성전자 주식회사 차세대 이동 통신 시스템에서 이중 접속의 데이터 처리를 가속화하는 방법 및 장치
WO2018172136A1 (en) * 2017-03-23 2018-09-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reliable data packet transmission among entities of a radio access network of a mobile communication network
ES2962322T3 (es) * 2017-03-24 2024-03-18 Nokia Technologies Oy Gestión de duplicación de pdcp y recuperación de datos en una nueva tecnología de acceso por radio
CN108631980B (zh) * 2017-03-24 2021-03-05 电信科学技术研究院 数据传输方法、终端、网络侧设备和计算机可读存储介质
CN108737045B (zh) * 2017-04-19 2021-05-04 华为技术有限公司 重复传输的方法及装置
CN110651523B (zh) * 2017-06-14 2023-07-14 株式会社Ntt都科摩 用户装置
CN107342851B (zh) 2017-06-15 2020-05-26 电信科学技术研究院 一种重复传输的配置及重复传输方法及装置
US11363569B2 (en) * 2017-06-15 2022-06-14 Samsung Electronics Co., Ltd. Logical channel mapping with packet duplication
CA3065093A1 (en) * 2017-06-16 2018-12-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, terminal device, and network device
CN109151903B (zh) * 2017-06-16 2022-07-15 三星电子株式会社 用于在下一代移动通信系统中处理分组的方法和装置
CN110771082B (zh) 2017-06-22 2022-02-18 鸿颖创新有限公司 用于分组数据汇聚协议分组数据单元复制的系统、装置及方法
CN111034294A (zh) * 2017-08-08 2020-04-17 三菱电机株式会社 通信系统、通信终端装置及基站装置
CN109547175B (zh) * 2017-08-11 2020-10-30 电信科学技术研究院 一种承载映射方法、装置、基站及终端
AU2017427054A1 (en) * 2017-08-11 2020-01-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Control method, node, and computer storage medium
US10873866B2 (en) * 2017-09-27 2020-12-22 Electronics And Telecommunications Research Institute Method for managing radio resources in communication system and apparatus for the same
CN109802922A (zh) * 2017-11-16 2019-05-24 电信科学技术研究院 一种缓存同步异常的处理方法和设备
WO2019245339A1 (ko) * 2018-06-21 2019-12-26 삼성전자주식회사 이동 통신 시스템에서 기지국 노드 간 패킷 복제 동작 동기화 방법 및 장치
KR20190143789A (ko) * 2018-06-21 2019-12-31 삼성전자주식회사 이동 통신 시스템에서 기지국 노드 간 패킷 복제 동작 동기화 방법 및 장치
CN111314970A (zh) * 2018-12-11 2020-06-19 夏普株式会社 用户设备及其方法、基站及其方法
CN111404633B (zh) * 2019-01-03 2021-10-26 华为技术有限公司 一种选择传输模式的方法及设备
JP2022518226A (ja) * 2019-01-18 2022-03-14 鴻穎創新有限公司 次世代無線ネットワークにおけるパケットデータ収束プロトコルの複製
WO2020164114A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 一种通信方法和装置
US20200404743A1 (en) * 2019-06-24 2020-12-24 Samsung Electronics Co., Ltd. Method and apparatus for controlling packet duplication transmission in wireless communication system
EP4104484A1 (en) * 2020-02-13 2022-12-21 Telefonaktiebolaget Lm Ericsson (Publ) Packet duplication indication for mdt
TW202324961A (zh) * 2021-10-29 2023-06-16 美商高通公司 混合數位方案獨立載波聚合的無線電鏈路控制
WO2024014999A1 (en) * 2022-07-13 2024-01-18 Telefonaktiebolaget Lm Ericsson (Publ) Network nodes, and methods performed in a wireless communication network
CN115866588B (zh) * 2023-03-02 2023-05-19 四川创智联恒科技有限公司 一种安全激活消息并发方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104935414A (zh) * 2014-03-21 2015-09-23 上海贝尔股份有限公司 一种在双连接系统中传输信息的方法和装置
CN104955064A (zh) * 2014-03-28 2015-09-30 上海贝尔股份有限公司 一种在双连接系统中处理用户设备端rlc/pdcp实体的方法与设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101669966B1 (ko) * 2009-05-11 2016-10-27 엘지전자 주식회사 다중 반송파를 지원하는 무선 통신 시스템에서 중복 데이터를 송신 및 수신하는 방법 및 장치
US10764870B2 (en) * 2013-10-21 2020-09-01 Lg Electronics Inc. Method for transmitting uplink data in a dual connectivity and a device therefor
US10433176B2 (en) * 2013-11-11 2019-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Discarding a duplicate protocol data unit associated with a data transmission via a first signaling radio bearer or a second signaling radio bearer
EP3391553A1 (en) * 2015-12-14 2018-10-24 Nokia Solutions and Networks Oy Data retransmission
KR20180050015A (ko) * 2016-11-04 2018-05-14 삼성전자주식회사 무선통신시스템에서 고신뢰 저지연 통신을 위한 데이터 송수신 방법 및 장치
US10716094B2 (en) * 2017-03-23 2020-07-14 Ofinno, Llc Packet duplication in a wireless device and wireless network
CN108924948B (zh) * 2017-03-23 2021-06-22 夏普株式会社 用户设备和基站处执行的方法及相应的设备
ES2962322T3 (es) * 2017-03-24 2024-03-18 Nokia Technologies Oy Gestión de duplicación de pdcp y recuperación de datos en una nueva tecnología de acceso por radio
US11116024B2 (en) * 2017-04-10 2021-09-07 Nokia Technologies Oy Control mechanism for packet duplication in multi-connectivity communication
US11184945B2 (en) * 2017-06-14 2021-11-23 Lg Electronics Inc. Method for handling deactivation for a cell in which packet duplication is performed in wireless communication system and a device therefor
EP3582429B1 (en) * 2017-06-15 2021-08-04 Samsung Electronics Co., Ltd. Packet duplication control
US20180367288A1 (en) * 2017-06-16 2018-12-20 Huawei Technologies Co., Ltd. Dynamic activation and deactivation of packet duplication
JP2020528687A (ja) * 2017-07-28 2020-09-24 富士通株式会社 命令指示方法及び装置、情報交換方法及び装置
EP3512140A1 (en) * 2018-01-11 2019-07-17 Comcast Cable Communications LLC Cell configuration for packet duplication
US10869223B2 (en) * 2018-02-13 2020-12-15 Samsung Electronics Co., Ltd. Method and apparatus for efficient operation upon packet duplication activation and deactivation in next generation wireless communication system
KR102601489B1 (ko) * 2018-06-20 2023-11-13 삼성전자 주식회사 차세대 이동통신 시스템에서 이중연결구조를 고려하여 패킷 중복을 제어하는 방법 및 장치
KR20210082434A (ko) * 2018-10-30 2021-07-05 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Pdcp 복제 데이터의 상태를 지시하는 방법, 단말 장치와 네트워크 장치
CN111148157B (zh) * 2018-11-06 2022-01-25 大唐移动通信设备有限公司 一种重复传输的处理方法、装置及网络节点
AU2020214088B2 (en) * 2019-02-03 2022-10-13 FG Innovation Company Limited Evolved packet data convergence protocol duplication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104935414A (zh) * 2014-03-21 2015-09-23 上海贝尔股份有限公司 一种在双连接系统中传输信息的方法和装置
CN104955064A (zh) * 2014-03-28 2015-09-30 上海贝尔股份有限公司 一种在双连接系统中处理用户设备端rlc/pdcp实体的方法与设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC .: "Packet duplication in PDCP", 3GPP TSG-RAN WG2 #97, R2-1701462, 17 February 2017 (2017-02-17), XP051212097 *
LG ELECTRONICS INC.: "Packet duplication in NR", 3GPP TSG-RAN WG2 NR AD HOC, R2-1700423, 19 January 2017 (2017-01-19), XP051211002 *
See also references of EP3606274A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11026281B2 (en) * 2017-03-23 2021-06-01 Sharp Kabushiki Kaisha Method executed in user equipment and base station and corresponding devices
US10638487B2 (en) * 2017-06-15 2020-04-28 Ofinno, Llc Packet duplication control
US20180368132A1 (en) * 2017-06-15 2018-12-20 Alireza Babaei Packet Duplication Control
EP3824662A4 (en) * 2018-10-24 2022-03-16 Nokia Technologies Oy CELL GROUP DISPLAY FROM PDCP DURING INTEGRITY VERIFICATION FAILURE
US11991556B2 (en) 2018-10-30 2024-05-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for indicating state of PDCP duplicate data, terminal device, and network device
WO2020087258A1 (zh) * 2018-10-30 2020-05-07 Oppo广东移动通信有限公司 指示pdcp复制数据的状态的方法、终端设备和网络设备
CN114340042B (zh) * 2018-10-30 2023-06-13 Oppo广东移动通信有限公司 指示pdcp复制数据的状态的方法、终端设备和网络设备
CN114340042A (zh) * 2018-10-30 2022-04-12 Oppo广东移动通信有限公司 指示pdcp复制数据的状态的方法、终端设备和网络设备
WO2020093771A1 (zh) * 2018-11-06 2020-05-14 电信科学技术研究院有限公司 重复传输的处理方法、装置及网络节点
CN111148157B (zh) * 2018-11-06 2022-01-25 大唐移动通信设备有限公司 一种重复传输的处理方法、装置及网络节点
CN111148157A (zh) * 2018-11-06 2020-05-12 电信科学技术研究院有限公司 一种重复传输的处理方法、装置及网络节点
US11228960B2 (en) 2018-11-12 2022-01-18 Nokia Technologies Oy Efficient signaling in multi-connectivity scenarios
US20210345175A1 (en) * 2019-01-16 2021-11-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and communication device
US11889350B2 (en) * 2019-01-16 2024-01-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Configuring activation signaling for PCDP duplication and bearer activation
US20220104089A1 (en) * 2019-01-22 2022-03-31 Sharp Kabushiki Kaisha Handover method performed by user equipment, and user equipment
CN113366782A (zh) * 2019-02-01 2021-09-07 瑞典爱立信有限公司 用于控制传输的第一通信设备、第二通信设备以及在其中执行的方法
WO2020159427A1 (en) * 2019-02-01 2020-08-06 Telefonaktiebolaget Lm Ericsson (Publ) First communication device, second communication device and methods performed therein for controlling transmission
US11888619B2 (en) 2019-02-01 2024-01-30 Telefonaktiebolaget Lm Ericsson (Publ) First communication device, second communication device and methods performed therein for controlling transmission
EP3949584A4 (en) * 2019-04-04 2022-12-28 QUALCOMM Incorporated CONTROL MESSAGE FOR DYNAMIC RADIO LINK CONTROL (RLC) ENTITY SELECTION
CN110856275B (zh) * 2019-11-07 2021-10-26 展讯通信(上海)有限公司 Drb的配置方法及相关装置
CN110856275A (zh) * 2019-11-07 2020-02-28 展讯通信(上海)有限公司 Drb的配置方法及相关装置

Also Published As

Publication number Publication date
CN108924948A (zh) 2018-11-30
EP3606274A4 (en) 2020-12-23
EP3606274B1 (en) 2023-08-09
US11026281B2 (en) 2021-06-01
MX2019011164A (es) 2019-10-21
BR112019019535A2 (pt) 2020-04-22
EP3606274A1 (en) 2020-02-05
CN108924948B (zh) 2021-06-22
CO2019011607A2 (es) 2020-02-18
US20210112610A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2018171546A1 (zh) 用户设备和基站处执行的方法及相应的设备
TWI692988B (zh) 基站、使用者設備和相關方法
WO2018171512A1 (zh) 无线配置方法、用户设备和基站
TWI678124B (zh) 使用者設備和相關方法
JP7288941B2 (ja) 無線システムにおける段階的再構成のためのシステムおよび方法
JP7318779B2 (ja) マスター無線アクセスネットワークノード、amf、及びこれらの方法
WO2018228283A1 (zh) 无线通信方法和设备
US20200374752A1 (en) User equipment and related method
EP3637820B1 (en) Base station, user equipment and relevant methods
WO2018059147A1 (zh) 用于建立/重配置数据承载的方法和设备
WO2019029565A1 (zh) 用户设备、基站和相关方法
JP6741024B2 (ja) 無線端末、無線局、及びこれらの方法
WO2018059148A1 (zh) 一种数据转发的方法及其设备
WO2020221155A1 (zh) 基站、用户设备和相关方法
KR20150073467A (ko) 이중연결 방식을 이용하는 무선통신 시스템에서 상향링크 물리제어채널 구성 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019019535

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018772510

Country of ref document: EP

Effective date: 20191023

ENP Entry into the national phase

Ref document number: 112019019535

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190919