WO2019029565A1 - 用户设备、基站和相关方法 - Google Patents
用户设备、基站和相关方法 Download PDFInfo
- Publication number
- WO2019029565A1 WO2019029565A1 PCT/CN2018/099379 CN2018099379W WO2019029565A1 WO 2019029565 A1 WO2019029565 A1 WO 2019029565A1 CN 2018099379 W CN2018099379 W CN 2018099379W WO 2019029565 A1 WO2019029565 A1 WO 2019029565A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mcg
- scg
- srb
- base station
- uplink transmission
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 74
- 230000005540 biological transmission Effects 0.000 claims abstract description 149
- 230000011664 signaling Effects 0.000 claims abstract description 33
- 230000003252 repetitive effect Effects 0.000 claims 2
- 108091005487 SCARB1 Proteins 0.000 description 62
- 102100037118 Scavenger receptor class B member 1 Human genes 0.000 description 62
- 230000009977 dual effect Effects 0.000 description 22
- 101001055444 Homo sapiens Mediator of RNA polymerase II transcription subunit 20 Proteins 0.000 description 17
- 102100026165 Mediator of RNA polymerase II transcription subunit 20 Human genes 0.000 description 17
- 238000000926 separation method Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 230000001960 triggered effect Effects 0.000 description 9
- 238000012544 monitoring process Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- XHSQDZXAVJRBMX-UHFFFAOYSA-N 2-(5,6-dichlorobenzimidazol-1-yl)-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound OC1C(O)C(CO)OC1N1C2=CC(Cl)=C(Cl)C=C2N=C1 XHSQDZXAVJRBMX-UHFFFAOYSA-N 0.000 description 1
- 101100150274 Caenorhabditis elegans srb-2 gene Proteins 0.000 description 1
- 101150014328 RAN2 gene Proteins 0.000 description 1
- -1 SRB1bis Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/15—Setup of multiple wireless link connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
- H04W36/0069—Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
- H04W36/00692—Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/18—Management of setup rejection or failure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/19—Connection re-establishment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
- H04W84/20—Master-slave selection or change arrangements
Definitions
- the present disclosure relates to the field of wireless communication technologies, and more particularly, the present disclosure relates to user equipment, base stations, and methods related to secondary cell group SCG failure.
- NTT DOCOMO proposed a new research project on 5G technology standards (see Non-patent literature: RP-160671) :New SID Proposal: Study on New Radio Access Technology), and approved.
- the goal of the research project is to develop a new wireless (New Radio: NR) access technology to meet all 5G application scenarios, requirements and deployment environments.
- NR mainly has three application scenarios: Enhanced Mobile Broadband (eMBB), Massive Machine Type Communication (mMTC) and Ultra reliable and low latency communications (URLLC).
- eMBB Enhanced Mobile Broadband
- mMTC Massive Machine Type Communication
- URLLC Ultra reliable and low latency communications
- the multiple connections may employ mechanisms such as packet repetition (also referred to as packet repetition) or link selection.
- packet repetition function supporting the user plane and the data plane in the NR-PDCP entity is achieved, the PDCP entity function of the sender supports packet repetition, and the PDCP entity function of the receiver supports the deletion of the duplicate packet.
- the primary base station decides whether to use the primary cell group MCG to repeat the signaling radio bearer SRB and configure the MCG repeat SRB through the primary base station radio link control RRC signaling.
- the conference also achieved that in the dual connectivity scenario, for the MCG to repeat the SRB, the uplink transmission is configured by the RRC signaling to adopt the MCG, the secondary cell group SCG, or the MCG and the SCG are transmitted in the repeated transmission manner.
- a method in a user equipment UE the UE being configured with a primary cell group MCG repetition signaling radio bearer SRB, the MCG repeating SRB and a primary cell group MCG and a secondary cell group
- the SCG is associated and configured to perform uplink transmission through the SCG, the method comprising: detecting an SCG failure; and reconfiguring the MCG repeated SRB to perform uplink transmission through the MCG, or triggering an MCG failure.
- the UE is further configured with another MCG Repeat SRB, the method further comprising, after detecting the SCG failure: reconfiguring the another MCG Repeat SRB to perform uplink transmission through the MCG.
- the method further comprises: reporting the SCG failure to the base station, wherein reporting the SCG failure to the base station comprises: repeating the SRB with the reconfigured MCG, transmitting the SCG failure information to the base station through the MCG, or using the MCG SRB through the common control
- the channel CCCH sends SCG failure information to the base station.
- the method further includes: receiving, from the base station, indication information, the indication information indicating whether the UE performs uplink transmission by the MCG when the SCG fails, where the reconfiguration only indicates that the SCG is invalid in the indication information. It is executed when uplink transmission is performed by the MCG.
- a user equipment UE comprising a transceiver, a processor and a memory, the processor storing instructions executable by the processor such that the UE performs according to the first aspect described above The method described.
- a method in a base station where the base station is a primary cell group MCG base station, and communicates with a user equipment UE by using an MCG repeated signaling radio bearer SRB, the MCG repeating SRB and MCG and auxiliary
- the cell group SCG is associated and configured to perform uplink transmission by the SCG, the method comprising: receiving a report of the secondary cell group SCG failure from the UE; and reconfiguring the MCG repeated SRB to receive an uplink transmission through the MCG.
- the receiving the SCG failure report includes: repeating the SRB with the reconfigured MCG, receiving the SCG failure information through the MCG, or receiving the SCG failure information through the common control channel CCCH by using the MCG SRB.
- the base station further communicates with the UE by another MCG repeat SRB, the method further comprising: reconfiguring the another MCG repeat SRB to receive an uplink transmission through the MCG.
- the method further includes: transmitting, to the UE, indication information, where the indication information indicates whether the UE performs uplink transmission by using an MCG when the SCG fails.
- a base station comprising a transceiver, a processor and a memory, the processor storing instructions executable by the processor, such that the base station performs the method according to the third aspect described above method.
- Figure 1 shows a schematic diagram of MCG repeated SRB data transmission
- FIG. 2 shows a schematic diagram of a protocol architecture in a user equipment UE
- FIG. 3 illustrates a flow chart of a method in a user equipment in accordance with an embodiment of the present disclosure
- FIG. 4 shows a block diagram of a user equipment in accordance with an embodiment of the present disclosure
- FIG. 5 shows a flow chart of a method in a base station according to an embodiment of the present disclosure
- FIG. 6 shows a block diagram of a base station in accordance with an embodiment of the present disclosure.
- RRC Radio Resource Control, radio resource control.
- PDCP Packet Data Convergence Protocol, Packet Data Convergence Protocol.
- the PDCP may represent NR or PDCP in LTE or eLTE, unless otherwise specified.
- RLC Radio Link Control, radio link control.
- the RLC may represent NR or RLC in LTE or eLTE, unless otherwise specified.
- the transmission mode of the RLC entity may be configured as one of a transparent transmission mode TM, a non-acknowledged mode UM, or an acknowledged mode AM.
- the MAC Medium Access Control, media access control.
- the MAC may represent a MAC entity in NR or LTE or eLTE, unless otherwise specified.
- CCCH Common Control Channel, common control channel.
- PDU Protocol Data Unit, protocol data unit.
- SDU Service Data Unit, service data unit.
- data received from the upper layer or sent to the upper layer is referred to as an SDU
- data transmitted to the lower layer or received from the lower layer is referred to as a PDU
- the data received by the PDCP entity from the upper layer or the data sent to the upper layer is called a PDCP SDU
- the data received by the PDCP entity from the RLC entity or the data sent to the RLC entity is called a PDCP PDU (ie, an RLC SDU).
- Master eNB or Master gNB denoted as MeNB (corresponding to E-UTRAN or base station of LTE or eLTE) or MgNB (base station corresponding to 5G-RAN or NR).
- MeNB corresponding to E-UTRAN or base station of LTE or eLTE
- MgNB base station corresponding to 5G-RAN or NR.
- the eNB that terminates at least the control node mobility management entity (which may be denoted as S1-MME) that processes the interaction between the UE and the core network; or the gNB that terminates at least in NG-C, the NG-C is NG -RAN and 5GC control plane interface.
- S1-MME control node mobility management entity
- Secondary base station Secondary eNB or Secondary gNB, denoted as SeNB (corresponding to E-UTRAN or base station of LTE or eLTE) or SgNB (base station corresponding to 5G-RAN or NR).
- SeNB E-UTRAN or base station of LTE or eLTE
- SgNB base station corresponding to 5G-RAN or NR.
- a base station that is not the primary base station but provides additional radio resources to the UE.
- Primary cell Primary Cell, PCell.
- the cell working on the primary frequency may be a cell on which the UE performs an initial connection establishment procedure or initiates a connection re-establishment procedure or is designated as a primary cell in the handover procedure.
- a cell of the present disclosure may also be referred to as a carrier or a set of beam.
- Primary and secondary cells Primary Secondary Cell, PSCell.
- the SCG cell that the UE is used to perform random access is performed in performing the process of changing the SCG.
- Secondary cell Secondary Cell, SCell.
- a cell operating on a secondary frequency that can be configured after the RRC connection is established and can be used to provide additional radio resources.
- Cell group Cell Group, CG, in a dual or multiple connection, a group of serving cells or carriers associated with a primary or secondary base station.
- MCG Master Cell Group
- the MCG is composed of all serving cells; for a UE configured with dual connectivity, the MCG is composed of a subset of serving cells (ie, a group of serving cells associated with the primary base station), including PCell and 0.
- One or more SCells are included in the MCG.
- Secondary cell group Secondary Cell Group, SCG.
- SCG Secondary Cell Group
- the SCG can contain one PSCell and can also contain one or more SCells.
- Dual connection In NR, the UE is configured to utilize the resources provided by two different schedulers in the RRC connected state, and the two schedulers are respectively located in two non-ideal backhaul connections.
- Base station In LTE/LTE-A/eLTE, a UE in an RRC connected state is configured with one MCG and one SCG; in other words, a UE with two receivers and/or transmitters in a connected state is configured to use two EUTRAN radio resources provided by different schedulers, the scheduler can be connected through non-ideal backhaul.
- Dual connectivity data transmission methods include but are not limited to: data repetition, link selection.
- the link selection transmission mode refers to that the same data or PDCP PDU or PDCP SDU is sent in one of the radio resources provided by the two cell groups or two cell groups configured for the UE.
- DRB Data Radio Bearer carrying user plane data
- a data radio bearer carrying the user plane data or simply referred to as a data bearer.
- the radio protocol In dual connectivity, in LTE/LTE-A/eLTE, the radio protocol is located at the primary base station and the secondary base station and simultaneously utilizes the DRB of the resources provided by the primary base station and the secondary base station.
- the PDCP entity that separates the DRB is located at the primary base station (that is, the data first arrives at the primary base station and is forwarded by the primary base station to the secondary base station to implement data separation in the primary base station), it is called MCG separation DRB;
- MCG separation DRB if the PDCP entity separating the DRB is located at the secondary base station (The data arrives at the secondary base station first, and the secondary base station forwards it to the primary base station to implement data separation in the secondary base station.)
- SCG separation DRB This is called SCG separation DRB.
- the separation DRB described in the present disclosure may be an MCG separation DRB or an SCG separation DRB. The embodiments of the present disclosure are also applicable to scenarios in which the MCG split DRB and the SCG split DRB
- the SRB Signalling Radio Bearer, signaling radio bearer.
- the bearer may be used to transmit RRC messages and NAS messages or only to transmit RRC messages and NAS messages.
- the SRB may include SRB0, SRB1, SRB1bis, and SRB2.
- the SRB0 is used for the RRC message using the CCCH logical channel;
- the SRB1 is used for the RRC message using the DCCH logical channel, and the RRC message may include the NAS message, and the SRB1 is also used to transmit the NAS message before the establishment of the SRB2.
- the SRB1bis is used for the RRC message and the NAS message of the DCCH logical channel before the security activation, and the RRC message may include the NAS message.
- SRB2 is used for RRC messages and NAS messages using DCCH logical channels, and the RRC messages include recorded measurement information (or measurement logs).
- the SRB may be an MCG SRB or an SCG SRB.
- the bearer described in this disclosure may be an SRB or a DRB.
- the radio protocol In dual connectivity, in LTE/LTE-A/eLTE, the radio protocol is located at the primary base station and the secondary base station and simultaneously utilizes the SRB of the resources provided by the primary base station and the secondary base station.
- the primary base station ie, signaling, which may also be referred to as data, forwarded by the primary base station to the secondary base station, and signaling is separated in the primary base station
- MCG separation SRB MCG separation SRB
- the PDCP entity and/or the RRC that separates the SRBs are located in the secondary base station (ie, signaling, which may also be referred to as data, and is forwarded by the secondary base station to the primary base station to implement signaling separation in the secondary base station), and is referred to as an SCG separation SRB.
- MCG split bearer In the dual connection, in the NR, if a bearer's wireless protocol is separated in the primary base station and belongs to the MCG and SCG, it is called an MCG split bearer.
- the MCG separation bearer may be an MCG separation DRB or an MCG separation SRB.
- the SCG split bearer may be an SCG split DRB or an SCG split SRB.
- the isolated SRB described in the present disclosure may be an MCG-separating SRB or an SCG-separating SRB.
- the embodiments of the present disclosure are also applicable to scenarios in which the MCG separation SRB and the SCG separation SRB are not distinguished.
- the split SRB can be configured to transmit using packet repetition or link selection.
- the split bearer may include: MCG split DRB, MCG split SRB, SCG split DRB, SCG split SRB.
- Packet repetition Also known as repetition or data repetition, both SRB and DRB can configure packet repetition.
- a radio bearer including SRB and DRB
- a secondary RLC entity and a secondary logical channel are added for the radio bearer to process the duplicate PDCP PDU.
- the PDCP packet repetition means that the same PDCP PDU is sent two or more times, once in the original RLC entity, and once in the secondary RLC entity, and the two transmitted PDCP PDUs are not sent on the same carrier.
- the two logical channels of the radio bearer configured with the packet repetition belong to different MAC entities.
- the packet repeats the split bearer in the dual connectivity mode, the split bearer of the packet repetition is configured.
- the same data is transmitted on two radio protocols of the split bearer, and may include a packet repeat MCG split SRB, a packet repeat SCG split SRB, a packet repeat MCG split DRB, and a packet repeat SCG split DRB. If it is a packet repeating MCG split bearer, the PDCP entity located at the primary base station or MCG is responsible for packet repetition and/or repeated packet removal; if it is a packet repeat SCG split bearer, the PDCP entity located at the secondary base station or SCG is responsible for packet repetition. And/or repeat group removal.
- FIG. 1 shows a schematic diagram of packet repeating MCG split SRB downlink transmission between a base station and a user equipment UE in dual connectivity. It should be understood that the same protocol architecture may be adopted for packet repeating MCG split SRB uplink transmission between the base station and the UE, except that data is transmitted from the UE to the base station, that is, the arrow in FIG. 1 is reversed. As shown in FIG. 1, data (e.g., PDCP PDUs) are transmitted on two radio protocols separating the SRBs (corresponding to two RLC entities associated with the same PDCP entity), utilizing primary and secondary base station resources.
- data e.g., PDCP PDUs
- the split SRBs corresponding to the configuration packet are duplicated, and each PDCP PDU is sent to the receiver through two RLC entities.
- the interface between the primary base station and the secondary base station can be recorded as Xn or Xx or X2.
- the interfaces may be named differently depending on the type of MeNB and SeNB. For example, if the MeNB is an LTE eNB, the SeNB is a gNB, the interface is denoted as Xx, and if the MeNB is a gNB and the SeNB is an eLTE eNB, the interface is denoted as Xn.
- Figure 2 shows a schematic diagram of the protocol architecture in the UE of the user equipment in the dual connectivity scenario.
- one RRC entity and/or PDCP entity separating the SRBs are associated with two RLC entities, two logical channels, and two MAC entities.
- Some embodiments of the present disclosure are exemplified by sending a packet or a PDCP PDU twice (ie, one PDCP PDCP PDU is transmitted on its associated two RLC entities and/or two logical channels), but the technical solution described in this disclosure is not A scenario limited to two transmissions of PDCP PDUs can be easily extended to a scenario in which a PDCP PDU is transmitted multiple times (ie, one PDCP entity associates multiple RLC entities and/or multiple logical channels).
- the MCG split SRB configured with the packet repetition is referred to as an MCG repeat SRB; the SRB or the radio protocol using only the resources of the primary base station or the MCG is only referred to as the MCG SRB of the primary base station or the SRB of the MCG.
- SRB0 can be configured as MCG SRB0, that is, the radio protocol of SRB0 is located in the MCG, and the radio resources provided by the MCG are used for transmission (including uplink transmission and downlink transmission);
- SRB1 can be configured as MCG SRB1 or MCG repetition.
- SRB1; SRB2 can be configured as MCG SRB2 or MCG Repeat SRB2.
- the downlink transmission of the MCG repeat SRB1 or SRB2 is transmitted in a packet repetition manner, and the uplink transmission is configured to adopt MCG or SCG or MCG and SCG through RRC signaling.
- the RLC entity and the MAC entity belonging to or located in the corresponding MCG are denoted as MCG-RLC and MCG-MAC; the RLC entity and MAC entity belonging to or located in or corresponding to the SCG are denoted as SCG-RLC and SCG -MAC.
- FIG. 3 illustrates a flow diagram of a method 300 in a user equipment in accordance with an embodiment of the present disclosure.
- the UE is configured with a primary cell group MCG repeated signaling radio bearer SRB (eg, SRB1) associated with the primary cell group MCG and the secondary cell group SCG and configured for uplink transmission by the SCG.
- SRB primary cell group MCG repeated signaling radio bearer
- the user equipment UE may receive radio link control RRC signaling (also referred to as RRC message) from the autonomous base station, where the RRC signaling is used to configure or reconfigure the MCG to repeat the SRB1 or reconfigure the MCG SRB1 to The MCG repeats SRB1, and the RRC signaling may be an RRC connection reconfiguration message RRCConnectionReconfiguration.
- RRC signaling also referred to as RRC message
- the RRC signaling used to configure the MCG repeat SRB1 carries an indication flag for indicating that the MCG repeats the uplink transmission path or the uplink transmission mode or the uplink transmission configuration of the SRB1, and the MCG repeats the uplink transmission of the SRB1 by using the MCG.
- the radio resources are transmitted in a packet repetition manner or the PDCP entity transmits the same PDCP PDU to the MCG-RLC and SCG-RLC).
- the value of the indication identifier may be MCG, SCG, both or duplicate.
- the uplink transmission indicating that the MCG repeats SRB1 adopts the MCG that is, the PDCP entity sends the data of the SRB1 or the PDCP PDU.
- the MCG-RLC and/or the MCG-MAC are transmitted by using the radio resource of the MCG; when the value of the indication flag is the SCG, the uplink transmission indicating that the MCG repeats the SRB1 adopts the SCG, that is, the PDCP entity uses the data of the SRB1 or the PDCP PDU.
- the SCG-RLC and/or the SCG-MAC are used to transmit the radio resources of the SCG.
- the uplink transmission indicating that the MCG repeats the SRB1 adopts the MCG and the SCG that is, the PDCP entity adopts the SRB1.
- the same data or PDCP PDU is transmitted through MCG-RLC, MCG-MAC and SCG-RLC, SCG-MAC and using the radio resources of MCG and SCG (transmitted in packet repetition mode).
- the value of the indication identifier may also be other values, and different values are used to indicate that the uplink transmission of the MCG repetition SRB1 adopts one of three modes: MCG, SCG, and MCG and SCG.
- the RRC signaling used to configure the MCG repeat SRB1 carries an indication flag.
- the uplink transmission of the MCG repeat SRB1 adopts the MCG ( Or SCG); when the value of the indication identifier is 1 or false or Release, etc., the uplink transmission indicating that the MCG repeats SRB1 adopts SCG (or MCG).
- the uplink transmission indicating that the MCG repeats SRB1 adopts MCG and SCG.
- the RRC signaling used to configure the MCG repeat SRB1 carries an indication flag.
- the uplink transmission of the MCG repeat SRB1 adopts the MCG and SCG (or SCG); when the value of the indication identifier is 1 or false or Release, etc., the uplink transmission indicating that the MCG repeats SRB1 adopts SCG (or MCG and SCG).
- the uplink transmission indicating that the MCG repeats SRB1 adopts the MCG.
- method 300 includes the following steps.
- step S310 the SCG failure is detected.
- the SCG failure in the present disclosure may be that the SCG radio link fails or changes the SCG failure or exceeds the maximum uplink transmission time difference when the information element powerControlMode configured to indicate the power control mode used in the dual connectivity scenario is set to 1.
- the (maximum uplink transmission timing difference) causes the uplink transmission of the PSCell to be stopped.
- the SCG radio link failure described in this disclosure can be triggered by the following events:
- Event 1 The timer T313 for monitoring the PSCell not being synchronized expires.
- Event 2 Received SCG MAC random access problem (or error) indication.
- Event 3 Repeat SRB or SCG SRB for SCG DRB or split DRB or MCG, receiving an indication from the SCG RLC entity that the maximum number of retransmissions has been reached.
- step S320 the MCG repeat SRB is reconfigured to perform uplink transmission through the MCG, or trigger MCG failure.
- the UE is further configured with another MCG Repeat SRB (eg, SRB2), and the method 300 further includes, after detecting the SCG failure: reconfiguring the another MCG Repeat SRB for uplink transmission through the MCG .
- another MCG Repeat SRB eg, SRB2
- reconfiguration may be performed by releasing the uplink transmission configuration of the MCG Repeat SRB or the another MCG Repeat SRB.
- method 300 further includes reporting the SCG failure to the base station.
- Reporting the SCG failure to the base station includes: repeating the SRB by using the reconfigured MCG, transmitting the SCG failure information to the base station through the MCG, or transmitting the SCG failure information to the base station through the common control channel CCCH by using the MCG SRB.
- the method 300 further includes receiving, from the base station, indication information indicating whether the UE performs uplink transmission through the MCG when the SCG fails.
- the reconfiguration is performed only when the indication information indicates that uplink transmission is performed by the MCG when the SCG fails.
- the RRC signaling further includes an indication identifier, where the indication identifier is used to indicate whether the uplink transmission may be performed by using the MCG when the SCG fails, or if the MCG repeats the SRB1.
- the uplink transmission is configured to adopt SCG (or MCG and SCG), and whether the MCG can be used for uplink transmission when the SCG fails.
- the indication value of the indication flag is "1" or “TRUE” or “setup” or the indication identifier appears, it indicates that if the uplink transmission of the MCG repetition SRB is configured to adopt SCG or MCG and SCG, then when SCG In the event of a failure, the MCG repeats the SRB uplink transmission using the MCG.
- the indication value of the indication flag is “0” or “false” or “release” or the indication identifier does not appear, it indicates that if the uplink transmission of the MCG repeat SRB is configured to adopt SCG or MCG and SCG, when the SCG fails
- the uplink UL common control channel CCCH is used to transmit SCG failure information or release the uplink transmission configuration of the MCG repeated SRB.
- the MCG repeats the SRB uplink transmission to adopt the MCG, and when the MCG repeats the SRB uplink transmission is configured to adopt the SCG or the MCG and the SCG, if the SCG failure occurs, the MCG repeats the SRB uplink transmission adopting the MCG.
- reconfiguring the MCG repeat SRB (or split SRB) to perform uplink transmission through the MCG may also be expressed as reconfiguring the PDG entity of the MCG repeat SRB (or split SRB) so that the PDCP PDU passes the MCG or the MCG.
- the RLC transmits or reconfigures the PDCP entity of the MCG Repeat SRB (or Separate SRB) such that the PDCP entity sends the PDCP PDU to the MCG-RLC.
- Method 300 is described below with reference to specific examples. Here, without loss of generality, it is assumed that the above MCG repeat SRB is SRB1, and the other MCG repeat SRB is SRB2.
- the SCG failure information process is initiated to report the SCG failure.
- the user equipment repeats different uplink transmission configurations of SRB1 according to the MCG, and the SCG failure information procedure is different. specifically,
- the SCG failure information procedure includes at least one of the following operations: A. Suspending SCG transmission of all SCG DRBs and suspending separate DRBs and separating SRBs (or separation) SBR SCG downlink transmission); B. reset SCG-MAC; C. stop timer T307 for monitoring change SCG failure; D. initiate transmission process of transmitting SCGFailureInformation message.
- the SCGFailureInformation message is used to provide error information detected by the UE, and is transmitted by using the MCG.
- the SCG failure information procedure includes at least one of the following operations: A. suspending all SCG DRBs and suspending separate DRBs and separating SRBs for SCG transmissions (or The uplink and/or downlink transmission of the SCG separating the SRBs; B. resetting the SCG-MAC; C. stopping the timer T307 for monitoring the failure to change the SCG; D. initiating the transmission process of transmitting the SCGFailureInformation message.
- the SCGFailureInformation message is transmitted by using the MCG.
- the SCG failure information procedure includes at least one of the following operations: A. Suspending SCG transmission of all SCG DRBs and suspending separate DRBs and/or SCG transmissions separating SRBs (or SCGs separating SCB downlink transmissions or MCG repetition SRBs) B) reset SCG-MAC; C. stop timer T307 for monitoring change of SCG failure; D.
- the process includes reconfiguring MCG repeat SRB1 to uplink through MCG
- the SCGFailureInformation message is sent to the lower layer for transmission; or the PDCP entity indicating or reconfiguring the MCG repeats SRB1 transmits the SCGFailureInformation message through the MCG (that is, using the resources provided by the MCG); or, the PDCP entity that reconfigures the MCG to repeat the SRB1 To release the restriction that the data (or uplink data) that will separate SRB1 is transmitted through the SCG; or, release the MCG to repeat the SRB1 uplink transmission configuration.
- the SCG failure information procedure includes at least one of the following operations: A. suspending SCG transmission of all SCG DRBs and suspending separate DRBs and/or SCG transmission of MCG repetition SRB1 (or SCG downlink transmission of MCG repetition SRB1); Reset SCG-MAC; C. Stop timer T307 for monitoring change of SCG failure; D.
- Start transmission process of transmitting SCGFailureInformation message includes reconfiguring MCG repeat SRB1 to perform uplink transmission through MCG, and send SCGFailureInformation message Sending to the lower layer for transmission; or, the PDCP entity indicating or reconfiguring the MCG repeating SRB1 transmits the SCGFailureInformation message through the MCG; or reconfiguring the MCG to repeat the PDCP entity of the SRB1 to release the data (or uplink data) separating the SRB1 through the SCG transmission Or, release MCG to repeat SRB1 uplink transmission configuration; E.
- MCG repeats SRB2 uplink transmission is configured to adopt SCG, reconfigure MCG repeat SRB2 for uplink transmission through MCG, or instruct or reconfigure PDCP entity release MCG repeats the uplink transmission of SRB2 through the restriction of SCG transmission, or suspends SCG transmission of MCG repeat SRB2, or releases MCG repeat SRB 2 uplink transmission configuration.
- the SCG failure information procedure includes at least one of the following operations: A. suspending all SCG DRBs and SCG transmissions that suspend separate DRBs and/or SCG transmissions separating SRBs (or SCG downlink transmissions separating SRBs); B. The MCG repeats the SRB reconfiguration to perform uplink transmission through the MCG or reconfigures the PDCP entities of all MCG repetition SRBs to release the restriction that the data of the separated SRB (or uplink data) is transmitted through the SCG; or, releases the MCG repeated SRB uplink transmission configuration; C. reset SCG-MAC; D. stop timer T307 for monitoring failure to change SCG; E. initiate transmission process of SCGFailureInformation message, which is transmitted by MCG.
- the user equipment UE detects the SCG failure. If the uplink transmission of the MCG repeat SRB1 is configured to adopt the SCG, it is considered that the wireless link of the MCG is detected to be invalid, and the related procedure that should be performed when the MCG fails to initiate the radio link is initiated.
- the RRC signaling further includes an indication identifier for indicating whether the MCG radio link failure is triggered when the SCG fails.
- the indication identifier indicates that the MCG radio link fails when the SCG fails, if the MCG repeats the uplink transmission of the SRB1 to be configured to adopt the SCG, it is considered that the radio link of the MCG is detected to be invalid, and the radio link failure occurs when the initiation occurs.
- the relevant process of execution For example, if the value of the indication identifier is “1” or “TRUE” or “setup” or the indication identifier appears, the MCG radio link fails when the SCG fails. When the value of the indication identifier is "0" or "FALSE” or "release” or the indication flag does not appear, the MCG radio link failure is not triggered when the SCG fails. vice versa.
- the RRC signaling further includes an indication identifier for indicating whether the SCG fails when the SCG fails. Triggers the MCG radio link to fail.
- the indication identifier indicates that the MCG radio link fails when the SCG fails
- the MCG repeats the uplink transmission of the SRB1 to be configured to adopt the SCG or the MCG and the SCG it is considered that the wireless link of the MCG is detected to be invalid, and the wireless chain is activated. The relevant process that should be performed when the road fails.
- the SCG failure information procedure includes at least one of the following operations: A. suspending SCG transmission of all SCG DRBs and suspending separate DRBs and/or SCG transmissions separating SRBs (or SCG downlink transmissions separating SRBs); B. resetting SCG-MAC; C. Stop the timer T307 for monitoring the failure to change the SCG; D. Start the transmission process of transmitting the SCGFailureInformation message, use the UL-CCCH to transmit the SCGFailureInformation message or use the UL-CCCH (ie, SRB0) for the uplink transmission.
- the RRC signaling further includes an indication identifier for indicating whether to use the UL-CCCH to transmit the SCGFailureInformation message or perform uplink transmission when the SCG fails.
- the UL-CCCH transmission SCGFailureInformation message may be used when the SCG fails by using the UL-CCCH transmission SCGFailureInformation message when the value of the indication identity should be SCG failure. For example, if the value of the indication identifier is “1” or “TRUE” or “setup” or the indication identifier appears, the SCGFailureInformation message is transmitted by using the UL-CCCH when the SCG fails.
- the SCGailureInformation message is not adopted when the SCG fails, or the MCG radio link failure is triggered. vice versa.
- the RRC signaling further includes an indication identifier for indicating that when the SCG fails, Whether to transmit SCGFailureInformation message using UL-CCCH.
- the UL-CCCH transmission SCGFailureInformation message may be used when the SCG fails to use the UL-CCCH transmission SCGFailureInformation message if the value of the indication identity should be SCG failure.
- the SCGFailureInformation message is transmitted by using the UL-CCCH when the SCG fails.
- the SCGailureInformation message is not adopted when the SCG fails, or the MCG radio link failure is triggered. vice versa.
- the SCG failure information procedure includes at least one of the following operations: A. suspending SCG transmission of all SCG DRBs and suspending separate DRBs and/or SCG transmissions separating SRBs (or SCG downlink transmissions separating SRBs); B. resetting SCG-MAC; C. Stop the timer T307 for monitoring the failure to change the SCG; D. Start the transmission process of transmitting the SCGFailureReport message, which is used to indicate the SCG failure or to request the base station to reconfigure the MCG to repeat the SRB or for providing
- the error information detected by the UE is transmitted by using the UL-CCCH transmission SCGFailureReport message or using UL-CCCH (ie, SRB0) for uplink transmission.
- the UE After receiving the message from the base station for reconfiguring the uplink transmission of the MCG repeat SRB, the UE starts the transmission process of transmitting the SCGFailureInformation message, and utilizes The reconfigured MCG repeats the SSR uplink transmission to transmit the SCGFailureInformation message.
- the RRC signaling further includes an indication identifier for indicating whether to use the UL-CCCH to transmit the SCGFailureReport message or perform uplink transmission when the SCG fails. If the value of the indication identifier is SCG failure, the UL-CCCH transmission SCGFailureReport message is adopted, and the SCGFailureReport message can be transmitted by using the UL-CCCH when the SCG fails; otherwise, the SCGFailureReport message is not transmitted by using the UL-CCCH or the MCG wireless chain is triggered. The road is invalid.
- the SCGFailureReport message is transmitted by using the UL-CCCH when the SCG fails.
- the SCGailureReport message is not adopted when the SCG fails, or the MCG radio link failure is triggered. vice versa.
- the RRC signaling further includes an indication identifier for indicating that when the SCG fails, Whether to transmit the SCGFailureReport message using UL-CCCH. If the value of the indication identifier is SCG failure, the UL-CCCH transmission SCGFailureReport message is adopted, and the SCGFailureReport message can be transmitted by using the UL-CCCH when the SCG fails; otherwise, the SCGFailureReport message is not transmitted by using the UL-CCCH or the MCG wireless chain is triggered. The road is invalid.
- the SCGFailureReport message is transmitted by using the UL-CCCH when the SCG fails.
- the SCGailureReport message is not adopted when the SCG fails, or the MCG radio link failure is triggered. vice versa.
- the operation in the foregoing SCG failure information process may further include: reconfiguring the MCG repetition SRB2 to perform uplink transmission by using the MCG.
- FIG. 4 shows a block diagram of a UE 400 in accordance with an embodiment of the present disclosure.
- the UE 400 is configured with a primary cell group MCG repetition signaling radio bearer SRB, the MCG repetition SRB being associated with the primary cell group MCG and the secondary cell group SCG and configured for uplink transmission by the SCG.
- the UE 400 includes a transceiver 410, a processor 420, and a memory 430 that stores instructions executable by the processor 420 such that the base station 400 performs the method 300 described above in connection with FIG. .
- the processor 430 stores instructions executable by the processor 420 such that the UE 400: detects SCG failure; and reconfigures the MCG repeated SRB to perform uplink transmission through the MCG, or triggers an MCG failure.
- the UE 400 is also configured with another MCG Repeat SRB.
- the processor 430 also stores instructions executable by the processor 420 such that after detecting the SCG failure, the UE 400 reconfigures the other MCG repeated SRB for uplink transmission through the MCG.
- the processor 430 also stores instructions executable by the processor 420 such that the UE 400: reports SCG failure to the base station, wherein reporting the SCG failure to the base station includes: repeating the SRB with the reconfigured MCG, passing The MCG sends SCG failure information to the base station, or transmits the SCG failure information to the base station through the common control channel CCCH by using the MCG SRB.
- the processor 430 also stores instructions executable by the processor 420 such that the UE 400: receives indication information from the base station, the indication information indicating whether the UE performs uplink transmission through the MCG when the SCG fails, where The reconfiguration is performed only when the indication information indicates that uplink transmission is performed by the MCG when the SCG fails.
- FIG. 5 is a flow chart showing a method 500 in a base station in accordance with an embodiment of the disclosure.
- the base station is a primary cell group MCG base station, and communicates with the user equipment UE through the MCG repeated signaling radio bearer SRB, and the MCG repeat SRB is associated with the MCG and the secondary cell group SCG and configured to perform uplink transmission through the SCG.
- method 500 includes the following steps.
- step S510 a report of the secondary cell group SCG failure is received from the UE.
- step S520 the MCG repeat SRB is reconfigured to receive an uplink transmission through the MCG.
- the receiving the SCG failure report includes: repeating the SRB with the reconfigured MCG, receiving the SCG failure information through the MCG, or receiving the SCG failure information through the common control channel CCCH using the MCG SRB.
- the base station also communicates with the UE via another MCG repeat SRB, the method 500 further comprising reconfiguring the another MCG repeat SRB to receive an uplink transmission through the MCG.
- the method 500 further includes: transmitting, to the UE, indication information, the indication information indicating whether the UE performs uplink transmission by the MCG when the SCG fails.
- FIG. 6 shows a block diagram of a base station 600 in accordance with an embodiment of the present disclosure.
- the base station is a primary cell group MCG base station, and communicates with the user equipment UE through the MCG repeated signaling radio bearer SRB, and the MCG repeat SRB is associated with the MCG and the secondary cell group SCG and configured to perform uplink transmission through the SCG.
- base station 600 includes a transceiver 610, a processor 620, and a memory 630 that stores instructions executable by the processor 620 such that the base station 600 performs the method 500 described above in connection with FIG. .
- the processor 630 stores instructions executable by the processor 620, such that the base station 600 receives a report of the secondary cell group SCG failure from the UE; and reconfigures the MCG repeated SRB to receive the uplink transmission through the MCG. .
- the receiving the SCG failure report includes: repeating the SRB with the reconfigured MCG, receiving the SCG failure information through the MCG, or receiving the SCG failure information through the common control channel CCCH using the MCG SRB.
- the base station also communicates with the UE via another MCG repeat SRB, the processor 630 also storing instructions executable by the processor 620 such that the base station 600: repeats the SRB for the other MCG Reconfigured to receive upstream transmissions through the MCG.
- the processor 630 stores instructions executable by the processor 620 such that the base station 600: transmits indication information to the UE, the indication information indicating whether the UE performs uplink transmission through the MCG when the SCG fails.
- Computer executable instructions or programs running on a device in accordance with the present invention may be a program that causes a computer to implement the functions of an embodiment of the present invention by controlling a central processing unit (CPU).
- the program or information processed by the program may be temporarily stored in a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memory system.
- Computer-executable instructions or programs for implementing the functions of various embodiments of the present invention may be recorded on a computer readable storage medium.
- the corresponding functions can be realized by causing a computer system to read programs recorded on the recording medium and execute the programs.
- the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as a peripheral device).
- the "computer readable storage medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium of a short-term dynamic storage program, or any other recording medium readable by a computer.
- circuitry e.g., monolithic or multi-chip integrated circuits.
- Circuitry designed to perform the functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above.
- DSPs digital signal processors
- ASICs application specific integrated circuits
- FPGAs field programmable gate arrays
- a general purpose processor may be a microprocessor or any existing processor, controller, microcontroller, or state machine.
- the above circuit may be a digital circuit or an analog circuit.
- One or more embodiments of the present invention may also be implemented using these new integrated circuit technologies in the context of new integrated circuit technologies that replace existing integrated circuits due to advances in semiconductor technology.
- the present invention is not limited to the above embodiment. Although various examples of the embodiments have been described, the invention is not limited thereto.
- Fixed or non-mobile electronic devices installed indoors or outdoors can be used as terminal devices or communication devices such as AV devices, kitchen devices, cleaning devices, air conditioners, office equipment, vending machines, and other home appliances.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开提供了一种用户设备UE中的方法,所述UE被配置有主小区组MCG重复信令无线承载SRB,所述MCG重复SRB与主小区组MCG和辅小区组SCG相关联并被配置为通过SCG进行上行传输,所述方法包括:检测到SCG失效;以及将所述MCG重复SRB重配置为通过MCG进行上行传输,或触发MCG失效。
Description
本公开涉及无线通信技术领域,更具体地,本公开涉及用户设备、基站和与辅小区组SCG失效相关的方法。
2016年3月,在第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN#71次全会上,NTT DOCOMO提出了一个关于5G技术标准的新的研究项目(参见非专利文献:RP-160671:New SID Proposal:Study on New Radio Access Technology),并获批准。该研究项目的目的是开发一个新的无线(New Radio:NR)接入技术以满足5G的所有应用场景、需求和部署环境。NR主要有三个应用场景:增强的移动宽带通信(Enhanced mobile broadband:eMBB)、大规模机器类通信(massive Machine type communication:mMTC)和超可靠低延迟通信(Ultra reliable and low latency communications:URLLC)。
在2016年10月召开的3GPP RAN2#96次会议上达成为满足URLLC对可靠性的要求,对多连接(包括双连接)进行研究。所述多连接可以采用分组重复(也称为包重复)或连路选择等机制。在2017年1月召开的3GPP NR AdHoc会议上达成在NR-PDCP实体中支持用户面和数据面的分组重复功能,发送端PDCP实体功能支持分组重复,且接收端PDCP实体功能支持删除重复包。在2017年6月召开的3GPP NR AdHoc会议上达成在双连接场景下,主基站决定是否使用主小区组MCG重复信令无线承载SRB并通过主基站无线链路控制RRC信令配置MCG重复SRB。此外,此次会议还达成在双连接场景中,对于MCG重复SRB,通过RRC信令配置上行传输采用MCG、辅小区组SCG还是在MCG和SCG采用重复传输方式传输。
期望解决在支持分组重复的双连接场景下的,当RRC信令为MCG重复SRB配置了上行传输采用SCG,但发生SCG失效所涉及的问题。
发明内容
根据本公开的第一方面,提供了一种用户设备UE中的方法,所述UE被配置有主小区组MCG重复信令无线承载SRB,所述MCG重复SRB与主小区组MCG和辅小区组SCG相关联并被配置为通过SCG进行上行传输,所述方法包括:检测到SCG失效;以及将所述MCG重复SRB重配置为通过MCG进行上行传输,或触发MCG失效。
在实施例中,所述UE还被配置有另一MCG重复SRB,所述方法还包括,在检测到SCG失效之后:将所述另一MCG重复SRB重配置为通过MCG进行上行传输。
在实施例中,所述方法还包括:向基站报告SCG失效,其中,向基站报告SCG失效包括:利用重配置的MCG重复SRB,通过MCG向基站发送SCG失效信息,或利用MCG SRB通过公共控制信道CCCH向基站发送SCG失效信息。
在实施例中,所述方法还包括:从基站接收指示信息,所述指示信息指示UE在SCG失效时是否通过MCG进行上行传输,其中,所述重配置仅在所述指示信息指示在SCG失效时通过MCG进行上行传输的情况下执行。
根据本公开的第二方面,提供了一种用户设备UE,包括收发机、处理器和存储器,所述处理器存储所述处理器可执行的指令,使得所述UE执行根据上述第一方面所述的方法。
根据本公开的第三方面,提供了一种基站中的方法,所述基站是主小区组MCG基站,通过MCG重复信令无线承载SRB与用户设备UE通信,所述MCG重复SRB与MCG和辅小区组SCG相关联并被配置为通过SCG进行上行传输,所述方法包括:从所述UE接收辅小区组SCG失效的报告;以及将所述MCG重复SRB重配置为通过MCG接收上行传输。
在实施例中,所述接收SCG失效的报告包括:利用重配置的MCG重复SRB,通过MCG接收SCG失效信息,或利用MCG SRB通过公共控制信道CCCH接收SCG失效信息。
在实施例中,所述基站还通过另一MCG重复SRB与所述UE通信, 所述方法还包括:将所述另一MCG重复SRB重配置为通过MCG接收上行传输。
在实施例中,所述方法还包括:向所述UE发送指示信息,所述指示信息指示UE在SCG失效时是否通过MCG进行上行传输。
根据本公开的第四方面,提供了一种基站,包括收发机、处理器和存储器,所述处理器存储所述处理器可执行的指令,使得所述基站执行根据上述第三方面所述的方法。
通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:
图1示出了MCG重复SRB数据传输的示意图;
图2示出了用户设备UE中协议架构的示意图;
图3示出了根据本公开实施例的用户设备中的方法的流程图;
图4示出了根据本公开实施例的用户设备的框图;
图5示出了根据本公开实施例的基站中的方法的流程图;
图6示出了根据本公开实施例的基站的框图。
下面结合附图和具体实施方式对本公开进行详细阐述。应当注意,本公开不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本公开没有直接关联的公知技术的详细描述,以防止对本公开的理解造成混淆。
下面描述本公开涉及的部分术语,如未特别说明,本公开涉及的术语采用此处定义。本公开给出的术语在NR、LTE和eLTE中可能采用不同的命名方式,但本公开中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
RRC:Radio Resource Control,无线资源控制。
PDCP:Packet Data Convergence Protocol,分组数据汇聚协议。在本公开中,如未特别说明,PDCP可以表示NR或LTE或eLTE中的PDCP。
RLC:Radio Link Control,无线链路控制。在本公开中,如未特别说明,RLC可以表示NR或LTE或eLTE中的RLC。RLC实体的传输模式可以配置为透传模式TM、非确认模式UM或确认模式AM之一。
MAC:Medium Access Control,媒体访问控制。在本公开中,如未特别说明,MAC可以表示NR或LTE或eLTE中的MAC实体。
CCCH:Common Control Channel,公共控制信道。
PDU:Protocol Data Unit,协议数据单元。
SDU:Service Data Unit,服务数据单元。
在本公开中,将从上层接收或发往上层的数据称为SDU,将发往下层或从下层接收的数据称为PDU。例如,PDCP实体从上层接收的数据或发往上层的数据称为PDCP SDU;PDCP实体从RLC实体接收到的数据或发往RLC实体的数据称为PDCP PDU(也就是RLC SDU)。
主基站:Master eNB或Master gNB,记为MeNB(对应E-UTRAN或LTE或eLTE的基站)或MgNB(对应5G-RAN或NR的基站)。在双连接中,至少终止于处理UE与核心网间交互的控制节点移动管理实体(可记为S1-MME)的eNB;或者,至少终止于NG-C的gNB,所述NG-C是NG-RAN和5GC的控制面接口。
辅基站:Secondary eNB或Secondary gNB,记为SeNB(对应E-UTRAN或LTE或eLTE的基站)或SgNB(对应5G-RAN或NR的基站)。在双连接中,不是主基站但为UE提供额外的无线资源的基站。
主小区:Primary Cell,PCell。工作在主频率上的小区,可以是UE在其上执行初始连接建立过程或发起连接重建过程或在切换过程中被指定为主小区的小区。本公开所述小区也可称为载波或光束集(a set of beam)。
主辅小区:Primary Secondary Cell,PSCell。在执行改变SCG的过程中指示UE用于执行随机接入的SCG小区。
辅小区:Secondary Cell,SCell。工作在辅频率上的小区,所述小区可在RRC连接建立之后配置且可用于提供额外的无线资源。
小区组:Cell Group,CG,在双连接或多连接中,关联到主基站或辅基站的一组服务小区或载波。
主小区组:Master Cell Group,MCG。对于未配置双连接的UE, MCG由所有的服务小区组成;对于配置了双连接的UE,MCG由服务小区的子集组成(即关联到主基站的一组服务小区),其中包含PCell和0个或1个或多个SCell。
辅小区组:Secondary Cell Group,SCG。在双连接中,与SeNB或SgNB关联的一组服务小区。SCG可以包含一个PSCell,还可以包含一个或多个SCell。
双连接:在NR中,处于RRC连接态下UE的被配置为利用两个不同的调度器所提供的资源,所述两个调度器分别位于两个通过非理想回程(non-ideal backhaul)连接的基站。在LTE/LTE-A/eLTE中,处于RRC连接态的UE配置了一个MCG和一个SCG;换言之,处于连接态的具有两个个接收机和/或发送机的UE被配置为使用由两个不同的调度器提供的EUTRAN无线资源,所述调度器可以通过非理想回程连接。双连接数据传输方式包括但不限于:数据重复,链路选择。所述链路选择传输方式是指同一数据或PDCP PDU或PDCP SDU在为UE配置的两个小区组或两个小区组提供的无线资源中的其中一个小区组发送。
DRB:Data Radio Bearer carrying user plane data,承载用户面数据的数据无线承载或简称数据承载。
分离DRB:在双连接中,在LTE/LTE-A/eLTE中,无线协议位于主基站和辅基站且同时利用主基站和辅基站提供的资源的DRB。如果分离DRB的PDCP实体位于主基站(即数据先到达主基站,由主基站转发给辅基站,实现数据在主基站中分离),则称为MCG分离DRB;如果分离DRB的PDCP实体位于辅基站(即数据先到达辅基站,由辅基站转发给主基站,实现数据在辅基站中分离),则称为SCG分离DRB。如未特别说明,本公开中所述分离DRB可以是MCG分离DRB,也可以是SCG分离DRB。本公开所述实施例也适用于不区分MCG分离DRB和SCG分离DRB的场景。
SRB:Signalling Radio Bearer,信令无线承载。所述承载可以用于传输RRC消息和NAS消息或仅用于传输RRC消息和NAS消息。SRB可以包括SRB0、SRB1、SRB1bis和SRB2。其中,SRB0用于采用CCCH逻辑信道的RRC消息;SRB1用于采用DCCH逻辑信道的RRC消息,所述RRC消息中可能包含NAS消息,SRB1还用于在SRB2建立之前传 输NAS消息。SRB1bis用于安全激活前采用DCCH逻辑信道的RRC消息和NAS消息,所述RRC消息中可能包含NAS消息。SRB2用于采用DCCH逻辑信道的RRC消息和NAS消息,所述RRC消息包括记录的测量信息(或称测量日志)。SRB可以是MCG SRB,也可以是SCG SRB。本公开所述承载可以是SRB或DRB。
分离SRB:在双连接中,在LTE/LTE-A/eLTE中,无线协议位于主基站和辅基站且同时利用主基站和辅基站提供的资源的SRB。如果分离SRB的PDCP实体和/或RRC位于主基站(即信令,也可称为数据,由主基站转发给辅基站,实现信令在主基站中分离),则称为MCG分离SRB;如果分离SRB的PDCP实体和/或RRC位于辅基站(即信令,也可称为数据,由辅基站转发给主基站,实现信令在辅基站中分离),则称为SCG分离SRB。
在双连接中,在NR中,如果一个承载的无线协议在主基站中分离且属于MCG和SCG,则称为MCG分离承载。所述MCG分离承载可以是MCG分离DRB或MCG分离SRB。
在双连接中,在NR中,如果一个承载的无线协议在辅基站中分离且属于MCG和SCG,则称为SCG分离承载。所述SCG分离承载可以是SCG分离DRB或SCG分离SRB。
本公开中所述分离SRB可以是MCG分离SRB,也可以是SCG分离SRB。本公开所述实施例也适用于不区分MCG分离SRB和SCG分离SRB的场景。分离SRB可以配置为采用分组重复或链路选择方式进行传输。
本公开中,分离承载可以包括:MCG分离DRB、MCG分离SRB、SCG分离DRB、SCG分离SRB。
分组重复:也可称为重复或数据重复,SRB和DRB均可配置分组重复。当无线承载(包括SRB和DRB)配置了分组重复时,为所述无线承载增加辅RLC实体和辅逻辑信道来处理重复的PDCP PDU。PDCP分组重复是指相同的PDCP PDU发送两次或多次,一次在原RLC实体,另一次在辅RLC实体,所述两次发送的PDCP PDU不在同一载波上发送。在双连接方式下,所述配置了分组重复的无线承载的两个逻辑信道属于不同的MAC实体。
分组重复分离承载:在双连接方式下,配置了分组重复的分离承载。在所述发送方式中,同一数据在分离承载的两个无线协议上发送,可以包括分组重复MCG分离SRB、分组重复SCG分离SRB、分组重复MCG分离DRB和分组重复SCG分离DRB。如果是分组重复MCG分离承载,则由位于主基站或MCG的PDCP实体负责分组重复和/或重复分组移除;如果是分组重复SCG分离承载,则由位于辅基站或SCG的PDCP实体负责分组重复和/或重复分组移除。
图1示出了在双连接中,基站与用户设备UE之间进行分组重复MCG分离SRB下行传输的示意图。应理解,对于基站与UE之间进行分组重复MCG分离SRB上行传输可以采用同样的协议架构,只是数据从UE发送到基站,即,将图1中的箭头反向即可。如图1所示,数据(例如PDCP PDU)在分离SRB的两个无线协议(对应于与同一PDCP实体相关联的两个RLC实体)上发送,利用主基站和辅基站资源。在双连接方式下,对应配置分组重复的分离SRB,每个PDCP PDU经过两个RLC实体发送给接收方。主基站和辅基站间的接口可以记为Xn或Xx或X2。根据MeNB和SeNB的不同类型,所述接口可以采用不同命名。例如,如果MeNB为LTE eNB,SeNB为gNB,则所述接口记为Xx;如果MeNB为gNB,SeNB为eLTE eNB,则所述接口记为Xn。
图2给出了双连接场景下用户设备UE中协议架构示意图。在图2所示示意图中,一个分离SRB的RRC实体和/或PDCP实体关联到两个RLC实体、两个逻辑信道和两个MAC实体。
本公开部分实施例以分组或PDCP PDU发送两次为例(即一个PDCP PDCP PDU在其关联的两个RLC实体和/或两个逻辑信道上发送),但本公开所述的技术方案并不限于PDCP PDU发送两次的场景,本领域技术人员可以容易地扩展到PDCP PDU发送多次的场景(即一个PDCP实体关联多个RLC实体和/或多个逻辑信道)。
在本公开实施例中,将配置了分组重复的MCG分离SRB称为MCG重复SRB;将仅使用主基站或MCG的资源的SRB或无线协议仅位于主基站或MCG的SRB称为MCG SRB。
在本公开实施例中,可以将SRB0配置为MCG SRB0,即SRB0的无线协议位于MCG,采用MCG提供的无线资源进行传输(包括上行传 输和下行传输);可以将SRB1配置为MCG SRB1或MCG重复SRB1;可以将SRB2配置为MCG SRB2或MCG重复SRB2。MCG重复SRB1或SRB2下行传输采用分组重复方式发送,上行传输通过RRC信令配置为采用MCG或SCG或MCG和SCG。
在本公开实施例中,将属于或位于或对应MCG的RLC实体和MAC实体记为MCG-RLC和MCG-MAC;将属于或位于或对应SCG的RLC实体和MAC实体记为SCG-RLC和SCG-MAC。
图3示出了根据本公开实施例的用户设备中的方法300的流程图。UE被配置有主小区组MCG重复信令无线承载SRB(例如SRB1),所述MCG重复SRB与主小区组MCG和辅小区组SCG相关联并被配置为通过SCG进行上行传输。
这里,用户设备UE可以接收到来自主基站的无线链路控制RRC信令(也可称为RRC消息),所述RRC信令用于为UE配置或重配置MCG重复SRB1或将MCG SRB1重配置为MCG重复SRB1,所述RRC信令可以是RRC连接重配置消息RRCConnectionReconfiguration。
在一个示例中,在用于配置MCG重复SRB1的RRC信令中携带一个指示标志,用于指示MCG重复SRB1的上行传输路径或上行传输方式或上行传输配置,MCG重复SRB1的上行传输可以采用MCG(即MCG提供的无线资源或PDCP实体将PDCP PDU发送到MCG-RLC)、SCG(即SCG提供的无线资源或PDCP实体将PDCP PDU发送到SCG-RLC)、MCG和SCG(即MCG和SCG提供的无线资源且采用分组重复方式传输或PDCP实体将同一PDCP PDU发送到MCG-RLC和SCG-RLC)。所述指示标识的取值可以为MCG,SCG,both或duplicate,当所述指示标志的取值为MCG时,表示MCG重复SRB1的上行传输采用MCG,即PDCP实体将SRB1的数据或PDCP PDU发送到MCG-RLC和/或MCG-MAC并利用MCG的无线资源发送;当所述指示标志的取值为SCG时,表示MCG重复SRB1的上行传输采用SCG,即PDCP实体将SRB1的数据或PDCP PDU通过SCG-RLC和/或SCG-MAC并利用SCG的无线资源发送;当所述指示标识的取值为both或duplicate时,表示MCG重复SRB1的上行传输采用MCG和SCG,即PDCP实体将 SRB1的同一数据或PDCP PDU通过MCG-RLC、MCG-MAC和SCG-RLC、SCG-MAC并利用MCG和SCG的无线资源发送(采用分组重复方式传输)。本实施例中,所述指示标识的取值也可以是其他值,不同取值分别用于指示MCG重复SRB1的上行传输采用MCG、SCG以及MCG和SCG三种方式中的一种。
在另一个实施例中,在用于配置MCG重复SRB1的RRC信令中携带一个指示标志,当所述指示标识的值为0或Ture或setup等时,表示MCG重复SRB1的上行传输采用MCG(或SCG);当所述指示标识的值为1或false或Release等时,表示MCG重复SRB1的上行传输采用SCG(或MCG)。当所述指示标识不出现时,表示MCG重复SRB1的上行传输采用MCG和SCG。
在又一个实施例中,在用于配置MCG重复SRB1的RRC信令中携带一个指示标志,当所述指示标识的值为0或Ture或setup等时,表示MCG重复SRB1的上行传输采用MCG和SCG(或SCG);当所述指示标识的值为1或false或Release等时,表示MCG重复SRB1的上行传输采用SCG(或MCG和SCG)。当所述指示标识不出现时,表示MCG重复SRB1的上行传输采用MCG。
如图所示,方法300包括以下步骤。
在步骤S310,检测到SCG失效。
需要说明的是,本公开所述SCG失效可以是SCG无线链路失效或改变SCG失败或在用于指示双连接场景中使用的功率控制模式的信息元素powerControlMode配置为1时,超过最大上行传输时间差(maximum uplink transmission timing difference)导致停止PSCell的上行传输。
本公开所述SCG无线链路失效可以由以下事件触发:
事件1:用于监测PSCell不同步的定时器T313期满。
事件2:接收到SCG MAC随机接入问题(或出错)指示。
事件3:对于SCG DRB或分离DRB或MCG重复SRB或SCG SRB,从SCG RLC实体接收到达到最大重传次数的指示。
表1中示出了定时器T307和T313启动/停止的条件以及所述定时器期满时执行的操作。
表1
在步骤S320,将所述MCG重复SRB重配置为通过MCG进行上行传输,或触发MCG失效。
在一个示例中,所述UE还被配置有另一MCG重复SRB(例如SRB2),方法300还包括,在检测到SCG失效之后:将所述另一MCG重复SRB重配置为通过MCG进行上行传输。
在一个示例中,重配置可以通过释放所述MCG重复SRB或所述另一MCG重复SRB的上行传输配置来执行。
在一个示例中,方法300还包括:向基站报告SCG失效。向基站报告SCG失效包括:利用重配置的MCG重复SRB,通过MCG向基站发送SCG失效信息,或利用MCG SRB通过公共控制信道CCCH向基站发送SCG失效信息。
在一个示例中,方法300还包括:从基站接收指示信息,所述指示信息指示UE在SCG失效时是否通过MCG进行上行传输。所述重配置仅在所述指示信息指示在SCG失效时通过MCG进行上行传输的情况下执行。
具体地,对于上述用于配置MCG重复SRB1的实施例,RRC信令还包含一个指示标识,所述指示标识用于指示当SCG失效时,是否可以采用MCG进行上行传输,或者如果MCG重复SRB1的上行传输被配置为采用SCG(或MCG和SCG),则SCG失效时是否可以采用MCG进行上行传输。例如,当所述指示标志的取值为“1”或“TRUE”或“setup”或所述指示标识出现,表示如果MCG重复SRB的上行传输被配置为采用SCG或MCG和SCG,则当SCG失效时,MCG重复SRB上行传输采用MCG。当所述指示标志的取值为“0”或“false”或“release”或所述指示标识不出现,表示如果MCG重复SRB的上行传输被配置为采用SCG或MCG和SCG,则当SCG失效时,采用上行UL公共控制信道CCCH传输SCG失效信息或释放MCG重复SRB的上行传输配置。当所述指示标识指示SCG失效时MCG重复SRB上行传输采用MCG,则当MCG重复SRB的上行传输被配置为采用SCG或MCG和SCG,如果发生SCG失效,MCG重复SRB上行传输采用MCG。
需要说明的是,本公开所述将MCG重复SRB(或分离SRB)重配置为通过MCG进行上行传输也可以表述为重配置MCG重复SRB(或分离SRB)的PDCP实体使得PDCP PDU通过MCG或MCG-RLC传输或重配置MCG重复SRB(或分离SRB)的PDCP实体使得所述PDCP实体将PDCP PDU发送到MCG-RLC。
以下参照具体示例来说明方法300。这里,不失一般性,假设上述MCG重复SRB为SRB1,上述另一MCG重复SRB为SRB2。
用户设备UE检测到SCG失效,则启动SCG失效信息(SCG failure information)过程来上报SCG失效。用户设备根据MCG重复SRB1的不同上行传输配置,所述SCG失效信息过程有所不同。具体地,
1.如果MCG重复SRB1的上行传输被配置为采用MCG,则SCG失效信息过程包括以下操作中的至少一项:A.挂起所有SCG DRB和挂起分离DRB和分离SRB的SCG传输(或分离SRB的SCG下行传输);B.重置(reset)SCG-MAC;C.停止用于监测改变SCG失败的定时器T307;D.启动传输SCGFailureInformation消息的传输过程。所述SCGFailureInformation消息用于提供UE检测到的错误信息,采 用MCG进行传输。
2.如果MCG重复SRB1的上行传输被配置为采用MCG和SCG,SCG失效信息过程包括以下操作中的至少一项:A.挂起所有SCG DRB和挂起分离DRB和分离SRB的SCG传输(或分离SRB的SCG的上行和/或下行传输);B.重置SCG-MAC;C.停止用于监测改变SCG失败的定时器T307;D.启动传输SCGFailureInformation消息的传输过程。所述SCGFailureInformation消息采用MCG进行传输。
3.如果MCG重复SRB1的上行传输被配置为采用SCG,则SCG失效信息过程在如下示例实现中描述。
示例实现1
SCG失效信息过程包括以下操作中的至少一项:A.挂起所有SCG DRB和挂起分离DRB的SCG传输和/或分离SRB的SCG传输(或分离SRB的SCG下行传输或MCG重复SRB的SCG传输);B.重置SCG-MAC;C.停止用于监测改变SCG失败的定时器T307;D.启动传输SCGFailureInformation消息的传输过程,所述过程包括将MCG重复SRB1重配置为通过MCG进行上行传输,将SCGFailureInformation消息发送到下层进行传输;或者,指示或重配置MCG重复SRB1的PDCP实体将SCGFailureInformation消息通过MCG传输(即利用MCG提供的资源进行传输);或者,重配置MCG重复SRB1的PDCP实体以释放将分离SRB1的数据(或上行数据)通过SCG传输的限制;或者,释放MCG重复SRB1上行传输配置。
示例实现2
SCG失效信息过程包括以下操作中的至少一项:A.挂起所有SCG DRB和挂起分离DRB的SCG传输和/或MCG重复SRB1的SCG传输(或MCG重复SRB1的SCG下行传输);B.重置SCG-MAC;C.停止用于监测改变SCG失败的定时器T307;D.启动传输SCGFailureInformation消息的传输过程,所述过程包括将MCG重复SRB1重配置为通过MCG进行上行传输,将SCGFailureInformation消息 发送到下层进行传输;或者,指示或重配置MCG重复SRB1的PDCP实体将SCGFailureInformation消息通过MCG传输;或者,重配置MCG重复SRB1的PDCP实体以释放将分离SRB1的数据(或上行数据)通过SCG传输的限制;或者,释放MCG重复SRB1上行传输配置;E.如果MCG重复SRB2的上行传输被配置为采用SCG,则将MCG重复SRB2重配置为通过MCG进行上行传输,或者指示或重配置PDCP实体释放MCG重复SRB2的上行传输通过SCG传输的限制,或者挂起MCG重复SRB2的SCG传输,或者释放MCG重复SRB2上行传输配置。
示例实现3
SCG失效信息过程包括以下操作中的至少一项:A.挂起所有SCG DRB和挂起分离DRB的SCG传输和/或分离SRB的SCG传输(或分离SRB的SCG下行传输);B.将所有MCG重复SRB重配置为通过MCG进行上行传输或者,重配置所有MCG重复SRB的PDCP实体以释放将分离SRB的数据(或上行数据)通过SCG传输的限制;或者,释放MCG重复SRB上行传输配置;C.重置(reset)SCG-MAC;D.停止用于监测改变SCG失败的定时器T307;E.启动SCGFailureInformation消息的传输过程,所述SCGFailureInformation消息采用MCG传输。
示例实现4
用户设备UE检测到SCG失效,如果MCG重复SRB1的上行传输被配置为采用SCG,则认为检测到了MCG的无线链路失效,启动MCG发生无线链路失效时应执行的相关过程。
可选地,对于上述用于配置MCG重复SRB1的实施例,RRC信令还包含一个指示标识,用于指示当SCG失效时是否触发MCG无线链路失效。当所述指示标识指示当SCG失效时触发MCG无线链路失效时,则如果MCG重复SRB1的上行传输被配置为采用SCG,认为检测到了MCG的无线链路失效,启动发生无线链路失效时应执行的相关过程。例如,所述指示标识的取值为“1”或“TRUE”或“setup”或所述指示标识出现,则SCG失效时触发MCG无线链路失效。当所述指示标识的取值为“0”或“FALSE”或“release”或所述指示标识不出现,则SCG失效时不触发 MCG无线链路失效。反之亦然。
可选地,对于上述用于配置MCG重复SRB1的实施例,如果MCG重复SRB1的上行传输被配置为采用SCG或MCG和SCG,RRC信令还包含一个指示标识,用于指示当SCG失效时是否触发MCG无线链路失效。当所述指示标识指示当SCG失效时触发MCG无线链路失效时,则如果MCG重复SRB1的上行传输被配置为采用SCG或MCG和SCG,认为检测到了MCG的无线链路失效,启动发生无线链路失效时应执行的相关过程。
示例实现5
SCG失效信息过程包括以下操作中的至少一项:A.挂起所有SCG DRB和挂起分离DRB的SCG传输和/或分离SRB的SCG传输(或分离SRB的SCG下行传输);B.重置SCG-MAC;C.停止用于监测改变SCG失败的定时器T307;D.启动传输SCGFailureInformation消息的传输过程,采用UL-CCCH传输SCGFailureInformation消息或采用UL-CCCH(即SRB0)进行上行传输。
可选的,对于上述用于配置MCG重复SRB1的实施例,RRC信令还包含一个指示标识,用于指示当SCG失效时,是否采用UL-CCCH传输SCGFailureInformation消息或进行上行传输。如果所述指示标识的取值对应当SCG失效时采用UL-CCCH传输SCGFailureInformation消息,才可以在SCG失效时采用UL-CCCH传输SCGFailureInformation消息。例如,所述指示标识的取值为“1”或“TRUE”或“setup”或所述指示标识出现,则SCG失效时采用UL-CCCH传输SCGFailureInformation消息。当所述指示标识的取值为“0”或“FALSE”或“release”或所述指示标识不出现,则SCG失效时不采用UL-CCCH传输SCGFailureInformation消息或触发MCG无线链路失效。反之亦然。
可选的,对于上述用于配置MCG重复SRB1的实施例,如果MCG重复SRB1的上行传输被配置为采用SCG或MCG和SCG,RRC信令还包含一个指示标识,用于指示当SCG失效时,是否采用UL-CCCH传输SCGFailureInformation消息。如果所述指示标识的取值对应当SCG失效时采用UL-CCCH传输SCGFailureInformation消息,才可以在SCG失 效时采用UL-CCCH传输SCGFailureInformation消息。例如,所述指示标识的取值为“1”或“TRUE”或“setup”或所述指示标识出现,则SCG失效时采用UL-CCCH传输SCGFailureInformation消息。当所述指示标识的取值为“0”或“FALSE”或“release”或所述指示标识不出现,则SCG失效时不采用UL-CCCH传输SCGFailureInformation消息或触发MCG无线链路失效。反之亦然。
示例实现6
SCG失效信息过程包括以下操作中的至少一项:A.挂起所有SCG DRB和挂起分离DRB的SCG传输和/或分离SRB的SCG传输(或分离SRB的SCG下行传输);B.重置SCG-MAC;C.停止用于监测改变SCG失败的定时器T307;D.启动传输SCGFailureReport消息的传输过程,所述消息用于指示SCG失效或用于请求基站重配置MCG重复SRB或用于提供UE检测到的错误信息,采用UL-CCCH传输SCGFailureReport消息或采用UL-CCCH(即SRB0)进行上行传输。可选的,如果SCGFailureInformation消息或所述消息包含的内容没有在SCGFailureReport消息中传输,UE接收到来自基站的用于重配置MCG重复SRB的上行传输的消息后,启动传输SCGFailureInformation消息的传输过程,利用重配置的MCG重复SRB的上行传输传输SCGFailureInformation消息。
可选的,对于上述用于配置MCG重复SRB1的实施例,RRC信令还包含一个指示标识,用于指示当SCG失效时,是否采用UL-CCCH传输SCGFailureReport消息或进行上行传输。如果所述指示标识的取值对应当SCG失效时采用UL-CCCH传输SCGFailureReport消息,才可以在SCG失效时采用UL-CCCH传输SCGFailureReport消息;否则,不采用UL-CCCH传输SCGFailureReport消息或触发MCG无线链路失效。例如,所述指示标识的取值为“1”或“TRUE”或“setup”或所述指示标识出现,则SCG失效时采用UL-CCCH传输SCGFailureReport消息。当所述指示标识的取值为“0”或“FALSE”或“release”或所述指示标识不出现,则SCG失效时不采用UL-CCCH传输SCGFailureReport消息或触发MCG无线链路失效。反之亦然。
可选的,对于上述用于配置MCG重复SRB1的实施例,如果MCG重复SRB1的上行传输被配置为采用SCG或MCG和SCG,RRC信令还包含一个指示标识,用于指示当SCG失效时,是否采用UL-CCCH传输SCGFailureReport消息。如果所述指示标识的取值对应当SCG失效时采用UL-CCCH传输SCGFailureReport消息,才可以在SCG失效时采用UL-CCCH传输SCGFailureReport消息;否则,不采用UL-CCCH传输SCGFailureReport消息或触发MCG无线链路失效。例如,所述指示标识的取值为“1”或“TRUE”或“setup”或所述指示标识出现,则SCG失效时采用UL-CCCH传输SCGFailureReport消息。当所述指示标识的取值为“0”或“FALSE”或“release”或所述指示标识不出现,则SCG失效时不采用UL-CCCH传输SCGFailureReport消息或触发MCG无线链路失效。反之亦然。
需要说明的是,本公开中所示用于配置MCG重复SRB1的实施例也适用于配置MCG重复SRB2,只要将各示例中的SRB1替换为SRB2即可。
需要说明的是,如果MCG重复SRB2被配置为上行采用SCG,则当SCG失效时,上述SCG失效信息过程实施例中操作还可以包括:将MCG重复SRB2重配置为通过MCG进行上行传输。
与上述方法300相对应,本公开提供了一种用户设备UE。图4示出了根据本公开实施例的UE 400的框图。UE 400被配置有主小区组MCG重复信令无线承载SRB,所述MCG重复SRB与主小区组MCG和辅小区组SCG相关联并被配置为通过SCG进行上行传输。如图所示,UE 400包括:收发机410、处理器420和存储器430,所述处理器430存储所述处理器420可执行的指令,使得所述基站400执行以上结合图3描述的方法300。
具体地,所述处理器430存储所述处理器420可执行的指令,使得UE 400:检测到SCG失效;以及将所述MCG重复SRB重配置为通过MCG进行上行传输,或触发MCG失效。
在一个示例中,所述UE 400还被配置有另一MCG重复SRB。所述处理器430还存储所述处理器420可执行的指令,使得UE 400在检测 到SCG失效之后:将所述另一MCG重复SRB重配置为通过MCG进行上行传输。
在一个示例中,所述处理器430还存储所述处理器420可执行的指令,使得UE 400:向基站报告SCG失效,其中,向基站报告SCG失效包括:利用重配置的MCG重复SRB,通过MCG向基站发送SCG失效信息,或利用MCG SRB通过公共控制信道CCCH向基站发送SCG失效信息。
在一个示例中,所述处理器430还存储所述处理器420可执行的指令,使得UE 400:从基站接收指示信息,所述指示信息指示UE在SCG失效时是否通过MCG进行上行传输,其中,所述重配置仅在所述指示信息指示在SCG失效时通过MCG进行上行传输的情况下执行。
本公开还提供了一种基站中的方法。图5是示出了根据本公开实施例的基站中的方法500的流程图。所述基站是主小区组MCG基站,通过MCG重复信令无线承载SRB与用户设备UE通信,所述MCG重复SRB与MCG和辅小区组SCG相关联并被配置为通过SCG进行上行传输。如图所示,方法500包括以下步骤。
在步骤S510,从所述UE接收辅小区组SCG失效的报告。
在步骤S520,将所述MCG重复SRB重配置为通过MCG接收上行传输。
在一个示例中,所述接收SCG失效的报告包括:利用重配置的MCG重复SRB,通过MCG接收SCG失效信息,或利用MCG SRB通过公共控制信道CCCH接收SCG失效信息。
在一个示例中,所述基站还通过另一MCG重复SRB与所述UE通信,所述方法500还包括:将所述另一MCG重复SRB重配置为通过MCG接收上行传输。
在一个示例中,所述方法500还包括:向所述UE发送指示信息,所述指示信息指示UE在SCG失效时是否通过MCG进行上行传输。
以上结合方法300所描述的各个示例,尤其是示例实现1~6,也适用于方法500。
与上述方法500相对应,本公开提供了一种基站。图6示出了根据本公开实施例的基站600的框图。所述基站是主小区组MCG基站,通过MCG重复信令无线承载SRB与用户设备UE通信,所述MCG重复SRB与MCG和辅小区组SCG相关联并被配置为通过SCG进行上行传输。如图所示,基站600包括:收发机610、处理器620和存储器630,所述处理器630存储所述处理器620可执行的指令,使得所述基站600执行以上结合图5描述的方法500。
具体地,所述处理器630存储所述处理器620可执行的指令,使得基站600从所述UE接收辅小区组SCG失效的报告;以及将所述MCG重复SRB重配置为通过MCG接收上行传输。
在一个示例中,所述接收SCG失效的报告包括:利用重配置的MCG重复SRB,通过MCG接收SCG失效信息,或利用MCG SRB通过公共控制信道CCCH接收SCG失效信息。
在一个示例中,所述基站还通过另一MCG重复SRB与所述UE通信,所述处理器630还存储所述处理器620可执行的指令,使得基站600:将所述另一MCG重复SRB重配置为通过MCG接收上行传输。
在一个示例中,所述处理器630存储所述处理器620可执行的指令,使得基站600:向所述UE发送指示信息,所述指示信息指示UE在SCG失效时是否通过MCG进行上行传输。
运行在根据本发明的设备上的计算机可执行指令或者程序可以是通过控制中央处理单元(CPU)来使计算机实现本发明的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本发明各实施例功能的计算机可执行指令或程序可以记录在计算机可读存储介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读存储介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可 读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本发明的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本发明并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本发明并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。
Claims (10)
- 一种用户设备UE中的方法,所述UE被配置有主小区组MCG重复信令无线承载SRB,所述MCG重复SRB与主小区组MCG和辅小区组SCG相关联并被配置为通过SCG进行上行传输,所述方法包括:检测到SCG失效;以及将所述MCG重复SRB重配置为通过MCG进行上行传输,或触发MCG失效。
- 根据权利要求1所述的方法,其中,所述UE还被配置有另一MCG重复SRB,所述方法还包括,在检测到SCG失效之后:将所述另一MCG重复SRB重配置为通过MCG进行上行传输。
- 根据权利要求1所述的方法,还包括:向基站报告SCG失效,其中,向基站报告SCG失效包括:利用重配置的MCG重复SRB,通过MCG向基站发送SCG失效信息,或利用MCG SRB通过公共控制信道CCCH向基站发送SCG失效信息。
- 根据权利要求1所述的方法,还包括:从基站接收指示信息,所述指示信息指示UE在SCG失效时是否通过MCG进行上行传输,其中,所述重配置仅在所述指示信息指示在SCG失效时通过MCG进行上行传输的情况下执行。
- 一种用户设备UE,包括收发机、处理器和存储器,所述处理器存储所述处理器可执行的指令,使得所述UE执行根据权利要求1-4中任一项所述的方法。
- 一种基站中的方法,所述基站是主小区组MCG基站,通过MCG重复信令无线承载SRB与用户设备UE通信,所述MCG重复SRB与MCG和辅小区组SCG相关联并被配置为通过SCG进行上行传输,所述方法包括:从所述UE接收辅小区组SCG失效的报告;以及将所述MCG重复SRB重配置为通过MCG接收上行传输。
- 根据权利要求6所述的方法,其中,所述接收SCG失效的报告包括:利用重配置的MCG重复SRB,通过MCG接收SCG失效信息,或利用MCG SRB通过公共控制信道CCCH接收SCG失效信息。
- 根据权利要求6所述的方法,其中,所述基站还通过另一MCG重复SRB与所述UE通信,所述方法还包括:将所述另一MCG重复SRB重配置为通过MCG接收上行传输。
- 根据权利要求6所述的方法,还包括:向所述UE发送指示信息,所述指示信息指示UE在SCG失效时是否通过MCG进行上行传输。
- 一种基站,包括收发机、处理器和存储器,所述处理器存储所述处理器可执行的指令,使得所述基站执行根据权利要求6-9中任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18844831.0A EP3668152A4 (en) | 2017-08-10 | 2018-08-08 | USER EQUIPMENT, BASE STATION AND RELATED PROCEDURE |
US16/637,693 US11134400B2 (en) | 2017-08-10 | 2018-08-08 | User equipment, base station, and related methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710683129.0A CN109391959A (zh) | 2017-08-10 | 2017-08-10 | 用户设备、基站和相关方法 |
CN201710683129.0 | 2017-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019029565A1 true WO2019029565A1 (zh) | 2019-02-14 |
Family
ID=65270838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/099379 WO2019029565A1 (zh) | 2017-08-10 | 2018-08-08 | 用户设备、基站和相关方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11134400B2 (zh) |
EP (1) | EP3668152A4 (zh) |
CN (1) | CN109391959A (zh) |
WO (1) | WO2019029565A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111757554A (zh) * | 2019-03-28 | 2020-10-09 | 华为技术有限公司 | 一种通信方法及装置 |
CN113225809A (zh) * | 2020-01-21 | 2021-08-06 | 大唐移动通信设备有限公司 | 一种上行数据的接收、发送方法、网络设备及终端 |
WO2021228240A1 (zh) * | 2020-05-14 | 2021-11-18 | 荣耀终端有限公司 | 一种数据业务切换方法及装置 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108781376B (zh) * | 2016-04-07 | 2021-02-23 | 华为技术有限公司 | 数据传输方法、用户设备及接入网设备 |
CN109391362B (zh) * | 2017-08-11 | 2022-07-29 | 中兴通讯股份有限公司 | 一种信令传输方法及装置 |
WO2019240770A1 (en) * | 2018-06-12 | 2019-12-19 | Nokia Technologies Oy | Two-step addition of a primary-secondary cell, pscell, in a multi-connected handover |
US11050610B2 (en) * | 2018-08-14 | 2021-06-29 | FG Innovation Company Limited | Reporting master node radio link failure |
CN118574248A (zh) | 2018-09-19 | 2024-08-30 | 三星电子株式会社 | 用于在无线通信系统中发送和接收数据的方法和装置 |
WO2020155094A1 (en) * | 2019-02-01 | 2020-08-06 | Qualcomm Incorporated | Techniques for communicating mobility information |
US11483889B2 (en) * | 2019-03-22 | 2022-10-25 | Samsung Electronics Co., Ltd. | Method and device for recovering connection failure to network in next generation mobile communication system |
EP3903542A4 (en) * | 2019-03-22 | 2022-02-16 | Samsung Electronics Co., Ltd. | METHOD AND DEVICE FOR RECOVERING FROM A NETWORK CONNECTION FAILURE IN A NEXT GENERATION MOBILE COMMUNICATION SYSTEM |
CN115243294A (zh) * | 2020-01-07 | 2022-10-25 | 展讯通信(上海)有限公司 | 去激活和激活辅小区组的方法、通信装置和相关产品 |
CN113225749B (zh) * | 2020-01-21 | 2023-08-15 | 大唐移动通信设备有限公司 | 一种承载的配置信息的处理方法、网络设备及终端 |
WO2021253214A1 (en) * | 2020-06-16 | 2021-12-23 | Qualcomm Incorporated | Method to avoid random access problem in a certain cell |
EP4258731A4 (en) * | 2020-12-10 | 2024-02-21 | Huawei Technologies Co., Ltd. | METHOD FOR DATA TRANSFER PROCESSING AND ASSOCIATED DEVICE |
US20240193014A1 (en) * | 2021-04-22 | 2024-06-13 | Lenovo (Beijing) Limited | Methods and apparatuses for reporting event related information |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016064334A1 (en) * | 2014-10-20 | 2016-04-28 | Telefonaktiebolaget L M Ericsson (Publ) | Prohibiting failure indications for secondary cell group failure |
CN105684496A (zh) * | 2013-10-23 | 2016-06-15 | Lg电子株式会社 | 用于报告无线电链路问题的方法及其装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI556663B (zh) | 2014-12-25 | 2016-11-01 | 宏達國際電子股份有限公司 | 處理與多個基地台間通訊的失敗的方法及其裝置 |
US9504052B2 (en) * | 2015-01-21 | 2016-11-22 | Htc Corporation | Device and method of handling communication operation with multiple base stations |
WO2018029578A1 (en) * | 2016-08-12 | 2018-02-15 | Nokia Technologies Oy | Long term evolution (lte) light connection enhancements for long term evolution (lte)-new radio access technology (nr) interworking |
-
2017
- 2017-08-10 CN CN201710683129.0A patent/CN109391959A/zh active Pending
-
2018
- 2018-08-08 EP EP18844831.0A patent/EP3668152A4/en active Pending
- 2018-08-08 WO PCT/CN2018/099379 patent/WO2019029565A1/zh unknown
- 2018-08-08 US US16/637,693 patent/US11134400B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105684496A (zh) * | 2013-10-23 | 2016-06-15 | Lg电子株式会社 | 用于报告无线电链路问题的方法及其装置 |
WO2016064334A1 (en) * | 2014-10-20 | 2016-04-28 | Telefonaktiebolaget L M Ericsson (Publ) | Prohibiting failure indications for secondary cell group failure |
Non-Patent Citations (3)
Title |
---|
NOKIA ET AL.: "Further Considerations for SCG SRB and RLF Handling", 3GPP TSG-RAN WG2 NR ADHOC #2 R2-1706857, 29 June 2017 (2017-06-29), XP051301352 * |
See also references of EP3668152A4 * |
ZTE: "Configuration of SCG SRB and Split & Duplicated SRB", 3GPP TSG-RAN WG3#AD-HOC R3-172053, 29 June 2017 (2017-06-29), XP051302004 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111757554A (zh) * | 2019-03-28 | 2020-10-09 | 华为技术有限公司 | 一种通信方法及装置 |
CN111757554B (zh) * | 2019-03-28 | 2023-10-20 | 华为技术有限公司 | 一种通信方法及装置 |
CN113225809A (zh) * | 2020-01-21 | 2021-08-06 | 大唐移动通信设备有限公司 | 一种上行数据的接收、发送方法、网络设备及终端 |
WO2021228240A1 (zh) * | 2020-05-14 | 2021-11-18 | 荣耀终端有限公司 | 一种数据业务切换方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3668152A1 (en) | 2020-06-17 |
US11134400B2 (en) | 2021-09-28 |
EP3668152A4 (en) | 2021-05-05 |
US20200169899A1 (en) | 2020-05-28 |
CN109391959A (zh) | 2019-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019029565A1 (zh) | 用户设备、基站和相关方法 | |
TWI678124B (zh) | 使用者設備和相關方法 | |
TWI692988B (zh) | 基站、使用者設備和相關方法 | |
US11324059B2 (en) | Radio configuration method, user equipment, and base station | |
WO2018171546A1 (zh) | 用户设备和基站处执行的方法及相应的设备 | |
US11219082B2 (en) | Base station, user equipment, and related method | |
WO2018228283A1 (zh) | 无线通信方法和设备 | |
US20200374752A1 (en) | User equipment and related method | |
AU2018286127B2 (en) | Radio configuration method and corresponding user equipment | |
US11057958B2 (en) | Method and device for establishing/reconfiguring data bearer | |
EP3637820B1 (en) | Base station, user equipment and relevant methods | |
WO2018228267A1 (zh) | 无线协议层实体处理方法以及相应的用户设备 | |
WO2020221155A1 (zh) | 基站、用户设备和相关方法 | |
WO2023246766A1 (zh) | 由用户设备执行的方法及用户设备 | |
WO2023232070A1 (zh) | 由用户设备执行的方法及用户设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18844831 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018844831 Country of ref document: EP Effective date: 20200310 |