WO2023232070A1 - 由用户设备执行的方法及用户设备 - Google Patents

由用户设备执行的方法及用户设备 Download PDF

Info

Publication number
WO2023232070A1
WO2023232070A1 PCT/CN2023/097407 CN2023097407W WO2023232070A1 WO 2023232070 A1 WO2023232070 A1 WO 2023232070A1 CN 2023097407 W CN2023097407 W CN 2023097407W WO 2023232070 A1 WO2023232070 A1 WO 2023232070A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
message
connection
user equipment
base station
Prior art date
Application number
PCT/CN2023/097407
Other languages
English (en)
French (fr)
Inventor
张崇铭
刘仁茂
Original Assignee
夏普株式会社
张崇铭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 张崇铭 filed Critical 夏普株式会社
Publication of WO2023232070A1 publication Critical patent/WO2023232070A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to the field of wireless communication technology, and more specifically, the present invention relates to a method executed by user equipment and the corresponding user equipment.
  • a user equipment UE can communicate directly with the base station. Such a communication connection is called a direct connection.
  • This UE can also communicate with the base station through a relay UE (relay UE).
  • relay UE relay UE
  • This connection can be called an indirect connection or indirect connection.
  • this UE is called a remote UE (remote UE).
  • the UE can work in direct connection and indirect connection modes at the same time. As shown in Figure 1, in this working mode, since the UE and the base station communicate through different paths, it can also be called a multi-path communication mode.
  • wireless communication methods are generally used between the remote UE and the base station and between the relay UE and the base station, such as 5G NR or LTE and other communication technologies and means; and the connection between the remote UE and the relay UE can be side-based.
  • Link communication, or WIFI communication based on hotspot coverage, or wired connection.
  • the serving cell of the relay UE may change, resulting in user data not accurately reaching the base station.
  • how to ensure the correct transmission is a problem that needs to be solved.
  • the present invention provides a method and user equipment executed by user equipment.
  • the multi-path working mode via relay even when the serving cell of the relay UE may change, the correct transmission can be ensured, so that User data can be accurate to reach the base station.
  • a method executed by user equipment is provided, which is a processing method executed during communication between the user equipment UE and a base station based on a multipath communication method, including the following steps:
  • the UE receives an RRC message from the base station, the message carries information for instructing the UE to establish an indirect connection for communicating with the base station via the relay UE, and the message also carries the identity information of the relay UE;
  • the UE When receiving the above RRC message, the UE regards the relay UE corresponding to the identity information of the relay UE carried in the message as the target relay UE, and performs the establishment of a side link SL connection or a PC5 connection with the relay UE.
  • the UE receives the RRC reconfiguration message from the base station, which includes the UE identity of the relay UE and the configuration information of the added connection path;
  • the UE Upon receiving the above RRC reconfiguration message, the UE starts a timer for managing the added connection path and starts establishing a connection with the relay UE.
  • the UE During the process of establishing a connection with the relay UE, or during the running of the timer, if the serving cell of the relay UE changes, the UE starts the failure information reporting process.
  • the UE In this process, the UE generates a failure information message, which indicates the path addition failure or the indirect connection establishment failure information, and indicates in the message that the reason for the addition failure is that the serving cell of the relay UE has changed, or the serving cell of the relay UE has changed. This message indicates that the serving cell of the relay UE has changed.
  • the relay UE When the relay UE notifies the UE through the PC5 RRC message that cell selection, reselection, or handover occurs on the relay UE side, the UE learns that the serving cell of the relay UE has changed.
  • the UE When the UE receives the discovery message sent by the relay UE and the physical cell identity carried in the message changes, the UE learns that the serving cell of the relay UE has changed.
  • the UE When the UE receives the system information block SIB1 sent by the relay UE and carries it in the SIB1 When the cell identity of the relay UE is different from the cell identity in SIB1 previously received by the UE, the UE learns that the serving cell of the relay UE has changed.
  • the UE learns that the serving cell of the relay UE has changed.
  • the UE When the UE is in a multi-path working state and one of the paths is a path connected to the base station via the relay UE, if the UE learns that the serving cell of the relay UE has changed, the UE performs at least one of the following operations:
  • the UE suspends or suspends all radio bearers transmitted via the relay path
  • the UE starts the failure information reporting process, in which the UE generates a failure information message, indicating in the message that the serving cell of the relay UE has changed;
  • the UE executes a side-link UE information reporting process.
  • the UE sends a side-link UE information message to the base station.
  • the message at least carries the destination identifier used by the relay UE in the actual SL connection or PC5 connection.
  • the UE When the UE learns that the serving cell of the relay UE has changed, the UE further determines whether SRB1 is located on an indirect connection, and further determines whether split SRB1 is configured.
  • SRB1 is located on an indirect connection, or the UE is configured with split SRB1, then the UE performs at least one of the above operations.
  • a user equipment including:
  • the above instructions execute the method described above when executed by the above processor.
  • FIG. 1 is a schematic diagram showing a parallel operation mode (multi-path) of direct connection and indirect connection, that is, a multi-path communication mode.
  • Figure 2 is a schematic diagram showing UE-to-Network relay.
  • Figure 3 is a schematic diagram showing the SRB and split SRB protocol layer structures.
  • FIG. 4 is a flowchart showing a method executed by user equipment UE according to an embodiment of the present invention.
  • Figure 5 is a schematic structural block diagram of the user equipment involved in the present invention.
  • UE User Equipment, user equipment
  • New Radio a new generation of wireless technology
  • LTE Long Term Evolution, long-term evolution technology
  • eLTE Enhanced Long Term Evolution, enhanced long-term evolution technology
  • RRC Radio Resource Control, radio resource control (layer);
  • MAC Medium Access Control, media access control (layer);
  • MAC CE MAC Control Element, MAC control element
  • SDAP Service Data Adaptation Protocol, business data adaptation protocol
  • SRAP Sidelink Relay Adaptation Protocol, sidelink relay adaptation protocol
  • RLC Radio Link Control, wireless link layer control
  • PDCP Packet Data Convergence Protocol, packet data convergence protocol
  • ADAPT Adaptation layer, side link communication adaptation layer
  • PHY physical layer, physical layer
  • RB radio bearer, wireless bearer
  • DRB Data Radio Bearer, data wireless bearer
  • SRB Signalling Radio Bearer, signaling wireless bearer
  • PDU Protocol Data Unit, protocol data unit;
  • SDU Service Data Unit, service data unit
  • V2X Vehicle-to-Everything, Internet of Vehicles.
  • the network can be a long-term evolution LTE network, a new radio access technology (New RAT, NR) network, an enhanced long-term evolution eLTE network, or a subsequent evolved version of 3GPP. other networks defined in .
  • New RAT new radio access technology
  • eLTE enhanced long-term evolution eLTE network
  • the user equipment UE may refer to the NR device supporting the NR Sidelink relay function described in the background art, or may refer to the NR device supporting the NR sidelink relay architecture, or may refer to other types of NR devices or LTE devices.
  • sidelink and PC5 can be used interchangeably, and RLC channel, RLC entity and RLC bearer can be used interchangeably.
  • RLC channel, RLC entity and RLC bearer can be used interchangeably.
  • PC5 is used for relay operation, so it can also be replaced by relay.
  • the UE and the base station can communicate through direct connections and indirect connections.
  • the UE can be configured to work in direct connection and indirect connection communication modes at the same time.
  • Such communication mode can be called multi-path communication.
  • the directly connected path can be called a direct path (direct path)
  • the indirect connected path can be called an intermediate path (relay path) or an indirect path (indirect path).
  • direct connection and direct path can be replaced with each other; indirect connection, indirect connection, relay path and indirect path can be replaced with each other.
  • Multipath communication may also be replaced by multi-connection communication in this article.
  • the UEs can be wirelessly connected to each other through near field communication to realize the transmission of data or signaling.
  • the near field communication method mentioned in this article mainly refers to sidelink connection, but can also be WIFI connection or other connection methods.
  • the reference point (reference point) of the sidelink-based connection between UEs is called PC5, so the sidelink-based connection between UEs can be called a PC5 connection.
  • the sidelink connection can be replaced with the PC5 connection.
  • Such a PC5 connection can be identified by a pair of Layer-2ID, usually including a Source Layer-2 ID and a Destination Layer-2 ID.
  • Such a PC5 connection may be referred to as a PC5 connection for or corresponding to a certain destination (Destination), a sidelink connection, etc.
  • the UE may determine that a radio link failure has occurred for a specific destination side link connection:
  • a specific destination corresponds to a PC5 connection, so it can be considered that the side-link connection or PC5 connection corresponding to that address has an SL RLF.
  • U2N relay UE-to-Network relay
  • the left side is the remote UE
  • the middle is the relay UE
  • the right side is the network.
  • the remote UE and the relay UE can be connected through the aforementioned PC5 interface, or WIFI or other connection methods.
  • the PC5 connection is mainly used as an example.
  • the relay UE and the network can be connected through the Uu port.
  • the relay UE relays and forwards signaling and data between the remote UE and the network/base station.
  • the UE can communicate with the eNB using E-UTRAN on the Uu interface.
  • the UE can also use NR and gNB communication on the Uu interface.
  • Uu radio link failure Uu radio link failure, Uu RLF
  • the UE may determine that the wireless link failure is detected on the Uu port:
  • the timer T310 or T312 used for wireless link detection runs out of time (upon T310/T312 expiry).
  • the UE in the connected state needs to re-establish the RRC connection.
  • the UE performs an RRC connection reestablishment procedure.
  • the UE starts timer T311 for management of the connection recovery process.
  • the UE when the UE receives an RRC connection reconfiguration message from the base station, and the message instructs the UE to perform synchronous reconfiguration (reconfiguration with sync) or handover (handover/switch), the UE will start a timer. T304 is used to manage the synchronization process. If the synchronous reconfiguration is successfully completed, the UE will stop T304; if T304 times out, it means that the synchronous reconfiguration process fails, and the UE will trigger the RRC connection reestablishment process. In this process, the UE sends an RRC reestablishment request message to the base station ( RRCReestablishmentRequest message).
  • SRB Signaling radio bearer
  • split SRB split signaling bearer
  • SRB is used to carry signaling.
  • the UE will send air interface RRC connection establishment (setup), re-establish (re-establish), resume (resume) and other messages to the network through the Uu PDCP layer to encapsulate the data. It is then submitted to the Uu RLC entity for further encapsulation, carried on the Uu RLC channel, and submitted layer by layer through Uu-MAC and Uu-PHY. On the contrary, the RRC message sent by the network to the UE also reaches the UE via the SRB.
  • Such an SRB can be called an SRB configured on a direct connection, or an SRB configured on a direct path (SRB via direct path).
  • the UE can be configured with split SRB.
  • the protocol structure is shown in Figure 3.
  • the UE can submit the encapsulated data to UuRLC or PC5 RLC as needed. If the data is submitted to Uu RLC, the processing is the same as SRB; if the data is submitted to PC5 RLC, then after further encapsulation, it will be carried on the PC5 RLC channel and passed down layer by layer through PC5-MAC and PC5-PHY Submitted, via relay path, and finally sent to the base station/network. If the data is submitted to Uu RLC, it will eventually be sent to the base station/network via the direct path, just like SRB.
  • Such a split SRB can be called a split SRB configured on a multipath, or a split SRB configured with a relay path (split SRB viarelay).
  • UE can also be configured with SRB via relay.
  • the protocol structure is shown in Figure 3.
  • the Uu PDCP layer encapsulates the data, it is submitted to the PC5 RLC entity for further encapsulation and carried on the PC5 RLC channel.
  • the PC5 MAC and PC5 PHY are handed down layer by layer, sent to the relay UE, and then forwarded to the network/base station.
  • the RRC message sent by the network to the UE can also reach the UE by relaying the UE via SRB via relay.
  • Such an SRB via relay can also be called an SRB configured on a relay path or on an indirect connection.
  • the signaling bearer SRB can be divided into the following categories:
  • SRB0 used to carry RRC messages transmitted using the logical channel of the Common Control Channel (CCCH);
  • CCCH Common Control Channel
  • SRB1 used to carry RRC messages and non-access layer messages transmitted using the logical channel corresponding to the dedicated control channel (DCCH);
  • SRB2 Non-access stratum (NAS) messages transmitted using the logical channel corresponding to the dedicated control channel and RRC messages carrying measurement information.
  • NAS Non-access stratum
  • FIG. 4 is a flowchart of a processing method performed by a UE according to one embodiment of the present invention.
  • a processing method performed during communication between a UE and a base station based on multipath communication includes the following steps:
  • the UE receives an RRC message from the base station, which carries information for instructing the UE to establish an indirect connection to communicate with the base station via the relay UE; preferably, the message also carries the identity of the relay UE. Information, such as the UE identification of the relay UE, etc., so that the UE can identify the relay UE.
  • the identity information of the relay UE carried in it can be used as the target relay UE, and the establishment of an SL connection or PC5 connection with the relay UE can be performed, for example
  • the UE may instruct the upper layer above the UE RRC layer to trigger PC5 connection establishment with the relay UE.
  • the UE can start a timer.
  • the UE receives an RRC message from the base station, such as an RRC reconfiguration message.
  • the message may carry information instructing the UE to establish an indirect connection.
  • the message may include information about relay UEs for indirect connections, including at least relay UEs.
  • the identifier such as the L2 ID, may also include configuration information for adding a connection path (path addition). Based on the configuration information, the UE can establish an indirect connection path, etc.
  • the UE can start a timer T-pathaddition for managing the addition of a connection path.
  • This timer is located on the UE side.
  • the value of the timer can also be carried in the above message. That is, the UE can set the timer T-pathaddition and start the timer T-pathaddition according to the value of the T-pathaddition duration carried in the above message.
  • the UE Upon receiving the above message, the UE starts to establish a connection with the relay UE.
  • a PC5 connection we take the establishment of a PC5 connection as an example.
  • the UE establishes a PC5 connection with the relay UE.
  • the sidelink connection can be replaced with the PC5 connection, which means that the sidelink connection is also applicable.
  • the UE can also establish a connection with the relay UE through WIFI.
  • the UE can instruct the upper layer above the UE RRC layer to trigger the establishment of a PC5 connection with the relay UE.
  • the UE can initiate the failure information reporting procedure (initiate the failure information procedure).
  • the UE generates a Failure Information message (Failure Information message), which can be an RRC message, and optionally, the message indicates the failure of path addition (path addition) or the failure to establish an indirect connection.
  • the UE submits the message to the lower layer (lower layer) below the RRC layer for transmission, and then sends it to the base station.
  • the message may also indicate that the reason for the failure to add is that the serving cell of the relay UE has changed, or the message may indicate that the serving cell of the relay UE has changed.
  • the UE can also generate a specific RRC message used to report path addition failure or indicate indirect connection establishment failure information, and submit the message to the lower layer for transmission to the base station.
  • a specific RRC message used to report path addition failure or indicate indirect connection establishment failure information
  • the UE can stop the timer T-pathaddition.
  • the UE when the UE communicates with the base station through relay UE, the UE is called a remote UE.
  • the UE can learn that the serving cell of the relay UE mentioned in Embodiment 1 has changed:
  • Method 1 The relay UE notifies the UE through the PC5 RRC message that cell selection or reselection has occurred on the relay UE side, or notifies the UE that a handover has occurred on the relay UE side.
  • Method 2 The UE receives the Discovery Message (Discovery Message) sent by the relay UE.
  • the Physical Cell Identity (PCI) carried in the message has changed. The change here is the same as that in the Discovery Message previously received by the UE. PCI is different from PCI. And such change occurs after the UE receives the RRC message from the base station described in Embodiment 1.
  • PCI Physical Cell Identity
  • Method 3 The UE receives the system information block 1 (SIB1) sent by relay UE to the UE.
  • SIB1 system information block 1
  • the cell identity carried in SIB1 is different from the cell identity in SIB1 previously received by the UE.
  • the SIB1 previously received by the UE may be obtained before the UE receives the RRC message from the base station described in Embodiment 1.
  • Method 4 The measurement report reported by the UE to the base station before receiving the RRC message from the base station described in Embodiment 1 contains relay UE's cell identifier 1, but after receiving the RRC message from the base station described in Embodiment 1 After the RRC message, the cell identity learned from the Discovery message or SIB1 sent by relay UE is cell identity 2, and cell identity 1 and cell identity 2 are different, then the UE determines that the serving cell of relay UE has occurred. Variety.
  • Method 5 When the UE receives the RRC message from the base station described in Embodiment 1, it also contains information about the serving cell of the relay UE, which can be one serving cell or multiple serving cells. Then after receiving the implementation After the RRC message from the base station described in Example 1, if the serving cell of the relay UE changes and is different from one or more of the aforementioned serving cells, then the serving cell of the relay UE is considered to have changed. The UE can obtain the information of the relay UE's serving cell through the aforementioned SIB1 or discovery message.
  • Embodiment 1 while the UE is running the timer or establishing a connection with the relay UE, the UE learns that the serving cell of the relay UE has changed, and thus performs corresponding operations.
  • the UE When the UE is in multi-path working state, one of the paths is connected to the base station through the relay UE. Then when the UE learns that the serving cell of the relay UE has changed, it can perform one or more of the following operations:
  • Operation 1 The UE suspends or suspends all wireless bearers transmitted via the relay path, which may include wireless signaling bearers or data bearers. Or suspend the transmission of these signaling bearers via the relay path.
  • Operation 2 The UE can initiate the failure information reporting procedure (initiate the failure information procedure).
  • the UE may consider that when the relay UE's serving cell changes, the path through the relay UE fails. In this process, the UE generates a Failure Information message (Failure Information message), and optionally, indicates in the message that it is connected to it.
  • the occurrence of SL-RLF in the link between relay UEs may indicate an indirect connection failure or indirect path failure. It may also directly indicate a change in the serving cell of the relay UE. And submit the message to the lower layer for transmission, and then send it to the base station.
  • Remote UE can also execute the sidelink UE information reporting procedure (sidelink UE information for NR sidelink communication procedure) and send the sidelink UE information message to the base station/network side.
  • the message contains the side link failure report list (sl-failure list), and sets the side link destination identifier (sl-DestinationIdentity) to the relay UE identifier carried by the relay UE in the broadcast message, or to remote The identity of the relay UE carried in the RRC reconfiguration message received by the UE.
  • the RRC reconfiguration message is the RRC message mentioned in Embodiment 1 and carries the added path configuration information.
  • the remote UE can also set the side link destination identifier (sl-DestinationIdentity) to the address identifier configured by the upper layer for side link transmission, and add indication information to indicate that the address identifier corresponds to For relay UE, preferably, it corresponds to U2N relay UE in multi-path. For example, when setting an IE relay, when the destination identifier corresponds to the relay UE, the value of the IE relay is set to true, or the value is "1". When the destination identifier does not correspond to the relay UE, the IE relay is not carried. , or set the IE relay value to false or "0".
  • the remote UE can also start the sidelink UE information reporting process (sidelink UE information for NR sidelink communication procedure), sending the sidelink UE information message to the base station/network side.
  • sidelink UE information reporting process sidelink UE information for NR sidelink communication procedure
  • the specific method may be to carry IE relayinfor, which contains at least two address identifiers:
  • the side link here is the side link mentioned in this article for non-indirect connection of remote UE.
  • the remote UE when the remote UE performs operation three, it can set the side link destination identifier (sl-DestinationIdentity) to the address identifier configured by the upper layer for side link transmission. Since the IE relayinfor reported by the remote UE indicates that the destination identifier corresponds to the identifier of the relay UE, the base station can indirectly know that the address identifier transmitted by the side link corresponds to the relay UE. Preferably, it corresponds to the multi -U2N relay UE in path.
  • the side link destination identifier sl-DestinationIdentity
  • the UE can only perform operation two or three, or both, and the execution effect will not be affected.
  • this embodiment can also be implemented separately to report that the UE detects that the serving cell of the relay UE connected to it has changed in the multi-path working mode.
  • the UE when the remote UE detects that the serving cell of the relay UE has changed, the UE can further determine whether SRB1 via relay is configured (or determine whether SRB1 is located on an indirect connection), and further determine whether it is Split SRB1 is configured.
  • the UE If the UE is not configured with SRB1 via relay (or SRB1 is not located on an indirect connection), and is not configured with split SRB1, then the UE starts the RRC connection reestablishment process.
  • the UE may perform one or more of the operations in Embodiment 3.
  • Figure 5 is a schematic structural block diagram of the user equipment involved in the present invention.
  • the user equipment 500 at least includes a processor 501 and a memory 502 .
  • the processor 501 may include, for example, a microprocessor, a microcontroller, an embedded processor, or the like.
  • the memory 502 may include, for example, volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory systems.
  • Memory 502 stores program instructions. When this instruction is executed by the processor 501, it may execute one or several steps in the UE processing method of the present disclosure.
  • the user equipment shown above may include more modules, for example, it may also include modules that may be developed or developed in the future and may be used for base stations, MMEs, or UEs, and so on.
  • the various identifications shown above are only illustrative and not restrictive, and the present disclosure is not limited to the specific information elements as examples of these identifications. Many changes and modifications may be made by those skilled in the art in light of the teachings of the illustrated embodiments.
  • various components inside the base station and user equipment in the above embodiments can be implemented by a variety of devices, including but not limited to: analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processing processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable logic device (CPLD), etc.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD programmable logic device
  • the program running on the device according to the present invention may be a program that causes the computer to implement the functions of the embodiments of the present invention by controlling a central processing unit (CPU).
  • the program or information processed by the program may be temporarily stored in volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory systems.
  • Programs for realizing the functions of each embodiment of the present invention can be recorded on a computer-readable recording medium.
  • the program can be read by causing the computer system to read the program recorded on the recording medium and execute the Run these programs to implement the corresponding functions.
  • the so-called “computer system” here may be a computer system embedded in the device, which may include an operating system or hardware (such as peripheral devices).
  • the "computer-readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a short-term dynamic storage program recording medium, or any other recording medium readable by a computer.
  • circuits eg, single-chip or multi-chip integrated circuits.
  • Circuitry designed to perform the functions described in this specification may include a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or any combination of the above.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor can be a microprocessor or any existing processor, controller, microcontroller, or state machine.
  • the above circuit may be a digital circuit or an analog circuit.
  • the present invention is not limited to the above-described embodiment. Although various examples of the embodiments have been described, the invention is not limited thereto.
  • Fixed or non-mobile electronic equipment installed indoors or outdoors can be used as terminal equipment or communication equipment, such as AV equipment, kitchen equipment, cleaning equipment, air conditioners, office equipment, vending machines, and other household appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种由用户设备执行的方法及用户设备,该方法是用户设备UE与基站之间基于多路径通信方式进行通信的过程中执行的处理方法,包括如下步骤:UE接收来自基站的RRC消息,在该消息中携带用于指示UE建立经由中继UE与基站进行通信的非直接连接的信息,在该消息中还携带了中继UE的身份信息;和在接收到上述RRC消息时,UE将其中携带的中继UE的身份信息对应的中继UE作为目标中继UE,并执行与该中继UE的侧链路SL连接或者PC5连接的建立。

Description

由用户设备执行的方法及用户设备 技术领域
本发明涉及无线通信技术领域,更具体地,本发明涉及由用户设备执行的方法以及相应的用户设备。
背景技术
在一个基站覆盖的小区内,一个用户设备UE可以与基站直接进行通信,这样的通信连接被称为直接连接(direct connection)。这个UE还可以通过一个中继UE(relay UE)和基站进行通讯连接,这种连接可以被称为非直接连接(indirect connection)或者间接连接。在通过relay UE和基站进行通信的场景下,这个UE被称为远端UE(remote UE)。
为了提升UE的上下行传输速率以及吞吐量,UE可同时工作在直接连接和间接连接的模式下。如图1所示,在这样的工作方式下,由于UE和基站之间通过了不同的路径(path)通信,因此又可以称为多路径(multi-path)通信方式。
在图1中,远端UE和基站之间以及中继UE和基站之间一般采用无线通信方式,例如5G NR或者是LTE等通信技术和手段;而remote UE和relay UE之间可以是基于侧链路通信的方式,或者是基于热点覆盖的WIFI通信方式,还可以是有线连接的方式进行通信。
在经由relay的多路径工作模式下,relay UE的服务小区可能发生变化,从而导致用户数据不能准确到达基站,那么当这样的情况发生时,如何保证传输的正确进行是需要解决的问题。
发明内容
为了解决上述问题,本发明提供一种由用户设备执行的方法及用户设备,在经由relay的多路径工作模式下,即使relay UE的服务小区可能发生变化时,也能够保证传输的正确进行,使得用户数据能够准确到 达基站。
根据本发明的一个方面,提供了一种由用户设备执行的方法,是用户设备UE与基站之间基于多路径通信方式进行通信的过程中执行的处理方法,包括如下步骤:
UE接收来自基站的RRC消息,在该消息中携带用于指示UE建立经由中继UE与基站进行通信的非直接连接的信息,在该消息中还携带了中继UE的身份信息;和
在接收到上述RRC消息时,UE将其中携带的中继UE的身份信息对应的中继UE作为目标中继UE,并执行与该中继UE的侧链路SL连接或者PC5连接的建立。
在上述的由用户设备执行的方法中,优选地,还包括如下步骤:
UE接收来自基站的RRC重配置消息,在该消息中包括中继UE的UE标识以及添加连接路径的配置信息;
在接收到上述RRC重配置消息时,UE启动一个用于管理添加连接路径的定时器,并启动建立与中继UE的连接。
在上述的由用户设备执行的方法中,优选地,还包括如下步骤:
在建立与中继UE的连接的过程中,或者是在定时器运行的期间,如果中继UE的服务小区发生了变化,那么UE启动失败信息报告流程,
在该流程中,UE生成失败信息消息,在该消息中指示路径添加失败或者指示间接连接建立失败的信息,并在该消息中指示添加失败的原因是中继UE的服务小区发生变化,或者在该消息中指示中继UE的服务小区发生了变化。
在上述的由用户设备执行的方法中,优选地,还包括如下步骤:
当中继UE通过PC5 RRC消息通知UE,在中继UE侧发生了小区选择或者重选或者切换时,UE获知中继UE的服务小区发生了变化。
在上述的由用户设备执行的方法中,优选地,还包括如下步骤:
当UE接收到中继UE发送的发现消息,且在该消息中携带的物理小区标识发生了变化时,UE获知中继UE的服务小区发生了变化。
在上述的由用户设备执行的方法中,优选地,还包括如下步骤:
当UE接收到中继UE发送的系统信息块SIB1,且在该SIB1中携带 的小区标识与UE之前接收到的SIB1中的小区标识不同时,UE获知中继UE的服务小区发生了变化。
在上述的由用户设备执行的方法中,优选地,还包括如下步骤:
当UE在接收到来自基站的RRC消息之前向基站报告的测量报告中包含了中继UE的第1小区标识,但是在接收到来自基站的RRC消息之后,从发现消息中或者是从SIB1中获知的小区标识为第2小区标识,且第1小区标识和第2小区标识不同时,UE获知中继UE的服务小区发生了变化。
在上述的由用户设备执行的方法中,优选地,还包括如下步骤:
当UE处于多路径的工作状态下,且其中一个路径是经由中继UE与基站相连的路径时,如果UE获知中继UE的服务小区发生了变化,那么UE执行下述操作中的至少一个:
UE挂起或者暂停经由中继路径传输的所有无线承载;
UE启动失败信息报告流程,在该流程中UE生成失败信息消息,在该消息中指示中继UE的服务小区发生变化;
UE执行侧链路UE信息报告流程,在该流程中UE向基站发送侧链路UE信息消息,在该消息中至少携带了中继UE在实际的SL连接或PC5连接中使用的目的地标识。
在上述的由用户设备执行的方法中,优选地,还包括如下步骤:
当UE获知中继UE的服务小区发生了变化时,UE进一步判断SRB1是否位于非直接连接上,并进一步判断是否被配置了分裂的SRB1,
如果SRB1没有位于非直接连接上,UE也没有被配置分裂的SRB1,那么UE启动RRC连接重建流程;
如果SRB1位于非直接连接上,或者是UE被配置了分裂的SRB1,那么UE执行上述操作中的至少一个。
根据本发明的另一个方面,提供了一种用户设备,包括:
处理器;以及
存储器,存储有指令,
其中,上述指令在由上述处理器运行时执行上文所描述的方法。
根据本发明所涉及的由用户设备执行的方法以及相应的用户设备, 即使在经由relay的多路径工作模式下relay UE的服务小区发生了变化时,也能够保证用户数据准确到达基站。
附图说明
图1是表示直接连接和间接连接并行的工作方式(multi-path)即多路径通信方式的示意图。
图2是表示UE-to-Network中继的示意图。
图3是表示SRB和split SRB协议层结构的示意图。
图4是表示本发明的一实施例涉及的用户设备UE执行的方法的流程图。
图5是本发明所涉及的用户设备的简要结构框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
在具体描述之前,先对本发明中提到的若干术语做如下说明。除非另有指出,本发明中涉及的术语都具有下文的含义。
UE:User Equipment,用户设备;
NR;New Radio,新一代无线技术;
LTE:Long Term Evolution,长期演进技术;
eLTE:Enhaced Long Term Evolution,增强的长期演进技术;
RRC:Radio Resource Control,无线资源控制(层);
MAC:Medium Access Control,媒体接入控制(层);
MAC CE:MAC Control Element,MAC控制元素;
SDAP:Service Data Adaptation Protocol,业务数据自适应协议;
SRAP:Sidelink Relay Adaptation Protocol,侧行链路中继自适应协议;
RLC:Radio Link Control,无线链路层控制;
PDCP:Packet Data Convergence Protocol,分组数据汇聚协议;
ADAPT:Adaptation layer,侧行链路通信适配层;
PHY:physical layer,物理层;
RB:radio bearer,无线承载;
DRB:Data Radio Bearer,数据无线承载;
SRB:Signalling Radio Bearer,信令无线承载;
PDU:Protocol Data Unit,协议数据单元;;
SDU:Service Data Unit,服务数据单元;
V2X:Vehicle-to-Everything,车联网。
本发明中,网络、基站和RAN可互换使用,所述网络可以是长期演进LTE网络、新无线访问技术(New RAT,NR)网络、增强的长期演进eLTE网络,也可以是3GPP后续演进版本中定义的其他网络。
本发明中,用户设备UE可以指背景技术中所述的支持NR Sidelink中继功能的NR设备,也可以指支持NR sidelink中继架构的NR设备,也可以指其他类型的NR设备或者LTE设备。
本发明中,sidelink和PC5可以互换使用,RLC信道(channel)、RLC实体和RLC承载(bearer)可以互换使用。以及在本文中PC5用于relay操作,因此也可以由relay来替换。
以下,对本发明的相关技术给出说明。
多路径(multi-path)通信
如图1所示,UE和基站之间可以通过直接连接和非直接连接进行通信。UE可以被配置同时工作在直接连接和非直接连接的通信方式下,这样的通信方式可以被称为多路径(multi-path)通信。其中,直接连接的路径可以被称为是直连路径(direct path),非直接连接的路径可以被称为是中间路径(relay path)或者是非直连路径(indirect path)。
在本文中直接连接和direct path可以相互替换;非直接连接、间接连接、relay path以及indirect path可以相互替换。
在本文中多路径通信还可以由多连接(multi-connection)通信来替换。
UE之间近场通信(UE to UE,U2U communication)
UE和UE之间可以通过近场通信的方式进行无线连接,以实现数据或信令的传输。在本文中提到的近场通信方式主要是指侧链路(sidelink)连接,还可以是WIFI连接,或者其他连接方式。UE和UE之间基于sidelink连接的参考点(reference point)被称为PC5,因此UE之间的基于sidelink的连接可以被称为PC5连接。在本文中sidelink连接可以和PC5连接相替换。这样的PC5连接可以由一对层2标识(a pair ofLayer-2ID)来标识,通常包括源层2标识(Source Layer-2 ID)和目的地层2标识(Destination Layer-2 ID)。这样的PC5连接可以简称为针对或者对应于某一目的地的(Destination)PC5连接、sidelink连接等。
侧链路无线链路失败(sidelink radio link failure,SL RLF)
在下述情况下,UE可以判定针对特定的目的地(specific destination)侧链路连接发生了无线链路失败:
当接收到sidelink RLC实体指示针对于特定的目的地达到了最大重传次数(upon indication from sidelink RLC entity that the maximum number of retransmissions for a specific destination has been reached);
当针对于特定的目的地的定时器T400运行超时(upon T400expiry for a specific destination);
当接收到MAC实体的指示,指示针对特定目的地的检测的连续的HARQ DTX达到了最大次数(upon indication from MAC entity that the maximum number of consecutive HARQ DTX for a specific destination has been reached);
当针对于特定目的地的、用于sidelink信令承载的PDCP实体指示发生了完整性保护校验失败(upon integrity check failure indication from sidelink PDCP entity concerning SL-SRB for a specific destination)。
在侧链路连接或者PC5连接中,一个特定的目的地对应着一个PC5连接,因此可以认为对应于该地址的侧链路连接或者PC5连接发生了SL RLF。
UE-to-Network中继(U2N relay)
如图2所示,左侧为远端UE,中间为中继UE,右侧为网络,远端UE和中继UE之间可以通过前述的PC5接口连接,或者是WIFI或者其他连接方式。在本文中主要以PC5连接为例。其中,中继UE和网络可以通过Uu口连接。中继UE对远端UE和网络/基站间的信令和数据进行中继转发。
Uu接口
UE和基站之间的无线通信接口。UE可以在Uu接口上采用E-UTRAN和eNB通信。UE还可以在Uu接口上采用NR和gNB通信。
Uu无线链路失败(Uu radio link failure,Uu RLF)
在下述情况下,UE可以判定在Uu口检测到无线链路失败:
-从MAC接收到随机接入问题指示(upon random access problem indication);
-从RLC接收到已经达到最大重传次数的指示(upon indication from RLC that the maximum number of retransmissions has been reached);
-用于无线链路检测相关的定时器T310或者T312运行超时(upon T310/T312 expiry)。
RRC连接重建(RRC connection re-establishment)
处于连接态的UE为了恢复与基站或者网络侧之间的通信,需要重新建立RRC连接。为了实现这一目的,UE执行RRC连接重建过程。在启动(initiate)该过程中UE启动定时器T311,用于连接恢复过程的管理。
定时器T304
在现有技术中,当UE接收到来自基站的RRC连接重配置消息,在该消息指示了UE执行同步重配置(reconfiguration with sync),或者是切换(handover/switch)时,UE会启动定时器T304用于管理该同步的过程。如果该同步重配置成功完成,UE会停止T304;如果T304运行超时,那么意味着同步重配置过程失败,UE会触发RRC连接重建过程,在这一过程中,UE向基站发送RRC重建请求消息(RRCReestablishmentRequest message)。
信令承载(signal radio bearer,SRB)和分裂的信令承载(split SRB)
在UE与基站的通信中,SRB用于承载信令,UE将向网络进行空口RRC连接建立(setup)、重建(re-establish)、恢复(resume)等消息通过Uu PDCP层对数据进行封装,然后递交到Uu RLC实体进一步封装,并承载在Uu RLC信道上,通过Uu-MAC和Uu-PHY逐层向下递交。反之,网络发送给UE的RRC消息也经由SRB到达UE。这样的SRB可以被称为是被配置在直接连接上的SRB,或者是被配置在direct path上的SRB(SRB via direct path)。
在多路径配置下,UE可以被配置split SRB,其协议结构如图3所示,在Uu PDCP层对数据进行封装之后,UE可以根据需要,将封装好的数据递交给UuRLC或者是PC5 RLC。如果数据被递交到Uu RLC,那么和SRB的处理相同;如果数据被递交到PC5 RLC,那么在进一步封装之后,将承载在PC5 RLC信道上,并通过PC5-MAC和PC5-PHY逐层向下递交,经由relay path,最终发送给基站/网络。如果数据被递交到Uu RLC,那么和SRB一样,最终将经由direct path发送给基站/网络。这样的split SRB可以被称为是被配置在multipath上的split SRB,或者是被配置了relay path的split SRB(split SRB viarelay)。
在多路径配置下,UE还可以被配置SRB via relay,其协议结构如图3所示,在Uu PDCP层对数据进行封装之后递交到PC5 RLC实体进一步封装,并承载在PC5 RLC信道上,通过PC5 MAC和PC5 PHY逐层向下递交,发送给relay UE,然后被转发给网络/基站。反之,网络发送给UE的RRC消息也可以经由SRB via relay通过relay UE进而到达UE。 这样的SRB via relay还可以被称为是被配置在relay path或者是被配置在非直接连接上的SRB。
根据承载的内容,信令承载SRB可以分为以下几类:
SRB0:用于承载采用公共控制信道(CCCH)的逻辑信道传输的RRC消息;
SRB1:用于承载采用专有控制信道(DCCH)对应的逻辑信道进行传输的RRC消息和非接入层消息;
SRB2:采用专有控制信道对应的逻辑信道进行传输的非接入层(NAS)消息以及携带测量信息的RRC消息。
以下参照图4对本发明的方法进行说明。
图4是根据本发明的一个实施方式的由UE执行的处理方法的流程图。
以下将列举出具体的实施例来说明本发明的处理方法。
实施例1
在本实施例中,提供一种UE与基站之间基于多路径通信方式进行通信的过程中执行的处理方法,如图4所示,包括如下步骤:
S401:UE接收来自基站的RRC消息,在该消息中携带用于指示UE建立经由中继UE与基站进行通信的非直接连接的信息;优选的,在该消息中还携带了中继UE的身份信息,例如relay UE的UE标识等,以便于UE识别出该relay UE。
S402:在接收到上述RRC消息时,可以将其中携带的中继UE的身份信息,例如UE标识对应的relay UE作为目标relay UE,并执行与该relay UE的SL连接或者PC5连接的建立,例如UE可以指示UE RRC层之上的上层触发与该relay UE的PC5连接建立。优选的,UE可以启动一个定时器。
具体地,UE接收来自基站的RRC消息,例如RRC重配置消息。在该消息中可以携带着指示UE建立非直接连接的信息,例如在该消息中包含了用于非直接连接的relay UE的信息,至少包括relay UE的UE 标识,例如L2 ID,又例如还可以包含了添加连接路径(path addition)的配置信息,基于该配置信息,UE可以建立非直接连接的路径等。
在接收到上述消息时,UE可以启动一个用于管理添加连接路径的定时器T-pathaddition。该定时器位于UE侧。该定时器的时长取值,可以也携带在上述消息中。即,UE可以根据上述消息中携带的T-pathaddition时长的取值来设置定时器T-pathaddition,以及启动定时器T-pathaddition。
在接收到上述消息时,UE启动建立与relay UE的连接,这里以建立PC5连接举例。UE建立与relay UE的PC5连接。不过,如上所述,在本文中sidelink连接可以和PC5连接相替换,也就是说,sidelink连接也同样适用。UE还可以通过WIFI与relay UE建立连接。例如UE可以指示UE RRC层之上的上层(upper layer)触发与该relay UE的PC5连接建立。
在建立连接的过程中,或者是在定时器运行的期间,如果relay UE的服务小区发生了变化,那么UE可以启动失败信息报告流程(initiate the failure information procedure)。在该流程中,UE生成失败信息消息(Failure Information message),该消息可以是RRC消息,以及可选的,在该消息中指示了路径添加(path addition)失败或者是指示间接连接建立失败等信息。以及,UE将该消息递交给RRC层之下的下层(lower layer)进行传输,从而发送给基站。优选的,在该消息中还可以指示添加失败的原因是relay UE的服务小区发生变化,或者在该消息中指示relay UE的服务小区发生了变化。
可选的,UE还可以生成特定的、用于报告路径添加(path addition)失败或者是指示间接连接建立失败信息的RRC消息,并将该消息递交给下层传输以发送给基站。
可选的,UE可以停止定时器T-pathaddition。
其中,当UE通过relay UE与基站进行通信的情况下,将该UE称为remote UE。
实施例2
通过下述方式,UE可以获知在实施例1中提到的、relay UE的服务小区发生了变化:
方式一,relay UE通过PC5 RRC消息通知UE,在relay UE侧发生了小区选择或者重选,或者是通知UE,在relay UE侧发生了切换。
方式二,UE接收relay UE发送的发现消息(Discovery Message),在该消息中携带的物理小区标识(Phycial cell Identity,PCI)发生了变化,这里发生变化是与UE之前接收到的Discovery消息中的PCI相比较是不同的PCI。且这样的变化是在UE接收到实施例1中所述的来自基站的RRC消息之后发生的。
方式三:UE接收到relay UE向UE发送的系统信息块1(system Information Block1,SIB1),在SIB1中携带的小区标识与UE之前接收到的SIB1中的小区标识不同。这里UE之前接收到的SIB1可以是在UE接收到实施例1中所述的来自基站的RRC消息之前获得的。
方式四:UE在接收到实施例1中所述的来自基站的RRC消息之前向基站报告的测量报告中包含了relay UE的小区标识1,但是在接收到实施例1中所述的来自基站的RRC消息之后,从Discovery消息中或者是从relay UE发送的SIB1中获知的小区标识为小区标识2,且小区标识1和小区标识2不同,那么UE确定relay UE的服务小区(serving cell)发生了变化。
方式五:UE在接收到实施例1中所述的来自基站的RRC消息中还包含了relay UE的服务小区的信息,可以是一个服务小区,或者是多个服务小区时,那么在接收到实施例1中所述的来自基站的RRC消息之后,如果relay UE的服务小区发生了变化,且不同于前述的一个或者多个服务小区,那么就认为relay UE的服务小区发生了变化。UE可以通过前述的SIB1或者是discovery消息来获得relay UE的服务小区的信息。
实施例3
在实施例1中UE在定时器运行期间或者是与relay UE建立连接期间,UE获知relay UE的服务小区发生了变化,从而执行相应的操作。
此外还有一种可能,当UE处于multi path的工作状态下,其中一个path是经由relay UE与基站相连,那么当UE获知relay UE的服务小区发生了变化,可以执行下述操作之一或者多:
操作一:UE挂起或者暂停(suspend)经由relay path传输的所有无线承载,可以包括无线信令承载,或者是数据承载。或者是暂停这些信令承载经由relay path的传输。
操作二:UE可以启动失败信息报告流程(initiate the failure information procedure)。UE可以认为当relay UE的服务小区发生变化时,经由relay UE的path发生了失败在该流程中,UE生成失败信息消息(Failure Information message),以及可选的,在该消息中指示与之相连的relay UE之间的链路发生SL-RLF或者是指示间接连接发生失败,或者是indirect path failure等信息,还可以直接指示relay UE的服务小区发生变化。以及将该消息递交给下层进行传输,从而发送给基站。
操作三:Remote UE还可以执行侧链路UE信息报告流程(sidelink UE information for NR sidelink communication procedure),向基站/网络侧发送sidelink UE information消息。在该消息中包含侧链路失败报告列表(sl-failure list),并设置其中的侧链路目的标识(sl-DestinationIdentity)为relay UE在广播消息中携带的relay UE标识,或者是设置为remote UE所接收到的、RRC重配置消息中携带的relay UE的身份标识。该RRC重配置消息是实施例1中提到的、携带添加路径配置信息的RRC消息。
在发送的sidelink UE information消息中,remote UE还可以设置侧链路目的地标识(sl-DestinationIdentity)为上层配置的、用于侧链路传输的地址标识,并且添加指示信息,指示该地址标识对应于relay UE,优选的,是对应于multi-path中的U2N relay UE。例如设置一个IE relay,当目的地标识对应于relay UE时,设置该IE relay的取值为真,或者取值为“1”,当目的地标识不对应于relay UE时,不携带该IE relay,或者设置该IE relay的取值为假或者为“0”。
优选的,为了能够让基站识别在上述sidelink UE information消息中报告的目的地标识对应于一个relay UE,remote UE还可以在与relay UE成功建立PC5连接时,启动侧链路UE信息报告流程(sidelink UE  information for NR sidelink communication procedure),向基站/网络侧发送sidelink UE information消息。在该消息中,至少携带了relay UE在实际PC5连接中使用的目的地标识,具体的方式可以是携带IE relayinfor,在该IE中至少包含了两个地址标识:
一个是relay UE在广播消息中携带的relay UE标识,或者是remote UE所接收到的、RRC重配置消息中携带的relay UE的标识,另外一个是上层配置的、用于侧链路传输的地址标识,这里的侧链路是本文中提到的用于remote UE进行非间接连接的侧链路。
基于上述方法,remote UE在执行操作三的时候,可以设置其中的侧链路目的标识(sl-DestinationIdentity)为上层配置的、用于侧链路传输的地址标识。由于在remote UE报告的IE relayinfor中指明了该目的标识对应于relay UE的标识,因此,基站可以间接的知道该侧链路传输的地址标识对用应于relay UE,优选的,是对应于multi-path中的U2N relay UE。
除了操作一,UE可以仅执行操作二或操作三,也可以两者都执行,执行效果不会受到影响。
此外,本实施例也可单独实施,用于报告UE在multi-path的工作模式下检测到与之相连的relay UE的服务小区发生了变化。
实施例4
在实施例3的基础上,当remote UE检测relay UE的服务小区发生了变化,UE还可以进一步判断是否配置了SRB1 via relay(或者判定SRB1是否是位于非直接连接上),以及进一步判断是否被配置了split SRB1。
如果UE没有被配置SRB1 via relay(或者SRB1没有位于非直接连接上),也没有被配置split SRB1,那么UE启动RRC连接重建流程。
如果UE被配置SRB1 via relay(或者SRB1位于非直接连接上),或者是UE被配置了split SRB1,那么UE可以执行实施例3中的操作之一或者多。
图5是本发明所涉及的用户设备的简要结构框图。
如图5所示,该用户设备500至少包括处理器501和存储器502。处理器501例如可以包括微处理器、微控制器、嵌入式处理器等。存储器502例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统等。存储器502上存储有程序指令。该指令在由处理器501运行时,可以执行本公开的UE的处理方法中的一个或几个步骤。
上文已经结合优选实施例对本公开的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的,而且以上说明的各实施例在不发生矛盾的情况下能够相互组合。本发明的方法并不局限于上面示出的步骤和顺序。
上面示出的用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本公开并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本公开的上述实施例可以通过软件、硬件或者软件和硬件两者的结合来实现。例如,上述实施例中的基站和用户设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
此外,运行在根据本发明的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本发明的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本发明各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执 行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本发明的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本发明并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本发明并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (10)

  1. 一种由用户设备执行的方法,是用户设备UE与基站之间基于多路径通信方式进行通信的过程中执行的处理方法,包括如下步骤:
    UE接收来自基站的RRC消息,在该消息中携带用于指示UE建立经由中继UE与基站进行通信的非直接连接的信息,在该消息中还携带了中继UE的身份信息;和
    在接收到上述RRC消息时,UE将其中携带的中继UE的身份信息对应的中继UE作为目标中继UE,并执行与该中继UE的侧链路SL连接或者PC5连接的建立。
  2. 根据权利要求1所述的由用户设备执行的方法,其中,还包括如下步骤:
    UE接收来自基站的RRC重配置消息,在该消息中包括中继UE的UE标识以及添加连接路径的配置信息;
    在接收到上述RRC重配置消息时,UE启动一个用于管理添加连接路径的定时器,并启动建立与中继UE的连接。
  3. 根据权利要求2所述的由用户设备执行的方法,其中,还包括如下步骤:
    在建立与中继UE的连接的过程中,或者是在定时器运行的期间,如果中继UE的服务小区发生了变化,那么UE启动失败信息报告流程,
    在该流程中,UE生成失败信息消息,在该消息中指示路径添加失败或者指示间接连接建立失败的信息,并在该消息中指示添加失败的原因是中继UE的服务小区发生变化,或者在该消息中指示中继UE的服务小区发生了变化。
  4. 根据权利要求3所述的由用户设备执行的方法,其中,还包括如下步骤:
    当中继UE通过PC5 RRC消息通知UE,在中继UE侧发生了小区选择或者重选或者切换时,UE获知中继UE的服务小区发生了变化。
  5. 根据权利要求3所述的由用户设备执行的方法,其中,还包括如下步骤:
    当UE接收到中继UE发送的发现消息,且在该消息中携带的物理小区标识发生了变化时,UE获知中继UE的服务小区发生了变化。
  6. 根据权利要求3所述的由用户设备执行的方法,其中,还包括如下步骤:
    当UE接收到中继UE发送的系统信息块SIB1,且在该SIB1中携带的小区标识与UE之前接收到的SIB1中的小区标识不同时,UE获知中继UE的服务小区发生了变化。
  7. 根据权利要求5或6所述的由用户设备执行的方法,其中,还包括如下步骤:
    当UE在接收到来自基站的RRC消息之前向基站报告的测量报告中包含了中继UE的第1小区标识,但是在接收到来自基站的RRC消息之后,从发现消息中或者是从SIB1中获知的小区标识为第2小区标识,且第1小区标识和第2小区标识不同时,UE获知中继UE的服务小区发生了变化。
  8. 根据权利要求3所述的由用户设备执行的方法,其中,还包括如下步骤:
    当UE处于多路径的工作状态下,且其中一个路径是经由中继UE与基站相连的路径时,如果UE获知中继UE的服务小区发生了变化,那么UE执行下述操作中的至少一个:
    UE挂起或者暂停经由中继路径传输的所有无线承载;
    UE启动失败信息报告流程,在该流程中UE生成失败信息消息,在该消息中指示中继UE的服务小区发生变化;
    UE执行侧链路UE信息报告流程,在该流程中UE向基站发送侧链路UE信息消息,在该消息中至少携带了中继UE在实际的SL连接或PC5连接中使用的目的地标识。
  9. 根据权利要求8所述的由用户设备执行的方法,其中,还包括如下步骤:
    当UE获知中继UE的服务小区发生了变化时,UE进一步判断SRB1是否位于非直接连接上,并进一步判断是否被配置了分裂的SRB1,
    如果SRB1没有位于非直接连接上,UE也没有被配置分裂的SRB1, 那么UE启动RRC连接重建流程;
    如果SRB1位于非直接连接上,或者是UE被配置了分裂的SRB1,那么UE执行上述操作中的至少一个。
  10. 一种用户设备,包括:
    处理器;以及
    存储器,存储有指令,
    其中,上述指令在由上述处理器运行时执行根据权利要求1至9中任一项所述的方法。
PCT/CN2023/097407 2022-06-01 2023-05-31 由用户设备执行的方法及用户设备 WO2023232070A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210627035.2 2022-06-01
CN202210627035.2A CN117202407A (zh) 2022-06-01 2022-06-01 由用户设备执行的方法及用户设备

Publications (1)

Publication Number Publication Date
WO2023232070A1 true WO2023232070A1 (zh) 2023-12-07

Family

ID=88991150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097407 WO2023232070A1 (zh) 2022-06-01 2023-05-31 由用户设备执行的方法及用户设备

Country Status (2)

Country Link
CN (1) CN117202407A (zh)
WO (1) WO2023232070A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107637162A (zh) * 2015-05-14 2018-01-26 英特尔Ip公司 Ue到网络中继发起和配置
CN109246793A (zh) * 2017-05-17 2019-01-18 华为技术有限公司 多链接的数据传输方法及装置
US20220132392A1 (en) * 2020-10-22 2022-04-28 Electronics And Telecommunications Research Institute Method and apparatus for link configuration and routing of relay system
CN115474248A (zh) * 2021-06-10 2022-12-13 夏普株式会社 由用户设备执行的方法及用户设备
CN116489819A (zh) * 2022-01-14 2023-07-25 夏普株式会社 由用户设备执行的方法及用户设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107637162A (zh) * 2015-05-14 2018-01-26 英特尔Ip公司 Ue到网络中继发起和配置
CN109246793A (zh) * 2017-05-17 2019-01-18 华为技术有限公司 多链接的数据传输方法及装置
US20220132392A1 (en) * 2020-10-22 2022-04-28 Electronics And Telecommunications Research Institute Method and apparatus for link configuration and routing of relay system
CN115474248A (zh) * 2021-06-10 2022-12-13 夏普株式会社 由用户设备执行的方法及用户设备
CN116489819A (zh) * 2022-01-14 2023-07-25 夏普株式会社 由用户设备执行的方法及用户设备

Also Published As

Publication number Publication date
CN117202407A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
TWI678124B (zh) 使用者設備和相關方法
WO2023134679A1 (zh) 由用户设备执行的方法及用户设备
WO2020151653A1 (zh) 由用户设备执行的切换方法以及用户设备
WO2019029565A1 (zh) 用户设备、基站和相关方法
TW201625036A (zh) 處理與多個基地台間通訊的失敗的方法及其裝置
TW201519689A (zh) 處理無線鏈路失敗的方法
WO2017163670A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2021027931A1 (zh) 小区切换方法以及用户设备
WO2022083444A1 (zh) 系统信息获取方法及用户设备
US20220007259A1 (en) Communication control method
JP2020162106A (ja) 端末装置、方法、および、集積回路
US20210377758A1 (en) Communication control method
WO2023040955A1 (zh) 切换信息报告方法以及用户设备
WO2023093818A1 (zh) 由用户设备执行的方法及用户设备
WO2023232070A1 (zh) 由用户设备执行的方法及用户设备
WO2023246766A1 (zh) 由用户设备执行的方法及用户设备
WO2024051681A1 (zh) 由用户设备执行的方法及用户设备
WO2024055956A1 (zh) 由用户设备执行的方法及用户设备
WO2023280203A1 (zh) 由用户设备执行的方法及用户设备
WO2024067464A1 (zh) 由用户设备执行的方法及用户设备
WO2023125649A1 (zh) 连接建立失败报告方法和用户设备
WO2024067623A1 (zh) 由用户设备执行的方法以及用户设备
WO2024051648A1 (zh) 由用户设备执行的方法及用户设备
WO2022257974A1 (zh) 切换信息报告方法、用户设备以及通信系统
WO2023246770A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815247

Country of ref document: EP

Kind code of ref document: A1