WO2023125649A1 - 连接建立失败报告方法和用户设备 - Google Patents

连接建立失败报告方法和用户设备 Download PDF

Info

Publication number
WO2023125649A1
WO2023125649A1 PCT/CN2022/142763 CN2022142763W WO2023125649A1 WO 2023125649 A1 WO2023125649 A1 WO 2023125649A1 CN 2022142763 W CN2022142763 W CN 2022142763W WO 2023125649 A1 WO2023125649 A1 WO 2023125649A1
Authority
WO
WIPO (PCT)
Prior art keywords
sdt
information
cef
connection establishment
failure
Prior art date
Application number
PCT/CN2022/142763
Other languages
English (en)
French (fr)
Inventor
常宁娟
刘仁茂
Original Assignee
夏普株式会社
常宁娟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 常宁娟 filed Critical 夏普株式会社
Publication of WO2023125649A1 publication Critical patent/WO2023125649A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and more specifically, the present disclosure relates to a connection establishment failure reporting method and corresponding user equipment.
  • network optimization can achieve the purpose of optimizing network performance.
  • data collection and data analysis are carried out on the existing deployed and operating networks to find out the reasons that affect the network quality, and to improve network performance by modifying the configured network parameters, adjusting the network structure and deployed equipment, etc.
  • SON Self-configuration and Self-Optimization Network
  • the network side can configure the UE to perform SON measurement.
  • the SON function includes many aspects, such as the Automatic Neighbor Relation Function (ANR, Automatic Neighbor Relation Function) used to reduce the operator’s neighbor management burden, and the Mobile Load Balancing function (MLB, Mobility Load Function) used to balance the responsibility between different cells. Balancing), mobile robustness optimization function (MRO, Mobility Robustness Optimization) for optimizing mobile performance, random access channel optimization function for optimizing random access channel parameters and radio link failure for optimizing coverage and MRO reporting functions, etc.
  • ANR Automatic Neighbor Relation Function
  • MLB Mobile Load Balancing function
  • MRO Mobility Robustness Optimization
  • MDT Minimization of Drive Tests
  • the related parameters of network optimization are obtained from the drive test data obtained by the UE, and based on the analysis of these data, the status of network deployment and operation is obtained, so as to make decisions on how to improve the operation status of the network.
  • the main application scenarios of MDT are coverage optimization, capacity optimization, mobility management optimization, QoS parameter optimization, and public channel parameter configuration optimization.
  • the Connection Establishment Failure (CEF) report is the UE's record of the network status when the initial connection establishment occurs, and is used for network-side optimization of network coverage issues.
  • the 3GPP RAN2 working group is currently conducting a research project of version 17 (see 3GPP document RP-193252 (Work Item on NR small data transmissions in INACTIVE state)) referred to as the Small Data Transmission (SDT) project.
  • SDT Small Data Transmission
  • the purpose of this research project is to optimize the signaling overhead and power consumption of small-sized data services that users transmit infrequently.
  • Radio Resource Control_Inactive For a user equipment (UE) in the radio resource control inactive state (Radio Resource Control_Inactive, RRC_INACTIVE), some infrequent small-size data services (such as instant messages, heartbeat signals to keep online, smart wearable devices or sensors) Periodic information and periodic meter reading services brought by smart metering devices, etc.) transmission makes the UE need to enter the radio resource control connected state RRC_CONNECTED state to execute the transmission of small-sized data packets, and the resulting signaling overhead brings network performance reduce, and also greatly consume the energy consumption of the UE.
  • RRC_CONNECTED Radio Resource Control connected state
  • the present disclosure aims to realize the failure information reporting problem in the NR network, and further, realize the CEF reporting problem in the SDT-supporting network.
  • the main purpose of the present disclosure is to provide a connection establishment failure reporting method and user equipment, so that in a system supporting SDT, reporting of SDT-related performance information and random access when CEF reporting is implemented in an SDT scenario Information setting problem.
  • a connection establishment failure reporting method including: a user equipment UE initiates a small data transmission SDT process based on random access; the UE determines that the SDT process fails;
  • the CEF information is stored in the connection establishment failure CEF report, and the CEF information includes at least one of the following information: first information, used to indicate that the failure process is for SDT; and second information, used to indicate that the failure occurred in the SDT process Subsequent transmission stage.
  • the CEF information may further include: location information, an identifier of a failed cell, and a measurement result of a failed cell or a neighboring cell.
  • connection establishment failure reporting method of the first aspect above when the SDT timer started when the UE initiates the SDT process times out, the UE determines that the SDT process fails.
  • connection establishment failure reporting method of the first aspect above when the SDT timer expires before the UE receives the first resource scheduling command for scheduling uplink or downlink data, the UE Save the CEF information in the CEF report.
  • the UE may determine that the SDT process fails when the maximum number of RLC transmissions has reached the maximum number of times.
  • the CEF information when more than one random access RA process is executed in the SDT process, includes the latest one of the more than one RA process RA information related to the RA process.
  • the CEF information when more than one random access RA procedure is performed in the SDT procedure, includes RA information related to the more than one RA procedure .
  • a connection establishment failure reporting method including: a user equipment UE initiates a small data transmission SDT process based on a configuration permission mode; the UE determines that the SDT process fails; The CEF information is stored in the establishment failure CEF report, and the random access-related information in the CEF information is set to any value or a specific value.
  • connection establishment failure reporting method of the second aspect above when the SDT timer started during the SDT process initiated by the UE expires, or when the radio link control RLC transmission reaches the maximum number of times, the UE It is judged that the SDT process fails.
  • a user equipment including: a processor; and a memory storing instructions; wherein the instructions execute the above connection establishment failure reporting method when executed by the processor.
  • the CEF reporting method performed by the user equipment and the user equipment of the present disclosure in a system supporting SDT, the reporting of SDT-related performance information and the setting of random access information when implementing CEF reporting in an SDT scenario can be realized .
  • Fig. 1 is a schematic flow chart showing the SDT process based on random access.
  • Fig. 2 is a schematic flowchart showing the SDT process based on the CG-SDT mechanism.
  • Fig. 3 is a schematic flowchart showing a method for reporting connection establishment failure in Embodiment 1 of the present invention.
  • Fig. 4 is a schematic flowchart showing a method for reporting connection establishment failure in Embodiment 2 of the present invention.
  • Fig. 5 is a schematic flowchart showing a method for reporting connection establishment failure in Embodiment 3 of the present invention.
  • Fig. 6 shows a block diagram of a user equipment according to an embodiment of the present disclosure.
  • the NR mobile communication system is taken as an example application environment, and multiple implementations according to the present disclosure are described in detail. However, it should be pointed out that the present disclosure is not limited to the following embodiments, but is applicable to more other wireless communication systems, such as an LTE system connected to a 5G core network.
  • the base station in this disclosure can be any type of base station, including Node B, enhanced base station eNB, 5G communication system base station gNB; or micro base station, pico base station, macro base station, home base station, etc.; the cell can also be any type of base station described above
  • the cell can also be a beam (beam), a transmission point (Transmission point, TRP), and a base station can also be a central unit (gNB-Central Unit, gNB-CU) or a distributed unit (gNB-Distributed Unit, gNB-DU).
  • the concept of a cell and a base station can be interchanged; the LTE system is also used to refer to 5G and its subsequent LTE system (such as an eLTE system, or an LTE system that can be connected to the 5G core network ), and LTE can be replaced by Evolved Universal Terrestrial Radio Access (E-UTRA) or Evolved Universal Terrestrial Radio Access Network (E-UTRAN).
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • Different embodiments can also work in combination, for example, the same variables/parameters/nouns in different embodiments are given the same explanation.
  • Cancel, Release, Delete, Empty and Clear etc. can be substituted.
  • Execution, use, and application are interchangeable.
  • Configuration and reconfiguration can be replaced. Monitor and detect are interchangeable. Initiate and Trigger are interchangeable.
  • the NR system supports the Connection Establishment Failure (CEF) report.
  • CEF Connection Establishment Failure
  • the network side evaluates the coverage status of the network by collecting the information in the CEF report reported by the UE, such as whether the coverage of the cell is sufficient, whether there is a coverage hole in the network deployment, and so on.
  • the UE When the connection fails (for example, the RRC connection establishment process fails or the RRC connection recovery process fails), the UE saves the information corresponding to the failure event in the UE variable VarConnEstFailReport corresponding to the CEF report.
  • the RRC connection establishment process monitoring timer such as T300
  • the UE considers the RRC connection establishment process to fail
  • the RRC connection recovery process monitoring timer such as T319
  • the UE When the UE has a saved CEF report in the variable VarConnEstFailReport, the UE will include a connEstFailInfoAvailable information element in the RRC message (such as RRC recovery complete message, RRC establishment complete message, RRC reconfiguration complete message) to inform the base station that there is a saved CEF report on it. CEF report.
  • the base station sends a UEinformationRequest message to the UE, which includes a CEF report request indication (connEstFailReportReq information element), and is used to request the UE to report the stored CEF report information.
  • the UE After receiving the UEinformationRequest message containing the indication, the UE includes the stored CEF report (ConnEstFailReport information element) in the UEinformationReponse message to report to the base station.
  • the connection failure event in the NR system of version 16 includes the failure of the RRC connection establishment process or the failure of the RRC connection recovery process, but the connection failure event described in this disclosure is not limited to these two cases, such as the RRC re-establishment process Failure (such as related timer T301 timeout or T311 timeout), it can also be small data transmission (Small Data Transmission, SDT) process failure (small data transmission related RRC timer timeout.)
  • the CEF report supported in version 17 and earlier NR systems includes the following content: measurement results of failed cells, location information, measurement results of neighboring cells, number of connection failures, random access information, and the events from the occurrence of connection failures to reporting elapsed time.
  • the measurement result of the failed cell refers to the measurement result of the serving cell/resident cell when the connection failure occurs (such as reference signal measurement power RSRP, reference signal measurement quality RSRQ, and signal-to-interference-noise ratio SINR, etc.);
  • the measurement result of the neighboring cell refers to What is the measurement result of one or more adjacent cells when the connection failure event occurs;
  • the location information refers to the absolute position when the connection failure event occurs, and the UE with positioning function can record this information;
  • the number of connection failures refers to the The latest value of the continuous connection failure process in the cell;
  • the random access information refers to the information of the random access process performed during the connection failure process (including the information of each random access attempt such as the perRAInfoList information element).
  • the perRAInfoList information element containing random access information lists the information related to each random access attempt in the order of time when the random access attempt occurs, such as the beam index related to each random access attempt, whether competition is detected, Whether the downlink RSRP is greater than a configured threshold, whether a fallback (fallback) is performed due to receiving a fallback random access response, the number of consecutive random access attempts performed on each beam, and the like.
  • the beam is a synchronization signal block (Synchronization Signal Block, SSB) or a channel state information reference signal (Channel State Information Reference Signal, CSI-RS).
  • the CEF report of version 16 only saves the detailed information of the latest connection establishment/restoration failure, that is, the information in the above CEF report except the number of connection failures is for the latest connection failure.
  • Multiple CEF reports are introduced into the version 17 system (at this time, the CEF reports can be stored in the UE variable VarConnEstFailReportList), that is, the UE can save and report the detailed information of multiple failure events to the network side, and each CEF report can correspond to a or multiple failure events.
  • the connection failure mentioned in the present disclosure includes RRC connection establishment failure, RRC connection recovery failure and SDT process failure.
  • the UE will generate and save a radio link failure report (RLF report) when a radio link failure (Radio Link Failure, RLF) or handover failure (Handover Failure, HOF) occurs, and will The radio link failure information is stored in the UE variable VarRLF-Report.
  • RLF Radio Link Failure
  • HOF Handover Failure
  • the radio link failure information is stored in the UE variable VarRLF-Report.
  • the UE can inform the network side that there is an available radio link failure report (rlf-InfoAvailable information) through an RRC message element to indicate).
  • the network side may request the UE to report the stored radio link failure report through an RRC message (the rlf-ReportReq information element in the UEInformationRequest message indicates the request).
  • the UE will report the stored radio link failure report (rlf-Report information element in the UEInformationResponse message) to the network side in the response RRC message.
  • the wireless link failure report obtained by the network side is used for network optimization, such as network coverage and mobile robustness optimization.
  • the radio link failure report can include: the measurement results of the source cell and neighbor cell available when the link fails, location information, the identity of the primary cell where the link failure occurs, the type of link failure (RLF or HOF), RLF reason, slave
  • the time elapsed from the connection failure to the report of the radio link failure the time elapsed from the last handover command to the connection failure (recorded as timeConnFailure information element), the cell ID of the UE re-accessing the network, that is, the RRC re-establishment cell ID, etc. If the failure is caused by random access or the failure is accompanied by an unsuccessful random access procedure, the radio link failure report also includes random access procedure information.
  • the information of the random access process includes: information of the cell where the random access preamble is sent (global cell ID, tracking area code or physical cell ID, and carrier frequency), random access purpose information, and random access public information.
  • the random access public information includes the reference downlink frequency information associated with the random access process (such as the absolute frequency of Point A, subcarrier spacing, bandwidth location information locationAndBandwidth, etc.) and each random access sequence arranged in order of occurrence time RA information associated with the attempt.
  • the RA information associated with each random access attempt includes the beam index value, the number of consecutive random access attempts on the beam (that is, the number of times the corresponding continuous random access preamble preamble is sent on the beam), whether The indication information of random access contention is detected, whether the reference signal received power (Reference Signal Received Power, RSRP) of the beam corresponding to the random access resource used by the random access attempt is higher than a configured threshold value Instructions.
  • RSRP Reference Signal Received Power
  • One of the research goals of the small data transmission SDT project is to realize small data packet transmission in the RRC_INACTIVE state.
  • SDT mechanism random access-based SDT (Random Access-SDT, RA-SDT) and configuration-based permission-based SDT (Configured Grant-SDT, CG-SDT).
  • Fig. 1 is a schematic flow chart showing the SDT process based on random access.
  • the UE uses the SDT dedicated PRACH resource in the random access process
  • a small data transmission request is sent to the network side, so that the network side knows that the UE will perform small data transmission in the RRC_INACTIVE state, so that the UE will not be configured to enter the RRC connected state.
  • the UE sends the small data in message A of the two-step random access procedure or in message 3 of the four-step random access procedure to the network side, and message A or message 3 also includes the RRC recovery request message. If all the small data has been successfully sent in message 3 or message A (even if the data cache corresponding to the SDT-enabled radio bearer or logical channel is empty), then the UE receives a response from the network side that contains the RRC release message After the message, it is determined that the SDT process is over; if the small data has not been completely sent (that is, there is still unsent uplink small data in the UE's uplink buffer), then after the random access is completed, the network side uses the UE-specific wireless network identifier (such as The Cell-Radio Network Temprary identifier (C-RNTI)) schedules the UE to complete uplink or downlink small data transmission, and when all the small data transmissions are completed, the SDT process ends.
  • C-RNTI The Cell-Radio Network Temprary
  • the UE During the SDT process, if the UE has non-SDT uplink data (data on the radio bearer that is not enabled for SDT) arrives, the UE will send a request to the network side to indicate to enter the RRC connection state or automatically fall back to the traditional non-SDT process to perform uplink data transmission.
  • Fig. 2 is a schematic flowchart showing the SDT process based on the CG-SDT mechanism.
  • the network side configures CG-SDT resources for small data transmission to the UE.
  • the CG-SDT configuration is included in the RRC release message. After receiving the message, the UE releases the RRC connection, enters the RRC_INACTIVE state, and applies the CG-SDT configuration.
  • the CG-SDT configuration includes semi-static uplink grant resources for uplink data transmission and corresponding L2 and L1 configurations. Generally speaking, this resource is a periodic resource.
  • the UE When there is data to be sent on the radio bearer configured with SDT on the UE in the RRC_INACTIVE state and the CG-SDT initiation conditions are met, the UE does not need to initiate the random access process, but directly uses the configured CG to send small data. And complete the remaining small data transmission by monitoring the scheduling information of the base station on the downlink channel.
  • the data transmitted for the first time includes Common Control Channel (Common Control Channel, CCCH) data (RRC recovery request message) and user plane data, called initial transmission (initial transmission) or initial physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) transmission, and the subsequent transmission of user plane data is called subsequent transmission (subsequent transmission) or subsequent PUSCH transmission.
  • CCCH Common Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the initial transmission generally refers to the transmission of message A or message 3
  • the subsequent transmission occurs after the random access RA procedure is successfully completed.
  • CG-SDT the initial transmission uses the allocated CG resource, and the subsequent transmission can use the allocated CG resource or dynamic grant. The UE will not perform subsequent transmissions until the initial transmission is confirmed to be successful.
  • the UE During the entire SDT process, the UE remains in the RRC_INACTIVE state, which greatly reduces the signaling overhead brought by the traditional data transmission process, saves UE energy consumption, and can also shorten the delay of data transmission.
  • the UE can initiate and use the SDT process to transmit data.
  • These conditions may include: the network side configures resources for SDT through system information or UE-specific signaling (such as SDT-specific PRACH configuration), and the radio bearer (Radio Bearer, RB) associated with the UE's uplink data to be transmitted is used
  • the downlink quality (such as Reference Signal Received Power (RSRP)) of the primary cell of the UE (that is, the resident cell in the RRC_INACTIVE state) that can use the SDT process is greater than or equal to a configured link quality threshold
  • RSRP Reference Signal Received Power
  • the value TH1 the size of the uplink data volume to be transmitted by the UE is less than or equal to a configured data volume threshold value TH2, etc.
  • RSRP Reference Signal Received Power
  • TH1 the size of the uplink data volume to be transmitted by the UE is less than or equal to a configured data volume threshold value TH2, etc.
  • the UE has valid uplink time alignment (that
  • the RRC layer When the RRC layer initiates the SDT process, it starts an SDT timer and initiates the sending of the RRC recovery request message.
  • the SDT timer is a timer of the RRC layer and is used to monitor the SDT process, so it can also be called the SDT failure detection timer.
  • stop the timer such as when the UE receives an RRC release message, RRC rejection message, RRC recovery message or RRC establishment message, or when the UE undergoes cell reselection, or the SDT process fails. If the timer expires, it is considered that the SDT has failed, and the UE performs an operation of entering the RRC idle state (RRC_IDLE).
  • the UE transmits an uplink data packet or receives a downlink data packet or receives an L1 signaling for scheduling uplink data or downlink data (such as a Physical Downlink Control Channel (PDCCH)) , to restart a running SDT timer. If not, the UE starts the timer only when the SDT process is triggered, and stops the timer until all small data transmissions are completed, the SDT process ends, or the RRC message used to respond to the RRC recovery request message from the network side is received. .
  • PDCCH Physical Downlink Control Channel
  • the value of the SDT timer will be set longer than the value of the general RRC recovery process monitoring timer T319.
  • the SDT timer may time out before the transmission of small data is completed, that is, the timeout of the SDT timer does not necessarily mean that the network link quality is poor. This is different from the traditional RRC recovery process.
  • the network side needs to distinguish between the CEF report corresponding to the SDT process and the CEF report corresponding to the traditional RRC recovery/establishment process, so as to collect CEF reports in different scenarios and perform more refined network condition monitoring.
  • the UE does not necessarily perform an RA process.
  • the UE must include RA-related information in the CEF report. This makes how to set the RA in the CEF report in the CG-SDT scenario. Relevant information becomes a problem to be solved.
  • the UE will only perform one RA process.
  • This disclosure mainly proposes solutions to the above-mentioned problems related to the failure information report (such as CEF report) in the scenario of supporting SDT.
  • the following embodiments of the disclosure provide specific implementation methods.
  • UE can The report carries SDT-related information, so that the network side can know that the CEF report is for the SDT scenario, so as to obtain more SDT-related CEF information, and collect network operation data differently from the CEF information corresponding to the traditional RRC recovery process , performing more refined network parameter optimization such as optimizing random access parameters corresponding to SDT.
  • the present disclosure also provides a method for setting RA related information in the CEF report in the SDT scenario, so that the UE can reasonably or accurately set the RA related information in the CEF report.
  • This disclosure also provides A method of carrying SDT-related information in RLF reports, so that UE can report the failure information of the SDT process to the network side through the RLF report, so that the network side can obtain the operation data of the SDT process in the network, so as to configure relevant configuration parameters Perform optimization, such as optimizing random access parameters corresponding to the SDT.
  • Embodiment 1 provides a CEF reporting method in an SDT scenario.
  • the CEF reporting method in Example 1 will be described in detail.
  • Fig. 3 is a schematic flowchart showing a method for reporting connection establishment failure in Embodiment 1 of the present invention. As shown in FIG. 3 , the method for reporting connection establishment failure in Embodiment 1 may include the following steps.
  • Step 1 UE initiates the SDT process based on random access.
  • the UE initiates an SDT process and starts an SDT timer.
  • the SDT timer is a timer running at the RRC layer as mentioned above, and starts along with the sending of the RRC recovery request message RRCResumerequest, and when the SDT timer expires, it is considered that the SDT process fails, ends the SDT process, and enters In the RRC idle state, perform operations to enter the RRC idle state, such as releasing radio resources and their configuration.
  • the bottom layer refers to Layer 2 (Layer 2, L2) or Layer 1 (Layer 1, L1).
  • Step 2 The UE determines that the SDT process fails.
  • any method or means may be adopted.
  • it may be judged whether the SDT timer expires, and if it is judged that the SDT timer expires, the UE considers that the SDT process ends in failure.
  • Step 3 UE saves the CEF information in the CEF report.
  • the following information may be stored in a UE variable for recording a CEF report:
  • the first information is used to indicate that the failure process is for SDT; that is, the failure process is an SDT failure, or the failure is caused by an SDT timer timeout. Furthermore, it may also indicate that the failure process is for RA-SDT or CG-SDT.
  • the second information is used to indicate that the failure occurs in a subsequent transmission phase of the SDT process.
  • the subsequent transmission refers to the transmission of data packets that are not transmitted together with the common control channel CCCH message in the SDT process.
  • the transmission of data packets that include the CCCH message and user plane data (ie initial transmission) Completed successfully.
  • the CCCH message is an RRCResumeRequest message.
  • the user plane data in this disclosure is a Data Radio Bearer (Data Radio Bearer, DRB). Alternatively, it also includes a Signaling Radio Bearer (Signalling Radio Bearer, SRB), such as SRB2.
  • the data packets described in the present disclosure refer to L2 data packets, such as Medium Access Control (Medium Access Control, MAC) Protocol Data Unit (Protocol Data Unit, PDU) or MAC Service Data Unit (Service Data Unit, SDU) .
  • Medium Access Control Medium Access Control
  • PDU Protocol Data Unit
  • SDU Service Data Unit
  • the second information appears to indicate that the SDT timer has been restarted.
  • the second information appears to indicate whether the failure occurs in the initial transmission phase or the subsequent transmission phase of the SDT process. For example, if the failure occurs in the initial transmission phase of the SDT process, the second information may indicate that the failure occurred in the initial transmission phase.
  • the UE may also save other existing failure information in the CEF report, such as location information, failed cell identifier, measurement results of the failed cell or neighboring cells, and the like.
  • Embodiment 2 provides a CEF reporting method in an SDT scenario. Different from Embodiment 1, the UE does not record or save the corresponding CEF report every time the SDT process fails, but only when the SDT failure occurs in the initial transmission stage, the UE records or saves the corresponding CEF report.
  • Fig. 4 is a schematic flowchart showing a method for reporting connection establishment failure in Embodiment 2 of the present invention. As shown in FIG. 4 , the method for reporting connection establishment failure in Embodiment 2 may include the following steps.
  • Step 1 The UE initiates the SDT process and starts the SDT timer.
  • Described SDT timer is the RRC layer timer as mentioned above, starts along with the sending of RRC recovery request message RRCResumerequest, and when the SDT timer expires, it thinks that the SDT process fails, ends the SDT process, and enters the RRC idle state, Perform operations to enter the RRC idle state, such as releasing radio resources and their configuration.
  • the bottom layer refers to Layer 2 (Layer 2, L2) or Layer 1 (Layer 1, L1).
  • Step 2 Before receiving the first resource scheduling command for scheduling uplink or downlink data, the SDT timer expires.
  • the first resource scheduling command for scheduling uplink or downlink data is the first resource scheduling command for scheduling uplink or downlink data after the RA is successfully completed in the RA-SDT process. It may also be or be included in the random access response (Random Access Response, RAR) of msgB used to indicate the success of the two-step random access, or the first resource scheduling command used to schedule uplink or downlink data is scheduled simultaneously
  • RAR Random Access Response
  • the msgB or contention resolution identification MAC control element indicating successful random access is specified.
  • the resource scheduling command refers to PDCCH.
  • the first resource scheduling command used to schedule uplink or downlink data refers to the resource scheduling command used to schedule subsequent transmissions, that is, the first resource scheduling command used to schedule uplink or downlink data after the initial transmission is confirmed to be successful resource scheduling command.
  • the first subsequent transmission is the first uplink PUSCH or physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) transmission after the initial transmission success is confirmed.
  • Step 3 The UE saves the relevant failure message in the UE variable for recording the CEF report.
  • the failure information may be the failure information defined in the existing mechanism or SDT-specific failure information (such as the first information and the second information in Embodiment 1).
  • Embodiment 3 provides a CEF reporting method in an SDT scenario.
  • the UE when an SDT failure not caused by the SDT timer occurs, the UE will also record or store corresponding SDT failure information.
  • Fig. 5 is a schematic flowchart showing a method for reporting connection establishment failure in Embodiment 3 of the present invention. As shown in FIG. 5 , the method for reporting connection establishment failure in Embodiment 3 may include the following steps.
  • Step 1 UE initiates the SDT process. After the UE initiates the SDT process, it instructs the bottom layer to use the SDT method to send and receive data.
  • the bottom layer refers to Layer 2 (Layer 2, L2) or Layer 1 (Layer 1, L1).
  • Step 2 The UE judges that the SDT process fails, and the failure is due to the maximum number of radio link control (Radio Link Control, RLC) transmissions (retransmissions).
  • RLC Radio Link Control
  • the RLC layer of the UE indicates to the RRC layer that the maximum number of retransmissions has been reached.
  • the RRC layer receives the indication, the UE considers the SDT process to fail.
  • the SDT process can also be expressed as when the SDT timer is running.
  • Step 3 The UE saves relevant failure information in UE variables for recording the CEF report.
  • the failure information may be the failure information defined in the existing mechanism or SDT-specific failure information (such as the first information and the second information in Embodiment 1).
  • the failure information may further include third information, which is used to indicate that the reason for the failure is that the maximum number of RLC retransmissions has been reached.
  • Embodiment 4 provides a CEF reporting method in an SDT scenario.
  • the UE records and saves the corresponding failure information, which does not include random access information.
  • connection establishment failure reporting method in Embodiment 4 may include the following steps.
  • Step 1 The UE initiates the SDT process, and determines to use the CG-SDT method to initiate the SDT process.
  • Step 2 The SDT process fails.
  • the UE may judge that the SDT process fails because the SDT timer expires or because the number of RLC retransmissions reaches the maximum number.
  • Step 3 The UE saves the relevant failure information in the UE variable for recording the CEF report, wherein the failure information does not include the relevant information of the random access procedure.
  • the random access information in this disclosure refers to the perRAInfoList information element or the ra-InformationCommon information element. That is, except for the CG-SDT process, random access information is recorded and included in failure information in other connection failure situations. If the procedure is not for CG-SDT, the UE includes random access information in the CEF report.
  • Embodiment 5 provides a CEF reporting method in an SDT scenario. Different from Embodiment 4, in this embodiment, the UE sets each information element in the random access information to any value or a specific value in the CEF report corresponding to the CG-SDT.
  • connection establishment failure reporting method in Embodiment 5 may include the following steps.
  • Step 1 The UE initiates the SDT process, and determines to use the CG-SDT method to initiate the SDT process.
  • Step 2 The SDT process fails.
  • the UE may judge that the SDT process fails because the SDT timer expires or because the number of RLC retransmissions reaches the maximum number.
  • Step 3 The UE saves the related failure information in the UE variable for recording the CEF report, wherein the random access related information in the failure information is set to any value or a specific value.
  • the UE includes a piece of fourth information in the failure information, and the fourth information may be used to indicate that the failure information corresponds to a CG-SDT process.
  • the network side can recognize that the random access information corresponds to a CG-SDT process when receiving the CEF report, so that it can decide how to process the random access information, such as The random access information is not used for network status analysis and network parameter setting.
  • Embodiment 6 provides a CEF reporting method in an SDT scenario. When more than one random access procedure is performed during the SDT, the UE determines to use the information of the latest random access procedure to set the random access information in the CEF report.
  • connection establishment failure reporting method in Embodiment 6 may include the following steps.
  • Step 1 The UE initiates the SDT process, and uses the SDT process to transmit data.
  • Step 2 The SDT process fails.
  • the UE may judge that the SDT process fails because the SDT timer expires or because the number of RLC retransmissions reaches the maximum number.
  • Step 3 The UE saves relevant failure information in the UE variable used to record the CEF report. If more than one RA process is performed in the SDT process, then preferably, the RA related information in the failure information in the CEF report is for time A recent RA process. Alternatively, the RA related information in the failure information in the CEF report is the first RA process executed in the SDT process; in RA-SDT, it is the RA process used for initial transmission.
  • This embodiment provides a CEF reporting method in an SDT scenario. Unlike in Embodiment 6, the UE selects the latest random access process information to set the random access information in the CEF report.
  • the random access information in the CEF report is a list, which includes multiple items, each One corresponds to one random access procedure.
  • connection establishment failure reporting method in Embodiment 7 may include the following steps.
  • Step 1 The UE initiates the SDT process, and uses the SDT process to transmit data.
  • Step 2 The SDT process fails.
  • the UE may judge that the SDT process fails because the SDT timer expires or because the number of RLC retransmissions reaches the maximum number.
  • Step 3 The UE saves relevant failure information in the UE variable used to record the CEF report. If more than one RA process is executed during the SDT process, the failure information in the CEF report contains multiple RA-related information, and each RA The related information corresponds to one RA process. That is, the RA information corresponding to multiple RA processes executed in the SDT process will be included and stored in the CEF report variable. Multiple items of RA information in the list may be arranged in the order of occurrence in time, for example, the first item in the list corresponds to the RA process that occurs first in time in the SDT process, and so on. The multiple items may be a list of multiple perRAInfoList information elements or a list of multiple ra-InformationCommon information elements.
  • the recording of the CEF report corresponding to the SDT process by the UE described in the above embodiment is performed when the UE is enabled with the CEF report corresponding to the SDT.
  • the UE receives an RRC message (such as system information or an RRC release message) containing fifth information from the network side, and the fifth information is used to instruct/enable the UE to record the CEF report corresponding to the SDT process, that is, to enable the UE to Record and save the corresponding CEF report when the SDT process fails (such as the SDT timer expires).
  • the UE variable used for recording and saving the CEF report in the embodiment refers to VarConnEstFailReport or VarConnEstFailReportList.
  • the recorded failure information includes measurement results of failed cells, location information, measurement results of neighboring cells, number of connection failures, random access information, and time elapsed from the occurrence of connection failure events to reporting, etc.
  • the UE also includes receiving the UEInformationRequest message from the network side, which includes request indication information for requesting the UE to report the saved CEF report (such as the connEstFailReportReq information element ), the UE includes the stored CEF information in the UEInformationResponse message, and reports it to the network side, which includes the SDT-specific CEF information corresponding to the aforementioned SDT process.
  • This embodiment provides a method for reporting failure information in an SDT scenario. Different from the UE reporting the SDT failure information in the CEF report in the foregoing embodiments, in this embodiment, the UE reports the SDT failure information to the network side in a radio link failure (Radio Link Failure, RLF) report.
  • RLF Radio Link Failure
  • the radio link failure reporting method in Embodiment 8 may include the following steps.
  • Step 1 UE detects SDT failure.
  • the failure of the SDT is as described in the foregoing embodiments, for example, due to the timeout of the SDT timer.
  • Step 2 UE includes the SDT failure information in the RLF report.
  • the SDT failure information includes one or more of the first to fourth information.
  • the RLF report also includes other content supported by the existing RLF report of the R17 version, such as the location information of the UE, the measurement results of the failed cell, and the time between the occurrence of the failure and the delivery of the RLF report to the base station.
  • the elapsed time if the failure is caused by random access failure, it also includes information related to the random access process.
  • the random access process information refer to the description in the background technology section.
  • the SDT failure information further includes fifth information, and the fifth information records the time elapsed from when the UE initiates the SDT process to when the SDT process fails.
  • the UE only when the SDT failure occurs in the initial transmission phase, the UE includes the information of the SDT failure in the RLF report.
  • FIG. 6 is a block diagram representing a user equipment 60 according to an embodiment of the present disclosure.
  • the user equipment 60 includes a processor 601 and a memory 602 .
  • the processor 601 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 602 may include, for example, a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a nonvolatile memory (such as a flash memory), or other memories.
  • Memory 602 has program instructions stored thereon. When the instruction is executed by the processor 601, it can execute the above random access reporting method in the user equipment described in detail in this disclosure.
  • the program running on the device may be a program that causes a computer to realize the functions of the embodiments of the present disclosure by controlling a central processing unit (CPU).
  • the program or information processed by the program may be temporarily stored in volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory systems.
  • a program for realizing the functions of the various embodiments of the present disclosure can be recorded on a computer-readable recording medium.
  • the corresponding functions can be realized by causing a computer system to read programs recorded on the recording medium and execute the programs.
  • the so-called “computer system” here may be a computer system embedded in the device, which may include an operating system or hardware (such as peripheral devices).
  • the "computer-readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium in which a short-term dynamic storage program is stored, or any other recording medium readable by a computer.
  • circuits for example, single-chip or multi-chip integrated circuits.
  • Circuits designed to perform the functions described in this specification may include general-purpose processors, digital signal processors (DSPs), application-specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or any combination of the above.
  • DSPs digital signal processors
  • ASICs application-specific integrated circuits
  • FPGAs field-programmable gate arrays
  • a general-purpose processor can be a microprocessor, or it can be any existing processor, controller, microcontroller, or state machine.
  • the above-mentioned circuits may be digital circuits or analog circuits. Where new integrated circuit technologies have emerged to replace existing integrated circuits due to advances in semiconductor technology, one or more embodiments of the present disclosure may also be implemented using these new integrated circuit technologies.
  • present disclosure is not limited to the above-described embodiments. Although various examples of the embodiments have been described, the present disclosure is not limited thereto.
  • Fixed or non-mobile electronic equipment installed indoors or outdoors can be used as terminal equipment or communication equipment, such as AV equipment, kitchen equipment, cleaning equipment, air conditioners, office equipment, vending machines, and other household appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Alarm Systems (AREA)

Abstract

本公开提供一种连接建立失败报告方法和用户设备。所述连接建立失败报告方法,包括:用户设备UE发起基于随机接入的小数据传输SDT过程;所述UE判断出所述SDT过程失败;和所述UE在连接建立失败CEF报告中保存CEF信息,所述CEF信息包含以下信息的至少一个:第一信息,用于指示失败过程是用于SDT的;和第二信息,用于指示失败发生在SDT过程的后续传输阶段。

Description

连接建立失败报告方法和用户设备 技术领域
本公开涉及无线通信技术领域,更具体地,本公开涉及一种连接建立失败报告方法和相应的用户设备。
背景技术
无线网络中通过网络优化可以达到优化网络性能的目的。一般对现有已部署和运行的网络进行数据采集和数据分析等手段,找出影响网络质量的原因,并且通过修改所配置的网络参数、调整网络结构和部署的设备等手段来提升网络性能。对于自配置和自优化网络(Self-configuration and Self-Optimization Network,SON),指的是基于用户设备和/或基站的测量/性能测量来自动调节网络的过程。网络侧可以配置UE执行用于SON的测量。SON功能包含很多方面,如用于降低运行商的邻区管理负担的自动邻区关系功能(ANR,Automatic Neighbour Relation Function)、用于均衡不同小区之间负责的移动负载均衡功能(MLB,Mobility Load Balancing),用于优化移动性能的移动鲁棒性优化功能(MRO,Mobility Robustness Optimization)、用于优化随机接入信道参数的随机接入信道优化功能和用于优化覆盖以及MRO的无线链路失败报告功能等。
此外,最小化路测(Minimization of Drive Tests,MDT)技术也是运营商优化网络的重要手段。通过从UE所获得的路测数据获取网络优化的相关参数,并基于对这些数据的分析,获取网络部署和运营的状态,从而决策如何改善网络的运营状态。MDT的主要运用场景为覆盖优化、容量优化、移动性管理优化、QoS参数优化和公共信道参数配置优化等。
在版本17及之前版本的系统中,连接建立失败(Connection Establishment Failure,CEF)报告是UE在发生初始连接建立时对网络状况的记录,以用于网络侧对网络覆盖问题的优化。
3GPP RAN2工作组目前在进行一个版本17的研究项目(参见3GPP文档RP-193252(Work Item on NR small data transmissions in INACTIVE state))简称小数据传输(Small Data Transmission,SDT)项目。该研究项目的目 的是针对用户不频繁发送的小尺寸数据业务而带来的信令开销和功率消耗进行优化。对于处于无线资源控制非激活态(Radio Resource Control_Inactive,RRC_INACTIVE)的用户设备(User Equipment,UE),一些不频繁的小尺寸数据业务(如即时信息、保持在线的心跳信号、智能穿戴设备或传感器的周期信息以及智能计量设备带来的周期读表业务等)传输使得UE需要进入无线资源控制连接态RRC_CONNECTED状态来执行小尺寸数据包的发送,由此而来的信令开销带来了网络性能的降低,同时也极大地消耗了UE的能耗。
本公开旨在实现NR网络中的失败信息报告问题,更进一步地,实现在用于实现在支持SDT的网络中的CEF报告问题。
发明内容
本公开的主要目的在于,提供一种连接建立失败报告方法以及用户设备,以实现在支持SDT的系统中,可以实现SDT相关的性能信息的上报以及在SDT场景下实现CEF报告时的随机接入信息设置问题。
根据本公开的第一方面,提供一种连接建立失败报告方法,包括:用户设备UE发起基于随机接入的小数据传输SDT过程;所述UE判断出所述SDT过程失败;和所述UE在连接建立失败CEF报告中保存CEF信息,所述CEF信息包含以下信息的至少一个:第一信息,用于指示失败过程是用于SDT的;和第二信息,用于指示失败发生在SDT过程的后续传输阶段。
在上述第一方面的连接建立失败报告方法中,所述CEF信息可以还包含:位置信息、失败小区标识、失败小区或邻小区的测量结果。
在上述第一方面的连接建立失败报告方法中,可以在所述UE发起所述SDT过程中启动的SDT定时器超时的情况下,所述UE判断出所述SDT过程失败。
在上述第一方面的连接建立失败报告方法中,可以在所述UE接收到第一个用于调度上行或下行数据的资源调度命令之前所述SDT定时器超时的情况下,所述UE在所述CEF报告中保存所述CEF信息。
在上述第一方面的连接建立失败报告方法中,可以在无线链路控制RLC传输达到了最大次数的情况下,所述UE判断出所述SDT过程失败。
在上述第一方面的连接建立失败报告方法中,可以在所述SDT过程中执行了一个以上的随机接入RA过程时,所述CEF信息中包含与所述一个以上的RA过程之中最近一个RA过程相关的RA信息。
在上述第一方面的连接建立失败报告方法中,可以在所述SDT过程中执行了一个以上的随机接入RA过程时,所述CEF信息中包含与所述一个以上的RA过程相关的RA信息。
根据本公开的第二方面,提供一种连接建立失败报告方法,包括:用户设备UE发起基于配置许可方式的小数据传输SDT过程;所述UE判断出所述SDT过程失败;所述UE在连接建立失败CEF报告中保存CEF信息,所述CEF信息中的与随机接入相关的信息设置为任意值或特定值。
在上述第二方面的连接建立失败报告方法中,可以在所述UE发起所述SDT过程中启动的SDT定时器超时、或者在无线链路控制RLC传输达到了最大次数的情况下,所述UE判断出所述SDT过程失败。
根据本公开的第三方面,提供一种用户设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行上述连接建立失败报告方法。
发明效果
根据本公开的由用户设备执行的CEF报告方法以及用户设备,以实现在支持SDT的系统中,可以实现SDT相关的性能信息的上报以及在SDT场景下实现CEF报告时的随机接入信息设置问题。
附图说明
通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:
图1是表示基于随机接入的SDT过程的示意流程图。
图2是表示基于CG-SDT机制的SDT过程的示意流程图。
图3是表示本发明的实施例1中的连接建立失败报告方法的示意流程图。
图4是表示本发明的实施例2中的连接建立失败报告方法的示意流程图。
图5是表示本发明的实施例3中的连接建立失败报告方法的示意流程图。
图6示出了根据本公开实施例的用户设备的框图。
具体实施方式
根据结合附图对本公开示例性实施例的以下详细描述,本公开的其它方面、优势和突出特征对于本领域技术人员将变得显而易见。
在本公开中,术语“包括”和“含有”及其派生词意为包括而非限制;术语“或”是包含性的,意为和/或。
在本说明书中,下述用于描述本公开原理的各种实施例只是说明,不应该以任何方式解释为限制公开的范围。参照附图的下述描述用于帮助全面理解由权利要求及其等同物限定的本公开的示例性实施例。下述描述包括多种具体细节来帮助理解,但这些细节应认为仅仅是示例性的。因此,本领域普通技术人员应认识到,在不背离本公开的范围和精神的情况下,可以对本文中描述的实施例进行多种改变和修改。此外,为了清楚和简洁起见,省略了公知功能和结构的描述。此外,贯穿附图,相同参考数字用于相似功能和操作。
下文以NR移动通信系统作为示例应用环境,具体描述了根据本公开的多个实施方式。然而,需要指出的是,本公开不限于以下实施方式,而是可适用于更多其它的无线通信系统,如连接到5G核心网的LTE系统等。
本公开中的基站可以是任何类型基站,包含Node B、增强基站eNB、5G通信系统基站gNB;或者微基站、微微基站、宏基站、家庭基站等;所述小区也可以是上述任何类型基站下的小区,小区也可以是光束(beam)、传输点(Transmission point,TRP),基站也可以是组成基站的中心单元(gNB-Central Unit,gNB-CU)或分布式单元(gNB-Distributed Unit,gNB-DU)。若无特殊说明,在本公开中,小区和基站的概念可以互相替换;LTE系统也用于指代5G及其之后的LTE系统(如称为eLTE系统,或者可以连接到5G核心网的LTE系统),同时LTE可以用演进的通用陆地无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)或演进的通用陆地无线接入网E-UTRAN来替换。不同的实施例之间也可以结合工作,比如 不同实施例中相同的变量/参数/名词等作相同解释。取消、释放、删除、清空和清除等可以替换。执行、使用和应用可替换。配置和重配置可以替换。监测(monitor)和检测(detect)可替换。发起和触发可替换。
下面先对本公开涉及到的一些现有机制进行说明。值得注意的是,在下文的描述中的一些命名仅是实例说明性的,而不是限制性的,也可以作其他命名。
CEF报告:
NR系统中支持连接建立失败(Connection Establishment Failure,CEF)报告。网络侧通过收集UE上报的CEF报告中的信息来评估网络的覆盖状况,比如小区的覆盖范围是否足够,网络部署中是否存在覆盖空洞等。
当连接失败(如RRC连接建立过程失败或RRC连接恢复过程失败)时,UE将此次失败事件对应的信息保存在CEF报告对应的UE变量VarConnEstFailReport中。一般来说,当RRC连接建立过程监测定时器(如T300)超时,UE认为RRC连接建立过程失败;当RRC连接恢复过程监测定时器(如T319)超时,UE认为RRC连接恢复过程失败。当UE在变量VarConnEstFailReport中有保存的CEF报告,UE会在RRC消息(如RRC恢复完成消息、RRC建立完成消息、RRC重配置完成消息)中包含一个connEstFailInfoAvailable信息元素用于告知基站其上有保存的CEF报告。基站下发UEinformationRequest消息给UE,其中包含CEF报告请求指示(connEstFailReportReq信息元素),用于请求UE上报所保存的CEF报告信息。收到包含该指示的UEinformationRequest消息后,UE将所保存的CEF报告(ConnEstFailReport信息元素)包含在UEinformationReponse消息中报告给基站。版本16的NR系统中的连接失败事件包含RRC连接建立过程失败或RRC连接恢复过程失败,但本公开中所述连接失败事件并不现定于这两种情况,如也可以时RRC重建立过程失败(如相关定时器T301超时或T311超时),还可以是小数据传输(Small Data Transmission,SDT)过程失败(小数据传输相关RRC定时器超时。)
版本17及之前的NR系统中所支持的CEF报告中包含下述内容:失败小区的测量结果、位置信息、邻小区的测量结果、连接失败次数、随机接入信息以及从连接失败事件发生到上报所经历的时间。其中,失败小区的 测量结果指的连接失败发生时服务小区/驻留小区的测量结果(如参考信号测量功率RSRP、参考信号测量质量RSRQ和信号干扰噪声比SINR等);邻小区的测量结果指的是连接失败事件发生时的一个或多个邻小区的测量结果;位置信息是指连接失败事件发生时所处的绝对位置,有定位功能的UE可以记录该信息;连接失败次数指在同一个小区中连续的连接失败过程的最新数值;随机接入信息指连接失败过程中所执行的随机接入过程的信息(包括每次随机接入尝试的信息如perRAInfoList信息元素)。包含随机接入信息的perRAInfoList信息元素中按照随机接入尝试发生的时间先后顺序列出了每次随机接入尝试相关的信息,如每次随机接入尝试相关的波束索引、是否检测到了竞争、下行RSRP是否大于一个配置的门限值、是否因为收到回退随机接入相应而执行了回退(fallback),在每个波束上连续执行的随机接入尝试的次数等。所述波束是同步信号块(Synchronization Signal Block,SSB)或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)。
版本16的CEF报告中仅保存最近一次发生的连接建立/恢复失败时的详细信息,即上述CEF报告中的除连接失败次数之外的其他信息都是对最近一次发生的连接失败而言的。在版本17的系统中引入多项CEF报告(此时CEF报告可保存在UE变量VarConnEstFailReportList中),即UE可以对多个失败事件的详细信息保存并上报给网络侧,每一个CEF报告可以对应一个或多个失败事件。如不特别指出,本公开中所述连接失败包含RRC连接建立失败、RRC连接恢复失败和SDT过程失败。
无线链路失败上报机制:
版本16和17的NR系统中,UE会在发生无线链路失败(Radio Link Failure,RLF)或切换失败(Handover Failure,HOF)时生成并保存一个无线链路失败报告(RLF report),并将无线链路失败信息保存在UE变量VarRLF-Report。在恢复与网络侧的连接(如通过RRC重建立过程或用于建立新连接的RRC建立过程)后,UE可以通过RRC消息告知网络侧其上有可用的无线链路失败报告(rlf-InfoAvailable信息元素来指示)。如UE可以在RRC连接重建立过程中的RRC重建立完成消息(RRCReestablishmentComplete)中、RRC连接重配置过程中的RRC重配 置完成消息(RRCReconfigurationComplete)中、RRC连接建立过程中的RRC建立完成消息(RRCSetupComplete)中或RRC连接恢复过程中的RRC恢复完成消息(RRCResumeComplete)中告知网络侧UE有保存的可用的无线链路失败报告。网络侧在收到所述指示后,可以通过RRC消息(UEInformationRequest消息中的rlf-ReportReq信息元素来指示所述请求)来请求UE上报其保存的无线链路失败报告。UE会在响应RRC消息中将所保存的无线链路失败报告(UEInformationResponse消息中的rlf-Report信息元素)上报给网络侧。网络侧获取的所述无线链路失败报告用于网络优化,如网络覆盖和移动鲁棒性优化。无线链路失败报告中可包含:链路失败时可用的源小区和邻居小区的测量结果、位置信息、发生链路失败的主小区标识、链路失败类型(RLF还是HOF)、RLF理由、从连接失败到上报无线链路失败所经历的时间、上次收到切换命令到连接失败所经历的时间(记做timeConnFailure信息元素),UE重新接入网络的小区标识即RRC重建立小区标识等。若失败是有随机接入导致的或所述失败伴随了一个不成功的随机接入过程,则无线链路失败报告中还包括随机接入过程信息。随机接入过程的信息包括:发送随机接入前导所在的小区信息(全局小区标识、跟踪区域码或物理小区标识和载波频率)、随机接入目的信息以及随机接入公共信息。所述随机接入公共信息包括随机接入过程所关联的参考下行频率信息(如Point A的绝对频率、子载波间隔、带宽位置信息locationAndBandwidth等)和按照发生时间先后顺序排列的每一个随机接入尝试的所关联的RA信息。每一个随机接入尝试的所关联的RA信息包括波束索引值、在该波束上的连续随机接入尝试的次数(即该波束上所对应的连续的随机接入前导preamble的发送次数)、是否检测到了随机接入竞争的指示信息、该随机接入尝试所使用的随机接入资源上所对应的波束的参考信号接收强度(Reference Signal Received Power,RSRP)是否高于一个配置的门限值的指示信息。
小数据传输SDT机制:
小数据传输SDT项目的研究目标之一是实现RRC_INACTIVE状态下的小数据包传输。SDT机制有两种实现方式:基于随机接入的SDT(Random Access-SDT,RA-SDT)和基于配置的许可的SDT(Configured Grant-SDT, CG-SDT)。
图1是表示基于随机接入的SDT过程的示意流程图。如图1所示,在基于随机接入的SDT过程中,当处于RRC_INACTIVE状态下的UE上被配置了SDT的无线承载上有数据要发送时,UE通过随机接入过程中的SDT专用PRACH资源向网络侧发送小数据传输请求,网络侧由此知道UE将进行RRC_INACTIVE状态下的小数据传输,从而不会配置UE进入RRC连接态。随后,UE将小数据携带在两步随机接入过程的消息A中或携带在四步随机接入过程的消息3中发送给网络侧,消息A或消息3中同时包含了RRC恢复请求消息。若所有的小数据已包含在消息3或消息A中成功发送(即使能了SDT的无线承载或逻辑信道所对应的数据缓存为空),则UE在收到网络侧的包含RRC释放消息的响应消息后确定SDT过程结束;若小数据尚未完全发送完(即UE的上行缓存中仍有尚未发送的上行小数据),则在随机接入完成后,网络侧通过UE专用的无线网络标识(如小区无线网络临时标识(Cell-Radio Network Temprary identifier,C-RNTI))调度UE完成上行或下行的小数据传输,当所述小数据全部传输完成时,SDT过程结束。在SDT过程中,若UE有非SDT上行数据(未被使能SDT的无线承载上的数据)到达,则UE会通过向网络侧发送请求指示进入RRC连接态或自主回退到传统非SDT过程来执行上行数据发送。
图2是表示基于CG-SDT机制的SDT过程的示意流程图。如图2所示,在CG-SDT机制中,网络侧向UE配置用于小数据传输的CG-SDT资源,一般来说CG-SDT配置包含在RRC释放消息中。UE在收到该消息后,释放RRC连接,进入RRC_INACTIVE状态,并应用CG-SDT配置。CG-SDT配置中包含了上行数据发送的半静态上行许可资源以及对应的L2和L1配置,一般来说,这个资源是周期性的资源。当处于RRC_INACTIVE状态下的UE上被配置了SDT的无线承载上有数据要发送且CG-SDT发起条件满足时,UE无需发起随机接入过程,而是直接使用所配置的CG来发送小数据,并通过监听下行信道上基站的调度信息来完成剩余的小数据传输。
如前所述,SDT不仅支持单数据包的传输,而可以支持多次数据包的传输。在SDT过程中,首次传输的数据包含公共控制信道(Common Control Channel,CCCH)数据(RRC恢复请求消息)和用户面数据,称为初次传 输(initial transmission)或初次物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输,在之后执行的用户面数据的传输则称为后续传输(subsequent transmission)或后续PUSCH传输。在RA-SDT中,初始传输一般指消息A或消息3的传输,后续传输在随机接入RA过程成功完成之后发生。在CG-SDT中,初始传输使用所分配的CG资源上,而后续传输可以使用所分配的CG资源也可以使用动态许可。UE在确认初始传输成功后才会进行后续传输。
在整个SDT过程中,UE保持在RRC_INACTIVE状态,这大大减小了传统数据传输过程所带来的信令开销,节省了UE能耗,同时还可以缩短数据传输的时延。
只有当所述发起SDT过程的条件满足,UE才能发起并使用SDT过程来传输数据。这些条件可以包括:网络侧通过系统信息或UE专用信令配置了用于SDT的资源(如SDT专用的PRACH配置)、UE的待传上行数据所关联的无线承载(Radio Bearer,RB)被使能了使用SDT过程、UE的主小区(即RRC_INACTIVE状态下的驻留小区)的下行链路质量(如参考信号接收功率(Reference Signal Received Power,RSRP)大于或等于一个配置的链路质量门限值TH1、UE的待传上行数据量大小小于或等于一个配置的数据量大小门限值TH2等。对于CG-SDT,还包括UE拥有有效的上行时间对齐(即用于SDT的上行时间对齐定时器处于运行状态)。
当RRC层发起SDT过程时,启动一个SDT定时器,并发起RRC恢复请求消息的发送。该SDT定时器是一个RRC层的定时器,用于监测该SDT过程,因此也可称SDT失败检测定时器。当SDT过程结束时,停止该定时器,如UE收到RRC释放消息、RRC拒绝消息、RRC恢复消息或RRC建立消息,或UE发生小区重选,或SDT过程失败时。若该定时器超时,则认为SDT失败,UE执行进入RRC空闲态(RRC_IDLE)的操作。在当前的3GPP讨论中,尚未定论该SDT定时器是否会在SDT过程中UE在每个上行发送或下行接收时重启。若是,则UE在每次发送一个上行数据包或接收一个下行数据包或者收到一个用于调度上行数据或下行数据的L1信令(如物理下行控制信道(Physical Downlink Control Channel,PDCCH))时, 重新启动正在运行的SDT定时器。若否,则UE只有在触发SDT过程时,开启该定时器,一直到所有小数据传输完成,SDT过程结束或收到网路侧用于响应RRC恢复请求消息的RRC消息时才停止该定时器。
如上所述的这些SDT过程的特性,使得SDT过程和传统的RRC恢复过程有所区别。如为了支持后续传输的多个小数据包,一般来说,SDT定时器的值会设置的比一般RRC恢复过程监测定时器T319的值更长。在一种可能的场景下,若SDT定时器的值设置不合理,SDT定时器可能会在小数据尚未传输完时就超时,即SDT定时器的超时不一定意味着网络链路质量差。这种和传统RRC恢复过程的不同,网络侧需要区分SDT过程对应的CEF报告和传统的RRC恢复/建立过程对应的CEF报告,从而对不同场景下的CEF报告进行收集,进行更精细化的网络状态监测。另外,在CG-SDT过程中,UE并不一定会执行一个RA过程,而现有CEF机制中UE必须在CEF报告中包含RA相关信息,这使得CG-SDT场景下如何设置CEF报告中的RA相关信息成为需要解决的问题。此外,不同于传统的RRC恢复过程中UE仅会执行一个RA过程,在SDT过程中,尤其是RA-SDT中,当UE可能会发起多于一个的RA过程来获取后续传输所需要的上行资源或上行同步,而现在CEF机制中的CEF报告中的RA相关信息是针对一个RA过程的,那么在执行了多次RA过程的SDT过程对应的CEF报告中,如何来设置RA相关信息也成为本公开所关注的问题。
本公开主要针对上述在支持SDT场景下的失败信息报告(如CEF报告)相关的问题提出解决方法,本公开下述实施例给出具体的实施方式,通过本公开所述解决方法,UE在CEF报告中携带SDT相关的信息,使得网络侧可以获知所述CEF报告是针对SDT场景的,从而获取更多的SDT相关的CEF信息,区别与传统RRC恢复过程对应的CEF信息进行网络运营数据的收集,执行更精细化的网络参数优化如优化SDT对应的随机接入参数等。此外,本公开还提供了SDT场景下的CEF报告中的RA相关信息设置方法,使得UE可以合理或准确地设置CEF报告中的RA相关信息。除了在CEF报告中携带SDT相关信息,考虑到SDT失败不同于以往的连接建立/恢复失败,有一种可能是还可以将其看作是类似于传统的无线链路失败 RLF,本公开还提供了一种在RLF报告中携带SDT相关信息的方法,使得UE可以通过RLF报告的方式向网络侧上报SDT过程的失败信息,使得网络侧能够获得网络中SDT过程的运营数据,从而对相关的配置参数进行优化,如优化SDT对应的随机接入参数等。
实施例1
实施例1提供了一种SDT场景下的CEF报告方法。以下,对实施例1中的CEF报告方法进行详细说明。图3是表示本发明的实施例1中的连接建立失败报告方法的示意流程图。如图3所示,实施例1中的连接建立失败报告方法可以包含如下步骤。
步骤1:UE发起基于随机接入的SDT过程。
具体而言,例如UE发起SDT过程,并启动SDT定时器。
所述SDT定时器如前所述是一个在RRC层运行的定时器,伴随发起RRC恢复请求消息RRCResumerequest的发送而启动,并在SDT定时器超时时,认为SDT过程失败,结束SDT过程,并进入RRC空闲态,执行进入RRC空闲态的操作,如释放无线资源及其配置。
UE在发起SDT过程后,指示底层使用SDT方式来执行数据的发送和接收。所述底层指层2(Layer 2,L2)或层1(Layer 1,L1)。
步骤2:UE判断出SDT过程失败。
关于如何判断SDT过程失败,可以采用任意的方式或者手段。在实施例1中,作为一例,可以判断SDT定时器是否超时,在判断出SDT定时器超时的情况下,UE认为SDT过程失败结束。
步骤3:UE在CEF报告中保存CEF信息。具体而言,例如,可以在用于记录CEF报告的UE变量中保存下述信息中的一种或多种:
第一信息,用于指示所述失败过程是用于SDT的;也就是说,所述失败过程是SDT失败,或者所述失败是由于SDT定时器超时导致的。更进一步地,还可以指示所述失败过程是用于RA-SDT或者CG-SDT的。
第二信息,用于指示所述失败发生在SDT过程的后续传输阶段。如前所述,所述后续传输指的是SDT过程中不和公共控制信道CCCH消息一起传输的数据包的传输,此时包含CCCH消息和用户面数据一起的数据包的传输(即初始传输)已成功完成。所述CCCH消息是RRCResumeRequest 消息。优选地,本公开中所述用户面数据是数据无线承载(Data Radio Bearer,DRB)。备选地,也包括信令无线承载(Signalling Radio Bearer,SRB),如SRB2。优选地,本公开中所述数据包指L2的数据包,如媒介接入控制(Medium Access Control,MAC)协议数据单元(Protocol Data Unit,PDU)或MAC服务数据单元(Service Data Unit,SDU)。
在另一种形式中,所述第二信息表现为指示所述SDT定时器发生了重新启动。
在另一种形式中,所述第二信息表现为指示所述失败发生在SDT过程的初始传输阶段还是后续传输阶段。例如,若所述失败发生在SDT过程的初始传输阶段,则所述第二信息可以指示失败发生在初始传输阶段。
UE还可在CEF报告中保存其他现有失败信息,如位置信息、失败小区标识、失败小区或邻小区的测量结果等。
实施例2
实施例2提供了一种SDT场景下的CEF报告方法。与实施例1不同的时,UE不是在每次SDT过程失败时都记录或保存对应的CEF报告,而是当所述SDT失败发生在初始传输阶段时,UE才记录或保存对应的CEF报告。
以下,对本公开的实施例2进行详细说明。图4是表示本发明的实施例2中的连接建立失败报告方法的示意流程图。如图4所示,实施例2中的连接建立失败报告方法可以包含如下步骤。
步骤1:UE发起SDT过程,并启动SDT定时器。
所述SDT定时器如前所述是RRC层定时器,伴随发起RRC恢复请求消息RRCResumerequest的发送而启动,并在SDT定时器超时时,认为SDT过程失败,结束SDT过程,并进入RRC空闲态,执行进入RRC空闲态的操作,如释放无线资源及其配置。
UE在发起SDT过程后,指示底层使用SDT方式来执行数据的发送和接收。所述底层指层2(Layer 2,L2)或层1(Layer 1,L1)。
步骤2:在接收到第一个用于调度上行或下行数据的资源调度命令之前,SDT定时器超时。
在一种实现方式中,所述第一个用于调度上行或下行数据的资源调度 命令是RA-SDT过程中在RA成功结束后第一个用于调度上行或下行数据的资源调度命令。也可以是或包含在用于指示两步随机接入成功的msgB的随机接入响应(Random Access Response,RAR)中,或所述第一个用于调度上行或下行数据的资源调度命令同时调度了指示随机接入成功的msgB或竞争解决标识MAC控制元素。优选地,所述资源调度命令指的是PDCCH。
在一种实现方式中,所述第一个用于调度上行或下行数据的资源调度命令指的是用于调度后续传输的,即在确认初始传输成功后第一个用于调度上行或下行数据的资源调度命令。也可以理解第一个后续传输,即在确认初始传输成功后的第一个上行PUSCH或物理下行共享信息(Physical Downlink Shared Channel,PDSCH)传输。
步骤3:UE在用于记录CEF报告的UE变量中保存相关失败消息。所述失败信息可以现有机制中已定义的失败信息也可以是SDT特定的失败信息(如实施例1中的第一信息和第二信息)。
实施例3
实施例3提供了一种SDT场景下的CEF报告方法。在该实施例中,当发生不是由于SDT定时器导致的SDT失败时,UE也会记录或保存对应的SDT失败信息。
以下,对本公开的实施例3进行详细说明。图5是表示本发明的实施例3中的连接建立失败报告方法的示意流程图。如图5所示,实施例3中的连接建立失败报告方法可以包含如下步骤。
步骤1:UE发起SDT过程。UE在发起SDT过程后,指示底层使用SDT方式来执行数据的发送和接收。所述底层指层2(Layer 2,L2)或层1(Layer 1,L1)。
步骤2:UE判断SDT过程失败,所述失败是由于无线链路控制(Radio Link Control,RLC)传输(重传)达到了最大次数。在SDT过程中,UE的RLC层在RLC重传的最大次数达到时,向RRC层指示其重传的最大次数达到,当RRC层收到该指示时,UE认为SDT过程失败。在SDT过程中也可以表述为当SDT定时器正在运行时。
步骤3:UE在用于记录CEF报告的UE变量中保存相关失败信息。
所述失败信息可以现有机制中已定义的失败信息也可以是SDT特定的 失败信息(如实施例1中的第一信息和第二信息)。除此之外,所述失败信息还可以包含第三信息,用于指示所述失败的原因是由于RLC重传的最大次数达到。
实施例4
实施例4提供了一种SDT场景下的CEF报告方法。在CG-SDT场景下,当发生SDT失败时,UE记录并保存对应的失败信息,其中不包括随机接入信息。
以下,对本公开的实施例4进行详细说明。具体而言,例如实施例4中的连接建立失败报告方法可以包含如下步骤。
步骤1:UE发起SDT过程,且确定使用CG-SDT方式发起SDT过程。
步骤2:SDT过程失败。
UE判断SDT过程失败可以是基于SDT定时器超时也可以是基于RLC重传次数达到最大数。
步骤3:UE在用于记录CEF报告的UE变量中保存相关失败信息,其中所述失败信息不包含随机接入过程相关信息。优选地,本公开中随机接入信息指perRAInfoList信息元素或ra-InformationCommon信息元素。即除了CG-SDT过程外,其他连接失败情况下的失败信息中都记录并包含随机接入信息。如果该过程不是用于CG-SDT的,那么UE在CEF报告中包括随机接入信息。
实施例5
实施例5提供了一种SDT场景下的CEF报告方法。不同于实施例4,该实施例中,UE在CG-SDT对应的CEF报告中设置随机接入信息中的各信息元素为任意值,或者特定值。
以下,对本公开的实施例5进行详细说明。具体而言,例如实施例5中的连接建立失败报告方法可以包含如下步骤。
步骤1:UE发起SDT过程,且确定使用CG-SDT方式发起SDT过程。
步骤2:SDT过程失败。
UE判断SDT过程失败可以是基于SDT定时器超时也可以是基于RLC重传次数达到最大数。
步骤3:UE在用于记录CEF报告的UE变量中保存相关失败信息,其中所述失败信息中的随机接入相关信息设置为任意值或特定值。可选地,当随机接入信息设置为任意值时,UE在所述失败信息中包含一个第四信息,所述第四信息可以用于指示所述失败信息对应了一个CG-SDT过程。当所述随机接入信息设置为特定值时,网络侧在接收到所述CEF报告时可以识别该随机接入信息对应了一个CG-SDT过程,从而可以决定如何处理该随机接入信息,如不使用该随机接入信息用于网络状态分析及网络参数设置。
实施例6
实施例6提供了一种SDT场景下的CEF报告方法。在SDT过程中执行了多于一个随机接入过程时,UE确定使用最近一个随机接入过程的信息来设置CEF报告中的随机接入信息。
以下,对本公开的实施例6进行详细说明。具体而言,例如实施例6中的连接建立失败报告方法可以包含如下步骤。
步骤1:UE发起SDT过程,使用SDT过程传输数据。
步骤2:SDT过程失败。
UE判断SDT过程失败可以是基于SDT定时器超时也可以是基于RLC重传次数达到最大数。
步骤3:UE在用于记录CEF报告的UE变量中保存相关失败信息,若SDT过程中执行了多于一个RA过程,则优选地,CEF报告中的失败信息中的RA相关信息是对于时间上最近一个RA过程的。备选地,CEF报告中的失败信息中的RA相关信息是该SDT过程中第一个执行的RA过程;在RA-SDT中,即用于初始传输的RA过程。
实施例7
该实施例提供了一种SDT场景下的CEF报告方法。不同于实施例6中UE选择最近一个随机接入过程信息来设置CEF报告中的随机接入信息,在该实施例中,CEF报告中的随机接入信息是一个列表,即包含多项,每一个对应一个随机接入过程。
以下,对本公开的实施例7进行详细说明。具体而言,例如实施例7中的连接建立失败报告方法可以包含如下步骤。
步骤1:UE发起SDT过程,使用SDT过程传输数据。
步骤2:SDT过程失败。
UE判断SDT过程失败可以是基于SDT定时器超时也可以是基于RLC重传次数达到最大数。
步骤3:UE在用于记录CEF报告的UE变量中保存相关失败信息,若SDT过程中执行了多于一个RA过程,则CEF报告中的失败信息中包含多项RA相关信息,每一项RA相关信息对应一个RA过程。即SDT过程中所执行的多个RA过程对应的RA信息都会被包含并保存在CEF报告变量中。可以按照时间发生的先后顺序来排列该列表中的多项RA信息,比如列表中的第一项对应SDT过程中时间上第一个发生的RA过程,以此类推。所述多项,可以是多项perRAInfoList信息元素的列表或多项ra-InformationCommon信息元素的列表。
在一种实现方式中,对于上述实施例所述UE记录SDT过程对应的CEF报告是在UE被使能了SDT对应的CEF报告时执行。UE从网络侧接收包含第五信息的RRC消息(如系统信息或RRC释放消息),所述第五信息用于指示/使能UE记录对应于SDT过程的CEF报告,也就是说使能了UE在SDT过程失败(如SDT定时器超时)时记录并保存对应的CEF报告。实施例中所述用于记录和保存CEF报告的UE变量指VarConnEstFailReport或VarConnEstFailReportList。所述记录的失败信息如前所述,包括失败小区的测量结果、位置信息、邻小区的测量结果、连接失败次数、随机接入信息以及从连接失败事件发生到上报所经历的时间等。显然地,前述实施例对于UE保存的SDT过程对应的CEF报告方法,还包括UE接收来自网络侧的UEInformationRequest消息,其中包含用于请求UE上报所保存的CEF报告的请求指示信息(如connEstFailReportReq信息元素),UE在UEInformationResponse消息中包含所保存的CEF信息,将其上报给网络侧,其中包含前述SDT过程对应的SDT特定CEF信息。
实施例8
该实施例提供了一种SDT场景下的失败信息报告方法。不同于前述实施例中UE在CEF报告中上报SDT失败信息,该实施例中,UE将SDT的 失败信息携带在无线链路失败(Radio Link Failure,RLF)报告中上报给网络侧。
以下,对本公开的实施例8进行详细说明。具体而言,例如实施例8中的无线链路失败报告方法可以包含如下步骤。
步骤1:UE检测到SDT失败。
SDT失败如前述实施例中所述,比如是由于SDT定时器超时。
步骤2:UE在RLF报告中包含所述SDT失败的信息。
所述SDT失败的信息包含前述第一~第四信息中的一种或多种。除此之外,所述RLF报告中还包括现有R17版本的RLF报告中所支持的其他内容,如UE的位置信息,失败小区的测量结果,从失败发生到RLF报告递送给基站之间所经历的时间,若失败是由于随机接入失败而导致的,那么还包括随机接入过程相关的信息,所述随机接入过程信息可参见背景技术部分所述。
可选地,所述SDT失败的信息还包括第五信息,所述第五信息记录了从UE开始发起SDT过程到SDT过程失败之间所经历的时间。
在一种实现方式中,只有当所述SDT失败发生在初始传输阶段时,UE才在RLF报告中包含所述SDT失败的信息。
图6是表示根据本公开实施例的用户设备60的框图。如图6所示,该用户设备60包括处理器601和存储器602。处理器601例如可以包括微处理器、微控制器、嵌入式处理器等。存储器602例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器602上存储有程序指令。该指令在由处理器601运行时,可以执行本公开详细描述的用户设备中的上述随机接入报告方法。
运行在根据本公开的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本公开的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本公开各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本公开的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本公开并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本公开并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本公开的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本公开也包括不偏离本公开主旨的任何设计改动。另外,可以在权利要求的范围内对本公开进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本公开的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (10)

  1. 一种连接建立失败报告方法,包括:
    用户设备UE发起基于随机接入的小数据传输SDT过程;
    所述UE判断出所述SDT过程失败;和
    所述UE在连接建立失败CEF报告中保存CEF信息,
    所述CEF信息包含以下信息的至少一个:第一信息,用于指示失败过程是用于SDT的;和第二信息,用于指示失败发生在SDT过程的后续传输阶段。
  2. 根据权利要求1所述的连接建立失败报告方法,其中,
    所述CEF信息还包含:位置信息、失败小区标识、失败小区或邻小区的测量结果。
  3. 根据权利要求1或者2所述的连接建立失败报告方法,其中,
    在所述UE发起所述SDT过程中启动的SDT定时器超时的情况下,所述UE判断出所述SDT过程失败。
  4. 根据权利要求3所述的连接建立失败报告方法,其中,
    在所述UE接收到第一个用于调度上行或下行数据的资源调度命令之前所述SDT定时器超时的情况下,所述UE在所述CEF报告中保存所述CEF信息。
  5. 根据权利要求1或者2所述的连接建立失败报告方法,其中,
    在无线链路控制RLC传输达到了最大次数的情况下,所述UE判断出所述SDT过程失败。
  6. 根据权利要求1或者2所述的连接建立失败报告方法,其中,
    在所述SDT过程中执行了一个以上的随机接入RA过程时,所述CEF信息中包含与所述一个以上的RA过程之中最近一个RA过程相关的RA信息。
  7. 根据权利要求1或者2所述的连接建立失败报告方法,其中,
    在所述SDT过程中执行了一个以上的随机接入RA过程时,所述CEF信息中包含与所述一个以上的RA过程相关的RA信息。
  8. 一种连接建立失败报告方法,包括:
    用户设备UE发起基于配置许可方式的小数据传输SDT过程;
    所述UE判断出所述SDT过程失败;
    所述UE在连接建立失败CEF报告中保存CEF信息,所述CEF信息中的与随机接入相关的信息设置为任意值或特定值。
  9. 根据权利要求8所述的连接建立失败报告方法,其中,
    在所述UE发起所述SDT过程中启动的SDT定时器超时、或者在无线链路控制RLC传输达到了最大次数的情况下,所述UE判断出所述SDT过程失败。
  10. 一种用户设备UE,包括:
    处理器;以及
    存储器,存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求1至9中任一项所述的连接建立失败报告方法。
PCT/CN2022/142763 2021-12-31 2022-12-28 连接建立失败报告方法和用户设备 WO2023125649A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111681375.5 2021-12-31
CN202111681375.5A CN116419308A (zh) 2021-12-31 2021-12-31 连接建立失败报告方法和用户设备

Publications (1)

Publication Number Publication Date
WO2023125649A1 true WO2023125649A1 (zh) 2023-07-06

Family

ID=86997978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142763 WO2023125649A1 (zh) 2021-12-31 2022-12-28 连接建立失败报告方法和用户设备

Country Status (2)

Country Link
CN (1) CN116419308A (zh)
WO (1) WO2023125649A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095973A (zh) * 2019-12-06 2020-05-01 北京小米移动软件有限公司 通信失败处理方法、通信失败处理装置及存储介质
US20210410180A1 (en) * 2020-06-24 2021-12-30 FG Innovation Company Limited User equipment and method for small data transmission
WO2022236484A1 (zh) * 2021-05-08 2022-11-17 Oppo广东移动通信有限公司 Sdt失败上报的方法、终端设备和网络设备
WO2022236498A1 (zh) * 2021-05-08 2022-11-17 北京小米移动软件有限公司 连接失败检测方法及装置、通信设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095973A (zh) * 2019-12-06 2020-05-01 北京小米移动软件有限公司 通信失败处理方法、通信失败处理装置及存储介质
US20210410180A1 (en) * 2020-06-24 2021-12-30 FG Innovation Company Limited User equipment and method for small data transmission
WO2022236484A1 (zh) * 2021-05-08 2022-11-17 Oppo广东移动通信有限公司 Sdt失败上报的方法、终端设备和网络设备
WO2022236498A1 (zh) * 2021-05-08 2022-11-17 北京小米移动软件有限公司 连接失败检测方法及装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN116419308A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US20230164866A1 (en) Radio link failure reporting method and user equipment
JP6029774B2 (ja) モバイルネットワークの適応化
US9661510B2 (en) Failure event report extension for inter-RAT radio link failure
WO2020025022A1 (zh) 用户设备的控制方法以及用户设备
TWI450545B (zh) 通過相關資訊報告並處理失敗事件的方法和用戶設備
WO2010105567A1 (zh) 切换优化方法、设备及系统
WO2022057783A1 (zh) 无线链路失败报告方法以及用户设备
WO2021129567A1 (zh) 由用户设备执行的随机接入报告方法和用户设备
US20230262542A1 (en) Handover information reporting method and user equipment
WO2020249007A1 (zh) 由用户设备执行的信息报告方法及用户设备
WO2023040955A1 (zh) 切换信息报告方法以及用户设备
WO2023134763A1 (zh) 信息报告方法以及用户设备
WO2022206668A1 (zh) 随机接入信息上报方法和用户设备
WO2023125649A1 (zh) 连接建立失败报告方法和用户设备
WO2024017237A1 (zh) 由用户设备执行的方法以及用户设备
WO2024027704A1 (zh) 切换信息报告方法以及用户设备
WO2024094056A1 (zh) 信息报告方法以及用户设备
WO2024008076A1 (zh) 切换信息报告方法以及用户设备
WO2023179677A1 (zh) 无线链路失败信息报告方法以及用户设备
WO2022257974A1 (zh) 切换信息报告方法、用户设备以及通信系统
WO2023005967A1 (zh) 切换信息报告方法以及用户设备
WO2024067624A1 (zh) 信息报告方法以及用户设备
WO2024056026A1 (zh) 移动信息报告方法以及用户设备
WO2022237612A1 (zh) 网络转换方法以及用户设备
WO2023246770A1 (zh) 由用户设备执行的方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914901

Country of ref document: EP

Kind code of ref document: A1