WO2022236498A1 - 连接失败检测方法及装置、通信设备及存储介质 - Google Patents

连接失败检测方法及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2022236498A1
WO2022236498A1 PCT/CN2021/092468 CN2021092468W WO2022236498A1 WO 2022236498 A1 WO2022236498 A1 WO 2022236498A1 CN 2021092468 W CN2021092468 W CN 2021092468W WO 2022236498 A1 WO2022236498 A1 WO 2022236498A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
connection
failure detection
configuration
indication
Prior art date
Application number
PCT/CN2021/092468
Other languages
English (en)
French (fr)
Inventor
江小威
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/092468 priority Critical patent/WO2022236498A1/zh
Priority to EP21941079.2A priority patent/EP4336942A4/en
Priority to BR112023023206A priority patent/BR112023023206A2/pt
Priority to KR1020237042297A priority patent/KR20240005079A/ko
Priority to CN202180001467.6A priority patent/CN115606309A/zh
Priority to JP2023568600A priority patent/JP2024517898A/ja
Priority to US18/558,046 priority patent/US20240224093A1/en
Publication of WO2022236498A1 publication Critical patent/WO2022236498A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to the technical field of wireless communication but is not limited to the technical field of wireless communication, and in particular relates to a connection failure detection method and device, a communication device, and a storage medium.
  • Connection failure detection is a way to detect the quality of the radio link between the UE and the base station.
  • the UE will perform connection failure detection according to the failure detection configuration. If a connection failure is detected, the UE is made to re-establish a connection with the base station by way of connection recovery, connection re-establishment or connection establishment.
  • Small Data Transmission is when the UE is in the inactive state and/or idle state, through random access and/or dedicated uplink Physical Uplink Shared Channel (PUSCH) resources, that is, , CG (Configure Grant); or, preallocated uplink resources (Preallocated Uplink Resource, PUR) to execute the SDT process, that is, to transmit data on the SDT.
  • PUSCH Physical Uplink Shared Channel
  • PUR Preallocated Uplink Resource
  • the terminal will resume the data transmission of (Signal Radio Bearer, SRB) 1, and at the same time, the terminal will also resume the signaling radio bearer (Signal Radio Bearer, SRB) 2 and/or the specified data radio bearer ( Data Radio Bearer, DRB) DRB data transmission.
  • SRB Signaling radio bearer
  • DRB Data Radio Bearer
  • Embodiments of the present disclosure provide a connection failure detection method and device, a communication device, and a storage medium.
  • the first aspect of the embodiments of the present disclosure provides a connection failure detection method, which is performed by a user equipment UE, and the method includes:
  • connection failure detection is carried out for the small data transmission SDT process.
  • the second aspect of the embodiments of the present disclosure provides an information processing method, which is executed by a base station, and the method includes:
  • the failure detection configuration is used for the UE to detect the connection failure for the SDT process.
  • connection failure detection device which is executed by a user equipment UE, and the device includes:
  • the detection module is configured to perform connection failure detection for the small data transmission SDT process.
  • an information processing device includes:
  • the sending module is configured to send the failure detection configuration, wherein the failure detection configuration is used for the UE to detect the connection failure for the SDT process.
  • the fifth aspect of the embodiments of the present disclosure provides a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable
  • the program executes the connection failure detection method provided in the aforementioned first or second aspect.
  • the sixth aspect of the embodiments of the present disclosure provides a computer storage medium, the computer storage medium stores an executable program; after the executable program is executed by a processor, it can realize the connection provided by the aforementioned first aspect or the second aspect Failure detection method.
  • the connection failure detection will be performed for the connection in the SDT process.
  • the SDT process it can be known that the SDT process
  • small data packet transmission in the SDT process can be adjusted in time to improve the transmission success rate and transmission quality of small data packets.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • Fig. 2 is a schematic flowchart of a connection failure detection method according to an exemplary embodiment
  • Fig. 3 is a schematic diagram showing the sequence of the SDT process according to an exemplary embodiment
  • Fig. 4 is a schematic flowchart of a connection failure detection method according to an exemplary embodiment
  • Fig. 5 is a schematic flowchart of a connection failure detection method according to an exemplary embodiment
  • Fig. 6 is a schematic flowchart of a connection failure detection method according to an exemplary embodiment
  • Fig. 7 is a schematic flowchart of a connection failure detection method according to an exemplary embodiment
  • Fig. 8 is a schematic flowchart of a connection failure detection method according to an exemplary embodiment
  • Fig. 9 is a schematic structural diagram of a connection failure detection device according to an exemplary embodiment
  • Fig. 10 is a schematic structural diagram of a connection failure detection device according to an exemplary embodiment
  • Fig. 11 is a schematic structural diagram of a UE according to an exemplary embodiment
  • Fig. 12 is a schematic structural diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several UEs 11 and several base stations 12 .
  • UE11 may be a device that provides voice and/or data connectivity to a user.
  • UE11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN), and UE11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • RAN Radio Access Network
  • UE11 can be an Internet of Things UE, such as a sensor device, a mobile phone (or called a "cellular" phone) and a device with an Internet of Things
  • the UE's computer for example, may be a fixed, portable, pocket, hand-held, built-in or vehicle-mounted device.
  • UE11 may also be a device of an unmanned aerial vehicle.
  • UE11 may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected externally to the trip computer.
  • the UE11 may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as a Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, New Generation Radio Access Network).
  • the MTC system the MTC system.
  • the base station 12 may be an evolved base station (eNB) adopted in a 4G system.
  • the base station 12 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it generally includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, radio link layer control protocol (Radio Link Control, RLC) layer, media access control (Media Access Control, MAC) layer protocol stack;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • a physical (Physical, PHY) layer protocol stack is set in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 12 .
  • a wireless connection can be established between the base station 12 and the UE 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a technical standard of a next-generation mobile communication network based on 5G.
  • an E2E (End to End, end-to-end) connection can also be established between UE11.
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle to everything (V2X) communication Wait for the scene.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in the wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity, MME).
  • MME Mobility Management Entity
  • the network management device can also be other core network devices, such as Serving GateWay (SGW), Public Data Network Gateway (Public Data Network GateWay, PGW), policy and charging rule functional unit (Policy and Charging Rules Function, PCRF) or Home Subscriber Server (Home Subscriber Server, HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network Gateway
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • an embodiment of the present disclosure provides a connection failure detection method, which is performed by a user equipment UE, and the method includes:
  • connection failure detection method may be implemented by a UE.
  • the connection failure detection during the SDT process is performed for the UE in the idle state or the UE in the inactive state.
  • the connection failure detection during the SDT process can be understood as the UE in the idle state or inactive state detects the wireless transmission channel, and determines whether the connection fails during the SDT process according to the detected channel quality.
  • connection failure detection here is to detect the connection in the SDT process, including: to detect the beam used in the SDT process, and/or to detect the channel used in the SDT process.
  • the channel includes but is not limited to: random access channel (Random Access Channel, RACH) and/or dedicated PUSCH (or called, CG-PUSCH), etc.
  • the UE will also perform connection failure detection during the SDT process. In this way, it can be determined whether the cause of the small data packet transmission failure in the SDT is the connection failure, or whether it is necessary to adjust the transmission in time during the SDT process. For example, delay transmission in the time domain.
  • the small data transmission of the SDT process can be performed in any of the following steps:
  • Msg3 carries a small data packet
  • MsgA carries a small data packet
  • Small data packets are sent on the dedicated uplink physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) resource configured by the network.
  • PUSCH Physical Uplink Shared Channel
  • the small data packet here refers to the data packet reported in the SDT process.
  • the SDT process may include: an initial data sending phase and a subsequent data sending phase.
  • Initial data transmission stage from the transmission of SDT initial data to the reception of confirmation information for the initial data from the network side, where the confirmation information is different for different SDT processes.
  • the confirmation information may be the contention resolution identification of Msg4 successfully received; in the SDT process of the two-step random access channel, the confirmation information may be the successful reception of MsgB competition resolution logo.
  • the acknowledgment information can be an indication that the network side indicates that the data is successfully received.
  • the indication may be an acknowledgment character (Acknowledgment character, ACK) indicated by the physical layer (Downlink Control Information, DCI).
  • connection failure detection method including:
  • S111 Perform connection failure detection for the SDT process according to the obtained failure detection configuration.
  • the UE performs connection failure detection in the SDT process according to the failure detection configuration.
  • the failed connection configuration may also be used for the UE to perform failed connection detection in the connected state. That is, the UE can share the same failure detection configuration in the unconnected state and the connected state.
  • the disconnected state includes: an inactive state and/or an idle state.
  • the failure detection configuration is different from the failure detection configuration of the UE in the connected state.
  • the two failure detection configurations define different triggering events for triggering the connection failure detection, and/or, the two failure detection configurations define different connection failure detection frequencies.
  • the detection frequency indicated by the failure detection configuration in the disconnected state is lower than the detection frequency indicated by the failure detection configuration in the connected state.
  • the failure detection configuration includes:
  • the failure detection configuration may be configured and sent by the network side, or may be pre-configured in the protocol, so that the UE obtains the failure detection configuration by reading the protocol.
  • the network side here may at least include: an access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • the failed connection detection is received from a base station of the RAN.
  • the UE there are many ways for the UE to obtain the failure detection configuration, not limited to any one of the above.
  • the failure detection configuration received from the network side includes:
  • the failure detection configuration received from the network side and carried in the connection release message is the failure detection configuration received from the network side and carried in the connection release message.
  • the failure detection configuration may be carried in a system message.
  • the failure detection configuration may be carried in a master information block (Master Information Block, MIB) or a system information block (System Information Block, SIB) x, where x may be Any positive integer.
  • MIB Master Information Block
  • SIB System Information Block
  • x may be Any positive integer.
  • the value of x may be 1, 2, 3 or 4, etc.
  • connection failure detection method including:
  • connection failure detection for the SDT process only when the trigger event is detected, the connection failure detection for the SDT process will be started, and the connection failure detection for the SDT process will not be performed at other times, thereby reducing unnecessary detection, thereby reducing unnecessary detection resulting power consumption.
  • the trigger event includes at least one of the following:
  • the UE sends uplink data for the first time in the SDT process
  • the UE receives an acknowledgment indication from the network side, wherein the acknowledgment indication is an indication sent by the network side after receiving the uplink data sent for the first time in the SDT process.
  • the UE starts the SDT process in the inactive state or the idle state, that is, detects that the SDT process is started, it is considered that a trigger event is detected.
  • the first sending of uplink data for performing the SDT process includes at least one of the following:
  • the UE sends uplink data for the first time through a random access message 3 of four-step random access;
  • the UE sends uplink data for the first time through a random access message A of two-step random access;
  • the UE sends uplink data for the first time on the configured authorized CG physical uplink shared channel PUSCH resource.
  • the UE receives an acknowledgment indication from the network side, including:
  • the contention resolution identifier of the four-step random access message 4 is received from the network side;
  • the contention resolution identifier of the two-step random access message B is received from the network side;
  • a successful indication of data transmission on the CG PUSCH resource is received from the network side.
  • connection failure detection method including:
  • S112 Stop connection failure detection for the SDT process in response to detecting the stop event.
  • connection failure detection of the SDT process may be automatically stopped after a preset period of time, or after a preset number of detections are performed.
  • a stop event is set, and if the stop event is detected, the connection failure detection for the SDT process is stopped.
  • said detecting a stop event includes:
  • the state of the UE is changed
  • the UE receives specific indication information associated with the connection from the network side.
  • the transition of the state of the UE may include: the transition of the connection state between the UE and the network side.
  • the UE receives specific indication information associated with the connection from the network side.
  • the specific indication information associated with the connection may include: indicating connection establishment, indicating connection release, indicating connection recovery, and indicating connection switching, and one or more of the indication information associated with connection.
  • the state transition of the UE includes at least one of the following:
  • the UE transitions from an inactive state to an idle state
  • the UE transitions from an inactive state to a connected state
  • the UE transitions from an idle state to a connected state.
  • the UE If the UE switches from the inactive state to the idle state, the UE not only releases the connection with the base station, but also releases the context, and the idle state is a state in which the connection known by the core network has been released, while the inactive state is a state in which the connection has been released.
  • the connection between the UE and the base station has been released, but the context has not been released, and the core network does not know the status of the UE's released connection.
  • the UE switches from the inactive state to the idle state, it means that the data to be sent by the UE is reduced or the amount of data is reduced, and the probability that the SDT process needs to be performed is reduced, so the connection failure detection of the SDT process can be stopped, thereby reducing unnecessary detection.
  • the UE if the UE exits the idle state or the inactive state, it transitions to the connected state. In the connected state, the UE can transmit data based on the RRC connection, and the UE may have dedicated connection failure detection for the connected state in the connected state. At this time, it is considered that the connection failure detection in the SDT process is detected.
  • the UE receives specific indication information associated with the connection from the network side, including at least one of the following:
  • the UE receives a connection release message from the network side
  • the UE receives a connection recovery message from the network side
  • the UE receives a connection rejection message from the network side
  • the UE receives a connection establishment message from the network side.
  • connection release message can be used to trigger the UE to enter the idle state.
  • connection resume message can be used for the UE in the inactive state to enter the connected state.
  • the connection rejection message may be a message of rejection of the connection establishment request returned by the network side for the connection request.
  • the connection establishment message may be a message sent by the network side to instruct the UE to enter a connected state by establishing a connection.
  • the specific indication information may be various RRC messages associated with the connection, so instead of setting a special message to indicate the stop of the connection failure detection during the SDT process, the relevant technology is used to The SDT is informed of the stop of the connection failure detection in the SDT process by sending and receiving the existing messages, so it has the characteristics of high compatibility with related technologies and easy implementation.
  • the failure detection configuration includes at least one of the following:
  • Timer information indicating the timer associated with connection failure detection
  • the signal indication information is used to indicate the signal for performing the connection failure detection.
  • the timer information may be information related to timer timing, for example, the timer information indicates information such as timer duration, timer start time and/or end time.
  • the counter information may be any information indicating counting of the counter, for example, the counter information may include: a maximum count value.
  • the signal indication information may indicate: a signal that needs to be detected during connection failure detection during the SDT process, and the signal may be a reference signal of various physical layers.
  • the timer includes at least one of the following:
  • the out-of-synchronization timer of the physical layer is used to time the out-of-synchronization of the physical layer
  • Beam failure timer used to time beam failure detection.
  • the timers include various types of timers, or timers for different types of connection failures.
  • the physical layer out-of-sync timer mainly counts the phenomenon of physical layer out-of-sync.
  • the synchronization of the physical layer may be established based on a synchronization signal issued by the network side, where the physical layer is out of synchronization, that is, the physical layer does not establish relatively accurate synchronization based on the synchronization signal.
  • the physical layer failure timer counts the duration of the physical layer failure.
  • the beam failure timer can time the beam failure detection.
  • the counter includes at least one of the following:
  • the out-of-synchronization counter is used for physical layer out-of-synchronization indication counting
  • the synchronization counter is used for physical layer synchronization indication counting
  • a beam failure counter for counting beam failures
  • the MAC layer random access times counter is used for counting the random access times of the MAC layer
  • the transmission times counter of the RLC layer is used for counting the transmission times of the RLC layer.
  • the out-of-synchronization counter can be used for counting physical layer failure indications.
  • the synchronization counter can be used to count the physical layer synchronization indication generated when the physical layer synchronization is detected.
  • the UE when performing random access, the UE will send a random access request, and after a random access failure occurs, it will perform the next random access request.
  • the MAC The layer random access times counter is used to count the number of random access times of the MAC layer.
  • the RLC layer is configured with a transmission count counter, which can be used to count the number of transmission times of the random access request by the UE during a random access process. If the count reaches the preset value and the random access is not successful, Then it can be considered that the random access fails.
  • the signal indication information is used to indicate at least one of the following:
  • a signal of beam failure detection in the connection failure detection is a signal of beam failure detection in the connection failure detection.
  • the signal indicated by the signal indication information includes: a signal for performing physical layer out-of-synchronization detection and/or a signal for beam failure detection.
  • the signal of physical layer out-of-synchronization detection and the signal of beam failure detection may be the same or different.
  • the signal of the physical layer out-of-synchronization detection and the signal of the beam failure detection can both be a synchronization signal block (Synchronization Signal/Physical Broadcast Channel Block, SSB) or a channel state information (Channel State Information-Reference Signal, CSI-RS ).
  • SSB Synchronization Signal/Physical Broadcast Channel Block
  • CSI-RS Channel State Information-Reference Signal
  • the signals indicated by the signal indication information include at least one of the following:
  • the downlink signal associated with the PDCCH channel for scheduling data transmission After successfully receiving the contention resolution identifier of the random access message 4 of the four-step random access, the downlink signal associated with the PDCCH channel for scheduling data transmission;
  • a downlink signal associated with the random access message A of the two-step random access
  • the downlink signal associated with the PDCCH of the scheduled data After the contention resolution identifier of the random access message B of the two-step random access is received, the downlink signal associated with the PDCCH of the scheduled data;
  • the downlink signal associated with the PDCCH that sends the transmission success indication is: indicating that data transmission is successful on the CG PUSCH;
  • a downlink signal sent by the cell where the UE is located
  • a downlink signal sent by the BWP where the UE is located
  • the UE can detect the downlink signal of the cell
  • a downlink signal that can be detected by the BWP where the UE is located is located.
  • the downlink signal here may be a physical layer signal, for example, the downlink signal here may be a reference signal of the physical layer.
  • the downlink signal associated with xxx may include: a downlink signal having a pre-established corresponding relationship with xxx and/or a downlink signal quasi-co-located with xxx.
  • xxx generally refers to PDCCH, PUSCH and/or PRACH resources in any one of the foregoing technical solutions.
  • the base station allocates random access resources for random access in advance, and channels corresponding to these random access resources are called random access channels.
  • the downlink signals associated with these random access resources may be the aforementioned signals for performing physical layer out-of-synchronization detection and/or beam failure detection.
  • the random access channel includes 4 random access resources, which are random access resource 1, random access resource 2, random resource 3, and random resource 4, where these 4 random access resources can be associated with Different SSBs, for example, random access resource 1 is associated with SSB1, random access resource 2 is associated with SSB2, random access resource 3 is associated with SSB3, and random access resource 4 is associated with SSB4.
  • random access resource 1 is associated with SSB1
  • random access resource 2 is associated with SSB2
  • random access resource 3 is associated with SSB3
  • random access resource 4 is associated with SSB4.
  • the downlink signal indicated by the signal indication information may be: SSB3 associated with random access resource 3.
  • the transmission resource of the contention resolution identification of the random access message 4 needs to be scheduled by the PDCCH, and the contention resolution identification is scheduled by the PDCCH transmitted over the resource.
  • the signal for performing physical layer out-of-synchronization detection and/or the signal for beam failure detection may be a downlink signal associated with the PDCCH of the scheduled transmission contention resolution flag.
  • PSCH Physical Shared Channel
  • the PSCH here may include PDSCH and/or PUSCH.
  • the channel for scheduling the PSCH may be the PDCCH.
  • the signal indicating the information may be a downlink signal associated with the PDCCH.
  • the downlink signals associated with the PDCCHs scheduling data transmission may include: downlink signals associated with the first m PDCCHs scheduling data transmission.
  • m can be any positive integer.
  • the signal indicated by the signal indication information may be: a downlink signal associated with the random access message A and/or with the random access message B. If the CG PUSCH resource is used in the SDT process, the signal indicating the physical layer out-of-sync detection and/or the beam failure detection signal indicated by the signal indication information may be: a downlink signal associated with the CG PUSCH resource.
  • the SDT process is divided into the initial data sending stage and the subsequent data sending stage.
  • the network side will send a transmission success indication.
  • the UE will receive the transmission success indication, at this time, the signal indicated by the signal indication information may be a downlink signal associated with the PDCCH indicated by the successful transmission.
  • the signal used for physical layer out-of-synchronization detection and/or the signal used for beam failure detection indicated by the signal indication information may be received after receiving the transmission success indication, and used for scheduling data
  • the downlink signals associated with the PDCCHs scheduling data transmission may include: downlink signals associated with the first n PDCCHs scheduling data transmission.
  • n can be any positive integer.
  • the cell where the UE is located may be the cell where the UE resides.
  • the signals indicated by the signal indication information may be: all downlink signals sent by cells in the cell where the UE resides.
  • the active BWPs of the UE may be only some of them, or the UE may only use some of the BWPs for signal detection and/or data transmission.
  • the partial BWP here may include: one BWP or multiple BWPs.
  • the cell may transmit downlink signals based on beams.
  • the foregoing downlink signal may be any reference signal at the cell level.
  • the signal indicated by the signal indication information may be: the UE can detect all downlink signals of the cell.
  • the BWP where the UE is located can be: the active BWP of the UE or all the BWPs that the UE can use, and the UE can detect downlink signals in the BWP.
  • the configuration of the signal of physical layer out-of-synchronization detection and/or the signal of beam failure detection is realized in advance through the signal indication information in the failure detection configuration, so that in the process of SDT, the failure detection configuration can be directly performed in time Downlink signal detection is performed without temporary scheduling on the network side.
  • connection failures in the SDT process There are many types of connection failures in the SDT process. Exemplarily, the types of connection failures in the SDT process may include one or more of the following:
  • the method also includes:
  • connection failure type of connection failure can realize the process of reacquiring the connection or enter the idle state.
  • the process of reacquiring a connection may include at least one of the following: a connection establishment process, a connection reestablishment process, and/or a beam recovery process.
  • the UE when it detects a connection failure, it will reacquire the connection, and based on the reacquired connection, transmit the small data packet during the SDT process.
  • the data can be transmitted in time based on the reacquired connection.
  • the transmission can be suspended.
  • the UE may enter an idle state with lower power consumption.
  • the method also includes:
  • connection failure types can implement connection reacquisition in different ways.
  • the beam failure may only be caused by the movement of the UE in the cell.
  • the wireless channel (that is, the connection) of the cell may not be bad.
  • the UE may be able to regain connect.
  • beam recovery is performed. If the connection fails due to beam failure, beam recovery can be quickly and easily realized through the process of beam recovery without multiple messages from the base station. Implement connection reacquisition.
  • beam recovery may not be performed, but the connection may be re-acquired directly through connection establishment or connection re-establishment.
  • Beam recovery corresponds to beam recovery configuration. For details on how to perform beam recovery, you can refer to beam recovery configuration.
  • the beam restoration process may include: sending a beam restoration request and feeding back the beam restoration request returned by the network side.
  • the method also includes at least one of the following:
  • the beam recovery configuration is determined based on a protocol agreement.
  • the beam recovery configuration may be carried in the connection reconfiguration message.
  • the beam recovery configuration for the connected state may be carried in the connection reconfiguration message
  • the beam recovery configuration for the non-connected state may be carried in the system message and the connection release message.
  • the application probability may be low or the probability of dynamic debugging is low.
  • the beam recovery configuration can be directly written into the communication standard protocol, so that the UE can determine the beam through the query protocol. Restore configuration.
  • the beam recovery configuration includes at least one of the following:
  • Beam recovery counter information indicating the counter used for the number of times of beam recovery
  • Beam recovery timer information indicating the timer used for beam recovery duration
  • the priority configuration is used to indicate the priority of the random access corresponding to the beam restoration, wherein, the random access configuration corresponding to the beam restoration is different for different priorities;
  • Resource configuration indicating the resources used for beam recovery
  • Threshold configuration indicating the threshold used for beam recovery.
  • the beam recovery configuration may include one or more timer values, one or more counter values, and one or more beam recovery thresholds.
  • the beam restoration counter information indicates a counter for counting beam restoration times.
  • the counter information may at least include: a maximum count value of the counter.
  • the beam recovery timer information may be used to indicate the duration of beam recovery for timing.
  • the beam recovery timer information may indicate the maximum duration of the timer.
  • the resource configuration may indicate any resource used for beam recovery.
  • the resource used for beam recovery may be a random access resource for beam recovery.
  • the random access resources include: time-frequency domain resources and/or sequence resources, where the sequence resources may be random access preambles used in the random access process of beam recovery and the like.
  • Threshold configuration can be used to determine whether beam recovery is currently completed. For example, beam recovery is performed by beam measurement carrying SSB. If it is detected that the measured value of a specific SSB exceeds the threshold value indicated by the threshold configuration, beam recovery can be considered successful. .
  • the measured value of SSB includes but not limited to: Reference Signal Received Power (Reference Signal Received Power, RSPR) and/or Reference Signal Received Quality (Reference Signal Received Quality, RSPQ).
  • Reference Signal Received Power Reference Signal Received Power
  • RSPQ Reference Signal Received Quality
  • the beam recovery configuration further includes a priority configuration, and the priority configuration can reuse the random access priority configuration.
  • the random access configurations corresponding to different priorities are different.
  • the random access configuration here may include at least one of the following:
  • Power ramping configuration for example, increase the transmission power of the random access request according to the power ramping configuration when retransmitting the random access request
  • Backoff time scaling factor for random access request repetitions.
  • the network side indicates a backoff value (Backoff Indicator, BI) to the UE, and the specific backoff time depends not only on the BI, but also on the backoff time scaling factor.
  • the product of the back-off time scaling factor and the BI may be a specific value of the back-off time.
  • the resource configuration indicates that the contention-based random access request resources of the cell where the SDT process is located or the BWP are used for beam recovery.
  • the threshold configuration indicates a threshold used to select a resource for a random access request, and is multiplexed as the beam restoration threshold.
  • the resource configuration and the threshold configuration are the resources and the threshold value used in the process of multiplexing the random access request.
  • the simplification of the network configuration is realized, and on the other hand, the effective utilization of resources is improved. rate, and reduce the repeated delivery of resource configurations and/or threshold configurations.
  • the method also includes:
  • the beam recovery succeeds, an indication indicating the recovery success will be received, and if the beam recovery fails, an indication indicating the recovery failure will be received.
  • the feedback information indicating whether the beam restoration is successful or not indicated by the network side may be received.
  • the beam recovery process may be stopped; if the beam recovery indicates failure, the beam recovery may be stopped directly, and the connection may be reacquired through connection establishment and/or connection re-establishment, or, It is to determine whether the number of beam failures reaches the maximum number. If the number reaches the maximum number, stop the beam recovery and proceed to connection establishment or connection re-establishment, otherwise continue to perform the next beam recovery.
  • the receiving feedback information from the network side on the beam restoration includes:
  • the receipt of feedback information can be integrated with the SDT process.
  • the feedback information is received on resources in the subsequent data sending phase of the SDT process, or the feedback information carried in any random access message is received.
  • the receiving the feedback information on resources in the subsequent data transmission phase of the SDT process includes: receiving the feedback information on PDCCH resources used to schedule data transmission in the subsequent data transmission phase of the SDT process. Feedback.
  • the receiving the feedback information carried in the message delivered by the network side during random access includes at least one of the following:
  • the connection may also be reacquired through a process of connection establishment and/or connection re-establishment.
  • the method further includes: in response to the beam recovery failure, reacquiring a connection; or in response to the beam recovery failure, entering an idle state.
  • the beam recovery fails, perform the operation of reacquiring the connection, and realize the timely transmission of data through the reacquired connection.
  • the UE can enter the idle state to further save the power consumption of the UE.
  • the reacquired connection includes at least one of the following:
  • connection re-establishment is triggered based on the connection re-establishment request message.
  • a NAS message triggers connection establishment or a connection request message triggers connection establishment.
  • the connection request message is an RRC layer message.
  • connection recovery process triggered by the recovery request message and the connection re-establishment process triggered by the connection re-establishment request message.
  • the method also includes:
  • connection failure detection will get a result, which is called the connection failure detection result.
  • the connection failure detection result may include: a result of detecting a connection failure or a result of detecting that the connection has not failed.
  • the failure detection result includes at least one of the following: connection failure type indication, indicating the connection failure type;
  • the SDT process indication is used to indicate that a connection failure is detected during the SDT process
  • SDT stage indication used to indicate the SDT stage where the connection failure occurs, wherein the SDT stage includes: the initial data sending stage and/or the subsequent data sending stage in the SDT process;
  • SDT process type indication used for the type of SDT process
  • Service indication used to indicate the service that triggers the SDT process.
  • connection failure types include but are not limited to:
  • connection failure caused by the failure of the RLC layer to reach the maximum number of retransmissions
  • the SDT phase includes: an initial data transmission phase and a subsequent data transmission phase.
  • the service indication includes at least one of the following:
  • the service flow identifier of the service
  • the session identifier of the service
  • the logical channel identifier of the service is the logical channel identifier of the service.
  • RBs have RB identifiers, so the RB identifiers can be used to identify services.
  • a service flow identifier will be assigned, and similarly, the service flow identifier can identify the service.
  • a session ID will be assigned, so the session ID can also identify a service.
  • services are also mapped to logical channels, and different logical channels have different logical channel identifiers. Therefore, logical channel identifiers can also be used for service identification.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a base station, and the method includes:
  • S210 Send the failure detection configuration, wherein the failure detection configuration is used for the UE to detect the connection failure for the SDT process.
  • the information processing method provided by the embodiments of the present disclosure may be executed by a base station.
  • the method may include: the base station sends a failure detection configuration to the UE, and the failure detection configuration can be used for the UE to perform connection failure detection during the SDT process.
  • the S210 may include:
  • all UEs in the cell can receive the corresponding system information.
  • connection release message that triggers the UE to enter the idle state or inactive state that can perform the SDT process carries the failure detection configuration instead of sending a dedicated message, and the UE enters the idle state or Sending before the inactive state has the characteristics of small message signaling overhead and easy implementation.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a base station, and the method includes:
  • S310 Send specific indication information associated with the connection; wherein the specific indication information is used to trigger the UE to stop connection failure detection for the SDT process.
  • any other information related to the connection can be reused, so that it has the characteristics of strong compatibility with related technologies.
  • the specific indication information includes at least one of the following:
  • the failure detection configuration includes at least one of the following:
  • Timer information indicating the timer associated with connection failure detection
  • the signal indication information is used to indicate the signal for performing the connection failure detection.
  • timer information For the relevant descriptions of timer information, counter information and signal indication information here, reference may be made to the foregoing embodiments, and will not be repeated here.
  • the timer includes at least one of the following:
  • the out-of-synchronization timer of the physical layer is used to time the out-of-synchronization of the physical layer
  • Detect beam failure timer used to time beam failure detection.
  • the counter includes at least one of the following:
  • the out-of-synchronization counter is used for physical layer out-of-synchronization indication counting
  • the synchronization counter is used for physical layer synchronization indication counting
  • a beam failure counter for counting beam failures
  • a media access control MAC layer random access counter is used to count the random access times of the MAC layer
  • the transmission times counter of the radio link control RLC layer is used for counting the transmission times of the RLC layer.
  • the signal indication information is used to indicate at least one of the following:
  • a signal of beam failure detection in the connection failure detection is a signal of beam failure detection in the connection failure detection.
  • the signal indication information indicates a signal, including at least one of the following:
  • the downlink signal associated with the PDCCH channel for scheduling data transmission After successfully receiving the contention resolution identifier of the random access message 4 of the four-step random access, the downlink signal associated with the PDCCH channel for scheduling data transmission;
  • a downlink signal associated with the random access message A of the two-step random access
  • the downlink signal associated with the PDCCH of the scheduled data After the contention resolution identifier of the random access message B of the two-step random access is received, the downlink signal associated with the PDCCH of the scheduled data;
  • the downlink signal associated with the PDCCH that sends the transmission success indication is: indicating that data transmission is successful on the CG PUSCH;
  • a downlink signal sent by the cell where the UE is located
  • a downlink signal sent by the BWP where the UE is located
  • the UE can detect the downlink signal of the cell
  • a downlink signal that can be detected by the BWP where the UE is located is located.
  • an embodiment of the present disclosure provides an information processing method, which is executed by a base station.
  • the method includes: S410: Send beam recovery configuration, where the beam recovery configuration is at least used for the UE to perform an SDT Beam recovery is performed when the reason for the connection failure is detected during the process as beam failure.
  • the transmitting beam recovery configuration may be the same as or different from the beam recovery configuration in the connection state. If the beam recovery configuration is the same as the beam recovery configuration in the connected state, the UE will directly reuse the beam recovery configuration of the connection bar, and the beam recovery configuration sent by the base station here is aimed at both the connected state and the non-connected state of the UE.
  • the unconnected state here includes: idle state and/or inactive state.
  • the transmitting beam recovery configuration includes at least one of the following:
  • the beam recovery configuration includes at least one of the following:
  • Beam recovery counter information indicating the counter used for the number of times of beam recovery
  • Beam recovery timer information indicating the timer used for beam recovery duration
  • the priority configuration is used to indicate the priority of the random access corresponding to the beam restoration, wherein, the random access configuration corresponding to the beam restoration is different for different priorities;
  • Resource configuration indicating the resources used for beam recovery
  • Threshold configuration indicating the threshold used for beam recovery.
  • the random access configuration here may at least include: a power ramping configuration and/or a backoff time scaling factor for retransmission of the random access request.
  • the resources indicated by the resource configuration may multiplex random access resources, and examples may include: PRACH resources and sequence resources corresponding to the root sequence.
  • the resource configuration indicates that the contention-based random access request resources of the cell where the SDT process is located or the BWP are used for beam recovery.
  • the threshold configuration indicates a threshold used to select a resource for a random access request, and is multiplexed as the beam restoration threshold.
  • the method also includes:
  • the base station may send beam recovery feedback information to the UE according to the beam recovery result of the UE.
  • the sending the feedback information of the beam restoration includes:
  • the sending the feedback information on the resources in the subsequent data sending phase of the SDT process includes:
  • the feedback information is sent on the PDCCH resource used for scheduling data transmission in the subsequent data sending phase of the SDT process.
  • the sending the message carrying the feedback information in the random access includes at least one of the following:
  • the method also includes:
  • the failure detection result includes at least one of the following:
  • Connection failure type indication indicating the connection failure type
  • the SDT process indication is used to indicate that a connection failure is detected during the SDT process
  • SDT stage indication used to indicate the SDT stage where the connection failure occurs, wherein the SDT stage includes: the initial data sending stage and/or the subsequent data sending stage in the SDT process;
  • SDT process type indication used for the type of SDT process
  • Service indication used to indicate the service that triggers the SDT process.
  • the service indication includes at least one of the following:
  • the service flow identifier of the service
  • the session identifier of the service
  • the logical channel identifier of the service is the logical channel identifier of the service.
  • UEs in the idle state/inactive state can perform corresponding connection failure detection during the SDT process. And according to the result of the connection failure detection, corresponding processing is performed when a failure occurs, thereby improving the reliability of data transmission.
  • the UE performs connection failure detection for the connection in the SDT process according to the network configuration or protocol agreement, and performs corresponding failure processing after detecting the failure.
  • the network side provides connection failure detection configuration and/or beam recovery configuration in the SDT process.
  • the UE performs connection failure detection on the connection in the SDT process.
  • the network and/or protocol-agreed configuration here includes at least the connection failure configuration described above.
  • One or more items in the failure detection configuration and/or beam recovery configuration can be provided to the UE in at least one of the following ways:
  • the trigger event of the connection failure detection that starts the SDT process includes any of the following:
  • the SDT process is triggered
  • Uplink data is sent for the first time in the SDT process.
  • the data sent for the first time in the SDT process includes any of the following:
  • the four-step RACH SDT sends data through Msg3 for the first time.
  • the two-step RACH SDT sends data through MsgA for the first time.
  • CG-SDT sends data through CG resources for the first time.
  • An acknowledgment indication from the network side is received. Including any of the following:
  • the four-step RACH SDT successfully receives the contention resolution flag of Msg4.
  • the two-step RACH SDT successfully receives the MsgB's contention resolution flag.
  • the CG-SDT successfully receives the data reception success indication sent by the network.
  • stop event for stopping the connection failure detection includes any of the following:
  • connection state of the UE is changed from an inactive state (RRC_INACTIVE) or from an inactive state to an idle state (RRC_IDLE).
  • connection state of the UE is changed to the connected state (RRC_CONNECTED).
  • the specific indication information may include any of the following:
  • the situation of the failure detection configuration through agreement agreement includes at least one of the following:
  • the values of the counters and/or timers in the failure detection configuration are agreed upon by the protocol.
  • the signal used for the out-of-sync detection of the physical layer is stipulated by the protocol.
  • the signal used for physical layer out-of-sync detection can be any of the following:
  • the downlink signal includes any of the following:
  • PRACH transmits resource-associated downlink signals.
  • the four PRACH resources in the PRACH configuration ie, PRACH-1/2/3/4) correspond to four different downlink signals; these four downlink signals may include: SSB- 1/2/3/4.
  • the UE selects PRACH-1 for sending uplink data, and the SSB-1 associated with PRACH-1 is used for physical layer out-of-sync detection.
  • the downlink signal corresponding to the physical control channel identified by the contention resolution of Msg4 is scheduled.
  • the scheduling Msg4 contention resolution identifier PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • SSB-1 Signal that has a quasi-co-location relationship with the PDCCH channel
  • the contention resolution identifier of Msg4 is used for the downlink signal corresponding to the physical control channel for subsequent data scheduling.
  • the UE configures the corresponding PDCCH through a specific search space (search space) to receive scheduling information for subsequent data transmission and reception, and signals that have a quasi-co-location relationship with the PDCCH channel, such as SSB-1.
  • search space search space
  • the signal having a quasi-co-location relationship with the PDCCH channel may be: a downlink signal associated with PRACH transmission resources.
  • All specific downlink signals corresponding to the cell or BWP where the SDT process is located for example, the SDT process is configured to be executed on the initial (initial) BWP, and all SSBs configured on the initial BWP.
  • All specific downlink signals detected corresponding to the cell or BWP where the SDT process is located are configured to be executed on the initial BWP, the specific downlink signal configured on the initial BWP is SSB-1/2/3/4, and the UE detects SSB-1/2. Then SSB-1/2 is used as the detection signal.
  • this signal includes any of the following:
  • MsgA sends resource-associated downlink signals, for example, the four PRACH resources (ie, PRACH-1/2/3/4) in the MsgA configuration correspond to four different downlink signals, for example, SSB-1/2/3/ 4.
  • the UE selects PRACH-1 for sending uplink data, and the SSB-1 associated with PRACH-1 is used for physical layer out-of-sync detection.
  • Scheduling the downlink signal corresponding to the physical control channel of the MsgB contention resolution identifier for example, scheduling the MsgB contention resolution identifier PDSCH to send is a PDCCH channel, and a downlink signal that has a quasi-co-location relationship with the PDCCH channel, such as SSB-1.
  • the UE After successfully receiving the contention resolution identifier of MsgB, it is used for the downlink signal corresponding to the physical control channel for subsequent data scheduling. For example, after the contention in the SDT process is resolved, the UE configures the corresponding PDCCH through a specific search space to receive the scheduling information for subsequent data transmission and reception.
  • the signal that has a quasi-co-location relationship with the PDCCH channel is the downlink signal for connection failure detection during the SSD process. Exemplarily such as SSB-1.
  • the signal having a quasi-co-location relationship with the PDCCH channel may be a downlink signal associated with sending resources of MsgA.
  • this signal includes any of the following:
  • CG PUSCH sends resource-associated downlink signals.
  • one resource period in CG configuration includes four CG resources (ie, CG-1/2/3/4) corresponding to four different downlink signals.
  • CG-1/2/3/4 the UE selects CG-1 for sending uplink data
  • the SSB-1 associated with CG-1 is used for physical layer out-of-sync detection.
  • the downlink signal corresponding to the physical control channel that sends the data reception success indication for example, the PDCCH channel that sends the data reception success indication, and the downlink signal that has a quasi-co-location relationship with the PDCCH channel, for example, SSB-1.
  • the UE After successfully receiving the data reception success indication, it is used for the downlink signal corresponding to the physical control channel for subsequent data scheduling. For example, after the SDT process successfully receives the data reception success indication, the UE configures the corresponding PDCCH through a specific search space (search space) to receive scheduling information for subsequent data transmission and reception, and signals that have a quasi-co-location relationship with the PDCCH channel, for example, SSB -1.
  • search space search space
  • the signal having a quasi-co-location relationship with the PDCCH channel may be a downlink signal associated with CG PUSCH transmission resources.
  • the signal used for beam failure detection is agreed by agreement.
  • the signal for beam failure detection may be specified with reference to the signal used for out-of-synchronization detection at the physical layer through the protocol.
  • Step 2 According to step 1, when the UE detects the connection failure, determine the connection failure type; and reacquire the connection according to the connection failure type.
  • the following provides several alternative ways to re-acquire the connection after a connection failure is detected:
  • Alternative way 1 UE transitions from an inactive state (RRC_INATIVE) to an idle state (RRC_IDLE). Furthermore, the AS (Access Stratum, access stratum) layer of the UE may indicate the failure information to the NAS (Non-Access Stratum, non-access stratum) layer. Furthermore, the NAS layer of the UE can trigger the connection establishment process.
  • Alternative method 2 UE triggers the connection establishment process, which may be to re-establish the connection by sending a connection establishment request message;
  • UE triggers a connection recovery process, which may be: by sending a connection recovery request message to request connection recovery.
  • UE triggers a connection reestablishment process, which may be: after selecting a suitable cell from the cell selection process, the UE sends a connection reestablishment request message to implement connection reestablishment.
  • the processing method of the UE for the beam failure may include:
  • the beam recovery process includes any of the following:
  • a specific downlink beam meeting the measurement threshold is selected, and corresponding uplink transmission resources are selected according to the specific downlink beam for uplink signal transmission.
  • the UE triggers a random access process, selects a specific downlink beam SSB-1 that meets the threshold value, and selects the PRACH-1 resource associated with the SSB-1 to send a random access request.
  • the UE sends its identification information to the network side.
  • the C-RNTI MAC CE is sent to the network side in Msg3 or MsgA.
  • the beam identified by the SSB-1 is used as its serving beam.
  • one or more items of the beam recovery configuration information may be provided to the UE in at least one of the following ways:
  • the beam recovery configuration is sent to the UE through a protocol agreement.
  • the situation that the configuration of the beam recovery is stipulated through the agreement includes at least one of the following:
  • the random access priority configuration in the beam recovery configuration is stipulated through the agreement.
  • the access priority configuration involves a power ramp value, and/or a backoff time scaling factor value for retransmission of a random access request.
  • all contention-based random access request resources of the BWP or cell where the SDT process is located are multiplexed as beam recovery random access request resources.
  • the BWP where the SDT process is located or the measurement threshold value of the downlink signal selection corresponding to the random access request resource of the contention-based random access process of the cell is multiplexed as the measurement threshold of the selected candidate beam in the beam restoration process value.
  • the resources of the network feedback information for beam restoration are:
  • the PDCCH of search space-1 is used for data scheduling in the subsequent data transmission phase.
  • search space-0 search space-0
  • control set CORESET-0
  • the UE adopts any one of the above alternatives 1 to 4, specifically, the connection between the UE and the base station may be re-acquired through the process of connection establishment or connection re-establishment.
  • the beam recovery failure here may exemplarily include: the random access procedure corresponding to the beam recovery reaches the maximum number of times of transmission.
  • the UE may report the failure information of the detection result of the connection failure detection to the network side. For example, the UE only reports failure information, but not success information, reducing unnecessary reporting. If the network side does not receive any information about the connection detection result, it defaults that the connection failure detection of the UE's SDT process does not find a failed connection. If the failure information is received, it is considered that a failed connection is found in the connection failure detection of the SDT process of the UE. Of course, in other cases, the failure detection result may also include: the success information of the detection result that detects that the connection has not failed (that is, the connection is successful).
  • the failure message includes at least one of the following:
  • connection failure type indication is used to indicate the physical layer out-of-synchronization, the MAC layer random access failure, the RLC layer failure to reach the maximum number of retransmissions, or the beam failure that lead to the connection failure.
  • SDT process indication at least for indicating whether the detected connection failure occurs during the SDT process
  • the SDT process type indicates, for example, the SDT process type may include: an SDT process occurring in four-step random access, an SDT process occurring in two-step random access, or an SDT process performed based on CG-PUSCH resources.
  • the service instruction information includes at least one of the following:
  • the radio bearer identifier may be a data bearer identifier (Date Radio Bearer, DRB).
  • Service flow identification for example, QoS flow-1
  • Session ID for example, PDU Session-1;
  • Logical channel identifier for example, LCH-1.
  • connection failure detection device which includes:
  • the detection module 510 is configured to perform connection failure detection for the small data transmission SDT process.
  • the detection module 510 may be a program module, and after the program module is executed by the processor, it can perform connection failure detection for the SDT process.
  • the detection module 510 may be a combination of hardware and software; the combination of hardware and software includes but is not limited to: a programmable circuit; the programmable circuit includes but is not limited to: a field programmable circuit and/or complex programmable circuits.
  • the detection module 510 may also include a pure hardware module; the pure hardware module includes but is not limited to an application specific integrated circuit.
  • the detection module 510 is configured to perform connection failure detection for the SDT process according to the obtained failure detection configuration.
  • the device failure detection configuration includes:
  • the failure detection configuration received from the network side includes: the failure detection configuration received from the network side and carried in a system message; and/or, the failure detection configuration received from the network side and carried in a connection The failure detection configuration in the release message.
  • the obtaining module is configured to detect a connection failure for the SDT process in response to detecting a trigger event.
  • the trigger event includes at least one of the following:
  • the UE sends uplink data for the first time in the SDT process
  • the UE receives an acknowledgment indication from the network side, wherein the acknowledgment indication is an indication sent by the network side after receiving the uplink data sent for the first time in the SDT process.
  • the first sending of uplink data for performing the SDT process includes at least one of the following:
  • the UE sends uplink data for the first time through a random access message 3 of four-step random access;
  • the UE sends uplink data for the first time through a random access message A of two-step random access;
  • the UE sends uplink data for the first time on the configured authorized CG physical uplink shared channel PUSCH resource.
  • the acquisition module is configured to perform at least one of the following:
  • the contention resolution identifier of the four-step random access message 4 is received from the network side;
  • the contention resolution identifier of the two-step random access message B is received from the network side;
  • a successful indication of data transmission on the CG PUSCH resource is received from the network side.
  • the device also includes:
  • a stop module configured to stop the connection failure detection for the SDT process in response to detecting a stop event.
  • the detection of the hunger-to-stop event includes: the connection state of the UE changes; and/or, the UE receives specific indication information associated with the connection from the network side.
  • connection state of the UE transitions, including at least one of the following:
  • the UE transitions from an inactive state to an idle state
  • the UE transitions from an inactive state to a connected state
  • the UE transitions from an idle state to a connected state.
  • the acquisition module is configured to perform at least one of the following:
  • the UE receives a connection release message from the network side
  • the UE receives a connection recovery message from the network side
  • the UE receives a connection rejection message from the network side
  • the UE receives a connection establishment message from the network side.
  • the failure detection configuration includes at least one of the following:
  • Timer information indicating the timer associated with connection failure detection
  • the signal indication information is used to indicate the signal for performing the connection failure detection.
  • the timer includes at least one of the following:
  • the out-of-synchronization timer of the physical layer is used to time the out-of-synchronization of the physical layer
  • Detect beam failure timer used to time beam failure detection.
  • the counter includes at least one of the following:
  • the out-of-synchronization counter is used for physical layer out-of-synchronization indication counting
  • the synchronization counter is used for physical layer synchronization indication counting
  • a beam failure counter for counting beam failures
  • a media access control MAC layer random access counter is used to count the random access times of the MAC layer
  • the transmission times counter of the radio link control RLC layer is used for counting the transmission times of the RLC layer.
  • the signal indication information is used to indicate at least one of the following:
  • a signal of beam failure detection in the connection failure detection is a signal of beam failure detection in the connection failure detection.
  • the signal indicated by the signal indication information includes at least one of the following:
  • a downlink signal associated with the random access message A of the two-step random access
  • the downlink signal associated with the PDCCH of the scheduled data After the contention resolution identifier of the random access message B of the two-step random access is received, the downlink signal associated with the PDCCH of the scheduled data;
  • the downlink signal associated with the PDCCH that sends the transmission success indication is: indicating that data transmission is successful on the CG PUSCH;
  • a downlink signal sent by the BWP where the UE is located
  • the UE can detect the downlink signal of the cell
  • a downlink signal that can be detected by the BWP where the UE is located is located.
  • the device also includes:
  • connection module configured to reacquire a connection in response to determining that the connection fails based on the failure detection result
  • the state switching module is configured to enter an idle state in response to determining that the connection fails based on the failure detection result.
  • the device also includes:
  • the recovery module is configured to perform beam recovery in response to determining that the cause of the connection failure is beam failure based on the failure detection result.
  • the recovery module is configured to perform the beam recovery according to the beam recovery configuration.
  • the device further includes: a beam recovery configuration module; the beam recovery configuration module is configured to perform at least one of the following:
  • the beam recovery configuration is determined based on a protocol agreement.
  • the beam recovery configuration includes at least one of the following:
  • Beam recovery counter information indicating the counter used for the number of times of beam recovery
  • Beam recovery timer information indicating the timer used for beam recovery duration
  • the priority configuration is used to indicate the priority of the random access corresponding to the beam restoration, wherein, the random access configuration corresponding to the beam restoration is different for different priorities;
  • Resource configuration indicating the resources used for beam recovery
  • Threshold configuration indicating the threshold used for beam recovery.
  • the resource configuration indicates that the contention-based random access request resources of the cell where the SDT process is located or the BWP are used for beam recovery.
  • the threshold configuration indicates a threshold value used for selecting a random access request resource, and is multiplexed as the beam recovery threshold value.
  • the device also includes:
  • the feedback module is configured to receive feedback information on the beam recovery from the network side, where the feedback information indicates a result of the beam recovery.
  • the feedback module is configured to receive the feedback information on resources in the subsequent data transmission phase of the SDT process; and/or receive the information delivered by the network side during random access The feedback information carried in the message.
  • the feedback module is configured to receive the feedback information on the PDCCH resource used for scheduling data transmission in the subsequent data transmission phase of the SDT process.
  • the feedback module is configured to perform at least one of the following:
  • the device also includes:
  • connection module configured to re-acquire a connection in response to the beam recovery failure
  • the state switching module is configured to enter an idle state in response to the beam restoration failure.
  • connection module is configured to perform at least one of the following:
  • connection re-establishment is triggered based on the connection re-establishment request message.
  • the device also includes:
  • the reporting module is configured to report the connection failure detection result.
  • the failure detection result includes at least one of the following:
  • Connection failure type indication indicating the connection failure type
  • the SDT process indication is used to indicate that a connection failure is detected during the SDT process
  • SDT stage indication used to indicate the SDT stage where the connection failure occurs, wherein the SDT stage includes: the initial data sending stage and/or the subsequent data sending stage in the SDT process;
  • SDT process type indication used for the type of SDT process
  • Service indication used to indicate the service that triggers the SDT process.
  • the service indication includes at least one of the following:
  • the service flow identifier of the service
  • the session identifier of the service
  • the logical channel identifier of the service is the logical channel identifier of the service.
  • an embodiment of the present disclosure provides an information processing device, and the device includes:
  • the sending module 610 is configured to send the failure detection configuration, wherein the failure detection configuration is used for the UE to detect the connection failure for the SDT process.
  • the sending module 610 may be a program module. After the program module is executed by the processor, it can send the SDT connection failure detection to the UE.
  • the detection module can be a combination of hardware and software; the combination of hardware and software includes, but is not limited to: a programmable circuit; the programmable circuit includes, but is not limited to: field programmable circuits and/or complex programmable circuit.
  • the detection module may also include a pure hardware module; the pure hardware module includes but is not limited to an application specific integrated circuit.
  • the sending module 610 is configured to send a system message carrying the failure detection configuration; and/or, send a connection release message carrying the failure detection configuration.
  • the receiving module is further configured to receive specific indication information associated with the connection; wherein the specific indication information is used to trigger the UE to stop connection failure detection for the SDT process.
  • the specific indication information includes at least one of the following:
  • the failure detection configuration includes at least one of the following:
  • Timer information indicating the timer associated with connection failure detection
  • the signal indication information is used to indicate the signal for performing the connection failure detection.
  • the timer includes at least one of the following:
  • the out-of-synchronization timer of the physical layer is used to time the out-of-synchronization of the physical layer
  • Detect beam failure timer used to time beam failure detection.
  • the counter includes at least one of the following:
  • the out-of-synchronization counter is used for physical layer out-of-synchronization indication counting
  • the synchronization counter is used for physical layer synchronization indication counting
  • a beam failure counter for counting beam failures
  • a media access control MAC layer random access counter is used to count the random access times of the MAC layer
  • the transmission times counter of the radio link control RLC layer is used for counting the transmission times of the RLC layer.
  • the signal indication information is used to indicate at least one of the following:
  • a signal of beam failure detection in the connection failure detection is a signal of beam failure detection in the connection failure detection.
  • the signal indication information indicates a signal, including at least one of the following:
  • the downlink signal associated with the PDCCH channel for scheduling data transmission After successfully receiving the contention resolution identifier of the random access message 4 of the four-step random access, the downlink signal associated with the PDCCH channel for scheduling data transmission;
  • a downlink signal associated with the random access message A of the two-step random access
  • the downlink signal associated with the PDCCH of the scheduled data After the contention resolution identifier of the random access message B of the two-step random access is received, the downlink signal associated with the PDCCH of the scheduled data;
  • the downlink signal associated with the PDCCH that sends the transmission success indication is: indicating that data transmission is successful on the CG PUSCH;
  • a downlink signal sent by the cell where the UE is located
  • a downlink signal sent by the BWP where the UE is located
  • the UE can detect the downlink signal of the cell
  • a downlink signal that can be detected by the BWP where the UE is located is located.
  • the sending module 610 is further configured to send a beam recovery configuration, where the beam recovery configuration is used for the UE to detect that the cause of the connection failure during the SDT process is a beam failure Beam recovery is performed at the time.
  • the sending module 610 is configured to perform at least one of the following:
  • the beam recovery configuration includes at least one of the following:
  • Beam recovery counter information indicating the counter used for the number of times of beam recovery
  • Beam recovery timer information indicating the timer used for beam recovery duration
  • the priority configuration is used to indicate the priority of the random access corresponding to the beam restoration, wherein, the random access configuration corresponding to the beam restoration is different for different priorities;
  • Resource configuration indicating the resources used for beam recovery
  • Threshold configuration indicating the threshold used for beam recovery.
  • the resource configuration indicates that the contention-based random access request resources of the cell where the SDT process is located or the BWP are used for beam recovery.
  • the threshold configuration indicates a threshold value used for selecting a random access request resource, and is multiplexed as the beam recovery threshold value.
  • the sending module 610 is configured to send the feedback information of the beam restoration according to the beam restoration result of the UE.
  • the sending module 610 is configured to send the feedback information on resources in the subsequent data sending phase of the SDT process; and/or send the feedback information carrying the feedback information in random access news.
  • the sending module 610 is further configured to send the feedback information on the PDCCH resource used for scheduling data transmission in the subsequent data sending phase of the SDT process.
  • the sending module 610 is configured to perform at least one of the following:
  • the device also includes:
  • the receiving module is configured to receive a connection failure detection result.
  • the failure detection result includes at least one of the following:
  • Connection failure type indication indicating the connection failure type
  • the SDT process indication is used to indicate that a connection failure is detected during the SDT process
  • SDT stage indication used to indicate the SDT stage where the connection failure occurs, wherein the SDT stage includes: the initial data sending stage and/or the subsequent data sending stage in the SDT process;
  • SDT process type indication used for the type of SDT process
  • Service indication used to indicate the service that triggers the SDT process.
  • the service indication includes at least one of the following:
  • the service flow identifier of the service
  • the logical channel identifier of the service is the logical channel identifier of the service.
  • An embodiment of the present disclosure provides a communication device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the connection failure detection method provided by any of the aforementioned technical solutions.
  • the processor may include various types of storage media, which are non-transitory computer storage media, and can continue to memorize and store information thereon after the communication device is powered off.
  • the communication device includes: a UE or a base station.
  • the processor may be connected to the memory through a bus, etc., for reading the executable program stored on the memory, for example, at least one of the methods shown in FIG. 2 , FIG. 4 to FIG. 8 .
  • Fig. 11 is a block diagram of a UE 800 according to an exemplary embodiment.
  • UE 800 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, etc.
  • UE 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and communication component 816 .
  • Processing component 802 generally controls the overall operations of UE 800, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802 .
  • the memory 804 is configured to store various types of data to support operations at the UE 800 . Examples of such data include instructions for any application or method operating on UE800, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 806 provides power to various components of the UE 800 .
  • Power components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for UE 800 .
  • the multimedia component 808 includes a screen providing an output interface between the UE 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the UE800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 804 or sent via communication component 816 .
  • the audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor component 814 includes one or more sensors for providing various aspects of status assessment for UE 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and the keypad of the UE800, the sensor component 814 can also detect the position change of the UE800 or a component of the UE800, and the user and Presence or absence of UE800 contact, UE800 orientation or acceleration/deceleration and temperature change of UE800.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communications between UE 800 and other devices.
  • the UE800 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • UE 800 may be powered by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gates Arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic implementations for performing the methods described above.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gates Arrays
  • controllers microcontrollers, microprocessors or other electronic implementations for performing the methods described above.
  • a non-transitory computer-readable storage medium including instructions, such as a memory 804 including instructions.
  • the above instructions can be executed by the processor 820 of the UE 800 to complete any of the above connection failure detection methods, at least At least one of the methods shown in FIG. 6 to FIG. 8 .
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932 for storing instructions executable by the processing component 922, such as application programs.
  • the application program stored in memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions, so as to perform any of the aforementioned methods applied to the base station, for example, at least one of the methods shown in FIG. 6 to FIG. 8 .
  • Base station 900 may also include a power component 926 configured to perform power management of base station 900, a wired or wireless network interface 950 configured to connect base station 900 to a network, and an input-output (I/O) interface 958.
  • the base station 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or similar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)
  • Computer And Data Communications (AREA)

Abstract

本公开实施例提供一种连接失败检测方法及装置、通信设备及存储介质。由用户设备UE执行的所述连接失败检测方法,可包括:针对小数据传输SDT过程进行连接失败检测。

Description

连接失败检测方法及装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种连接失败检测方法及装置、通信设备及存储介质。
背景技术
连接失败检测是一种检测UE与基站之间无线链路之间质量的方式。在连接态下,UE会根据失败检测配置进行连接失败检测。若检测到连接失败,就通过连接恢复、连接重建或者连接建立的方式,使得UE重新与基站建立连接。
小数据传输(Small Data Transmission,SDT)是UE处于非激活态和/或空闲态的情况下,通过随机接入和/或专属上行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源,也即,CG(Configure Grant);或,预先分配上行资源(Preallocated Uplink Resource,PUR)执行SDT过程,即在SDT上传输数据。在SDT过程中,终端会恢复(Signal Radio Bearer,SRB)1的数据传输,同时终端也会根据网络配置指示恢复信令无线承载(Signal Radio Bearer,SRB)2和/或指定的数据无线承载(Data Radio Bearer,DRB)DRB的数据传输。但是在一些情况下,SDT过程的小数据包传输可能会存在失败率高的问题,然而目前并没有针对SDT过程的连接失败检测技术。
发明内容
本公开实施例提供一种连接失败检测方法及装置、通信设备及存储介质。
本公开实施例第一方面提供一种连接失败检测方法,由用户设备UE执行,所述方法包括:
针对小数据传输SDT过程进行连接失败检测。
本公开实施例第二方面提供一种信息处理方法,其中,由基站执行,所述方法包括:
发送失败检测配置,其中,所述失败检测配置,用于供UE针对SDT过程的连接失败检测。
本公开实施例第三方面提供一种连接失败检测装置,由用户设备UE执行,所述装置包括:
检测模块,被配置为针对小数据传输SDT过程进行连接失败检测。
本公开实施例第四方面提供一种信息处理装置,所述装置包括:
发送模块,被配置为发送失败检测配置,其中,所述失败检测配置,用于供UE针对SDT过程的连接失败检测。
本公开实施例第五方面提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如前述第一方 面或第二方面提供的连接失败检测方法。
本公开实施例第六方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现前述的第一方面或第二方面提供的连接失败检测方法。
本公开实施例提供的技术方案,即便UE处于空闲态或者非激活态的情况下,若需要进行SDT过程,则会针对SDT过程中的连接进行连接失败检测,如此,一方面可以知晓在SDT过程中小数据包传输失败的原因,另一方面可以在检测到连接失败时,可及时调整SDT过程的小数据包传输,提升小数据包的传输成功率和传输质量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例实施例,并与说明书一起用于解释本公开实施例实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种连接失败检测方法的流程示意图;
图3是根据一示例性实施例示出的SDT过程是时序示意图;
图4是根据一示例性实施例示出的一种连接失败检测方法的流程示意图;
图5是根据一示例性实施例示出的一种连接失败检测方法的流程示意图;
图6是根据一示例性实施例示出的一种连接失败检测方法的流程示意图;
图7是根据一示例性实施例示出的一种连接失败检测方法的流程示意图;
图8是根据一示例性实施例示出的一种连接失败检测方法的流程示意图;
图9是根据一示例性实施例示出的一种连接失败检测装置的结构示意图;
图10是根据一示例性实施例示出的一种连接失败检测装置的结构示意图;
图11是根据一示例性实施例示出的一种UE的结构示意图;
图12是根据一示例性实施例示出的一种基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形 式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个UE11以及若干个基站12。
其中,UE11可以是指向用户提供语音和/或数据连通性的设备。UE11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,UE11可以是物联网UE,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网UE的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程UE(remote terminal)、接入UE(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户UE(user equipment,UE)。或者,UE11也可以是无人飞行器的设备。或者,UE11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,UE11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和UE11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更 下一代移动通信网络技术标准的无线空口。
在一些实施例中,UE11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
如图2所示,本公开实施例提供一种连接失败检测方法,其中,由用户设备UE执行,所述方法包括:
S110:针对小数据传输SDT过程进行连接失败检测。
本公开实施例提供的连接失败检测方法,可用于UE执行。在本公开实施例中,是针对空闲态UE或者非激活态UE进行SDT过程中的连接失败检测。此处的,SDT过程中的连接失败检测,可以理解为处于空闲态或者非激活态的UE进行无线传输信道的检测,根据检测信道质量从而确定在SDT过程中连接是否失败。
此处的连接失败检测是针对SDT过程中的连接进行检测,包括:针对SDT过程使用的波束进行检测,和/或,针对SDT过程使用的信道进行检测。该信道包括但不限于:随机接入信道(Random Access Channel,RACH)和/或专属PUSCH(或称,CG-PUSCH)等。
在本公开实施例中,UE会在SDT过程中也会进行连接失败检测,如此,可以确定出SDT中小数据包传输失败的原因是否是连接失败,或者,在SDT过程中是否需要及时调整传输,例如,在时域上延传输。
在本公开实施例中,所述SDT过程的小数据传输可在以下任意步骤:
初始接入的四步随机接入过程中Msg3携带小数据包;
初始接入的两步随机接入过程中MsgA携带小数据包;
网络配置的专属上行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源上发送小数据包。
在本公开实施例中,此处的小数据包指的是:SDT过程中上报的数据包。
如图3所示,SDT过程可包括:初始数据发送阶段和后续数据发送阶段。
初始数据发送阶段:从SDT初始数据发送开始,到接收到网络侧对于该初始数据的确认信息,其中,该确认信息对应于不同SDT过程有不同。
示例性地,在四步随机接入信道的SDT过程中,该确认信息可为成功接收到Msg4的竞争解决标识;在两步随机接入信道SDT过程中,该确认信息可为成功接收到MsgB的竞争解决标识。在CG SDT过程中,该确认信息可为网络侧指示数据成功接收的指示。该指示可为物理层(Downlink Control Information,DCI)指示的确认符(Acknowledgement character,ACK)。
如图4所示,本公开实施例提供一种连接失败检测方法,包括:
S111:根据获取的失败检测配置,针对所述SDT过程进行连接失败检测。
在本公开实施例中,UE是根据失败检测配置进行的SDT过程的连接失败检测。
在一些实施中,该失败连接配置还可以用于UE在连接态下进行失败连接检测。即UE在非连接态和连接态可以共用相同的失败检测配置。该非连接态包括:非激活态和/或空闲态。
在另一些实施例中,该失败检测配置不同于UE在连接态下的失败检测配置。示例性地,两种失败检测配置限定的触发连接失败检测的触发事件不同,和/或,两种失败检测配置限定的连接失败检测的频率不同。示例性地,在非连接态的失败检测配置指示的检测频率,低于在连接态的失败检测配置指示的检测频率。
在还有一些实施例中,所述失败检测配置包括:
从网络侧接收的失败检测配置;
和/或,
协议约定的所述失败检测配置。
在本公开实施例中,该失败检测配置可以是网络侧配置且发送的,也可以是预先配置在协议中,如此UE通过读取协议获取该失败检测配置。
此处的网络侧可至少包括:接入网(Radio Access Network,RAN)。示例性地,从RAN的基站接收所述失败连接检测。
总之UE获取失败检测配置的方式有很多种,不局限于以上任意一种。
在一些实施例中,所述从网络侧接收的失败检测配置包括:
从网络侧接收的且携带在系统消息中的所述失败检测配置;
和/或,
从网络侧接收的且携带在连接释放消息中的所述失败检测配置。
所述失败检测配置可以携带在系统消息,示例性的,所述失败检测配置可以携带在主消息块(Master Information Block,MIB)、系统消息块(System Information Block,SIB)x,其中x可为任意正整数。示例性地,x的取值可为1、2、3或4等取值。
如图4所示,本公开实施例提供一种连接失败检测方法,包括:
S111:响应于检测到触发事件,针对SDT过程进行连接失败检测。
在本公开实施例中,只有检测到触发事件,才会启动针对SDT过程的连接失败检测,而在其他时刻不用进行针对SDT过程的连接失败检测,从而减少不必要的检测,从而减少不必要检测导致的功耗。
在一些实施例中,所述触发事件,包括以下至少之一:
启动所述SDT过程;
所述UE进行所述SDT过程的首次发送上行数据;
所述UE从网络侧接收到确认指示,其中,所述确认指示为:所述网络侧接收到所述SDT过程的首次发送的上行数据后发送的指示。
若UE在非激活态或者空闲态下启动了SDT过程,即检测到SDT过程的而启动,则认为检测到触发事件。
在一些实施例中,为了减少不必要的检测,不是UE启动了SDT过程就认为检测到触发事件,而是在UE进行了SDT过程时首次上行数据发送或者接收到首次发送的上行数据的确认指示。该确认指示用于指示网络侧接收到SDT过程的首次上行数据发送。在一些实施例中,所述进行所述SDT过程的首次发送上行数据,包括以下至少之一:
所述UE通过四步随机接入的随机接入消息3首次发送上行数据;
所述UE通过两步随机接入的随机接入消息A首次发送上行数据;
所述UE在配置授权CG物理上行共享信道PUSCH资源上首次发送上行数据。
在一些实施例中,所述UE从网络侧接收到确认指示,包括:
从网络侧接收到四步随机接入消息4的竞争解决标识;
从网络侧接收到两步随机接入消息B的竞争解决标识;
从网络侧接收到在CG PUSCH资源上的数据发送的成功指示。
如图5所示,本公开实施例提供一种连接失败检测方法,包括:
S112:响应于检测到停止事件,停止针对SDT过程的连接失败检测。
在一些实施例中,SDT过程的连接失败检测可以在执行预设时长之后自动停止,或者,执行预设次数的检测之后自动停止。
在本公开实施例中,设置有停止事件,若检测到停止事件就停止针对SDT过程的连接失败检测。
在一些实施例中,所述检测到停止事件,包括:
所述UE的状态发生转换;
和/或,
所述UE从网络侧接收到与连接关联的特定指示信息。
在本公开实施例中UE的状态发生转换可包括:UE与网络侧之间的连接状态发生转换。
在本公开实施例中,UE从网络侧接收到与连接关联的特定指示信息。此处的与连接关联的特定指示信息,可包括:指示建立连接、指示释放连接、指示连接恢复、指示连接切换中一种或多种与连接关联的指示信息。
在一些实施例中,所述UE的状态发生转换,包括以下至少之一:
所述UE从非激活态转换到空闲态;
所述UE从非激活态转换到连接态;
所述UE从空闲态转换到连接态。
若UE从非激活态切换到空闲态,则UE不仅释放了与基站之间的连接,且释放了上下文,而且空闲态是被核心网知晓的连接已释放的一种状态,而非激活态是UE与基站之间的连接已释放,但未释放上下文,且核心网不知晓UE已释放连接的状态。
若UE从非激活态切换到空闲态,则说明UE当前待发送的数据减少或者数据量减小,则需要进行SDT过程的概率减小,因此可以停止SDT过程的连接失败检测,从而减少不必要的检测。
在一些实施例中,若UE退出空闲态或非激活态,转换到连接态。在连接态下,UE可以基于RRC连接传输数据,且UE在连接态下可能有针对连接态的专属连接失败检测,此时,则认为检测到SDT过程中连接失败检测。
在一些实施例中,所述UE从网络侧接收到与连接关联的特定指示信息,包括以下至少之一:
所述UE从所述网络侧接收到连接释放消息;
所述UE从所述网络侧接收到连接恢复消息;
所述UE从所述网络侧接收到连接拒绝消息;
所述UE从所述网络侧接收到连接建立消息。
该连接释放消息,可以用于触发UE进入到空闲态。
连接恢复消息,可以用于非激活态UE进入到连接态。
连接拒绝消息,可为网络侧下发针对连接请求返回的拒绝连接建立请求的消息。
连接建立消息,可为网络侧下发的指示UE通过建立连接,进入到连接态的消息。
总之,在本公开实施例中,所述特定指示信息可为各种与连接关联的各种RRC消息,如此,不用设置专门的消息来指示SDT过程中连接失败检测的停止,而是利用相关技术中已有消息的收发来告知SDT过程中连接失败检测的停止,从而具有与相关技术兼容性高及实现简便的特点。
在一些实施例中,所述失败检测配置,包括以下至少之一:
计时器信息,指示与连接失败检测关联的计时器;
计数器信息,指示与所述连接失败检测关联的计数器;
信号指示信息,用于指示进行所述连接失败检测的信号。
在本公开实施例中,该计时器信息可为计时器计时相关的信息,例如,该计时器信息指示的是计时器的计时时长,计时器的启动时刻和/或终止时刻等信息。
计数器信息,可为指示计数器计数相关的任何信息,例如,该计数器信息可包括:最大计数值。
在一些实施例中,信号指示信息指示的可是:在进行SDT过程中连接失败检测时需要检测的信号,该信号可为各种物理层的参考信号。
在一些实施例中,所述计时器包括以下至少之一:
物理层的失步计时器,用于对出现物理层失步计时;
波束失败的计时器,用于对波束失败检测进行计时。
具体的所述计时器有不同各种类型的计时器,或者针对不同类型连接失败的计时器。
示例性地,物理层失步计时器,主要是对物理层失步现象进行计数。示例性地,物理层的同步可以是就网络侧下发的同步信号建立的同步,此处的物理层失步,即物理层没有基于同步信号建立比较准确的同步。
在本公开实施例中,物理层失败计时器,对物理层失败的持续时长进行计时。而波束失败的计时器,可以对波束失败检测进行计时。
在一些实施例中,所述计数器包括以下至少之一:
失步计数器,用于物理层失步指示计数;
同步计数器,用于物理层同步指示计数;
波束失败计数器,用于对波束失败计数;
MAC层随机接入次数计数器,用于进行MAC层的随机接入次数计数;
RLC层的传输次数计数器,用于进行RLC层的传输次数计数。
若检测到依次物理层失败,则会生成一个物理层失步指示,在本公开实施中,该失步计数器可以用于物理层失败指示进行计数。
同步计数器,可以用于在检测到物理层同步生成的物理层同步指示进行计数。
在另一些实施例中,UE在进行随机接入时,会发送随机接入请求,在发生一次随机接入失败之后,会进行下一次随机接入请求,如此,在本公开实施例中,MAC层随机接入次数计数器,会用于MAC层的随机接入次数的计数。在另一个实施例中个,RLC层配置有传输次数计数器,可以用于UE在一次随机接入过程中随机接入请求的传输次数进行计数,若计数达到预设值还未随机接入成功,则可认为随机接入失败。
在一些实施例中,所述信号指示信息,用于指示以下至少之一:
所述连接失败检测中物理层失步检测的信号;
所述连接失败检测中波束失败检测的信号。
信号指示信息指示的信号包括:进行物理层失步检测的信号和/或波束失败检测的信号。
物理层失步检测的信号和波束失败检测的信号可以相同或者不同。
示例性地,物理层失步检测的信号和波束失败检测的信号,均可以是同步信号块(Synchronization Signal/Physical Broadcast Channel Block,SSB)或者信道状态信息(Channel State Information-Reference Signal,CSI-RS)。
以上仅是对物理层失步检测的信号和/或波束失败检测的信号的举例说明。
在一些实施例中,所述信号指示信息指示的信号,包括以下至少之一:
与四步随机接入的物理下行随机接入信道PRACH资源关联的下行信号;
与调度所述四步随机接入的竞争解决标识的物理下行控制信道PDCCH关联的下行信号;
在成功接收所述四步随机接入的随机接入消息4的竞争解决标识后,与调度数据传输的PDCCH信道关联的下行信号;
与两步随机接入的随机接入消息A关联的下行信号;
在两步随机接入的随机接入消息B的竞争解决标识接收到后,与调度数据的PDCCH关联的下行信号;
与CG PUSCH资源关联的下行信号;
与发送传输成功指示的PDCCH关联的下行信号;其中,所述传输成功指示为:指示在CG PUSCH上数据发送成功;
在接收到所述传输成功指示之后,与调度数据传输的PDCCH关联的下行信号;
所述UE所在小区发送的下行信号;
所述UE所在BWP发送的下行信号;
所述UE能检测到小区的下行信号;
所述UE所在BWP能够检测到的下行信号。
在本公开实施例中,此处的下行信号均可为物理层信号,示例性地,此处的下行信号可为物理层的参考信号。
在本公开实施例中,与xxx关联的下行信号可包括:与xxx预先建立有对应关系的下行信号和/或与xxx准共址的下行信号。此处的xxx泛指前述任意一个技术方案中的PDCCH、PUSCH和/或PRACH资源等。
基站预先为随机接入分配有随机接入资源,这些随机接入资源对应的信道称之为随机接入信道。
在本公开实施例中,这些随机接入资源关联的下行信号,可为前述进行物理层失步检测和/或波束失败检测的信号。
示例性地,随机接入信道包含4个随机接入资源,分别是随机接入资源1、随机接入资源2、随机资源3和随机资源4,其中,这4个随机接入资源可以关联到不同的SSB,例如,随机接入资源1关联SSB1、随机接入资源2关联SSB2、随机接入资源3关联SSB3及随机接入资源4关联SSB4。若,当前SDT过程是在随机接入资源3进行的,则所述信号指示信息所指示的下行信号可为:与随机接入资源3关联的SSB3。
在一个实施例中,在成功接收到四步随机接入的随机接入过程中,随机接入消息4的竞争解决标识的传输资源是需要被PDCCH调度的,竞争解决标识是在被PDCCH调度的资源上传输的。在本公开实施例中,该进行物理层失步检测的信号和/或波束失败检测的信号均可为与调度传输竞争解决标识的PDCCH关联的下行信号。
在一些实施例中,在四步随机接入的随机接入消息4的竞争解决标识被接收到后,会进行物理共享信道(Physical Shared Channel,PSCH)的调度。这里的PSCH可以包括PDSCH和/或PUSCH。而调度PSCH的信道一般可为PDCCH。在本公开实施例中,信号指示信息的信号可为与PDCCH关联的下行信号。此处的与调度数据传输的PDCCH关联的下行信号可包括:与调度数据传输的前m个PDCCH关联的下行信号。此处的m可为任意正整数。
若进行当前SDT过程的随机接入为两步随机接入,则上述信号指示信息指示的信号可以是:与随 机接入消息A和/或与随机接入消息B关联的下行信号。若SDT过程使用的是CG PUSCH资源,则该信号指示信息指示的进行物理层失步检测的信号和/或波束失败检测的信号可为:与CG PUSCH资源关联的下行信号。
SDT过程分为初始数据发送阶段和后续数据发送阶段,在本公开实施例中,则在初始数据发送阶段首次上行数据发送成功之后,网络侧会发送传输成功指示,如此,UE将接收到传输成功指示,此时信号指示信息指示的信号可为与传输成功指示的PDCCH关联的下行信号。
当然在另一些实施例中,该信号指示信息指示的用于物理层失步检测的信号和/或用于波束失败检测的信号,可以是在接收到传输成功指示之后的,与用于调度数据传输的PDCCH关联的下行信号。此处的与调度数据传输的PDCCH关联的下行信号可包括:与调度数据传输的前n个PDCCH关联的下行信号。此处的n可为任意正整数。
UE所在小区可为UE的驻留小区,在一些实施例中,所述信号指示信息指示的信号可为:驻留小区内小区发送的所有下行信号。
若一个小区分为多个BWP,UE的激活BWP可能仅为其中的部分,或者,UE仅使用其中部分BWP进行信号检测和/或数据传输。此处的部分BWP可包括:一个BWP或者多个BWP。
小区在发送下行信号时可能是基于波束发送的,如此,UE在小区某一个位置时,可能仅仅能够检测到该小区其所在位置的下行信号,而不是能检测到其他地方的下行信号,在本公开实施例中,前述下行信号可为小区级别的任意参考信号。对应地,所述信号指示信息指示的信号可为:UE能够检测到小区的所有下行信号。
若UE是有其可使用的BWP,则UE所在BWP可为:UE的激活BWP或者UE能够使用的所有BWP,该UE可以在BWP能够检测的下行信号。
在本公开实施例中,通过信号指示信息在失败检测配置中预先实现物理层失步检测的信号和/或波束失败检测的信号的配置,从而在进行SDT过程中直接就可以根据失败检测配置及时进行下行信号检测,无需网络侧再临时调度。
SDT过程中连接失败的类型有多种,示例性地,所述SDT过程中连接失败的类型可包括以下的一种或多种:
物理层失步导致的连接失败;
MAC层随机接入失败导致的连接失败;
RLC层达到最大重传次数导致的连接失败;
波束失败等。
在一些实施例中,所述方法还包括:
响应于基于所述失败检测结果确定出连接失败,重新获取连接;
或者,
响应于基于所述失败检测结果确定出连接失败,进入空闲态。
此处可为任意一种连接失败的连接失败类型,都可以实现重新获取连接的过程或者进入到空闲态。
示例性地,重新获取连接的过程可包括以下至少之一:连接建立过程、连接重建过程和/或波束恢复过程。
如此,UE在检测到连接失败时会进行连接重获取,并基于重获取的连接进行SDT过程中小数据包的传输。
通过重新获取连接,则基于重新获取的连接可以将数据及时传输出去。
若SDT过程待传输的数据紧急程度不高或者需要传输的数据量很少或者业务优先级低于阈值,当前检测到连接失败,说明无线环境不好,就可以暂缓传输。在暂缓传输时,为了进一步节省UE功耗,可以UE可以进入到功耗更低的空闲态。
在一些实施例中,所述方法还包括:
响应于基于所述失败检测结果确定连接失败的原因为波束失败,执行波束恢复。
不同的连接失败类型可以用不同的方式,实现连接重新获取。
在本公开实施例中,波束失败可能仅是UE在小区内的移动导致的,实际上可能小区的无线信道(即连接)本身并不差,此时可能仅仅通过波束恢复就可以使得UE重新获得连接。
故在一些实施例中,若检测到波束失败,则执行波束恢复,若是波束失败导致的连接失败,通过波束恢复这种流程就可以快速简便的实现波束恢复,而无需通过基站的多次消息来实现连接的重新获取。
在另一些实施例中,若检测到波束失败,也可以不执行波束恢复,而是直接通过连接建立或者连接重建立的方式来重新获取连接。
波束恢复对应有波束恢复配置,具体如何执行波束恢复,可以参照波束恢复配置执行。
示例性地,波束恢复的过程可包括:波束恢复请求的发送和网络侧返回的波束恢复请求的反馈。
在一些实施例中,所述方法还包括以下至少之一:
接收系统消息携带的所述波束恢复配置;
接收连接释放消息携带的所述波束恢复配置;
基于协议约定确定所述波束恢复配置。
在一些实施例中,波束恢复配置可以携带在连接重配置消息中。示例性地,用于连接态的波束恢复配置可以携带在连接重配置消息中,而针对非连接态的波束恢复配置可以携带在系统消息、连接释放消息中。或者,针对非连接态的波束恢复配置,可能应用概率较低或者需要动态调试的概率较低,此时,该波束恢复配置可以直接写入通信标准协议,如此,UE可以通过查询协议确定该波束恢复配置。
在一些实施例中,所述波束恢复配置,包括以下至少之一:
波束恢复计数器信息,指示用于波束恢复次数的计数器;
波束恢复计时器信息,指示用于波束恢复时长进行计时器;
优先级配置,用于指示波束恢复对应的随机接入的优先级,其中,不同所述优先级,对应的波束恢复时的随机接入配置不同;
资源配置,指示波束恢复所用的资源;
门限配置,指示波束恢复所用的门限值。
波束恢复配置可以包括一个或多个计时器的计时值、一个或多个计数器的计数值、还可以是一个或多个用于波束恢复的门限值。
示例性地,波束恢复计数器信息指示的对波束恢复次数进行计数的计数器,示例性地,计数器信息可至少包括:计数器的最大计数值。
又示例性地,波束恢复计时器信息可用于指示进行波束恢复的持续时长进行计时,示例性地波束恢复计时器信息可指示计时器的最大时长。
所述资源配置,可指示波束恢复所使用的任意资源,示例性地,波束恢复所用资源可以为波束恢复的随机接入资源。在本公开实施例中,该随机接入资源包括:时频域资源和/或序列资源,此处的序列资源可为波束恢复的随机接入过程中所使用的随机接入前导码等。
门限配置,可以用于判断当前是否完成了波束恢复,例如,通过携带有SSB的波束测量进行波束恢复,若检测到特定SSB的测量值超过门限配置指示的门限值,则可认为波束恢复成功。
SSB的测量值包括但不限于:参考信号接收功率(Reference Signal Received Power,RSPR)和/或参考信号接收质量(Reference Signal Received Quality,RSPQ)。
在一些实施例中,该波束恢复配置还包括优先级配置,该优先级配置可复用随机接入的优先级配置。不同优先级对应的随机接入配置不同。此处的随机接入配置可包括以下至少之一:
功率爬升配置,例如,进行随机接入请求重发时按照功率爬升配置提升随机接入请求的发射功率;
随机接入请求重复的回退时间缩放因子。随机接入请求发送失败时,网络侧指示UE一个回退值(Backoff Indicator,BI),而具体的回退时间不仅取决于BI,同时还取决于回退时间缩放因子。此处的回退时间缩放因子与BI的乘积可为回退时间的具体取值。
可以理解地,所述资源配置,指示SDT过程所在小区或BWP的基于竞争的随机接入请求资源用于波束恢复。
可以理解地,所述门限配置,指示用于选择随机接入请求资源的门限值,复用为所述波束恢复的门限值。
在本公开实施例中,资源配置和门限配置都是复用随机接入请求过程中所使用过的资源和门限值,一方面实现了网络配置的简化,另一方面提升了资源的有效利用率,且减少了重复的资源配置和/或门限配置的下发。
在一些实施例中,所述方法还包括:
接收网络侧对所述波束恢复的反馈信息,其中,所述反馈信息,指示所述波束恢复的结果。
例如,波束恢复成功则会收到指示恢复成功的指示,若波束恢复失败则会收到指示恢复失败的 指示。
总之,在本公开实施例中,可以接收到网络侧指示的波束恢复成功与否的反馈信息。
在一些实施例中,若反馈信息指示成功,则可以停止波束恢复的过程,若指示波束恢复失败,可以直接停止波束恢复,而通过连接建立和/或连接重建立的方式重新获取连接,或者,是确定波束失败次数是否达到最大次数,如果达到最大次数,则停止波束恢复转而进行连接建立或者连接重建立,否则继续执行下一次波束恢复。
在一些实施例中,所述接收网络侧对所述波束恢复的反馈信息,包括:
在所述SDT过程的后续数据发送阶段的资源上接收所述反馈信息;
和/或,
接收所述网络侧在随机接入中下发的消息携带的所述反馈信息。
反馈信息的接收可以与SDT过程相结合。例如,在在SDT过程的后续数据发送阶段的资源上接收反馈信息,或者,接收在随机接入的任意消息中携带的反馈信息。
示例性地,所述在所述SDT过程的后续数据发送阶段的资源上接收所述反馈信息,包括:在所述SDT过程的后续数据发送阶段的用于调度数据传输的PDCCH资源上接收所述反馈信息。
可以理解地,所述接收所述网络侧在随机接入中下发的消息携带的所述反馈信息,包括以下至少之一:
接收所述网络侧在四步随机接入中下发的随机接入消息2携带的所述反馈信息;
接收所述网络侧在四步随机接入中下发的随机接入消息4携带的所述反馈信息;
接收所述网络侧在四步随机接入中下发的随机接入消息B携带的所述反馈信息。
在一些实施例中,若波束恢复失败,还可以通过连接建立和/或连接重建立的过程重新获取连接。示例性地,所述方法还包括:响应所述波束恢复失败,重新获取连接;或者,响应所述波束恢复失败,进入空闲态。
如果波束恢复失败,执行重新获取连接的操作,通过重新获取的连接实现数据的及时传输。
若当前SDT过程中要传输的数据紧急程度低(例如,允许的延时大于高紧急程度对应的延时阈值),或者业务优先级低于业务优先级阈值等,则说明SDT过程中要传输的数据不着急传输,则UE可以进入到空闲态,以进一步节省UE的功耗。
重新获取连接的方式有多种,示例性地,所述重新获取连接,包括以下至少之一:
基于非接入层NAS消息触发连接建立;
基于连接建立请求消息触发连接建立;
基于连接恢复请求消息触发连接恢复;
基于连接重建请求消息触发连接重建。
例如,NAS消息触发连接建立或者连接请求消息触发的连接建立。连接请求消息是RRC层消息。
恢复请求消息触发的连接恢复流程,而连接重建请求消息触发的连接重建立流程。
在一些实施例中,所述方法还包括:
上报连接失败检测结果。
连接失败检测会得到一个结果,该结果称之为连接失败检测结果。该连接失败检测结果可包括:检测到连接失败的结果或者检测到连接未失败的结果。
在一些实施例中,所述失败检测结果包括以下至少之一:连接失败类型指示,指示连接失败类型;
SDT过程指示,用于指示在SDT过程中检测到连接失败;
SDT阶段指示,用于指示连接失败发生时所在的SDT阶段,其中,所述SDT阶段包括:SDT过程中的初始数据发送阶段和/或后续数据发送阶段;
SDT过程类型指示,用于SDT过程的类型;
业务指示,用于指示触发SDT过程的业务。
示例性地,连接失败类型包括不限于:
物理层失步导致的连接失败;
MAC层的随机接入失败导致的连接失败;
RLC层达到最大重传次数失败的导致的连接失败;
波束失败导致的连接失败。
SDT阶段指示,确定连接失败发送的SDT阶段。SDT阶段包括:初始数据发送阶段和后续数据发送阶段。
在一些实施例中,所述业务指示,包括以下至少之一:
所述业务的无线承载RB标识;
所述业务的业务流标识;
所述业务的会话标识;
所述业务的逻辑信道标识。
不同的业务会映射到不同的RB,而RB具有的RB标识,因此RB标识可以用于标识业务。
若业务以业务流的形式传输,则会分配业务流标识,同样地,业务流标识可以标识该业务。
在进行业务传输时,会分配会话标识,因此该会话标识也可以标识业务。
在一些实施例中,业务还会映射到逻辑信道,不同的逻辑信道具有不同的逻辑信道标识,因此,逻辑信道标识同样可以进行业务标识。
如图6所示,本公开实施例提供一种信息处理方法,其中,由基站执行,所述方法包括:
S210:发送失败检测配置,其中,所述失败检测配置,用于供UE针对SDT过程的连接失败检测。
本公开实施例提供的信息处理方法,可以由基站执行。该方法可包括:基站下向UE发送失败检测配置,该失败检测配置可用于UE在SDT过程中进行连接失败检测。
在一些实施例中,所述S210可包括:
发送携带有所述失败检测配置的系统消息;
和/或,
发送携带有所述失败检测配置的连接释放消息。
通过系统消息携带,如此若该失败检测配置适用于小区内所有UE,则小区内所有UE都能够接收到对应的系统消息。
通过连接释放消息带失败检测配置,在触发UE进入到能够进行SDT过程的空闲态或者非激活态的连接释放消息来携带失败检测配置,而不用专用消息来发送,且是UE进入到空闲态或者非激活态前发送,具有消息信令开销小及实现简便的特点。
如图7所示,本公开实施例提供一种信息处理方法,由基站执行,所述方法包括:
S310:发送与连接关联的特定指示信息;其中,所述特定指示信息,用于触发UE停止针对SDT过程的连接失败检测。
通过与连接关联的特定指示信息指示停止失败连接检测,可以复用与连接相关的其他任何信息,从而具有与相关技术兼容性强的特点。
在一些实施例中,所述特定指示信息包括以下至少之一:
连接释放消息;
连接恢复消息;
连接拒绝消息;
连接建立消息。
上述特定指示消息相关描述可以参见前述实施例,此处就不再重复了。
在一些实施例中,所述失败检测配置,包括以下至少之一:
计时器信息,指示与连接失败检测关联的计时器;
计数器信息,指示与所述连接失败检测关联的计数器;
信号指示信息,用于指示进行所述连接失败检测的信号。
此处的计时器信息、计数器信息和信号指示信息的相关描述可以参见前述实施例,此处就不再重复了。
在一些实施例中,所述计时器包括以下至少之一:
物理层的失步计时器,用于对出现物理层失步计时;
检测波束失败的计时器,用于对波束失败检测进行计时。
在一些实施例中,所述计数器包括以下至少之一:
失步计数器,用于物理层失步指示计数;
同步计数器,用于物理层同步指示计数;
波束失败计数器,用于对波束失败计数;
媒体访问控制MAC层随机接入次数计数器,用于进行MAC层的随机接入次数计数;
无线链路控制RLC层的传输次数计数器,用于进行RLC层的传输次数计数。
在一些实施例中,所述信号指示信息,用于指示以下至少之一:
所述连接失败检测中物理层失步检测的信号;
所述连接失败检测中波束失败检测的信号。
在一些实施例中,所述信号指示信息指示信号,包括以下至少之一:
与四步随机接入的物理下行随机接入信道PRACH资源关联的下行信号;
与调度所述四步随机接入的竞争解决标识的物理下行控制信道PDCCH关联的下行信号;
在成功接收所述四步随机接入的随机接入消息4的竞争解决标识后,与调度数据传输的PDCCH信道关联的下行信号;
与两步随机接入的随机接入消息A关联的下行信号;
在两步随机接入的随机接入消息B的竞争解决标识接收到后,与调度数据的PDCCH关联的下行信号;
与CG PUSCH资源关联的下行信号;
与发送传输成功指示的PDCCH关联的下行信号;其中,所述传输成功指示为:指示在CG PUSCH上数据发送成功;
在接收到所述传输成功指示之后,与调度数据传输的PDCCH关联的下行信号;
所述UE所在小区发送的下行信号;
所述UE所在BWP发送的下行信号;
所述UE能检测到小区的下行信号;
所述UE所在BWP能够检测到的下行信号。
如图8所示,本公开实施例提供一种信息处理方法,由基站执行,所述方法包括:S410:发送波束恢复配置,其中,所述波束恢复配置,至少用于供所述UE在SDT过程中检测到连接失败的原因为波束失败时执行波束恢复。
在本公开实施例中,发送波束恢复配置可以与连接态的波束恢复配置相同或者不同。若该波束恢复配置和连接态下的波束恢复配置相同,则UE将直接复用连接条的波束恢复配置,而此处基站发送的波束恢复配置同时针对UE的连接态和非连接态。此处的非连接态包括:空闲态和/或非激活态。
在一些实施例中,所述发送波束恢复配置,包括以下至少之一:
发送携带有所述波束恢复配置的系统消息;
发送携带有所述波束恢复配置的连接释放消息。
在一些实施例中,所述波束恢复配置,包括以下至少之一:
波束恢复计数器信息,指示用于波束恢复次数的计数器;
波束恢复计时器信息,指示用于波束恢复时长进行计时器;
优先级配置,用于指示波束恢复对应的随机接入的优先级,其中,不同所述优先级,对应的波束恢复时的随机接入配置不同;
资源配置,指示波束恢复所用的资源;
门限配置,指示波束恢复所用的门限值。
此处的随机接入配置至少可包括:功率爬升配置和/或随机接入请求重发的回退时间缩放因子。
此处资源配置指示的资源可复用随机接入资源,示例性可包括:PRACH资源和根序列对应的序列资源。
可以理解地,所述资源配置,指示SDT过程所在小区或BWP的基于竞争的随机接入请求资源用于波束恢复。
可以理解地,所述门限配置,指示用于选择随机接入请求资源的门限值,复用为所述波束恢复的门限值。
可以理解地,所述方法还包括:
根据所述UE的波束恢复的结果,发送所述波束恢复的反馈信息。
基站可以根据UE的波束恢复的结果,向UE发送波束恢复的反馈信息。
可以理解地,所述发送所述波束恢复的反馈信息,包括:
在所述SDT过程的后续数据发送阶段的资源上发送所述反馈信息;
和/或,
在随机接入中发送携带有所述反馈信息的消息。
可以理解地,所述在所述SDT过程的后续数据发送阶段的资源上发送所述反馈信息,包括:
在所述SDT过程的后续数据发送阶段的用于调度数据传输的PDCCH资源上发送所述反馈信息。
可以理解地,所述在随机接入中发送携带有所述反馈信息的消息,包括以下至少之一:
在所述网络侧在四步随机接入中发送携带有所述反馈信息的随机接入消息2;
在所述四步随机接入中发送携带有所述反馈信息的随机接入消息4;
在所述四步随机接入中发送携带有所述反馈信息的随机接入消息B。
可以理解地,所述方法还包括:
接收连接失败检测结果。
可以理解地,所述失败检测结果包括以下至少之一:
连接失败类型指示,指示连接失败类型;
SDT过程指示,用于指示在SDT过程中检测到连接失败;
SDT阶段指示,用于指示连接失败发生时所在的SDT阶段,其中,所述SDT阶段包括:SDT过程中的初始数据发送阶段和/或后续数据发送阶段;
SDT过程类型指示,用于SDT过程的类型;
业务指示,用于指示触发SDT过程的业务。
可以理解地,所述业务指示,包括以下至少之一:
所述业务的无线承载RB标识;
所述业务的业务流标识;
所述业务的会话标识;
所述业务的逻辑信道标识。
此处的各种业务标识的相关说明都可以参见对应地的前述实施例,就不在重复赘述了。
在相关技术中,当前UE在空闲态/非激活态的时候如果发起了SDT过程,由于系统默认空闲态/非激活态UE不会进行连接失败的检测,这会导致UE对于连接的可靠性无法进行评估,从而无法在连接不可靠的时候进行对应的处理。因此,对于UE在空闲态/非激活态的时候需要采用哪种连接失败检测,以及如何将失败检测的配置提供给UE,以及失败后如何进行处理,都是需要解决的问题。
通过本公开实施例,可以让空闲态/非激活态的UE在SDT过程中进行对应的连接失败检测。并根据该连接失败检测的结果,在发生失败的时候进行相应的处理,从而提高数据传输的可靠性。
UE根据网络配置或协议约定对于SDT过程的连接进行连接失败检测,并在检测到失败后进行相应的失败处理。
网络侧提供SDT过程的连接失败检测配置和/或波束恢复配置。
终端侧:根据SDT过程的连接失败检测配置,对于SDT过程进行连接失败检测。
示例性地,根据网络和/或协议约定的配置,UE对SDT过程的连接进行连接失败检测。此处的网络和/或协议约定的配置至少包括上述连接失败配置。
失败检测配置和/或波束恢复配置中一项或多项可以通过以下方式中的至少一种提供给UE:
通过系统信息发送给UE;
通过连接释放消息发送给UE;
通过协议约定;
其中,启动该SDT过程的连接失败检测的触发事件包括以下任意一种:
SDT过程被触发;
SDT过程的首次发送上行数据。
SDT过程的首次发送数据包括以下任意一种:
四步RACH SDT首次通过Msg3发送数据。
两步RACH SDT首次通过MsgA发送数据。
CG-SDT首次通过CG资源发送数据。
接收到网络侧的确认指示。包括以下任意一种:
四步RACH SDT成功接收到Msg4的竞争解决标识。
两步RACH SDT成功接收到MsgB的竞争解决标识。
CG-SDT成功接收到网络发送的数据接收成功指示。
其中,停止该连接失败检测的停止事件包括以下任意一种:
UE的连接状态从非激活态(RRC_INACTIVE)或者从非激活态变更到空闲态(RRC_IDLE)。
UE的连接状态变更到连接态(RRC_CONNECTED)。
接收到网络发送的特定指示信息。其中,该特定指示信息可包括以下任意一种:
连接释放消息;
连接恢复消息;
连接拒绝消息;
连接建立消息;
其中,该通过协议约定失败检测配置的情况包括以下至少一种:
通过协议约定失败检测配置中的计数器和/或计时器的数值。
通过协议约定用于物理层失步检测的信号。其中,根据不同的SDT过程类型,该用于物理层失步检测的信号可为以下任意一种:
对于四步RACH SDT,该下行信号包括以下任意一种:
PRACH发送资源关联的下行信号,例如,PRACH配置中的4个PRACH资源(即,PRACH-1/2/3/4)分别对应4个不同的下行信号;这4个下行信号可包括:SSB-1/2/3/4。UE选择了PRACH-1用于发送上行数据,则PRACH-1关联的SSB-1用于物理层失步检测。
调度Msg4的竞争解决标识的物理控制信道对应的下行信号。例如,调度Msg4竞争解决标识PDSCH(Physical Downlink Shared Channel,物理下行共享信道)发送的为PDCCH(Physical Downlink Control Channel,物理下行控制信道)信道,与该PDCCH信道有准共址关系的信号,例如,SSB-1。)
成功接收到Msg4的竞争解决标识后,用于后续数据调度的物理控制信道对应的下行信号。例如,在随机接入竞争解决后,UE通过特定搜索空间(search space)配置对应的PDCCH接收后续数据收发的调度信息,与该PDCCH信道有准共址关系的信号,例如,SSB-1。其中,与该PDCCH信道有准共址关系的信号可以为:PRACH发送资源关联的下行信号。
SDT过程所在小区或BWP对应的所有特定下行信号,例如,SDT过程配置为在初始(initial)BWP上执行,该初始BWP上配置的所有SSB。
SDT过程所在小区或BWP对应的检测到的所有特定下行信号。例如,SDT过程配置为在初始BWP上执行,该初始BWP上配置的特定下行信号为SSB-1/2/3/4,UE检测到SSB-1/2。则SSB-1/2作为检测信号。
对于两步RACH SDT,该信号包括以下任意一种:
MsgA发送资源关联的下行信号,例如,MsgA配置中的4个PRACH资源(即,PRACH-1/2/3/4)分别对应4个不同的下行信号,例如,SSB-1/2/3/4,UE选择了PRACH-1用于发送上行数据,则PRACH-1关联的SSB-1用于物理层失步检测。
调度MsgB的竞争解决标识的物理控制信道对应的下行信号,例如,调度MsgB竞争解决标识PDSCH发送的为PDCCH信道,与该PDCCH信道有准共址关系的下行信号,例如SSB-1。
成功接收到MsgB的竞争解决标识后,用于后续数据调度的物理控制信道对应的下行信号。例如,在SDT过程竞争解决后,UE通过特定search space配置对应的PDCCH接收后续数据收发的调度信息,与该PDCCH信道有准共址关系的信号即为进行SSD过程中连接失败检测的下行信号,示 例性地如SSB-1。其中,与该PDCCH信道有准共址关系的信号可以为MsgA发送资源关联的下行信号。
SDT过程所在小区或BWP对应的所有特定下行信号。
SDT过程所在小区或BWP对应的检测到的所有特定下行信号。
对于CG-SDT,该信号包括以下任意一种:
CG PUSCH发送资源关联的下行信号,例如,CG配置中的1个资源周期中包括了4个CG资源(即,CG-1/2/3/4)分别对应4个不同的下行信号,例如,SSB-1/2/3/4),UE选择了CG-1用于发送上行数据,则CG-1关联的SSB-1用于物理层失步检测。
发送数据接收成功指示的物理控制信道对应的下行信号,例如,发送数据接收成功指示的为PDCCH信道,与该PDCCH信道有准共址关系的下行信号,例如,SSB-1。
成功接收到数据接收成功指示后,用于后续数据调度的物理控制信道对应的下行信号。例如,在SDT过程成功接收到数据接收成功指示后,UE通过特定搜索空间(search space)配置对应的PDCCH接收后续数据收发的调度信息,与该PDCCH信道有准共址关系的信号,例如,SSB-1。其中,与该PDCCH信道有准共址关系的信号可以为CG PUSCH发送资源关联的下行信号。
SDT过程所在小区或BWP对应的所有特定下行信号。
SDT过程所在小区或BWP对应的检测到的所有特定下行信号。
通过协议约定用于波束失败检测的信号。
同上方法,可参照通过协议约定用于物理层失步检测的信号,约定波束失败检测的信号。
步骤2:根据步骤1,当UE检测到连接失败后,确连接失败类型;并根据连接失败类型,重新获取连接。以下提供几检测到连接失败后重新获取连接的备选方式:
备选方式一:UE从非激活态(RRC_INATIVE)转换到空闲态(RRC_IDLE)。更进一步地,UE的AS(Access Stratum,接入层)层可以将该失败信息指示给NAS(Non-Access Stratum,非接入层)层。更进一步的,UE的NAS层可以触发连接建立过程。
备选方式二:UE触发连接建立过程,该过程可为通过发送连接建立请求消息,重新进行连接建立;
备选方式三:UE触发连接恢复过程,该过程可为:通过发送连接恢复请求消息到请求恢复连接。
备选方式四:UE触发连接重建过程,该过程可为:从小区选择过程选择到合适的小区后,UE发送连接重建请求消息,实现连接重建。
UE检测到连接失败后,对于波束失败,UE的处理方法可包括:
备选方式五:触发波束恢复过程。其中,该波束恢复过程包括一下任意一种:
选择满足测量门限值的特定下行波束,并根据该特定下行波束选择对应的上行发送资源进行上行信号发送。例如,发生波束失败后,UE触发随机接入过程,选择满足门限值的特定下行波束SSB-1,并选择该SSB-1关联的PRACH-1资源发送随机接入请求,在该随机接入过程中UE将其标识信息发送给网络侧。示例性地,在Msg3或MsgA中发送C-RNTI MAC CE给网络侧。在随机接入过程成功 完成后,将该SSB-1标识的波束作为其服务波束。
将满足测量门限值的特定下行波束上报给网络侧。
其中,该波束恢复配置信息中的一项或多项可以通过以下方式中的至少一种提供给UE:
通过系统信息波束恢复配置发送给UE;
通过连接释放消息将波束恢复配置发送给UE;
通过协议约定将波束恢复配置发送给UE。
其中,该通过协议约定波束恢复配置的情况包括以下至少一种:
通过协议约定波束恢复配置中的计数器和/或计时器的数值。
通过协议约定波束恢复配置中的随机接入优先级配置。(示例性地,该接入优先级配置涉及功率爬升数值,和/或,随机接入请求重发的回退时间缩放因子数值。
通过协议约定,SDT过程所在BWP或小区的所有基于竞争的随机接入请求资源,复用为波束恢复的随机接入请求资源。
通过协议约定,SDT过程所在BWP或小区的基于竞争的随机接入过程的随机接入请求资源对应的下行信号选择的测量门限值,复用为该波束恢复过程的选择候选波束的测量门限值。
通过协议约定,波束恢复的网络反馈信息的资源为:
SDT过程中用于后续数据发送阶段的资源。例如,用于后续数据发送阶段的数据调度的search space-1的PDCCH。
SDT过程所在BWP或小区的基于竞争的随机接入过程的用于接收网络反馈信息的资源。(例如如,搜索空间-0(search space-0)或,控制集合(CORESET-0)可用于接收基于竞争的随机接入过程的Msg2或Msg4或MsgB。
如果,波束恢复过程也发生失败,,则UE采用上述备选方式一至四中的任意一种,具体如可以通过连接建立或者连接重建立的过程来重新获取UE与基站之间的连接。此处的波束恢复失败,示例性地可包括:波束恢复对应的随机接入过程达到最大发送次数。
在一些实施例中,UE可以将该连接失败检测的检测结果的失败信息上报给网络侧。例如,UE仅上报失败信息,而不上报成功信息,减少不必要的上报。若网络侧没有接收到连接检测结果的任何信息,则默认UE的SDT过程的连接失败检测没有发现失败的连接。若接收到失败信息,则认为UE的SDT过程的连接失败检测有发现失败的连接。当然在其他情况下,失败检测结果也可以包括:检测到连接未失败(即连接成功)的检测结果的成功信息。
该失败信息包括以下至少一项:
连接失败类型指示,用于指示导致连接失败的物理层失步、MAC层随机接入失败、RLC层达到最大重传次数失败或者波束失败。
SDT过程指示,至少用于指示检测到连接失败是否发生在SDT过程中;
SDT过程类型指示,例如,SDT过程类型可包括:发生在四步随机接入中的SDT过程、发生在两步随机接入中的SDT过程,还是基于CG-PUSCH资源执行的SDT过程。
发生连接失败的业务指示。其中,该业务指示信息包括以下至少一项:
无线承载标识,(Radio Bearer,RB)标识,该无线承载标识可为数据承载标识(Date Radio Bearer,DRB)。
业务流标识,例如,QoS flow-1;
会话标识,例如,PDU Session-1;
逻辑信道标识,例如,LCH-1。
如图9所示,本公开实施例提供一种连接失败检测装置,所述装置包括:
检测模块510,被配置为针对小数据传输SDT过程进行连接失败检测。
在一个实施例中,该检测模块510可为程序模块,该程序模块被处理器执行之后,能够针对SDT过程进行连接失败检测。
在另一个实施例中,该检测模块510可为软硬结合模块;所述软硬结合模块包括但不限于:可编程电路;所述可编程电路包括但不限于:现场可编程电路和/或复杂可编程电路。
在还有一些实施例中,该检测模块510还可包括纯硬件模块;所述纯硬件模块包括但不限于专用集成电路。
在一个实施例中,所述检测模块510,被配置为根据获取的失败检测配置,针对所述SDT过程进行连接失败检测。
在一个实施例中,所述装置失败检测配置包括:
从网络侧接收的失败检测配置;和/或,协议约定的所述失败检测配置。
在一个实施例中,所述从网络侧接收的失败检测配置,包括:从网络侧接收的且携带在系统消息中的所述失败检测配置;和/或,从网络侧接收的且携带在连接释放消息中的所述失败检测配置。
在一个实施例中,所述获取模块,被配置为响应于检测到触发事件,针对所述SDT过程进行连接失败检测。
在一个实施例中,所述触发事件,包括以下至少之一:
启动所述SDT过程;
所述UE进行所述SDT过程的首次发送上行数据;
所述UE从网络侧接收到确认指示,其中,所述确认指示为:所述网络侧接收到所述SDT过程的首次发送的上行数据后发送的指示。
在一个实施例中,所述进行所述SDT过程的首次发送上行数据,包括以下至少之一:
所述UE通过四步随机接入的随机接入消息3首次发送上行数据;
所述UE通过两步随机接入的随机接入消息A首次发送上行数据;
所述UE在配置授权CG物理上行共享信道PUSCH资源上首次发送上行数据。
在一个实施例中,所述获取模块,被配置为执行以下至少之一:
从网络侧接收到四步随机接入消息4的竞争解决标识;
从网络侧接收到两步随机接入消息B的竞争解决标识;
从网络侧接收到在CG PUSCH资源上的数据发送的成功指示。
在一个实施例中,所述装置还包括:
停止模块,被配置为响应于检测到停止事件,停止针对所述SDT过程的所述连接失败检测。
在一个实施例中,所述检测饿到停止事件,包括:所述UE的连接状态发生转换;和/或,所述UE从网络侧接收到与连接关联的特定指示信息。
在一个实施例中,所述UE的连接状态发生转换,包括以下至少之一:
所述UE从非激活态转换到空闲态;
所述UE从非激活态转换到连接态;
所述UE从空闲态转换到连接态。
在一个实施例中,所述获取模块,被配置执行以下至少之一:
所述UE从所述网络侧接收到连接释放消息;
所述UE从所述网络侧接收到连接恢复消息;
所述UE从所述网络侧接收到连接拒绝消息;
所述UE从所述网络侧接收到连接建立消息。
在一个实施例中,所述失败检测配置,包括以下至少之一:
计时器信息,指示与连接失败检测关联的计时器;
计数器信息,指示与所述连接失败检测关联的计数器;
信号指示信息,用于指示进行所述连接失败检测的信号。
在一个实施例中,所述计时器包括以下至少之一:
物理层的失步计时器,用于对出现物理层失步计时;
检测波束失败的计时器,用于对波束失败检测进行计时。
在一个实施例中,所述计数器包括以下至少之一:
失步计数器,用于物理层失步指示计数;
同步计数器,用于物理层同步指示计数;
波束失败计数器,用于对波束失败计数;
媒体访问控制MAC层随机接入次数计数器,用于进行MAC层的随机接入次数计数;
无线链路控制RLC层的传输次数计数器,用于进行RLC层的传输次数计数。
在一个实施例中,所述信号指示信息,用于指示以下至少之一:
所述连接失败检测中物理层失步检测的信号;
所述连接失败检测中波束失败检测的信号。
在一个实施例中,所述信号指示信息指示的信号,包括以下至少之一:
与四步随机接入的物理下行随机接入信道PRACH资源关联的下行信号;
与调度所述四步随机接入的竞争解决标识的物理下行控制信道PDCCH关联的下行信号;
在成功接收所述四步随机接入的随机接入消息4的竞争解决标识后,与调度数据传输的PDCCH 信道关联的下行信号;
与两步随机接入的随机接入消息A关联的下行信号;
在两步随机接入的随机接入消息B的竞争解决标识接收到后,与调度数据的PDCCH关联的下行信号;
与CG PUSCH资源关联的下行信号;
与发送传输成功指示的PDCCH关联的下行信号;其中,所述传输成功指示为:指示在CG PUSCH上数据发送成功;
在接收到所述传输成功指示之后,与调度数据传输的PDCCH关联的下行信号;
所述UE所在小区发送的下行信号;
所述UE所在BWP发送的下行信号;
所述UE能检测到小区的下行信号;
所述UE所在BWP能够检测到的下行信号。
在一个实施例中,所述装置还包括:
连接模块,被配置为响应于基于所述失败检测结果确定出连接失败,重新获取连接;
或者,
状态切换模块,被配置为响应于基于所述失败检测结果确定出连接失败,进入空闲态。
在一个实施例中,所述装置还包括:
恢复模块,被配置为响应于基于所述失败检测结果确定连接失败的原因为波束失败,执行波束恢复。
在一个实施例中,所述恢复模块,被配置为根据波束恢复配置,执行所述波束恢复。
在一个实施例中,所述装置还包括:波束恢复配置模块;所述波束恢复配置模块被配置执行以下至少之一:
接收系统消息携带的所述波束恢复配置;
接收连接释放消息携带的所述波束恢复配置;
基于协议约定确定所述波束恢复配置。
在一个实施例中,所述波束恢复配置,包括以下至少之一:
波束恢复计数器信息,指示用于波束恢复次数的计数器;
波束恢复计时器信息,指示用于波束恢复时长进行计时器;
优先级配置,用于指示波束恢复对应的随机接入的优先级,其中,不同所述优先级,对应的波束恢复时的随机接入配置不同;
资源配置,指示波束恢复所用的资源;
门限配置,指示波束恢复所用的门限值。
在一个实施例中,所述资源配置,指示SDT过程所在小区或BWP的基于竞争的随机接入请求资源用于波束恢复。
在一个实施例中,所述门限配置,指示用于选择随机接入请求资源的门限值,复用为所述波束恢复的门限值。
在一个实施例中,所述装置还包括:
反馈模块,被配置为接收网络侧对所述波束恢复的反馈信息,其中,所述反馈信息,指示所述波束恢复的结果。
在一个实施例中,所述反馈模块,被配置为在所述SDT过程的后续数据发送阶段的资源上接收所述反馈信息;和/或,接收所述网络侧在随机接入中下发的消息携带的所述反馈信息。
在一个实施例中,所述反馈模块,被配置为在所述SDT过程的后续数据发送阶段的用于调度数据传输的PDCCH资源上接收所述反馈信息。
在一个实施例中,所述反馈模块,被配置为执行以下至少之一:
接收所述网络侧在四步随机接入中下发的随机接入消息2携带的所述反馈信息;
接收所述网络侧在四步随机接入中下发的随机接入消息4携带的所述反馈信息;
接收所述网络侧在四步随机接入中下发的随机接入消息B携带的所述反馈信息。
在一个实施例中,所述装置还包括:
连接模块,被配置为响应所述波束恢复失败,重新获取连接;
或者,
状态切换模块,被配置为响应所述波束恢复失败,进入空闲态。
在一个实施例中,所述连接模块,被配置为执行以下至少之一:
基于非接入层NAS消息触发连接建立;
基于连接建立请求消息触发连接建立;
基于连接恢复请求消息触发连接恢复;
基于连接重建请求消息触发连接重建。
在一个实施例中,所述装置还包括:
上报模块,被配置为上报连接失败检测结果。
在一个实施例中,所述失败检测结果包括以下至少之一:
连接失败类型指示,指示连接失败类型;
SDT过程指示,用于指示在SDT过程中检测到连接失败;
SDT阶段指示,用于指示连接失败发生时所在的SDT阶段,其中,所述SDT阶段包括:SDT过程中的初始数据发送阶段和/或后续数据发送阶段;
SDT过程类型指示,用于SDT过程的类型;
业务指示,用于指示触发SDT过程的业务。
在一个实施例中,所述业务指示,包括以下至少之一:
所述业务的无线承载RB标识;
所述业务的业务流标识;
所述业务的会话标识;
所述业务的逻辑信道标识。
如图10所示,本公开实施例提供一种信息处理装置,所述装置包括:
发送模块610,被配置为发送失败检测配置,其中,所述失败检测配置,用于供UE针对SDT过程的连接失败检测。
在一个实施例中,该发送模块610可为程序模块,该程序模块被处理器执行之后,能够向UE下发进行SDT郭晨过的连接失败检测。
在另一个实施例中,该检测模块可为软硬结合模块;所述软硬结合模块包括但不限于:可编程电路;所述可编程电路包括但不限于:现场可编程电路和/或复杂可编程电路。
在还有一些实施例中,该检测模块还可包括纯硬件模块;所述纯硬件模块包括但不限于专用集成电路。
在一个实施例中,所述发送模块610,被配置为发送携带有所述失败检测配置的系统消息;和/或,发送携带有所述失败检测配置的连接释放消息。
在一个实施例中,所述接收模块,还被配置为接收与连接关联的特定指示信息;其中,所述特定指示信息,用于触发UE停止针对述SDT过程的连接失败检测。
在一个实施例中,所述特定指示信息包括以下至少之一:
连接释放消息;
连接恢复消息;
连接拒绝消息;
连接建立消息。
在一个实施例中,所述失败检测配置,包括以下至少之一:
计时器信息,指示与连接失败检测关联的计时器;
计数器信息,指示与所述连接失败检测关联的计数器;
信号指示信息,用于指示进行所述连接失败检测的信号。
在一个实施例中,所述计时器包括以下至少之一:
物理层的失步计时器,用于对出现物理层失步计时;
检测波束失败的计时器,用于对波束失败检测进行计时。
在一个实施例中,所述计数器包括以下至少之一:
失步计数器,用于物理层失步指示计数;
同步计数器,用于物理层同步指示计数;
波束失败计数器,用于对波束失败计数;
媒体访问控制MAC层随机接入次数计数器,用于进行MAC层的随机接入次数计数;
无线链路控制RLC层的传输次数计数器,用于进行RLC层的传输次数计数。
在一个实施例中,所述信号指示信息,用于指示以下至少之一:
所述连接失败检测中物理层失步检测的信号;
所述连接失败检测中波束失败检测的信号。
在一个实施例中,所述信号指示信息指示信号,包括以下至少之一:
与四步随机接入的物理下行随机接入信道PRACH资源关联的下行信号;
与调度所述四步随机接入的竞争解决标识的物理下行控制信道PDCCH关联的下行信号;
在成功接收所述四步随机接入的随机接入消息4的竞争解决标识后,与调度数据传输的PDCCH信道关联的下行信号;
与两步随机接入的随机接入消息A关联的下行信号;
在两步随机接入的随机接入消息B的竞争解决标识接收到后,与调度数据的PDCCH关联的下行信号;
与CG PUSCH资源关联的下行信号;
与发送传输成功指示的PDCCH关联的下行信号;其中,所述传输成功指示为:指示在CG PUSCH上数据发送成功;
在接收到所述传输成功指示之后,与调度数据传输的PDCCH关联的下行信号;
所述UE所在小区发送的下行信号;
所述UE所在BWP发送的下行信号;
所述UE能检测到小区的下行信号;
所述UE所在BWP能够检测到的下行信号。
在一个实施例中,所述发送模块610,还被配置为发送波束恢复配置,其中,所述波束恢复配置,用于供所述UE在所述SDT过程中检测到连接失败的原因为波束失败时执行波束恢复。
在一个实施例中,所述发送模块610,被配置为执行以下至少之一:
发送携带有所述波束恢复配置的系统消息;
发送携带有所述波束恢复配置的连接释放消息。
在一个实施例中,所述波束恢复配置,包括以下至少之一:
波束恢复计数器信息,指示用于波束恢复次数的计数器;
波束恢复计时器信息,指示用于波束恢复时长进行计时器;
优先级配置,用于指示波束恢复对应的随机接入的优先级,其中,不同所述优先级,对应的波束恢复时的随机接入配置不同;
资源配置,指示波束恢复所用的资源;
门限配置,指示波束恢复所用的门限值。
在一个实施例中,所述资源配置,指示SDT过程所在小区或BWP的基于竞争的随机接入请求资源用于波束恢复。
在一个实施例中,所述门限配置,指示用于选择随机接入请求资源的门限值,复用为所述波束恢复的门限值。
在一个实施例中,所述发送模块610,被配置为根据所述UE的波束恢复的结果,发送所述波束恢复的反馈信息。
在一个实施例中,所述发送模块610,被配置为在所述SDT过程的后续数据发送阶段的资源上发送所述反馈信息;和/或,在随机接入中发送携带有所述反馈信息的消息。
在一个实施例中,所述发送模块610,还被配置为在所述SDT过程的后续数据发送阶段的用于调度数据传输的PDCCH资源上发送所述反馈信息。
在一个实施例中,所述发送模块610,被配置为执行以下至少之一:
在所述网络侧在四步随机接入中发送携带有所述反馈信息的随机接入消息2;
在所述四步随机接入中发送携带有所述反馈信息的随机接入消息4;
在所述四步随机接入中发送携带有所述反馈信息的随机接入消息B。
在一个实施例中,所述装置还包括:
接收模块,被配置为接收连接失败检测结果。
在一个实施例中,所述失败检测结果包括以下至少之一:
连接失败类型指示,指示连接失败类型;
SDT过程指示,用于指示在SDT过程中检测到连接失败;
SDT阶段指示,用于指示连接失败发生时所在的SDT阶段,其中,所述SDT阶段包括:SDT过程中的初始数据发送阶段和/或后续数据发送阶段;
SDT过程类型指示,用于SDT过程的类型;
业务指示,用于指示触发SDT过程的业务。
在一个实施例中,所述业务指示,包括以下至少之一:
所述业务的无线承载RB标识;
所述业务的业务流标识;
所述业务的会话标识;
所述业务的逻辑信道标识。
本公开实施例提供一种通信设备,包括:
用于存储处理器可执行指令的存储器;
处理器,分别存储器连接;
其中,处理器被配置为执行前述任意技术方案提供的连接失败检测方法。
处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
这里,所述通信设备包括:UE或者基站。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2、图4至图8所示的方法的至少其中之一。
图11是根据一示例性实施例示出的一种UE800的框图。例如,UE 800可以是移动电话,计算 机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图11,UE800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制UE800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在UE800的操作。这些数据的示例包括用于在UE800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为UE800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为UE800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述UE800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当UE800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当UE800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为UE800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为UE800的显示器和小键盘,传感器组件814还可以检测UE800或UE800一个组件的位置改变,用户与UE800接触的存在或不存在,UE800方位或加速/减速和UE800的温度变化。传感器组件814可以包括接近传 感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于UE800和其他设备之间有线或无线方式的通信。UE800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由UE800的处理器820执行以完成上述任意连接失败检测方法,至少如图6至图8所示的方法的至少其中之一。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图12所示,本公开一实施例示出一种基站的结构。基站900基站参照图13,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法,例如,如图6至图8所示的方法的至少其中之一。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本公开旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。

Claims (110)

  1. 一种连接失败检测方法,其中,由用户设备UE执行,所述方法包括:
    针对小数据传输SDT过程进行连接失败检测。
  2. 根据权利要求1所述的方法,其中,所述针对小数据传输SDT过程进行连接失败检测,包括:
    根据获取的失败检测配置,针对所述SDT过程进行连接失败检测。
  3. 根据权利要求2所述的方法,其中,所述失败检测配置包括:
    从网络侧接收的失败检测配置;
    和/或,
    协议约定的所述失败检测配置。
  4. 根据权利要求3所述的方法,其中,所述从网络侧接收的失败检测配置包括:
    从网络侧接收的且携带在系统消息中的所述失败检测配置;
    和/或,
    从网络侧接收的且携带在连接释放消息中的所述失败检测配置。
  5. 根据权利要求1至4任一项所述的方法,其中,所述针对小数据传输SDT过程进行连接失败检测,包括:
    响应于检测到触发事件,针对所述SDT过程进行连接失败检测。
  6. 根据权利要求5所述的方法,其中,所述触发事件,包括以下至少之一:
    启动所述SDT过程;
    所述UE进行所述SDT过程的首次发送上行数据;
    所述UE从网络侧接收到确认指示,其中,所述确认指示为:所述网络侧接收到所述SDT过程的首次发送的上行数据后发送的指示。
  7. 根据权利要求6所述的方法,其中,所述进行所述SDT过程的首次发送上行数据,包括以下至少之一:
    所述UE通过四步随机接入的随机接入消息3首次发送上行数据;
    所述UE通过两步随机接入的随机接入消息A首次发送上行数据;
    所述UE在配置授权CG物理上行共享信道PUSCH资源上首次发送上行数据。
  8. 根据权利要求6所述的方法,其中,所述UE从网络侧接收到确认指示,包括:
    从网络侧接收到四步随机接入消息4的竞争解决标识;
    从网络侧接收到两步随机接入消息B的竞争解决标识;
    从网络侧接收到在CG PUSCH资源上的数据发送的成功指示。
  9. 根据权利要求1至8任一项所述的方法,其中,所述方法还包括:
    响应于检测到停止事件,停止针对所述SDT过程的所述连接失败检测。
  10. 根据权利要求9所述的方法,其中,所述检测到停止事件,包括:
    所述UE的连接状态发生转换;
    和/或,
    所述UE从网络侧接收到与连接关联的特定指示信息。
  11. 根据权利要求10所述的方法,其中,所述UE的连接状态发生转换,包括以下至少之一:
    所述UE从非激活态转换到空闲态;
    所述UE从非激活态转换到连接态;
    所述UE从空闲态转换到连接态。
  12. 根据权利要求10所述的方法,其中,所述UE从网络侧接收到与连接关联的特定指示信息,包括以下至少之一:
    所述UE从所述网络侧接收到连接释放消息;
    所述UE从所述网络侧接收到连接恢复消息;
    所述UE从所述网络侧接收到连接拒绝消息;
    所述UE从所述网络侧接收到连接建立消息。
  13. 根据权利要求2所述的方法,其中,所述失败检测配置,包括以下至少之一:
    计时器信息,指示与连接失败检测关联的计时器;
    计数器信息,指示与所述连接失败检测关联的计数器;
    信号指示信息,用于指示进行所述连接失败检测的信号。
  14. 根据权利要求13所述的方法,其中,所述计时器包括以下至少之一:
    物理层的失步计时器,用于对出现物理层失步计时;
    检测波束失败的计时器,用于对波束失败检测进行计时。
  15. 根据权利要求13所述的方法,其中,所述计数器包括以下至少之一:
    失步计数器,用于物理层失步指示计数;
    同步计数器,用于物理层同步指示计数;
    波束失败计数器,用于对波束失败计数;
    媒体访问控制MAC层随机接入次数计数器,用于进行MAC层的随机接入次数计数;
    无线链路控制RLC层的传输次数计数器,用于进行RLC层的传输次数计数。
  16. 根据权利要求13至15任一项所述的方法,所述信号指示信息,用于指示以下至少之一:
    所述连接失败检测中物理层失步检测的信号;
    所述连接失败检测中波束失败检测的信号。
  17. 根据权利要求13至16任一项所述的方法,其中,所述信号指示信息指示的信号,包括以下至少之一:
    与四步随机接入的物理下行随机接入信道PRACH资源关联的下行信号;
    与调度所述四步随机接入的竞争解决标识的物理下行控制信道PDCCH关联的下行信号;
    在成功接收所述四步随机接入的随机接入消息4的竞争解决标识后,与调度数据传输的PDCCH信道关联的下行信号;
    与两步随机接入的随机接入消息A关联的下行信号;
    在两步随机接入的随机接入消息B的竞争解决标识接收到后,与调度数据的PDCCH关联的下行信号;
    与CG PUSCH资源关联的下行信号;
    与发送传输成功指示的PDCCH关联的下行信号;其中,所述传输成功指示为:指示在CG PUSCH上数据发送成功;
    在接收到所述传输成功指示之后,与调度数据传输的PDCCH关联的下行信号;
    所述UE所在小区发送的下行信号;
    所述UE所在BWP发送的下行信号;
    所述UE能检测到小区的下行信号;
    所述UE所在BWP能够检测到的下行信号。
  18. 根据权利要求1至17任一项所述的方法,其中,所述方法还包括:
    响应于基于所述失败检测结果确定出连接失败,重新获取连接;
    或者,
    响应于基于所述失败检测结果确定出连接失败,进入空闲态。
  19. 根据权利要求1至17任一项所述的方法,其中,所述方法还包括:
    响应于基于所述失败检测结果确定连接失败的原因为波束失败,执行波束恢复。
  20. 根据权利要求19所述的方法,其中,所述执行波束恢复,包括:
    根据波束恢复配置,执行所述波束恢复。
  21. 根据权利要求20所述的方法,其中,所述方法还包括以下至少之一:
    接收系统消息携带的所述波束恢复配置;
    接收连接释放消息携带的所述波束恢复配置;
    基于协议约定确定所述波束恢复配置。
  22. 根据权利要求20或21所述的方法,其中,所述波束恢复配置,包括以下至少之一:
    波束恢复计数器信息,指示用于波束恢复次数的计数器;
    波束恢复计时器信息,指示用于波束恢复时长进行计时器;
    优先级配置,用于指示波束恢复对应的随机接入的优先级,其中,不同所述优先级,对应的波束恢复时的随机接入配置不同;
    资源配置,指示波束恢复所用的资源;
    门限配置,指示波束恢复所用的门限值。
  23. 根据权利要求22所述的方法,其中,所述资源配置,指示SDT过程所在小区或BWP的基于竞争的随机接入请求资源用于波束恢复。
  24. 根据权利要求22所述的方法,其中,所述门限配置,指示用于选择随机接入请求资源的门限值,复用为所述波束恢复的门限值。
  25. 根据权利要求20至24任一项所述的方法,其中,所述方法还包括:
    接收网络侧对所述波束恢复的反馈信息,其中,所述反馈信息,指示所述波束恢复的结果。
  26. 根据权利要求25所述的方法,其中,所述接收网络侧对所述波束恢复的反馈信息,包括:
    在所述SDT过程的后续数据发送阶段的资源上接收所述反馈信息;
    和/或,
    接收所述网络侧在随机接入中下发的消息携带的所述反馈信息。
  27. 根据权利要求26所述的方法,其中,所述在所述SDT过程的后续数据发送阶段的资源上接收所述反馈信息,包括:
    在所述SDT过程的后续数据发送阶段的用于调度数据传输的PDCCH资源上接收所述反馈信息。
  28. 根据权利要求26所述的方法,其中,所述接收所述网络侧在随机接入中下发的消息携带的所述反馈信息,包括以下至少之一:
    接收所述网络侧在四步随机接入中下发的随机接入消息2携带的所述反馈信息;
    接收所述网络侧在四步随机接入中下发的随机接入消息4携带的所述反馈信息;
    接收所述网络侧在四步随机接入中下发的随机接入消息B携带的所述反馈信息。
  29. 根据权利要求20至28任一项所述的方法,其中,所述方法还包括:
    响应所述波束恢复失败,重新获取连接;
    或者,
    响应所述波束恢复失败,进入空闲态。
  30. 根据权利要求18至29任一项所述的方法,其中,所述重新获取连接,包括以下至少之一:
    基于非接入层NAS消息触发连接建立;
    基于连接建立请求消息触发连接建立;
    基于连接恢复请求消息触发连接恢复;
    基于连接重建请求消息触发连接重建。
  31. 根据权利要求1至30任一项所述的方法,其中,所述方法还包括:
    上报连接失败检测结果。
  32. 根据权利要求31所述的方法,其中,所述失败检测结果包括以下至少之一:
    连接失败类型指示,指示连接失败类型;
    SDT过程指示,用于指示在SDT过程中检测到连接失败;
    SDT阶段指示,用于指示连接失败发生时所在的SDT阶段,其中,所述SDT阶段包括:SDT过程中的初始数据发送阶段和/或后续数据发送阶段;
    SDT过程类型指示,用于指示SDT过程的类型;
    业务指示,用于指示触发SDT过程的业务。
  33. 根据权利要求32所述的方法,其中,所述业务指示,包括以下至少之一:
    所述业务的无线承载RB标识;
    所述业务的业务流标识;
    所述业务的会话标识;
    所述业务的逻辑信道标识。
  34. 一种信息处理方法,其中,由基站执行,所述方法包括:
    发送失败检测配置,其中,所述失败检测配置,用于供UE针对SDT过程的连接失败检测。
  35. 根据权利要求34所述的方法,其中,所述发送失败检测配置,包括:
    发送携带有所述失败检测配置的系统消息;
    和/或,
    发送携带有所述失败检测配置的连接释放消息。
  36. 根据权利要求34或35所述的方法,其中,所述方法还包括:
    发送与连接关联的特定指示信息;其中,所述特定指示信息,用于触发UE停止针对所述SDT过程的连接失败检测。
  37. 根据权利要求36所述的方法,其中,所述特定指示信息包括以下至少之一:
    连接释放消息;
    连接恢复消息;
    连接拒绝消息;
    连接建立消息。
  38. 根据权利要求34至37任一项所述的方法,其中,所述失败检测配置,包括以下至少之一:
    计时器信息,指示与连接失败检测关联的计时器;
    计数器信息,指示与所述连接失败检测关联的计数器;
    信号指示信息,用于指示进行所述连接失败检测的信号。
  39. 根据权利要求38所述的方法,其中,所述计时器包括以下至少之一:
    物理层的失步计时器,用于对出现物理层失步计时;
    检测波束失败的计时器,用于对波束失败检测进行计时。
  40. 根据权利要求38所述的方法,其中,所述计数器包括以下至少之一:
    失步计数器,用于物理层失步指示计数;
    同步计数器,用于物理层同步指示计数;
    波束失败计数器,用于对波束失败计数;
    媒体访问控制MAC层随机接入次数计数器,用于进行MAC层的随机接入次数计数;
    无线链路控制RLC层的传输次数计数器,用于进行RLC层的传输次数计数。
  41. 根据权利要求38至40任一项所述的方法,所述信号指示信息,用于指示以下至少之一:
    所述连接失败检测中物理层失步检测的信号;
    所述连接失败检测中波束失败检测的信号。
  42. 根据权利要求38至41任一项所述的方法,其中,所述信号指示信息指示信号,包括以下至少之一:
    与四步随机接入的物理下行随机接入信道PRACH资源关联的下行信号;
    与调度所述四步随机接入的竞争解决标识的物理下行控制信道PDCCH关联的下行信号;
    在成功接收所述四步随机接入的随机接入消息4的竞争解决标识后,与调度数据传输的PDCCH信道关联的下行信号;
    与两步随机接入的随机接入消息A关联的下行信号;
    在两步随机接入的随机接入消息B的竞争解决标识接收到后,与调度数据的PDCCH关联的下行信号;
    与CG PUSCH资源关联的下行信号;
    与发送传输成功指示的PDCCH关联的下行信号;其中,所述传输成功指示为:指示在CG PUSCH上数据发送成功;
    在接收到所述传输成功指示之后,与调度数据传输的PDCCH关联的下行信号;
    所述UE所在小区发送的下行信号;
    所述UE所在BWP发送的下行信号;
    所述UE能检测到小区的下行信号;
    所述UE所在BWP能够检测到的下行信号。
  43. 根据权利要求34至42任一项所述的方法,其中,所述方法还包括:
    发送波束恢复配置,其中,所述波束恢复配置,用于供所述UE在所述SDT过程中检测到连接失败的原因为波束失败时执行波束恢复。
  44. 根据权利要求43所述的方法,其中,所述发送波束恢复配置,包括以下至少之一:
    发送携带有所述波束恢复配置的系统消息;
    发送携带有所述波束恢复配置的连接释放消息。
  45. 根据权利要求43或44所述的方法,其中,所述波束恢复配置,包括以下至少之一:
    波束恢复计数器信息,指示用于波束恢复次数的计数器;
    波束恢复计时器信息,指示用于波束恢复时长进行计时器;
    优先级配置,用于指示波束恢复对应的随机接入的优先级,其中,不同所述优先级,对应的波束恢复时的随机接入配置不同;
    资源配置,指示波束恢复所用的资源;
    门限配置,指示波束恢复所用的门限值。
  46. 根据权利要求45所述的方法,其中,所述资源配置,指示SDT过程所在小区或BWP的基于竞争的随机接入请求资源用于波束恢复。
  47. 根据权利要求45所述的方法,其中,所述门限配置,指示用于选择随机接入请求资源的门限值,复用为所述波束恢复的门限值。
  48. 根据权利要求43至47任一项所述的方法,其中,所述方法还包括:
    根据所述UE的波束恢复的结果,发送所述波束恢复的反馈信息。
  49. 根据权利要求48所述的方法,其中,所述发送所述波束恢复的反馈信息,包括:
    在所述SDT过程的后续数据发送阶段的资源上发送所述反馈信息;
    和/或,
    在随机接入中发送携带有所述反馈信息的消息。
  50. 根据权利要求49所述的方法,其中,所述在所述SDT过程的后续数据发送阶段的资源上发送所述反馈信息,包括:
    在所述SDT过程的后续数据发送阶段的用于调度数据传输的PDCCH资源上发送所述反馈信息。
  51. 根据权利要求49所述的方法,其中,所述在随机接入中发送携带有所述反馈信息的消息,包括以下至少之一:
    在所述网络侧在四步随机接入中发送携带有所述反馈信息的随机接入消息2;
    在所述四步随机接入中发送携带有所述反馈信息的随机接入消息4;
    在所述四步随机接入中发送携带有所述反馈信息的随机接入消息B。
  52. 根据权利要求34至51任一项所述的方法,其中,所述方法还包括:
    接收连接失败检测结果。
  53. 根据权利要求52所述的方法,其中,所述失败检测结果包括以下至少之一:
    连接失败类型指示,指示连接失败类型;
    SDT过程指示,用于指示在SDT过程中检测到连接失败;
    SDT阶段指示,用于指示连接失败发生时所在的SDT阶段,其中,所述SDT阶段包括:SDT过程中的初始数据发送阶段和/或后续数据发送阶段;
    SDT过程类型指示,用于SDT过程的类型;
    业务指示,用于指示触发SDT过程的业务。
  54. 根据权利要求53所述的方法,其中,所述业务指示,包括以下至少之一:
    所述业务的无线承载RB标识;
    所述业务的业务流标识;
    所述业务的会话标识;
    所述业务的逻辑信道标识。
  55. 一种连接失败检测装置,其中,由用户设备UE执行,所述装置包括:
    检测模块,被配置为针对小数据传输SDT过程进行连接失败检测。
  56. 根据权利要求55所述的装置,其中,所述检测模块,被配置为根据获取的失败检测配置, 针对所述SDT过程进行连接失败检测。
  57. 根据权利要求56所述的装置,其中,所述失败检测配置包括:
    从网络侧接收的失败检测配置;
    和/或,
    协议约定的所述失败检测配置。
  58. [根据细则26改正26.07.2021]
    根据权利要求57所述的装置,其中,所述从网络侧接收的失败检测配置包括:
    从网络侧接收的且携带在系统消息中的所述失败检测配置;
    和/或,
    从网络侧接收的且携带在连接释放消息中的所述失败检测配置。
  59. 根据权利要求55至58任一项所述的方法,其中,所述获取模块,被配置为响应于检测到触发事件,针对所述SDT过程进行连接失败检测。
  60. 根据权利要求59所述的装置,其中,所述触发事件,包括以下至少之一:
    启动所述SDT过程;
    所述UE进行所述SDT过程的首次发送上行数据;
    所述UE从网络侧接收到确认指示,其中,所述确认指示为:所述网络侧接收到所述SDT过程的首次发送的上行数据后发送的指示。
  61. 根据权利要求60所述的装置,其中,所述进行所述SDT过程的首次发送上行数据,包括以下至少之一:
    所述UE通过四步随机接入的随机接入消息3首次发送上行数据;
    所述UE通过两步随机接入的随机接入消息A首次发送上行数据;
    所述UE在配置授权CG物理上行共享信道PUSCH资源上首次发送上行数据。
  62. 根据权利要求60所述的装置,其中,所述获取模块,被配置为执行以下至少之一:
    从网络侧接收到四步随机接入消息4的竞争解决标识;
    从网络侧接收到两步随机接入消息B的竞争解决标识;
    从网络侧接收到在CG PUSCH资源上的数据发送的成功指示。
  63. 根据权利要求55至62任一项所述的装置,其中,所述装置还包括:
    停止模块,被配置为响应于检测到停止事件,停止针对所述SDT过程的所述连接失败检测。
  64. 根据权利要求63所述的装置,其中,所述检测到停止事件,包括:
    所述UE的连接状态发生转换;
    和/或,
    所述UE从网络侧接收到与连接关联的特定指示信息。
  65. 根据权利要求64所述的装置,其中,所述UE的连接状态发生转换,包括以下至少之一:
    所述UE从非激活态转换到空闲态;
    所述UE从非激活态转换到连接态;
    所述UE从空闲态转换到连接态。
  66. 根据权利要求63所述的装置,其中,所述获取模块,被配置执行以下至少之一:
    所述UE从所述网络侧接收到连接释放消息;
    所述UE从所述网络侧接收到连接恢复消息;
    所述UE从所述网络侧接收到连接拒绝消息;
    所述UE从所述网络侧接收到连接建立消息。
  67. 根据权利要求56所述的方法,其中,所述失败检测配置,包括以下至少之一:
    计时器信息,指示与连接失败检测关联的计时器;
    计数器信息,指示与所述连接失败检测关联的计数器;
    信号指示信息,用于指示进行所述连接失败检测的信号。
  68. 根据权利要求67所述的装置,其中,所述计时器包括以下至少之一:
    物理层的失步计时器,用于对出现物理层失步计时;
    检测波束失败的计时器,用于对波束失败检测进行计时。
  69. 根据权利要求67所述的装置,其中,所述计数器包括以下至少之一:
    失步计数器,用于物理层失步指示计数;
    同步计数器,用于物理层同步指示计数;
    波束失败计数器,用于对波束失败计数;
    媒体访问控制MAC层随机接入次数计数器,用于进行MAC层的随机接入次数计数;
    无线链路控制RLC层的传输次数计数器,用于进行RLC层的传输次数计数。
  70. 根据权利要求67至69任一项所述的装置,所述信号指示信息,用于指示以下至少之一:
    所述连接失败检测中物理层失步检测的信号;
    所述连接失败检测中波束失败检测的信号。
  71. 根据权利要求67至70任一项所述的装置,其中,所述信号指示信息指示的信号,包括以下至少之一:
    与四步随机接入的物理下行随机接入信道PRACH资源关联的下行信号;
    与调度所述四步随机接入的竞争解决标识的物理下行控制信道PDCCH关联的下行信号;
    在成功接收所述四步随机接入的随机接入消息4的竞争解决标识后,与调度数据传输的PDCCH信道关联的下行信号;
    与两步随机接入的随机接入消息A关联的下行信号;
    在两步随机接入的随机接入消息B的竞争解决标识接收到后,与调度数据的PDCCH关联的下行信号;
    与CG PUSCH资源关联的下行信号;
    与发送传输成功指示的PDCCH关联的下行信号;其中,所述传输成功指示为:指示在CG PUSCH上数据发送成功;
    在接收到所述传输成功指示之后,与调度数据传输的PDCCH关联的下行信号;
    所述UE所在小区发送的下行信号;
    所述UE所在BWP发送的下行信号;
    所述UE能检测到小区的下行信号;
    所述UE所在BWP能够检测到的下行信号。
  72. 根据权利要求55至71任一项所述的装置,其中,所述装置还包括:
    连接模块,被配置为响应于基于所述失败检测结果确定出连接失败,重新获取连接;
    或者,
    状态切换模块,被配置为响应于基于所述失败检测结果确定出连接失败,进入空闲态。
  73. 根据权利要求55至72任一项所述的装置,其中,所述装置还包括:
    恢复模块,被配置为响应于基于所述失败检测结果确定连接失败的原因为波束失败,执行波束恢复。
  74. 根据权利要求73所述的装置,其中,所述恢复模块,被配置为根据波束恢复配置,执行所述波束恢复。
  75. 根据权利要求74所述的装置,其中,所述装置还包括:波束恢复配置模块;所述波束恢复配置模块被配置执行以下至少之一:
    接收系统消息携带的所述波束恢复配置;
    接收连接释放消息携带的所述波束恢复配置;
    基于协议约定确定所述波束恢复配置。
  76. 根据权利要求74或75所述的装置,其中,所述波束恢复配置,包括以下至少之一:
    波束恢复计数器信息,指示用于波束恢复次数的计数器;
    波束恢复计时器信息,指示用于波束恢复时长进行计时器;
    优先级配置,用于指示波束恢复对应的随机接入的优先级,其中,不同所述优先级,对应的波束恢复时的随机接入配置不同;
    资源配置,指示波束恢复所用的资源;
    门限配置,指示波束恢复所用的门限值。
  77. 根据权利要求76所述的装置,其中,所述资源配置,指示SDT过程所在小区或BWP的基于竞争的随机接入请求资源用于波束恢复。
  78. 根据权利要求77所述的装置,其中,所述门限配置,指示用于选择随机接入请求资源的门限值,复用为所述波束恢复的门限值。
  79. 根据权利要求75至78任一项所述的装置,其中,所述装置还包括:
    反馈模块,被配置为接收网络侧对所述波束恢复的反馈信息,其中,所述反馈信息,指示所述波束恢复的结果。
  80. 根据权利要求79所述的装置,其中,所述反馈模块,被配置为在所述SDT过程的后续数 据发送阶段的资源上接收所述反馈信息;和/或,接收所述网络侧在随机接入中下发的消息携带的所述反馈信息。
  81. 根据权利要求80所述的装置,其中,所述反馈模块,被配置为在所述SDT过程的后续数据发送阶段的用于调度数据传输的PDCCH资源上接收所述反馈信息。
  82. 根据权利要求80所述的装置,其中,所述反馈模块,被配置为执行以下至少之一:
    接收所述网络侧在四步随机接入中下发的随机接入消息2携带的所述反馈信息;
    接收所述网络侧在四步随机接入中下发的随机接入消息4携带的所述反馈信息;
    接收所述网络侧在四步随机接入中下发的随机接入消息B携带的所述反馈信息。
  83. 根据权利要求73至82任一项所述的装置,其中,所述装置还包括:
    连接模块,被配置为响应所述波束恢复失败,重新获取连接;
    或者,
    状态切换模块,被配置为响应所述波束恢复失败,进入空闲态。
  84. 根据权利要求72至83任一项所述的装置,其中,所述连接模块,被配置为执行以下至少之一:
    基于非接入层NAS消息触发连接建立;
    基于连接建立请求消息触发连接建立;
    基于连接恢复请求消息触发连接恢复;
    基于连接重建请求消息触发连接重建。
  85. 根据权利要求55至84任一项所述的装置,其中,所述装置还包括:
    上报模块,被配置为上报连接失败检测结果。
  86. 根据权利要求85所述的装置,其中,所述失败检测结果包括以下至少之一:
    连接失败类型指示,指示连接失败类型;
    SDT过程指示,用于指示在SDT过程中检测到连接失败;
    SDT阶段指示,用于指示连接失败发生时所在的SDT阶段,其中,所述SDT阶段包括:SDT过程中的初始数据发送阶段和/或后续数据发送阶段;
    SDT过程类型指示,用于SDT过程的类型;
    业务指示,用于指示触发SDT过程的业务。
  87. 根据权利要求86所述的装置,其中,所述业务指示,包括以下至少之一:
    所述业务的无线承载RB标识;
    所述业务的业务流标识;
    所述业务的会话标识;
    所述业务的逻辑信道标识。
  88. 一种信息处理装置,所述装置包括:
    发送模块,被配置为发送失败检测配置,其中,所述失败检测配置,用于供UE针对SDT过程 的连接失败检测。
  89. 根据权利要求88所述的装置,其中,所述发送模块,被配置为发送携带有所述失败检测配置的系统消息;和/或,发送携带有所述失败检测配置的连接释放消息。
  90. 根据权利要求88或89所述的装置,其中,所述发送模块,被配置为发送与连接关联的特定指示信息;其中,所述特定指示信息,用于触发UE停止针对所述SDT过程的连接失败检测。
  91. 根据权利要求90所述的装置,其中,所述特定指示信息包括以下至少之一:
    连接释放消息;
    连接恢复消息;
    连接拒绝消息;
    连接建立消息。
  92. 根据权利要求88至91任一项所述的装置,其中,所述失败检测配置,包括以下至少之一:
    计时器信息,指示与连接失败检测关联的计时器;
    计数器信息,指示与所述连接失败检测关联的计数器;
    信号指示信息,用于指示进行所述连接失败检测的信号。
  93. 根据权利要求92所述的装置,其中,所述计时器包括以下至少之一:
    物理层的失步计时器,用于对出现物理层失步计时;
    检测波束失败的计时器,用于对波束失败检测进行计时。
  94. 根据权利要求92所述的装置,其中,所述计数器包括以下至少之一:
    失步计数器,用于物理层失步指示计数;
    同步计数器,用于物理层同步指示计数;
    波束失败计数器,用于对波束失败计数;
    媒体访问控制MAC层随机接入次数计数器,用于进行MAC层的随机接入次数计数;
    无线链路控制RLC层的传输次数计数器,用于进行RLC层的传输次数计数。
  95. 根据权利要求92至94任一项所述的装置,其中,所述信号指示信息,用于指示以下至少之一:
    所述连接失败检测中物理层失步检测的信号;
    所述连接失败检测中波束失败检测的信号。
  96. 根据权利要求92至95任一项所述的装置,其中,所述信号指示信息指示信号,包括以下至少之一:
    与四步随机接入的物理下行随机接入信道PRACH资源关联的下行信号;
    与调度所述四步随机接入的竞争解决标识的物理下行控制信道PDCCH关联的下行信号;
    在成功接收所述四步随机接入的随机接入消息4的竞争解决标识后,与调度数据传输的PDCCH信道关联的下行信号;
    与两步随机接入的随机接入消息A关联的下行信号;
    在两步随机接入的随机接入消息B的竞争解决标识接收到后,与调度数据的PDCCH关联的下行信号;
    与CG PUSCH资源关联的下行信号;
    与发送传输成功指示的PDCCH关联的下行信号;其中,所述传输成功指示为:指示在CG PUSCH上数据发送成功;
    在接收到所述传输成功指示之后,与调度数据传输的PDCCH关联的下行信号;
    所述UE所在小区发送的下行信号;
    所述UE所在BWP发送的下行信号;
    所述UE能检测到小区的下行信号;
    所述UE所在BWP能够检测到的下行信号。
  97. 根据权利要求88至96任一项所述的装置,其中,所述发送模块,还被配置为发送波束恢复配置,其中,所述波束恢复配置,用于供所述UE在所述SDT过程中检测到连接失败的原因为波束失败时执行波束恢复。
  98. 根据权利要求97所述的装置,其中,所述发送模块,被配置为执行以下至少之一:
    发送携带有所述波束恢复配置的系统消息;
    发送携带有所述波束恢复配置的连接释放消息。
  99. 根据权利要求97或98所述的装置,其中,所述波束恢复配置,包括以下至少之一:
    波束恢复计数器信息,指示用于波束恢复次数的计数器;
    波束恢复计时器信息,指示用于波束恢复时长进行计时器;
    优先级配置,用于指示波束恢复对应的随机接入的优先级,其中,不同所述优先级,对应的波束恢复时的随机接入配置不同;
    资源配置,指示波束恢复所用的资源;
    门限配置,指示波束恢复所用的门限值。
  100. 根据权利要求99所述的装置,其中,所述资源配置,指示SDT过程所在小区或BWP的基于竞争的随机接入请求资源用于波束恢复。
  101. 根据权利要求100所述的装置,其中,所述门限配置,指示用于选择随机接入请求资源的门限值,复用为所述波束恢复的门限值。
  102. 根据权利要求88至101任一项所述的装置,其中,所述发送模块,被配置为根据所述UE的波束恢复的结果,发送所述波束恢复的反馈信息。
  103. 根据权利要求102所述的装置,其中,所述发送模块,被配置为在所述SDT过程的后续数据发送阶段的资源上发送所述反馈信息;和/或,在随机接入中发送携带有所述反馈信息的消息。
  104. 根据权利要求103所述的装置,其中,所述发送模块,还被配置为在所述SDT过程的后续数据发送阶段的用于调度数据传输的PDCCH资源上发送所述反馈信息。
  105. 根据权利要求102所述的装置,其中,所述发送模块,被配置为执行以下至少之一:
    在所述网络侧在四步随机接入中发送携带有所述反馈信息的随机接入消息2;
    在所述四步随机接入中发送携带有所述反馈信息的随机接入消息4;
    在所述四步随机接入中发送携带有所述反馈信息的随机接入消息B。
  106. 根据权利要求88至105任一项所述的装置,其中,所述装置还包括:
    接收模块,被配置为接收连接失败检测结果。
  107. 根据权利要求106所述的装置,其中,所述失败检测结果包括以下至少之一:
    连接失败类型指示,指示连接失败类型;
    SDT过程指示,用于指示在SDT过程中检测到连接失败;
    SDT阶段指示,用于指示连接失败发生时所在的SDT阶段,其中,所述SDT阶段包括:SDT过程中的初始数据发送阶段和/或后续数据发送阶段;
    SDT过程类型指示,用于SDT过程的类型;
    业务指示,用于指示触发SDT过程的业务。
  108. 根据权利要求107所述的装置,其中,所述业务指示,包括以下至少之一:
    所述业务的无线承载RB标识;
    所述业务的业务流标识;
    所述业务的会话标识;
    所述业务的逻辑信道标识。
  109. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至33或34至54任一项提供的方法。
  110. 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至33或34至54任一项提供的方法。
PCT/CN2021/092468 2021-05-08 2021-05-08 连接失败检测方法及装置、通信设备及存储介质 WO2022236498A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2021/092468 WO2022236498A1 (zh) 2021-05-08 2021-05-08 连接失败检测方法及装置、通信设备及存储介质
EP21941079.2A EP4336942A4 (en) 2021-05-08 2021-05-08 CONNECTION FAILURE DETECTION METHOD AND APPARATUS, COMMUNICATION DEVICE AND STORAGE MEDIUM
BR112023023206A BR112023023206A2 (pt) 2021-05-08 2021-05-08 Métodos para detecção de falha de conexão e de processamento de informações, dispositivo de comunicação, e, meio de armazenamento legível por computador não transitório
KR1020237042297A KR20240005079A (ko) 2021-05-08 2021-05-08 연결 실패 검출 방법 및 장치, 통신 디바이스 및 저장 매체(connection failure detection method and apparatus, communication device, and storage medium)
CN202180001467.6A CN115606309A (zh) 2021-05-08 2021-05-08 连接失败检测方法及装置、通信设备及存储介质
JP2023568600A JP2024517898A (ja) 2021-05-08 2021-05-08 接続失敗検出方法及び装置、通信デバイス及び記憶媒体
US18/558,046 US20240224093A1 (en) 2021-05-08 2021-05-08 Connection failure detection method and apparatus, communication device, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092468 WO2022236498A1 (zh) 2021-05-08 2021-05-08 连接失败检测方法及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022236498A1 true WO2022236498A1 (zh) 2022-11-17

Family

ID=84027809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092468 WO2022236498A1 (zh) 2021-05-08 2021-05-08 连接失败检测方法及装置、通信设备及存储介质

Country Status (7)

Country Link
US (1) US20240224093A1 (zh)
EP (1) EP4336942A4 (zh)
JP (1) JP2024517898A (zh)
KR (1) KR20240005079A (zh)
CN (1) CN115606309A (zh)
BR (1) BR112023023206A2 (zh)
WO (1) WO2022236498A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125649A1 (zh) * 2021-12-31 2023-07-06 夏普株式会社 连接建立失败报告方法和用户设备
WO2024119418A1 (zh) * 2022-12-07 2024-06-13 北京小米移动软件有限公司 信道检测方法、装置、通信设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105706519A (zh) * 2013-10-25 2016-06-22 日本电气株式会社 移动无线电通信网络中的小数据传输的控制
CN108141751A (zh) * 2015-09-24 2018-06-08 三星电子株式会社 用于在网络中支持对远程邻近服务ue的合法监听的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105706519A (zh) * 2013-10-25 2016-06-22 日本电气株式会社 移动无线电通信网络中的小数据传输的控制
CN108141751A (zh) * 2015-09-24 2018-06-08 三星电子株式会社 用于在网络中支持对远程邻近服务ue的合法监听的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, ASIA PACIFIC TELECOM, ERICSSON, ETRI, FGI, SHARP, SONY: "Small data transmission failure timer", 3GPP DRAFT; R2-2101578, vol. RAN WG2, 15 January 2021 (2021-01-15), pages 1 - 3, XP051974456 *
INTERDIGITAL: "Small data transmission failure and cell reselection", 3GPP DRAFT; R2-2010109, vol. RAN WG2, 23 October 2020 (2020-10-23), pages 1 - 4, XP051942813 *
See also references of EP4336942A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125649A1 (zh) * 2021-12-31 2023-07-06 夏普株式会社 连接建立失败报告方法和用户设备
WO2024119418A1 (zh) * 2022-12-07 2024-06-13 北京小米移动软件有限公司 信道检测方法、装置、通信设备及存储介质

Also Published As

Publication number Publication date
EP4336942A4 (en) 2024-07-10
BR112023023206A2 (pt) 2024-01-30
CN115606309A (zh) 2023-01-13
EP4336942A1 (en) 2024-03-13
KR20240005079A (ko) 2024-01-11
US20240224093A1 (en) 2024-07-04
JP2024517898A (ja) 2024-04-23

Similar Documents

Publication Publication Date Title
CN110622617B (zh) 信息处理方法、装置及计算机存储介质
CN111869274B (zh) 数据传输处理方法、装置、用户设备及存储介质
CN111226487B (zh) 随机接入方法及装置、通信设备及存储介质
WO2022236498A1 (zh) 连接失败检测方法及装置、通信设备及存储介质
CN112106425B (zh) 资源处理方法及装置、通信设备及存储介质
CN110809902A (zh) 信息处理方法及装置、通信设备及存储介质
US20230156703A1 (en) DATA TRANSMISSION SCHEDULING METHOD AND DEVICE, AND STORAGE MEDIUM (as amended)
CN110999527A (zh) 无线链路失败的处理方法、装置及计算机存储介质
CN113597814B (zh) Drx定时器的启动方法、装置、通信设备及存储介质
WO2022032581A1 (zh) 上行传输的发送、接收方法及装置、通信设备及介质
CN111345068B (zh) 数据通信方法、装置、通信设备及存储介质
CN111183703B (zh) 帧传输方法及装置、通信端及存储介质
US20220386357A1 (en) Data transmission method and apparatus, and communication device
WO2022126369A1 (zh) 传输数据的方法、装置、通信设备及存储介质
WO2021163969A1 (zh) 数据传输方法、装置和通信设备
RU2821802C2 (ru) Способ и устройство обнаружения сбоя соединения, устройство связи и носитель данных
WO2024113189A1 (zh) 小数据传输sdt方法、装置、通信设备及存储介质
EP4369837A1 (en) Random access method and apparatus, and storage medium
WO2022133720A1 (zh) 寻呼消息类型确定方法、装置、通信设备和存储介质
RU2814210C1 (ru) Способ и устройство управления прямым соединением, устройство связи и носитель данных
WO2022183452A1 (zh) 波束恢复的方法、装置、通信设备及存储介质
WO2024036527A1 (zh) 搜索空间配置方法、装置、通信设备及存储介质
CN116724513A (zh) 信息指示方法、装置、系统、通信设备及存储介质
CN115804176A (zh) 信息处理及装置、通信设备及存储介质
CN116325891A (zh) 调度请求传输方法及装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941079

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18558046

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023568600

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023023206

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2023130651

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 202347081560

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237042297

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237042297

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2021941079

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021941079

Country of ref document: EP

Effective date: 20231208

WWE Wipo information: entry into national phase

Ref document number: 11202308454S

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 112023023206

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231106