WO2024119418A1 - 信道检测方法、装置、通信设备及存储介质 - Google Patents

信道检测方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2024119418A1
WO2024119418A1 PCT/CN2022/137356 CN2022137356W WO2024119418A1 WO 2024119418 A1 WO2024119418 A1 WO 2024119418A1 CN 2022137356 W CN2022137356 W CN 2022137356W WO 2024119418 A1 WO2024119418 A1 WO 2024119418A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
configuration
uplink data
detected
time domain
Prior art date
Application number
PCT/CN2022/137356
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/137356 priority Critical patent/WO2024119418A1/zh
Publication of WO2024119418A1 publication Critical patent/WO2024119418A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular to a channel detection method, device, communication equipment and storage medium.
  • a terminal can be configured with multiple sets of configured grant physical uplink shared channel (CG PUSCH, Configured Grant Physical Uplink Shared Channel) configurations, and multiple sets of CG PUSCH configurations can be configured on the same or different transmission resources (such as carriers).
  • CG PUSCH configured grant physical uplink shared channel
  • Configured Grant Physical Uplink Shared Channel Configured Grant Physical Uplink Shared Channel
  • multiple sets of CG PUSCH configurations can be configured on the same or different transmission resources (such as carriers).
  • the terminal does not necessarily transmit uplink information on each resource, so the base station needs to perform detection. In related technologies, frequent detection will generate a lot of power consumption, which is not conducive to energy saving of the base station.
  • the embodiments of the present disclosure disclose a channel detection method, an apparatus, a communication device, and a storage medium.
  • a channel detection method is provided, wherein the method is performed by an access network device, and the method includes:
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configurations include a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH;
  • the uplink data of the second CG PUSCH is detected.
  • the detecting uplink data of the second CG PUSCH includes:
  • the first time domain position is a position determined based on the CG PUSCH resources for transmitting the uplink data.
  • the first time domain position is the detected end position of the CG PUSCH resource transmitting the uplink data.
  • the CG PUSCH configured for the terminal includes a CG PUSCH configured as a low priority and/or a CG PUSCH configured as a high priority.
  • the CG PUSCH of the high priority is configured as the first CG PUSCH.
  • detecting uplink data on the second CG PUSCH includes:
  • the at least one second CG PUSCH is detected, wherein the first indication information is used to indicate at least one second CG PUSCH.
  • the detecting the at least one second CG PUSCH comprises:
  • the second time domain position is a position determined based on the CG PUSCH resources for transmitting the indication information.
  • the second time domain position is the end position of the CG PUSCH resource where the indication information is detected in the first CG PUSCH.
  • the first indication information is CG uplink control information UCI carried in CG PUSCH.
  • the CG UCI indicates index information of at least one of the second CG PUSCHs.
  • the first duration is specified by a predetermined communication protocol or configured by the base station, and/or the second duration is specified by a predetermined communication protocol or configured by the base station.
  • a channel detection device wherein the device includes:
  • the determination module is configured to configure at least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is a first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is a second CG PUSCH;
  • the detection module is configured to detect the first CG PUSCH; when uplink data is detected in the first CG PUSCH, the uplink data of the second CG PUSCH is detected.
  • the detection module is further configured to:
  • the first time domain position is a position determined based on the CG PUSCH resources for transmitting the uplink data.
  • the detection module is also configured so that the first time domain position is the end position of the detected CG PUSCH resource for transmitting the uplink data.
  • the determination module is also configured to configure the CG PUSCH configured for the terminal to include a CG PUSCH configured as a low priority and/or a CG PUSCH configured as a high priority.
  • the determination module is also configured so that the CG PUSCH with the high priority is configured as the first CG PUSCH.
  • the detection module is further configured to:
  • the at least one second CG PUSCH is detected, wherein the first indication information is used to indicate at least one second CG PUSCH.
  • the detection module is further configured to:
  • the second time domain position is a position determined based on the CG PUSCH resources for transmitting the indication information.
  • the detection module is also configured so that the second time domain position is the end position of the CG PUSCH resource for transmitting the indication information detected in the first CG PUSCH.
  • the detection module is also configured that the first indication information is CG uplink control information UCI carried in CG PUSCH.
  • the detection module is also configured to indicate index information of at least one of the second CG PUSCHs as the CG UCI.
  • the detection module is further configured such that the first duration is specified by a predetermined communication protocol or configured by the base station, and/or the second duration is specified by a predetermined communication protocol or configured by the base station.
  • a communication device including:
  • a memory for storing instructions executable by the processor
  • the processor is configured to implement the method described in any embodiment of the present disclosure when running the executable instructions.
  • a computer storage medium stores a computer executable program, and when the executable program is executed by a processor, the method described in any embodiment of the present disclosure is implemented.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH is detected; when uplink data is detected in the first CG PUSCH, the uplink data of the second CG PUSCH is detected.
  • the access network device will configure at least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration, and the first CG PUSCH will be detected first, and only when the uplink data is detected in the first CG PUSCH will the uplink data of the CG PUSCH be detected.
  • the number of CG PUSCH detections can be reduced, which is beneficial for access network equipment to save power consumption.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 is a schematic flow chart of a channel detection method according to an exemplary embodiment.
  • Fig. 3 is a schematic flow chart showing a channel detection method according to an exemplary embodiment.
  • Fig. 4 is a schematic flow chart showing a channel detection method according to an exemplary embodiment.
  • Fig. 5 is a schematic flow chart showing a channel detection method according to an exemplary embodiment.
  • Fig. 6 is a schematic flow chart showing a channel detection method according to an exemplary embodiment.
  • Fig. 7 is a schematic diagram showing a channel detection device according to an exemplary embodiment.
  • Fig. 8 is a schematic diagram showing the structure of a terminal according to an exemplary embodiment.
  • Fig. 9 is a block diagram of a base station according to an exemplary embodiment.
  • Fig. 10 is a schematic diagram showing a network architecture according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the disclosed embodiments, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word "if” as used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
  • the wireless communication system is a communication system based on mobile communication technology, and the wireless communication system may include: at least one user device 110 and at least one access network node.
  • the access network node may be a base station 120.
  • the user device 110 may be a terminal.
  • the terminal involved in the present disclosure may be but is not limited to a mobile phone, a wearable device, a vehicle-mounted terminal, a road side unit (RSU, Road Side Unit), a smart home terminal, an industrial sensor device and/or a medical device, etc.
  • the terminal may be a Redcap terminal or a predetermined version of a new air interface NR terminal (for example, an R17 NR terminal).
  • the user equipment 110 may be a device that provides voice and/or data connectivity to a user.
  • the user equipment 110 may communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the user equipment 110 may be an IoT user equipment, such as a sensor device, a mobile phone, and a computer with an IoT user equipment.
  • IoT user equipment such as a sensor device, a mobile phone, and a computer with an IoT user equipment.
  • it may be a fixed, portable, pocket-sized, handheld, computer-built-in, or vehicle-mounted device.
  • a station STA
  • a subscriber unit a subscriber station, a mobile station, a mobile station, a remote station, an access point, a remote terminal, an access terminal, a user terminal, a user agent, a user device, or a user equipment.
  • the user equipment 110 may also be a device of an unmanned aerial vehicle.
  • the user device 110 may be a vehicle-mounted device, such as a driving computer with wireless communication function, or a wireless user device connected to a driving computer.
  • the user device 110 may be a roadside device, such as a street lamp, a signal lamp, or other roadside device with wireless communication function.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system may be a 4th generation mobile communication (4G) system, also known as a long term evolution (LTE) system; or, the wireless communication system may be a 5G system, also known as a new air interface system or a 5G NR system. Alternatively, the wireless communication system may be a next generation system of a 5G system or other future wireless communication systems.
  • the access network in the 5G system may be referred to as NG-RAN (New Generation-Radio Access Network).
  • the base station 120 can be an evolved base station (eNB) adopted in the 4G system.
  • the base station 120 can also be a base station (gNB) adopting a centralized distributed architecture in the 5G system.
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed units, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack;
  • the distributed unit is provided with a physical (Physical, PHY) layer protocol stack.
  • the specific implementation method of the base station 120 is not limited in the embodiment of the present disclosure.
  • a wireless connection may be established between the base station 120 and the user equipment 110 via a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, for example, the wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on the 5G next generation mobile communication network technology standard or other future wireless communication technology standards.
  • an E2E (End to End) connection may also be established between the user devices 110, such as V2V (vehicle to vehicle) communication, V2I (vehicle to Infrastructure) communication, and V2P (vehicle to pedestrian) communication in vehicle to everything (V2X) communication.
  • V2V vehicle to vehicle
  • V2I vehicle to Infrastructure
  • V2P vehicle to pedestrian
  • the above-mentioned user equipment can be considered as the terminal equipment of the following embodiments.
  • the wireless communication system may also include a core network device 130 .
  • the base station 120 is connected to the core network device 130.
  • the core network device 130 may be a core network device in a wireless communication system.
  • the core network device may correspond to network functions, such as access and mobility management function (AMF), user plane function (UPF), and session management function (SMF) and other communication nodes.
  • AMF access and mobility management function
  • UPF user plane function
  • SMF session management function
  • the implementation form of the core network device 130 is not limited in the embodiments of the present disclosure.
  • the core network device 130 includes a network function that provides a positioning function.
  • a location management function LMF
  • EMLC evolved serving mobile location center
  • the access network node may also integrate a module or component with a positioning function.
  • the access network node is a network element, module or component that provides a positioning function.
  • the embodiments of the present disclosure list multiple implementation methods to clearly illustrate the technical solutions of the embodiments of the present disclosure.
  • the multiple embodiments provided by the embodiments of the present disclosure can be executed separately, or can be executed together with the methods of other embodiments of the embodiments of the present disclosure, or can be executed together with some methods in other related technologies separately or in combination; the embodiments of the present disclosure do not limit this.
  • the terminal may be configured with multiple sets of CG PUSCH configurations, and the multiple sets of CG PUSCH may be configured on the same or different transmission resources (e.g., carriers).
  • the terminal does not necessarily transmit uplink information on each resource, so the base station needs to perform blind detection.
  • the CG PUSCH configured by the base station for the terminal includes a first type Type 1 CG PUSCH and a second type Type 2 CG PUSCH.
  • the first type Type 1 CG PUSCH is configured by the base station through radio resource control (RRC, Radio Resource Control) signaling, and the terminal can periodically send uplink data on the configured CG PUSCH resources.
  • RRC Radio Resource Control
  • the CG PUSCH resource configuration becomes invalid.
  • the second type Type 2 CG PUSCH is configured by the base station through RRC signaling, and it needs to be activated by downlink control information (DCI, Downlink Control Information) before it can be used.
  • DCI Downlink Control Information
  • different sets of CG PUSCH can be configured with different priorities.
  • the priority of CG PUSCH can be configured through high-level signaling (for example, there are 2 priorities, high priority and low priority).
  • CG PUSCH of different priorities can be used to carry different types of services, for example, services of different priorities.
  • high-priority services are carried on high-priority CG PUSCH
  • low-priority services are carried on low-priority CG PUSCH.
  • High-priority services are, for example, services that require lower latency and higher transmission accuracy, such as video conferencing services.
  • Low-priority services are, for example, services with longer latency and lower transmission rates, such as meter reading services.
  • the terminal may send the configured grant uplink control information (CG UCI) along with the configured CG PUSCH.
  • CG UCI is the uplink control information sent along with each CG PUSCH.
  • CG UCI includes the hybrid automatic repeat request (HARQ) process identifier, version number, new data indication and channel busy time sharing (COT sharing) and other information.
  • HARQ hybrid automatic repeat request
  • COT sharing channel busy time sharing
  • this embodiment provides a channel detection method, wherein the method is performed by an access network device, and the method includes:
  • Step 21 Configure at least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected.
  • the terminal involved in the present disclosure may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a road side unit (RSU, Road Side Unit), a smart home terminal, an industrial sensor device and/or a medical device, etc.
  • the terminal may be a Redcap terminal or a predetermined version of a new air interface NR terminal (for example, an R17 NR terminal).
  • the access network equipment involved in the present disclosure may be a base station, and the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a base station of a fifth generation mobile communication (5G) network, or other evolved base stations.
  • 3G third generation mobile communication
  • 4G fourth generation mobile communication
  • 5G fifth generation mobile communication
  • the first CG PUSCH configuration and/or the second CG PUSCH configuration are determined from at least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations configured for the terminal; the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected.
  • the CG PUSCH configured in the first CG PUSCH configuration is a first CG PUSCH, and it can be understood that the first CG PUSCH in the present disclosure corresponds to the first CG PUSCH configuration.
  • the CG PUSCH configured in the second CG PUSCH configuration is a second CG PUSCH, and it can be understood that the second CG PUSCH in the present disclosure corresponds to the second CG PUSCH configuration.
  • continuously detecting the first CG PUSCH may mean that the first CG PUSCH is detected all the time, for example, the first CG PUSCH is detected all the time according to the set period. It can be understood that continuously detecting the first CG PUSCH means that the first CG PUSCH needs to be detected in each time slot of the first CG PUSCH.
  • the second CG PUSCH does not need to be continuously detected, which means that the second CG PUSCH does not need to be detected when the predetermined detection condition is not met. Alternatively, the second CG PUSCH is detected only when the predetermined detection condition is met. It can be understood that continuously detecting the second CG PUSCH means that the second CG PUSCH needs to be detected in each time slot of the second CG PUSCH.
  • the detection of CG PUSCH can be a blind detection of CG PUSCH.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH in the first CG PUSCH configuration needs to be continuously blind detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously blind detected.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected. Detect the uplink data of the first CG PUSCH. In response to the predetermined detection condition being met, detect the uplink data of the second CG PUSCH.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected. Detect the first CG PUSCH.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected.
  • Detect the first CG PUSCH In response to detecting uplink data on the first CG PUSCH, detect uplink data of the second CG PUSCH after a first duration at a first time domain position.
  • the first time domain position is a position determined based on the CG PUSCH resource for transmitting the uplink data.
  • the first time domain position may be the end position of the CG PUSCH resource for transmitting the uplink data; or, the first time domain position may be the start position of the CG PUSCH resource for transmitting the uplink data.
  • the first duration may be determined based on the transmission duration determined by the CG PUSCH resource for transmitting the uplink data and the demodulation duration of the uplink data, for example, the first duration is greater than or equal to the sum of the transmission duration determined by the CG PUSCH resource for transmitting the uplink data and the demodulation duration of the uplink data.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected. Detect the first CG PUSCH.
  • the uplink data of the first CG PUSCH is also continuously detected.
  • the first duration is specified by a predetermined communication protocol or configured by the base station.
  • the first duration can be used for the base station to complete the process of demodulating uplink data transmitted by CG PUSCH.
  • the first duration is greater than or equal to the duration required for the base station to complete the demodulation of uplink data transmitted by CG PUSCH.
  • the CG PUSCH configured for the terminal includes a CG PUSCH configured as a low priority and/or a CG PUSCH configured as a high priority.
  • CG PUSCHs of different priorities can be used to carry uplink services of different priorities. For example, a high priority service is carried on a high priority CG PUSCH, and a low priority service is carried on a low priority CG PUSCH.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected.
  • the first CG PUSCH in the first CG PUSCH configuration may include a high-priority CG PUSCH and a low-priority CG PUSCH; the second CG PUSCH in the second CG PUSCH configuration may include a high-priority CG PUSCH and a low-priority CG PUSCH.
  • the high-priority CG PUSCH in the CG PUSCH configuration will be detected first.
  • the access network device may configure the GC PUSCH, for example, the CG PUSCH may be configured through radio resource control (RRC, Radio Resource Control) signaling.
  • the CG PUSCH configuration may include priority information.
  • the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration.
  • the first CG PUSCH configuration may include the priority information of the first CG PUSCH configuration, and here, the priority information of the first CG PUSCH configuration is also the priority information of the first CG PUSCH in the first CG PUSCH configuration.
  • the second CG PUSCH configuration may include the priority information of the second CG PUSCH configuration, and here, the priority information of the second CG PUSCH configuration is also the priority information of the second CG PUSCH in the second CG PUSCH configuration. Among them, the priority information indicates the priority.
  • the time-frequency domain resources corresponding to the high-priority CG PUSCH configuration overlap with the time-frequency domain resources corresponding to the low-priority CG PUSCH configuration
  • the time-frequency domain resources of the high-priority CG PUSCH configuration will be detected first; or, when the time-frequency domain resources corresponding to the high-priority CG PUSCH overlap with the time-frequency domain resources corresponding to the low-priority CG PUSCH, the time-frequency domain resources of the high-priority CG PUSCH will be detected first.
  • the priority corresponding to the priority information can be for the CG PUSCH configuration setting or for the CG PUSCH setting in the CG PUSCH configuration, which is not limited in the present disclosure.
  • the CG PUSCH in the CG PUSCH configuration also corresponds to a low priority; or, if the CG PUSCH is configured as a high priority, the CG PUSCH in the CG PUSCH configuration also corresponds to a high priority.
  • the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected.
  • the first CG PUSCH in the first CG PUSCH configuration is a high-priority CG PUSCH; the second CG PUSCH in the second CG PUSCH configuration is a low-priority CG PUSCH.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected. Detect the first CG PUSCH. In response to detecting first indication information indicating at least one of the second CG PUSCHs in the first CG PUSCH, detect the at least one of the second CG PUSCHs.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected. Detect the first CG PUSCH. In response to detecting first indication information indicating the configuration of at least one of the second CG PUSCHs in the CG PUSCH in the first CG PUSCH configuration, detect the at least one of the second CG PUSCHs.
  • the first indication information may be indication information for the configuration of CG PUSCH, or may be indication information for CG PUSCH in the configuration of the CG PUSCH, which is not limited in the present disclosure.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected. Detect the first CG PUSCH. In response to detecting first indication information indicating at least one of the second CG PUSCHs in the first CG PUSCH, detect the at least one of the second CG PUSCHs after a second duration at a second time domain position.
  • the second time domain position is a position determined based on the CG PUSCH resource for transmitting the first indication information.
  • the second time domain position may be the end position of the CG PUSCH resource for transmitting the first indication information; or, the second time domain position may be the start position of the CG PUSCH resource for transmitting the first indication information.
  • the second duration may be determined by the sum of the transmission duration determined based on the CG PUSCH resource for transmitting the first indication information and the demodulation duration of the first indication information, for example, the second duration is greater than or equal to the transmission duration determined based on the CG PUSCH resource for transmitting the first indication information and the demodulation duration of the uplink data, for example, the second duration is greater than or equal to the sum of the transmission duration determined based on the CG PUSCH resource for transmitting the first indication information and the demodulation duration of the first indication information.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected. Detect the first CG PUSCH.
  • first indication information indicating at least one of the second CG PUSCHs on the first CG PUSCH In response to detecting first indication information indicating at least one of the second CG PUSCHs on the first CG PUSCH, detect the at least one of the second CG PUSCHs after a second duration at a second time domain position; wherein the second time domain position is the end position of the CG PUSCH resources for transmitting the first indication information on the first CG PUSCH.
  • the second duration is specified by a predetermined communication protocol or configured by the base station. In some examples, the second duration is used for the base station to complete the process of demodulating the indication information. In other words, the second duration is greater than or equal to the duration required for the base station to complete the demodulation of the indication information.
  • the second duration may be for the base station to complete the process of demodulating the CG UCI.
  • the CG UCI is included in the CG PUSCH channel, but since the position of the CG UCI in the CG PUSCH is predefined by a predetermined communication protocol, the demodulation of the CG UCI is independent of the demodulation of the CG PUSCH.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected. Detect the first CG PUSCH.
  • the indication information is a CG UCI carried in the CG PUSCH, and the CG UCI indicates index information of the at least one of the second CG PUSCHs.
  • CG UCI may also include information such as hybrid automatic repeat request (HARQ) process identifier, version number, new data indication, and channel busy time sharing (COT sharing).
  • HARQ hybrid automatic repeat request
  • COT sharing channel busy time sharing
  • the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected.
  • the access network device will configure at least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration, and the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected.
  • the access network device only needs to continuously detect the first CG PUSCH in the first CG PUSCH configuration, without continuously detecting the second CG PUSCH in the second CG PUSCH configuration. In this way, the number of CG PUSCH detections can be reduced, which is beneficial for the access network device to save power consumption.
  • this embodiment provides a channel detection method, wherein the method is performed by an access network device, and the method includes:
  • Step 31 configuring at least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH;
  • Step 32 Detect the first CG PUSCH
  • Step 33 When uplink data is detected in the first CG PUSCH, detect the uplink data of the second CG PUSCH.
  • the terminal involved in the present disclosure may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a road side unit (RSU, Road Side Unit), a smart home terminal, an industrial sensor device and/or a medical device, etc.
  • the terminal may be a Redcap terminal or a predetermined version of a new air interface NR terminal (for example, an R17 NR terminal).
  • the access network equipment involved in the present disclosure may be a base station, and the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a base station of a fifth generation mobile communication (5G) network, or other evolved base stations.
  • 3G third generation mobile communication
  • 4G fourth generation mobile communication
  • 5G fifth generation mobile communication
  • a first CG PUSCH configuration and a second CG PUSCH configuration are determined from at least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations configured for the terminal; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH is detected; when uplink data is detected in the first CG PUSCH, the uplink data of the second CG PUSCH is detected.
  • the CG PUSCH configured in the first CG PUSCH configuration is a first CG PUSCH, and it can be understood that the first CG PUSCH in the present disclosure corresponds to the first CG PUSCH configuration.
  • the CG PUSCH configured in the second CG PUSCH configuration is a second CG PUSCH, and it can be understood that the second CG PUSCH in the present disclosure corresponds to the second CG PUSCH configuration.
  • continuously detecting the first CG PUSCH may mean that the first CG PUSCH is detected all the time, for example, the first CG PUSCH is detected all the time according to the set period. It can be understood that continuously detecting the first CG PUSCH means that the first CG PUSCH needs to be detected in each time slot of the first CG PUSCH.
  • the second CG PUSCH does not need to be continuously detected, which means that the second CG PUSCH does not need to be detected when the predetermined detection condition is not met. Alternatively, the second CG PUSCH is detected only when the predetermined detection condition is met. It can be understood that continuously detecting the second CG PUSCH means that the second CG PUSCH needs to be detected in each time slot of the second CG PUSCH.
  • the detection of CG PUSCH can be a blind detection of CG PUSCH.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH is blindly detected; when uplink data is blindly detected in the first CG PUSCH, the uplink data of the second CG PUSCH is blindly detected.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the uplink data of the first CG PUSCH is detected.
  • the uplink data of the second CG PUSCH is detected.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH is detected.
  • uplink data of the second CG PUSCH is detected, or, in response to no uplink data being detected in the first CG PUSCH, uplink data of the second CG PUSCH is not detected.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH is detected.
  • uplink data of the second CG PUSCH is detected after a first duration at a first time domain position.
  • the first time domain position is a position determined based on the CG PUSCH resource for transmitting the uplink data.
  • the first time domain position may be the end position of the CG PUSCH resource for transmitting the uplink data; or, the first time domain position may be the start position of the CG PUSCH resource for transmitting the uplink data.
  • the first duration may be determined based on the transmission duration determined by the CG PUSCH resource for transmitting the uplink data and the demodulation duration of the uplink data, for example, the first duration is greater than or equal to the sum of the transmission duration determined by the CG PUSCH resource for transmitting the uplink data and the demodulation duration of the uplink data.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • Detect the first CG PUSCH In response to detecting uplink data on the first CG PUSCH, after a first duration at a first time domain position, detect uplink data on the second CG PUSCH; wherein the first time domain position is the end position of the CG PUSCH resource for transmitting the uplink data.
  • the uplink data on the first CG PUSCH is also continuously detected.
  • the first duration is specified by a predetermined communication protocol or configured by the base station.
  • the first duration can be used for the base station to complete the process of demodulating uplink data transmitted by CG PUSCH.
  • the first duration is greater than or equal to the duration required for the base station to complete the demodulation of uplink data transmitted by CG PUSCH.
  • the CG PUSCH configured for the terminal includes a CG PUSCH configured as a low priority and/or a CG PUSCH configured as a high priority.
  • CG PUSCHs of different priorities can be used to carry uplink services of different priorities. For example, a high priority service is carried on a high priority CG PUSCH, and a low priority service is carried on a low priority CG PUSCH.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH in the first CG PUSCH configuration may include a high-priority CG PUSCH and a low-priority CG PUSCH; and the second CG PUSCH in the second CG PUSCH configuration may include a high-priority CG PUSCH and a low-priority CG PUSCH.
  • the high-priority CG PUSCH in the CG PUSCH configuration is detected first.
  • the access network device may configure the GC PUSCH, for example, the CG PUSCH may be configured through radio resource control (RRC, Radio Resource Control) signaling.
  • the CG PUSCH configuration may include priority information.
  • the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration.
  • the first CG PUSCH configuration may include the priority information of the first CG PUSCH configuration, and here, the priority information of the first CG PUSCH configuration is also the priority information of the first CG PUSCH in the first CG PUSCH configuration.
  • the second CG PUSCH configuration may include the priority information of the second CG PUSCH configuration, and here, the priority information of the second CG PUSCH configuration is also the priority information of the second CG PUSCH in the second CG PUSCH configuration. Among them, the priority information indicates the priority.
  • the time-frequency domain resources corresponding to the high-priority CG PUSCH configuration overlap with the time-frequency domain resources corresponding to the low-priority CG PUSCH configuration
  • the time-frequency domain resources of the high-priority CG PUSCH configuration will be detected first; or, when the time-frequency domain resources corresponding to the high-priority CG PUSCH overlap with the time-frequency domain resources corresponding to the low-priority CG PUSCH, the time-frequency domain resources of the high-priority CG PUSCH will be detected first.
  • the priority corresponding to the priority information can be for the CG PUSCH configuration setting or for the CG PUSCH setting in the CG PUSCH configuration, which is not limited in the present disclosure.
  • the CG PUSCH in the CG PUSCH configuration also corresponds to a low priority; or, if the CG PUSCH is configured as a high priority, the CG PUSCH in the CG PUSCH configuration also corresponds to a high priority.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH in the first CG PUSCH configuration is a high-priority CG PUSCH; and the second CG PUSCH in the second CG PUSCH configuration is a low-priority CG PUSCH.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH is detected.
  • the at least one of the second CG PUSCHs is detected.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH is detected.
  • the at least one of the second CG PUSCHs is detected.
  • the indication information may be indication information for the configuration of CG PUSCH, or may be indication information for CG PUSCH in the configuration of the CG PUSCH, which is not limited in the present disclosure.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH is detected.
  • the at least one of the second CG PUSCHs is detected after a second duration at a second time domain position.
  • the second time domain position is a position determined based on the CG PUSCH resource for transmitting the first indication information.
  • the second time domain position may be the end position of the CG PUSCH resource for transmitting the first indication information; or, the second time domain position may be the start position of the CG PUSCH resource for transmitting the first indication information.
  • the second duration may be determined based on the transmission duration determined based on the CG PUSCH resource for transmitting the first indication information and the demodulation duration of the first indication information, for example, the second duration is greater than or equal to the sum of the transmission duration determined based on the CG PUSCH resource for transmitting the first indication information and the demodulation duration of the first indication information.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH. Detect the first CG PUSCH.
  • first indication information indicating at least one of the second CG PUSCHs on the first CG PUSCH In response to detecting first indication information indicating at least one of the second CG PUSCHs on the first CG PUSCH, detect the at least one of the second CG PUSCHs after a second duration at a second time domain position; wherein the second time domain position is the end position of the CG PUSCH resources for transmitting the indication information on the first CG PUSCH.
  • the second duration is specified by a predetermined communication protocol or configured by the base station. In some examples, the second duration is used for the base station to complete the process of demodulating the indication information. In other words, the second duration is greater than or equal to the duration required for the base station to complete the demodulation of the indication information.
  • the second duration may be for the base station to complete the process of demodulating the CG UCI.
  • the CG UCI is included in the CG PUSCH channel, but since the position of the CG UCI in the CG PUSCH is predefined by a predetermined communication protocol, the demodulation of the CG UCI is independent of the demodulation of the CG PUSCH.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH. Detect the first CG PUSCH.
  • the at least one of the second CG PUSCHs In response to detecting a CG UCI indicating at least one of the second CG PUSCHs in the first CG PUSCH, detect the at least one of the second CG PUSCHs after a second duration in a second time domain position; wherein the second time domain position is the end position of the CG PUSCH resource that transmits the CG UCI in the first CG PUSCH.
  • the indication information is the CG UCI carried in the CG PUSCH, and the CG UCI indicates the index information of the at least one of the second CG PUSCHs.
  • CG UCI may also include information such as hybrid automatic repeat request (HARQ) process identifier, version number, new data indication, and channel busy time sharing (COT sharing).
  • HARQ hybrid automatic repeat request
  • COT sharing channel busy time sharing
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH; the first CG PUSCH is detected; when uplink data is detected in the first CG PUSCH, the uplink data of the second CG PUSCH is detected.
  • the access network device will configure at least two sets of configuration authorization CG physical uplink shared channel PUSCH configuration for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH, and the first CG PUSCH will be detected first, and only when the uplink data is detected in the first CG PUSCH, will the uplink data of the CG PUSCH be detected.
  • the number of CG PUSCH detections can be reduced, which is beneficial for access network devices to save power consumption.
  • this embodiment provides a channel detection method, wherein the method is performed by an access network device or a network function, and the method includes:
  • Step 41 Detect the first CG PUSCH
  • Step 42 In response to the preset condition being met, detect the uplink data of the second CG PUSCH.
  • the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected.
  • the preset condition may be a condition associated with the detection result of the first CG PUSCH.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH is detected.
  • uplink data of the second CG PUSCH is detected.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH is detected.
  • uplink data of the second CG PUSCH is detected after a first duration at a first time domain position.
  • the first time domain position is a position determined based on the CG PUSCH resource for transmitting the uplink data.
  • the first time domain position may be the end position of the CG PUSCH resource for transmitting the uplink data; or, the first time domain position may be the start position of the CG PUSCH resource for transmitting the uplink data.
  • the first duration may be determined based on the transmission duration determined by the CG PUSCH resource for transmitting the uplink data and the demodulation duration of the uplink data, for example, the first duration is greater than or equal to the sum of the transmission duration determined by the CG PUSCH resource for transmitting the uplink data and the demodulation duration of the uplink data.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • Detect the first CG PUSCH In response to detecting uplink data on the first CG PUSCH, after a first duration at a first time domain position, detect uplink data on the second CG PUSCH; wherein the first time domain position is the end position of the CG PUSCH resource for transmitting the uplink data.
  • the uplink data on the first CG PUSCH is also continuously detected.
  • at least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH is detected.
  • the at least one of the second CG PUSCHs is detected.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH is detected.
  • the at least one of the second CG PUSCHs is detected.
  • the indication information may be indication information for the configuration of CG PUSCH, or may be indication information for CG PUSCH in the configuration of the CG PUSCH, which is not limited in the present disclosure.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH is detected.
  • the at least one of the second CG PUSCHs is detected after a second duration at a second time domain position.
  • the second time domain position is a position determined based on the CG PUSCH resource for transmitting the first indication information.
  • the second time domain position may be the end position of the CG PUSCH resource for transmitting the first indication information; or, the second time domain position may be the start position of the CG PUSCH resource for transmitting the first indication information.
  • the second duration may be determined based on the transmission duration determined based on the CG PUSCH resource for transmitting the first indication information and the demodulation duration of the first indication information, for example, the second duration is greater than or equal to the sum of the transmission duration determined based on the CG PUSCH resource for transmitting the first indication information and the demodulation duration of the first indication information.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH. Detect the first CG PUSCH.
  • first indication information indicating at least one of the second CG PUSCHs on the first CG PUSCH In response to detecting first indication information indicating at least one of the second CG PUSCHs on the first CG PUSCH, detect the at least one of the second CG PUSCHs after a second duration at a second time domain position; wherein the second time domain position is the end position of the CG PUSCH resources for transmitting the indication information on the first CG PUSCH.
  • this embodiment provides a channel detection method, wherein the method is performed by an access network device, and the method includes:
  • Step 51 configure at least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations for the terminal, wherein the CG PUSCH configurations include a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH;
  • the first CG PUSCH is a low-priority CG PUSCH
  • the second CG PUSCH is a high-priority CG PUSCH.
  • the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected.
  • the high priority CG PUSCH described in the CG PUSCH configuration is detected first.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH in the first CG PUSCH configuration is a high-priority CG PUSCH; and the second CG PUSCH in the second CG PUSCH configuration is a low-priority CG PUSCH.
  • the access network device may configure the GC PUSCH, for example, the CG PUSCH may be configured through radio resource control (RRC, Radio Resource Control) signaling.
  • the CG PUSCH configuration may include priority information.
  • the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration.
  • the first CG PUSCH configuration may include the priority information of the first CG PUSCH configuration, and here, the priority information of the first CG PUSCH configuration is also the priority information of the first CG PUSCH in the first CG PUSCH configuration.
  • the second CG PUSCH configuration may include the priority information of the second CG PUSCH configuration, and here, the priority information of the second CG PUSCH configuration is also the priority information of the second CG PUSCH in the second CG PUSCH configuration. Among them, the priority information indicates the priority.
  • the time-frequency domain resources corresponding to the high-priority CG PUSCH configuration overlap with the time-frequency domain resources corresponding to the low-priority CG PUSCH configuration
  • the time-frequency domain resources of the high-priority CG PUSCH configuration will be detected first; or, when the time-frequency domain resources corresponding to the high-priority CG PUSCH overlap with the time-frequency domain resources corresponding to the low-priority CG PUSCH, the time-frequency domain resources of the high-priority CG PUSCH will be detected first.
  • the priority corresponding to the priority information can be for the CG PUSCH configuration setting or for the CG PUSCH setting in the CG PUSCH configuration, which is not limited in the present disclosure.
  • this embodiment provides a channel detection method, wherein the method is performed by an access network device, and the method includes:
  • Step 61 Detect the first CG PUSCH
  • Step 62 In response to detecting indication information indicating at least one of the second CG PUSCHs in the first CG PUSCH, detecting the at least one of the second CG PUSCHs; wherein, the first CG PUSCH in the first CG PUSCH configuration needs to be continuously detected; and the second CG PUSCH in the second CG PUSCH configuration does not need to be continuously detected.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH is detected.
  • the at least one of the second CG PUSCHs is detected.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH is detected.
  • the at least one of the second CG PUSCHs is detected.
  • the first indication information may be indication information for the configuration of CG PUSCH, or may be indication information for CG PUSCH in the configuration of the CG PUSCH, which is not limited in the present disclosure.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH.
  • the first CG PUSCH is detected.
  • the at least one of the second CG PUSCHs is detected after a second duration at a second time domain position; wherein the second time domain position is the end position of the CG PUSCH resource for transmitting the indication information on the first CG PUSCH.
  • At least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations are configured for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is the first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is the second CG PUSCH. Detect the first CG PUSCH.
  • CG UCI In response to detecting a CG UCI indicating at least one of the second CG PUSCHs in the first CG PUSCH, detect the at least one of the second CG PUSCHs after a second duration at a second time domain position; wherein the second time domain position is the end position of the CG PUSCH resource for transmitting the CG UCI on the first CG PUSCH.
  • the CG UCI is the CG UCI carried in the CG PUSCH, and the CG UCI indicates the index information of the at least one of the second CG PUSCHs.
  • an embodiment of the present disclosure provides a channel detection device, wherein the device includes:
  • the configuration module 71 is configured to configure at least two sets of configuration authorization CG physical uplink shared channel PUSCH configurations for the terminal, wherein the CG PUSCH configuration includes a first CG PUSCH configuration and a second CG PUSCH configuration; wherein the CG PUSCH in the first CG PUSCH configuration is a first CG PUSCH; and the CG PUSCH in the second CG PUSCH configuration is a second CG PUSCH;
  • the detection module 72 is configured to detect the first CG PUSCH; when uplink data is detected in the first CG PUSCH, the uplink data of the second CG PUSCH is detected.
  • the detection module 72 is further configured to:
  • the first time domain position is a position determined based on the CG PUSCH resources for transmitting the uplink data.
  • the detection module 72 is also configured so that the first time domain position is the end position of the CG PUSCH resource for transmitting the uplink data.
  • the configuration module 71 is also configured to configure the CG PUSCH configured for the terminal to include a CG PUSCH configured as a low priority and/or a CG PUSCH configured as a high priority.
  • the configuration module 71 is also configured so that the high priority CG PUSCH is configured as the first CG PUSCH.
  • the detection module 72 is further configured to:
  • the at least one second CG PUSCH is detected, wherein the first indication information is used to indicate at least one second CG PUSCH.
  • the detection module 72 is further configured to:
  • the second time domain position is a position determined based on the CG PUSCH resources for transmitting the indication information.
  • the detection module 72 is also configured so that the second time domain position is the end position of the CG PUSCH resource for transmitting the first indication information on the first CG PUSCH.
  • the detection module 72 is also configured that the first indication information is CG uplink control information UCI carried in the CG PUSCH.
  • the detection module 72 is also configured to indicate index information of at least one of the second CG PUSCHs as the CG UCI.
  • the detection module 72 is further configured such that the first duration is specified by a predetermined communication protocol or configured by the base station, and/or the second duration is specified by a predetermined communication protocol or configured by the base station.
  • the present disclosure provides a communication device, the communication device comprising:
  • a memory for storing processor-executable instructions
  • the processor is configured to implement the method applied to any embodiment of the present disclosure when running executable instructions.
  • the processor may include various types of storage media, which are non-temporary computer storage media that can continue to memorize information stored thereon after the communication device loses power.
  • the processor may be connected to the memory via a bus or the like to read the executable program stored in the memory.
  • An embodiment of the present disclosure further provides a computer storage medium, wherein the computer storage medium stores a computer executable program, and when the executable program is executed by a processor, the method of any embodiment of the present disclosure is implemented.
  • an embodiment of the present disclosure provides a structure of a terminal.
  • this embodiment provides a terminal 800 , which may be a mobile phone, a computer, a digital broadcast terminal, a message transceiver, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • terminal 800 may include one or more of the following components: a processing component 802 , a memory 804 , a power component 806 , a multimedia component 808 , an audio component 810 , an input/output (I/O) interface 812 , a sensor component 814 , and a communication component 816 .
  • a processing component 802 may include one or more of the following components: a processing component 802 , a memory 804 , a power component 806 , a multimedia component 808 , an audio component 810 , an input/output (I/O) interface 812 , a sensor component 814 , and a communication component 816 .
  • a processing component 802 may include one or more of the following components: a processing component 802 , a memory 804 , a power component 806 , a multimedia component 808 , an audio component 810 , an input/output (I/O) interface 812 , a sensor component 814 , and a communication component
  • the processing component 802 generally controls the overall operation of the terminal 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations on the device 800. Examples of such data include instructions for any application or method operating on the terminal 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • Power component 806 provides power to various components of terminal 800.
  • Power component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to terminal 800.
  • the multimedia component 808 includes a screen that provides an output interface between the terminal 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), and when the terminal 800 is in an operation mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the memory 804 or sent via the communication component 816.
  • the audio component 810 also includes a speaker for outputting audio signals.
  • I/O interface 812 provides an interface between processing component 802 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor assembly 814 includes one or more sensors for providing various aspects of status assessment for the terminal 800.
  • the sensor assembly 814 can detect the open/closed state of the device 800, the relative positioning of the components, such as the display and keypad of the terminal 800, and the sensor assembly 814 can also detect the position change of the terminal 800 or a component of the terminal 800, the presence or absence of contact between the user and the terminal 800, the orientation or acceleration/deceleration of the terminal 800, and the temperature change of the terminal 800.
  • the sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor assembly 814 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the terminal 800 and other devices.
  • the terminal 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • terminal 800 can be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic components to perform the above methods.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors or other electronic components to perform the above methods.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 804 including instructions, and the instructions can be executed by the processor 820 of the terminal 800 to complete the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • an embodiment of the present disclosure shows a structure of a base station.
  • the base station 900 may be provided as a network-side device.
  • the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932 for storing instructions executable by the processing component 922, such as an application.
  • the application stored in the memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute any method of the aforementioned method applied to the base station.
  • the base station 900 may also include a power supply component 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to the network, and an input/output (I/O) interface 958.
  • the base station 900 may operate based on an operating system stored in the memory 932, such as Windows Server TM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • an embodiment of the present disclosure shows a network architecture of a 5G system, including a core network part 291 and an access network part 292.
  • the core network part includes core network equipment, which mainly includes communication nodes such as access and mobility management function (AMF), user plane function (UPF), network exposure function (NEF), user data register (UDR, User Data Repository) and session management function (SMF, Session Management Function).
  • the access network part includes base stations.
  • AMF is mainly responsible for various functions including registration management, connection management, access management, mobility management, and security and access management and authorization.
  • UPF is mainly responsible for various functions related to data plane anchor points, PDU session points connected to data networks, message routing and forwarding, traffic usage reporting and legal monitoring.
  • NEF is mainly responsible for providing a secure way to expose the services and capabilities of 3GPP network functions to AF and providing a secure way for AF to provide information to 3GPP network functions.
  • UDR is mainly responsible for storing important process data during wireless communication.
  • SMF is mainly responsible for various functions related to session management, billing and QoS policy control, legal monitoring, billing data collection and downlink data notification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种信道检测方法,其中,方法由接入网设备执行,方法包括:为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;检测第一CG PUSCH;当在第一CG PUSCH检测到上行数据,检测第二CG PUSCH的上行数据。这里,由于接入网设备会为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置,且会先检测第一CG PUSCH,只有在第一CG PUSCH检测到上行数据,才会检测CG PUSCH的上行数据。相较于需要同时检测第一CG PUSCH和第二CG PUSCH的方式,可以减少CG PUSCH的检测次数,有利于接入网设备节省功耗。

Description

信道检测方法、装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种信道检测方法、装置、通信设备及存储介质。
背景技术
第五代移动通信技术(5G,5th Generation Mobile Communication Technology)中,终端可以被配置有多套配置授权物理上行共享信道(CG PUSCH,Configured Grant Physical Uplink Shared Channel)配置,多套CG PUSCH配置可以被配置在相同或者不同的传输资源(例如载波)上。在多套CG PUSCH上行传输资源上,终端并不一定在每个资源都传输了上行信息,因此,基站需要进行检测。相关技术中,频繁的检测会产生大量的功耗,不利于基站的节能。
发明内容
本公开实施例公开了一种信道检测方法、装置、通信设备及存储介质。
根据本公开实施例的第一方面,提供一种信道检测方法,其中,所述方法由接入网设备执行,所述方法包括:
为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;
检测所述第一CG PUSCH;
当在所述第一CG PUSCH检测到上行数据,检测所述第二CG PUSCH的上行数据。
在一个实施例中,所述检测所述第二CG PUSCH的上行数据,包括:
在第一时域位置的第一时长之后,检测所述第二CG PUSCH的上行数据;
其中,所述第一时域位置为基于传输所述上行数据的CG PUSCH资源确定的位置。
在一个实施例中,所述第一时域位置为检测到的传输所述上行数据的CG PUSCH资源的结束位置。
在一个实施例中,给所述终端配置的CG PUSCH包括被配置为低优先级的CG PUSCH和/或被配置为高优先级的CG PUSCH。
在一个实施例中,
所述高优先级的所述CG PUSCH被配置为所述第一CG PUSCH。
在一个实施例中,所述当在所述第一CG PUSCH检测到上行数据,检测所述第二CG PUSCH的上行数据,包括:
当在所述第一CG PUSCH检测到第一指示信息,检测所述至少一个所述第二CG PUSCH,其中, 所述第一指示信息用于指示至少一个所述第二CG PUSCH。
在一个实施例中,所述检测所述至少一个所述第二CG PUSCH,包括:
在第二时域位置的第二时长之后,检测所述至少一个所述第二CG PUSCH;
其中,所述第二时域位置为基于传输所述指示信息的CG PUSCH资源确定的位置。
在一个实施例中,所述第二时域位置为在所述第一CG PUSCH检测到所述指示信息的CG PUSCH资源的结束位置。
在一个实施例中,所述第一指示信息为携带在CG PUSCH中的CG上行控制信息UCI。
在一个实施例中,所述CG UCI指示所述至少一个所述第二CG PUSCH的索引信息。
在一个实施例中,所述第一时长由预定通信协议规定或者由所述基站配置,和/或,所述第二时长由预定通信协议规定或者由所述基站配置。
根据本公开实施例的第二方面,提供一种信道检测装置,其中,所述装置包括:
确定模块,被配置为为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;
检测模块,被配置为检测所述第一CG PUSCH;当在所述第一CG PUSCH检测到上行数据,检测所述第二CG PUSCH的上行数据。
在一个实施例中,所述检测模块,还被配置为:
在第一时域位置的第一时长之后,检测所述第二CG PUSCH的上行数据;
其中,所述第一时域位置为基于传输所述上行数据的CG PUSCH资源确定的位置。
在一个实施例中,所述检测模块还被配置为所述第一时域位置为检测到的传输所述上行数据的CG PUSCH资源的结束位置。
在一个实施例中,所述确定模块还被配置为给所述终端配置的CG PUSCH包括被配置为低优先级的CG PUSCH和/或被配置为高优先级的CG PUSCH。
在一个实施例中,所述确定模块还被配置为所述高优先级的所述CG PUSCH被配置为所述第一CG PUSCH。
在一个实施例中,所述检测模块还被配置为:
当在所述第一CG PUSCH检测到第一指示信息,检测所述至少一个所述第二CG PUSCH,其中,所述第一指示信息用于指示至少一个所述第二CG PUSCH。
在一个实施例中,所述检测模块还被配置为:
在第二时域位置的第二时长之后,检测所述至少一个所述第二CG PUSCH;
其中,所述第二时域位置为基于传输所述指示信息的CG PUSCH资源确定的位置。
在一个实施例中,所述检测模块还被配置为所述第二时域位置为在所述第一CG PUSCH检测到传输所述指示信息的CG PUSCH资源的结束位置。
在一个实施例中,所述检测模块还被配置为所述第一指示信息为携带在CG PUSCH中的CG上行控制信息UCI。
在一个实施例中,所述检测模块还被配置为所述CG UCI指示所述至少一个所述第二CG PUSCH的索引信息。
在一个实施例中,所述检测模块还被配置为所述第一时长由预定通信协议规定或者由所述基站配置,和/或,所述第二时长由预定通信协议规定或者由所述基站配置。
根据本公开实施例的第三方面,提供一种通信设备,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公开任意实施例所述的方法。
根据本公开实施例的第四方面,提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的方法。
在本公开实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;检测所述第一CG PUSCH;当在所述第一CG PUSCH检测到上行数据,检测所述第二CG PUSCH的上行数据。这里,由于接入网设备会为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置,且会先检测所述第一CG PUSCH,只有在所述第一CG PUSCH检测到所述上行数据,才会检测所述CG PUSCH的上行数据。相较于需要同时检测所述第一CG PUSCH和所述第二CG PUSCH的方式,可以减少CG PUSCH的检测次数,有利于接入网设备节省功耗。
附图说明
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种信道检测方法流程示意图。
图3是根据一示例性实施例示出的一种信道检测方法的流程示意图。
图4是根据一示例性实施例示出的一种信道检测方法的流程示意图。
图5是根据一示例性实施例示出的一种信道检测方法的流程示意图。
图6是根据一示例性实施例示出的一种信道检测方法的流程示意图。
图7是根据一示例性实施例示出的一种信道检测装置的示意图。
图8是根据一示例性实施例示出的一种终端的结构示意图。
图9是根据一示例性实施例示出的一种基站的框图。
图10是根据一示例性实施例示出的一种网络架构的示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有 表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于移动通信技术的通信系统,该无线通信系统可以包括:至少一个用户设备110以及至少一个接入网节点。示例性的,接入网节点可以是基站120。用户设备110可以是终端。这里,本公开所涉及的终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。在一些示例中,该终端可以是Redcap终端或者预定版本的新空口NR终端(例如,R17的NR终端)。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的下一代系统或者其他未来的无线通信系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的下一代移动通信网络技术标准或其他未来的无线通信技术标准的无线空口。
在一些示例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些示例中,上述无线通信系统还可以包含核心网设备130。
基站120与核心网设备130相连。其中,核心网设备130可以是无线通信系统中的核心网设备,这里,核心网设备可以对应网络功能,例如,接入与移动管理功能(AMF,Access and Mobility Management Function)、用户面功能(UPF,User Plane Function)和会话管理功能(SMF,Session Management Function)等通信节点。对于核心网设备130的实现形态,本公开实施例不做限定。
在本申请的一些实施例中,核心网设备130包括提供定位功能的网络功能。例如,在5G网络中,定位管理功能(location management function,LMF)为提供定位功能的网元、模块或组件等。又例如,在4G网络中,增强服务移动定位中心(evolved serving mobile location center,ESMLC)为提供定位功能的网元、模块或组件。可以理解,在其他网络中,可以是其他的功能网元。
需要说明的是,在其他一些实施例中,接入网节点也可以集成定位功能的模块或组件,那么在该示例中接入网节点为提供定位功能的网元、模块或组件等。
为了便于本领域内技术人员理解,本公开实施例列举了多个实施方式以对本公开实施例的技术方案进行清晰地说明。当然,本领域内技术人员可以理解,本公开实施例提供的多个实施例,可以被单独执行,也可以与本公开实施例中其他实施例的方法结合后一起被执行,还可以单独或结合后与其他相关技术中的一些方法一起被执行;本公开实施例并不对此作出限定。
如下,对本公开涉及的应用场景进行说明:
在一个实施例中,终端可以被配置有多套CG PUSCH配置,多套CG PUSCH可以被配置在相同或者不同的传输资源(例如载波)上。在多套CG PUSCH上行传输资源上,终端并不一定在每个资源都传输了上行信息,于是基站需要做盲检。
在一个实施例中,基站为终端配置的CG PUSCH包括第一类型Type 1 CG PUSCH和第二类型Type 2 CG PUSCH。其中,第一类型Type 1 CG PUSCH是基站通过无线资源控制(RRC,Radio Resource  Control)信令配置之后,终端就可以在配置的CG PUSCH资源上周期性地发送上行数据。当基站通过RRC重配过程删除该CG PUSCH配置后,CG PUSCH资源配置失效。第二类型Type 2 CG PUSCH是在基站通过RRC信令配置之后,还需要下行控制信息(DCI,Downlink Control Information)激活后才能使用。当基站通过DCI去激活该CG PUSCH后,终端就不能再使用该CG-PUSCH资源。
在一个实施例中,不同套的CG PUSCH可以被配置不同的优先级。示例性地,可以通过高层信令为CG PUSCH配置优先级(例如,有2个优先级,分别为高优先级和低优先级)。不同优先级的CG PUSCH可用于承载不同类型的业务,例如,不同优先级的业务。在一个示例中,高优先级业务承载在高优先级的CG PUSCH上,低优先级的业务承载在低优先级的CG PUSCH上。高优先级的业务例如是要求较低的时延和要求较高的传输正确率的业务,例如,视频会议业务等。低优先级的业务例如是时延长和传输速率低的业务,例如,抄表业务等。
在一个实施例中,终端可在配置的CG PUSCH中伴随发送配置授权上行控制信息(CG UCI,Configured Grant Uplink Control Information)。CG UCI为伴随每一个CG PUSCH发送的上行控制信息。在相关技术中,CG UCI中包含混合自动重传请求(HARQ,Hybrid Automatic Repeat reQuest)进程标识、版本号、新数据指示和信道忙碌时间共享(COT sharing)等信息。
可以理解的是,本公开实施例描述的网络架构以及应用场景是为了更加清楚地说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
如图2所示,本实施例中提供一种信道检测方法,其中,所述方法由接入网设备执行,所述方法包括:
步骤21、为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。
这里,本公开所涉及的终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。在一些示例中,该终端可以是Redcap终端或者预定版本的新空口NR终端(例如,R17的NR终端)。
本公开中涉及的接入网设备可以是基站,所述基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
在一个实施例中,从给终端配置的至少两套配置授权CG物理上行共享信道PUSCH配置中确定出第一CG PUSCH配置和/或第二CG PUSCH配置;所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续 检测。
在一些示例中,所述第一CG PUSCH配置中配置的CG PUSCH为第一CG PUSCH,可以理解的是,本公开中第一CG PUSCH对应第一CG PUSCH配置。所述第二CG PUSCH配置中配置的CG PUSCH为第二CG PUSCH,可以理解的是,本公开中第二CG PUSCH对应第二CG PUSCH配置。
在一些示例中,持续检测第一CG PUSCH可以是一直对第一CG PUSCH进行检测,例如,按照设置周期一直对第一CG PUSCH进行检测,可以理解的是,持续检测第一CG PUSCH指的是在每个第一CG PUSCH的时隙都需要检测第一CG PUSCH。第二CG PUSCH无需被持续检测可以是在预定检测条件未被满足时,不需要对第二CG PUSCH进行检测。或者,只有在预定检测条件被满足时,才会对第二CG PUSCH进行检测,可以理解的是,持续检测第二CG PUSCH指的是在每个第二CG PUSCH的时隙都需要检测第二CG PUSCH。
在一些示例中,对CG PUSCH的检测可以是对CG PUSCH的盲检。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;所述第一CG PUSCH配置中的第一CG PUSCH需要被持续盲检;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续盲检。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。检测所述第一CG PUSCH的上行数据。响应于预定检测条件满足,检测所述第二CG PUSCH的上行数据。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到上行数据,检测所述第二CG PUSCH的上行数据,或者,响应于在所述第一CG PUSCH未检测到上行数据,不检测所述第二CG PUSCH的上行数据。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到上行数据,在第一时域位置的第一时长之后,检测所述第二CG PUSCH的上行数据。
在一个实施例中,所述第一时域位置为基于传输所述上行数据的CG PUSCH资源确定的位置。例如,所述第一时域位置可以为传输所述上行数据的CG PUSCH资源的结束位置;或者,所述第一时域位置可以是传输所述上行数据的CG PUSCH资源的开始位置。在一个实施例中,第一时长可以是基于传输所述上行数据的CG PUSCH资源确定的传输时长与所述上行数据的解调时长确定,例如,第一时长大于或等于所述上行数据的CG PUSCH资源确定的传输时长与所述上行数据的解调时长之和。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到上行数据,在第一时域位置的第一时长之后,检测所述第二CG PUSCH的上行数据;其中,所述第一时域位置为传输所述上行数据的CG PUSCH资源的结束位置。在一些示例中,在检测所述第二CG PUSCH的上行数据的同时,还会持续对所述第一CG PUSCH的上行数据进行检测。
在一个实施例中,所述第一时长由预定通信协议规定或者由所述基站配置。在一些示例中,所述第一时长可以用于基站完成解调CG PUSCH传输的上行数据的过程。换言之,第一时长大于或等于基站完成解调CG PUSCH传输的上行数据所需时长。
在一个实施例中,给所述终端配置的CG PUSCH包括被配置为低优先级的CG PUSCH和/或被配置为高优先级的CG PUSCH。在一些示例中,不同优先级的CG PUSCH可用于承载不同优先级的上行业务。例如,高优先级业务承载在高优先级的CG PUSCH上,低优先级的业务承载在低优先级的CG PUSCH上。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。所述第一CG PUSCH配置中的第一CG PUSCH可以包括高优先级的CG PUSCH和低优先级的CG PUSCH;所述第二CG PUSCH配置中的第二CG PUSCH可以包括高优先级的CG PUSCH和低优先级的CG PUSCH。在一些示例中,CG PUSCH配置中所述高优先级的CG PUSCH会被优先检测。
在一个实施例中,接入网设备可以进行GC PUSCH的配置,例如,可以通过无线资源控制(RRC,Radio Resource Control)信令进行CG PUSCH的配置。CG PUSCH配置中可以包括优先级信息。示例性地,CG PUSCH的配置包括第一CG PUSCH配置和第二CG PUSCH配置。其中,所述第一CG PUSCH配置中可以包括所述第一CG PUSCH配置的优先级信息,这里,所述第一CG PUSCH配置的优先级信息也即所述第一CG PUSCH配置中的第一CG PUSCH的优先级信息。所述第二CG PUSCH配置中可以包括所述第二CG PUSCH配置的优先级信息,这里,所述第二CG PUSCH配置的优先级信息也即所述第二CG PUSCH配置中的第二CG PUSCH的优先级信息。其中,优先级信息指示优先级。可以理解 的是,当高优先级的CG PUSCH配置对应的时频域资源与低优先级的CG PUSCH配置对应的时频域资源重叠时,会优先检测的为高优先级的CG PUSCH配置的时频域资源,或者,当高优先级的CG PUSCH对应的时频域资源与低优先级的CG PUSCH对应的时频域资源重叠时,会优先检测的为高优先级的CG PUSCH的时频域资源。
基于此,可以理解的是,优先级信息对应的优先级即可以是针对CG PUSCH配置设置,也可以是针对所述CG PUSCH配置中的CG PUSCH设置,在本公开中不做限定。
在一个实施例中,如果CG PUSCH配置为低优先级,则所述CG PUSCH配置中的CG PUSCH也对应为低优先级;或者,如果CG PUSCH配置为高优先级,则所述CG PUSCH配置中的CG PUSCH也对应为高优先级。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。所述第一CG PUSCH配置中的第一CG PUSCH为高优先级的CG PUSCH;所述第二CG PUSCH配置中的第二CG PUSCH为低优先级的CG PUSCH。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到指示至少一个所述第二CG PUSCH的第一指示信息,检测所述至少一个所述第二CG PUSCH。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH配置中的CG PUSCH检测到指示至少一个所述第二CG PUSCH的配置的第一指示信息,检测所述至少一个所述第二CG PUSCH。
在一些示例中,第一指示信息可以是针对CG PUSCH的配置的指示信息,也可以是针对所述CG PUSCH的配置中的CG PUSCH的指示信息,在本公开中不做限定。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到指示至少一个所述第二CG PUSCH的第一指示信息,在第二时域位置的第二时长之后,检测所述至少一个所述第二CG  PUSCH。
在一个实施例中,所述第二时域位置为基于传输所述第一指示信息的CG PUSCH资源确定的位置。例如,所述第二时域位置可以为传输所述第一指示信息的CG PUSCH资源的结束位置;或者,所述第二时域位置可以是传输所述第一指示信息的CG PUSCH资源的开始位置。在一个实施例中,第二时长可以是基于传输所述第一指示信息的CG PUSCH资源确定的传输时长与所述第一指示信息的解调时长之和确定,例如,第二时长大于或等于基于所述第一指示信息的CG PUSCH资源确定的传输时长与所述上行数据的解调时长确定,例如,第二时长大于或等于基于传输所述第一指示信息的CG PUSCH资源确定的传输时长与所述第一指示信息的解调时长之和。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到指示至少一个所述第二CG PUSCH的第一指示信息,在第二时域位置的第二时长之后,检测所述至少一个所述第二CG PUSCH;其中,所述第二时域位置为在所述第一CG PUSCH上传输所述第一指示信息的CG PUSCH资源的结束位置。
在一个实施例中,所述第二时长由预定通信协议规定或者由所述基站配置。在一些示例中,所述第二时长用于基站完成解调所述指示信息的过程。换言之,第二时长大于或等于基站完成解调所述指示信息所需时长。
如果所述指示信息是CG UCI,则所述第二时长可以是用于基站完成解调所述CG UCI的过程。在一些示例中,CG UCI包含在CG PUSCH信道中,但由于CG UCI在CG PUSCH中的位置是预定通信协议预定义的,因此,所述CG UCI的解调与CG PUSCH的解调是独立的。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到指示至少一个所述第二CG PUSCH的CG UCI,在第二时域位置的第二时长之后,检测所述至少一个所述第二CG PUSCH;其中,所述第二时域位置为在所述第一CG PUSCH传输所述指示信息的CG PUSCH资源的结束位置。其中,所述指示信息为携带在CG PUSCH中的CG UCI,所述CG UCI指示所述至少一个所述第二CG PUSCH的索引信息。
在一些示例中,CG UCI中还可以包含混合自动重传请求(HARQ,Hybrid Automatic Repeat request)进程标识、版本号、新数据指示和信道忙碌时间共享(COT sharing)等信息。
在本公开实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;所述第一CG PUSCH配置中的 CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。这里,由于接入网设备会为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置,且所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。如此,所述接入网设备可以只需要持续对所述第一CG PUSCH配置中的第一CG PUSCH进行检测,而不需要持续对所述第二CG PUSCH配置中的第二CG PUSCH进行持续检测,如此,可以减少CG PUSCH的检测次数,有利于接入网设备节省功耗。
在一些示例中,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图3所示,本实施例中提供一种信道检测方法,其中,所述方法由接入网设备执行,所述方法包括:
步骤31、为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;
步骤32、检测所述第一CG PUSCH;
步骤33、当在所述第一CG PUSCH检测到上行数据,检测所述第二CG PUSCH的上行数据。
这里,本公开所涉及的终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。在一些示例中,该终端可以是Redcap终端或者预定版本的新空口NR终端(例如,R17的NR终端)。
本公开中涉及的接入网设备可以是基站,所述基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
在一个实施例中,从给终端配置的至少两套配置授权CG物理上行共享信道PUSCH配置中确定出第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;检测所述第一CG PUSCH;当在所述第一CG PUSCH检测到上行数据,检测所述第二CG PUSCH的上行数据。
在一些示例中,所述第一CG PUSCH配置中配置的CG PUSCH为第一CG PUSCH,可以理解的是,本公开中第一CG PUSCH对应第一CG PUSCH配置。所述第二CG PUSCH配置中配置的CG PUSCH为第二CG PUSCH,可以理解的是,本公开中第二CG PUSCH对应第二CG PUSCH配置。
在一些示例中,持续检测第一CG PUSCH可以是一直对第一CG PUSCH进行检测,例如,按照设置周期一直对第一CG PUSCH进行检测,可以理解的是,持续检测第一CG PUSCH指的是在每个第一CG PUSCH的时隙都需要检测第一CG PUSCH。第二CG PUSCH无需被持续检测可以是在预定检测条件未被满足时,不需要对第二CG PUSCH进行检测。或者,只有在预定检测条件被满足时,才会对第 二CG PUSCH进行检测,可以理解的是,持续检测第二CG PUSCH指的是在每个第二CG PUSCH的时隙都需要检测第二CG PUSCH。
在一些示例中,对CG PUSCH的检测可以是对CG PUSCH的盲检。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;盲检所述第一CG PUSCH;当在所述第一CG PUSCH盲检到上行数据,盲检所述第二CG PUSCH的上行数据。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH的上行数据。响应于预定检测条件满足,检测所述第二CG PUSCH的上行数据。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到上行数据,检测所述第二CG PUSCH的上行数据,或者,响应于在所述第一CG PUSCH未检测到上行数据,不检测所述第二CG PUSCH的上行数据。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到上行数据,在第一时域位置的第一时长之后,检测所述第二CG PUSCH的上行数据。
在一个实施例中,第一时域位置为基于传输所述上行数据的CG PUSCH资源确定的位置。例如,所述第一时域位置可以为传输所述上行数据的CG PUSCH资源的结束位置;或者,所述第一时域位置可以是传输所述上行数据的CG PUSCH资源的开始位置。在一个实施例中,第一时长可以是基于传输所述上行数据的CG PUSCH资源确定的传输时长与所述上行数据的解调时长确定,例如,第一时长大于或等于所述上行数据的CG PUSCH资源确定的传输时长与所述上行数据的解调时长之和。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到上行数据,在第一时域位置的第一时长之后,检测所述第二CG PUSCH的上行数据;其中,所述第一时域位置为传输所述上行数据的CG PUSCH资源的结束位置。在一些示例中,在检测所述第二CG PUSCH的上行数据的同时,还会持续对 所述第一CG PUSCH的上行数据进行检测。
在一个实施例中,所述第一时长由预定通信协议规定或者由所述基站配置。在一些示例中,所述第一时长可以用于基站完成解调CG PUSCH传输的上行数据的过程。换言之,第一时长大于或等于基站完成解调CG PUSCH传输的上行数据所需时长。
在一个实施例中,给所述终端配置的CG PUSCH包括被配置为低优先级的CG PUSCH和/或被配置为高优先级的CG PUSCH。在一些示例中,不同优先级的CG PUSCH可用于承载不同优先级的上行业务。例如,高优先级业务承载在高优先级的CG PUSCH上,低优先级的业务承载在低优先级的CG PUSCH上。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。所述第一CG PUSCH配置中的第一CG PUSCH可以包括高优先级的CG PUSCH和低优先级的CG PUSCH;所述第二CG PUSCH配置中的第二CG PUSCH可以包括高优先级的CG PUSCH和低优先级的CG PUSCH。在一些示例中,CG PUSCH配置中所述高优先级的CG PUSCH会被优先检测。
在一个实施例中,接入网设备可以进行GC PUSCH的配置,例如,可以通过无线资源控制(RRC,Radio Resource Control)信令进行CG PUSCH的配置。CG PUSCH配置中可以包括优先级信息。示例性地,CG PUSCH的配置包括第一CG PUSCH配置和第二CG PUSCH配置。其中,所述第一CG PUSCH配置中可以包括所述第一CG PUSCH配置的优先级信息,这里,所述第一CG PUSCH配置的优先级信息也即所述第一CG PUSCH配置中的第一CG PUSCH的优先级信息。所述第二CG PUSCH配置中可以包括所述第二CG PUSCH配置的优先级信息,这里,所述第二CG PUSCH配置的优先级信息也即所述第二CG PUSCH配置中的第二CG PUSCH的优先级信息。其中,优先级信息指示优先级。可以理解的是,当高优先级的CG PUSCH配置对应的时频域资源与低优先级的CG PUSCH配置对应的时频域资源重叠时,会优先检测的为高优先级的CG PUSCH配置的时频域资源,或者,当高优先级的CG PUSCH对应的时频域资源与低优先级的CG PUSCH对应的时频域资源重叠时,会优先检测的为高优先级的CG PUSCH的时频域资源。
基于此,可以理解的是,优先级信息对应的优先级即可以是针对CG PUSCH配置设置,也可以是针对所述CG PUSCH配置中的CG PUSCH设置,在本公开中不做限定。
在一个实施例中,如果CG PUSCH配置为低优先级,则所述CG PUSCH配置中的CG PUSCH也对应为低优先级;或者,如果CG PUSCH配置为高优先级,则所述CG PUSCH配置中的CG PUSCH也对应为高优先级。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。所述第一CG PUSCH配置中的第一CG PUSCH为高优先级的CG PUSCH;所述第二CG PUSCH配置中的第二CG PUSCH为低优先级的CG PUSCH。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到指示至少一个所述第二CG PUSCH的第一指示信息,检测所述至少一个所述第二CG PUSCH。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH配置中的CG PUSCH检测到指示至少一个所述第二CG PUSCH的配置的第一指示信息,检测所述至少一个所述第二CG PUSCH。
在一些示例中,指示信息可以是针对CG PUSCH的配置的指示信息,也可以是针对所述CG PUSCH的配置中的CG PUSCH的指示信息,在本公开中不做限定。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到指示至少一个所述第二CG PUSCH的第一指示信息,在第二时域位置的第二时长之后,检测所述至少一个所述第二CG PUSCH。
在一个实施例中,第二时域位置为基于传输所述第一指示信息的CG PUSCH资源确定的位置。例如,所述第二时域位置可以为传输所述第一指示信息的CG PUSCH资源的结束位置;或者,所述第二时域位置可以是传输所述第一指示信息的CG PUSCH资源的开始位置。在一个实施例中,第二时长可以是基于传输所述第一指示信息的CG PUSCH资源确定的传输时长与所述第一指示信息的解调时长确定,例如,第二时长大于或等于基于传输所述第一指示信息的CG PUSCH资源确定的传输时长与所述第一指示信息的解调时长之和。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到指示至少一个所述第二CG PUSCH的第一指示信息,在第二时域位置的第二时长之后,检测所述至少一个所述第二CG PUSCH;其中,所述第二时域位置为在所述第一CG PUSCH上传输所述指示信息的CG PUSCH资源的结束位置。
在一个实施例中,所述第二时长由预定通信协议规定或者由所述基站配置。在一些示例中,所述第二时长用于基站完成解调所述指示信息的过程。换言之,第二时长大于或等于基站完成解调所述指示信息所需时长。
如果所述指示信息是CG UCI,则所述第二时长可以是用于基站完成解调所述CG UCI的过程。在一些示例中,CG UCI包含在CG PUSCH信道中,但由于CG UCI在CG PUSCH中的位置是预定通信协议预定义的,因此,所述CG UCI的解调与CG PUSCH的解调是独立的。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到指示至少一个所述第二CG PUSCH的CG UCI,在第二时域位置的第二时长之后,检测所述至少一个所述第二CG PUSCH;其中,所述第二时域位置为在所述第一CG PUSCH传输所述CG UCI的CG PUSCH资源的结束位置。其中,所述指示信息为携带在CG PUSCH中的CG UCI,所述CG UCI指示所述至少一个所述第二CG PUSCH的索引信息。
在一些示例中,CG UCI中还可以包含混合自动重传请求(HARQ,Hybrid Automatic Repeat request)进程标识、版本号、新数据指示和信道忙碌时间共享(COT sharing)等信息。
在本公开实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;检测所述第一CG PUSCH;当在所述第一CG PUSCH检测到上行数据,检测所述第二CG PUSCH的上行数据。这里,由于接入网设备会为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH,且会先检测所述第一CG PUSCH,只有在所述第一CG PUSCH检测到所述上行数据,才会检测所述CG PUSCH的上行数据。相较于需要同时检测所述第一CG PUSCH和所述第二CG PUSCH的方式,可以减少CG PUSCH的检测次数,有利于接入网设备节省功耗。
在一些示例中,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图4所示,本实施例中提供一种信道检测方法,其中,所述方法由接入网设备或者网络功能执行,所述方法包括:
步骤41、检测第一CG PUSCH;
步骤42、响应于预设条件满足,检测第二CG PUSCH的上行数据。
在一个实施例中,所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。
在一些示例中,预设条件可以是跟所述第一CG PUSCH的检测结果关联的条件。
在一个实施例中为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到上行数据,检测所述第二CG PUSCH的上行数据。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到上行数据,在第一时域位置的第一时长之后,检测所述第二CG PUSCH的上行数据。
在一个实施例中,第一时域位置为基于传输所述上行数据的CG PUSCH资源确定的位置。例如,所述第一时域位置可以为传输所述上行数据的CG PUSCH资源的结束位置;或者,所述第一时域位置可以是传输所述上行数据的CG PUSCH资源的开始位置。在一个实施例中,第一时长可以是基于传输所述上行数据的CG PUSCH资源确定的传输时长与所述上行数据的解调时长确定,例如,第一时长大于或等于所述上行数据的CG PUSCH资源确定的传输时长与所述上行数据的解调时长之和。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到上行数据,在第一时域位置的第一时长之后,检测所述第二CG PUSCH的上行数据;其中,所述第一时域位置为传输所述上行数据的CG PUSCH资源的结束位置。在一些示例中,在检测所述第二CG PUSCH的上行数据的同时,还会持续对所述第一CG PUSCH的上行数据进行检测。在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到指示至少一个所述第二CG PUSCH的第一指示信息,检测所述至少一个所述第二CG PUSCH。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH配置中的CG PUSCH检测到指示至少一个所述第二CG PUSCH的配置的第一指示信息,检测所述至少一个所述第二CG PUSCH。
在一些示例中,指示信息可以是针对CG PUSCH的配置的指示信息,也可以是针对所述CG PUSCH的配置中的CG PUSCH的指示信息,在本公开中不做限定。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到指示至少一个所述第二CG PUSCH的第一指示信息,在第二时域位置的第二时长之后,检测所述至少一个所述第二CG PUSCH。
在一个实施例中,第二时域位置为基于传输所述第一指示信息的CG PUSCH资源确定的位置。例如,所述第二时域位置可以为传输所述第一指示信息的CG PUSCH资源的结束位置;或者,所述第二 时域位置可以是传输所述第一指示信息的CG PUSCH资源的开始位置。在一个实施例中,第二时长可以是基于传输所述第一指示信息的CG PUSCH资源确定的传输时长与所述第一指示信息的解调时长确定,例如,第二时长大于或等于基于传输所述第一指示信息的CG PUSCH资源确定的传输时长与所述第一指示信息的解调时长之和。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到指示至少一个所述第二CG PUSCH的第一指示信息,在第二时域位置的第二时长之后,检测所述至少一个所述第二CG PUSCH;其中,所述第二时域位置为在所述第一CG PUSCH上传输所述指示信息的CG PUSCH资源的结束位置。
在一些示例中,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图5所示,本实施例中提供一种信道检测方法,其中,所述方法由接入网设备,所述方法包括:
步骤51、为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;
其中,所述第一CG PUSCH为低优先级的CG PUSCH,所述第二CG PUSCH为高优先级的CG PUSCH。
在一个实施例中,所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。
在一些示例中,CG PUSCH配置中所述高优先级的CG PUSCH会被优先检测。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。所述第一CG PUSCH配置中的第一CG PUSCH为高优先级的CG PUSCH;所述第二CG PUSCH配置中的第二CG PUSCH为低优先级的CG PUSCH。
在一个实施例中,接入网设备可以进行GC PUSCH的配置,例如,可以通过无线资源控制(RRC,Radio Resource Control)信令进行CG PUSCH的配置。CG PUSCH配置中可以包括优先级信息。示例性地,CG PUSCH的配置包括第一CG PUSCH配置和第二CG PUSCH配置。其中,所述第一CG PUSCH配置中可以包括所述第一CG PUSCH配置的优先级信息,这里,所述第一CG PUSCH配置的优先级信息也即所述第一CG PUSCH配置中的第一CG PUSCH的优先级信息。所述第二CG PUSCH配置中可以包括所述第二CG PUSCH配置的优先级信息,这里,所述第二CG PUSCH配置的优先级信息也即所述第二CG PUSCH配置中的第二CG PUSCH的优先级信息。其中,优先级信息指示优先级。可以理解的是,当高优先级的CG PUSCH配置对应的时频域资源与低优先级的CG PUSCH配置对应的时频域资 源重叠时,会优先检测的为高优先级的CG PUSCH配置的时频域资源,或者,当高优先级的CG PUSCH对应的时频域资源与低优先级的CG PUSCH对应的时频域资源重叠时,会优先检测的为高优先级的CG PUSCH的时频域资源。
基于此,可以理解的是,优先级信息对应的优先级即可以是针对CG PUSCH配置设置,也可以是针对所述CG PUSCH配置中的CG PUSCH设置,在本公开中不做限定。
在一些示例中,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图6所示,本实施例中提供一种信道检测方法,其中,所述方法由接入网设备,所述方法包括:
步骤61、检测第一CG PUSCH;
步骤62、响应于在所述第一CG PUSCH检测到指示至少一个所述第二CG PUSCH的指示信息,检测所述至少一个所述第二CG PUSCH;其中,所述第一CG PUSCH配置中的第一CG PUSCH需要被持续检测;所述第二CG PUSCH配置中的第二CG PUSCH无需被持续检测。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到指示至少一个所述第二CG PUSCH的第一指示信息,检测所述至少一个所述第二CG PUSCH。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH配置中的CG PUSCH检测到指示至少一个所述第二CG PUSCH的配置的第一指示信息,检测所述至少一个所述第二CG PUSCH。
在一些示例中,第一指示信息可以是针对CG PUSCH的配置的指示信息,也可以是针对所述CG PUSCH的配置中的CG PUSCH的指示信息,在本公开中不做限定。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到指示至少一个所述第二CG PUSCH的第一指示信息,在第二时域位置的第二时长之后,检测所述至少一个所述第二CG PUSCH;其中,所述第二时域位置为在所述第一CG PUSCH上传输所述指示信息的CG PUSCH资源的结束位置。
在一个实施例中,为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH。检测所述第一CG PUSCH。响应于在所述第一CG PUSCH检测到指示至少一个所述第二CG PUSCH的 CG UCI,在第二时域位置的第二时长之后,检测所述至少一个所述第二CG PUSCH;其中,所述第二时域位置为在所述第一CG PUSCH上传输所述CG UCI的CG PUSCH资源的结束位置。其中,所述CG UCI为携带在CG PUSCH中的CG UCI,所述CG UCI指示所述至少一个所述第二CG PUSCH的索引信息。
在一些示例中,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
如图7所示,本公开实施例中提供一种信道检测装置,其中,所述装置包括:
配置模块71,被配置为为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;
检测模块72,被配置为检测所述第一CG PUSCH;当在所述第一CG PUSCH检测到上行数据,检测所述第二CG PUSCH的上行数据。
在一个实施例中,所述检测模块72,还被配置为:
在第一时域位置的第一时长之后,检测所述第二CG PUSCH的上行数据;
其中,所述第一时域位置为基于传输所述上行数据的CG PUSCH资源确定的位置。
在一个实施例中,所述检测模块72还被配置为所述第一时域位置为传输所述上行数据的CG PUSCH资源的结束位置。
在一个实施例中,所述配置模块71还被配置为给所述终端配置的CG PUSCH包括被配置为低优先级的CG PUSCH和/或被配置为高优先级的CG PUSCH。
在一个实施例中,所述配置模块71还被配置为所述高优先级的所述CG PUSCH被配置为所述第一CG PUSCH。
在一个实施例中,所述检测模块72还被配置为:
当在所述第一CG PUSCH检测到第一指示信息,检测所述至少一个所述第二CG PUSCH,其中,所述第一指示信息用于指示至少一个所述第二CG PUSCH。
在一个实施例中,所述检测模块72还被配置为:
在第二时域位置的第二时长之后,检测所述至少一个所述第二CG PUSCH;
其中,所述第二时域位置为基于传输所述指示信息的CG PUSCH资源确定的位置。
在一个实施例中,所述检测模块72还被配置为所述第二时域位置为在所述第一CG PUSCH上传输所述第一指示信息的CG PUSCH资源的结束位置。
在一个实施例中,所述检测模块72还被配置为所述第一指示信息为携带在CG PUSCH中的CG上行控制信息UCI。
在一个实施例中,所述检测模块72还被配置为所述CG UCI指示所述至少一个所述第二CG PUSCH的索引信息。
在一个实施例中,所述检测模块72还被配置为所述第一时长由预定通信协议规定或者由所述基站 配置,和/或,所述第二时长由预定通信协议规定或者由所述基站配置。
在一些示例中,本领域内技术人员可以理解,本公开实施例提供的方法,可以被单独执行,也可以与本公开实施例中一些方法或相关技术中的一些方法一起被执行。
本公开实施例提供一种通信设备,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现应用于本公开任意实施例的方法。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序。
本公开实施例还提供一种计算机存储介质,其中,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的方法。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
如图8所示,本公开一个实施例提供一种终端的结构。
参照图8所示终端800本实施例提供一种终端800,该终端具体可是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在终端800和用户之间的提供一个输出接口的屏幕。在一些示例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接 收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些示例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些示例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如组件为终端800的显示器和小键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些示例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图9所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图9,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
如图10所示,本公开一实施例示出示出了一种5G系统的网络架构,包括核心网部分291和接入网部分292。其中,核心网部分包括核心网设备,核心网设备主要包括接入与移动管理功能(AMF,Access and Mobility Management Function)、用户面功能(UPF,User Plane Function)、网络暴露功能(NEF,Network Exposure Function)、用户数据寄存器(UDR,User Data Repository)和会话管理功能(SMF,Session Management Function)等通信节点。接入网部分包括基站。其中,AMF主要负责包括注册管理、连接管理、接入性管理、移动性管理以及与安全和访问管理和授权等相关的各种功能。UPF主要负责数据面锚点、连接数据网络的PDU会话点、报文路由和转发、流量使用量上报和合法监听等相关的各种功能。NEF主要负责提供安全途径向AF暴露3GPP网络功能的业务和能力和提供安全途径让AF向3GPP网络功能提供信息的相关功能。UDR主要负责存储无线通信过程中的重要过程数据。SMF主要负责会话管理、计费与QoS策略控制、合法监听、计费数据收集和下行数据通知等相关的各种功能。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种信道检测方法,其中,所述方法由接入网设备执行,所述方法包括:
    为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;
    检测所述第一CG PUSCH;
    当在所述第一CG PUSCH检测到上行数据,检测所述第二CG PUSCH的上行数据。
  2. 根据权利要求1所述的方法,其中,所述检测所述第二CG PUSCH的上行数据,包括:
    在第一时域位置的第一时长之后,检测所述第二CG PUSCH的上行数据;
    其中,所述第一时域位置为基于传输所述上行数据的CG PUSCH资源确定的位置。
  3. 根据权利要求2所述的方法,其中,所述第一时域位置为传输所述上行数据的CG PUSCH资源的结束位置。
  4. 根据权利要求1所述的方法,其中,给所述终端配置的CG PUSCH包括被配置为低优先级的CG PUSCH和/或被配置为高优先级的CG PUSCH。
  5. 根据权利要求4所述的方法,其中,
    所述高优先级的所述CG PUSCH被配置为所述第一CG PUSCH。
  6. 根据权利要求1所述的方法,其中,所述当在所述第一CG PUSCH检测到上行数据,检测所述第二CG PUSCH的上行数据,包括:
    当在所述第一CG PUSCH检测到第一指示信息,检测所述至少一个所述第二CG PUSCH,其中,所述第一指示信息用于指示至少一个所述第二CG PUSCH。
  7. 根据权利要求6所述的方法,其中,所述检测所述至少一个所述第二CG PUSCH,包括:
    在第二时域位置的第二时长之后,检测所述至少一个所述第二CG PUSCH;
    其中,所述第二时域位置为基于传输所述指示信息的CG PUSCH资源确定的位置。
  8. 根据权利要求7所述的方法,其中,所述第二时域位置为在所述第一CG PUSCH上传输所述第一指示信息的CG PUSCH资源的结束位置。
  9. 根据权利要求6所述的方法,其中,所述第一指示信息为携带在CG PUSCH中的CG上行控制信息UCI。
  10. 根据权利要求9所述的方法,其中,所述CG UCI指示所述至少一个所述第二CG PUSCH的索引信息。
  11. 根据权利要求3或者7所述的方法,其中,所述第一时长由预定通信协议规定或者由所述基站配置,和/或,所述第二时长由预定通信协议规定或者由所述基站配置。
  12. 一种信道检测装置,其中,所述装置包括:
    配置模块,被配置为为终端配置至少两套配置授权CG物理上行共享信道PUSCH配置,其中,所述CG PUSCH配置包括第一CG PUSCH配置和第二CG PUSCH配置;其中,所述第一CG PUSCH配置中的CG PUSCH为第一CG PUSCH;所述第二CG PUSCH配置中的CG PUSCH为第二CG PUSCH;
    检测模块,被配置为检测所述第一CG PUSCH;当在所述第一CG PUSCH检测到上行数据,检测所述第二CG PUSCH的上行数据。
  13. 根据权利要求12所述的装置,其中,所述检测模块,还被配置为:
    在第一时域位置的第一时长之后,检测所述第二CG PUSCH的上行数据;
    其中,所述第一时域位置为基于传输所述上行数据的CG PUSCH资源确定的位置。
  14. 根据权利要求13所述的装置,其中,所述检测模块还被配置为所述第一时域位置为传输所述上行数据的CG PUSCH资源的结束位置。
  15. 根据权利要求12所述的装置,其中,所述配置模块还被配置为给所述终端配置的CG PUSCH包括被配置为低优先级的CG PUSCH和/或被配置为高优先级的CG PUSCH。
  16. 根据权利要求15所述的装置,其中,所述配置模块还被配置为所述高优先级的所述CG PUSCH被配置为所述第一CG PUSCH。
  17. 根据权利要求12所述的装置,其中,所述检测模块还被配置为:
    当在所述第一CG PUSCH检测到第一指示信息,检测所述至少一个所述第二CG PUSCH,其中,所述第一指示信息用于指示至少一个所述第二CG PUSCH。
  18. 根据权利要求17所述的装置,其中,所述检测模块还被配置为:
    在第二时域位置的第二时长之后,检测所述至少一个所述第二CG PUSCH;
    其中,所述第二时域位置为基于传输所述指示信息的CG PUSCH资源确定的位置。
  19. 根据权利要求18所述的装置,其中,所述检测模块还被配置为所述第二时域位置为在所述第一CG PUSCH上传输所述第一指示信息的CG PUSCH资源的结束位置。
  20. 根据权利要求17所述的装置,其中,所述检测模块还被配置为所述第一指示信息为携带在CG PUSCH中的CG上行控制信息UCI。
  21. 根据权利要求20所述的装置,其中,所述检测模块还被配置为所述CG UCI指示所述至少一个所述第二CG PUSCH的索引信息。
  22. 根据权利要求13或者18所述的装置,其中,所述检测模块还被配置为所述第一时长由预定通信协议规定或者由所述基站配置,和/或,所述第二时长由预定通信协议规定或者由所述基站配置。
  23. 一种通信设备,其中,包括:
    天线;
    存储器;
    处理器,分别与所述天线及存储器连接,被配置为通过执行存储在所述存储器上的计算机可执行指令,控制所述天线的收发,并能够实现权利要求1至11任一项提供的方法。
  24. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后能够实现权利要求1至11任一项提供的方法。
PCT/CN2022/137356 2022-12-07 2022-12-07 信道检测方法、装置、通信设备及存储介质 WO2024119418A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/137356 WO2024119418A1 (zh) 2022-12-07 2022-12-07 信道检测方法、装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/137356 WO2024119418A1 (zh) 2022-12-07 2022-12-07 信道检测方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024119418A1 true WO2024119418A1 (zh) 2024-06-13

Family

ID=91378241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137356 WO2024119418A1 (zh) 2022-12-07 2022-12-07 信道检测方法、装置、通信设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024119418A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200163097A1 (en) * 2017-07-31 2020-05-21 Huawei Technologies Co., Ltd. Communication method, network device, and relay device
WO2022077351A1 (zh) * 2020-10-15 2022-04-21 华为技术有限公司 通信方法和通信装置
CN115103461A (zh) * 2022-08-24 2022-09-23 中国信息通信研究院 一种网络非连续发送和接收的方法和设备
WO2022236498A1 (zh) * 2021-05-08 2022-11-17 北京小米移动软件有限公司 连接失败检测方法及装置、通信设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200163097A1 (en) * 2017-07-31 2020-05-21 Huawei Technologies Co., Ltd. Communication method, network device, and relay device
WO2022077351A1 (zh) * 2020-10-15 2022-04-21 华为技术有限公司 通信方法和通信装置
WO2022236498A1 (zh) * 2021-05-08 2022-11-17 北京小米移动软件有限公司 连接失败检测方法及装置、通信设备及存储介质
CN115103461A (zh) * 2022-08-24 2022-09-23 中国信息通信研究院 一种网络非连续发送和接收的方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Transmission with configured grant in NR unlicensed band", 3GPP DRAFT; R1-1903931, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, 30 March 2019 (2019-03-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 19, XP051691173 *
MODERATOR (VIVO): "Feature lead summary on NRU configured grant enhancement", 3GPP DRAFT; R1-2003375, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 22 May 2020 (2020-05-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051889027 *

Similar Documents

Publication Publication Date Title
WO2022178832A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021179130A1 (zh) 通信处理方法及装置
CN113115591B (zh) Harq-ack传输方法及装置、通信设备及存储介质
WO2021243600A1 (zh) 数据传输处理方法、装置、用户设备及存储介质
CN113079709B (zh) Harq-ack处理方法及装置、通信设备及存储介质
WO2023184187A1 (zh) 确定传输方向的方法、装置、通信设备及存储介质
WO2022261877A1 (zh) Drx定时器的启动方法、装置、通信设备及存储介质
CN114128366A (zh) 寻呼参数确定方法、装置、通信设备和存储介质
WO2022032581A1 (zh) 上行传输的发送、接收方法及装置、通信设备及介质
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
WO2023050350A1 (zh) Cfr的确定方法、装置、通信设备及存储介质
WO2023050362A1 (zh) 下行传输配置、接收方法及装置、通信设备及存储介质
WO2022205475A1 (zh) 联合信道估计的配置方法、装置、设备和存储介质
WO2022205046A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021258371A1 (zh) 直连通信控制方法、装置及用户设备
WO2024119418A1 (zh) 信道检测方法、装置、通信设备及存储介质
WO2024092676A1 (zh) 定位处理方法、装置、通信设备及存储介质
WO2024092477A1 (zh) 天线端口的信息的指示方法、装置、通信设备及存储介质
WO2023206529A1 (zh) 一种系统消息传输方法、装置、通信设备及存储介质
WO2023123433A1 (zh) 终端的功率配置方法、装置、通信设备及存储介质
US20220386157A1 (en) Channel measurement method and apparatus, and communication device
WO2022261869A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022267039A1 (zh) Bwp指示方法、装置、通信设备及存储介质
WO2022082384A1 (zh) 确定数据处理时长的方法及装置、通信设备和存储介质