WO2020103842A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置

Info

Publication number
WO2020103842A1
WO2020103842A1 PCT/CN2019/119549 CN2019119549W WO2020103842A1 WO 2020103842 A1 WO2020103842 A1 WO 2020103842A1 CN 2019119549 W CN2019119549 W CN 2019119549W WO 2020103842 A1 WO2020103842 A1 WO 2020103842A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
terminal device
switching node
tsn
virtual switching
Prior art date
Application number
PCT/CN2019/119549
Other languages
English (en)
French (fr)
Inventor
余芳
倪慧
李岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3117732A priority Critical patent/CA3117732A1/en
Priority to EP19887497.6A priority patent/EP3860287A4/en
Priority to AU2019382463A priority patent/AU2019382463C1/en
Publication of WO2020103842A1 publication Critical patent/WO2020103842A1/zh
Priority to US17/323,638 priority patent/US20210274585A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/66Policy and charging system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1403Architecture for metering, charging or billing
    • H04L12/1407Policy-and-charging control [PCC] architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/146Markers for unambiguous identification of a particular session, e.g. session cookie or URL-encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/148Migration or transfer of sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M15/00Arrangements for metering, time-control or time indication ; Metering, charging or billing arrangements for voice wireline or wireless communications, e.g. VoIP
    • H04M15/82Criteria or parameters used for performing billing operations
    • H04M15/8228Session based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/24Accounting or billing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • H04W40/36Modification of an existing route due to handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • This application relates to the field of communication technology, and in particular, to a communication method and device.
  • TSN time sensitive network
  • the hypothesis of virtualizing the 5G system as a switching node in TSN is proposed.
  • the application function (application, function, AF) network element adds the control plane of the TSN adaptation function, and adds the TSN adaptation on the user plane function (UPF) network element and user equipment (UE).
  • UPF user plane function
  • UE user equipment
  • This application provides a communication method and device for virtualizing a 5G system as a switching node in TSN to implement data transmission.
  • an embodiment of the present application provides a communication method.
  • the method includes: first, a session management network element can obtain port information of a terminal device, where the port information of the terminal device includes the port of the terminal device Identify the transmission delay information between the port of the terminal device and an external adjacent node; after that, the session management network element then sends the port information of the terminal device to the centralized network configuration network element.
  • the session management network element can send the port information of the terminal device to the centralized network configuration network element in the delay sensitive network, and has the ability to report the port information of the communication system as a virtual switching node, which can make the
  • the centralized network configuration network element determines the information of the virtual switching node (such as port information of the virtual switching node), and then can implement end-to-end transmission of data according to the information of the virtual switching node.
  • the session management network element has multiple ways of acquiring the port information of the terminal device, two of which are listed below:
  • the session management network element receives a protocol data unit (protocol data unit) (PDU) session establishment request from the terminal device, where the PDU session establishment request includes the terminal device
  • PDU protocol data unit
  • the port information of the terminal device is obtained from the PDU session establishment request.
  • the session management network element receives a PDU session modification response from the terminal device, and the PDU session modification response includes the port information of the terminal device from the PDU session Obtain the port information of the terminal device in the modification response.
  • the session management network element can flexibly obtain the port information of the terminal device during the existing PDU session establishment process or the PDU session modification process, which expands the application scenario and can make the application range more extensive.
  • the session management network element may also report other information of the virtual switching node, such as delay information; specifically, In the process of establishing a quality of service (QoS) flow of the terminal device, the session management network element may determine the transmission delay between the user plane corresponding to the QoS flow and the terminal device; Sending the transmission delay to the centralized network configuration network element.
  • QoS quality of service
  • the session management network element will determine the transmission delay and send it to the centralized network configuration network element has the ability to report the delay information of the communication system as a virtual switching node, which can make the centralized network
  • the network element is configured to determine the delay information of the virtual switching node, so as to facilitate the end-to-end transmission of data according to the information of the virtual switching node.
  • the session management network element may determine the transmission delay between the user plane corresponding to the QoS flow and the terminal device by using the following method: the session management network element first follows the policy control network Yuan obtains the QoS flow policy and charging control rules (policy and charging control, PCC rule); then, determines the transmission delay according to the PCC rules of the QoS flow.
  • policy control network Yuan obtains the QoS flow policy and charging control rules (policy and charging control, PCC rule); then, determines the transmission delay according to the PCC rules of the QoS flow.
  • the session management network element can determine the transmission delay more efficiently and conveniently according to the existing PCC rules of the QoS flow, thereby improving the efficiency of information reporting.
  • the session management network element determines the transmission time delay according to the PCC rule of the QoS flow, which may be first according to the fifth-generation mobile communication service quality identifier included in the PCC rule ( 5G QoS identity, 5QI) determines the packet delay budget (PDB) of the QoS flow; after that, the transmission delay is determined according to the PDB, for example, the PDB can be used as the transmission time Delay, the PDB may also be adjusted, and the adjusted PDB is used as the transmission delay.
  • the PCC rule of the QoS flow which may be first according to the fifth-generation mobile communication service quality identifier included in the PCC rule ( 5G QoS identity, 5QI) determines the packet delay budget (PDB) of the QoS flow; after that, the transmission delay is determined according to the PDB, for example, the PDB can be used as the transmission time Delay, the PDB may also be adjusted, and the adjusted PDB is used as the transmission delay.
  • the PDB packet delay budget
  • the session management network element can determine the transmission delay more quickly and accurately according to the 5QI, which can ensure that the transmission delay is more efficiently reported to the centralized network configuration network element in the future.
  • the session management network element may instruct the terminal device to determine the port information of the terminal device, specifically, the session The management network element may send a first indication message to the terminal device, where the first indication message is used to instruct the terminal device to determine port information of the terminal device.
  • the terminal device after receiving the first instruction message, the terminal device can determine the port information of the terminal device, so as to ensure that the port of the terminal device can be sent to the session management network element more quickly afterwards information.
  • the port information of the terminal device may further include external topology information of the port of the terminal device.
  • the port information of the terminal device carries more information, so that the centralized network configuration network element can determine the external topology information of the virtual switching node after receiving the port information of the terminal device, It is beneficial to achieve better end-to-end data transmission later.
  • an embodiment of the present application provides a communication method.
  • the method includes: first, a terminal device determines that port information of the terminal device needs to be reported; specifically, a case where port information of the terminal device needs to be reported includes Some or all of the following: the terminal device itself supports the TSN service, needs to create a packet data unit PDU session corresponding to the TSN service, the currently created PDU session needs to carry the TSN stream, and the created PDU session needs to carry the TSN stream;
  • the terminal device sends port information of the terminal device to a session management network element, where the port information of the terminal device includes a port identifier of the terminal device and transmission between the port of the terminal device and an external neighboring node Delay information.
  • the terminal device reports the port information of the terminal device to the session management network element, so that the session management network element can Port information is reported to the centralized network configuration network element, which is helpful for the centralized network configuration network element to determine the information of the virtual switching node (such as port information), and then the data can be implemented according to the information of the virtual switching node End transmission.
  • the terminal device can move The access management network element sends a PDU session establishment request to the session management network element, where the PDU session establishment request includes port information of the terminal device.
  • the terminal device can flexibly report the port information of the terminal device to the session management network element in the existing PDU session establishment process, which expands the application scenario and can make the application range more extensive.
  • the terminal device sends the port information of the terminal device to the session management network element.
  • the terminal device can flexibly send the port information of the terminal device to the mobile access management network element in the existing registration process, which can save signaling and is suitable for existing registration scenarios. Expanded application scenarios.
  • the terminal device may determine that the created PDU session needs to carry the TSN stream according to the indication information in the PDU session modification request from the session management network element; after receiving the indication message, The terminal device may send a PDU session modification response carrying port information of the terminal device to the session management.
  • the terminal device can flexibly report the port information of the terminal device to the session management network element during the existing PDU session modification process, which can improve the utilization rate of signaling resources and is applicable to the existing PDU
  • the session modification scenario enables the application scenario to be effectively expanded.
  • the terminal device may determine that the created PDU session needs to carry the TSN stream according to the indication information in the PDU session establishment confirmation message from the session management network element, and after determining that the created PDU session needs to be carried After the TSN flow, report the port information of the terminal device to the session management network element.
  • the terminal device can flexibly determine that the created PDU session needs to carry the TSN stream during the existing PDU session establishment process, and then can report the port information of the terminal device to the session management network element, expanding the application The scene can make the application range more extensive.
  • the terminal device may determine that the PDU session needs to carry the TSN stream according to the data network name (DNN) of the PDU session to be created.
  • DNN data network name
  • the terminal device can conveniently and simply determine that the created PDU session needs to carry the TSN stream according to the parameters of the PDU session (DNN), and then report the port information of the terminal device to the session management network element, In turn, the efficiency of information reporting can be improved.
  • DNN parameters of the PDU session
  • the terminal device may spontaneously determine the port information of the terminal device in advance, or may receive A first indication message from the session management network element, the first indication message is used to instruct the terminal device to determine port information of the terminal device and determine port information of the terminal device.
  • the terminal device can determine the port information of the terminal device after receiving the first indication message, and can more efficiently determine the port information of the terminal device.
  • the port information of the terminal device may further include external topology information of the port of the terminal device.
  • the port information of the terminal device carries more information, so that the centralized network configuration network element can determine the external topology information of the virtual switching node after receiving the port information of the terminal device, It is beneficial to achieve better end-to-end data transmission later.
  • an embodiment of the present application provides a communication method.
  • the method includes: first, a session management network element determines that an anchor user plane network element of a PDU session of a terminal device is to be switched from the first user plane network element to the first After two user plane network elements, if the session management network element determines that the PDU session is a session that communicates with the delay sensitive network TSN, the session management network element sends the first to the centralized network configuration network element A notification message, where the first notification message is used to notify the centralized network configuration network element that the port information of the first virtual switching node and / or the second virtual switching node is updated; wherein, the first virtual switching node is the A virtual switching node corresponding to the first user plane network element, and the second virtual switching node is a virtual switching node corresponding to the second user plane network element.
  • the switching of the anchor user plane network element will cause a change in the virtual switching node.
  • the session management network element may promptly notify the centralized network configuration network It is convenient for the centralized network configuration network element to more efficiently and timely update the information of the virtual switching node accordingly.
  • the first notification message may also be used to notify the virtual switching node of the TSN stream One virtual switching node becomes the second virtual switching node.
  • the session management network element can promptly notify the centralized network configuration network element to facilitate the centralized network Configuring network elements can more efficiently and timely configure and update TSN flows.
  • the switching of the anchor user plane network element causes the virtual switching node to change, which may cause the port information of the first virtual switching node and the port information of the second virtual switching node to change,
  • the session management network element may update the port information of the first virtual switching node and the second according to the port information of the terminal device Port information of the virtual switching node.
  • the port information of the first virtual switching node and the port information of the second virtual switching node can be quickly updated when the anchor user plane network element is switched, so that the first The port information of the virtual switching node and the port information of the second virtual switching node can be more accurate.
  • the first notification message may also carry some related information, two of which are listed below:
  • the identifier of the second virtual switching node and the updated port information of the second virtual switching node are identical to the identifier of the second virtual switching node and the updated port information of the second virtual switching node.
  • the identifier of the second virtual switching node and the port information used by the second virtual switching node to transmit the TSN stream are identical to the identifier of the second virtual switching node and the port information used by the second virtual switching node to transmit the TSN stream.
  • the first notification message carries relevant port information, so that the centralized network configuration network element can accurately determine the second virtual switching node after receiving the first notification message Port information is updated.
  • the first notification message further includes identification information of the first virtual switching node and port information of the first virtual switching node after the session management is updated.
  • the first notification message carries relevant port information, which can enable the centralized network configuration network element to accurately determine the first virtual switching node after receiving the first notification message Port information is updated.
  • the first notification message further includes an identifier of the TSN stream.
  • the identifier of the TSN flow can clearly indicate the affected TSN flow due to the anchor user plane network element switching, so that the centralized network configuration network element can accurately know that the TSN flow reception is affected, possibly Reconfiguration is required.
  • the session management network element may receive a notification response message from the centralized network configuration network element, the The notification response message indicates that the centralized network configuration network element has completed the configuration update of the TSN flow.
  • the session management network element can more clearly determine that the TSN stream has been reconfigured so that the session management network element can perform subsequent operations, such as completing internal switching of the virtual switching node.
  • the session management network element after the session management network element receives the notification response message from the centralized network configuration network element, the session management network element removes the anchor user plane network element of the PDU session from the The first user plane network element is switched to the second user plane network element to establish a connection between an access network node and the second user plane network element.
  • the session management network element after the session management network element receives the notification response message from the centralized network configuration network element, the session management network element sends a second notification message to the centralized network configuration network element.
  • the second notification message is used to notify the centralized network that the virtual switching node configuring the TSN flow changes from the first virtual switching node to the second virtual switching node.
  • the session management network element can flexibly notify the centralized network configuration network element that the switching from the first virtual switching node to the second virtual switching node is completed through the second notification message.
  • an embodiment of the present application provides a communication method.
  • the method includes: first, a centralized network configuration network element receives a first notification message from a session management network element, and the first notification message is used to notify the first The port information of the virtual switching node and / or the second virtual switching node is updated.
  • the centralized network configuration network element can more efficiently and timely learn the change of the port information of the virtual switching node.
  • the centralized network configuration network element may also be based on The first notification message reconfigures the transmission path for the TSN stream.
  • the centralized network configuration network element can learn the virtual switching node to send the switch in a timely manner, reconfigure the transmission path of the TSN flow more quickly, and complete the configuration update of the TSN flow.
  • the first notification message may also carry some related information, two of which are listed below:
  • the identifier of the second virtual switching node and the updated port information of the second virtual switching node are identical to the identifier of the second virtual switching node and the updated port information of the second virtual switching node.
  • the identifier of the second virtual switching node and the port information used by the second virtual switching node to transmit the TSN stream are identical to the identifier of the second virtual switching node and the port information used by the second virtual switching node to transmit the TSN stream.
  • the first notification message carries relevant port information, so that the centralized network configuration network element can accurately determine the second virtual switching node after receiving the first notification message Port information is updated.
  • the first notification message further includes identification information of the first virtual switching node and port information of the first virtual switching node after the session management is updated.
  • the first notification message carries relevant port information, which can enable the centralized network configuration network element to accurately determine the first virtual switching node after receiving the first notification message Port information is updated.
  • the first notification message further includes an identifier of the TSN stream.
  • the identifier of the TSN flow can clearly indicate the affected TSN flow due to the anchor user plane network element switching, so that the centralized network configuration network element can accurately know that the TSN flow reception is affected, possibly Reconfiguration is required.
  • a notification response message may also be sent to the session management network element, the notification response message indicating the centralized network configuration network Yuan has completed the configuration update of the TSN stream.
  • the session management network element can more clearly determine that the TSN stream has been reconfigured so that the session management network element can perform subsequent operations, such as completing internal switching of the virtual switching node.
  • the centralized network configuration network element may also receive a second notification message from the session management network element, where the second notification message is used to notify the virtual switching node of the TSN flow from the first A virtual switching node becomes a second virtual switching node; after that, the centralized network configuration network element releases the resources of the source transmission path of the TSN stream.
  • the centralized network configuration network element can determine that the virtual switching node has been switched through the second notification message, and release the resources of the source transmission path of the TSN stream, which can effectively save resources.
  • an embodiment of the present application provides a communication method.
  • the method includes: first, a network element of a first core network may determine corresponding delay information according to a service quality identifier of a terminal device, and the delay information is used for Characterize the transmission delay between the terminal device and the user plane network element; after that, the first core network element determines the corresponding delay of the TSN service type based on the delay information based on the TSN service type corresponding to the service quality identifier Information, and then send a first message to the centralized network configuration network element, where the first message carries delay information corresponding to the TSN service type.
  • the first core network element can determine the delay information corresponding to the TSN service type more flexibly and conveniently according to the service quality identifier, and can also enable the centralized network configuration network element to more quickly Obtain delay information corresponding to the TSN service type.
  • the first core network element before determining the corresponding delay information according to the service quality identifier of the terminal device, the first core network element needs to obtain the service quality identifier. Specifically, the first core network element The service quality identifier may be determined according to the contract information of the terminal device.
  • the service quality identifier is determined according to the contract information of the terminal device that is easier to obtain, which can make the subsequent delay information corresponding to the TSN service type be determined more quickly based on the service quality identifier .
  • an embodiment of the present application further provides a communication device, which is applied to a session management network element.
  • the device has the function of realizing the behavior in the method example of the first aspect described above.
  • the function can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the device includes a receiving unit and a sending unit, and may further include a processing unit, and these units may perform the corresponding functions in the method example of the first aspect described above. For details, see the detailed description in the method example. I will not repeat them here.
  • an embodiment of the present application further provides a communication device, which is applied to a terminal device.
  • the device has the function of realizing the behavior in the method example of the second aspect described above.
  • the function can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the device includes a processing unit and a sending unit, and may further include a receiving unit, and these units can perform the corresponding functions in the method example of the second aspect described above. For details, see the detailed description in the method example. I will not repeat them here.
  • an embodiment of the present application further provides a communication device, which is applied to a session management network element device.
  • the device has a function to realize the behavior in the method example of the third aspect.
  • the function can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the device includes a processing unit and a sending unit, and may further include a receiving unit, and these units can perform the corresponding functions in the method examples of the third aspect described above. For details, see the detailed description in the method examples. I will not repeat them here.
  • an embodiment of the present application further provides a communication device, which is applied to a centralized network configuration network element.
  • the device has the function of realizing the behavior in the method example of the above fourth aspect.
  • the function can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the device includes a receiving unit, and may further include a processing unit and a sending unit. These units can perform the corresponding functions in the method examples of the fourth aspect described above. For details, see the detailed description in the method examples. I will not repeat them here.
  • an embodiment of the present application further provides a communication device, which is applied to a network element of a first core network.
  • the device has a function to realize the behavior in the method example of the fifth aspect.
  • the function can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the device includes a processing unit and a sending unit, and these units can perform the corresponding functions in the method examples of the fourth aspect described above. For details, refer to the detailed description in the method examples, and details are not described here.
  • an embodiment of the present application further provides a communication device, which is applied to a session management network element.
  • the structure of the communication device includes a processor and a memory, and the processor is configured to support the base station to perform the corresponding function in the method of the first aspect.
  • the memory is coupled to the processor, and stores necessary program instructions and data of the communication device.
  • the structure of the communication device further includes a communication interface for communicating with other devices.
  • an embodiment of the present application further provides a communication device, which is applied to a terminal device.
  • the structure of the communication device includes a processor and a memory, and the processor is configured to support the base station to perform the corresponding function in the method of the second aspect.
  • the memory is coupled to the processor, and stores necessary program instructions and data of the communication device.
  • the structure of the communication device further includes a transceiver for communicating with other devices.
  • an embodiment of the present application further provides a communication device, which is applied to a session management network element.
  • the structure of the communication device includes a processor and a memory, and the processor is configured to support the base station to perform the corresponding function in the method of the third aspect.
  • the memory is coupled to the processor, and stores necessary program instructions and data of the communication device.
  • the structure of the communication device further includes a communication interface for communicating with other devices.
  • an embodiment of the present application further provides a communication device, which is applied to a centralized network configuration network element.
  • the structure of the communication device includes a processor and a memory, and the processor is configured to support the base station to perform the corresponding function in the method of the fourth aspect.
  • the memory is coupled to the processor, and stores necessary program instructions and data of the communication device.
  • the structure of the communication device further includes a communication interface for communicating with other devices.
  • an embodiment of the present application further provides a communication device, which is applied to a network element of a first core network.
  • the structure of the communication device includes a processor and a memory, and the processor is configured to support the base station to perform the corresponding function in the method of the fifth aspect.
  • the memory is coupled to the processor, and stores necessary program instructions and data of the communication device.
  • the structure of the communication device further includes a communication interface for communicating with other devices.
  • the present application also provides a computer-readable storage medium that stores instructions, which when executed on a computer, causes the computer to perform the methods described in the above aspects.
  • the present application also provides a computer program product containing instructions that, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • the present application further provides a computer chip connected to a memory, the chip is used to read and execute a software program stored in the memory, and execute the methods described in the above aspects.
  • Figure 1 is a schematic diagram of the network architecture of the 5G system
  • FIG. 2 is a schematic diagram of the network topology of TSN
  • FIG. 3 is a schematic diagram of TSN's centralized management architecture
  • 4a is a schematic diagram of a network architecture provided by an embodiment of this application.
  • 4b is a schematic diagram of a network architecture provided by an embodiment of this application.
  • 4c is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • 5 to 11 are schematic diagrams of a communication method provided by an embodiment of the present application.
  • 12 to 18 are schematic structural diagrams of a communication device provided by an embodiment of the present application.
  • This application provides a communication method and device for virtualizing a 5G system as a switching node in TSN to ensure that end-to-end data transmission can be realized subsequently.
  • the embodiment of the present application relates to the combination of the 5G system and the TSN, and the 5G system is virtualized into a communication method of a switching node in the TSN.
  • the following first describes the 5G system, the TSN involved in the embodiment of the present application, and the network architecture applicable to the embodiment of the present application .
  • FIG. 1 is a schematic diagram of a network architecture of a 5G system.
  • the network architecture is a 5G network architecture.
  • the network elements in the 5G architecture include terminal equipment.
  • the terminal equipment is used as an example.
  • the network architecture also includes a radio access network (radio access network, RAN), access and mobility management function (access and mobility management function, AMF) network element, session management function (session management function, SMF) network element, user plane Function (user plane function, UPF) network element, policy control function (policy control function, PCF) network element, application function (application function, AF) network element, data network (data network, DN), etc.
  • radio access network radio access network
  • AMF access and mobility management function
  • AMF session management function
  • SMF session management function
  • user plane Function user plane function, UPF
  • policy control function policy control function
  • PCF policy control function
  • application function application function, AF
  • data network data network
  • DN data network
  • the main function of RAN is to control users to access the mobile communication network through wireless.
  • RAN is part of the mobile communication system. It implements a wireless access technology. Conceptually, it resides between certain devices (such as a mobile phone, a computer, or any remote control machine) and provides a connection to its core network.
  • the AMF network element is responsible for terminal access management and mobility management. In practical applications, it includes the mobility management function in the MME in the network framework in LTE, and the access management function is added.
  • the SMF network element is responsible for session management, such as user session establishment.
  • the UPF network element is a functional network element on the user plane, which is mainly responsible for connecting to external networks. It includes LTE service gateway (serving gateway, SGW) and public data network gateway (public data gateway, PDN-GW) related functions.
  • LTE service gateway serving gateway, SGW
  • public data network gateway public data gateway, PDN-GW
  • DN is responsible for the network that provides services for the terminal, such as some DNs provide Internet access for the terminal, and others provide SMS functions for the terminal and so on.
  • PCF policy and charging rule function
  • the AF network element can be a third-party application control platform or the operator ’s own device.
  • the AF network element can provide services for multiple application servers.
  • the AF network element is a functional network that can provide various business services. Yuan, can interact with the core network through NEF network elements, and can interact with the strategy management framework for strategy management.
  • the core network control plane function network elements also include network open function (network exposure function, NEF), unified data management (unified data management, UDM), and unified data storage of network elements (unified data repository, UDR) Network element
  • NEF network element is used to provide the framework, authentication and interface related to the opening of network capabilities, and transfer information between the network functions of the 5G system and other network functions
  • UDR network elements are mainly used to store user-related contract data and strategy data ⁇ Used for open structured data and application data
  • the UDM network element can store user's subscription information to achieve a backend similar to HSS in 4G.
  • the terminal device in this application also known as user equipment (UE), is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle; it can also be deployed on the water surface Onboard (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • UE user equipment
  • the terminal device may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, and an industrial control (industrial control) ), Wireless terminals in self-driving, self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety , Wireless terminals in smart cities (smart cities), wireless terminals in smart homes (smart homes), etc.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • TSN generally includes a switching node (bridge) and a data terminal (end).
  • the data terminal and the switching node can form a network topology.
  • the switching node can forward the message through the forwarding rules configured or created by it. Forward the message to the data terminal or other switching nodes.
  • FIG. 2 a schematic diagram of a simple network topology of TSN, which includes multiple data terminals and switching nodes.
  • TSN is based on Layer 2 transmission.
  • the TSN standard defines the behavior of data terminals and switching nodes and the scheduling method for switching nodes to forward TSN streams, thereby achieving reliable delay transmission.
  • the switching node in the TSN uses the destination MAC address of the message or other message characteristics as the identifier of the TSN flow, and performs resource reservation and scheduling planning according to the delay requirement of the TSN flow, thereby ensuring reliability and transmission time according to the generated scheduling strategy Delay.
  • the data terminal can be divided into a sender (talker) and a receiver (listener), where the sender of the TSN stream is called the sender (talker), the receiver of the TSN stream is called the receiver (listener); when sending When the end or the receiving end sends the TSN flow requirement to the TSN, the TSN configuration will start.
  • the TSN configuration includes configuring the switching node on the path from the sending end to the receiving end.
  • the TSN may also include configuration network elements for implementing TSN configuration, such as a centralized network configuration (CNC) network element and a centralized user configuration (CUC) network element.
  • configuration network elements for implementing TSN configuration, such as a centralized network configuration (CNC) network element and a centralized user configuration (CUC) network element.
  • CNC centralized network configuration
  • CRC centralized user configuration
  • Fig. 3 is a schematic diagram of the centralized management architecture of TSN.
  • the centralized management architecture is one of the three architectures defined by 802.1qcc in the TSN standard. Yuan and CUC network element. It should be noted that the number of network elements and the network topology shown in FIG. 3 are only examples, and the embodiments of the present application are not limited.
  • the switching node reserves resources for the TSN flow according to the definition of the TSN standard, and schedules and forwards data packets.
  • the CNC network element is responsible for managing the topology of the TSN user plane and the information of the switching nodes, and generating the transmission path of the TSN stream and the processing strategy on the data terminal and each switching node according to the flow creation request provided by the CUC network element, and then switching the node
  • the above processing strategy is delivered to the corresponding switching node.
  • the information of the switching node may include port information and delay information of the switching node; specifically, the port information of the switching node includes the port identifier of the switching node and the external transmission delay of the switching node, and the port information of the switching node also It may include external topology information of the switch node port.
  • the port of the switching node includes an ingress port and an egress port for transmitting uplink and downlink data; the external topology information of the port of the switching node is used to characterize the connection relationship between the port of the switching node and the ports of external neighboring nodes.
  • the external transmission delay of the switching node is the time it takes for the switching node to send data from the egress port until the data reaches the ingress port of the opposite virtual switching node.
  • the delay information is used to characterize the internal transmission delay of the switching node.
  • the internal transmission delay of the switching node is the time elapsed from the ingress port to the egress port during data transmission within the switching node.
  • the 5G system may serve as a virtual switching node, and the information of the virtual switching node also includes port information and delay information of the virtual switching node.
  • the ports of the virtual switching node are divided into an inbound port and an outbound port for transmitting uplink and downlink data.
  • the ingress ports of the virtual switching node include the port of the UE and the port of the UPF, such as the UE transmitting uplink data Port (upstream port), the port through which the UPF transmits downlink data (downstream port), and the egress port of the virtual switching node includes the port of the UE and the port of the UPF, such as the port through which the UE transmits downlink data (downstream port) ), The port (downlink port) through which the UPF transmits uplink data.
  • the port information of the virtual switching node includes the identification of the ingress and egress ports of the virtual switching node and the external transmission delay of the virtual switching node.
  • the port information of the virtual switching node may also include the port number of the virtual switching node External topology information.
  • the external transmission delay of the virtual switching node includes transmission delay information between the port of the UE and the external neighboring node, and the port of the UPF network element and the external neighboring node Time delay information.
  • the external topology information of the virtual switching node port characterizes the connection relationship between the port of the virtual switching node and the port of the external neighboring node.
  • the external topology information of the virtual switching node port includes a characterization External topology information of the UE port of the connection relationship between the UE port and the external neighboring node port and external topology information of the UPF network element port used to characterize the connection relationship of the port of the UPF network element and the external neighboring node port .
  • the UE has two neighboring nodes divided into Switch 1 and Switch 2, and its external topological relationship may be as shown in Table 1; wherein the identifier of the neighboring node may be the MAC address of the neighboring node, and the identifier of the port may be The MAC address corresponding to the port can also be identified in other ways.
  • the delay information is used to characterize the internal transmission delay of the TSN stream in the virtual switching node.
  • the internal transmission delay of the virtual switching node is the time elapsed from the ingress port to the egress port during data transmission within the virtual switching node That is, the transmission delay of the TSN stream between the UE and the UPF network element.
  • the processing strategy on the switching node may include, for example, a port for receiving and sending packets and a time slice.
  • the time slice refers to the time information for the switching node to send and receive packets, for example, to receive the message within t1 to t2.
  • the CUC network element is used to obtain the TSN capability of the data terminal, that is, to obtain the number of data terminal ports, the MAC address of each port, and the 802.1 capability supported by each port.
  • the CUC network element can collect the flow creation request of the data terminal, after matching the flow creation request of the sending end and the receiving end, request the CNC network element to create a TSN flow, and confirm the processing strategy generated by the CNC network element.
  • the flow creation request matching the sending end and the receiving end refers to the flow creation request sent by the sending end and the receiving end to the CUC network element respectively.
  • the flow creation request includes some information, such as the destination MAC address of the requested TSN flow, the CUC network element Match the stream creation request with the destination MAC address of the TSN stream requested by different data terminals. If the destination MAC addresses of the TSN streams requested by the two data terminals are the same, the same TSN stream requested by the two data terminals matches If successful, a TSN stream can be created; otherwise, only the sender or receiver stream creation request cannot create a TSN stream.
  • CNC network element and the CUC network element are control plane network elements in the TSN.
  • the switching node in the TSN needs to have other functions, such as topology discovery, determining the switch ID and switch port ID, and supporting protocols such as link layer discovery protocol (LLDP).
  • LLDP link layer discovery protocol
  • the transmission delay may be determined, and after detecting the internal transmission delay of the switching node, the detected transmission delay may be reported to the configuration network element.
  • FIG 4a A network architecture diagram applicable to the present application, wherein a combination of the fifth generation mobile communication (5 th -generation, 5G) and TSN system network architecture.
  • 5G fifth generation mobile communication
  • the control plane of the TSN adaptation function is added to the AF network element
  • the user plane (UP) 1 of the TSN adaptation function is added to the UPF network element
  • the TSN is added to the UE UP2 with the adaptation function, these three together with the 5G system form a logical switching node, that is, a virtual switching node, as a switching node in TSN.
  • UPF and UP1 are drawn separately, in fact UP1 and UP2 are logical functions of the user plane TSN adaptation function, UP1 can be deployed on the UPF network element, or UP1 can be the UPF network element In the same way, UP2 can be deployed on the UE, or UP2 can be the internal function module of the UE.
  • the TSN adaptation function refers to adapting the characteristics and information of the 5G network to the information required by the TSN, and communicating with the network elements in the TSN through the interface defined by the TSN.
  • the AF network element serves as a connection node between the 5G system and the TSN.
  • the AF network element can interact with the CNC network element in the TSN and provide information about the logical switching node to the CNC network element according to the requirements of the TSN switching node.
  • the control plane of the TSN adaptation function provides the necessary information, that is, UP1 can provide the necessary information to the AF network element, such as the information of the switching node in the TSN, can identify the TSN to which the CNC network element belongs, and can also provide the 5G system
  • the PCF network element provides the DNN of the TSN.
  • FIG. 4b it is another schematic diagram of the network architecture applicable to this application.
  • the user plane on which the TSN adaptation function is deployed on the UE or the user plane of the TSN adaptation function is the internal function module of the UE, that is, UP2 in 4a, UP2 is used to obtain the port information of the UE and send it to the AF network element through the control plane.
  • the SMF network element may interact with the AF network element through the PCF network element or the NEF network element, or may interact with the AF network element Meta direct interaction, the embodiment of the present application is not limited.
  • FIG. 4c it is a schematic structural diagram of a UE.
  • the UE can be abstracted as a virtual switch (virtual switch, vSwitch), which passes through each virtual network card (virtual interface (card, VIC) is connected to different switching nodes or data terminals, which can ensure that different switching nodes or data terminals connected to the UE belong to different virtual local area networks (virtual local area networks, VLANs), and can also be implemented through the virtual switch Logical communication isolation.
  • vSwitch virtual switch
  • VIC virtual interface
  • VLANs virtual local area networks
  • the port information of the UE may include a port identifier and transmission delay information between the UE's port and an external neighboring node, and may also include external topology information of the UE port or the number of the UE's ports; wherein, the UE port
  • the external topology information of is used to characterize the connection relationship between the port of the UE and the port of the neighboring node, and the transmission delay information between the port of the UE and the external neighboring node is used to characterize the connection between the port of the UE and the neighboring node Transmission delay between ports.
  • the port of the UE is not limited to a virtual port, and may also be a logical port or a logical port.
  • the embodiments of the present application are not limited The type of the port of the UE.
  • the AF network element is a logical network element, which may be a component within other logical network elements (such as a component within an SMF network element), or may be another control plane functional network element, and its name is not limited here.
  • the device 1 and the device 2 may be equivalent to the data terminal in FIG. 2 or may be equivalent to the sending end or the receiving end in FIG. 3.
  • Device 1 is connected to the port on the UE side.
  • the connection may be a physical link or a virtual connection (for example, device 1 is a processing unit in the device where the UE is located); device 1 may be other terminal devices than UE, or It can be a switching node.
  • the device 1 shown in FIG. 4b interacts with the CUC network element as a terminal device.
  • the device 1 interacts with the CNC network element (similar to the switching node shown in FIG. 4b connected to the UPF network element).
  • Device 2 shown in FIG. 4b interacts with the CUC network element as a terminal device.
  • Device 2 is not directly connected to the physical port of the UPF network element.
  • Device 2 also includes a switching node between the virtual switching node and the switching node. It may be a switching node that actually exists in the TSN, for example, it may be a switching node in a data network (DN) or another virtual switching node. Device 2 may also be directly connected to the physical port of the UPF network element.
  • DN data network
  • the transmission delay between the port on the UE side and the physical port on the UPF side is taken as the internal transmission delay of the virtual switch point.
  • the internal transmission delay is for port pairs. Different port pairs may have different internal transmission delays.
  • the internal transmission between the ingress port 1 and the egress port 1 of the switch Delay 1 such as the internal transmission delay 2 between the port 1 and the outgoing port 2.
  • the values of internal transmission delay 1 and internal transmission delay 2 may be different.
  • the network architecture shown in FIGS. 4a to 4b is only a network architecture that combines a 5G system with TSN.
  • the communication methods involved in the embodiments of the present application To introduce, in fact, the embodiments of the present application do not limit the combination of other communication systems and TSN.
  • other communication systems are virtual switching nodes in TSN
  • other communication systems are provided with network elements that can implement related functions (such as In the embodiments of the present application, the terminal device, the session management network element or the mobile access management network element and other functions are network elements) to ensure that other communication systems have the function of switching nodes.
  • related functions such as In the embodiments of the present application, the terminal device, the session management network element or the mobile access management network element and other functions are network elements
  • the 5G system is a virtual switching node in TSN, which can be regarded as a virtual switching node as a TSN.
  • the 5G system also needs to have port information or transmission delay.
  • the embodiment of the present application provides a communication method.
  • the UE may report the port information of the UE to the SMF network element after receiving the request, or Actively report the port information of the UE to the SMF network element; after acquiring the port information of the UE, the SMF network element may send the port information of the UE to the CNC network element, the CNC After receiving the port information of the UE, the network element may perform related configuration, such as the configuration of the TSN flow.
  • the method provided in the embodiment of the present application makes the 5G system also have the function of a switching node, and can report the port information of the UE to the CNC, ensuring that the 5G system can be used as a switching node in the future to achieve normal and relatively Efficient end-to-end data transmission.
  • the terminal device is a UE
  • the session management network element is an SMF network element
  • the centralized network configuration network element is the CNC network element as an example.
  • the embodiments of the present application do not limit the terminal device, session management network element, and centralized
  • the type and name of the network configuration network element, any device that can implement the corresponding functions of the terminal device, the session management network element, and the centralized network configuration network element are applicable to the embodiment of this application, as shown in FIG. 5 and provided for the embodiment of this application
  • a communication method includes:
  • Step 501 The UE determines that the port information of the UE needs to be reported.
  • the UE may determine whether the port information of the UE needs to be reported, and there are many cases where the port information of the UE needs to be reported, for example:
  • the first type the UE itself supports the TSN service.
  • the UE may be used to transmit TSN streams.
  • the UE may be connected to a switching node or data terminal in the TSN, and may also transmit data to other switching nodes or data terminals through a 5G system.
  • the UE when registering to the 5G system, the UE may send the port information of the UE to the SMF network element in advance, such as carrying the port information of the UE in the registration
  • the request is sent to the AMF network element, and in the subsequent PDU session establishment process, the port information of the UE is sent to the SMF network element through the AMF network element.
  • the second type the PDU session corresponding to the TSN service needs to be created, that is, the PDU session needs to be created to carry the TSN stream.
  • the UE can use the pre-configured The correspondence between the APP and the data network name (DNN) determines the DNN corresponding to the APP, and determines the DNN corresponding to the APP according to the pre-configured set of DNNs that support TSN (can also be regarded as the need to initiate Whether the PDU session of the PDU session supports TSN, and if so, the PDU session to be initiated is a session that needs to carry a TSN stream or a session to be communicated with TSN, and the UE can determine that the PDU session is to be carried TSN stream, that is, a session to be communicated with TSN.
  • the set of pre-configured DSNs that support TSN is stored locally in the UE, so that the UE can determine that the PDU session
  • the PDU session is a session that needs to carry a TSN stream and the PDU session is a session to be communicated with the TSN.
  • the meaning is the same, and there is no difference.
  • These two expressions will be used interchangeably.
  • the UE when the UE initiates the PDU session establishment process, it can determine that the PDU session to be created needs to carry the TSN stream.
  • the third type the currently created PDU session needs to carry the TSN stream.
  • the UE may determine that the currently created PDU session needs to carry a TSN stream. For example, the UE may determine that the currently created PDU session is to carry a TSN stream according to the DNN of the currently created PDU session, The UE may determine that the currently created PDU session is to carry a TSN stream according to the DNN of the currently created PDU session and in the second case, the UE determines that the PDU session is to be carried according to the DNN of the PDU session The method of TSN flow is the same, and will not be repeated here.
  • the UE may also determine that the currently created PDU session needs to carry the TSN stream through indication messages of other network elements.
  • the UE sends a PDU session establishment request to the SMF network element through the AMF network element, and the SMF network element according to the information carried in the PDU session establishment request sent by the UE ( If the DNN determines that the currently established PDU session can be used to carry the TSN stream, it may send indication information to the UE, where the indication information is used to indicate that the currently created PDU session needs to carry the TSN stream.
  • the indication message may be carried in the PDU session establishment confirmation message, and the indication message may be an information element in the PDU session establishment confirmation message.
  • the information carried in the PDU session establishment request sent by the UE may be the DNN of the PDU session, and the SMF network element may be based on the pre-configured set of DNNs that support the TSN service, and the DNN carried in the PDU session establishment request Determine whether the DNN supports the TSN service.
  • the SMF network element determines that the currently created PDU session needs to carry a TSN stream.
  • the pre-configured DNN set that supports TSN It is stored locally on the SMF network element or on other devices, and the SMF network element facilitates obtaining the pre-configured DNN set supporting TSN.
  • the UE determines that the created PDU session needs to carry the TSN stream. For example, after receiving the PDU session modification request from the SMF network element, the UE according to the PDU session modification request carries The PDU session identifier determines the DNN of the PDU session, after which the UE determines that the PDU session is to carry a TSN stream according to the DNN of the PDU session, and the UE determines the PDU according to the DNN of the PDU session For the manner in which the session needs to carry the TSN stream, refer to the third case. The UE may determine the manner in which the currently created PDU session will carry the TSN stream according to the DNN of the currently created PDU session, and details are not described here.
  • the UE may also determine that the created PDU session needs to carry a TSN stream through indication messages of other network elements.
  • the SMF network element may determine that the PDU session that needs to be modified needs to carry a TSN flow according to the DNN of the PDU session that needs to be modified, and the SMF network element may modify the PDU session according to the need.
  • the DNN determines that the PDU session to be modified needs to carry the TSN stream.
  • the SMF network element may determine that the currently created PDU session is to carry the TSN stream according to the DNN of the currently created PDU session The method will not be repeated here.
  • a PDU session modification request is sent to the UE through the AMF network element, the PDU session modification request includes an indication message, and the indication message It may be indicated that the created PDU session needs to carry the TSN stream, and after receiving the PDU session modification request, the UE may determine that the created PDU session needs to carry the TSN stream according to the instruction message.
  • the UE may determine part or all of the conditions as described above.
  • the UE may only meet one of the above four cases, or may meet two or more of the four cases, for example, the UE meets the first case and the second case; the UE meets the first Case and the third case.
  • the embodiment of the present application does not limit other situations in which the port information of the UE needs to be reported, and any situation in which the UE needs to report the port information of the UE is applicable to the embodiment of the present application.
  • Step 502 The UE sends the port information of the UE to the SMF network element, where the port information of the UE includes the port identifier of the UE and the transmission delay between the port of the UE and an external neighboring node information.
  • the port information of the UE includes external topology information of the UE port.
  • the UE may send the port information of the UE to the SMF network element.
  • the UE may initiate a registration process, carry the port information of the UE in a registration request and send it to the AMF network element, and the AMF network element may save the UE
  • the port information of the UE is carried in the PDU session registration request and sent to the SMF network element (referred to as mode 1 for short).
  • the UE may use method one to send the port information of the UE to the SMF network element; the UE may also initiate a session establishment process
  • the port information of the UE is carried in the PDU session establishment request and sent to the SMF network element through the AMF network element (referred to as mode 2 for short); the UE may also carry the port of the UE in the PDU session establishment confirmation response Information, the AMF network element sends the PDU session establishment confirmation response to the SMF network element (mode 3 for short).
  • the UE may be in the session modification process, the UE may also carry the port information of the UE in the PDU session modification response, and the PDU session may be transferred through the AMF network element.
  • the modification response is sent to the SMF network element (referred to as method 4 for short).
  • the UE may use method one or method two to report the port information of the UE, or may use method one and method two at the same time, Both the registration request and the session establishment request carry port information of the UE.
  • the UE may report the port information of the UE in the first way, or may report the port information of the UE in the fourth way, or may use the first and fourth ways at the same time, that is, in the registration request and the session modification
  • the response carries the port information of the UE.
  • the manner in which the UE sends the port information of the UE to the SMF network element is only an example, and this embodiment of the present application is not limited.
  • the UE meets the second situation, and the method 2 may not be used, and then In the PDU session modification process, the port information of the UE is sent to the SMF network element through a PDU session modification response; the UE may also send the port information of the UE to the SMF through separate signaling
  • the SMF network element may also be sent to the SMF network element through the user plane, for example, the UE may send the port information to the UPF network element, which is forwarded to the SMF network element by the UPF network element. Any method that enables the SMF to obtain the port information of the UE is applicable to the embodiment of the present application.
  • the UE Before the UE sends the port information of the UE to the SMF network element, the UE needs to determine the port information of the UE, the UE may actively determine the port information of the UE in advance, and then determine After the SMF reports the port information of the UE, the determined port information of the UE is sent to the SMF network element; if the UE determines that it supports the TSN service, the UE can proactively determine the port in advance Information, for example, the UE may check the external topology information of the UE port and / or the transmission delay information between the UE port and an external neighboring node by itself.
  • the SMF network element may also send a first indication message to the UE to instruct the UE to determine the port information of the UE; After receiving the first indication message, the UE may determine the port information of the UE.
  • the The UE may obtain the port information of the UE stored locally; if the UE does not determine the port information of the UE in advance, for example, the UE does not detect the external topology information of the UE port and / or the port of the UE
  • the UE may determine the port information of the UE after receiving the first indication message, that is, detect the external topology information of the UE port and / or The transmission delay information between the port of the UE and an external adjacent node determines the port information of the UE.
  • Step 503 After the SMF network element obtains the port information of the UE, the SMF network element sends the port information of the UE to the CNC network element.
  • the SMF network element may directly send the port information of the UE to the CNC network element, or the SMF network element may determine the After the transmission delay between the UPF network elements, the port information of the UE and the transmission delay between the UE and the UPF network element are sent to the CNC network element together.
  • the SMF network element determines that the transmission delay between the UE and the UPF network element is determined in the PDU session establishment process or the PDU session modification process.
  • Method 1 In the PDU session modification process, a QoS flow needs to be re-established for the PDU session.
  • the PCF network element After receiving the capability information acquisition request of the CNC network element, the PCF network element needs to determine that the created PDU session needs to be modified and updated according to the information of the TSN flow included in the capability information acquisition request The policy and charging control rules of the current PDU session, that is, the policy information needs to be updated, and after the PCF network element updates the policy information, it will send a session policy update notification with the updated policy information to the SMF network element , The SMF network element may obtain updated policy information from the session policy update notification.
  • the session policy update notification includes part or all of the following information:
  • PDU session ID PDU session ID
  • UE ID PDU session ID
  • updated policy information PDU session ID
  • the PDU session identifier is used to identify the PDU session that needs to be modified; the UE identifier is the identifier of the UE that has established the PDU session, and may be a subscription fixed identifier (subscription permanent identifier, SUPI), which is not limited in this embodiment of the present application.
  • SUPI subscription permanent identifier
  • the SMF network element After receiving the updated policy information from the PCF network element, the SMF network element initiates a PDU session modification process.
  • the updated policy information includes a new policy and charging control rule (policy and charging control rule, PCC rule), and the policy and charging control rule includes at least a service data flow template corresponding to the TSN flow and a 5QI ( 5G QoS Identifier) and other QoS parameters.
  • policy and charging control rule policy and charging control rule, PCC rule
  • 5QI 5G QoS Identifier
  • the SMF network element determines the QoS flow of the TSN flow according to the PCC rule.
  • the QoS flow may be an existing established QoS flow or the SMF network element may be determined according to the PCC rule.
  • the existing QoS flow cannot match the QoS parameter requirements in the PCC rule, and a new QoS flow is created for the TSN flow.
  • one PDU session may include one or more QoS flows.
  • One QoS flow may carry one or more service flows transmitted between the UE and the UPF network element, where the TSN flow is a type of service flow.
  • the nodes in the 5G system such as the UPF network element, RAN and UE, process and forward the traffic flow carried in the QoS flow according to the QoS parameters corresponding to the QoS flow; because the traffic flow carried in the same QoS flow is When transmitting in the 3GPP system, that is, when transmitting between the UE and the UPF network element, the forwarding rules are the same, that is, one QoS flow corresponds to one UE and one UPF network element.
  • the SMF network element After receiving the session policy update notification, the SMF network element initiates a PDU session modification process to re-establish a QoS flow for the UE's PDU session, that is, a QoS flow needs to be created for the UE, the QoS In the flow establishment process, the SMF network element may determine the transmission delay between the UPF network element corresponding to the QoS flow and the UE.
  • the SMF network element after receiving the session policy update notification, the SMF network element obtains updated policy information, and determines the transmission delay according to the PCC rule in the updated policy information.
  • the PCC rule includes the QoS parameters required to transmit the TSN stream, and the QoS parameters include 5QI.
  • Each 5QI will have a corresponding packet delay budget (packet delay) (PDB).
  • PDB packet delay budget
  • the PDB refers to the maximum allowable delay of a QoS flow transmitted between the UE and the UPF network element, which refers to QoS.
  • the transmission delay of the service stream carried by the stream in the 5G system will not exceed the PDB.
  • the SMF network element determines the transmission delay according to the packet delay budget. For example, the SMF network element may use the PDB as the transmission delay.
  • Method 2 In the PDU session establishment process, a QoS flow needs to be established for the PDU session.
  • the SMF network element After receiving the policy notification from the PCF network element, the SMF network element establishes a PDU session.
  • the policy notification includes part or all of the following information:
  • PDU session ID PDU session ID
  • UE ID PDU session ID
  • policy information PDU session ID
  • the description of the PDU session ID, the UE ID, and the policy information is similar to the description in Mode 1, and is not repeated here.
  • the manner in which the SMF network element determines the transmission delay is similar to that in Mode 1, and refer to Mode One; the only difference is that the first method is the updated policy information, and the second method is that the policy information is generated for creating a PDU session.
  • a QoS flow needs to be created for the UE, and in the UE QoS flow establishment process, the SMF network element can determine the transmission delay .
  • the SMF network element sends the transmission delay to the CNC network element; after the CNC network element obtains the transmission delay, it will use the transmission delay and the port information and delay information reported by other switching nodes To determine the configuration of the scheduling and forwarding strategies of other switching nodes to ensure that the delay and bandwidth requirements of the TSN flow are calculated.
  • the SMF network element may separately send the port information of the UE and the transmission delay, for example, the SMF network element After acquiring the port information of the UE from the UE and sending the port information of the UE to the CNC network element, after determining the transmission delay, the transmission delay is sent to the CNC network element That is, the port information of the UE and the transmission delay may be sent at different time points; the SMF network element may also send the port information of the UE and the transmission delay to the Describe the SMF network element.
  • the SMF network element may also send multiple times, and only send a part of the port information of the UE each time, for example, the SMF network element may first send the port of the UE The identifier, the transmission delay information and the number of ports between the UE and the external neighboring node, after detecting the external topology information of the UE port according to the indication of the SMF network element, and then sending the external of the UE port Topology information.
  • the CNC network element needs to know the information of the virtual switching node, and the SMF network element delays sending the UE port information or the transmission time to the CNC network element,
  • the port information of the UE may be used as the port information of the virtual switching node
  • the transmission delay may be used as the delay information in the information of the virtual switching node
  • the information of the virtual switching node may be sent to the CNC network element.
  • the port information of the virtual switching node may also include the port information of the UPF.
  • the port information of the UPF network element is the port identifier of the UPF network element and the transmission delay information between the port of the UPF network element and the external neighboring node; the port information of the UPF network element may further include the External topology information of the UPF port, the external topology information of the UPF network element port is used to characterize the connection relationship between the port of the UPF network element and the port of the adjacent node, and does not limit the way of acquiring the port information of the UPF network element Any method that enables the SMF network element to obtain the port information of the UPF network element is applicable to the embodiment of the present application.
  • the port information of the virtual switching node only needs to mark the input port and the output port of the virtual switching node to transmit data, and does not need to be clear that the port is the port of the UE or the port of the UPF network element; that is to say ,
  • the CNC network element only needs to determine the input port and the output port of the virtual switching node to transmit data through the port information of the virtual switching node, and correspondingly, the delay information of the virtual switching node only needs to Marked as the internal transmission delay of the virtual switching node, there is no need to specify the transmission delay from the UE to the UPF network element, that is to say, the CNC network element is invisible to the internal structure of the virtual switching node .
  • the SMF network element When sending the port information of the UE and the transmission delay to the CNC network element, the SMF network element needs to convert the port information of the UE and the transmission delay to the information of the virtual switching node, Then send the information of the virtual switching node to the CNC network element.
  • the SMF network element may send the information of the virtual switching node to the CNC network element through the AF network element.
  • the SMF network element may send the port information of the UE and the transmission delay to the AF network element, and the AF network element transmits the port information of the UE and the The transmission delay is converted into the information of the virtual switching node, and then the information of the virtual switching node is sent to the CNC network element.
  • the SMF network element may send the port information of the UE and the transmission delay to the CNC network element as the information of the virtual switching node to the CNC network element .
  • the SMF network element needs Notifying the CNC network element that the virtual switching node is updated, and also sending the updated information of the virtual switching node to the CNC network element.
  • the session management network element is an SMF network element
  • the centralized network configuration network element is the CNC network element as an example.
  • the embodiments of the present application do not limit terminal equipment .
  • the types and names of session management NEs and centralized network configuration NEs, all devices that can implement the corresponding functions of session management NEs and centralized network configuration NEs are applicable to the embodiments of this application, as shown in FIG. 6, this application
  • a communication method provided by an embodiment includes:
  • Step 601 The SMF network element determines that the anchor UPF network element of the UE's PDU session is to be switched from the first UPF network element to the second UPF network element.
  • the anchor UPF network element refers to the UPF network element that terminates the N6 interface; there are many situations where the anchor UPF network element changes, for example, the UE moves, resulting in the current anchor point
  • the UPF network element is not suitable for continuing to provide services for the UE. For example, if the transmission path of the UPF network element through the current anchor point is not the optimal path, the anchor point UPF network element needs to be switched, and for example, the current anchor point UPF network element fails , The service cannot be continued, and the anchor point UPF network element needs to be switched.
  • the embodiment of the present application is not limited.
  • the SMF network element is triggered to be the anchor UPF network element of the PDU session reselected by the UE.
  • the virtual switching node will change.
  • the port of the virtual switch is composed of the port on the UE side and the port on the UPF network element side, and can be used as the egress port and in port or in port and egress port of the virtual switch, respectively.
  • the port on the UPF network element side is fixed, but since a UPF network element may dynamically establish user plane connections with multiple UEs, the port on the UE side changes.
  • the UE side port of the virtual switch corresponding to the UPF network element will increase; when a user plane connection between the UE and the UPF network element is released, such as the UE moving
  • the UE-side ports of the virtual switch corresponding to the UPF network element will be reduced. If the anchor UPF network element in the 5G system changes, it means that the transmission path of the PDU session and the QoS flow carried in the PDU session and the TSN flow carried in the QoS flow is switched from one UPF network element to another UPF network element.
  • the corresponding UPF network element For QoS flow or TSN flow, the corresponding UPF network element has changed, that is, the virtual switching node used to transmit the QoS flow or TSN flow has changed. It can be understood that an anchor UPF network The element corresponds to a virtual switching node.
  • the virtual switching node corresponding to the first UPF network element is a first virtual switching node, that is, a virtual switching node before UPF switching; the second UPF network element
  • the corresponding virtual switching node is the second virtual switching node, that is, the virtual switching node after UPF switching.
  • Step 602 The SMF network element determines that the PDU session is a session interworking with TSN.
  • the SMF network element determines that the DNN of the PDU session supports the TSN service according to the DNN of the PDU session and the pre-configured set of DNNs supporting the TSN service on the SMF network element, and after determining that the DNN supports the TSN service, The SMF network element determines that the PDU session is a session interworking with TSN.
  • Step 603 The SMF network element sends a first notification message to the CNC network element, where the first notification message is used to notify the CNC network element of port information of the first virtual switching node and / or the second virtual switching node An update has occurred.
  • the first notification message may only be used to notify that the port information of the second virtual switching node of the CNC network element is updated, or may only notify the port information of the first virtual switching node of the CNC network element to be updated, and may also be used To notify the CNC network element that the port information of the first virtual switching node and the second virtual switching node are updated.
  • the UE When the anchor UPF is switched from the first UPF network element to the second UPF network element, the UE is no longer connected to the first UPF network element, but is connected to the second UPF network element .
  • the port on the UE side of the first virtual switching node will not have the port of the UE, that is, the port of the first virtual switching node should not include the port after the anchor UPF network element is switched UE port information; and the port on the UE side of the second virtual switching node will increase the port of the UE, that is, the port of the second virtual switching node after the anchor UPF network element is switched
  • the information should include the port information of the UE; obviously, after the anchor UPF network element is switched over, both the port information of the first virtual switching node and the port information of the second virtual switching node should change and need to be performed Update accordingly.
  • the SMF network element may update the port information of the first virtual switching node and the port information of the second virtual switching node according to the port information of the UE.
  • the port information of the first virtual switching node For the port information of the first virtual switching node, the port information of the UE needs to be removed, and the port information of the first virtual switching node from which the port information of the UE is removed is the updated first Port information of the virtual switching node; for the port information of the second virtual switching node, the port information of the UE needs to be added, and the port information of the second virtual switching node that adds the port information of the UE is The updated port information of the second virtual switching node.
  • the delay information of the virtual switching node is the internal transmission delay of the virtual switching node, it is determined according to the PCC rules of the QoS flow. Before and after the UPF network element switching, the PCC rules of the QoS flow have not changed. In other words, the delay information of the virtual switching node has not been updated. In the embodiment of the present application, the update of the delay information of the first virtual switching node and the second virtual switching node may not be involved.
  • the type of the first notification message is a message type that notifies that the port information of the virtual switching node has changed, and the identifier of the virtual switching node is carried in the first notification message, and the first notification message may be Indicate that the port information of the virtual switching node is updated.
  • the above method is only an example.
  • anyone can notify the CNC network element that the port information of the virtual switching node (the first virtual switching node and / or the second virtual switching node) is updated. The methods are applicable to the embodiments of the present application.
  • the PDU session Before the UPF network element switching, the PDU session has carried the TSN stream, and the first notification message may also be used to notify the virtual switching node that will transmit the TSN stream from the first virtual switching node to the first Two virtual switching nodes.
  • the first notification message notifies that the virtual switching node that transmits the TSN stream needs to change from the first virtual switching node to the second virtual switching node.
  • the type of the first notification message is notification
  • the message type of the virtual switching node switching of the TSN stream, the first notification message carries the identifier of the first virtual switching node and the identifier of the second switching node, and the first notification message can indicate the The virtual switching node of the TSN stream is changed from the first virtual switching node to the second virtual switching node.
  • the above method is only an example. Anything that can notify the virtual switching node that will transmit the TSN stream to switch from the first virtual switching node
  • the manner in which the node becomes the second virtual switching node is applicable to the embodiment of the present application.
  • the first notification message may also carry some port information, so that the CNC network element may update the port information of the corresponding virtual switching node.
  • the first notification message may carry the following message Part or all of:
  • Message 2 The identifier of the first virtual switching node and the updated port information of the first virtual switching node.
  • Message 3 The identifier of the second virtual switching node and the port information used by the second virtual switching node to transmit the TSN stream.
  • the first notification message may only carry updates that need to be updated for transmission
  • the port information of the TSN stream may carry the information of the uplink port of the UE for transmitting the TSN stream or the downlink port of the TSN stream, optionally, may also carry the second Information of an uplink port of the UPF network element used to transmit the TSN stream or a downlink port used to transmit the TSN stream.
  • the first notification message may also carry the TSN stream Logo.
  • the first notification message notifies that the port information of the CNC network element virtual switching node (the first virtual switching node and / or the second virtual switching node) is updated, and the CNC network element receives the first notification message After that, it can be known that the port information of the corresponding virtual switching node is updated, and the port information of the corresponding virtual switching node can be marked as updated.
  • the CNC network element may learn to determine the first virtual switching node The port information of is updated, and the port information of the first virtual switching node may be marked as updated.
  • the CNC network element may also update the port information of the corresponding virtual switching node, for example, it may carry the port information of the second virtual switching node. After identifying and updating the port information of the second virtual switching node, the CNC network element may update the port information of the second virtual switching node to the port information carried in the first notification message.
  • the CNC network element After the CNC network element learns that the port information of the first virtual switching node and / or the second virtual switching node is updated, if the PDU session will subsequently carry a TSN flow, the CNC network element may also update After the port information of the first virtual switching node and / or the second virtual switching node determines whether the transmission path of the TSN stream needs to include the first virtual switching node or the second virtual switching node, In order to reconfigure the TSN stream later.
  • first notification message is also used to notify the virtual switching node of the TSN stream to change from the first virtual switching node to the second virtual switching node.
  • the CNC network element may replace the virtual switching node of the TSN flow from the first virtual switching node to a second virtual switching node.
  • the CNC network element may also reconfigure the transmission path of the TSN stream according to the first notification message.
  • the virtual switching node of the TSN stream changes from the first virtual switching node to the second virtual switching node, in order to ensure that the TSN stream can be normally transmitted, a transmission path needs to be reconfigured for the TSN stream.
  • the CNC network element reconfiguring the transmission path of the TSN flow includes resetting the transmission path for the TSN flow, and configuring the switching node on the transmission path, for example, configuring the transmission path except the second virtual switch.
  • the scheduling and forwarding rules for the TSN flow of other switching nodes of the node includes resetting the transmission path for the TSN flow, and configuring the switching node on the transmission path, for example, configuring the transmission path except the second virtual switch.
  • the CNC network element may send a notification response message to the SMF network element, where the notification response message indicates that the CNC network element has completed the configuration update of the TSN flow, That is to say, the transmission path of the TSN stream has been configured, and the anchor point UPF network element switching within the 5G system is completed, the TSN stream can be transmitted through the second virtual switching node, and the TSN stream can be guaranteed Corresponding to the delay and bandwidth requirements, the SMF network element will receive the notification response message.
  • the SMF network element is only an anchor UPF network element that can determine the PDU session needs to be switched from the first UPF network element to the second UPF network element , But has not been switched, that is, the SMF network has not made a corresponding switching instruction, so that the anchor UPF of the PDU session is switched from the first UPF network element to the second UPF network element; After receiving the notification response message, the SMF network element may switch the anchor point UPF of the PDU session from the first UPF network element to the second UPF network element.
  • the SMF network element needs to establish a user plane connection from the RAN to the second UPF network element, and release the user plane connection between the RAN and the first UPF network element, and the SMF network element A session connection to the first UPF network element.
  • the SMF network element After the SMF network element determines that the anchor UPF of the PDU session is switched from the first UPF network element to the second UPF network element, the SMF network element completes the internal switching of the virtual switching node, that is, Switching the first virtual switching node to the second virtual switching node, and may send a second notification message to the CNC network element, where the second notification message is used to notify the CNC network element of the TSN flow
  • the virtual switching node is to be changed from the first virtual switching node to the second virtual switching node.
  • the registration status of the UE it can be divided into two types: UE registered and UE unregistered.
  • UE registered When the UE has registered to the 5G system, a PDU session has been established. The established PDU session is not used to transmit TSN streams. In this case, if the established PDU session needs to be used later to carry the TSN stream, the established PDU session needs to be modified to facilitate the carrying of the TSN stream, and the CNC network element needs to learn about the 5G system as a virtual switch Node information, including the port information of the UE and the transmission delay from the UE to the UPF network element.
  • the SMF network element may send a request to the UE to obtain port information, Obtain the port information from the UE.
  • the SMF network element can determine the transmission delay in the PDU session modification process; when the UE is not registered with the 5G system, the UE can register at a later time , Reporting the port information of the UE to the AMF network element, so that the AMF network element can send the port information of the UE to the SMF network element when establishing a PDU session for the UE;
  • the AMF network element directly reports the port information of the UE to the SMF network element.
  • the SMF network element determines the transmission delay in the PDU session establishment process . The following describes these two situations.
  • the UE is registered.
  • the method includes:
  • Step 701 The CUC network element sends a flow configuration request to the CNC network element, requesting the CNC network element to configure a TSN flow for the CUC network element, and the flow configuration request includes information of the TSN flow.
  • the information of the TSN stream includes the identifier of the TSN stream, the source MAC address of the TSN stream, the destination MAC address of the TSN stream, and the transmission requirements for transmitting the TSN stream.
  • the identifier of the TSN stream is an identifier set to distinguish between different TSN streams, and the CNC network element can establish a transmission path between the TSN stream and the sending end, receiving end, and TSN stream after learning the identifier of the TSN stream Correspondence.
  • the source MAC address of the TSN stream and the destination MAC address of the TSN stream are the MAC address of the sending end of the data and the destination MAC address of the receiving end of the data during the transmission of the TSN stream, which can be configured for the CNC network element later
  • the TSN stream provides a reference, determines the start and end of the transmission path of the TSN stream, and determines the transmission path of the TSN stream.
  • the transmission requirements of the transmission TSN stream include some or all of the following: the maximum frame size (MaxFrameSize), the maximum frame interval (MaxIntervalFrames) of the TSN stream, the priority parameter of the frame (PriorityAndRank), and the individual frames of the stream from the sending end The maximum allowable delay for transmission to the receiving end, etc.
  • Carrying the transmission requirements of the transmission TSN flow in the flow configuration request which can provide a reference for the CNC network element to configure the TSN flow later, so that the transmission path of the TSN flow can meet the transmission requirements;
  • the CNC network element can determine the bandwidth required for calculating the TSN stream according to the maximum frame size and the maximum frame interval time of the TSN stream, and the CNC network element transmits the maximum allowable transmission from the sending end to the receiving end according to a single frame of the stream
  • the delay configures the transmission path of the TSN stream, and the CNC network element can configure the scheduling strategy of the TSN stream by the switching node in the TSN according to the priority parameter of the frame.
  • Step 702 After receiving the flow configuration request, the CNC network element needs to configure the TSN flow.
  • the CNC network element When configuring a transmission path for the TSN stream, the CNC network element will first check the TSN network element topology, and determine whether a virtual switching node exists on the TSN stream transmission path according to the TSN network topology.
  • the CNC network element may be pre-configured with the attributes of each switching node in the TSN's network topology, such as which switching nodes are traditional switching nodes and which switching nodes are virtual switching nodes. Through the pre-configured information, the It is determined that there is a virtual switching node on the TSN streaming transmission path.
  • the above method for determining the existence of a virtual switching node on the TSN streaming transmission path is only an example, and this application does not limit the determination of the existence of the virtual switching node in the network topology by other methods Any method for determining that there is a virtual handover node in the network topology is applicable to the embodiment of the present application.
  • the transmission path of the TSN stream is a path formed by the switching nodes in the TSN network topology to transmit the TSN stream.
  • the traditional switching node it has the ability to report the information of the switching node.
  • the SMF network element in the 5G system needs to determine the information of the virtual switching node, and it needs to be reported to the CNC through the AF network element or the SMF network element Information of the virtual switching node of the network element.
  • the SMF network element or the AF network element reports virtual switching node information, it indicates that the switching node is a virtual switching node.
  • Step 703 When it is determined that there is a virtual switching node in the TSN network topology, in order to obtain information of the virtual switching node, the CNC network element may send capability information to the PCF network element in the 5G system through the AF network element An acquisition request, the capability information acquisition request is used to request information of the virtual switching node.
  • the capability acquisition request includes the information of the TSN stream.
  • Step 704 After receiving the capability information acquisition request, the PCF network element determines that a PDU session needs to be modified, and sends a session policy update notification to the SMF network element.
  • the AF network element after receiving the capability information acquisition request from the CNC network element, the AF network element includes the correspondence between the destination MAC address of the TSN flow and the UE identifier according to the information of the TSN flow The relationship determines the identity of the UE, and determines the DNN of the TSN to which the CNC network element belongs.
  • the correspondence between the destination MAC address of the TSN stream and the identifier of the UE may be pre-configured, or the AF network element may obtain the capability information from the CNC network element Obtained from other network elements after the request.
  • the AF network element can determine, through the destination MAC address of the TSN stream, which UE the TSN stream needs to pass during transmission.
  • the AF network element sends the determined identifier of the UE and the DNN to the PCF network element together with the capability information acquisition request, and the PCF network element may be based on the identifier of the UE and the DNN Determine which PDU session of the UE needs to be modified.
  • the PDU session determined by the PCF network element is a PDU session that needs to be modified, and the PCF network element determines policy information according to the information of the TSN flow carried in the capability information acquisition request, because the PDU session is currently established , The PDU session already has corresponding policy information, and the PCF network element determines that the policy information needs to update the policy information corresponding to the PDU session according to the TSN flow.
  • the policy information determined according to the TSN flow is called updated policy information.
  • the PCF network element can determine the requirements that the QoS flow needs to meet based on the information on the TSN flow, that is, it can determine State PCC rules.
  • the session policy update notification includes part or all of the following information: PDU session ID, UE ID, and updated policy information.
  • PDU session ID PDU session ID
  • UE ID UE ID
  • updated policy information PDU session ID
  • the SMF network element can determine information such as data transmission forwarding rules according to the updated policy information, so as to configure the UPF network element.
  • Step 705 After receiving the session policy update notification, the SMF network element needs to modify the established PDU session and send a PDU session modification request (PDU session modification command) to the UE.
  • PDU session modification command PDU session modification command
  • the PDU session modification request may carry an indication message instructing the UE to determine the port information of the UE.
  • an information element may be set to instruct the UE to determine the port information of the UE.
  • it may also be used to indicate The UE reports the port information.
  • Step 706 After the UE receives the PDU session modification request, the UE determines whether the DNN of the PDU session supports TSN according to the PDU session identifier carried in the PDU session modification request. After the DNN supports TSN, it sends a PDU session modification response (PDU session modification command) to the SMF network element.
  • PDU session modification command PDU session modification command
  • the PDU session modification response may carry the port information of the UE.
  • the port information of the UE includes the port identifier (port id) of the UE and transmission delay information between the port of the UE and an external neighboring node.
  • the UE port information also includes external topology information of the UE port.
  • each port is connected to a different adjacent node, that is, each port has a corresponding adjacent node, and the transmission between the UE's port and an external adjacent node
  • the delay information includes the transmission delay from each port of the UE to the corresponding external neighboring node.
  • the SMF network element obtains the port information of the UE from the PDU session modification response.
  • Step 707 The SMF network element sends notification information to the PCF network element, the notification information is used to notify the PCF network element that the PDU session has been modified, and the notification information may further include the virtual switching node's Information, wherein the information of the virtual switching node includes port information of the UE.
  • Step 708 The PCF network element sends the information of the virtual switching node to the AF network element.
  • the PCF may send the information of the virtual switching node to the AF network element through NEF.
  • Step 709 After receiving the information of the virtual switching node, the AF network element forwards the information of the virtual switching node to the CNC network element.
  • Step 710 After receiving the virtual switching node information, the CNC network element may configure the TSN flow according to the virtual switching node information.
  • the CNC network element configuring the TSN flow includes configuring the transmission path of the TSN flow and each switching node on the transmission path, and configuring each switching node on the transmission path of the TSN flow specifically includes configuring each switching node Incoming and outgoing port scheduling and forwarding strategies, so that each switching node performs queue management and forwarding of the data packets of the TSN flow according to the scheduling and forwarding strategies to ensure the delay and bandwidth requirements of the TSN flow.
  • the SMF network element and the AF network element may also directly interact.
  • the AF network element may directly send the capability information to the SMF network element to obtain Request, after receiving the capability information acquisition request, the SMF network element sends the information of the TSN flow to the PCF network element, and after receiving the information of the TSN flow, the PCF network element The SMF network element sends a session policy update notification to modify the established PDU session.
  • the notification message may not carry the information of the virtual switching node, and the SMF network element may send the information of the virtual switching node to the PCF network element through separate signaling.
  • the information of the virtual switching node may further include the identifier of the virtual switching node.
  • the identifier of the virtual switching node is a distinguishing identifier set by different switching nodes. Different virtual switching nodes correspond to different identifiers. There are many ways to set the identifier of the virtual switching node. The change of the UPF network element in the virtual switching node will cause the virtual switching node to become another different virtual switching node, and the identifier of the UPF network element of the anchor point in the virtual switching node may be used as the virtual switching The identifier of the node, or the identifier of the virtual switching node is also set according to the identifier of the UPF network element in the virtual switching node;
  • the UPF network element may be preset with a logo, for example, the preset logo is delivered through a third generation partnership project (3rd generation partnership project, 3GPP) network management system or the CNC network element
  • 3rd generation partnership project 3rd generation partnership project, 3GPP
  • 3GPP third generation partnership project
  • different UPF network elements are preset with different identifiers.
  • the UPF network element may report the preset identifier to the SMF network element, and use the preset identifier as the UPF network element belongs to The ID of the virtual switching node; the timing for the UPF network element to report the UPF ID and the preset ID is not limited in this embodiment of the present application.
  • the UPF network element may report at power-on or at When reporting the UPF network element port information to the SMF network element, the preset identifier is also reported at the same time, and any method that enables the SMF network element to obtain the identifier of the virtual switching node is applicable to the embodiment of the present application .
  • the preset identification may be unique to the virtual switching node, that is, the identifications of the traditional switching node and the virtual switching node are Differently, it is easy to distinguish whether the switching node is a virtual switching node in terms of identification.
  • the CNC network element may store the network topology of the TSN and the identification of each switching node in the network topology. When it is necessary to determine whether there is a virtual switching node in the network topology, it may be identified by the identification of each switching node.
  • the UE is not registered.
  • the method includes:
  • Step 801 The UE sends a registration request to the AMF network element to initiate a registration process to complete the registration; during the registration process, the registration request may include port information of the UE, and the AMF network element receives After the registration request, the port information of the UE is saved.
  • the UE When the UE is not registered, it will register first. If the UE is a device capable of supporting TSN services, during registration, the UE carries the port information of the UE in the registration request.
  • Step 802 After registration, the UE needs to establish a PDU session in order to perform data transmission.
  • the UE initiates a session establishment process by sending a PDU session establishment request.
  • the SMF network element may receive the port information of the UE in the following two ways:
  • Method 1 After receiving the PDU session establishment request from the UE, the AMF network element sends the port information of the UE saved during registration of the UE to the SMF network element.
  • the The AMF network element may send the port information in the create session management context request message to the SMF network element.
  • the AMF network element After receiving the PDU session establishment request of the UE, the AMF network element selects the SMF network element according to the DNN of the PDU session carried in the PDU session establishment request, and the AMF network element will be pre-configured A set of DNNs supporting TSN services, the AMF network element may determine whether the DNN supports the TSN service through the DNN carried in the PDU session establishment request, and after determining that the DNN supports the TSN service, the AMF network element needs The port information is carried in the create session management context request sent to SMF.
  • the pre-configured DSN set supporting TSN is stored locally in the AMF network element, or may be stored on other devices, and The AMF network element facilitates obtaining the pre-configured DNN set supporting TSN.
  • Method 2 The UE's PDU session establishment request carries the port information of the UE, and after receiving the PDU session establishment request from the UE, the AMF network element sends a session management context creation to the SMF network element The request, the session management context creation request includes the PDU session establishment request, and the SMF network element acquires the port information of the UE from the session establishment request.
  • the UE may carry the port information of the UE in the registration request, or the port information of the UE in the PDU session establishment request; the UE may use the registration request and the Any one of the messages in the PDU session establishment request carries the port information of the UE, and may also carry the port information of the UE when sending the two messages, and may also be carried in other messages. It is not limited, and any manner in which the SMF network element receives the port information of the UE when applicable is applicable to the embodiment of the present application.
  • the UE may establish a request Carries port information of the UE, and if the establishment of a PDU session does not need to carry a TSN stream, the PDU session establishment request may not carry the port information of the UE.
  • Step 803 During the session establishment process, after acquiring the port information of the UE, the SMF network element may send the port information of the UE to the CNC network element.
  • the SMF network element may send the port information of the UE to the CNC network element through the AF network element.
  • Step 804 the same as step 701. For details, please refer to the relevant description of step 701, and details are not repeated here.
  • Step 805 the same as step 702, for details, please refer to the relevant description of step 702, and no more details are provided here.
  • Step 806 It is the same as step 703. For details, please refer to the relevant description of step 703, which will not be repeated here.
  • Step 807 It is the same as step 704. For details, please refer to the relevant description of step 704, which will not be repeated here.
  • Step 808 The SMF network element performs a session modification process. Unlike the embodiment shown in FIG. 7, the SMF network element does not need to acquire the port information of the UE in the session modification process.
  • Step 809 After performing the session modification process, the SMF network element sends notification information to the PCF network element, where the notification information is used to notify the PCF network element that the SMF network element has followed the updated policy
  • the information completes the corresponding operation, and the notification information may further include the information of the virtual switching node.
  • the SMF network element since the SMF network element sends the port information of the UE to the CNC network element in advance in step 803, the information of the virtual switching node in step 809 may not carry information including virtual switching Port information of the node.
  • the SMF network element may not send the port information of the UE to the CNC network element in advance, that is, step 803 is not performed, and the virtual switching is performed in step 810
  • the information of the node carries port information including the UE.
  • Step 810 It is the same as step 708. For details, please refer to the relevant description of step 708, which will not be repeated here.
  • Step 811 The same as step 709. For details, please refer to the relevant description of step 709, and no more details are provided here.
  • Step 812 It is the same as step 710. For details, please refer to the relevant description of step 710, which will not be repeated here.
  • the SMF network element and the AF network element can also directly interact.
  • the AF network element can directly send the capability information to the SMF network element to obtain Request, after receiving the capability information acquisition request, the SMF network element sends the TSN flow information to the PCF network element, and the PCF network element initiates a session after receiving the TSN flow information Management strategy modification process.
  • the notification message may not carry the virtual switching node information; the SMF network element may send the virtual switching node information to the PCF network element through separate signaling.
  • the method includes:
  • Step 901 After determining that the anchor UPF network element needs to be switched, the SMF network element selects the target anchor UPF network element (corresponding to the second UPF network element in the embodiment shown in FIG. 6).
  • Step 902 The SMF network element sends an N4 session establishment request to the target anchor UPF network element, and may also instruct the target anchor UPF network element to report port information of the target anchor UPF network element.
  • Step 903 After receiving the N4 session establishment request, the target anchor UPF network element sends an N4 session establishment confirmation message to the SMF network element.
  • the N4 session establishment confirmation message may carry some or all of the following information:
  • the identifier of the virtual switching node and the port identifier of the UPF network element are identical to each other.
  • the identifier of the virtual switching node is the identifier of the virtual switching node corresponding to the target anchor UPF network element.
  • the anchor UPF network element when the anchor UPF network element changes, it indicates that the virtual switching node has changed and has become a new virtual switching node;
  • the UPF network element distinguishes different virtual switching nodes, that is, different UPF network elements can be configured with identifiers, and the identifier of the UPF network element can be used as the identifier of the virtual switching node when the anchor UPF
  • the identifier of the target anchor UPF network element is used as the newly formed virtual switching node identifier to inform the SMF network element.
  • Step 904 The SMF network element sends a PDU session anchor (PSA) change notification message to the AF network element.
  • PSA PDU session anchor
  • the PSA change notification message is used to notify the anchor point that the UPF network element has changed and the PSA
  • the change notification message includes the identifier of the TSN stream and the information of the virtual switching node corresponding to the target anchor UPF network element, where the identifier of the TSN stream is the TSN stream identifier affected by the change of the anchor UPF network element, and That is, the source switching point UPF network element communicates with the UE to switch to the TSN stream identifier transmitted to the UE through the target anchor point UPF network element, and the virtual switching node information corresponding to the target anchor point UPF network element It includes some or all of the following information: virtual switching node identification, virtual switching node port information, and virtual switching node delay information.
  • virtual switching node information please refer to the relevant description of the embodiment shown in FIG. 8, here No longer.
  • the SMF network element may send the PSA change notification message to the AF network element through NEF, or may send the change notification message to the AF network element through the PCF network element.
  • the PSA change notification message may further include information of the virtual switching node corresponding to the source anchor UPF network element.
  • Step 905 After receiving the PSA change notification message, the AF network element may directly forward the change notification message, or may convert the PSA change notification message to notify the CNC network element virtual switching node A first notification message in which port information is updated (the virtual switching node corresponding to the source anchor UPF network element and / or the virtual switching node corresponding to the target anchor UPF network element), the first notification message may include The identifier of the TSN stream affected by the switchover of the anchor point UPF network element, the information of the virtual switching node corresponding to the target anchor point UPF network element, optionally, the first notification message further includes the source anchor point UPF Information about the virtual switching node corresponding to the network element.
  • the SMF network element may not send the PSA change notification message to the AF network element, but send the first notification to the AF network element Message, the first notification message is also used to notify the virtual switching node of the TSN stream to change from the virtual switching node corresponding to the source anchor UPF network element to the virtual switching node corresponding to the target anchor UPF network element.
  • the first notification message further includes information of the virtual switching node corresponding to the source anchor UPF network element.
  • the AF network element After receiving the first notification message, the AF network element sends the first notification message to the CNC network element.
  • Step 906 The CNC network element updates the configuration of the TSN flow according to the first notification message, that is, reconfigures the transmission path of the TSN flow.
  • the CNC network element plans a new transmission path for the TSN flow, and configures a switching node (except for the virtual switching node corresponding to the target anchor UPF network element) on the transmission path of the TSN flow node).
  • Step 907 After the TSN stream configuration update is completed, the CNC network element sends a notification response message to the AF network element, where the notification response message is used to notify the TSN stream that the configuration update has been completed.
  • Step 908 The AF network element forwards the notification response message to the SMF network element.
  • Step 909 After receiving the notification response message, the SMF network element switches the anchor UPF network element of the PDU session to the target anchor UPF network element.
  • the SMF network element sends a PDU session modification request to the RAN through the AMF network element to update the N3 tunnel information of the target anchor UPF network element to the RAN; the RAN uses the AMF The network element sends a PDU session modification response message to the SMF network element, where the PDU session modification response message includes RAN tunnel information.
  • the N3 tunnel information of the target anchor point UPF network element and the access network node tunnel information are used to establish an N3 tunnel between the RAN and the target anchor point UPF network element, establishing the RAN to the target anchor point Session connection of UPF network elements for data transmission.
  • the SMF network element may also release the session connection between the source anchor UPF network element and the SMF session connection.
  • Step 910 After the SMF network element switches the anchor UPF network element of the PDU session to the target anchor UPF network element, it sends a second notification message to the CNC network element.
  • the second notification message is used To notify that the virtual switching node corresponding to the source anchor UPF network element has been switched to the virtual switching node corresponding to the target anchor UPF network element.
  • Step 911 After receiving the second notification message, the CNC network element reconfigures the switching node on the source transmission path for the TSN stream, such as instructing the switching node on the source transmission path to release the reservation for the TSN stream Resource, the source transmission path is the transmission path of the TSN stream before the handover of the anchor UPF network element occurs.
  • the transmission delay is determined by the SMF in the UE QoS flow establishment process, such as during the establishment of the QoS flow during the establishment of a PDU session, or PDU
  • the transmission delay may not be determined in the QoS flow establishment process, and may be determined by the SMF network element before the QoS flow is established and notified
  • the CNC network element this way is introduced below:
  • a communication method provided by an embodiment of the present application includes:
  • Step 1001 The first core network element determines corresponding delay information according to the service quality identifier of the UE, where the delay information is used to characterize the transmission delay between the UE and the UPF network element.
  • the type of the first core network element is not limited.
  • the first core network element may be the SMF network element, the PCF network element, or another core network.
  • the network element, any method that can be implemented by implementing the first core network element network element described in the embodiment of the present application is applicable to the embodiment of the present application.
  • the UE When signing a contract, the UE will have different service quality requirements for the contracted service.
  • a service quality indicator may be set, and the service quality corresponding to the contracted service may be determined by the service quality indicator It is required that when the 5G system or other communication system needs to provide services for the UE, it can make corresponding settings according to the service quality identifier to ensure that the provided services meet the service quality requirements.
  • the service quality requirements include information transmission delay, bandwidth guarantee, etc., so the service quality identifier can characterize the UE's requirements for the transmission delay of the contracted service.
  • the embodiment of the present application does not limit the specific form of the quality of service identifier.
  • the quality of service identifier may be 5QI in QoS parameters. All parameters that can reflect the requirements of the UE for corresponding transmission delay are It is applicable to the embodiment of the present application; in the embodiment of the present application, the number of the service quality identifiers is not limited.
  • the UE may sign multiple services, and each service may correspond to a service quality identifier.
  • the first core network element Before determining the corresponding delay information according to the service quality identifier, the first core network element needs to obtain the service quality identifier first, and the first core network element may locally store the service of the UE
  • the quality identifier, the service quality identifier of the UE is the service quality identifier of the UE's subscription, and the service quality identifier of the UE's subscription may also be obtained from other network elements.
  • the PCF network element may obtain the UE's subscription from the unified data repository (UDR) network element or the UDM network element QoS parameters, the service quality identifier of the UE is obtained from the contracted QoS parameters of the UE.
  • UDR unified data repository
  • the SMF network element may obtain the service quality identifier of the UE from the PCF network element; the SMF network element may also obtain a session from the UE Obtain the service quality identifier of the UE's subscription from the subscription information, that is, the SMF network element may obtain the service quality identifier of the UE's session corresponding to the UE from the UDR network element or the UDM network element.
  • the UE may have a specific contracted service quality identifier.
  • the first core network element may determine the corresponding service quality identifier according to the service quality identifier Delay information.
  • the delay information is the transmission delay of the corresponding contracted service.
  • Step 1002 The network element of the first core network determines the delay information corresponding to the TSN service type according to the delay information based on the correspondence between the TSN service types corresponding to the service quality identifier.
  • the switching node in the TSN schedules and forwards the data packets of different TSN flows through the TSN service type (traffic).
  • the value of the TSN service type is 0-7. The lower the value of the TSN service type corresponding to the TSN flow, the higher the scheduling and forwarding priority of the TSN flow by the switching node.
  • the 3GPP system may determine the 5QI corresponding to the TSN stream according to the requirements of the bandwidth and delay of the TSN stream, and determine the transmission delay of the TSN stream between the UE and the UPF network element in the 3GPP system according to the 5QI.
  • TSN is also determined by the requirements of the bandwidth and delay of the TSN stream and its corresponding TSN service type.
  • the switching node in the TSN processes the data packets of the TSN stream according to the TSN service type, so that the data packets of the TSN stream are exchanged within the switching node Nodes experience different transmission delays. Therefore, the correspondence between the pre-configured 5QI and TSN service types can be used to guarantee the QoS of the TSN and 3GPP system interworking transmission TSN flow.
  • the 5QI and TSN service types can be a one-to-one relationship, or a 5QI can be mapped into multiple TSN service types, or multiple 5QI can be mapped into a TSN service type.
  • the first core network element may first determine the TSN service type corresponding to the service quality identifier, and the first core network element may be based on the pre-configured service quality
  • the correspondence between the identifier and the TSN service type determines the TSN service type corresponding to the service quality identifier; the correspondence between the pre-configured service quality identifier and the TSN service type can be stored locally or in other network elements.
  • the first core network element may also obtain the correspondence between the pre-configured service quality identifier and the TSN service type from other network elements, and then determine the service according to the correspondence between the pre-configured service quality identifier and the TSN service type The TSN service type corresponding to the quality label.
  • the first core network element may also obtain the TSN service type corresponding to the service quality identifier from other network elements, for example, the correspondence between the pre-configured service quality identifier and the TSN service type is stored in the second core network element ,
  • the second core network element may determine the service quality identifier of the UE, and then determine the TSN service type corresponding to the service quality identifier based on the pre-configured service quality identifier and the TSN service type.
  • the second core network element may send information carrying the TSN service type corresponding to the service quality identifier to the first core network element, and when the first core network element network element receives the information carrying the service After the information of the TSN service type corresponding to the quality identifier, determine the TSN service type corresponding to the service quality identifier.
  • the corresponding relationship between the service quality identifier and the TSN service type may be pre-configured in the PCF network element, and the PCF from the UDR network element Or, after acquiring the service quality identifier of the UE, the UDM network element may determine the TSN service type corresponding to the service quality identifier of the UE according to the pre-configured service quality identifier and TSN service type.
  • the SMF network element may obtain the TSN service type corresponding to the service quality identifier from the PCF network element.
  • the first core network element may be based on the TSN service type corresponding to the service quality identifier , Determine the delay information corresponding to the TSN service type according to the delay information.
  • the network element of the first core network may use the delay information corresponding to the service quality identifier as the delay information corresponding to the TSN service type, or may adjust the delay information corresponding to the service quality identifier.
  • the delay information corresponding to the service quality identifier is used as the delay information corresponding to the TSN service type.
  • Step 1003 The first core network element sends a first message to the CNC network element, where the first message carries delay information corresponding to the TSN service type.
  • the first core network element may directly send the first message to the CNC network element, or may send the first message to the CNC network element through other network elements.
  • the embodiment of the present application does not limit the first core
  • the manner in which the network element sends the first message, and any method that enables the CNC network element to obtain the delay information corresponding to the TSN service type is applicable to the embodiments of the present application.
  • FIG. 10 is applied to a specific scenario. Taking the first core network element as the SMF network element and the SMF network element initiating the session policy establishment process as an example, FIG. 10 is shown. The embodiment will be described. As shown in FIG. 11, it is a communication method provided by an embodiment of the present application. The method includes:
  • Step 1101 The UE sends a PDU session establishment request to the SMF network element, the PDU session establishment request, and the PDU session modification request carries the identifier of the UE and the identifier of the PDU session.
  • Step 1102 After receiving the PDU session establishment request, the SMF network element queries the UDM network element from the UDM network element for subscription information related to the PDU session of the UE, and the subscription information Includes one or more 5QIs of the UE.
  • the 5QI is a QoS parameter in conversation with the PDU.
  • Step 1103 The SMF network element initiates a session policy establishment request or a session policy modification request to the PCF network element.
  • the session policy establishment request is used to request that the PCF network element needs to set policy information for the PDU session.
  • the session policy modification request is used to request that the PCF network element needs to modify policy information for the PDU session, where the session policy establishment request or the session policy modification request may include the UE identifier and the PDU session identifier.
  • Step 1104 After receiving the session policy establishment or modification request, the PCF network element sends a session strategy establishment response or a session strategy modification response to the SMF network element. If the session strategy establishment request is received, the PCF network element The SMF network element sends a session policy establishment response, and if it receives the session policy modification request, it will send a session policy modification response to the SMF network element.
  • the correspondence between the 5QI and TSN service types is carried in the session policy establishment or modification response, and the correspondence between the 5QI and TSN service types may be pre-configured on the PCF network element.
  • Step 1105 The SMF network element determines the TSN service type supported by the PDU session and the corresponding PDB according to the correspondence between the 5QI and the 5QI and TSN service types.
  • the SMF network element determines the PDB according to the 5QI.
  • the SMF network element determines the PDB according to the 5QI. For a specific determination method, refer to the embodiment shown in FIG. 5 of the present application, and details are not described herein again.
  • the SMF network element determines the TSN service type supported by the PDU session based on the correspondence between the 5QI and TSN service types.
  • the SMF network element uses the determined PDB as the PDB corresponding to the TSN service type.
  • Step 1106 The SMF network element sends the PDB corresponding to the TSN service type to the CNC network element.
  • the CNC may determine the delay information of the virtual switching node based on the TSN service type of the TSN flow, the TSN service type, and the corresponding PDB.
  • Another implementation manner is that the correspondence between the 5QI and TSN service types may be pre-configured on the SMF network element, and steps 1103-1104 may be omitted.
  • the embodiments provided in this application can be executed independently or in combination.
  • the embodiment shown in FIG. 5 can be combined with the embodiment shown in FIG. 6, that is, the SMF network element First report the port information of the UE, and then, if the PDU session needs to be modified, the SMF network element notifies the CNC network element to update the port information of the virtual switching node; for example, as shown in FIG. 5
  • the illustrated embodiment can be combined with the embodiment shown in FIG. 10, that is, before the SMF network element reports the port information of the UE, the delay information is reported first.
  • the combination mode is not limited to the embodiment of the present application. .
  • an embodiment of the present application also provides a communication device for performing the method performed by the SMF network element described in the method embodiments shown in FIGS. 5, 7, and 8 above, and related features Reference may be made to the above method embodiments, which will not be repeated here.
  • the device includes a receiving unit 1201 and a sending unit 1202.
  • the receiving unit 1201 is configured to obtain port information of a terminal device, wherein the port information of the terminal device includes port delay information of the terminal device and transmission delay information between the port of the terminal device and an external neighboring node ;
  • the sending unit 1202 is configured to send the port information of the terminal device to a centralized network configuration network element.
  • the receiving unit 1201 may obtain the port information of the terminal device through the following two methods:
  • the receiving unit 1201 receives a PDU session establishment request from the terminal device, where the PDU session establishment request includes port information of the terminal device.
  • the receiving unit 1201 receives a PDU session modification response from the terminal device, and the PDU session modification response includes port information of the terminal device.
  • the communication device may also report a transmission delay.
  • the communication device further includes a processing unit 1203; the processing unit 1203 may be in a QoS flow establishment process of the terminal device, Determining the transmission delay between the user plane corresponding to the QoS flow and the terminal device; after that, the sending unit 1202 sends the transmission delay to the centralized network configuration network element.
  • the receiving unit 1201 may first obtain the PCC rule of the QoS flow from the policy control network element; The processing unit 1203 determines the transmission delay according to the PCC rule of the QoS flow.
  • the processing unit 1203 determines the transmission time delay according to the PCC rule of the QoS flow
  • the processing unit 1203 first determines the PDB of the QoS flow according to the 5QI included in the PCC rule; then Then determine the transmission delay according to the PDB.
  • the sending unit 1202 may also send a first indication message to the terminal device, where the first indication message is used to indicate the terminal The device determines port information of the terminal device.
  • the port information of the terminal device may further include external topology information of the port of the terminal device.
  • an embodiment of the present application further provides a communication device for performing the method performed by the terminal device in the method embodiments shown in FIGS. 5, 7, and 8, and related features may be Refer to the above method embodiment, which will not be repeated here.
  • the device includes a processing unit 1301 and a sending unit 1302:
  • the processing unit 1301 is configured to determine that it supports the TSN service, needs to create a packet data unit PDU session corresponding to the TSN service, the currently created PDU session needs to carry the TSN stream or the created PDU session needs to carry the TSN stream.
  • the sending unit 1302 is configured to send the port information of the terminal device to the session management network element, wherein the port information of the terminal device includes the port identifier of the terminal device and the port of the terminal device is adjacent to the outside Transmission delay information between nodes.
  • the sending unit 1302 sends the port information of the terminal device to the session management network element, three of which are listed below:
  • the sending unit 1302 sends a PDU session establishment request to the session management network element through a mobile access management network element, where the PDU session establishment request includes port information of the terminal device.
  • the sending unit 1302 sends a registration request carrying port information of the terminal device to the mobile access management network element, so that the mobile access management network element subsequently receives the registration request sent by the terminal device
  • the port information of the terminal device is sent to the session management network element.
  • the processing unit 1301 determines that the created PDU session needs to carry a TSN stream according to the indication information in the received PDU session modification request from the session management network element.
  • the sending unit 1302 A PDU session modification response may be sent to the session management, and the PDU session modification response includes port information of the terminal device.
  • the processing unit 1301 determines that there are many ways to create a PDU session corresponding to the TSN service, and two of them are listed below:
  • the processing unit 1301 may determine that the created PDU session needs to carry the TSN stream according to the indication information received in the PDU session establishment confirmation message from the session management network element.
  • the processing unit 1301 determines that the PDU session needs to carry a TSN stream according to the DNN corresponding to the PDU session that needs to be created.
  • the communication device further includes a receiving unit 1303, and the receiving unit 1303 may receive a first indication message from the session management network element, where the first indication message is used to instruct the terminal device to determine the Port information of the terminal device; after that, the processing unit 1301 may determine the port information of the terminal device.
  • the port information of the terminal device further includes external topology information of the port of the terminal device.
  • an embodiment of the present application also provides a communication device for performing the method performed by the SMF network element described in the method embodiments shown in FIGS. 6 and 9 above, and related features can be referred to The above method embodiments will not be repeated here.
  • the device includes a processing unit 1401 and a sending unit 1402.
  • the processing unit 1401 is used to determine that the anchor user plane network element of the PDU session of the terminal device is to be switched from the first user plane network element to the second user plane network element; and determine that the PDU session is an interworking with TSN Conversation
  • the sending unit 1402 is further configured to send a first notification message to the centralized network configuration network element when the processing unit 1401 determines that the PDU session is a session interworking with the TSN.
  • the first notification message is used Notify the centralized network to configure the network element of the first virtual switching node and / or the second virtual switching node to update the port information; wherein, the first virtual switching node is a virtual switch corresponding to the first user plane network element Node, the second virtual switching node is a virtual switching node corresponding to the second user plane network element.
  • the processing unit 1401 may further determine that the PDU session carries a TSN stream; when the processing unit 1401 determines that the PDU session carries a TSN stream, the first notification message It is also used to notify the virtual switching node of the TSN stream to change from the first virtual switching node to the second virtual switching node.
  • the processing unit 1401 may also update the port information of the first virtual switching node and the port information of the second virtual switching node according to the port information of the terminal device.
  • the first notification message may also carry some port information, and may carry some or all of the following messages:
  • Message 2 The identifier of the second virtual switching node and the port information used by the second virtual switching node to transmit the TSN stream.
  • Message 3 The identification information of the first virtual switching node and the port information of the first virtual switching node after the session management update.
  • the first notification message may further include the identifier of the TSN flow.
  • the communication device further includes a receiving unit 1403, and the receiving unit 1403 may receive a notification response message from the centralized network configuration network element, where the notification response message indicates the centralized network configuration network Yuan has completed the configuration update of the TSN stream.
  • the processing unit 1401 may switch the anchor user plane network element of the PDU session from the first user plane network element to The second user plane network element.
  • the sending unit 1402 may also send a second notification message to the centralized network configuration network element.
  • the second notification message is used to notify the centralized network that the virtual switching node configuring the TSN flow changes from the first virtual switching node to the second virtual switching node.
  • an embodiment of the present application further provides a communication device for performing the method performed by the CNC network element described in the method embodiments shown in FIGS. 6 and 9 above, and related features can be referred to The above method embodiments will not be repeated here.
  • the device includes a receiving unit 1501.
  • the receiving unit 1501 is configured to receive a first notification message from the session management network element.
  • the first notification message is used to notify the port information of the first virtual switching node and / or the second virtual switching node of being updated.
  • the communication device further includes a processing unit 1502; if the first notification message is also used to notify the virtual switching node of the TSN stream to change from the first virtual switching node to the second virtual switching node, the processing unit 1502 may reconfigure the transmission path of the TSN stream according to the first notification message.
  • the first notification message may also carry some port information, and may carry some or all of the following messages:
  • Message 2 The identifier of the second virtual switching node and the port information used by the second virtual switching node to transmit the TSN stream.
  • Message 3 The identification information of the first virtual switching node and the port information of the first virtual switching node after the session management update.
  • the first notification message may further include the identifier of the TSN flow.
  • the communication device further includes a sending unit 1503, and the sending unit 1503 may also send to the session management network element after the processing unit 1502 reconfigures the transmission path of the TSN stream A notification response message indicating that the centralized network configuration network element has completed the configuration update of the TSN flow.
  • the receiving unit 1501 may receive a second notification message sent by the session management network element, where the second notification message is used to notify the virtual switching node of the TSN flow from the first virtual switching The node becomes the second virtual switching node; after that, the processing unit 1502 releases the resources of the source transmission path of the TSN stream.
  • an embodiment of the present application further provides a communication device for executing the SMF network element or the first core network in the method embodiments shown in FIGS. 10 and 11
  • the device includes a processing unit 1601 and a sending unit 1602.
  • the processing unit 1601 is configured to determine the corresponding delay information according to the service quality identifier of the terminal device, the delay information is used to characterize the transmission delay between the terminal device and the user plane network element; and based on the service quality Identify the corresponding TSN service type, and determine the delay information corresponding to the TSN service type according to the delay information.
  • the sending unit 1602 is configured to send a first message to a centralized network configuration network element, where the first message carries delay information corresponding to the TSN service type.
  • the processing unit 1601 may also determine the service quality identifier according to the subscription information of the UE.
  • each functional unit in each embodiment of the present application may be integrated into one In the device, it can also exist alone physically, or two or more units can be integrated into one module.
  • the above integrated unit can be implemented in the form of hardware or software function module.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or all or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium , Including several instructions to enable a terminal device (which may be a personal computer, mobile phone, or network device, etc.) or processor to execute all or part of the steps of the method in various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • both the base station and the terminal device may be presented in the form of dividing each functional module in an integrated manner.
  • the "module” herein may refer to a specific ASIC, circuit, processor and memory that execute one or more software or firmware programs, integrated logic circuits, and / or other devices that can provide the above functions.
  • session management network element and the centralized network configuration network element may adopt the form shown in FIG. 17.
  • the communication device 1700 shown in FIG. 17 includes at least one processor 1701 and memory 1702, and optionally, may also include a communication interface 1703.
  • the memory 1702 may be a volatile memory, such as a random access memory; the memory may also be a non-volatile memory, such as a read-only memory, flash memory, hard disk drive (HDD), or solid-state drive (solid-state drive, SSD), or the memory 1702 is any other medium that can be used to carry or store a desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 1702 may be a combination of the aforementioned memories.
  • the specific connection medium between the processor 1701 and the memory 1702 is not limited.
  • the memory 1702 and the processor 1701 are connected by a bus 1704 in the figure, and the bus 1704 is indicated by a thick line in the figure.
  • the connection between other components is only for illustrative purposes, and is not cited. Limited.
  • the bus 1704 can be divided into an address bus, a data bus, and a control bus. For ease of representation, only a thick line is used in FIG. 17, but it does not mean that there is only one bus or one type of bus.
  • the processor 1701 may have a data transmission and reception function and can communicate with other devices.
  • an independent data transmission and reception module may also be provided, such as a communication interface 1703 for transmitting and receiving data; When communicating, data can be transmitted through the communication interface 1703.
  • the processor 1701 in FIG. 17 may call the computer stored in the memory 1702 to execute instructions, so that the base station can execute all the methods in any of the foregoing method embodiments. The method performed by the base station is described.
  • the functions / implementation processes of the sending unit, the receiving unit, and the processing unit in FIG. 12 and FIG. 14 can be implemented by the processor 1701 in FIG. 17 calling the computer execution instructions stored in the memory 1702.
  • the function / implementation process of the processing unit in FIGS. 12 and 14 can be implemented by the processor 1701 in FIG. 17 calling the computer execution instructions stored in the memory 1702, and the functions of the sending unit and the receiving unit in FIGS. 12 and 14 /
  • the implementation process can be realized through the communication interface 1703 in FIG. 17.
  • the processor 1701 in FIG. 17 may call the computer stored in the memory 1702 to execute instructions, so that the base station can execute any of the above method embodiments. The method performed by the base station.
  • the functions / implementation processes of the sending unit, the receiving unit, and the processing unit in FIG. 15 can be implemented by the processor 1701 in FIG. 17 calling the computer execution instructions stored in the memory 1702.
  • the function / implementation process of the processing unit in FIG. 15 can be implemented by the processor 1701 in FIG. 17 calling the computer execution instructions stored in the memory 1702
  • the function / implementation process of the sending unit and the receiving unit in FIG. 15 can be implemented 17 to achieve the communication interface 1703.
  • the processor 1701 in FIG. 17 may call the computer stored in the memory 1702 to execute instructions, so that the base station can perform any of the above method embodiments The method performed by the base station.
  • the functions / implementation processes of the sending unit and the processing unit in FIG. 16 can be implemented by the processor 1701 in FIG. 17 calling the computer execution instructions stored in the memory 1702.
  • the function / implementation process of the processing unit in FIG. 16 can be implemented by the processor 1701 in FIG. 17 calling the computer execution instructions stored in the memory 1702
  • the function / implementation process of the sending unit in FIG. 16 can be implemented by Communication interface 1703 to achieve.
  • the terminal device may adopt the form shown in FIG. 18.
  • the communication device 1800 shown in FIG. 18 includes at least one processor 1801, memory 1802, and optionally, a transceiver 1803.
  • the memory 1802 may be a volatile memory, such as a random access memory; the memory may also be a non-volatile memory, such as a read-only memory, a flash memory, a hard disk drive (HDD), or a solid-state drive (solid-state drive, SSD), or the memory 1802 is any other medium that can be used to carry or store a desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 1802 may be a combination of the aforementioned memories.
  • the specific connection medium between the processor 1801 and the memory 1802 is not limited.
  • the memory 1802 and the processor 1801 are connected by a bus 1804 in the figure.
  • the bus 1804 is indicated by a thick line in the figure.
  • the connection between other components is only for illustrative purposes, and is not cited as Limited.
  • the bus 1804 can be divided into an address bus, a data bus, and a control bus. For ease of representation, only a thick line is used in FIG. 18, but it does not mean that there is only one bus or one type of bus.
  • the processor 1801 may have a data transmission and reception function, and can communicate with other devices.
  • an independent data transmission and reception module may also be provided, such as a transceiver 1803, for transmitting and receiving data; the processor 1801 is communicating with other devices When communicating, data can be transmitted through the transceiver 1803.
  • the processor 1801 in FIG. 18 can execute the instruction by calling the computer stored in the memory 1802, so that the terminal device can execute the terminal device in any of the above method embodiments. method.
  • the functions / implementation processes of the sending unit, the receiving unit, and the processing unit in FIG. 13 can be implemented by the processor 1801 in FIG. 18 calling the computer execution instructions stored in the memory 1802.
  • the function / implementation process of the processing unit in FIG. 13 can be implemented by the processor 1801 in FIG. 18 calling the computer execution instructions stored in the memory 1802
  • the function / implementation process of the sending unit and the receiving unit in FIG. 13 can be implemented by It is realized by the transceiver 1803 in FIG. 18.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, the present application may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including an instruction device, the instructions The device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.

Abstract

一种通信方法及装置,用以实现将5G系统虚拟为TSN中的交换节点。本申请中,会话管理网元可以获取终端设备的端口信息,其中,所述端口信息包括所述终端设备的端口标识所述终端设备的端口与外部相邻节点之间的传输时延信息;之后,所述会话管理网元再将所述端口信息发送给集中网络配置网元。会话管理网元可以将所述端口信息发送给时延敏感网络中的集中网络配置网元,具有了上报通信系统作为虚拟交换节点的端口信息的能力,可以使得所述集中网络配置网元确定所述虚拟交换节点的信息(如端口信息),之后可以根据所述虚拟交换节点的信息实现数据的端到端传输。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2018年11月19日提交中国专利局、申请号为201811377833.4、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
区别于传统以太网不能提供高可靠性的数据传输以及保障时延传输的弊端,在传统以太网的基础上产生了时延敏感网络(time sensitive networking,TSN),TSN兼具了实时性和确定性,能够保障业务数据传输的可靠性,同时也可以预测数据传输过程中端到端的传输时延。鉴于TSN的优点,被广泛应用于满足汽车控制、工业互联网等领域。
目前,为了在第五代移动通信(5th-generation,5G)系统中,借助TSN实现端到端的可靠性数据传输,提出了将5G系统虚拟为TSN中的交换节点的假设,考虑在5G系统的网络架构中的应用功能(application function,AF)网元上增加TSN适配功能的控制面,在用户面功能(user plane function,UPF)网元和用户设备(user equipment,UE)上增加TSN适配功能的用户面,但上述假设仅是一个设想,并没有提出具体的5G系统与TSN结合实现数据传输的具体方案。
发明内容
本申请提供一种通信方法及装置,用以将5G系统虚拟为TSN中的交换节点,以实现数据传输。
第一方面,本申请实施例提供了一种通信方法,所述方法包括:首先,会话管理网元可以获取终端设备的端口信息,其中,所述终端设备的端口信息包括所述终端设备的端口标识所述终端设备的端口与外部相邻节点之间的传输时延信息;之后,所述会话管理网元再将所述终端设备的端口信息发送给集中网络配置网元。
通过上述方法,会话管理网元可以将所述终端设备的端口信息发送给时延敏感网络中的集中网络配置网元,具有了上报通信系统作为虚拟交换节点的端口信息的能力,可以使得所述集中网络配置网元确定所述虚拟交换节点的信息(如虚拟交换节点的端口信息),之后可以根据所述虚拟交换节点的信息实现数据的端到端传输。
在一种可能的设计中,所述会话管理网元获取所述终端设备的端口信息的方式有多种,下面列举其中两种:
第一种,在PDU会话建立过程中,所述会话管理网元接收来自所述终端设备的协议数据单元(protocol data unit,PDU)会话建立请求,所述PDU会话建立请求中包括所述终端设备的端口信息,从所述PDU会话建立请求获取所述终端设备的端口信息。
第二种、在PDU会话修改过程中,所述会话管理网元接收来自所述终端设备的PDU会话修改应答,所述PDU会话修改应答中包括所述终端设备的端口信息,从所述PDU会话修改应答中获取所述终端设备的端口信息。
通过上述方法,所述会话管理网元可以灵活的在现有的PDU会话建立过程或PDU会话修改过程中获取所述终端设备的端口信息,扩展了应用场景,可以使得应用范围更加广泛。
在一种可能的设计中,所述会话管理网元除了向所述集中网络配置网元上报所述终端设备的端口信息,还可以上报虚拟交换节点的其他信息,如时延信息;具体的,在所述终端设备的服务质量(quality of service,QoS)流建立流程中,所述会话管理网元可以确定所述QoS流对应的用户面与所述终端设备之间的传输时延;之后再向所述集中网络配置网元发送所述传输时延。
通过上述方法,所述会话管理网元将确定所述传输时延,并发送给所述集中网络配置网元具有了上报通信系统作为虚拟交换节点的时延信息的能力,可以使得所述集中网络配置网元确定所述虚拟交换节点的时延信息,之后便于在之后可以根据所述虚拟交换节点的信息实现数据的端到端传输。
在一种可能的设计中,所述会话管理网元可以通过如下方法确定所述QoS流对应的用户面与所述终端设备之间的传输时延:所述会话管理网元先从策略控制网元获取所述QoS流策略和计费控制规则(policy and charging control rule,PCC rule);之后,再根据所述QoS流的PCC规则确定所述传输时延。
通过上述方法,所述会话管理网元可依据现有的QoS流的PCC规则,更加高效、便捷的确定所述传输时延,进而可以提高信息上报的效率。
在一种可能的设计中,所述会话管理网元根据所述QoS流的PCC规则确定所述传输时延时,可以是先根据所述PCC规则中包括的第五代移动通信服务质量标识(5G QoS identity,5QI)确定所述QoS流的包时延预算(packet delay budge,PDB);之后,再根据所述PDB确定所述传输时延,例如,可以将所述PDB作为所述传输时延,也可以对所述PDB进行调整,将调整后的PDB作为所述传输时延。
通过上述方法,所述会话管理网元可以根据所述5QI更加快速、准确的确定所述传输时延,能够保证后续较为高效的向所述集中网络配置网元上报所述传输时延。
在一种可能的设计中,在所述会话管理网元获取终端设备的端口信息之前,所述会话管理网元可以指示所述终端设备确定所述终端设备的端口信息,具体的,所述会话管理网元可以向所述终端设备发送第一指示消息,所述第一指示消息用于指示所述终端设备确定所述终端设备的端口信息。
通过上述方法,可以使所述终端设备在收到所述第一指示消息后,确定所述终端设备的端口信息,保证之后可以更快速的向所述会话管理网元发送所述终端设备的端口信息。
在一种可能的设计中,所述终端设备的端口信息还可以包括所述终端设备端口的外部拓扑信息。
通过上述方法,所述终端设备的端口信息携带的信息更多,可以使得所述集中网络配置网元在收到所述终端设备的端口信息后,可以确定所述虚拟交换节点的外部拓扑信息,有利于之后更好的实现端到端的数据传输。
第二方面,本申请实施例提供了一种通信方法,所述方法包括:首先,终端设备确定 需要上报所述终端设备的端口信息,具体的,需要上报所述终端设备的端口信息的情况包括如下的部分或全部:所述终端设备自身支持TSN业务、需要创建TSN业务对应的分组数据单元PDU会话、当前创建的PDU会话需要承载TSN流、已创建的PDU会话需要承载TSN流;之后,所述终端设备向会话管理网元发送所述终端设备的端口信息,其中,所述终端设备的端口信息包括所述终端设备的端口标识以及所述终端设备的端口与外部相邻节点之间的传输时延信息。
通过上述方法,所述终端设备在确定需要上报所述终端设备的端口信息后,向所述会话管理网元上报所述终端设备的端口信息,便于所述会话管理网元将所述终端设备的端口信息上报给所述集中网络配置网元,有利于所述集中网络配置网元确定所述虚拟交换节点的信息(如端口信息),之后可以根据所述虚拟交换节点的信息实现数据的端到端传输。
在一种可能的设计中,所述终端设备向会话管理网元发送所述终端设备的端口信息的方式有许多种,下面列举其中一种:PDU会话建立过程中,所述终端设备可以通过移动接入管理网元向所述会话管理网元发送PDU会话建立请求,所述PDU会话建立请求中包括所述终端设备的端口信息。
通过上述方法,所述终端设备可以灵活的在现有的PDU会话建立过程向所述会话管理网元上报所述终端设备的端口信息,扩展了应用场景,可以使得应用范围更加广泛。
在一种可能的设计中,所述终端设备向会话管理网元发送所述终端设备的端口信息的方式有许多种,下面列举另一种:所述终端设备在注册时,所述终端设备向移动接入管理网元发送携带有所述终端设备的端口信息的注册请求,之后,所述移动接入管理网元后续在接收到所述终端设备发送的PDU会话建立请求时,可以将所述终端设备的端口信息携带在所述PDU会话建立请求中发送给所述会话管理网元。
通过上述方法,所述终端设备可以灵活的在现有的注册过程向所述移动接入管理网元发送所述终端设备的端口信息,可以节约信令,适用于现有的注册场景,有效的扩展了应用场景。
在一种可能的设计中,所述终端设备可以根据来自所述会话管理网元的PDU会话修改请求中的指示信息确定已创建的PDU会话需要承载TSN流;在接收到所述指示消息后,所述终端设备可以向所述会话管理发送携带有所述终端设备的端口信息的PDU会话修改应答。
通过上述方法,所述终端设备可以灵活的在现有的PDU会话修改过程向所述会话管理网元上报所述终端设备的端口信息,可以提高信令资源的利用率,适用于现有的PDU会话修改场景,使得应用场景可以有效扩展。
在一种可能的设计中,所述终端设备可以根据来自所述会话管理网元的PDU会话建立确认消息中的指示信息确定创建的PDU会话需要承载TSN流,在确定了创建的PDU会话需要承载TSN流后,向所述会话管理网元上报所述终端设备的端口信息。
通过上述方法,所述终端设备可以灵活的在现有的PDU会话建立过程确定创建的PDU会话需要承载TSN流,之后可以向所述会话管理网元上报所述终端设备的端口信息,扩展了应用场景,可以使得应用范围更加广泛。
在一种可能的设计中,所述终端设备可以根据所述需要创建的PDU会话的数据网络名称(data network name,DNN)确定所述PDU会话需要承载TSN流。
通过上述方法,所述终端设备可以较为方便、简单的根据PDU会话的参数(DNN) 确定创建的PDU会话需要承载TSN流,之后可以向所述会话管理网元上报所述终端设备的端口信息,进而可以提高信息上报的效率。
在一种可能的设计中,在所述终端设备向会话管理网元发送所述终端设备的端口信息之前,所述终端设备可以自发的提前确定所述终端设备的端口信息,也可以在接收到的来自所述会话管理网元的第一指示消息,所述第一指示消息用于指示所述终端设备确定所述终端设备的端口信息,确定所述终端设备的端口信息。
通过上述方法,所述终端设备可以在接收到所述第一指示消息后确定所述终端设备的端口信息,可以更加高效的确定所述终端设备的端口信息。
在一种可能的设计中,所述终端设备的端口信息还可以包括所述终端设备端口的外部拓扑信息。
通过上述方法,所述终端设备的端口信息携带的信息更多,可以使得所述集中网络配置网元在收到所述终端设备的端口信息后,可以确定所述虚拟交换节点的外部拓扑信息,有利于之后更好的实现端到端的数据传输。
第三方面,本申请实施例提供了一种通信方法,所述方法包括:首先,会话管理网元确定终端设备的PDU会话的锚点用户面网元要从第一用户面网元切换为第二用户面网元后,若所述会话管理网元在确定所述PDU会话是一个与时延敏感网络TSN互通的会话的情况下,所述会话管理网元向集中网络配置网元发送第一通知消息,所述第一通知消息用于通知所述集中网络配置网元第一虚拟交换节点和/或第二虚拟交换节点的端口信息发生更新;其中,所述第一虚拟交换节点为所述第一用户面网元对应的虚拟交换节点,所述第二虚拟交换节点为所述第二用户面网元对应的虚拟交换节点。
通过上述方法,锚点用户面网元发生切换,会导致虚拟交换节点发生变化,所述会话管理网元在确定锚点用户面网元需要发生切换后,可以及时的告知所述集中网络配置网元,便于所述集中网络配置网元能更加高效、及时的对虚拟交换节点的信息进行相应的更新。
在一种可能的设计中,所述会话管理网元在确定所述PDU会话承载了TSN流的情况下,所述第一通知消息还可以用于通知所述TSN流的虚拟交换节点要从第一虚拟交换节点变为第二虚拟交换节点。
通过上述方法,若所述PDU会话承载了TSN流,所述会话管理网元在确定锚点用户面网元需要发生切换后,可以及时的告知所述集中网络配置网元,便于所述集中网络配置网元能更加高效、及时的对TSN流进行配置更新。
在一种可能的设计中,锚点用户面网元发生切换,使得虚拟交换节点发生变化,会导致所述第一虚拟交换节点的端口信息和所述第二虚拟交换节点的端口信息发生变化,所述会话管理网元向集中网络配置网元发送第一通知消息之前,所述会话管理网元可以根据所述终端设备的端口信息更新所述第一虚拟交换节点的端口信息和所述第二虚拟交换节点的端口信息。
通过上述方法,所述第一虚拟交换节点的端口信息和所述第二虚拟交换节点的端口信息可以在锚点用户面网元发生切换的情况下,很快的得到更新,使得所述第一虚拟交换节点的端口信息和所述第二虚拟交换节点的端口信息可以更加准确。
在一种可能的设计中,所述第一通知消息还可以携带有一些相关信息,下面列举其中两种:
第一种、所述第二虚拟交换节点的标识和更新后的所述第二虚拟交换节点的端口信息。
第二种、所述第二虚拟交换节点的标识和所述第二虚拟交换节点用来传输所述TSN流的端口信息。
通过上述方法,所述第一通知消息中携带有相关的端口信息,可以使得所述集中网络配置网元能够在接收到所述第一通知消息后,准确的对所述第二虚拟交换节点的端口信息进行更新。
在一种可能的设计中,所述第一通知消息还包括所述第一虚拟交换节点标识信息和所述会话管理更新后的所述第一虚拟交换节点的端口信息。
通过上述方法,所述第一通知消息中携带有相关的端口信息,可以使得所述集中网络配置网元能够在接收到所述第一通知消息后,准确的对所述第一虚拟交换节点的端口信息进行更新。
在一种可能的设计中,所述第一通知消息还包括所述TSN流的标识。
通过上述方法,所述TSN流的标识可以明确指示由于锚点用户面网元切换,受影响的TSN流,以使所述集中网络配置网元能够准确的获知所述TSN流收受到影响,可能需要进行重新配置。
在一种可能的设计中,所述会话管理网元向集中网络配置网元发送第一通知消息之后,所述会话管理网元可以接收来自所述集中网络配置网元的通知应答消息,所述通知应答消息指示所述集中网络配置网元已完成对所述TSN流的配置更新。
通过上述方法,所述会话管理网元可以更加明确的确定所述TSN流的已重新进行了配置,以便所述会话管理网元做后续的操作,如完成虚拟交换节点的内部切换等。
在一种可能的设计中,所述会话管理网元接收来自所述集中网络配置网元的通知应答消息之后,所述会话管理网元将所述PDU会话的锚点用户面网元从所述第一用户面网元切换为所述第二用户面网元,以建立接入网节点到所述第二用户面网元的连接。
通过上述方法,完成虚拟交换节点的内部切换,便于之后更加高效的进行数据传输。
在一种可能的设计中,所述会话管理网元接收来自所述集中网络配置网元的通知应答消息之后,所述会话管理网元向所述集中网络配置网元发送第二通知消息,所述第二通知消息用于通知集中网络配置所述TSN流的虚拟交换节点从第一虚拟交换节点变为第二虚拟交换节点。
通过上述方法,所述会话管理网元可以灵活的通过所述第二通知消息通知所述集中网络配置网元第一虚拟交换节点到第二虚拟交换节点的切换完成。
第四方面,本申请实施例提供了一种通信方法,所述方法包括:首先,集中网络配置网元接收来自会话管理网元的第一通知消息,所述第一通知消息用于通知第一虚拟交换节点和/或第二虚拟交换节点的端口信息发生更新。
通过上述方法,所述集中网络配置网元可以较为高效、及时的获知虚拟交换节点的端口信息的变化。
在一种可能的设计中,若所述第一通知消息还用于通知TSN流的虚拟交换节点要从第一虚拟交换节点变为第二虚拟交换节点,所述集中网络配置网元还可以根据所述第一通知消息对所述TSN流重新配置传输路径。
通过上述方法,所述集中网络配置网元可以较为及时的获知虚拟交换节点发送切换,较为快速的对所述TSN流重新配置传输路径,完成对所述TSN流的配置更新。
在一种可能的设计中,所述第一通知消息还可以携带有一些相关信息,下面列举其中 两种:
第一种、所述第二虚拟交换节点的标识和更新后的所述第二虚拟交换节点的端口信息。
第二种、所述第二虚拟交换节点的标识和所述第二虚拟交换节点用来传输所述TSN流的端口信息。
通过上述方法,所述第一通知消息中携带有相关的端口信息,可以使得所述集中网络配置网元能够在接收到所述第一通知消息后,准确的对所述第二虚拟交换节点的端口信息进行更新。
在一种可能的设计中,所述第一通知消息还包括所述第一虚拟交换节点标识信息和所述会话管理更新后的所述第一虚拟交换节点的端口信息。
通过上述方法,所述第一通知消息中携带有相关的端口信息,可以使得所述集中网络配置网元能够在接收到所述第一通知消息后,准确的对所述第一虚拟交换节点的端口信息进行更新。
在一种可能的设计中,所述第一通知消息还包括所述TSN流的标识。
通过上述方法,所述TSN流的标识可以明确指示由于锚点用户面网元切换,受影响的TSN流,以使所述集中网络配置网元能够准确的获知所述TSN流收受到影响,可能需要进行重新配置。
在一种可能的设计中,所述集中网络配置网元更新所述TSN流的配置之后,还可以向所述会话管理网元发送通知应答消息,所述通知应答消息指示所述集中网络配置网元已完成所述TSN流的配置更新。
通过上述方法,所述会话管理网元可以更加明确的确定所述TSN流的已重新进行了配置,以便所述会话管理网元做后续的操作,如完成虚拟交换节点的内部切换等。
在一种可能的设计中,所述集中网络配置网元还可以接收来自所述会话管理网元的第二通知消息,所述第二通知消息用于通知所述TSN流的虚拟交换节点从第一虚拟交换节点变为第二虚拟交换节点;之后,所述集中网络配置网元释放所述TSN流的源传输路径的资源。
通过上述方法,所述集中网络配置网元通过所述第二通知消息可以确定虚拟交换节点已切换完成,释放所述TSN流的源传输路径的资源,可以有效节约资源。
第五方面,本申请实施例提供了一种通信方法,所述方法包括:首先,第一核心网网元可以根据终端设备的服务质量标识确定对应的时延信息,所述时延信息用于表征终端设备与用户面网元之间的传输时延;之后,第一核心网网元基于所述服务质量标识对应的TSN业务类型,根据所述时延信息确定所述TSN业务类型对应时延信息,然后再向集中网络配置网元发送第一消息,所述第一消息中携带所述TSN业务类型对应的时延信息。
通过上述方法,所述第一核心网网元可以根据所述服务质量标识较为灵活、方便的确定所述TSN业务类型对应的时延信息,也可以使得所述集中网络配置网元能够更快速的获取所述TSN业务类型对应的时延信息。
在一种可能的设计中,所述第一核心网网元根据终端设备的服务质量标识确定对应的时延信息之前,需要获取所述服务质量标识,具体的,所述第一核心网网元可以根据所述终端设备的签约信息确定所述服务质量标识。
通过上述方法,所述服务质量标识是根据较为容易获得的所述终端设备的签约信息确定的,可以使得后续能更加快速的根据所述服务质量标识确定出所述TSN业务类型对应的 时延信息。
第六方面,本申请实施例还提供了一种通信装置,所述通信装置应用于会话管理网元,有益效果可以参见第一方面的描述此处不再赘述。该装置具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述装置的结构中包括接收单元和发送单元,还可以包括处理单元,这些单元可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第七方面,本申请实施例还提供了一种通信装置,所述通信装置应用于终端设备,有益效果可以参见第二方面的描述此处不再赘述。该装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述装置的结构中包括处理单元和发送单元,还可以包括接收单元,这些单元可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第八方面,本申请实施例还提供了一种通信装置,所述通信装置应用于会话管理网元设备,有益效果可以参见第三方面的描述此处不再赘述。该装置具有实现上述第三方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述装置的结构中包括处理单元和发送单元,还可以包括接收单元,这些单元可以执行上述第三方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第九方面,本申请实施例还提供了一种通信装置,所述通信装置应用于集中网络配置网元,有益效果可以参见第四方面的描述此处不再赘述。该装置具有实现上述第四方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述装置的结构中包括接收单元,还可以包括处理单元和发送单元,这些单元可以执行上述第四方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第十方面,本申请实施例还提供了一种通信装置,所述通信装置应用于第一核心网网元,有益效果可以参见第五方面的描述此处不再赘述。该装置具有实现上述第五方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述装置的结构中包括处理单元和发送单元,这些单元可以执行上述第四方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第十一方面,本申请实施例还提供了一种通信装置,所述通信装置应用于会话管理网元,有益效果可以参见第一方面的描述此处不再赘述。所述通信装置的结构中包括处理器和存储器,所述处理器被配置为支持所述基站执行上述第一方面方法中相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。所述通信装置的结构中还包括通信接口,用于与其他设备进行通信。
第十二方面,本申请实施例还提供了一种通信装置,所述通信装置应用于终端设备,有益效果可以参见第二方面的描述此处不再赘述。所述通信装置的结构中包括处理器和存储器,所述处理器被配置为支持所述基站执行上述第二方面方法中相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。所述通信装置的结构 中还包括收发机,用于与其他设备进行通信。
第十三方面,本申请实施例还提供了一种通信装置,所述通信装置应用于会话管理网元,有益效果可以参见第三方面的描述此处不再赘述。所述通信装置的结构中包括处理器和存储器,所述处理器被配置为支持所述基站执行上述第三方面方法中相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。所述通信装置的结构中还包括通信接口,用于与其他设备进行通信。
第十四方面,本申请实施例还提供了一种通信装置,所述通信装置应用于集中网络配置网元,有益效果可以参见第四方面的描述此处不再赘述。所述通信装置的结构中包括处理器和存储器,所述处理器被配置为支持所述基站执行上述第四方面方法中相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。所述通信装置的结构中还包括通信接口,用于与其他设备进行通信。
第十五方面,本申请实施例还提供了一种通信装置,所述通信装置应用于第一核心网网元,有益效果可以参见第五方面的描述此处不再赘述。所述通信装置的结构中包括处理器和存储器,所述处理器被配置为支持所述基站执行上述第五方面方法中相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。所述通信装置的结构中还包括通信接口,用于与其他设备进行通信。
第十六方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十七方面,本申请还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十八方面,本申请还提供一种计算机芯片,所述芯片与存储器相连,所述芯片用于读取并执行所述存储器中存储的软件程序,执行上述各方面所述的方法。
附图说明
图1为5G系统的网络架构示意图;
图2为TSN的网络拓扑示意图;
图3为TSN的集中管理架构示意图;
图4a为本申请实施例提供的一种网络架构示意图;
图4b为本申请实施例提供的一种网络架构示意图;
图4c为本申请实施例提供的一种终端设备的结构示意图;
图5~11为本申请实施例提供的一种通信方法的示意图;
图12~18为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
本申请提供了一种通信方法及装置,用以将5G系统虚拟为TSN中的交换节点,以保证后续可以实现端到端的数据传输。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。
本申请实施例涉及到5G系统与TSN结合,将5G系统虚拟成TSN中一个交换节点的通信方法,下面先对本申请实施例所涉及的5G系统、TSN及本申请实施例适用的网络架构进行说明。
请参见图1,为5G系统的网络架构示意图,该网络架构为5G网络架构。该5G架构中的网元包括终端设备,图1中以终端设备为UE为例。网络架构还包括无线接入网(radio access network,RAN)、接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元、策略控制功能(policy control function,PCF)网元、应用功能(application function,AF)网元、数据网络(data network,DN)等。
RAN的主要功能是控制用户通过无线接入到移动通信网络。RAN是移动通信系统的一部分。它实现了一种无线接入技术。从概念上讲,它驻留某个设备之间(如移动电话、一台计算机,或任何远程控制机),并提供与其核心网的连接。所述AMF网元负责终端的接入管理和移动性管理,在实际应用中,其包括了LTE中网络框架中MME里的移动性管理功能,并加入了接入管理功能。
SMF网元负责会话管理,如用户的会话建立等。
UPF网元是用户面的功能网元,主要负责连接外部网络,其包括了LTE的服务网关(serving gateway,SGW)和公用数据网网关(public data network GateWay,PDN-GW)的相关功能。
DN负责为终端提供服务的网络,如一些DN为终端提供上网功能,另一些DN为终端提供短信功能等等。
PCF网元的主要功能是执行策略控制,类似于LTE中的策略与计费规则功能(policy and charging rules function,PCRF)网元,主要负责策略授权,服务质量以及计费规则的生成,并将相应规则通过SMF网元下发至UPF网元,完成相应策略及规则的安装。
AF网元可以是第三方的应用控制平台,也可以是运营商自己的设备,所述AF网元可以为多个应用服务器提供服务,所述AF网元是可以提供各种业务服务的功能网元,能够通过NEF网元与核心网交互,以及能够和策略管理框架交互进行策略管理。
此外,尽管未示出,核心网控制面功能网元还包括网络开放功能(network exposure function,NEF)、统一数据管理(unified data management,UDM)、网元统一数据仓储(unified data repository,UDR)网元,NEF网元用于提供网络能力开放相关的框架、鉴权和接口,在5G系统网络功能和其他网络功能之间传递信息;UDR网元主要用来存储用户相关的签约数据、策略数据、用于开放的结构化数据、应用数据;所述UDM网元可存储用户的签约信息,实现类似于4G中的HSS的后端。
本申请中的终端设备,又称之为用户设备(user equipment,UE),是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的 无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
下面对TSN进行介绍,TSN一般包括交换节点(bridge)、数据终端(end station),数据终端和交换节点可以形成网络拓扑结构,交换节点可通过其配置或创建的转发规则来转发报文,将报文转发给数据终端或其他交换节点。
数据终端和交换节点形成网络拓扑结构有多种,可以根据应用场景进行配置,请参见图2,为TSN的一种简单网络拓扑结构示意图,其中包括多个数据终端和交换节点。
TSN基于二层传输,TSN标准定义了数据终端和交换节点的行为以及交换节点转发TSN流的调度方式,从而实现可靠时延传输。TSN中的交换节点以报文的目的MAC地址或其他报文特征为TSN流的标识,根据TSN流的时延需求进行资源预留以及调度规划,从而根据生成的调度策略保障可靠性和传输时延。
数据终端可分为发送端(talker)和接收端(listener)其中,将TSN流(stream)的发送者称为发送端(talker),TSN流的接收者称为接收端(listener);当发送端或接收端将TSN流需求发送给TSN时,TSN配置会启动,TSN配置包括配置从发送端到接收端所经路径上的交换节点。
可选的,TSN还可以包括配置网元,用于实现TSN配置,如集中网络配置(centralized network configuration,CNC)网元、集中用户配置(centralized user configuration,CUC)网元。
请参见图3,为TSN的集中管理架构示意图,该集中管理架构为TSN标准中的802.1qcc定义的三种架构中的一种,该集中管理架构包括发送端、接收端、交换节点、CNC网元和CUC网元。需要说明的是,图3所示的网元的数量和网络拓扑结构仅是示例,本申请实施例并不限定。
其中,交换节点按照TSN标准的定义为TSN流预留资源,并对数据报文进行调度和转发。
CNC网元,负责管理TSN用户面的拓扑以及交换节点的信息,并根据CUC网元提供的流创建请求,生成TSN流的传输路径以及数据终端和各交换节点上的处理策略,之后将交换节点上的处理策略下发到对应的交换节点。
其中,交换节点的信息,可以包括交换节点的端口信息和时延信息;具体的,交换节点的端口信息包括交换节点的端口标识以及交换节点的外部传输时延,所述交换节点的端口信息还可以包括所述交换节点端口的外部拓扑信息。
所述交换节点的端口包括传输上下行数据的入端口和出端口;所述交换节点端口的外部拓扑信息用于表征所述交换节点的端口与外部相邻节点的端口的连接关系。
所述交换节点的外部传输时延为交换节点从出端口发送数据到数据到达对端虚拟交换节点入端口所经历的时间。
所述时延信息用于表征交换节点的内部传输时延,所述交换节点的内部传输时延为交换节点内部进行数据传输时,从入端口到出端口所经过的时间。
在本申请实施例中,所述5G系统可以作为虚拟交换节点,所述虚拟交换节点的信息也包括虚拟交换节点的端口信息和时延信息。
具体的,所述虚拟交换节点的端口分为传输上下行数据的入端口和出端口,虚拟交换 节点的入端口包括所述UE的端口和所述UPF的端口,如所述UE传输上行数据的端口(上行端口),所述UPF传输下行数据的端口(下行端口),虚拟交换节点的出端口包括所述UE的端口和所述UPF的端口,如所述UE传输下行数据的端口(下行端口),所述UPF传输上行数据的端口(下行端口)。
所述虚拟交换节点的端口信息包括虚拟交换节点的入端口和出端口的标识以及所述虚拟交换节点的外部传输时延,所述虚拟交换节点的端口信息还可以包括所述虚拟交换节点端口的外部拓扑信息。
在本申请实施例中,所述虚拟交换节点的外部传输时延包括所述UE的端口与外部相邻节点之间的传输时延信息,以及所述UPF网元的端口与外部相邻节点之间的传输时延信息。
所述虚拟交换节点端口的外部拓扑信息表征所述虚拟交换节点的端口与外部相邻节点的端口的连接关系,在本申请实施例中,所述虚拟交换节点端口的外部拓扑信息包括用于表征所述UE的端口与外部相邻节点端口的连接关系的UE端口的外部拓扑信息和用于表征所述UPF网元的端口与外部相邻节点端口的连接关系的UPF网元端口的外部拓扑信息。例如,所述UE有两个相邻节点分为Switch 1和Switch 2,其外部拓扑关系可以如表1所示;其中相邻节点的标识可以是相邻节点的MAC地址,端口的标识可以是端口对应的MAC地址,也可以通过其它方式来标识。
所述时延信息用于表征TSN流在虚拟交换节点的内部传输时延,所述虚拟交换节点的内部传输时延为虚拟交换节点内部进行数据传输时,从入端口到出端口所经过的时间,也就是说,TSN流在所述UE到所述UPF网元之间的传输时延。
交换节点上的处理策略,例如可以包括收发报文的端口和时间片等,时间片指的是交换节点收发报文的时间信息,例如在t1到t2时间内接收报文。
表1
Figure PCTCN2019119549-appb-000001
CUC网元,用于获取数据终端的TSN能力,即获取数据终端的端口数量、每个端口的MAC地址,以及每个端口支持的802.1能力。在此基础上CUC网元可以收集数据终端的流创建请求,在匹配发送端和接收端的流创建请求之后,向CNC网元请求创建TSN流,并对CNC网元生成的处理策略进行确认。其中匹配发送端和接收端的流创建请求,指的是发送端和接收端各自向CUC网元发送的流创建请求,流创建请求包括一些信息,例如请求的TSN流的目的MAC地址,CUC网元将流创建请求与不同的数据终端请求的TSN流的目的MAC地址进行匹配,如果两个数据终端所请求的TSN流的目的MAC地址相同,则这两个数据终端请求的同一条TSN流,匹配成功,可以创建TSN流,否则只有发送端或接收端的流创建请求,无法创建TSN流。
可以理解的是,CNC网元和CUC网元为TSN中的控制面网元。
TSN中的交换节点除了进行数据或报文转发,还需要具有其他功能,例如具有拓扑发现功能,确定交换机标识及交换机端口标识,支持链路层发现协议(link layer discovery  protocol,LLDP)等协议,又例如可以确定传输时延,并在检测到交换节点的内部传输时延后,向配置网元上报检测到的传输时延。
如图4a所示,为本申请适用的一种网络架构示意图,其中,结合了第五代移动通信(5 th-generation,5G)系统和TSN的网络架构。如图4a所示的网络架构示意图,在AF网元上增加TSN适配功能的控制面,在UPF网元上增加TSN适配功能的用户面(user plane,UP)1,在UE上增加TSN适配功能的UP2,这三者与5G系统一起组成逻辑交换节点,即虚拟交换节点,作为TSN中的交换节点。虽然图4a中,UPF与UP1,UE与UP2是分开画的,但是实际上UP1和UP2是用户面TSN适配功能的逻辑功能,UP1可以部署在UPF网元上,或者UP1可以是UPF网元的内部功能模块;同理UP2可以部署在UE上,或者UP2可以是UE的内部功能模块。
其中,TSN适配功能指的是将5G网络的特征和信息适配成TSN要求的信息,通过TSN定义的接口与TSN中的网元通信。
其中,AF网元作为5G系统和TSN的连接节点,AF网元可以TSN中的CNC网元交互,按照TSN交换节点的要求向CNC网元提供逻辑交换节点的信息,TSN适配功能的用户面向TSN适配功能的控制面提供必要的信息,即UP1可以向AF网元提供必要的信息,例如提供TSN中交换节点的信息,可以识别所述CNC网元所属的TSN,还可以向5G系统中的PCF网元提供所述TSN的DNN。
如图4b所示,为本申请适用的另一种网络架构示意图,图4b中,UE上部署有TSN适配功能的用户面或TSN适配功能的用户面是UE的内部功能模块,即图4a中的UP2,UP2用于获取UE的端口信息,并通过控制面发送到AF网元。
需要说明的是,在图4a和4b所示的网络框架中,所述SMF网元可以通过所述PCF网元或所述NEF网元与所述AF网元交互,也可以和所述AF网元直接交互,本申请实施例并不限定。
如图4c所示,为UE的结构示意图,在将5G系统虚拟为一个交换节点时,UE中可以抽象为设置有一个虚拟交换机(virtual switch,vSwitch),所述虚拟交换机通过各个虚拟网卡(virtual interface card,VIC)与不同的交换节点或数据终端连接,可以保证与UE相连的不同的交换节点或数据终端属于不同的虚拟局域网(virtual local area network,VLAN),也能够通过所述虚拟交换机实现逻辑上的通信隔离。
UE的端口信息可以包括端口标识以及所述UE的端口与外部相邻节点之间的传输时延信息,还可以包括所述UE端口的外部拓扑信息或所述UE的端口数量;其中,UE端口的外部拓扑信息用于表征UE的端口与相邻节点的端口之间的连接关系,所述UE的端口与外部相邻节点之间的传输时延信息用于表征UE的端口与相邻节点的端口之间的传输时延。
需要说明的是,如图4c所示的结构仅是一种实例,事实上,所述UE的端口并不局限于虚拟端口,还可以是逻辑端口、或逻辑端口,本申请实施例并不限定所述UE的端口的类型。
图4b中,AF网元是逻辑网元,可以是其他逻辑网元内的组件(例如SMF网元内的组件),也可以是其他控制面功能网元,这里并不限定其名称。设备1和设备2可以相当于图2中的数据终端,也可以相当于图3中的发送端或接收端。设备1和UE侧的端口连接,该连接可以是物理链路,也可以是虚拟连接(例如设备1是UE所在设备内的处理单 元);设备1可以是除UE之外的其他终端设备,也可以是交换节点。图4b中所示的设备1是作为终端设备和CUC网元进行交互。若设备1是交换节点,则设备1和CNC网元进行交互(类似于图4b中所示的和UPF网元相连接的交换节点)。图4b中所示的设备2作为终端设备和CUC网元进行交互,设备2并不是直接与UPF网元的物理端口相连接,设备2与虚拟交换节点之间还包括一个交换节点,该交换节点可以是TSN中实际存在的交换节点,例如可以是数据网络(data network,DN)中的交换节点,也可以是另一个虚拟交换节点。设备2也可以直接与UPF网元的物理端口相连接。
图4a~4b中,将UE侧的端口与UPF侧的物理端口之间的传输时延作为虚拟交换机点的内部传输时延。对于支持TSN协议的物理交换节点来说,内部传输时延是针对端口对而言,不同的端口对可能具有不同的内部传输时延,例如,交换机入端口1与出端口1之间的内部传输时延1,交换机如端口1与出端口2之间的内部传输时延2,内部传输时延1与内部传输时延2的值可能不同。
需要说明的是,图4a~4b所示的网络架构仅以5G系统与TSN结合的网络架构,在下面介绍中,基于图4a~4b所示的网络架构示意图对本申请实施例中涉及的通信方法进行介绍,事实上,本申请实施例并不限定其他通信系统与TSN结合,当其他通信系统虚拟为TSN中的交换节点时,其他通信系统中设置有可以实现相关功能的网元(如可以实现本申请实施例中终端设备、会话管理网元或移动接入管理网元等功能的网元),以保证其他通信系统具有交换节点的功能,具体实现方式可参见本申请实施例。
基于图4a~4b所示的网络架构示意图,5G系统虚拟为TSN中的交换节点,可以看做为作为TSN的虚拟交换节点,5G系统除了进行数据转发,还需要具有上报端口信息或传输时延的功能,为了使5G系统具有上述功能,本申请实施例提供了一种通信方法,在本申请实施例中,UE可以在接收到请求后向SMF网元上报所述UE的端口信息,也可以主动向所述SMF网元上报所述UE的端口信息;所述SMF网元在获取了所述UE的端口信息后,可以将所述UE的端口信息发送给所述CNC网元,所述CNC网元在接收到所述UE的端口信息,可以进行相关配置,如TSN流的配置等。通过本申请实施例所提供的方法,使得5G系统兼具了交换节点的功能,可以向CNC上报所述UE的端口信息,保证了在5G系统作为交换节点的情况下,后续可以实现正常且较为高效的端对端的数据传输。
以终端设备为UE,会话管理网元为SMF网元,集中网络配置网元为所述CNC网元为例进行说明,事实上,本申请实施例并不限定终端设备,会话管理网元以及集中网络配置网元的类型及名称,凡是可以实现终端设备,会话管理网元以及集中网络配置网元相应功能的设备均适用于本申请实施例,如图5所示,为本申请实施例提供的一种通信方法,该方法包括:
步骤501:UE确定需要上报所述UE的端口信息。
所述UE可以确定是否符合需要上报所述UE的端口信息的情况,需要上报所述UE的端口信息的情况有许多种,例如:
第一种:所述UE自身支持TSN业务。
所述UE可以用于传输TSN流,如所述UE可以连接到所述TSN中的交换节点或数据终端,还可以通过5G系统将数据传输给其他交换节点或数据终端。
若所述UE支持TSN业务,所述UE在注册到所述5G系统时,可以提前将所述UE的端口信息发送给所述SMF网元,如将所述UE的端口信息携带在所述注册请求中发送给 所述AMF网元,可以在后续PDU会话建立过程中,并通过所述AMF网元将所述UE的端口信息发送给所述SMF网元。
第二种:需要创建TSN业务对应的PDU会话,也就是说,需要创建的PDU会话用于承载TSN流。
所述UE确定所述PDU会话需要承载TSN流的方式有许多种,例如,当所述UE需要为TSN相关的应用(application,APP)建立PDU会话传输数据时,所述UE可以根据预配置的所述APP和数据网络名称(data network name,DNN)的对应关系,确定所述APP对应的DNN,并根据预配置支持TSN的DNN集合确定所述APP对应的DNN(也可以看做是需要发起的PDU会话的DNN)是否支持TSN,若支持,则要发起的所述PDU会话是一个需要承载TSN流的会话或是一个要与TSN互通的会话,所述UE可以确定所述PDU会话要承载TSN流,也就是一个要与TSN互通的会话,在这种情况下,所述预配置支持TSN的DNN集合保存在所述UE本地的,以便于所述UE确定要发起的所述PDU会话是一个需要承载TSN流的会话或是一个要与TSN互通的会话。
在本申请实施例中,所述PDU会话是一个需要承载TSN流的会话与所述PDU会话是一个要与TSN互通的会话所表述的意思是相同的,并无区别,在本申请实施例中,会交叉使用这两种表述方式。
也就是说,所述UE可以在发起PDU会话建立流程时,就确定需要创建的PDU会话需要承载TSN流。
第三种:当前创建的PDU会话需要承载TSN流。
所述UE确定所述当前创建的PDU会话需要承载TSN流的方式有许多种,例如,所述UE可以根据所述当前创建的PDU会话的DNN确定所述当前创建的PDU会话要承载TSN流,所述UE可以根据所述当前创建的PDU会话的DNN确定所述当前创建的PDU会话要承载TSN流与第二种情况中,所述UE根据所述PDU会话的DNN确定所述PDU会话要承载TSN流的方式相同,此处不再赘述。
又例如,所述UE也可以通过其他网元的指示消息确定当前创建的PDU会话需要承载TSN流。在为PDU会话建立流程中,所述UE会通过所述AMF网元向所述SMF网元发送PDU会话建立请求,所述SMF网元根据所述UE发送的PDU会话建立请求中携带的信息(如DNN)确定当前建立的PDU会话可用于承载TSN流,则可以向所述UE发送指示信息,所述指示信息用于指示当前创建的PDU会话需要承载TSN流。为了节约信令,所述指示消息可以携带在所述PDU会话建立确认消息中,所述指示消息可以是所述PDU会话建立确认消息中的一个信元。
所述UE发送的PDU会话建立请求中携带的信息可以是所述PDU会话的DNN,所述SMF网元可以基于预配置支持TSN业务的DNN集合,通过所述PDU会话建立请求携带的所述DNN确定所述DNN是否支持TSN业务,在确定所述DNN支持TSN业务后,所述SMF网元确定当前创建的PDU会话需要承载TSN流,在这种情况下,所述预配置支持TSN的DNN集合保存在所述SMF网元本地,也可以保存在其他设备上,且所述SMF网元方便获取所述预配置支持TSN的DNN集合。
第四种:已创建的PDU会话需要承载TSN流。
所述UE确定所述已创建的PDU会话需要承载TSN流的方式有许多种,例如,所述UE在接收到来自所述SMF网元的PDU会话修改请求后,根据PDU会话修改请求中携带 的所述PDU会话标识,确定所述PDU会话的DNN,之后,所述UE根据所述PDU会话的DNN确定所述PDU会话要承载TSN流,所述UE根据所述PDU会话的DNN确定所述PDU会话要承载TSN流的方式可参见第三种情况中所述UE可以根据所述当前创建的PDU会话的DNN确定所述当前创建的PDU会话要承载TSN流的方式,此处不再赘述。
又例如,所述UE也可以通过其他网元的指示消息确定所述已创建的PDU会话需要承载TSN流。在为PDU会话修改流程中,所述SMF网元可以根据所述需要修改的PDU会话的DNN确定所述需要修改的PDU会话需要承载TSN流,所述SMF网元根据所述需要修改PDU会话的DNN确定所述需要修改的PDU会话要承载TSN流的方式可参见第三种情况中所述SMF网元可以根据所述当前创建的PDU会话的DNN确定所述当前创建的PDU会话要承载TSN流的方式,此处不再赘述。
所述SMF网元确定所述需要修改的PDU会话需要承载TSN流之后,通过所述AMF网元向所述UE发送PDU会话修改请求,所述PDU会话修改请求中包括指示消息,所述指示消息可以指示已创建的PDU会话需要承载TSN流,所述UE在接收到所述PDU会话修改请求后,可以根据所述指示消息确定已创建的PDU会话需要承载TSN流。
需要说明的是,在上述说明中仅是分别为这四种情况进行说明,所述UE在确定需要上报所述UE的端口信息时,所述UE可以确定符合上述情况的部分或全部,如所述UE可以只符合上述四种情况中的一种,也可以符合上述四种情况中的两种或多种,如所述UE符合第一种情况和第二种情况;所述UE符合第一种情况和第三种情况。本申请实施例并不限定其他需要上报所述UE的端口信息的情况,凡是需要所述UE上报所述UE的端口信息的情况均适用于本申请实施例。
步骤502:所述UE向SMF网元发送所述UE的端口信息,其中,所述UE的端口信息包括所述UE的端口标识以及所述UE的端口与外部相邻节点之间的传输时延信息。
可选的,所述UE的端口信息包括所述UE端口的外部拓扑信息。
所述UE在确定符合上述四种情况后,可以向所述SMF网元发送所述UE的端口信息。
若所述UE符合第一种情况,则所述UE可以发起注册流程中,将所述UE的端口信息携带在注册请求中发送给所述AMF网元,所述AMF网元可以保存所述UE的端口信息,在需要建立PDU会话时,将所述UE的端口信息携带在所述PDU会话注册请求中发送给所述SMF网元(简称为方式一)。
若所述UE符合第二种情况或第三种情况,所述UE可以采用方式一将所述UE的端口信息发送给所述SMF网元;所述UE也可以在发起会话建立流程,将所述UE的端口信息携带在PDU会话建立请求中通过所述AMF网元发送给所述SMF网元(简称为方式二);所述UE还可以在PDU会话建立确认应答中携带所述UE的端口信息,通过所述AMF网元将所述PDU会话建立确认应答发送给所述SMF网元(简称为方式三)。
若所述UE符合第四种情况,所述UE可以在会话修改流程中,所述UE还可以在PDU会话修改应答中携带所述UE的端口信息,通过所述AMF网元将所述PDU会话修改应答发送给所述SMF网元(简称为方式四)。
若所述UE符合第一种情况和第二种情况,所述UE可以采用方式一,也可以采用方式二上报所述UE的端口信息,也可以同时采用方式一和方式二,也就是在所述注册请求和所述会话建立请求中均携带所述UE的端口信息。
若所述UE符合第一种情况和第四种情况。所述UE可以采用方式一上报所述UE的 端口信息,也可以采用方式四上报所述UE的端口信息,也可以同时采用方式一和方式四,也就是在所述注册请求和所述会话修改应答中均携带所述UE的端口信息。
上述所述UE向所述SMF网元发送所述UE的端口信息的方式仅是举例,本申请实施例并不限定,例如,所述UE符合第二种情况,可以不采用方式二,而之后在所述PDU会话修改流程中,通过PDU会话修改应答将所述UE的端口信息发送给所述SMF网元;所述UE也可以通过单独的信令将所述UE的端口信息发送给所述SMF网元,也可以通过用户面发送给所述SMF网元,比如所述UE可以将所述端口信息发送给所述UPF网元,由所述UPF网元转发给所述SMF网元。凡是可以使所述SMF获取所述UE的端口信息的方式均适用于本申请实施例。
在所述UE向SMF网元发送所述UE的端口信息之前,所述UE需要确定所述UE的端口信息,所述UE可以主动的提前确定所述UE的端口信息,之后确定需要向所述SMF上报所述UE的端口信息后,将已确定的所述UE的端口信息发送给所述SMF网元;如所述UE确定自身支持TSN业务,所述UE就可以主动的提前确定所述端口信息,如所述UE可以自行检查所述UE端口的外部拓扑信息和/或所述UE的端口与外部相邻节点之间的传输时延信息。
在所述UE向SMF网元发送所述UE的端口信息之前,所述SMF网元也可以向所述UE发送第一指示消息,用于指示所述UE确定所述UE的端口信息;所述UE在接收所述第一指示消息后,可以确定所述UE的端口信息,若所述UE已提前检测了所述UE的端口信息,在本地已保存了所述UE的端口信息,则所述UE可以获取本地保存的所述UE的端口信息;若所述UE并未提前确定所述UE的端口信息,如所述UE未检测所述UE端口的外部拓扑信息和/或所述UE的端口与外部相邻节点之间的传输时延信息,所述UE可以在接收到所述第一指示消息后,确定所述UE的端口信息,也就是检测所述UE端口的外部拓扑信息和/或所述UE的端口与外部相邻节点之间的传输时延信息,确定所述UE的端口信息。
步骤503:所述SMF网元获取所述UE的端口信息后,所述SMF网元向所述CNC网元发送所述UE的端口信息。
所述SMF网元获取所述UE的端口信息后,所述SMF网元可以直接向所述CNC网元发送所述UE的端口信息,所述SMF网元也可以在确定了所述UE与所述UPF网元之间的传输时延后,将所述UE的端口信息和所述UE与所述UPF网元之间的传输时延一同发送给所述CNC网元。
所述SMF网元确定所述UE与所述UPF网元之间的传输时延是在PDU会话建立流程或PDU会话修改流程中确定的。
下面对所述SMF网元确定所述UE与UPF网元之间的传输时延的方式进行介绍:
方式一、PDU会话修改流程中,需要为PDU会话重新建立QoS流。
所述PCF网元在接收到所述CNC网元的所述能力信息获取请求后,需求根据所述能力信息获取请求中包括的TSN流的信息,确定需要对已创建的PDU会话进行修改,更新当前PDU会话的策略和计费控制规则,也就是说,需要更新策略信息,所述PCF网元更新策略信息后,会向所述SMF网元发送携带有更新后的策略信息的会话策略更新通知,所述SMF网元可以从所述会话策略更新通知中获取更新后的策略信息。
其中,所述会话策略更新通知中包括下列信息的部分或全部:
PDU会话标识、UE的标识或更新后的策略信息。
PDU会话标识用于标识需要修改的PDU会话;UE的标识为已建立PDU会话的UE的标识,可以是签约固定标识(subscription permanent identifier,SUPI),本申请实施例并不限定。
所述SMF网元接收到来自所述PCF网元的更新后的策略信息后,发起PDU会话修改流程。
所述更新后的策略信息包括新的策略和计费控制规则(policy and charging control rule,PCC rule),所述策略和计费控制规则至少包括所述TSN流对应的服务数据流模板以及5QI(5G QoS Identifier)等QoS参数。
所述SMF网元根据所述PCC规则确定所述TSN流的QoS流(flow),所述QoS流可以是现有已经建立的QoS流,也可以是所述SMF网元根据所述PCC规则确定现有的QoS流不能匹配所述PCC规则中的QoS参数需求,为所述TSN流新建一个QoS流。
通常,一个PDU会话可以包括一个或多个QoS流。一个QoS流可以承载一个或多个在所述UE和所述UPF网元之间的传输的业务流,这里TSN流就是一种业务流。
5G系统中的节点,如所述UPF网元、RAN以及UE是根据QoS流对应的QoS参数来处理和转发承载在QoS流中的业务流的;因为承载在同一个QoS流中的业务流在3GPP系统传输时,也就是在所述UE和所述UPF网元之间传输时,转发规则是相同的,也就是说,一个QoS流与一个UE和一个UPF网元是对应的。
所述SMF网元在接收到所述会话策略更新通知后,会发起PDU会话修改流程,为所述UE的PDU会话重新建立一个QoS流,也就是需要为所述UE创建QoS流,所述QoS流的建立流程中,所述SMF网元可以确定所述QoS流对应的UPF网元与所述UE之间的传输时延。
具体的,所述SMF网元在接收到所述会话策略更新通知后,获取更新后的策略信息,根据所述更新后的策略信息中的PCC规则确定所述传输时延。
所述PCC规则中会包括要传输所述TSN流所需的QoS参数,在QoS参数中包括5QI。
每个5QI会有一个对应的包时延预算(packet delay budge,PDB),所述PDB是指一个QoS流在所述UE和所述UPF网元之间传输的最大允许时延,是指QoS流承载的业务流在5G系统中传输的时延不会超过所述PDB。
所述SMF网元根据所述包时延预算确定所述传输时延,如所述SMF网元可以将所述PDB作为所述传输时延。
方式二、PDU会话建立流程中,需要为PDU会话建立QoS流。
所述SMF网元接收到来自所述PCF网元的策略通知后,建立PDU会话。
其中,所述策略通知中包括下列信息的部分或全部:
PDU会话标识、UE的标识、策略信息。
关于PDU会话标识、UE的标识、策略信息的描述与方式一中的描述相似,此处不再赘述,所述SMF网元确定所述传输时延的方式与方式一种的相似,可参见方式一;区别仅是在于方式一是更新后的策略信息,方式二是中的策略信息是为创建PDU会话生成的。
需要说明的是,无论是PDU会话建立过程还是PDU会话修改过程,均需要为所述UE创建QoS流,在所述UE的QoS流建立过程中,所述SMF网元可以确定所述传输时延。
所述SMF网元向所述CNC网元发送所述传输时延;所述CNC网元获取所述传输时 延后,会根据所述传输时延以及其它交换节点上报的端口信息和时延信息,确定对其它交换节点的调度和转发策略的配置,以确保计算所述TSN流在的时延和带宽需求。
所述SMF网元在确定了所述UE的端口信息和所述传输时延后,所述SMF网元可以分别发送所述UE的端口信息和所述传输时延,例如,所述SMF网元在从所述UE获取了所述UE的端口信息向所述CNC网元发送所述UE的端口信息,在确定了所述传输时延后,再向所述CNC网元发送所述传输时延,也就是说,可以在不同的时间点发送所述UE的端口信息和所述传输时延;所述SMF网元也可以将发送所述UE的端口信息和所述传输时延一同发送给所述SMF网元。
所述SMF网元在发送所述UE的端口信息时,还可以多次发送,每次只发送所述UE的端口信息中的一部分,例如,所述SMF网元可以先发送所述UE的端口标识、所述UE与外部相邻节点之间的传输时延信息和端口数量,在根据所述SMF网元的指示检测到所述UE端口的外部拓扑信息后,再发送所述UE端口的外部拓扑信息。
在步骤501中已提及,所述CNC网元需要获知所述虚拟交换节点的信息,所述SMF网元在向所述CNC网元发送所述UE的端口信息或所述传输时延时,可以将所述UE的端口信息作为所述虚拟交换节点的端口信息,将所述传输时延作为所述虚拟交换节点的信息中的时延信息,将所述虚拟交换节点的信息发送给所述CNC网元。
需要说明的是,从所述虚拟机交换节点的端口所属的设备角度,所述虚拟交换节点的端口信息除了包括所述UE的端口信息,还可以包括所述UPF的端口信息。
所述UPF网元的端口信息为所述UPF网元的端口标识以及所述UPF网元的端口与外部相邻节点之间的传输时延信息;所述UPF的端口信息为还可以包括所述UPF端口的外部拓扑信息,所述UPF网元端口的外部拓扑信息用于表征所述UPF网元的端口与相邻节点端口的连接关系,并不限定所述UPF网元的端口信息的获取方式,凡是可以使所述SMF网元获取所述UPF网元的端口信息的方式均适用于本申请实施例。
所述虚拟交换节点的端口信息中只需标注出所述虚拟交换节点传输数据的入端口和出端口,不需要明确到端口为所述UE的端口或所述UPF网元的端口;也就是说,所述CNC网元只需通过所述虚拟交换节点的端口信息确定出所述虚拟交换节点传输数据的入端口和出端口即可,相应的,所述虚拟交换节点的时延信息中只需标注为所述虚拟交换节点内部传输时延,不需要明确到所述UE到所述UPF网元的传输时延,也就是说,所述CNC网元对虚拟交换节点的内部结构是不可见的。
所述SMF网元在向所述CNC网元发送所述UE的端口信息和所述传输时延,需要将所述UE的端口信息和所述传输时延转换为所述虚拟交换节点的信息,再将所述虚拟交换节点的信息发送给所述CNC网元。
可选的,所述SMF网元可以通过所述AF网元将所述虚拟交换节点的信息发送给所述CNC网元。
作为一种可能的实施方式,所述SMF网元可以将所述UE的端口信息和所述传输时延发送给所述AF网元,所述AF网元将所述UE的端口信息和所述传输时延转换为所述虚拟交换节点的信息,再将所述虚拟交换节点的信息发送给所述CNC网元。
如图5所示的实施例中,所述SMF网元可以向所述CNC网元发送所述UE的端口信息和所述传输时延作为所述虚拟交换节点的信息发送给所述CNC网元。
若由于5G系统中的PDU会话锚点(PDU session anchor,PSA),如锚点UPF网元, 发生改变时,会导致所述虚拟交换节点变为另一个虚拟交换节点,所述SMF网元需要告知所述CNC网元虚拟交换节点发生更新,还可以将更新后虚拟交换节点的信息发送给所述CNC网元。
基于如图4a~4b所示的网络架构,以会话管理网元为SMF网元,集中网络配置网元为所述CNC网元为例进行说明,事实上,本申请实施例并不限定终端设备,会话管理网元以及集中网络配置网元的类型及名称,凡是可以实现会话管理网元以及集中网络配置网元相应功能的设备均适用于本申请实施例,如图6所示,为本申请实施例提供的一种通信方法,该方法包括:
步骤601:所述SMF网元确定所述UE的PDU会话的锚点UPF网元要从第一UPF网元切换为第二UPF网元。
其中,所述锚点UPF网元是指终结N6接口的所述UPF网元;所述锚点UPF网元发生改变的情况有许多种,例如所述UE发生移动,导致当前的所述锚点UPF网元不适合继续为所述UE提供服务,如通过当前所述锚点UPF网元的传输路径不是最优路径,需要切换锚点UPF网元,又例如当前的锚点UPF网元发生故障,无法继续提供服务,需要切换锚点UPF网元,本申请实施例并不限定。
所述锚点UPF网元发生改变时,会触发所述SMF网元为所述UE重新选择的PDU会话的锚点UPF网元。
所述UE的PDU会话的锚点UPF若从第一UPF网元切换为第二UPF网元,将会使得所述虚拟交换节点发生变化。
原因如下:虚拟交换机的端口是由UE侧的端口和UPF网元侧的端口组成,可分别作为虚拟交换机的出端口和入端口或入端口和出端口。对于这个虚拟交换机来说,UPF网元侧的端口是固定不变的,但是由于一个UPF网元可能动态的与多个UE建立用户面连接,因此UE侧的端口是变化的。当有新的UE与UPF网元建立用户面连接时,UPF网元对应的虚拟交换机的UE侧端口就会增加;当有UE与UPF网元之间的用户面连接被释放时,如UE移动导致有更优的UPF网元为UE提供服务时,UPF网元对应的虚拟交换机的UE侧的端口会减少。若5G系统中的锚点UPF网元发生改变,意味着PDU会话以及PDU会话中承载的QoS流以及QoS流中承载的TSN流的传输路径从一个UPF网元切换到另一个UPF网元,对于QoS流或TSN流来说,其对应的UPF网元发生了变化,也就是说,用于传输所述QoS流或TSN流的虚拟交换节点发生了变化,可以理解的是,一个锚点UPF网元对应一个虚拟交换节点,在本申请实施例中,所述第一UPF网元对应的虚拟交换节点为第一虚拟交换节点,也就是UPF切换前的虚拟交换节点;所述第二UPF网元对应的虚拟交换节点为第二虚拟交换节点,也就是UPF切换后的虚拟交换节点。
步骤602:所述SMF网元确定所述PDU会话是一个与TSN互通的会话。
所述SMF网元根据所述PDU会话的DNN以及所述SMF网元上预配置的支持TSN业务的DNN集合,确定所述PDU会话的DNN支持TSN业务,在确定所述DNN支持TSN业务后,所述SMF网元确定所述PDU会话是一个与TSN互通的会话。
步骤603:所述SMF网元向CNC网元发送第一通知消息,其中,所述第一通知消息用于通知所述CNC网元第一虚拟交换节点和/或第二虚拟交换节点的端口信息发生更新。
所述第一通知消息可以只用于通知所述CNC网元第二虚拟交换节点的端口信息发生更新,也可以只通知所述CNC网元第一虚拟交换节点的端口信息发生更新,还可以用于通知所述CNC网元第一虚拟交换节点和第二虚拟交换节点的端口信息均发生更新。
当所述锚点UPF从所述第一UPF网元切换到所述第二UPF网元,所述UE不再与所述第一UPF网元连接,而是与所述第二UPF网元连接。所述第一虚拟交换节点中UE侧的端口则将不存在所述UE的端口,也就是说,所述锚点UPF网元切换后,所述第一虚拟交换节点的端口应当不包括所述UE的端口信息;而所述第二虚拟交换节点中UE侧的端口则将增加所述UE的端口,也就是说,所述锚点UPF网元切换后,所述第二虚拟交换节点的端口信息应当包括所述UE的端口信息;显然,所述锚点UPF网元切换后,所述第一虚拟交换节点的端口信息和所述第二虚拟交换节点的端口信息均应当发生变化,需要进行相应的更新。
所述SMF网元可以根据所述UE的端口信息更新所述第一虚拟交换节点的端口信息和所述第二虚拟交换节点的端口信息。
针对所述第一虚拟交换节点的端口信息,则需要去除所述UE的端口信息,去除了所述UE的端口信息的所述第一虚拟交换节点的端口信息即为更新后的所述第一虚拟交换节点的端口信息;针对所述第二虚拟交换节点的端口信息,则需要增加所述UE的端口信息,增加了所述UE的端口信息的所述第二虚拟交换节点的端口信息即为更新后的所述第二虚拟交换节点的端口信息。
需要说明的是,由于虚拟交换节点的时延信息是虚拟交换节点的内部传输时延,是根据QoS流的PCC规则确定的,在UPF网元切换前后,QoS流的PCC规则并没有发生变化,也就是说,虚拟交换节点的时延信息并未发生更新。在本申请实施例中,可以不涉及所述第一虚拟交换节点和所述第二虚拟交换节点的时延信息的更新。
所述第一通知消息通知所述CNC网元虚拟交换节点(第一虚拟交换节点和/或第二虚拟交换节点)的端口信息发生更新的方式有许多种,本申请实施例并不限定,如所述第一通知消息的类型即为通知所述虚拟交换节点的端口信息发生变化的消息类型,在所述第一通知消息中携带所述虚拟交换节点的标识,所述第一通知消息即可指示所述虚拟交换节点的端口信息发生更新,上述方式仅是举例说明,凡是可以通知所述CNC网元虚拟交换节点(第一虚拟交换节点和/或第二虚拟交换节点)的端口信息发生更新的方式均适用于本申请实施例。
所述UPF网元切换前,所述PDU会话已承载了TSN流,则所述第一通知消息还可以用于通知将传输所述TSN流的虚拟交换节点要从第一虚拟交换节点变为第二虚拟交换节点。
所述第一通知消息通知将传输所述TSN流的虚拟交换节点要从第一虚拟交换节点变为第二虚拟交换节点的方式有许多种,例如,所述第一通知消息的类型即为通知所述TSN流的虚拟交换节点切换的消息类型,在所述第一通知消息中携带所述第一虚拟交换节点的标识和第二交换节点的标识,所述第一通知消息即可指示所述TSN流的虚拟交换节点从所述第一虚拟交换节点变为所述第二虚拟交换节点,上述方式仅是举例说明,凡是可以通知将传输所述TSN流的虚拟交换节点要从第一虚拟交换节点变为第二虚拟交换节点的方式均适用于本申请实施例。
所述第一通知消息中还可以携带一些端口信息,以便于所述CNC网元可以对相应的 虚拟交换节点的端口信息进行更新,具体的,所述第一通知消息中,可以携带下列消息中的部分或全部:
消息一、所述第二虚拟交换节点的标识和更新后的所述第二虚拟交换节点的端口信息。
消息二、所述第一虚拟交换节点的标识和更新后的所述第一虚拟交换节点的端口信息。
消息三、所述第二虚拟交换节点的标识和所述第二虚拟交换节点用来传输所述TSN流的端口信息。
针对消息三,由于所述第二虚拟交换节点上可能并非所有的入端口和出端口均是用于传输所述TSN流的端口,所述第一通知消息中可以只携带需要更新的用于传输所述TSN流的端口信息,如可以携带所述UE的用于传输所述TSN流的上行端口或用于传输所述TSN流的下行端口的信息,可选的,还可以携带所述第二UPF网元的用于传输所述TSN流的上行端口或用于传输所述TSN流的下行端口的信息。
在所述第一通知消息还用于通知所述TSN流的虚拟交换节点要从第一虚拟交换节点变为第二虚拟交换节点的情况下,所述第一通知消息还可以携带所述TSN流的标识。
所述第一通知消息通知所述CNC网元虚拟交换节点(第一虚拟交换节点和/或第二虚拟交换节点)的端口信息发生更新,所述CNC网元在接收到所述第一通知消息后,可以获知确定相应的虚拟交换节点的端口信息发生更新,可以对相应的虚拟交换节点的端口信息进行标注,标注为有更新。
如所述第一通知消息通知所述CNC网元第二虚拟交换节点的端口信息发生更新,所述CNC网元在接收到所述第一通知消息后,可以获知确定所述第一虚拟交换节点的端口信息发生更新,可以对所述第一虚拟交换节点的端口信息进行标注,标注为有更新。
在这种情况下,所述第一通知消息若还携带有更新后的端口信息,所述CNC网元还可以更新相应的虚拟交换节点的端口信息,例如可以携带所述第二虚拟交换节点的标识和更新后的所述第二虚拟交换节点的端口信息,所述CNC网元可以将所述第二虚拟交换节点的端口信息更新为所述第一通知消息中携带的端口信息。
所述CNC网元获知所述第一虚拟交换节点和/或所述第二虚拟交换节点的端口信息发生更新后,若所述PDU会话后续会承载TSN流,所述CNC网元还可以根据更新后的所述第一虚拟交换节点和/或所述第二虚拟交换节点的端口信息确定所述TSN流的传输路径中是否需要包括所述第一虚拟交换节点或所述第二虚拟交换节点,以便后续重新配置所述TSN流。
若所述第一通知消息还用于通知TSN流的虚拟交换节点要从第一虚拟交换节点变为第二虚拟交换节点。
所述CNC网元在接收到所述第一通知消息后,可以将TSN流的虚拟交换节点从所述第一虚拟交换节点替换为第二虚拟交换节点。
所述CNC网元还可以根据所述第一通知消息对所述TSN流重新配置传输路径。
由于所述TSN流的虚拟交换节点从第一虚拟交换节点变为第二虚拟交换节点,为了保证所述TSN流可以正常传输,需要为所述TSN流重新配置传输路径。
所述CNC网元对所述TSN流重新配置传输路径,包括为所述TSN流重新设置传输路径,并配置所述传输路径上的交换节点,例如,配置传输路径上除所述第二虚拟交换节点的其它交换节点针对所述TSN流的调度和转发规则。
所述CNC网元对所述TSN流重新配置传输路径后,可以向所述SMF网元发送通知应 答消息,所述通知应答消息指示所述CNC网元已完成对所述TSN流的配置更新,也就是说所述TSN流的传输路径已配置完成,在所述5G系统内部锚点UPF网元切换完成,可以通过所述第二虚拟交换节点传输所述TSN流,且可以保证所述TSN流的时延和带宽需求,相应的,所述SMF网元会接收所述通知应答消息。
为了对所述第二虚拟交换节点进行配置,在步骤601中,所述SMF网元仅是可以确定所述PDU会话的锚点UPF网元需要从第一UPF网元切换为第二UPF网元,但还没有切换,也就是所述SMF网还没有做出相应的切换指示,以使所述PDU会话的锚点UPF从所述第一UPF网元切换为所述第二UPF网元;所述SMF网元可以在接收所述通知应答消息之后,将所述PDU会话的锚点UPF从所述第一UPF网元切换为所述第二UPF网元。
例如,所述SMF网元需要建立从所述RAN到所述第二UPF网元的用户面连接,并释放所述RAN与所述第一UPF网元的用户面连接,以及所述SMF网元到所述第一UPF网元的会话连接。
所述SMF网元在确定所述PDU会话的锚点UPF从所述第一UPF网元切换为所述第二UPF网元后,所述SMF网元完成了虚拟交换节点的内部切换,也就是将所述第一虚拟交换节点切换为所述第二虚拟交换节点,可以向所述CNC网元发送第二通知消息,所述第二通知消息用于通知所述CNC网元所述TSN流的虚拟交换节点要从所述第一虚拟交换节点变为第二虚拟交换节点。
下面结合具体的应用场景,对如图5所示的方法进行介绍。
在具体应用中,根据UE的注册状态,可以分为UE已注册和UE未注册两种,当UE已注册到5G系统,已建立PDU会话,已建立的PDU会话并不用于传输TSN流,在这种情况下,若已建立的PDU会话后续需要用于承载TSN流,需要对已建立的PDU会话进行修改,已便于承载所述TSN流,所述CNC网元则需要获知5G系统作为虚拟交换节点的信息,其中包括所述UE的端口信息和所述UE到所述UPF网元的传输时延,针对所述UE的端口信息,所述SMF网元可以向UE发送获取端口信息的请求,从UE获取端口信息,针对传输时延,所述SMF网元可以在PDU会话修改流程中,确定所述传输时延;当所述UE未注册到5G系统时,所述UE可以在后续注册时,向所述AMF网元上报所述UE的端口信息,以便于所述AMF网元在为所述UE建立PDU会话时,可以向所述SMF网元发送所述UE的端口信息;也可以在建立会话时,通过所述AMF网元直接向所述SMF网元上报所述UE的端口信息,针对所述传输时延,所述SMF网元在PDU会话建立流程中,确定所述传输时延。下面对这两种情况进行介绍。
第一种、UE已注册。
如图7所示,为本申请实施例提供的一种通信方法,该方法包括:
步骤701:CUC网元向所述CNC网元发送流配置请求,请求所述CNC网元为所述CUC网元配置一个TSN流,所述流配置请求中包括所述TSN流的信息。
所述TSN流的信息包括TSN流的标识,TSN流的源MAC地址、TSN流的目的MAC地址、传输TSN流的传输要求。
其中,所述TSN流的标识是为了区别不同TSN流的而设置的标识,所述CNC网元在获知了所述TSN流的标识后可以建立TSN流与发送端、接收端、TSN流传输路径的对应关系。
所述TSN流的源MAC地址和TSN流的目的MAC地址是所述TSN流在传输时,数 据的发送端的MAC地址和数据的接收端的目的MAC地址,可以为之后所述CNC网元配置所述TSN流提供参考,确定所述TSN流的传输路径的起始端和终止端,并确定所述TSN流的传输路径。
所述传输TSN流的传输要求包括下列的部分或全部:TSN流的最大帧的大小(MaxFrameSize)、最大帧间隔时间(MaxIntervalFrames),帧的优先级参数(PriorityAndRank)、流的单个帧从发送端传输到接收端的最大允许时延等。
在所述流配置请求中携带所述传输TSN流的传输要求,可以为之后所述CNC网元配置所述TSN流提供参考,以使得所述TSN流的传输路径可以满足所述传输要求;所述CNC网元根据所述TSN流的最大帧的大小和最大帧间隔时间可以确定计算TSN流所需的带宽,所述CNC网元根据所述流的单个帧从发送端传输到接收端的最大允许时延配置所述TSN流的传输路径,所述CNC网元根据帧的优先级参数可以配置TSN中交换节点对所述TSN流的调度策略。
步骤702:所述CNC网元在接收到所述流配置请求后,需要配置所述TSN流。在为所述TSN流配置传输路径时,所述CNC网元会先检查TSN网元拓扑,根据TSN网络拓扑确定所述TSN流传输路径上是否存在虚拟交换节点的情况。
所述CNC网元中可以预先配置有所述TSN的网络拓扑中各个交换节点的属性,如哪些交换节点是传统的交换节点,哪些交换节点为虚拟交换节点,通过所述预先配置的信息,可以确定所述TSN流传输路径上存在虚拟交换节点,上述确定所述TSN流传输路径上存在虚拟交接节点的方式仅是举例,本申请并不限定通过其他方式确定所述网络拓扑中存在虚拟交换节点,凡是可以确定所述网络拓扑中存在虚拟交接节点的方式均适用于本申请实施例。
TSN流的传输路径是TSN网络拓扑中的交换节点构成的用于传输TSN流的路径,为了配置传输路径,需要获取并维护网络拓扑中各个交换节点的信息,如交换节点的标识、与相邻节点的拓扑关系。对于传统交换节点,本身具备上报交换节点的信息能力,对于虚拟交换节点,5G系统中的所述SMF网元需要确定虚拟交换节点的信息,需要通过AF网元或SMF网元上报给所述CNC网元虚拟交换节点的信息。
可选的,在所述SMF网元或所述AF网元上报虚拟交换节点信息的时候指示交换节点是一个虚拟交换节点。
步骤703:在确定了TSN网络拓扑中存在虚拟交换节点的情况下,为了能获取虚拟交换节点的信息,所述CNC网元可以通过所述AF网元向5G系统中的PCF网元发送能力信息获取请求,所述能力信息获取请求用于请求所述虚拟交换节点的信息。
可选的,所述能力获取请求中包括所述TSN流的信息。
步骤704:所述PCF网元在接收到所述能力信息获取请求后,确定需要对PDU会话进行修改,向所述SMF网元发送会话策略更新通知。
具体的,所述AF网元接收到来自所述CNC网元的所述能力信息获取请求后,会根据所述TSN流的信息中包括所述TSN流的目的MAC地址与UE标识之间的对应关系确定对于的UE的标识,并确定所述CNC网元所属的TSN的DNN。
其中,所述TSN流的目的MAC地址与UE的标识之间的对应关系,可以是预先配置好的,也可以是所述AF网元在收到来自所述CNC网元的所述能力信息获取请求后,从其它网元获取的。所述AF网元通过所述TSN流的目的MAC地址就可以确定所述TSN流在 传输过程中需要经过哪一个UE。
所述AF网元将确定的所述UE的标识和所述DNN、与所述能力信息获取请求一同发送给所述PCF网元,所述PCF网元可以根据所述UE的标识和所述DNN确定需要对所述UE的哪一个PDU会话进行修改。
所述PCF网元确定的PDU会话即为需要修改的PDU会话,所述PCF网元根据所述能力信息获取请求中携带的所述TSN流的信息确定策略信息,由于所述PDU会话当前已经建立,所述PDU会话已有对应的策略信息,所述PCF网元根据所述TSN流确定策略信息是需要对所述PDU会话已对应的策略信息进行更新,为方便说明,将所述PCF网元根据所述TSN流确定策略信息称为更新后的策略信息。
需要说明的是,由于TSN流的信息中会携带有所述传输TSN流的传输要求,所述PCF网元可以根据所述TSN流的信息确定QoS流所需满足的要求,也就是可以确定所述PCC规则。
所述会话策略更新通知包括下列信息的部分或全部:PDU会话标识、UE的标识、更新后的策略信息。所述会话策略更新通知的描述可参见如图5所示的实施例,此处不再赘述。
所述SMF网元在获取了所述更新后的策略信息,根据所述更新后的策略信息可以确定数据传输的转发规则等信息,以便对所述UPF网元进行相关的配置。
步骤705:所述SMF网元在接收到所述会话策略更新通知后,需要对已建立的PDU会话进行修改,向所述UE发送PDU会话修改请求(PDU session modfication command)。
所述PDU会话修改请求可以携带有指示UE确定所述UE的端口信息的指示消息,如可以设置一个信元,用于指示UE确定所述UE的端口信息,可选的,还可以用于指示所述UE上报所述端口信息。
步骤706:所述UE在接收到所述PDU会话修改请求后,所述UE根据所述PDU会话修改请求中携带的所述PDU会话标识确定所述PDU会话的DNN是否支持TSN,在确定所述DNN支持TSN后,向所述SMF网元发送PDU会话修改应答(PDU session modification command ack)。
所述PDU会话修改应答中可以携带所述UE的端口信息。
具体的,所述UE的端口信息中包括所述UE的端口标识(port id)和所述UE的端口与外部相邻节点之间的传输时延信息。所述UE的端口信息还包括所述UE端口的外部拓扑信息。
由于所述UE会存在多个端口,每个端口与不同的相邻节点连接,也就是说,每个端口都有对应的相邻节点,所述UE的端口与外部相邻节点之间的传输时延信息包括所述UE的各个端口到对应的外部相邻节点的传输时延。
所述SMF网元从所述PDU会话修改应答中获取所述UE的端口信息。
步骤707:所述SMF网元向所述PCF网元发送通知信息,所述通知信息用于通知所述PCF网元所述PDU会话已修改完成,所述通知信息中还可以包括虚拟交换节点的信息,其中所述虚拟交换节点的信息包括所述UE的端口信息。
步骤708:所述PCF网元向所述AF网元发送所述虚拟交换节点的信息。
可选的,所述PCF可以通过NEF向所述AF网元发送所述虚拟交换节点的信息。
步骤709:所述AF网元在接收到所述虚拟交换节点的信息后,将所述虚拟交换节点 的信息转发给所述CNC网元。
步骤710:所述CNC网元在接收到所述虚拟交换节点的信息后,可以根据所述虚拟交换节点信息配置所述TSN流。
所述CNC网元配置所述TSN流,包括配置所述TSN流的传输路径以及所述传输路径上的各个交换节点,配置所述TSN流的传输路径上的各个交换节点具体包括配置各个交换节点入端口和出端口的调度和转发策略,以便各个交换节点根据所述调度和转发策略对所述TSN流的数据包进行队列管理和转发,确保所述TSN流的时延和带宽需求。
需要说明的是,所述SMF网元与所述AF网元之间也可以直接进行交互,在步骤704~605中,所述AF网元可以直接向所述SMF网元发送所述能力信息获取请求,所述SMF网元在接收到所述能力信息获取请求后,向所述PCF网元发送所述TSN流的信息,所述PCF网元在接收到所述TSN流的信息后,向所述SMF网元发送会话策略更新通知,对已建立的PDU会话进行修改。
在步骤707中,所述通知消息中也可以不携带所述虚拟交换节点的信息,所述SMF网元可以通过单独的信令向所述PCF网元发送所述虚拟交换节点的信息。
需要说明的是,所述虚拟交换节点的信息中还可以包括所述虚拟交换节点的标识。所述虚拟交换节点的标识为区分不同交换节点设置的标识,不同的虚拟交换节点对应不同的标识,所述虚拟交换节点的标识的设置方式有许多种,本申请实施例并不限定,由于所述虚拟交换节点中的UPF网元发生变化,会导致所述虚拟交换节点成为另一个不同的虚拟交换节点,则可以用所述虚拟交换节点中的锚点UPF网元的标识作为所述虚拟交换节点的标识,或者也根据所述虚拟交换节点中的UPF网元的标识设置虚拟交换节点的标识;
作为一种可能的实施方式,在所述UPF网元可以预置标识,如通过第三代合作伙伴计划(3rd generation partnership project,3GPP)网管系统或所述CNC网元下发所述预置标识给UPF网元,不同的UPF网元预置不同的标识,所述UPF网元可以向所述SMF网元上报所述预置的标识,将所述预置的标识作为所述UPF网元所属的虚拟交换节点的标识;所述UPF网元上报所述UPF标识和所述预置的标识的时机,本申请实施例并不限定,所述UPF网元可以在上电时上报,也可以在向所述SMF网元上报所述UPF网元端口信息时,同时上报所述预置的标识,凡是可以使所述SMF网元获取所述虚拟交换节点的标识的方式均适用于本申请实施例。
在所述UPF网元中预置标识时,为了区分TSN中传统交换节点,所述预置的标识可以是所述虚拟交换节点特有的,也就是说,传统交换节点和虚拟交换节点的标识是不同的,从标识上能够容易区别交换节点是否为虚拟交换节点。所述CNC网元中可以保存有TSN的网络拓扑和所述网络拓扑中各个交换节点的标识,在需要确定所述网络拓扑是否存在虚拟交换节点时,可以通过各个交换节点的标识进行识别。
第二种、所述UE未注册。
如图8所示,为本申请实施例提供的一种通信方法,该方法包括:
步骤801:所述UE通过向所述AMF网元发送注册请求,发起注册流程,完成注册;在注册过程中,所述注册请求可以包括所述UE的端口信息,所述AMF网元在接收到所述注册请求后,保存所述UE的端口信息。
所述UE未注册时,会先进行注册,若所述UE为能够支持TSN业务的设备,在注册时,所述UE在所述注册请求中携带所述UE的端口信息。
步骤802:所述UE在注册后,为了可以进行数据传输,需要建立PDU会话,所述UE通过发送PDU会话建立请求发起会话建立流程。
在会话建立过程中,所述SMF网元可以通过如下两种方式接收所述UE的端口信息:
方式一:所述AMF网元在接收到来自所述UE的PDU会话建立请求后,将所述UE注册时保存的所述UE的端口信息发送给所述SMF网元,示例性的,所述AMF网元可以在创建会话管理上下文请求消息中携带所述端口信息发送给所述SMF网元。
所述AMF网元接收到所述UE的PDU会话建立请求后,会根据所述PDU会话建立请求中携带的所述PDU会话的DNN选择所述SMF网元,所述AMF网元上会预配置支持TSN业务的DNN集合,所述AMF网元可以通过所述PDU会话建立请求携带的所述DNN确定所述DNN是否支持TSN业务,在确定所述DNN支持TSN业务后,所述AMF网元需要在发送给SMF的创建会话管理上下文请求中携带所述端口信息,在这种情况下,所述预配置支持TSN的DNN集合保存在所述AMF网元本地,也可以保存在其他设备上,且所述AMF网元方便获取所述预配置支持TSN的DNN集合。
方式二:所述UE的PDU会话建立请求中携带所述UE的端口信息,所述AMF网元在接收到来自所述UE的PDU会话建立请求后,向所述SMF网元发送会话管理上下文创建请求,所述会话管理上下文创建请求中包括所述PDU会话建立请求,所述SMF网元从所述会话建立请求获取所述UE的端口信息。
也就是说,所述UE可以在所述注册请求中携带所述UE的端口信息,也可以在所述PDU会话建立请求中携带所述UE的端口信息;所述UE可以所述注册请求和所述PDU会话建立请求中任一种消息中携带所述UE的端口信息,也可以在发送这两种消息时均携带所述UE的端口信息,还可以携带在其他消息中,本申请实施例并不限定,凡是可以时所述SMF网元接收到所述UE的端口信息的方式均适用于本申请实施例。
需要说明的是,所述UE若确定建立PDU会话需要承载TSN流,如根据所述UE中的APP和DNN的对应关系确定需要建立PDU会话需要承载TSN流,则可以在所述PDU会话建立请求中携带所述UE的端口信息,若建立PDU会话不需要承载TSN流,则所述PDU会话建立请求中可以不携带所述UE的端口信息。
步骤803:在会话建立过程中,所述SMF网元获取到所述UE的端口信息后,可以向所述CNC网元发送所述UE的端口信息。
所述SMF网元可以通过所述AF网元向所述CNC网元发送所述UE的端口信息。
步骤804:同步骤701,具体可参见步骤701的相关描述,此处不再赘述。
步骤805:同步骤702,具体可参见步骤702的相关描述,此处不再赘述。
步骤806:同步骤703,具体可参见步骤703的相关描述,此处不再赘述。
步骤807:同步骤704,具体可参见步骤704的相关描述,此处不再赘述。
步骤808:所述SMF网元执行会话修改流程,区别于如图7所示的实施例,所述SMF网元不需要在会话修改流程中获取所述UE的端口信息。
步骤809:所述SMF网元在执行会话修改流程后,向所述PCF网元发送通知信息,所述通知信息用于通知所述PCF网元所述SMF网元已根据所述更新后的策略信息完成相应操作,且所述通知信息中还可以包括所述虚拟交换节点的信息。
在本申请实施例中,由于所述SMF网元在步骤803提前将所述UE的端口信息发送给所述CNC网元,步骤809中的所述虚拟交换节点的信息中可以不携带包括虚拟交换节点 的端口信息,可选的,所述SMF网元也可以不提前将所述UE的端口信息发送给所述CNC网元,也就是说不执行步骤803,而在步骤810中所述虚拟交换节点的信息中携带包括所述UE的端口信息。
步骤810:同步骤708,具体可参见步骤708的相关描述,此处不再赘述。
步骤811:同步骤709,具体可参见步骤709的相关描述,此处不再赘述。
步骤812:同步骤710,具体可参见步骤710的相关描述,此处不再赘述。
需要说明的是,所述SMF网元与所述AF网元之间也可以直接进行交互,在步骤806~807中,所述AF网元可以直接向所述SMF网元发送所述能力信息获取请求,所述SMF网元在接收到所述能力信息获取请求后,向所述PCF网元发送所述TSN流的信息,所述PCF网元在接收到所述TSN流的信息后,发起会话管理策略修改流程。
在步骤809中,所述通知消息中也可以不携带所述虚拟交换节点信息;所述SMF网元可以通过单独的信令向所述PCF网元发送所述虚拟交换节点信息。
下面结合具体应用场景,以源锚点UPF网元为第一UPF网元,目标锚点UPF网元为所述第二UPF网元为例,对本申请如图6所示的实施例进行一步介绍。
如图9所示,为本申请实施例提供的一种通信方法,该方法包括:
步骤901:所述SMF网元在确定需要切换锚点UPF网元后,选择目标锚点UPF网元(对应如图6所示的实施例中的第二UPF网元)。
步骤902:所述SMF网元向所述目标锚点UPF网元发送N4会话建立请求,还可以指示所述目标锚点UPF网元上报所述目标锚点的UPF网元的端口信息。
步骤903:所述目标锚点UPF网元在接收到N4会话建立请求后,向所述SMF网元发送N4会话建立确认消息,所述N4会话建立确认消息中可以携带下列信息的部分或全部:
虚拟交换节点的标识、所述UPF网元的端口标识。
虚拟交换节点的标识为所述目标锚点UPF网元对应的虚拟交换节点的标识。
需要说明的是,在本申请实施例中,当所述锚点UPF网元发生变化时,则表征所述虚拟交换节点发生更改,变成了一个新的虚拟交换节点;可以通过5G系统中的所述UPF网元来区分不同的虚拟交换节点,也就是说,可以为不同的所述UPF网元配置标识,将所述UPF网元的标识作为虚拟交换节点的标识,当所述锚点UPF网元发生变化时,将所述目标锚点UPF网元的标识作为新形成的虚拟交换节点标识,告知所述SMF网元。
步骤904:所述SMF网元向所述AF网元发送PDU会话锚点(PDU session anchor,PSA)更改通知消息,所述PSA更改通知消息用于通知锚点UPF网元发生改变,所述PSA更改通知消息中包括所述TSN流的标识以及所述目标锚点UPF网元对应的虚拟交换节点的信息,其中所述TSN流的标识是受锚点UPF网元变化影响的TSN流标识,也就是通过源锚点UPF网元与所述UE进行传输切换为通过所述目标锚点UPF网元与所述UE传输的TSN流的标识,所述目标锚点UPF网元对应的虚拟交换节点信息包括下列信息的部分或全部:虚拟交换节点标识、虚拟交换节点的端口信息、虚拟交换节点的时延信息,虚拟交换节点信息的描述可参见如图8所示的实施例的相关描述,此处不再赘述。
所述SMF网元可以通过NEF向所述AF网元发送所述PSA更改通知消息,也可以通过所述PCF网元向所述AF网元发送所述更改通知消息。
可选的,所述PSA更改通知消息还可以包括所述源锚点UPF网元对应的虚拟交换节点的信息。
步骤905:所述AF网元在接收到所述PSA更改通知消息后,可以直接转发所述更改通知消息,也可以将所述PSA更改通知消息转换为用于通知所述CNC网元虚拟交换节点(所述源锚点UPF网元对应的虚拟交换节点和/或所述目标锚点UPF网元对应的虚拟交换节点)的端口信息发生更新的第一通知消息,所述第一通知消息可以包括所述受锚点UPF网元切换影响的TSN流的标识,所述目标锚点UPF网元对应的虚拟交换节点的信息,可选的,所述第一通知消息还包括所述源锚点UPF网元对应的虚拟交换节点的信息。
针对步骤904~905,作为另一种可能实现方式,所述SMF网元还可以不向所述AF网元发送所述PSA更改通知消息,而是向所述AF网元发送所述第一通知消息,所述第一通知消息还用于通知所述TSN流的虚拟交换节点要从源锚点UPF网元对应的虚拟交换节点变为所述目标锚点UPF网元对应的虚拟交换节点,可选的,所述第一通知消息还包括所述源锚点UPF网元对应的虚拟交换节点的信息。
所述AF网元在接收到所述第一通知消息后,向所述CNC网元发送所述第一通知消息。
步骤906:所述CNC网元根据所述第一通知消息对所述TSN流的进行配置更新,也额就是对所述TSN流重新配置传输路径。
具体的,所述CNC网元为所述TSN流规划新的传输路径,并配置所述TSN流的传输路径上的交换节点(除所述目标锚点UPF网元对应的虚拟交换节点外的交换节点)。
步骤907:所述CNC网元在TSN流配置更新完成后,向所述AF网元发送通知应答消息,所述通知应答消息用于通知所述TSN流的配置更新已完成。
步骤908:所述AF网元向所述SMF网元转发所述通知应答消息。
步骤909:所述SMF网元在接收到所述通知应答消息后,将所述PDU会话的锚点UPF网元切换到所述目标锚点UPF网元。
具体的,所述SMF网元通过所述AMF网元向所述RAN发送PDU会话修改请求,将所述目标锚点UPF网元的N3隧道信息更新到所述RAN;所述RAN通过所述AMF网元向所述SMF网元发送PDU会话修改应答消息,所述PDU会话修改应答消息包括RAN隧道信息。
所述目标锚点UPF网元的N3隧道信息和所述接入网节点隧道信息用于RAN和所述目标锚点UPF网元之间建立N3隧道,建立了所述RAN到所述目标锚点UPF网元的会话连接,以便进行数据传输。
所述SMF网元在建立了所述RAN到所述目标锚点UPF网元的会话连接后,还可以释放所述源锚点UPF网元与所述SMF的会话连接之间的会话连接。
步骤910:所述SMF网元将所述PDU会话的锚点UPF网元切换到所述目标锚点UPF网元后,向所述CNC网元发送第二通知消息,所述第二通知消息用于通知已从所述源锚点UPF网元对应的虚拟交换节点切换到所述目标锚点UPF网元对应的虚拟交换节点。
步骤911:所述CNC网元接收到所述第二通知消息后,为所述TSN流重新配置源传输路径上的交换节点,如指示源传输路径上的交换节点释放为所述TSN流预留的资源,所述源传输路径为锚点UPF网元要发生切换前的所述TSN流的传输路径。
在如图5~6所示的实施例中,所述传输时延是在所述UE的QoS流建立流程中所述SMF确定的,如在PDU会话建立时建立QoS流的过程中,或PDU会话修改时建立QoS流的过程中,事实上,所述传输时延也可以不在所述QoS流建立流程中确定的,可以在所 述QoS流建立之前,由所述SMF网元确定,并告知所述CNC网元,下面对这种方式进行介绍:
如图10所示,为本申请实施例提供的一种通信方法,该方法包括:
步骤1001:第一核心网网元根据UE的服务质量标识确定对应的时延信息,所述时延信息用于表征所述UE与所述UPF网元之间的传输时延。
本申请实施例中并不限定所述第一核心网网元的类型,例如所述第一核心网网元可以是所述SMF网元,也可以是所述PCF网元,还可以其他核心网网元,凡是可以实现本申请实施例中所述第一核心网元网元所执行的方法均适用于本申请实施例。
所述UE在签约时,对签约的业务会有不同的服务质量要求,为了区别不同的服务质量要求,可以设置服务质量标识,通过所述服务质量标识可以确定所述签约的业务相应的服务质量要求,所述5G系统或其他通信系统在需要为所述UE提供业务时,则可以根据所述服务质量标识做相应的设置,以保证提供的业务满足服务质量要求。
其中,所述服务质量要求包括信息传输时延、带宽保证等,所以所述服务质量标识是可以表征所述UE对签约业务的传输时延的要求的。
本申请实施例并不限定所述服务质量标识的具体形式,在5G系统中,所述服务质量标识可以为QoS参数中的5QI,凡是可以体现出所述UE对应传输时延的要求的参数均适用于本申请实施例;在本申请实施例中,并不限定所述服务质量标识的个数,所述UE可以签约多个业务,则每个业务都可以对应一个服务质量标识。
所述第一核心网网元在根据所述服务质量标识确定对应的时延信息之前,需要先获取所述服务质量标识,所述第一核心网网元可以在本地保存有所述UE的服务质量标识,所述UE的服务质量标识为所述UE的签约的服务质量标识,也可以从其他网元获取所述UE的签约的服务质量标识。
若所述第一核心网网元为所述PCF网元,所述PCF网元则可以从所述一数据仓储(unified data repository,UDR)网元或所述UDM网元获取所述UE的签约的QoS参数,从所述UE的签约的QoS参数获取所述UE的服务质量标识。
若所述第一核心网网元为所述SMF网元,所述SMF网元可以从所述PCF网元获取所述UE的服务质量标识;所述SMF网元也可以从所述UE的会话签约信息中获取所述UE的签约的服务质量标识,即所述SMF网元可以从所述UDR网元或所述UDM网元获取所述UE的会话对应的签约的服务质量标识,针对某个类型的PDU会话,所述UE可以有特定的签约的服务质量标识。
由于所述服务质量标识可以表征所述UE对应签约业务的传输时延的要求,则所述第一核心网网元在获取所述服务质量标识后,则可以根据所述服务质量标识确定对应的时延信息。所述时延信息是对应的签约业务的传输时延。
步骤1002:所述第一核心网网元基于所述服务质量标识对应的TSN业务类型的对应关系,根据所述时延信息确定所述TSN业务类型对应时延信息。
TSN中的交换节点是通过TSN业务类型(traffic class)来调度和转发不同的TSN流的数据包的。TSN业务类型取值为0-7,TSN流对应的TSN业务类型的取值越低,交换节点对所述TSN流的调度和转发优先级越高。
3GPP系统可以通过TSN流的带宽、时延等需求确定TSN流对应的5QI,并根据5QI确定TSN流在3GPP系统内UE和所述UPF网元之间的传输时延。TSN也是通过TSN流 的带宽、时延等需求确定及其对应的TSN业务类型,TSN中的交换节点根据TSN业务类型处理TSN流的数据包,以使得TSN流的数据包在交换节点内部和交换节点之间经历不同的传输时延。因此可以采用预配置5QI和TSN业务类型的对应关系,来实现TSN和3GPP系统互通传输TSN流对QoS的保证。如表2所示,5QI和TSN业务类型可以是一对一的关系,也可以是一个5QI映射成多个TSN业务类型,还可以是多个5QI映射成一个TSN业务类型。
表2
Figure PCTCN2019119549-appb-000002
所述第一核心网网元在执行步骤1002之前,所述第一核心网网元可以先确定所述服务质量标识对应的TSN业务类型,所述第一核心网元可以根据预配置的服务质量标识与TSN业务类型的对应关系确定所述服务质量标识对应的TSN业务类型;所述预配置的服务质量标识与TSN业务类型的对应关系可以保存在本地,也可以保存在其他网元,所述第一核心网网元也可以从其他网元获取所述预配置的服务质量标识与TSN业务类型的对应关系,之后根据所述预配置的服务质量标识与TSN业务类型的对应关系确定所述服务质量标识对应的TSN业务类型。
所述第一核心网元还可以从其他网元获取所述服务质量标识对应的TSN业务类型,例如,所述预配置的服务质量标识与TSN业务类型的对应关系保存在第二核心网网元,所述第二核心网网元可以确定所述UE的服务质量标识,再基于所述预配置的服务质量标识与TSN业务类型确定所述服务质量标识对应的TSN业务类型,之后,所述第二核心网网元可以向所述第一核心网网元发送携带有所述服务质量标识对应的TSN业务类型的信息,所述第一核心网元网元在接收到所述携带有所述服务质量标识对应的TSN业务类型的信息后,确定所述服务质量标识对应的TSN业务类型。
若所述第一核心网网元为所述PCF网元,所述服务质量标识与TSN业务类型的对应关系可以是预先配置在所述PCF网元的,在所述PCF从所述UDR网元或所述UDM网元获取所述UE的服务质量标识后,可以根据所述预配置的所述服务质量标识与TSN业务类型确定所述UE的服务质量标识对应的TSN业务类型。
若所述第一核心网网元为所述SMF网元,所述SMF网元可以从所述PCF网元获取所述服务质量标识对应的TSN业务类型。
所述第一核心网网元在确定了终端设备的服务质量标识对应的时延信息、以及确定了所述服务质量标识对应的TSN业务类型后,可以基于所述服务质量标识对应的TSN业务类型,根据所述时延信息确定所述TSN业务类型对应时延信息。
所述第一核心网网元可以将所述服务质量标识对应的时延信息作为所述TSN业务类型对应时延信息,也可以对所述服务质量标识对应的时延信息进行调整,将调整后的所述 服务质量标识对应的时延信息作为所述TSN业务类型对应时延信息。
步骤1003:所述第一核心网网元向CNC网元发送第一消息,所述第一消息中携带所述TSN业务类型对应的时延信息。
所述第一核心网网元可以直接向所述CNC网元发送第一消息,也可以通过其他网元向所述CNC网元发送第一消息,本申请实施例并不限定所述第一核心网网元发送第一消息的方式,凡是可以使所述CNC网元获取所述TSN业务类型对应的时延信息的方式均适用于本申请实施例。
下面将如图10所示的实施例应用于具体场景中,以所述第一核心网网元为所述SMF网元,所述SMF网元发起会话策略建立流程为例对如图10所示的实施例进行说明,如图11所示,为本申请实施例提供的一种通信方法,该方法包括:
步骤1101:所述UE向所述SMF网元发送PDU会话建立请求,所述PDU会话建立请求,所述PDU会话修改请求中携带有所述UE的标识,PDU会话的标识。
步骤1102:所述SMF网元在接收到所述PDU会话建立请求后,根据所述UE标识从向所述UDM网元查询所述UE的与所述PDU会话相关的签约信息,所述签约信息中包括所述UE的一个或多个5QI。
其中,所述5QI是与所述PDU会话的QoS参数。
步骤1103:所述SMF网元向所述PCF网元发起会话策略建立请求或会话策略修改请求,所述会话策略建立请求用于请求所述PCF网元需要对所述PDU会话设置策略信息,所述会话策略修改请求用于请求所述PCF网元需要对所述PDU会话修改策略信息,其中,所述会话策略建立请求或会话策略修改请求中可以包括UE的标识、PDU会话标识。
步骤1104:所述PCF网元接收所述会话策略建立或修改请求后,向所述SMF网元发送会话策略建立应答或会话策略修改应答,若接收到所述会话策略建立请求,则会向所述SMF网元发送会话策略建立应答,若接收到所述会话策略修改请求,则会向所述SMF网元发送会话策略修改应答。
在所述会话策略建立或修改应答中携带5QI和TSN业务类型的对应关系,所述5QI和TSN业务类型对应关系可以是预配置在所述PCF网元上的。
步骤1105:所述SMF网元根据所述5QI和所述5QI和TSN业务类型的对应关系,确定所述PDU会话支持的TSN业务类型以及对应的PDB。
具体的,所述SMF网元根据所述5QI确定所述PDB,具体确定方式可参见本申请如图5所示的实施例,此处不再赘述。
所述SMF网元基于所述5QI和TSN业务类型的对应关系确定所述PDU会话支持的TSN业务类型。
所述SMF网元将确定的所述PDB作为所述TSN业务类型对应的PDB。
步骤1106:所述SMF网元向所述CNC网元发送所述TSN业务类型对应的PDB。
所述CNC在配置TSN流时,可以基于所述TSN流的TSN业务类型,以及所述TSN业务类型以及对应的PDB确定虚拟交换节点的时延信息。
另一种实现方式是,所述SMF网元上可以预配置有所述5QI和TSN业务类型的对应关系,可以省略步骤1103-1104。
需要说明的是,本申请提供的各个实施例可以独立执行,也可以结合执行,例如,如图5所示的实施例可以与如图6所示的实施例结合,也就是所述SMF网元先上报所述UE 的端口信息,之后,若所述PDU会话需要修改,则所述SMF网元再通知所述CNC网元对虚拟交换节点的端口信息进行更新;又例如,在如图5所示的实施例可以与如图10所示的实施例结合,也就是在所述SMF网元上报所述UE的端口信息之前,先上报所述时延信息,结合方式本申请实施例并不限定。
基于与方法实施例同一发明构思,本申请实施例还提供了一种通信装置,用于执行上述如图5、7、8所示的方法实施例中所述SMF网元执行的方法,相关特征可参见上述方法实施例,此处不再赘述,如图12所示,该装置包括接收单元1201和发送单元1202。
所述接收单元1201,用于获取终端设备的端口信息,其中,所述终端设备的端口信息包括所述终端设备的端口标识所述终端设备的端口与外部相邻节点之间的传输时延信息;
所述发送单元1202,用于向集中网络配置网元发送所述终端设备的端口信息。
所述接收单元1201可以通过如下两种方法在获取终端设备的端口信息:
第一种、所述接收单元1201接收来自所述终端设备的PDU会话建立请求,所述PDU会话建立请求中包括所述终端设备的端口信息。
第二种、所述接收单元1201接收来自所述终端设备的PDU会话修改应答,所述PDU会话修改应答中包括所述终端设备的端口信息。
作为一种可能的实施方式,所述通信装置还可以上报传输时延,具体的,所述通信装置还包括处理单元1203;所述处理单元1203可以在所述终端设备的QoS流建立流程中,确定所述QoS流对应的用户面与所述终端设备之间的传输时延;之后,所述发送单元1202再向所述集中网络配置网元发送所述传输时延。
所述处理单元1203在确定所述QoS流对应的用户面与所述终端设备之间的传输时延时,所述接收单元1201可以先从策略控制网元获取所述QoS流的PCC规则;之后所述处理单元1203根据所述QoS流的PCC规则确定所述传输时延。
示例性的,在所述处理单元1203根据所述QoS流的PCC规则确定所述传输时延时,所述处理单元1203先根据所述PCC规则中包括的5QI确定所述QoS流的PDB;之后再根据所述PDB确定所述传输时延。
可选的,在所述接收单元1201获取所述终端设备的端口信息之前,所述发送单元1202还可以向所述终端设备发送第一指示消息,所述第一指示消息用于指示所述终端设备确定所述终端设备的端口信息。
作为一种可能的实施方式,所述终端设备的端口信息还可以包括所述终端设备端口的外部拓扑信息。
基于与方法实施例同一发明构思,本申请实施例还提供了一种通信装置,用于执行上述如图5、7、8所示的方法实施例中所述终端设备执行的方法,相关特征可参见上述方法实施例,此处不再赘述,如图13所示,该装置包括处理单元1301和发送单元1302:
所述处理单元1301,用于确定自身支持TSN业务、需要创建TSN业务对应的分组数据单元PDU会话、当前创建的PDU会话需要承载TSN流或者已创建的PDU会话需要承载TSN流。
所述发送单元1302,用于向会话管理网元发送所述终端设备的端口信息,其中,所述终端设备的端口信息包括所述终端设备的端口标识以及所述终端设备的端口与外部相邻节点之间的传输时延信息。
所述发送单元1302在向会话管理网元发送所述终端设备的端口信息的方式有许多种,下面列举其中三种:
第一种、所述发送单元1302通过移动接入管理网元向所述会话管理网元发送PDU会话建立请求,所述PDU会话建立请求中包括所述终端设备的端口信息。
第二种、所述发送单元1302向移动接入管理网元发送携带有所述终端设备的端口信息的注册请求,以便于所述移动接入管理网元后续在接收到所述终端设备发送的PDU会话建立请求时将所述终端设备的端口信息发送给所述会话管理网元。
第三种、所述处理单元1301根据接收到的来自所述会话管理网元的PDU会话修改请求中的指示信息确定已创建的PDU会话需要承载TSN流,在这情况下,所述发送单元1302可以向所述会话管理发送PDU会话修改应答,所述PDU会话修改应答包括所述终端设备的端口信息。
所述处理单元1301确定当前创建TSN业务对应的PDU会话的方式有许多种,下面列举其中两种:
第一种、所述处理单元1301可以根据接收到的来自所述会话管理网元的PDU会话建立确认消息中的指示信息确定创建的PDU会话需要承载TSN流。
第二种、所述处理单元1301根据所述需要创建的PDU会话对应的DNN确定所述PDU会话需要承载TSN流。
可选的,所述通信装置还包括接收单元1303,所述接收单元1303可以接收来自所述会话管理网元的第一指示消息,所述第一指示消息用于指示所述终端设备确定所述终端设备的端口信息;之后,所述处理单元1301可以确定所述终端设备的端口信息。
作为一种可能的实施方式,所述终端设备的端口信息还包括所述终端设备端口的外部拓扑信息。
基于与方法实施例同一发明构思,本申请实施例还提供了一种通信装置,用于执行上述如图6、9所示的方法实施例中所述SMF网元执行的方法,相关特征可参见上述方法实施例,此处不再赘述,如图14所示,该装置包括处理单元1401和发送单元1402。
所述处理单元1401,用于确定终端设备的PDU会话的锚点用户面网元要从第一用户面网元切换为第二用户面网元;以及确定所述PDU会话是一个与TSN互通的会话;
所述发送单元1402,还用于在所述处理单元1401确定所述PDU会话是一个与TSN互通的会话的情况下,向集中网络配置网元发送第一通知消息,所述第一通知消息用于通知所述集中网络配置网元第一虚拟交换节点和/或第二虚拟交换节点的端口信息发生更新;其中,所述第一虚拟交换节点为所述第一用户面网元对应的虚拟交换节点,所述第二虚拟交换节点为所述第二用户面网元对应的虚拟交换节点。
作为一种可能的实施方式,所述处理单元1401还可以确定所述PDU会话承载了TSN流;在所述处理单元1401确定所述PDU会话承载了TSN流的情况下,所述第一通知消息还用于通知所述TSN流的虚拟交换节点要从第一虚拟交换节点变为第二虚拟交换节点。
可选的,所述处理单元1401还可以根据所述终端设备的端口信息更新所述第一虚拟交换节点的端口信息和所述第二虚拟交换节点的端口信息。
所述第一通知消息除了具有指示作用外,还可以携带一些端口信息,可以携带下列消息的部分或全部:
消息一、所述第二虚拟交换节点的标识和更新后的所述第二虚拟交换节点的端口信息。
消息二、所述第二虚拟交换节点的标识和所述第二虚拟交换节点用来传输所述TSN流的端口信息。
消息三、所述第一虚拟交换节点标识信息和所述会话管理更新后的所述第一虚拟交换节点的端口信息。
可选的,所述第一通知消息还可以包括所述TSN流的标识。
作为一种可能的实施方式,所述通信装置还包括接收单元1403,所述接收单元1403可以接收来自所述集中网络配置网元的通知应答消息,所述通知应答消息指示所述集中网络配置网元已完成对所述TSN流的配置更新。
所述处理单元1401在所述接收单元1403接收来自所述集中网络配置网元的通知应答消息之后,可以将所述PDU会话的锚点用户面网元从所述第一用户面网元切换为所述第二用户面网元。
作为一种可能的实施方式,所述发送单元1402在所述接收单元1403接收来自所述集中网络配置网元的通知应答消息之后,还可以向所述集中网络配置网元发送第二通知消息,所述第二通知消息用于通知集中网络配置所述TSN流的虚拟交换节点从第一虚拟交换节点变为第二虚拟交换节点。
基于与方法实施例同一发明构思,本申请实施例还提供了一种通信装置,用于执行上述如图6、9所示的方法实施例中所述CNC网元执行的方法,相关特征可参见上述方法实施例,此处不再赘述,如图15所示,该装置包括接收单元1501。
所述接收单元1501,用于接收来自会话管理网元的第一通知消息,所述第一通知消息用于通知第一虚拟交换节点和/或第二虚拟交换节点的端口信息发生更新。
可选的,所述通信装置还包括处理单元1502;若所述第一通知消息还用于通知TSN流的虚拟交换节点要从第一虚拟交换节点变为第二虚拟交换节点,所述处理单元1502可以根据所述第一通知消息对所述TSN流重新配置传输路径。
所述第一通知消息除了具有指示作用外,还可以携带一些端口信息,可以携带下列消息的部分或全部:
消息一、所述第二虚拟交换节点的标识和所述会话管理更新后的所述第二虚拟交换节点的端口信息。
消息二、所述第二虚拟交换节点的标识和所述第二虚拟交换节点用来传输所述TSN流的端口信息。
消息三、所述第一虚拟交换节点标识信息和所述会话管理更新后的所述第一虚拟交换节点的端口信息。
可选的,所述第一通知消息还可以包括所述TSN流的标识。
作为一种可能的实施方式,所述通信装置还包括发送单元1503,所述发送单元1503在所述处理单元1502对所述TSN流重新配置传输路径之后,还可以向所述会话管理网元发送通知应答消息,所述通知应答消息指示所述集中网络配置网元已完成所述TSN流的配置更新。
作为一种可能的实施方式,所述接收单元1501可以接收所述会话管理网元发送的第二通知消息,所述第二通知消息用于通知所述TSN流的虚拟交换节点从第一虚拟交换节点变为第二虚拟交换节点;之后,所述处理单元1502再释放所述TSN流的源传输路径的资源。
基于与方法实施例同一发明构思,本申请实施例还提供了一种通信装置,用于执行上述如图10、11所示的方法实施例中所述SMF网元或所述第一核心网网元执行的方法,相关特征可参见上述方法实施例,此处不再赘述,如图16所示,该装置包括处理单元1601以及发送单元1602。
所述处理单元1601,用于根据终端设备的服务质量标识确定对应的时延信息,所述时延信息用于表征终端设备与用户面网元之间的传输时延;以及基于所述服务质量标识对应的TSN业务类型,根据所述时延信息确定所述TSN业务类型对应时延信息。
所述发送单元1602,用于向集中网络配置网元发送第一消息,所述第一消息中携带所述TSN业务类型对应的时延信息。
作为一种可能的实施方式,所述处理单元1601根据终端设备的服务质量标识确定对应的时延信息之前,还可以根据所述UE的签约信息确定所述服务质量标识。
本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台终端设备(可以是个人计算机,手机,或者网络设备等)或处理器(processor)执行本申请各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请实施例中,所述基站和所述终端设备均可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一个简单的实施例中,本领域的技术人员可以想到所述会话管理网元、集中网络配置网元可采用图17所示的形式。
如图17所示的通信装置1700,包括至少一个处理器1701、存储器1702,可选的,还可以包括通信接口1703。
存储器1702可以是易失性存储器,例如随机存取存储器;存储器也可以是非易失性存储器,例如只读存储器,快闪存储器,硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)、或者存储器1702是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1702可以是上述存储器的组合。
本申请实施例中不限定上述处理器1701以及存储器1702之间的具体连接介质。本申请实施例在图中以存储器1702和处理器1701之间通过总线1704连接,总线1704在图中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线1704可以分为地址总线、数据总线、控制总线等。为便于表示,图17中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器1701可以具有数据收发功能,能够与其他设备进行通信,在如图17装置中,也可以设置独立的数据收发模块,例如通信接口1703,用于收发数据;处理器1701在与其他设备进行通信时,可以通过通信接口1703进行数据传输。
当所述会话管理网元采用图17所示的形式时,图17中的处理器1701可以通过调用存储器1702中存储的计算机执行指令,使得所述基站可以执行上述任一方法实施例中的所述基站执行的方法。
具体的,图12、图14中的发送单元、接收单元和处理单元的功能/实现过程均可以通过图17中的处理器1701调用存储器1702中存储的计算机执行指令来实现。或者,图12、图14中的处理单元的功能/实现过程可以通过图17中的处理器1701调用存储器1702中存储的计算机执行指令来实现,图12、图14的发送单元和接收单元的功能/实现过程可以通过图17中的通信接口1703来实现。
当所述集中网络配置网元采用图17所示的形式时,图17中的处理器1701可以通过调用存储器1702中存储的计算机执行指令,使得所述基站可以执行上述任一方法实施例中的所述基站执行的方法。
具体的,图15中的发送单元、接收单元和处理单元的功能/实现过程均可以通过图17中的处理器1701调用存储器1702中存储的计算机执行指令来实现。或者,图15中的处理单元的功能/实现过程可以通过图17中的处理器1701调用存储器1702中存储的计算机执行指令来实现,图15的发送单元和接收单元的功能/实现过程可以通过图17中的通信接口1703来实现。
当所述第一核心网网元采用图17所示的形式时,图17中的处理器1701可以通过调用存储器1702中存储的计算机执行指令,使得所述基站可以执行上述任一方法实施例中的所述基站执行的方法。
具体的,图16中的发送单元和处理单元的功能/实现过程均可以通过图17中的处理器1701调用存储器1702中存储的计算机执行指令来实现。或者,图16中的处理单元的功能/实现过程可以通过图17中的处理器1701调用存储器1702中存储的计算机执行指令来实现,图16的发送单元的功能/实现过程可以通过图17中的通信接口1703来实现。
在一个简单的实施例中,本领域的技术人员可以想到所述终端设备可采用图18所示的形式。
如图18所示的通信装置1800,包括至少一个处理器1801、存储器1802,可选的,还可以包括收发器1803。
存储器1802可以是易失性存储器,例如随机存取存储器;存储器也可以是非易失性存储器,例如只读存储器,快闪存储器,硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)、或者存储器1802是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1802可以是上述存储器的组合。
本申请实施例中不限定上述处理器1801以及存储器1802之间的具体连接介质。本申请实施例在图中以存储器1802和处理器1801之间通过总线1804连接,总线1804在图中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线1804可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器1801可以具有数据收发功能,能够与其他设备进行通信,在如图18装置中,也可以设置独立的数据收发模块,例如收发器1803,用于收发数据;处理器1801在与其他设备进行通信时,可以通过收发器1803进行数据传输。
当终端设备采用图18所示的形式时,图18中的处理器1801可以通过调用存储器1802中存储的计算机执行指令,使得所述终端设备可以执行上述任一方法实施例中的终端设备执行的方法。
具体的,图13中的发送单元、接收单元和处理单元的功能/实现过程均可以通过图18中的处理器1801调用存储器1802中存储的计算机执行指令来实现。或者,图13中的处理单元的功能/实现过程可以通过图18中的处理器1801调用存储器1802中存储的计算机执行指令来实现,图13中的发送单元和接收单元的功能/实现过程可以通过图18中的收发器1803来实现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (70)

  1. 一种通信方法,其特征在于,所述方法包括:
    会话管理网元获取终端设备的端口信息,其中,所述终端设备的端口信息包括所述终端设备的端口标识和所述终端设备与外部相邻节点之间的传输时延信息;
    所述会话管理网元向集中网络配置网元发送所述终端设备的端口信息。
  2. 如权利要求1所述的方法,其特征在于,所述会话管理网元获取终端设备的端口信息,具体包括:
    所述会话管理网元接收来自所述终端设备的分组数据单元PDU会话建立请求,所述PDU会话建立请求中包括所述终端设备的端口信息;或者
    所述会话管理网元接收来自所述终端设备的PDU会话修改应答,所述PDU会话修改应答中包括所述终端设备的端口信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    在所述终端设备的服务质量QoS流建立流程中,所述会话管理网元确定所述QoS流对应的用户面网元与所述终端设备之间的传输时延;
    所述会话管理网元向所述集中网络配置网元发送所述传输时延。
  4. 如权利要求3所述的方法,其特征在于,所述会话管理网元确定所述QoS流对应的用户面网元与所述终端设备之间的传输时延,具体包括:
    所述会话管理网元从策略控制网元获取所述QoS流的策略和计费控制PCC规则;
    所述会话管理网元根据所述QoS流的PCC规则确定所述传输时延。
  5. 如权利要求4所述的方法,其特征在于,所述会话管理网元根据所述QoS流的PCC规则确定所述传输时延,具体包括:
    所述会话管理网元根据所述PCC规则中包括的第五代移动通信服务质量标识5QI确定所述QoS流的包时延预算PDB;
    根据所述PDB确定所述传输时延。
  6. 如权利要求1-5任一所述的方法,其特征在于,在所述会话管理网元获取终端设备的端口信息之前,还包括:
    所述会话管理网元向所述终端设备发送第一指示消息,所述第一指示消息用于指示所述终端设备确定所述终端设备的端口信息。
  7. 如权利要求1-5任一所述的方法,其特征在于,所述终端设备的端口信息还包括所述终端设备端口的外部拓扑信息。
  8. 一种通信方法,其特征在于,所述方法包括:
    终端设备确定自身支持时延敏感网络TSN业务、需要创建TSN业务对应的分组数据单元PDU会话、当前创建的PDU会话需要承载TSN流或者已创建的PDU会话需要承载TSN流;
    所述终端设备向会话管理网元发送所述终端设备的端口信息,其中,所述终端设备的端口信息包括所述终端设备的端口标识以及所述终端设备的端口与外部相邻节点之间的传输时延信息。
  9. 如权利要求8所述的方法,其特征在于,所述终端设备向会话管理网元发送所述终端设备的端口信息,具体包括:
    所述终端设备通过移动接入管理网元向所述会话管理网元发送PDU会话建立请求,所述PDU会话建立请求中包括所述终端设备的端口信息。
  10. 如权利要求8所述的方法,其特征在于,所述终端设备向会话管理网元发送所述终端设备的端口信息,具体包括:
    所述终端设备向移动接入管理网元发送携带有所述终端设备的端口信息的注册请求,以便于所述移动接入管理网元后续在接收到所述终端设备发送的PDU会话建立请求时将所述终端设备的端口信息发送给所述会话管理网元。
  11. 如权利要求8~10任一所述的方法,其特征在于,所述终端设备确定已创建的PDU会话需要承载TSN流,包括:
    所述终端设备根据接收到的来自所述会话管理网元的PDU会话修改请求中的指示信息确定已创建的PDU会话需要承载TSN流;
    所述终端设备向所述会话管理网元发送所述终端设备的端口信息,具体包括:
    所述终端设备向所述会话管理发送PDU会话修改应答,所述PDU会话修改应答包括所述终端设备的端口信息。
  12. 如权利要求8~10任一所述的方法,其特征在于,所述终端设备确定当前创建TSN业务对应的PDU会话,包括:
    所述终端设备根据接收到的来自所述会话管理网元的PDU会话建立确认消息中的指示信息确定创建的PDU会话需要承载TSN流。
  13. 如权利要求8~10任一所述的方法,其特征在于,所述终端设备确定需要创建TSN业务对应的PDU会话,包括:
    所述终端设备根据所述需要创建的PDU会话的数据网络名称DNN确定所述PDU会话需要承载TSN流。
  14. 如权利要求8~13任一所述的方法,其特征在于,在所述终端设备向会话管理网元发送所述终端设备的端口信息之前,还包括:
    所述终端设备接收来自所述会话管理网元的第一指示消息,所述第一指示消息用于指示所述终端设备确定所述终端设备的端口信息;
    所述终端设备确定所述终端设备的端口信息。
  15. 如权利要求8~13任一所述的方法,其特征在于,所述终端设备的端口信息还包括所述终端设备端口的外部拓扑信息。
  16. 一种通信方法,其特征在于,所述方法包括:
    会话管理网元确定终端设备的PDU会话的锚点用户面网元从第一用户面网元切换为第二用户面网元;
    若所述会话管理网元确定所述PDU会话与时延敏感网络TSN互通,所述会话管理网元向集中网络配置网元发送第一通知消息,所述第一通知消息用于通知所述集中网络配置网元第一虚拟交换节点和/或第二虚拟交换节点的端口信息发生更新;其中,所述第一虚拟交换节点为所述第一用户面网元对应的虚拟交换节点,所述第二虚拟交换节点为所述第二用户面网元对应的虚拟交换节点。
  17. 如权利要求16所述的方法,其特征在于,若所述会话管理网元确定所述PDU会话承载了TSN流,所述第一通知消息还用于通知所述TSN流的虚拟交换节点从所述第一虚拟交换节点变为所述第二虚拟交换节点。
  18. 如权利要求16或17所述的方法,其特征在于,所述会话管理网元向所述集中网络配置网元发送第一通知消息之前,还包括:
    所述会话管理网元根据所述终端设备的端口信息更新所述第一虚拟交换节点的端口信息和所述第二虚拟交换节点的端口信息。
  19. 如权利要求16~18任一所述的方法,其特征在于,所述第一通知消息包括下列的部分或全部:
    所述第二虚拟交换节点的标识、更新后的所述第二虚拟交换节点的端口信息、所述第二虚拟交换节点用来传输所述TSN流的端口信息、所述第一虚拟交换节点的标识、所述会话管理更新后的所述第一虚拟交换节点的端口信息、所述TSN流的标识。
  20. 如权利要求16~19任一所述的方法,其特征在于,所述会话管理网元向集中网络配置网元发送第一通知消息之后,还包括:
    所述会话管理网元接收来自所述集中网络配置网元的通知应答消息,所述通知应答消息指示所述集中网络配置网元已完成对所述TSN流的配置更新。
  21. 如权利要求20所述的方法,其特征在于,所述会话管理网元接收来自所述集中网络配置网元的通知应答消息之后,还包括:
    所述会话管理网元将所述PDU会话的锚点用户面网元从所述第一用户面网元切换为所述第二用户面网元,以建立接入网节点到所述第二用户面网元的连接。
  22. 如权利要求20或21所述的方法,其特征在于,所述会话管理网元接收来自所述集中网络配置网元的通知应答消息之后,还包括:
    所述会话管理网元向所述集中网络配置网元发送第二通知消息,所述第二通知消息用于通知集中网络配置所述TSN流的虚拟交换节点从第一虚拟交换节点变为第二虚拟交换节点。
  23. 一种通信方法,其特征在于,所述方法包括:
    集中网络配置网元接收来自会话管理网元的第一通知消息,所述第一通知消息用于通知第一虚拟交换节点和/或第二虚拟交换节点的端口信息发生更新。
  24. 如权利要求23所述的方法,其特征在于,所述第一通知消息还用于通知TSN流的虚拟交换节点要从第一虚拟交换节点变为第二虚拟交换节点,
    所述集中网络配置网元还根据所述第一通知消息对所述TSN流重新配置传输路径。
  25. 如权利要求23或24所述的方法,其特征在于,所述第一通知消息包括下列的部分或全部:
    所述第二虚拟交换节点的标识、更新后的所述第二虚拟交换节点的端口信息、所述第二虚拟交换节点用来传输所述TSN流的端口信息、所述第一虚拟交换节点的标识、所述会话管理更新后的所述第一虚拟交换节点的端口信息、所述TSN流的标识。
  26. 如权利要求23~25任一所述的方法,其特征在于,所述集中网络配置网元更新所述TSN流的配置之后,还包括:
    所述集中网络配置网元向所述会话管理网元发送通知应答消息,所述通知应答消息指示所述集中网络配置网元已完成所述TSN流的配置更新。
  27. 如权利要求23~26任一所述的方法,其特征在于,所述方法还包括:
    所述集中网络配置网元接收来自所述会话管理网元的第二通知消息,所述第二通知消息用于通知所述TSN流的虚拟交换节点从第一虚拟交换节点变为第二虚拟交换节点;
    所述集中网络配置网元释放所述TSN流的源传输路径的资源。
  28. 一种通信方法,其特征在于,所述方法包括:
    根据终端设备的服务质量标识确定对应的时延信息,所述时延信息用于表征终端设备与用户面网元之间的传输时延;
    基于所述服务质量标识对应的时延敏感网络TSN业务类型,根据所述时延信息确定所述TSN业务类型对应的时延信息;
    向集中网络配置网元发送第一消息,所述第一消息中携带所述TSN业务类型对应的时延信息。
  29. 如权利要求28所述的方法,其特征在于,所述根据终端设备的服务质量标识确定对应的时延信息之前,还包括:
    根据所述终端设备的签约信息确定所述服务质量标识。
  30. 一种通信装置,其特征在于,所述通信装置包括接收单元和发送单元;
    所述接收单元,用于获取终端设备的端口信息,其中,所述终端设备的端口信息包括所述终端设备的端口标识和所述终端设备的端口与外部相邻节点之间的传输时延信息;
    所述发送单元,用于向集中网络配置网元发送所述终端设备的端口信息。
  31. 如权利要求30所述的通信装置,其特征在于,所述接收单元在获取终端设备的端口信息,具体用于:
    接收来自所述终端设备的分组数据单元PDU会话建立请求,所述PDU会话建立请求中包括所述终端设备的端口信息;或者
    接收来自所述终端设备的PDU会话修改应答,所述PDU会话修改应答中包括所述终端设备的端口信息。
  32. 如权利要求30或31所述的通信装置,其特征在于,所述通信装置还包括处理单元;
    所述处理单元,用于在所述终端设备的服务质量QoS流建立流程中,确定所述QoS流对应的用户面与所述终端设备之间的传输时延;
    所述发送单元,还用于向所述集中网络配置网元发送所述传输时延。
  33. 如权利要求32所述的通信装置,其特征在于,所述处理单元确定所述QoS流对应的用户面与所述终端设备之间的传输时延时,
    所述接收单元,还用于从策略控制网元获取所述QoS流的策略和计费控制PCC规则;
    所述处理单元,用于根据所述QoS流的PCC规则确定所述传输时延。
  34. 如权利要求33所述的通信装置,其特征在于,所述处理单元根据所述QoS流的PCC规则确定所述传输时延,具体用于:
    根据所述PCC规则中包括的第五代移动通信服务质量标识5QI确定所述QoS流的包时延预算PDB;
    根据所述PDB确定所述传输时延。
  35. 如权利要求30~34任一所述的通信装置,其特征在于,在所述接收单元获取终端设备的端口信息之前,所述发送单元,还用于向所述终端设备发送第一指示消息,所述第一指示消息用于指示所述终端设备确定所述终端设备的端口信息。
  36. 如权利要求30~35任一所述的通信装置,其特征在于,所述终端设备的端口信息还包括所述终端设备端口的外部拓扑信息。
  37. 一种通信装置,其特征在于,所述通信装置包括处理单元和发送单元;
    所述处理单元,用于确定自身支持时延敏感网络TSN业务、需要创建TSN业务对应的分组数据单元PDU会话、当前创建的PDU会话需要承载TSN流或者已创建的PDU会话需要承载TSN流;
    所述发送单元,用于向会话管理网元发送所述终端设备的端口信息,其中,所述终端设备的端口信息包括所述终端设备的端口标识以及所述终端设备的端口与外部相邻节点之间的传输时延信息。
  38. 如权利要求37所述的通信装置,其特征在于,所述发送单元在向会话管理网元发送所述终端设备的端口信息,具体用于:
    通过移动接入管理网元向所述会话管理网元发送PDU会话建立请求,所述PDU会话建立请求中包括所述终端设备的端口信息。
  39. 如权利要求37所述的通信装置,其特征在于,所述发送单元向会话管理网元发送所述终端设备的端口信息,具体用于:
    向移动接入管理网元发送携带有所述终端设备的端口信息的注册请求,以便于所述移动接入管理网元在后续接收到所述终端设备发送的PDU会话建立请求时将所述终端设备的端口信息发送给所述会话管理网元。
  40. 如权利要求37~39任一所述的通信装置,其特征在于,所述处理单元在确定已创建的PDU会话需要承载TSN流,具体用于:
    根据接收到的来自所述会话管理网元的PDU会话修改请求中的指示信息确定已创建的PDU会话需要承载TSN流;
    所述发送单元向所述会话管理网元发送所述终端设备的端口信息,具体用于:
    向所述会话管理发送PDU会话修改应答,所述PDU会话修改应答包括所述终端设备的端口信息。
  41. 如权利要求37~39任一所述的通信装置,其特征在于,所述处理单元确定当前创建TSN业务对应的PDU会话,具体用于:
    根据接收到的来自所述会话管理网元的PDU会话建立确认消息中的指示信息确定创建的PDU会话需要承载TSN流。
  42. 如权利要求37~39任一所述的通信装置,其特征在于,所述处理单元确定需要创建TSN业务对应的PDU会话,具体用于:
    根据所述需要创建的PDU会话的数据网络名称DNN确定所述PDU会话需要承载TSN流。
  43. 如权利要求37~42任一所述的通信装置,其特征在于,所述通信装置还包括接收单元,所述接收单元,用于接收来自所述会话管理网元的第一指示消息,所述第一指示消息用于指示所述终端设备确定所述终端设备的端口信息;
    所述处理单元,还用于确定所述终端设备的端口信息。
  44. 如权利要求37~42任一所述的通信装置,其特征在于,所述终端设备的端口信息还包括所述终端设备端口的外部拓扑信息。
  45. 一种通信装置,其特征在于,所述通信装置包括处理单元和发送单元;
    所述处理单元,用于确定终端设备的PDU会话的锚点用户面网元要从第一用户面网元切换为第二用户面网元;以及确定所述PDU会话与TSN互通;
    所述发送单元,还用于在所述处理单元确定所述PDU会话与TSN互通的情况下,向集中网络配置网元发送第一通知消息,所述第一通知消息用于通知所述集中网络配置网元第一虚拟交换节点和/或第二虚拟交换节点的端口信息发生更新;其中,所述第一虚拟交换节点为所述第一用户面网元对应的虚拟交换节点,所述第二虚拟交换节点为所述第二用户面网元对应的虚拟交换节点。
  46. 如权利要求45所述的通信装置,其特征在于,所述处理单元还用于确定所述PDU会话承载了TSN流;在所述处理单元确定所述PDU会话承载了TSN流的情况下,所述第一通知消息还用于通知所述TSN流的虚拟交换节点要从第一虚拟交换节点变为第二虚拟交换节点。
  47. 如权利要求45或46所述的通信装置,其特征在于,所述处理单元在所述发送单元向所述集中网络配置网元发送第一通知消息之前,还用于:
    根据所述终端设备的端口信息更新所述第一虚拟交换节点的端口信息和所述第二虚拟交换节点的端口信息。
  48. 如权利要求45~47任一所述的通信装置,其特征在于,所述第一通知消息包括下列的部分或全部:
    所述第二虚拟交换节点的标识、更新后的所述第二虚拟交换节点的端口信息、所述第二虚拟交换节点用来传输所述TSN流的端口信息、所述第一虚拟交换节点的标识、所述会话管理更新后的所述第一虚拟交换节点的端口信息、所述TSN流的标识。
  49. 如权利要求45~48任一所述的通信装置,其特征在于,所述通信装置还包括接收单元,所述接收单元,用于接收来自所述集中网络配置网元的通知应答消息,所述通知应答消息指示所述集中网络配置网元已完成对所述TSN流的配置更新。
  50. 如权利要求49所述的通信装置,其特征在于,所述处理单元在所述接收单元接收来自所述集中网络配置网元的通知应答消息之后,还包括:
    将所述PDU会话的锚点用户面网元从所述第一用户面网元切换为所述第二用户面网元。
  51. 如权利要求49或50所述的通信装置,其特征在于,所述发送单元在所述接收单元接收来自所述集中网络配置网元的通知应答消息之后,还用于向所述集中网络配置网元发送第二通知消息,所述第二通知消息用于通知集中网络配置所述TSN流的虚拟交换节点从第一虚拟交换节点变为第二虚拟交换节点。
  52. 一种通信装置,其特征在于,所述通信装置包括接收单元;
    所述接收单元,用于接收来自会话管理网元的第一通知消息,所述第一通知消息用于通知第一虚拟交换节点和/或第二虚拟交换节点的端口信息发生更新。
  53. 如权利要求52所述的通信装置,其特征在于,所述通信装置还包括处理单元;若所述第一通知消息还用于通知TSN流的虚拟交换节点要从第一虚拟交换节点变为第二虚拟交换节点,所述处理单元还用于根据所述第一通知消息对所述TSN流重新配置传输路径。
  54. 如权利要求52或53所述的通信装置,其特征在于,所述第一通知消息包括下列的部分或全部:
    所述第二虚拟交换节点的标识、更新后的所述第二虚拟交换节点的端口信息、所述第二虚拟交换节点用来传输所述TSN流的端口信息、所述第一虚拟交换节点的标识、所述会 话管理更新后的所述第一虚拟交换节点的端口信息、所述TSN流的标识。
  55. 如权利要求52~54任一所述的通信装置,其特征在于,所述通信装置还包括发送单元,所述发送单元在所述处理单元对所述TSN流重新配置传输路径之后,还用于向所述会话管理网元发送通知应答消息,所述通知应答消息指示所述集中网络配置网元已完成所述TSN流的配置更新。
  56. 如权利要求52~55任一所述的通信装置,其特征在于,
    所述接收单元还用于接收所述会话管理网元发送的第二通知消息,所述第二通知消息用于通知所述TSN流的虚拟交换节点从第一虚拟交换节点变为第二虚拟交换节点;
    所述处理单元还用于释放所述TSN流的源传输路径的资源。
  57. 一种通信装置,其特征在于,所述通信装置包括处理单元以及发送单元;
    所述处理单元,用于根据终端设备的服务质量标识确定对应的时延信息,所述时延信息用于表征终端设备与用户面网元之间的传输时延;以及基于所述服务质量标识对应的TSN业务类型,根据所述时延信息确定所述TSN业务类型对应时延信息;
    所述发送单元,用于向集中网络配置网元发送第一消息,所述第一消息中携带所述TSN业务类型对应的时延信息。
  58. 如权利要求57所述的通信装置,其特征在于,
    所述处理单元根据终端设备的服务质量标识确定对应的时延信息之前,还用于根据所述UE的签约信息确定所述服务质量标识。
  59. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器;
    所述存储器用于存储计算机执行指令,当所述通信装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述通信装置执行如权利要求1-7任一所述的方法。
  60. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器;
    所述存储器用于存储计算机执行指令,当所述通信装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述通信装置执行如权利要求8-15任一所述的方法。
  61. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器;
    所述存储器用于存储计算机执行指令,当所述通信装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述通信装置执行如权利要求16-22任一所述的方法。
  62. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器;
    所述存储器用于存储计算机执行指令,当所述通信装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述通信装置执行如权利要求23-27任一所述的方法。
  63. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器;
    所述存储器用于存储计算机执行指令,当所述通信装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述通信装置执行如权利要求28-29任一所述的方法。
  64. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1至7中任一项所述的方法。
  65. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求8至15中任一项所述的方法。
  66. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求16至22中任一项所述的方法。
  67. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求23至27中任一项所述的方法。
  68. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求28至29中任一项所述的方法。
  69. 一种计算机芯片,其特征在于,所述芯片与存储器相连,所述芯片用于读取并执行所述存储器中存储的软件程序,执行如权利要求1到29任一项所述的方法。
  70. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1到29任一项所述的方法。
PCT/CN2019/119549 2018-11-19 2019-11-19 一种通信方法及装置 WO2020103842A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3117732A CA3117732A1 (en) 2018-11-19 2019-11-19 Communications method and apparatus
EP19887497.6A EP3860287A4 (en) 2018-11-19 2019-11-19 COMMUNICATION PROCESS AND APPARATUS
AU2019382463A AU2019382463C1 (en) 2018-11-19 2019-11-19 Communications method and apparatus
US17/323,638 US20210274585A1 (en) 2018-11-19 2021-05-18 Communications method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811377833.4 2018-11-19
CN201811377833.4A CN111200848B (zh) 2018-11-19 2018-11-19 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/323,638 Continuation US20210274585A1 (en) 2018-11-19 2021-05-18 Communications method and apparatus

Publications (1)

Publication Number Publication Date
WO2020103842A1 true WO2020103842A1 (zh) 2020-05-28

Family

ID=70746025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119549 WO2020103842A1 (zh) 2018-11-19 2019-11-19 一种通信方法及装置

Country Status (6)

Country Link
US (1) US20210274585A1 (zh)
EP (1) EP3860287A4 (zh)
CN (1) CN111200848B (zh)
AU (1) AU2019382463C1 (zh)
CA (1) CA3117732A1 (zh)
WO (1) WO2020103842A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022067515A1 (en) * 2020-09-29 2022-04-07 Zte Corporation Port state handling in wireless communications

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113473500A (zh) * 2018-10-08 2021-10-01 华为技术有限公司 时延敏感网络通信方法及其装置
KR20210108368A (ko) * 2018-12-20 2021-09-02 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 리소스 스케줄링 방법, 단말기 디바이스 및 네트워크 디바이스
CN115988579A (zh) * 2019-01-10 2023-04-18 华为技术有限公司 实现业务连续性的方法、装置及系统
US11178592B2 (en) * 2019-02-15 2021-11-16 Ofinno, Llc Device configuration for time sensitive network bridge
CN111818671B (zh) * 2019-07-05 2022-02-01 维沃移动通信有限公司 支持端口控制的方法及设备
CN111885650A (zh) * 2020-07-01 2020-11-03 中国联合网络通信集团有限公司 一种通信方法及网络管理设备
US20230300666A1 (en) * 2020-07-24 2023-09-21 Nokia Technologies Oy Exposure of communications system connectivity and data network connectivity topology
CN114430930A (zh) * 2020-08-14 2022-05-03 北京小米移动软件有限公司 信息传输方法、装置及通信设备
CN114126050A (zh) * 2020-08-27 2022-03-01 华为技术有限公司 下行传输的方法和通信装置
EP3962004A1 (en) * 2020-08-27 2022-03-02 ABB Schweiz AG System and method for enabling tsn-stream configuration
US11895528B2 (en) * 2020-09-23 2024-02-06 Electronics And Telecommunications Research Institute Method of creating QoS flow for time synchronization protocol in wireless communication network
CN112437404B (zh) * 2020-09-29 2022-05-17 海能达通信股份有限公司 实现端到端的数据传输的方法、单元及网关
CN114501528B (zh) * 2020-10-23 2024-03-26 大唐移动通信设备有限公司 时延抖动同步方法、装置及存储介质
CN112543473B (zh) * 2020-12-29 2022-09-06 中国移动通信集团江苏有限公司 基于网元仿真的测试方法、装置、设备及计算机存储介质
CN113259994B (zh) * 2021-04-20 2023-08-01 深圳震有科技股份有限公司 5g虚拟网元控制网卡收发数据包方法、设备及存储介质
CN115250466A (zh) * 2021-04-26 2022-10-28 中国移动通信有限公司研究院 用户数据容灾方法、装置、网元设备及存储介质
CN115484161A (zh) 2021-05-28 2022-12-16 南宁富联富桂精密工业有限公司 Tsn网络配置方法、装置及计算机可读存储介质
WO2023039727A1 (zh) * 2021-09-14 2023-03-23 Oppo广东移动通信有限公司 信息传输的方法、装置、设备及存储介质
CN113810968B (zh) * 2021-09-29 2023-05-26 新华三技术有限公司 一种用户面网元upf切换方法、装置及设备
CN115988473A (zh) * 2021-10-15 2023-04-18 华为技术有限公司 一种通信方法、通信装置及通信系统
EP4175255A1 (en) * 2021-11-02 2023-05-03 Koninklijke KPN N.V. Gateway device, system and method for providing a forwarding policy
CN114222322A (zh) * 2021-12-31 2022-03-22 展讯通信(上海)有限公司 网络通信方法、装置、设备及存储介质
WO2024010267A1 (ko) * 2022-07-07 2024-01-11 인텔렉추얼디스커버리 주식회사 산업용 트래픽을 위한 pdu 세션 수정 절차
CN117528561A (zh) * 2022-07-29 2024-02-06 华为技术有限公司 通信方法及装置
KR20240020936A (ko) * 2022-08-09 2024-02-16 삼성전자주식회사 무선 통신 시스템에서 확정형 네트워킹을 지원하는 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559832A (zh) * 2015-09-24 2017-04-05 中国移动通信集团公司 一种数据传输方法及控制管理器
US20180184438A1 (en) * 2016-12-28 2018-06-28 Intel Corporation Persistent scheduling and forwarding while receiving in wireless time sensitive networks
CN108541031A (zh) * 2017-03-03 2018-09-14 华为技术有限公司 业务切换方法、装置及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0319360D0 (en) * 2003-08-18 2003-09-17 Nokia Corp Setting up communication sessions
US9391845B2 (en) * 2014-09-24 2016-07-12 Intel Corporation System, method and apparatus for improving the performance of collective operations in high performance computing
CN106713141B (zh) * 2015-11-18 2020-04-28 华为技术有限公司 用于获得目标传输路径的方法和网络节点
CN108353314B (zh) * 2015-11-24 2021-11-09 瑞典爱立信有限公司 切换用于通过提供回程和前传两者(xhaul)连接性的传输网络的传输的至少两个类型的数据信号
US20180160424A1 (en) * 2016-12-01 2018-06-07 Intel Corporation Methods to enable time sensitive applications in secondary channels in a mmwave ieee 802.11 wlan
CN108156023B (zh) * 2017-12-11 2021-01-05 西安电子科技大学 一种基于冗余机制的时间敏感性网络分析系统及方法
US20200259896A1 (en) * 2019-02-13 2020-08-13 Telefonaktiebolaget Lm Ericsson (Publ) Industrial Automation with 5G and Beyond
US20230143575A1 (en) * 2021-11-29 2023-05-11 Intel Corporation Enhancements to wi-fi devices for enabling cyclic time-sensitive applications with very short cycle times

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559832A (zh) * 2015-09-24 2017-04-05 中国移动通信集团公司 一种数据传输方法及控制管理器
US20180184438A1 (en) * 2016-12-28 2018-06-28 Intel Corporation Persistent scheduling and forwarding while receiving in wireless time sensitive networks
CN108541031A (zh) * 2017-03-03 2018-09-14 华为技术有限公司 业务切换方法、装置及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on 5GS Enhanced support of Vertical and LAN Services (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 23.734, no. V0.2.0, 30 September 2018 (2018-09-30), pages 1 - 39, XP051486986 *
See also references of EP3860287A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022067515A1 (en) * 2020-09-29 2022-04-07 Zte Corporation Port state handling in wireless communications

Also Published As

Publication number Publication date
AU2019382463C1 (en) 2023-08-03
EP3860287A1 (en) 2021-08-04
AU2019382463A1 (en) 2021-06-03
CN111200848B (zh) 2022-03-25
CN111200848A (zh) 2020-05-26
AU2019382463B2 (en) 2023-01-19
EP3860287A4 (en) 2021-12-08
CA3117732A1 (en) 2020-05-28
US20210274585A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2020103842A1 (zh) 一种通信方法及装置
CN109151915B (zh) 用于数据分组递送的方法、用户设备和基站
US11627628B2 (en) Packet transmission method, apparatus, and system
US11956157B2 (en) Activation of PDU session and QOS flows in 3GPP-based ethernet bridges
US20220256393A1 (en) TSN AND 5GS QoS MAPPING - A USER PLANE BASED METHOD
WO2020221266A1 (zh) 一种通信方法及装置
US20220174575A1 (en) Data transmission method, terminal device, and network device
WO2020001562A1 (zh) 一种通信方法及装置
CN112636884B (zh) 一种消息传输方法和装置
WO2020147543A1 (zh) 一种pdu会话激活方法、寻呼方法及其装置
US20230029292A1 (en) Data transmission method and apparatus
CN113632439B (zh) 支持虚拟以太网网桥管理的蜂窝通信系统
US11882033B2 (en) Filtering ethernet device source addresses for loop avoidance
WO2021174377A1 (zh) 切换方法和通信装置
WO2022135336A1 (zh) QoS分割和携带方法、对象侧QoS确定方法及UE
WO2021089017A1 (zh) 一种通信方法、装置及系统
WO2023061207A1 (zh) 一种通信方法、通信装置及通信系统
US20240080716A1 (en) Wireless communication method, communication apparatus, and communication system
WO2021147105A1 (zh) 通信方法及装置
WO2021168773A1 (zh) 通信方法和通信装置
WO2021081915A1 (zh) 通信方法、装置及系统
WO2019214105A1 (zh) 一种绑定数据流的方法及装置、计算机存储介质
CN117377025A (zh) 由用户设备执行的方法及用户设备
WO2019001381A1 (zh) 会话管理的方法、装置、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3117732

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019887497

Country of ref document: EP

Effective date: 20210429

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019382463

Country of ref document: AU

Date of ref document: 20191119

Kind code of ref document: A