WO2020156309A1 - 电子设备、像素结构及显示装置 - Google Patents

电子设备、像素结构及显示装置 Download PDF

Info

Publication number
WO2020156309A1
WO2020156309A1 PCT/CN2020/073149 CN2020073149W WO2020156309A1 WO 2020156309 A1 WO2020156309 A1 WO 2020156309A1 CN 2020073149 W CN2020073149 W CN 2020073149W WO 2020156309 A1 WO2020156309 A1 WO 2020156309A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic light
pixel
light
size
layer
Prior art date
Application number
PCT/CN2020/073149
Other languages
English (en)
French (fr)
Inventor
袁石林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20749755.3A priority Critical patent/EP3916790A4/en
Publication of WO2020156309A1 publication Critical patent/WO2020156309A1/zh
Priority to US17/382,068 priority patent/US20210351253A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/64Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/52Details of telephonic subscriber devices including functional features of a camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • This application relates to the field of electronic technology, in particular to an electronic device, a pixel structure and a display device.
  • the electronic device can use its display screen to display pictures.
  • the embodiments of the present application provide an electronic device, a pixel structure, and a display device, which can improve diffraction interference.
  • An embodiment of the application provides an electronic device, which includes a display device and a camera module, and the display device includes:
  • a pixel definition layer includes a plurality of pixel holes arranged in an array, there is a first spacing between two adjacent pixel holes in a first direction, and two adjacent pixel holes in a second direction There is a second distance between the pixel holes;
  • An organic light-emitting layer includes a plurality of organic light-emitting bodies, each of the organic light-emitting bodies is disposed in one of the pixel holes, and each of the organic light-emitting bodies has a first size in the first direction , Each of the organic light-emitting bodies has a second size in the second direction;
  • the first direction is perpendicular to the second direction, the first size and the first distance are not equal, and the second size and the second distance are not equal;
  • the camera module is at least partially disposed opposite to the pixel hole, and collects images through the display device.
  • the embodiment of the present application provides a pixel structure, which includes:
  • a pixel definition layer includes a plurality of pixel holes arranged in an array, there is a first spacing between two adjacent pixel holes in a first direction, and two adjacent pixel holes in a second direction There is a second distance between the pixel holes;
  • An organic light-emitting layer includes a plurality of organic light-emitting bodies, each of the organic light-emitting bodies is disposed in one of the pixel holes, and each of the organic light-emitting bodies has a first size in the first direction , Each of the organic light-emitting bodies has a second size in the second direction;
  • the first direction is perpendicular to the second direction, the first size and the first distance are not equal, and the second size and the second distance are not equal.
  • the embodiment of the present application provides a display device, which includes:
  • a pixel definition layer includes a first part, the first part includes a plurality of pixel holes arranged in an array, a first distance is provided between two adjacent pixel holes in a first direction, and a second There is a second distance between two adjacent pixel holes in the direction;
  • An organic light-emitting layer includes a plurality of organic light-emitting bodies, each of the organic light-emitting bodies is disposed in one of the pixel holes, and each of the organic light-emitting bodies has a first size in the first direction , Each of the organic light-emitting bodies has a second size in the second direction;
  • the first direction is perpendicular to the second direction, the first size and the first distance are not equal, and the second size and the second distance are not equal.
  • An embodiment of the present application provides a display device, which includes a first display panel and a second display panel;
  • the first display panel is provided with a notch, the notch penetrates the first display panel in a thickness direction of the first display panel, and the second display panel is disposed in the notch;
  • the pixel structure of the second display panel includes:
  • a pixel definition layer includes a plurality of pixel holes arranged in an array, there is a first spacing between two adjacent pixel holes in a first direction, and two adjacent pixel holes in a second direction There is a second distance between the pixel holes;
  • An organic light-emitting layer includes a plurality of organic light-emitting bodies, each of the organic light-emitting bodies is disposed in one of the pixel holes, and each of the organic light-emitting bodies has a first size in the first direction , Each of the organic light-emitting bodies has a second size in the second direction;
  • the first direction is perpendicular to the second direction, the first size and the first distance are not equal, and the second size and the second distance are not equal.
  • Fig. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of a pixel structure of a light-transmitting area of an electronic device provided by an embodiment of the application.
  • FIG 3 is another schematic diagram of the pixel structure of the light-transmitting area of the electronic device provided by the embodiment of the application.
  • FIG. 4 is a schematic diagram of far-field diffracted light intensity of a pixel structure in a light-transmitting area of an electronic device provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a far-field diffraction light intensity envelope of a pixel structure in a light-transmitting area of an electronic device provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of the one-dimensional diffraction polar order pitch of the pixel structure in the light-transmitting area of the electronic device according to an embodiment of the application.
  • FIG. 7 is a schematic diagram of the far-field diffracted light intensity of the spot of the pixel structure in the light-transmitting area of the electronic device according to an embodiment of the application.
  • 8a-8k are schematic diagrams of the light intensity envelope and diffraction order distribution of the diffraction pattern of the pixel structure provided by the embodiments of the application.
  • 9a-9h are another schematic diagrams of the light intensity envelope and diffraction order distribution of the diffraction pattern of the pixel structure in the light-transmitting area of the electronic device provided by the embodiment of the application.
  • FIG. 10 is a schematic diagram of energy distribution when the interval of the periodic unit of the pixel structure of the light-transmitting area of the electronic device according to an embodiment of the application changes.
  • FIG. 11 is another schematic diagram of the pixel structure of the light-transmitting area of the electronic device according to an embodiment of the application.
  • FIG. 12 is a schematic cross-sectional view of a light-transmitting area of an electronic device provided by an embodiment of the application.
  • FIG. 13 is another schematic cross-sectional view of the light-transmitting area of the electronic device provided by the embodiment of the application.
  • FIG. 14 is another schematic cross-sectional view of the light-transmitting area of the electronic device provided by the embodiment of the application.
  • FIG. 15 is another schematic cross-sectional view of the light-transmitting area of the electronic device provided by the embodiment of the application.
  • FIG. 16 is a schematic diagram of another structure of an electronic device provided by an embodiment of the application.
  • FIG. 17 is a schematic diagram of a pixel definition layer of an electronic device provided by an embodiment of the application.
  • FIG. 18 is a schematic diagram of another structure of an electronic device provided by an embodiment of the application.
  • the electronic device 100 includes a housing 120, a display device 140, and a camera module 160.
  • the display device 140 includes a display panel 142 and a driving circuit 144.
  • the driving circuit 144 can drive the display panel 142 to display various images.
  • the display device 140 is arranged on the housing 120.
  • the housing 120 may include a back cover and a frame 124.
  • the frame 124 is arranged around the periphery of the back cover.
  • the display device 140 is arranged in the frame 124.
  • the display device 140 and the back cover may serve as the electronic device 100. Opposite sides.
  • the camera module 160 is disposed between the back cover of the housing 120 and the display device 140.
  • the camera module 160 includes an image capturing surface for capturing images
  • the display device 140 includes a display surface and a display back surface opposite to the display surface
  • the image capturing surface of the camera module 160 is set facing the display back of the display device 140
  • the camera module The group 160 obtains the light signal transmitted through the display device 140, and obtains an image based on the obtained light signal.
  • the camera module 160 can be used as a front camera of the electronic device 100, and the camera module 160 can obtain images such as a user's selfie through the display device 140.
  • the camera module of the electronic device is arranged under the display screen, and the camera module obtains the light signal transmitted through the display screen, thereby realizing under-screen imaging.
  • this periodic pixel arrangement structure will cause diffraction interference during imaging of the camera module, thereby reducing the quality of imaging under the screen.
  • the display device of the electronic device includes a pixel definition layer 250 and an organic light emitting layer 252.
  • the pixel definition layer 250 includes a plurality of pixel holes 2502 arranged in an array, two adjacent pixel holes 2502 in the first direction have a first spacing h1 between them, and two adjacent pixel holes in the second direction There is a second spacing h2 between 2502.
  • the organic light-emitting layer 252 includes a plurality of organic light-emitting bodies 2522, and each organic light-emitting body 2522 is correspondingly disposed in a pixel hole 2502, and each organic light-emitting body 2522 has a first dimension a in the first direction, and each organic light-emitting body 2522 It has a second dimension b in the second direction.
  • the first direction is perpendicular to the second direction, the first dimension a is not equal to the first distance h1, and the second dimension b is not equal to the second distance h2.
  • the first dimension a of the organic light-emitting body 2522 is not equal to the first distance h1 between two adjacent pixel holes 2502.
  • the second dimension b of the organic light-emitting body 2522 is not equal to the two adjacent pixel holes 2502.
  • the second pitch h2 of the pixel holes 2502 is also not equal, which can improve the diffraction effect of the light signal passing through the pixel structure of this embodiment.
  • the plurality of pixel holes 2502 are arranged in an array, and the plurality of pixel holes 2502 arranged in the array can form a plurality of columns of pixel holes 2502 and a plurality of rows of pixel holes 2502 parallel to each other.
  • the first direction can be understood as the row direction of the array
  • the second The direction can be understood as the column direction of the array, or the first direction can be understood as the column direction of the array, and the second direction can be understood as the row direction of the array.
  • the pixel hole 2502 and the organic light-emitting body 2522 in the pixel structure are both periodic structures.
  • the transmittance function of the pixel structure and the far-field diffraction light intensity constitute Fourier Leaf transformation relationship. Assuming that the transmittance function of each periodic unit is t unit (x), the width of the periodic unit is d, and each periodic unit is composed of two materials, the width of the first material (ie, the organic light-emitting body 2522) is a, The width of the second material (ie, the pixel definition layer 250) is da, and the transmittance function of the one-dimensional pixel structure can be expressed as:
  • comb(x) is a one-dimensional comb function. If a plane wave with a total width of L is used for illumination, the light field distribution after the pixel structure can be expressed as:
  • the first part please refer to Figure 5, the Fourier transform FT ⁇ t unit (x) ⁇ of the transmittance function of the periodic unit, which constitutes the envelope of the entire diffracted light intensity, the shape of the envelope and the transmittance of the periodic unit
  • the function t unit (x) is related (because the width of t unit (x) is d, it is also related to the spacing d);
  • the second part Please refer to Figure 6, the comb function comb(dx), which determines the distance between diffraction orders, and its value is only related to the periodic unit distance d;
  • the third part Please refer to Figure 7, the Fourier transform sinc(Lx) of the spot, which determines the size and shape of each diffracted spot, and its value is only related to the spot diameter L.
  • the diffraction order spacing is inversely proportional to d.
  • the first-order diffraction light intensity is the strongest, namely There is a maximum value.
  • the pixel hole 2502 is rectangular, and the pixel hole 2502 has a first dimension a in the first direction and a second dimension b in the second direction. It can also be understood that the width of the short side of the rectangular pixel hole 2502 is the first dimension a, and the length of the long side is the second dimension b.
  • the d value is the distance between two adjacent rectangular pixel holes 2502 in the first direction.
  • the value of d ranges from 23 ⁇ m to 200 ⁇ m.
  • the light intensity envelope and diffraction order distribution of the diffraction pattern are obtained according to different d values.
  • the organic light-emitting layer and the pixel defining layer are the main causes of ghosting
  • the organic light-emitting layer and the pixel defining layer are simulated (for example, by zemax simulation), and the diffraction order changes when the interval of the periodic unit of the microstructure is changed.
  • the corresponding +1, -1, and 0 level light intensity relative values are shown in Table 1, where the first pixel hole One dimension a remains unchanged, and the first distance d increases. Since the higher order energy outside the +1 and -1 order is always less than 10% of the 0 order energy, and the diffracted light intensity of the +1 and -1 order is the main influencing factor of the ghosting, the +1 order is mainly analyzed in this experiment. , -1 and 0, please refer to Table 1 for details.
  • FIG. 10 shows the energy distribution when the length of the periodic unit of the organic light-emitting layer and the pixel defining layer changes.
  • the curve of L1 in the figure corresponds to an interval of 43um; the curve of L2 corresponds to an interval of 48um; the curve of L3 corresponds to an interval of 53um; the curve of L4 corresponds to an interval of 58um; the curve of L5 corresponds to an interval of 63um; the curve of L6 corresponds to an interval It is 68um; the curve of L7 corresponds to an interval of 73um; the curve of L8 corresponds to an interval of 78um.
  • the intensity of the 0th order gradually increases, and the light intensity of the +-1 order gradually decreases.
  • the main diffraction order has the maximum light intensity.
  • the light intensity of +1 and -1 is the smallest.
  • the diffraction orders move closer to the middle and the distance between the diffraction orders becomes smaller.
  • the +1 and -1 order light intensity decreases, but the higher order light intensity gradually increases. It can be seen that, in the first direction, the larger the difference between the first dimension a of the organic light-emitting body and the spacing h1 between two adjacent pixel holes, the weaker the diffraction.
  • the first dimension a of the organic light-emitting body 2522 is smaller than the second dimension b of the organic light-emitting body 2522, and the second dimension b is not equal to the first distance h1.
  • the organic light-emitting body 2522 is in a long state with short sides and long sides, the corresponding size of the short side is the first size a, and the corresponding size of the long side is the second size b.
  • the second dimension b of the organic light-emitting body 2522 and the first interval h1 are not equal.
  • the organic light-emitting body 2522 may have a rectangular shape or the like.
  • the first spacing h1 is the spacing between two adjacent pixel holes in the first direction of the pixel definition layer, and the organic light-emitting body is correspondingly arranged in the pixel holes. Therefore, the first spacing h1 can also be understood as an organic light-emitting layer The distance between two adjacent organic light-emitting bodies in the first direction. Similarly, the second distance h2 can also be understood as the distance between two adjacent organic light-emitting bodies in the second direction of the organic light-emitting layer.
  • the first dimension a of the organic light-emitting body 2522 is smaller than the first interval h1, and the second dimension b is greater than the first interval h1.
  • the first distance h1 between two adjacent pixel holes 2502 is greater than the first size a of the organic light-emitting body 2522. Because the size of the organic light-emitting body 2522 is generally fixed, the distance between two adjacent pixel holes 2502 can be increased, so that the first dimension a is smaller than the first distance h1.
  • the second dimension b of the organic light-emitting body 2522 is also greater than the first distance h1, and the first distance h1 is greater than the first dimension a. It can be understood that the organic light-emitting body 2522 has a long structure, such as a rectangle.
  • the first size a of the organic light-emitting body 2522 is smaller than the second size b, and the first size a is larger than the first distance h1.
  • the first dimension a of the organic light-emitting body 2522 may be greater than the first distance h1 between two adjacent pixel holes 2502, which may improve the diffraction effect of the light signal passing through the pixel structure.
  • each pixel hole may have a square shape, and the organic light-emitting body arranged in the pixel hole is also a square shape, and the first dimension a of the organic light-emitting body in the first direction is equal to the second dimension b in the second direction.
  • the first size a of the organic light-emitting body may be larger or smaller than the first distance h1 between two adjacent pixel holes.
  • the second dimension b of the organic light-emitting body may be larger or smaller than the second pitch h2 of two adjacent pixel holes, where the first pitch h1 and the second pitch h2 may be equal or unequal.
  • the interval h1 may be greater than the second interval h2, and the first interval h1 may also be smaller than the second interval h2.
  • each pixel hole 2502 may be rectangular, and the organic light-emitting body 2522 provided in the pixel hole 2502 is also rectangular.
  • the first direction can be understood as the row direction of the array, and can also be understood as the short side direction of the parallel pixel holes 2502, and the second direction can be understood as the column direction of the array, or can be understood as the long side direction of the parallel pixel holes 2502.
  • the pixel hole 2502 and the organic light-emitting body 2522 may both be rounded rectangles. Because the four corners of the rectangular pixel hole 2502 and the organic light-emitting body 2522 are sharp corners, after the light signal passes through the rectangular organic light-emitting body 2522, it is easy to form a long rainbow in diffraction.
  • the rounded rectangular pixel hole 2502 and the organic light-emitting body 2522 can reduce distortion and improve the long rainbow in diffraction.
  • the rectangle includes two long sides arranged oppositely and two short sides arranged oppositely, and the two long sides are connected by the two short sides.
  • the rounded rectangle can be connected by connecting lines with four arc-shaped corners, that is, each long side is connected with the short side by a connecting line in the shape of an arc.
  • the rounded rectangle can also be that the ends of two long sides are connected by arc-shaped connecting lines, that is, two arc-shaped connecting lines replace two short sides to connect the two long sides.
  • the coordinated pixel hole 2502 and organic light-emitting body 2522 can be arranged in other shapes such as ellipse, polygon, etc., as long as the pixel hole 2502 and the organic light-emitting body 2522 are arranged in a shape without acute or right angles.
  • the organic light-emitting body 2522 includes two long sides that are arranged oppositely and in parallel. One ends of the two long sides are connected by two connecting lines connected end to end. The angle between the connecting line and the long side and the distance between the two connecting lines are The angles are all 120 degrees. Of course, it can also be set to other angles greater than 90 degrees, and more connection lines connected end to end can also be set.
  • the organic light-emitting body 2522 includes a first side and a second side disposed oppositely, and the first side and the second side The third side and the fourth side are connected and arranged oppositely.
  • the organic light-emitting body 2522 has a symmetrical structure.
  • the first side and the second side have the same size, and the third side and the fourth side have the same size.
  • the size of the third side is larger than the size of the first side.
  • the first dimension a of the organic light-emitting body 2522 in the first direction can be understood as the distance between the third side and the fourth side that are parallel to each other, or as the dimension of the first side.
  • the second dimension b of the organic light-emitting body 2522 in the second direction can be understood as the distance between the first side and the second side that are parallel to each other, or as the dimension of the third side.
  • the display device includes a first substrate 220, an anode metal layer 240, a pixel definition layer 250, a common electrode layer 260, and a second substrate 280 that are stacked.
  • the pixel definition layer 250 is disposed between the anode metal layer 240 and the common electrode layer 260.
  • the anode metal layer 240 and the common electrode layer 260 cooperate to drive the organic light emitting layer 252, so that the organic light emitting layer 252 can display various images.
  • the camera module 160 can collect images through any position of the display device 140, that is, can acquire light signals through any position of the display device 140, and form an image according to the light signals.
  • both the first substrate 220 and the second substrate 280 may be colorless and transparent substrates, specifically materials such as glass and resin may be used.
  • the first substrate 220 and the second substrate 280 may also be flexible substrates, and the display device as a whole is flexible Display device.
  • the anode metal layer 240 includes a first anode metal layer 242, a planarization layer 244, and a second anode metal layer 246.
  • the first anode metal layer 242 is provided between the planarization layer 244 and the pixel definition layer 250, and the second anode metal layer 246 is provided between the planarization layer 244 and the first substrate 220.
  • the display device 140 further includes a thin film transistor 248, which is respectively connected to the first anode metal layer 242, the second anode metal layer 246 and the organic light emitting layer 252, the first anode metal layer 242, the second anode metal layer 246 and the organic light emitting layer 252 is connected to different poles of the thin film transistor 248, respectively.
  • the first anode metal layer 242 is disposed between the planarization layer 244 and the organic light emitting layer 252, and the material of the first anode metal layer 242 is nano silver.
  • the first anode metal layer 242 includes a plurality of first conductive wires, the first conductive wires extend along the first direction, and each first conductive wire corresponds to the part between the two pixel holes 2502.
  • the first anode is made of nano silver Metal layer 242.
  • each first conductive wire made of nano-silver can be made narrower or thinner or narrower and thinner under the condition that the impedance characteristic is satisfied.
  • the distance h1 can be made smaller, so that the first distance h1 is smaller than the first dimension a.
  • the display device further includes a thin film 230 disposed between the first substrate 220 and the anode metal layer 240.
  • the thin film 230 may be made of SiNx or SiO2.
  • the display device further includes a light extraction material layer (capping layer, CPL) 270.
  • the light extraction material layer 270 is disposed between the second substrate 280 and the common electrode layer 260.
  • the display device may include the film 230 and the light extraction material layer 270, or may not include the film 230 and/or the light extraction material layer 270.
  • the display device further includes a filling layer 290.
  • the filling layer 290 is disposed on the side of the common electrode layer 260 away from the pixel definition layer 250.
  • the filling layer 290 includes a plurality of filling bodies 2902, each filled The body 2902 is disposed relative to a pixel hole 2502, and the refractive index difference between the pixel defining layer 250 and the filling layer 290 is smaller than the refractive index difference between the pixel defining layer 250 and the vacuum.
  • the common electrode layer 260 covers the organic light-emitting body 2522 and the pixel defining layer 250.
  • the thickness of the common electrode layer 260 is approximately the same everywhere, and the common electrode layer 260 has no influence or influence on the optical path difference Very small.
  • the pixel defining layer 250 corresponding to the non-pixel hole and the organic light emitting body 2522 corresponding to the pixel hole 2502 area have a greater influence on the optical path difference.
  • due to the manufacturing process of the display device there is a gap in the display device relative to the pixel hole 2502 area.
  • the gap is located on the side of the common electrode layer 260 away from the pixel hole 2502, because there is no gap relative to the pixel definition layer 250.
  • the gap also has a great influence on the optical path difference.
  • the embodiment of the present application is provided with a filler 2902 corresponding to the gap, and the difference in refractive index between the pixel definition layer 250 and the filler 2902 is smaller than the pixel definition
  • the difference in refractive index between the layer 250 and the vacuum can improve the optical path difference between the first optical path and the second optical path, thereby improving the imaging quality of the camera 160 through the display device 140.
  • the common electrode layer 260 has a plurality of second grooves 2608, the openings of the plurality of second grooves 2608 face the second substrate 280, and each of the second grooves 2608 is disposed opposite to one pixel hole 2502. .
  • the light extraction material layer 270 has a plurality of third grooves 2709, the openings of the plurality of third grooves 2709 face the second substrate 280, and each third groove 2709 faces a pixel hole 2502, each filling body 2902 is disposed in a third groove 2709.
  • the light extraction material layer 270 has a third groove 2709, and the filler 2902 is disposed in the third groove 2709, which has little influence on the structure of the original display device 140.
  • the display device 140 has a first optical path perpendicular to the direction of the first substrate 220 corresponding to the position of the pixel hole 2502, and the display device 140 has a second optical path perpendicular to the direction of the first substrate 220 at a position other than the pixel hole 2502.
  • Optical path, the first optical path is equal to the second optical path.
  • the first optical path can be understood as the optical path of the optical signal passing through the display device 140 from the position of the corresponding pixel hole 2502 in a direction perpendicular to the first substrate 220.
  • the first optical path may specifically be the thickness and refractive index of each layer in the second substrate 280, the light extraction material layer 270, the filling layer 290, the common electrode layer 260, the organic light emitting layer 252, the anode metal layer 240, and the first substrate 220. The sum of the products.
  • the second optical path can be understood as the optical path of the optical signal passing through the display device 140 from the position of the corresponding non-pixel hole in a direction perpendicular to the first substrate 220.
  • the first optical path may specifically be the sum of the product of the corresponding thickness and refractive index of each layer in the second substrate 280, the light extraction material layer 270, the common electrode layer 260, the pixel definition layer 250, the anode metal layer 240, and the first substrate 220. .
  • each layer of the second substrate 280, the light extraction material layer 270, the common electrode layer 260, the anode metal layer 240, and the first substrate 220 covers the entire layer, and the thickness of each layer of each layer is approximately the same, the second substrate 280, the light extraction material layer 270, the common electrode layer 260, the anode metal layer 240, and the first substrate 220 have a negligible optical path difference corresponding to the first optical path and the second optical path.
  • first optical path equal to the second optical path can be understood as the first optical path and the second optical path are approximately equal.
  • the filling layer further includes a connecting body, which covers the common electrode layer and is connected to a plurality of filling bodies.
  • the filler is filled in the third groove, and the connector can cover the entire layer, that is, the connector covers the entire common electrode layer and the filler. Wherein, if the filling body just fills the third groove, the two opposite faces of the connecting body are parallel.
  • each filler may be disposed in a second groove, a plurality of fillers of the filling layer are correspondingly disposed in a plurality of second grooves of the common electrode layer, and the light extraction material layer covers the filling Layer and common electrode layer.
  • the light extraction material layer can be arranged and laid flat on the common electrode layer and the filling layer.
  • the surface of the filler facing the light extraction material layer may be higher or lower than the common electrode layer, that is, the filler may not fill up the second groove, or may be higher than the second groove.
  • the display device further includes a light-shielding block 272.
  • the light-shielding block 272 may be a black or dark material, and the light-shielding block 272 may be used to block light entering the display device 240.
  • the light shielding block 272 is disposed corresponding to the thin film transistor 248, the light shielding block 272 may be disposed between the organic light emitting layer 252 and the second substrate 280, and each light shielding block 272 is at least partially disposed opposite to one thin film transistor 248.
  • the projection of the thin film transistor 248 on the first substrate 220 may be located within the projection of the light shielding block 272 on the first substrate 220. In this way, it is possible to prevent light from being reflected or refracted by the thin film transistor 248 after entering the display device, thereby causing stray light to interfere with imaging.
  • the light-shielding block 272 may be disposed in the light extraction material layer 270.
  • the light-extraction material layer 270 is provided with a through hole or groove at a position corresponding to the thin film transistor 248, and the light-shielding block 272 is correspondingly disposed in the through hole or groove. Inside, the opening of the groove may face the second substrate 280 or the common electrode layer 260.
  • the second substrate 280 may be provided with a groove corresponding to the position of the thin film transistor 248, and the light shielding block 272 is correspondingly provided in the groove of the second substrate 280, and the opening of the groove of the second substrate 280 faces the common electrode layer. 260.
  • the light shielding block 272 may also be disposed in the gap between the organic light emitting layer 252 and the common electrode layer 260.
  • the light-shielding block 272 may also be disposed on the display device provided with the filling layer 290, and the specific structure may adopt the structure of the above-mentioned embodiment, which will not be repeated here. It should be noted that in some other embodiments, the light-shielding block may also be disposed in the filling layer 290.
  • the display device 240 may include a light-transmitting region 132 and a body region 134.
  • the area of the light-transmitting region 132 is smaller than that of the body region 134, and the light transmittance of the light-transmitting region 132 is greater than that of the body region 134.
  • the camera module 160 and the light-transmitting area 132 are arranged opposite to each other.
  • the light transmission area 132 is connected to the first driving module 1444, the main body area 134 is connected to the second driving module 1442, the first driving module 1444 drives the light transmission area 132 of the display device 240, and the second driving module 1442 drives the main body area of the display device 240 134.
  • the first driving module 1442 and the second driving module 1444 can be driven in cooperation, so that the transparent area 132 and the main body area 134 can display the same image together.
  • the light-transmitting area 132 displays a part of the image
  • the main body area 134 displays the remaining part of the image.
  • the first driving module 1444 drives the light-transmitting area 132 to turn off the display
  • the second driving module 1442 can continue to drive the main body area 134 to display images
  • the camera module 160 acquires by turning off the light-transmitting area 132 of the display
  • the external light signal, and the image is obtained according to the light signal.
  • the pixel definition layer 250 includes a first portion 254 and a second portion 256.
  • the first part 254 corresponds to the light-transmitting area
  • the second part 256 corresponds to the main body area.
  • the area of the first part 254 is smaller than the area of the second part 256.
  • the second part 256 also includes a plurality of organic light emitting bodies 2522 arranged in an array.
  • the light transmittance of the first part 254 is greater than the light transmittance of the second part.
  • the camera module 160 can obtain a light signal through the first part 254 of the display device 140, and form an image according to the light signal.
  • the first portion 254 is located at the end of the pixel definition layer 250.
  • the first part 254 may be located at the top or bottom or side of the pixel definition layer 250.
  • the pixel definition layer 250 is a rectangle
  • the second part 256 is a rectangle with a gap
  • the first part 254 is disposed in the gap.
  • the notch may be provided on the top edge or bottom edge or side edge of the second part 256.
  • the first part 254 can also be arranged in the middle of the pixel definition layer 250, and it can also be understood that the second part 256 has a through hole penetrating the second part 256 in the thickness direction, and the first part 254 is arranged in the through hole.
  • the camera module 160 is set corresponding to the first part, and the camera module 160 can obtain the light signal through the first part 254 of the display device 140, and the light transmittance of the display device 140 corresponding to the first part 254 is greater than the display corresponding to the second part.
  • the distribution density of the organic light-emitting body 2522 corresponding to the first portion 254 is smaller, that is, smaller than the distribution density of the organic light-emitting body 2522 corresponding to the second portion 256.
  • the distribution density of the organic light-emitting body 2522 corresponding to the first part 254 is smaller, and the distribution density of the opaque thin film transistor 248 corresponding to the organic light-emitting body 2522 is also smaller, thereby improving the transparency of the display device 140 corresponding to the first part. Light rate.
  • the distribution density of the organic light-emitting body 2522 of the first portion 254 is less than the distribution density of the organic light-emitting body 2522 of the second portion 256. It can also be understood that the distance between two adjacent pixel holes 2502 of the first portion 254 is greater than the distance between two adjacent pixel holes 2502 of the second portion 256, and the light transmittance of the pixel definition layer 250 is greater than that of the organic light-emitting body 2522. The ratio of the organic light emitting layer 252 of the first portion 254 is smaller, so that the light transmittance of the first portion 254 is greater than the light transmittance of the second portion 256.
  • each organic light-emitting body 2522 is provided with a thin-film transistor 248 correspondingly.
  • the thin-film transistor 248 is opaque.
  • the distribution density of the organic light-emitting body 2522 of the first part 254 is smaller, and the distribution density of the corresponding thin-film transistor 248 is also smaller. Therefore, the light transmittance of the first portion 254 is greater than the light transmittance of the second portion 256.
  • the light-transmitting area and the main body area are mainly different in the pixel definition layer.
  • the light-transmitting area and the main body area may share the same first substrate, second substrate, etc.
  • the anode metal layer 240 corresponding to the first part 254 can be made of a material with high light transmission, such as ITO, nano silver, and the like.
  • the anode metal layer 240 corresponding to the second part 256 can be made of a material with high light transmission, or can be made of a material with low light transmission or opaque.
  • the display device 140 includes a first display panel 1422 and a second display panel 1424.
  • the first display panel 1422 is provided with a notch 110 that penetrates in the thickness direction of the first display panel 1422.
  • the first display panel 1422 and the first display panel 1422 are the display panel 142 normally displayed.
  • the second display panel 1424 is disposed in the gap 110, the second display panel 1424 corresponds to the light transmission area of the display device 240, and the first display panel 1422 corresponds to the main body area of the display device 240.
  • the camera module 160 of the electronic device 100 is disposed between the housing and the second display panel 1424. The camera module 160 obtains the light signal passing through the light-transmitting area, and obtains an image according to the obtained light signal.
  • the first display panel 1422 and the second display panel 1424 are two independent display panels.
  • the first display panel 1422 and the second display panel 1424 are respectively manufactured, and then the second display panel 1424 is placed on the first display panel 1422 Within the gap 110.
  • first display panel 1422 is connected to the second driving module 1442
  • second display panel 1424 is connected to the first driving module 1444
  • first driving module 1444 drives the second display panel 1424
  • second driving module 1442 drives the A display panel 1422
  • the first driving module 1442 and the second driving module 1444 cooperate to drive, so that the first display panel 1422 and the second display panel 1424 can display the same image together. If the first display panel 1422 displays a part of the image, the second display panel 1424 displays the remaining part of the image.
  • the first drive module 1444 drives the second display panel 1424 to turn off the display
  • the second drive module 1442 can continue to drive the first display panel 1422 to display images
  • the camera module closes the second display panel displayed 1424 obtains external light signals and obtains images based on the light signals.
  • the image collection surface of the camera module can be made small, the area of a single organic light-emitting body of the display device is larger, and the collection surface of the camera module is equal to or smaller than the area of a single organic light-emitting body.
  • the camera module can collect images through the organic light-emitting body.
  • the image collection surface of the camera module can be made small, the distance between two adjacent organic light-emitting bodies in the display device is relatively large, and the collection surface of the camera module is equal to or smaller than the distance.
  • the camera module can collect images through the interval between two organic light-emitting bodies.
  • the pixel structure of the embodiment of the present application includes a pixel definition layer 250 and an organic light emitting layer 252.
  • the pixel definition layer 250 includes a plurality of pixel holes 2502 arranged in an array. There is a first spacing h1 between two adjacent pixel holes 2502 in the first direction, and two adjacent pixel holes 2502 are located in the second direction. There is a second distance h2 therebetween.
  • the organic light-emitting layer 252 includes a plurality of organic light-emitting bodies 2522, and each organic light-emitting body 2522 is correspondingly disposed in a pixel hole 2502, and each organic light-emitting body 2522 has a first dimension a in the first direction, and each organic light-emitting body 2522 It has a second dimension b in the second direction.
  • the first direction is perpendicular to the second direction, the first dimension a is not equal to the first distance h1, and the second dimension b is not equal to the second distance h2.
  • the pixel structure is a periodic structure
  • the first dimension a of the organic light-emitting body 2522 is not equal to the first distance h1 between two adjacent pixel holes 2502.
  • the organic light-emitting body The second size b of 2522 and the second spacing h2 of two adjacent pixel holes 2502 are also not equal, which can improve the diffraction effect of the light signal passing through the pixel structure.
  • the plurality of pixel holes 2502 are arranged in an array, and the plurality of pixel holes 2502 arranged in the array can form a plurality of columns of pixel holes 2502 and a plurality of rows of pixel holes 2502 parallel to each other.
  • the first direction can be understood as the row direction of the array
  • the second The direction can be understood as the column direction of the array, or the first direction can be understood as the column direction of the array, and the second direction can be understood as the row direction of the array.
  • the first size a of the organic light-emitting body 2522 is smaller than the second size b, and the second size b is not equal to the first distance h1.
  • the organic light-emitting body 2522 is in a long state with short sides and long sides, the corresponding size of the short side is the first size a, and the corresponding size of the long side is the second size b.
  • the second dimension b of the organic light-emitting body 2522 and the first interval h1 are not equal.
  • the organic light-emitting body 2522 may have a rectangular shape or the like.
  • the first dimension a of the organic light-emitting body 2522 is smaller than the first interval h1, and the second dimension b is greater than the first interval h1.
  • the first distance h1 between two adjacent pixel holes 2502 is greater than the first size a of the organic light-emitting body 2522. Because the size of the organic light-emitting body 2522 is generally fixed, the distance between two adjacent pixel holes 2502 can be increased, so that the first dimension a is smaller than the first distance h1.
  • the second dimension b of the organic light-emitting body 2522 is also greater than the first distance h1, and the first distance h1 is greater than the first dimension a. It can be understood that the organic light-emitting body 2522 has a long structure, such as a rectangle.
  • the first size a of the organic light-emitting body 2522 is smaller than the second size b, and the first size a is larger than the first distance h1.
  • the first dimension a of the organic light-emitting body 2522 may be greater than the first distance h1 of two adjacent organic light-emitting bodies 2522. The diffraction effect of the light signal passing through the pixel structure can be improved.
  • each pixel hole 2502 may be square, and the organic light-emitting body 2522 disposed in the pixel hole 2502 is also square.
  • the first dimension a of the organic light-emitting body 2522 in the first direction and the second dimension a in the second direction are The size b is equal.
  • the first size a of the organic light-emitting body 2522 may be larger or smaller than the first pitch h1 of two adjacent pixel holes 2502.
  • the second dimension b of the organic light-emitting body 2522 may be larger or smaller than the second pitch h2 of two adjacent pixel holes 2502, where the first pitch h1 and the second pitch h2 may be equal or unequal,
  • the first interval h1 may be greater than the second interval h2, and the first interval h1 may also be smaller than the second interval h2.
  • the diffraction effect of the light signal passing through the pixel structure can be improved.
  • each pixel hole 2502 may be rectangular, and the organic light-emitting body 2522 provided in the pixel hole 2502 is also rectangular.
  • the first direction can be understood as the row direction of the array, and can also be understood as the short side direction of the parallel pixel holes 2502, and the second direction can be understood as the column direction of the array, or can be understood as the long side direction of the parallel pixel holes 2502.
  • the pixel hole 2502 and the organic light-emitting body 2522 are both rectangular with rounded corners. Because the four corners of the rectangular pixel hole 2502 and the organic light-emitting body 2522 are sharp corners, after the light signal passes through the rectangular organic light-emitting body 2522, it is easy to form a long rainbow in diffraction.
  • the rounded rectangular pixel hole 2502 and the organic light-emitting body 2522 can reduce distortion and improve the long rainbow in diffraction.
  • the rectangle includes two long sides arranged oppositely and two short sides arranged oppositely, and the two long sides are connected by the two short sides.
  • the rounded rectangle can be connected by connecting lines with four arc-shaped corners, that is, each long side is connected with the short side by a connecting line in the shape of an arc.
  • the rounded rectangle can also be that the ends of two long sides are connected by arc-shaped connecting lines, that is, two arc-shaped connecting lines replace two short sides to connect the two long sides.
  • the coordinated pixel hole 2502 and organic light-emitting body 2522 can be arranged in other shapes such as ellipse, polygon, etc., as long as the pixel hole 2502 and the organic light-emitting body 2522 are arranged in a shape without acute or right angles.
  • the organic light-emitting body 2522 includes two long sides that are arranged oppositely and in parallel. One ends of the two long sides are connected by two connecting lines connected end to end. The angle between the connecting line and the long side and the distance between the two connecting lines are The angles are all 120 degrees. Of course, it can also be set to other angles greater than 90 degrees, and more connection lines connected end to end can also be set.
  • the organic light-emitting body 2522 includes a first side and a second side disposed oppositely, and the first side and the second side The third side and the fourth side are connected and arranged oppositely.
  • the organic light-emitting body 2522 has a symmetrical structure.
  • the first side and the second side have the same size, and the third side and the fourth side have the same size.
  • the size of the third side is larger than the size of the first side.
  • the first dimension a of the organic light-emitting body 2522 in the first direction can be understood as the distance between the third side and the fourth side that are parallel to each other, or as the dimension of the first side.
  • the second dimension b of the organic light-emitting body 2522 in the second direction can be understood as the distance between the first side and the second side that are parallel to each other, or as the dimension of the third side.
  • the pixel hole 2502 and the organic light-emitting body 2522 are both rounded rectangles.
  • the organic light-emitting body 2522 is a rectangle with rounded corners, which can reduce distortion and improve the long rainbow in diffraction.
  • the display device of the embodiment of the present application includes a pixel definition layer 250 and an organic light-emitting layer 252.
  • the pixel definition layer 250 includes a first portion 254.
  • the first portion 254 includes a plurality of pixel holes 2502 arranged in an array. Two pixel holes 2502 adjacent to each other in the first direction have a first spacing h1 between them, and are opposite in the second direction. There is a second spacing h2 between two adjacent pixel holes 2502.
  • the organic light-emitting layer 252 includes a plurality of organic light-emitting bodies 2522, and each organic light-emitting body 2522 is correspondingly disposed in a pixel hole 2502, and each organic light-emitting body 2522 has a first dimension a in the first direction, and each organic light-emitting body 2522 It has a second dimension b in the second direction.
  • the first direction is perpendicular to the second direction, the first dimension a is not equal to the first distance h1, and the second dimension b is not equal to the second distance h2.
  • the pixel structure is a periodic structure
  • the first dimension a of the organic light-emitting body 2522 is not equal to the first pitch h1 of the two adjacent pixel holes 2502.
  • organic light emission The second size b of the body 2522 and the second spacing h2 of the two adjacent pixel holes 2502 are also not equal, which can improve the diffraction effect of the light signal passing through the pixel structure.
  • the plurality of pixel holes 2502 are arranged in an array, and the plurality of pixel holes 2502 arranged in the array can form a plurality of columns of pixel holes 2502 and a plurality of rows of pixel holes 2502 parallel to each other.
  • the first direction can be understood as the row direction of the array
  • the second The direction can be understood as the column direction of the array, or the first direction can be understood as the column direction of the array, and the second direction can be understood as the row direction of the array.
  • the first size a of the organic light-emitting body 2522 is smaller than the second size b, and the second size b is not equal to the first distance h1.
  • the organic light-emitting body 2522 is in a long state with short sides and long sides, the corresponding size of the short side is the first size a, and the corresponding size of the long side is the second size b.
  • the second dimension b of the organic light-emitting body 2522 and the first interval h1 are not equal.
  • the organic light-emitting body 2522 may have a rectangular shape or the like.
  • the first dimension a of the organic light-emitting body 2522 is smaller than the first interval h1, and the second dimension b is greater than the first interval h1.
  • the first distance h1 between two adjacent pixel holes 2502 is greater than the first size a of the organic light-emitting body 2522. Because the size of the organic light-emitting body 2522 is generally fixed, the distance between two adjacent pixel holes 2502 can be increased, so that the first dimension a is smaller than the first distance h1.
  • the second dimension b of the organic light-emitting body 2522 is also greater than the first distance h1, and the first distance h1 is greater than the first dimension a. It can be understood that the organic light-emitting body 2522 has a long structure, such as a rectangle.
  • the first size a of the organic light-emitting body 2522 is smaller than the second size b, and the first size a is larger than the first distance h1.
  • the first dimension a of the organic light-emitting body 2522 may be greater than the first distance h1 of two adjacent organic light-emitting bodies 2522. In this way, the diffraction effect of the light signal passing through the pixel structure can be improved.
  • the display device 140 further includes a planarization layer 244 and a first anode metal layer 242.
  • the first anode metal layer 242 is disposed between the planarization layer 244 and the organic light emitting layer.
  • the material of the anode metal layer 242 is nano silver.
  • the first anode metal layer 242 includes a plurality of first conductive wires, the first conductive wires extend along the first direction, and each first conductive wire corresponds to the part between the two pixel holes 2502.
  • the first anode is made of nano silver
  • each first conductive wire made of nano-silver can be made narrower or thinner or narrower and thinner under the condition that the impedance characteristics are satisfied.
  • the spacing h1 between the two can be made smaller, so that the first spacing h1 is smaller than the first dimension a.
  • each pixel hole 2502 may be square, and the organic light-emitting body 2522 disposed in the pixel hole 2502 is also square.
  • the first dimension a of the organic light-emitting body 2522 in the first direction and the second dimension a in the second direction are The size b is equal.
  • the first size a of the organic light-emitting body 2522 may be larger or smaller than the first pitch h1 of two adjacent pixel holes 2502.
  • the second dimension b of the organic light-emitting body 2522 may be larger or smaller than the second pitch h2 of two adjacent pixel holes 2502, where the first pitch h1 and the second pitch h2 may be equal or unequal,
  • the first interval h1 may be greater than the second interval h2, and the first interval h1 may also be smaller than the second interval h2.
  • the diffraction effect of the light signal passing through the pixel structure can be improved.
  • each pixel hole 2502 may be rectangular, and the organic light-emitting body 2522 provided in the pixel hole 2502 is also rectangular.
  • the first direction can be understood as the row direction of the array, and can also be understood as the short side direction of the parallel pixel holes 2502, and the second direction can be understood as the column direction of the array, or can be understood as the long side direction of the parallel pixel holes 2502.
  • the pixel hole 2502 and the organic light-emitting body 2522 are both rectangular with rounded corners. Because the four corners of the rectangular pixel hole 2502 and the organic light-emitting body 2522 are sharp corners, after the light signal passes through the rectangular organic light-emitting body 2522, it is easy to form a long rainbow in diffraction.
  • the rounded rectangular pixel hole 2502 and the organic light-emitting body 2522 can reduce distortion and improve the long rainbow in diffraction.
  • the rectangle includes two long sides arranged oppositely and two short sides arranged oppositely, and the two long sides are connected by the two short sides.
  • the rounded rectangle can be connected by connecting lines with four arc-shaped corners, that is, each long side is connected with the short side by a connecting line in the shape of an arc.
  • a rounded rectangle can also have two long sides connected by arc-shaped connecting lines at both ends, that is, two arc-shaped connecting lines replace two short sides to connect the two long sides.
  • the coordinated pixel hole 2502 and organic light-emitting body 2522 can be arranged in other shapes such as ellipse, polygon, etc., as long as the pixel hole 2502 and the organic light-emitting body 2522 are arranged in a shape without acute or right angles.
  • the organic light-emitting body 2522 includes two long sides that are arranged oppositely and in parallel. One ends of the two long sides are connected by two connecting lines connected end to end. The angle between the connecting line and the long side and the distance between the two connecting lines are The angles are all 120 degrees. Of course, it can also be set to other angles greater than 90 degrees, and more connection lines connected end to end can also be set.
  • the organic light-emitting body 2522 includes a first side and a second side disposed oppositely, and the first side and the second side The third side and the fourth side are connected and arranged oppositely.
  • the organic light-emitting body 2522 has a symmetrical structure.
  • the first side and the second side have the same size, and the third side and the fourth side have the same size.
  • the size of the third side is larger than the size of the first side.
  • the first dimension a of the organic light-emitting body 2522 in the first direction can be understood as the distance between the third side and the fourth side that are parallel to each other, or as the dimension of the first side.
  • the second dimension b of the organic light-emitting body 2522 in the second direction can be understood as the distance between the first side and the second side that are parallel to each other, or as the dimension of the third side.
  • the pixel hole 2502 and the organic light-emitting body 2522 are both rounded rectangles.
  • the organic light-emitting body 2522 is a rectangle with rounded corners, which can reduce distortion and improve the long rainbow in diffraction.
  • the display device further includes a filling layer 290, the filling layer 290 is disposed on the side of the common electrode layer 260 away from the pixel definition layer 250, the filling layer 290 includes a plurality of filling bodies 2902, each The filling body 2902 is disposed relative to one pixel hole 2502, and the refractive index difference between the pixel defining layer 250 and the filling layer 290 is smaller than the refractive index difference between the pixel defining layer 250 and the vacuum.
  • the common electrode layer 260 has a plurality of second grooves 2608, the openings of the plurality of second grooves 2608 face the second substrate 280, and each of the second grooves 2608 is disposed opposite to one pixel hole 2502. .
  • the light extraction material layer 270 has a plurality of third grooves 2709, the openings of the plurality of third grooves 2709 face the second substrate 280, and each third groove 2709 faces a pixel hole 2502, each filling body 2902 is disposed in a third groove 2709.
  • each filler may be disposed in a second groove, a plurality of fillers of the filling layer are correspondingly disposed in a plurality of second grooves of the common electrode layer, and the light extraction material layer covers the filling Layer and common electrode layer.
  • the light extraction material layer can be arranged and laid flat on the common electrode layer and the filling layer.
  • the surface of the filler facing the light extraction material layer may be higher or lower than the common electrode layer, that is, the filler may not fill up the second groove, or may be higher than the second groove.
  • the display device further includes a light-shielding block 272.
  • the light-shielding block 272 can be a black or dark material, and the light-shielding block 272 can be used to block light entering the display device.
  • the shading block 272 is arranged corresponding to the thin film transistor 248.
  • the shading block 272 may be arranged between the common electrode layer 260 and the second substrate 280.
  • the projection of the thin film transistor 248 on the first substrate 220 is located within the projection of the shading block 272 on the first substrate 220 . In this way, it is possible to prevent light from being reflected or refracted by the thin film transistor 248 after entering the display device, thereby causing stray light to interfere with imaging.
  • the light-shielding block 272 may be disposed in the light extraction material layer 270.
  • the light-extraction material layer 270 is provided with a through hole or groove at a position corresponding to the thin film transistor 248, and the light-shielding block 272 is correspondingly disposed in the through hole or groove.
  • the opening of the groove may face the second substrate 280 or the common electrode layer 260.
  • the second substrate 280 may be provided with a groove corresponding to the position of the thin film transistor 248, and the light shielding block 272 is correspondingly provided in the groove of the second substrate 280, and the opening of the groove of the second substrate 280 faces the common electrode layer. 260.
  • the light shielding block 272 may also be disposed in the gap between the organic light emitting layer 252 and the common electrode layer 260.
  • the light-shielding block 272 may also be provided on the display device provided with the filling layer 290, and the specific structure may adopt the structure of the above-mentioned embodiment, which will not be repeated here. It should be noted that in some other embodiments, the light-shielding block may also be disposed in the filling layer 290.
  • the display device 240 may include a light-transmitting area 132 and a body area 134.
  • the area of the light-transmitting area 132 is smaller than that of the body area 134, and the light transmittance of the light-transmitting area 132 is greater than that of the body area.
  • the light transmittance of 134, the camera module 160 and the light transmittance area 132 are arranged oppositely.
  • the light transmission area 132 is connected to the first driving module 1444, the main body area 134 is connected to the second driving module 1442, the first driving module 1444 drives the light transmission area 132 of the display device 240, and the second driving module 1442 drives the main body area of the display device 240 134.
  • the first driving module 1442 and the second driving module 1444 can be driven in cooperation, so that the transparent area 132 and the main body area 134 can display the same image together.
  • the light-transmitting area 132 displays a part of the image
  • the main body area 134 displays the remaining part of the image.
  • the first driving module 1444 drives the light-transmitting area 132 to turn off the display
  • the second driving module 1442 can continue to drive the main body area 134 to display images
  • the camera module 160 acquires by turning off the light-transmitting area 132 of the display
  • the external light signal, and the image is obtained according to the light signal.
  • the pixel definition layer 250 includes a first portion 254 and a second portion 256.
  • the area of the first portion 254 is smaller than the area of the second portion 256. It includes a plurality of organic light-emitting bodies 2522 arranged in an array, and the light transmittance of the first portion 254 is greater than that of the main body 256 area.
  • the pixel structure of the first part 254 may be the pixel structure of the first part 254 in any of the foregoing embodiments.
  • the camera module 160 can obtain a light signal through the first part 254 of the display device 140, and form an image according to the light signal.
  • the first part 254 is located at the end of the pixel definition layer 250. Specifically, the first part 254 may be located at the top or bottom or side of the pixel definition layer 250.
  • the pixel definition layer 250 is a rectangle
  • the second part 256 is a rectangle with a gap
  • the first part 254 is disposed in the gap.
  • the notch may be provided on the top edge or bottom edge or side edge of the second part 256.
  • the first part 254 can also be arranged in the middle of the pixel definition layer 250, and it can also be understood that the second part 256 has a through hole penetrating the second part 256 in the thickness direction, and the first part 254 is arranged in the through hole.
  • the camera module 160 is provided corresponding to the first part 254, and the camera module 160 can obtain the light signal through the first part 254 of the display device 140.
  • the light transmittance of the first part of the display device 140 corresponding to the first part 254 is greater than that of the corresponding main body area.
  • the distribution density of the organic light-emitting body 2522 corresponding to the first part 254 is smaller, and the distribution density of the opaque thin film transistor 248 corresponding to the organic light-emitting body 2522 is also smaller, thereby increasing the display device 140 corresponding to the light-transmitting area. Part of the light transmittance.
  • the distribution density of the organic light-emitting body 2522 of the first portion 254 is less than the distribution density of the organic light-emitting body 2522 of the second portion 256. It can also be understood that the distance between two adjacent pixel holes 2502 of the first portion 254 is greater than the distance between two adjacent pixel holes 2502 of the second portion 256, and the light transmittance of the pixel definition layer 250 is greater than that of the organic light-emitting body 2522. The ratio of the organic light-emitting body 2522 of the first part 254 is smaller, so that the light transmittance of the first part 254 is greater than the light transmittance of the second part 256.
  • each organic light-emitting body 2522 is provided with a thin-film transistor 248 correspondingly.
  • the thin-film transistor 248 is opaque.
  • the distribution density of the organic light-emitting body 2522 of the first part 254 is smaller, and the distribution density of the corresponding thin-film transistor 248 is also smaller. Therefore, the light transmittance of the first portion 254 is greater than the light transmittance of the second portion 256.
  • the anode metal layer 240 corresponding to the first part 254 can be made of a material with high light transmission, such as ITO, nano silver, and the like.
  • the anode metal layer 240 corresponding to the second part 256 can be made of a material with high light transmission, or can be made of a material with low light transmission or opaque.
  • the display device 140 includes a first display panel 1422 and a second display panel 1424.
  • the first display panel 1422 is provided with a notch 110.
  • the notch 110 is in the thickness direction of the first display panel 1422.
  • the second display panel 1424 is disposed in the notch 110.
  • the camera module 160 of the electronic device 100 is disposed between the housing 120 and the second display panel 1424, and the camera module 160 obtains the light signal passing through the second display panel, and obtains an image according to the obtained light signal.
  • the first display panel 1422 and the second display panel 1424 are two independent display panels.
  • the first display panel 1422 and the second display panel 1424 are respectively manufactured, and then the second display panel 1424 is placed on the first display panel 1422 Within the gap 110.
  • the first display panel 1422 is provided with at least one notch 110.
  • the notch 110 penetrates the first display panel 1422 in the thickness direction of the first display panel 1422.
  • the second display panel 1424 is disposed in the notch 110, and the first display panel 1422 and the second display panel 1424 display in the same direction.
  • the notch 110 may be a regular shape such as a rectangle, a circle, and the like.
  • the notch 110 may also have an irregular shape.
  • the first display panel 1422 and the second display panel 1424 of the electronic device 100 can display the same screen at the same time, and the first display panel 1422 and the second display panel 1424 can also display different screens at the same time.
  • the notch 110 may be formed by one of the side openings of the first display panel 1422, and the notch 110 may also be formed in the middle of the first display panel 1422.
  • first display panel 1422 is connected to the second driving module 1442
  • second display panel 1424 is connected to the first driving module 1444
  • first driving module 1444 drives the second display panel 1424
  • second driving module 1442 drives the A display panel 1422
  • the first driving module 1442 and the second driving module 1444 cooperate to drive, so that the first display panel 1422 and the second display panel 1424 can display the same image together. If the first display panel 1422 displays a part of the image, the second display panel 1424 displays the remaining part of the image.
  • the first drive module 1444 drives the second display panel 1424 to turn off the display
  • the second drive module 1442 can continue to drive the first display panel 1422 to display images
  • the camera module closes the second display panel displayed 1424 obtains external light signals and obtains images based on the light signals.
  • the first display panel and/or the second display panel may be a combination of conductive capacitive touch sensor electrode layers or other touch sensor components (eg, resistive touch sensor components, acoustic touch sensor components, force-based touch sensor components , Light-based touch sensor components, etc.) touch screen displays, or non-touch sensitive displays.
  • Capacitive touch screen electrodes can be formed by indium tin oxide pads or arrays of other transparent conductive structures.
  • the housing 120 of the electronic device 100 may be formed of plastic, glass, ceramic, fiber composite material, metal (for example, stainless steel, aluminum, etc.), other suitable materials, or a combination of any two or more of these materials.
  • the housing 120 may be formed using a one-piece configuration in which some or all of the housing 120 is processed or molded into a single structure, or multiple structures (for example, an inner frame structure, a surface forming an outer shell One or more structures, etc.) are formed. In some embodiments, the housing 120 may form a complete ground of the electronic device 100.
  • the display device can be arranged on one side of the casing.
  • the display device and the casing may form a storage space, and the storage space formed between the display device and the casing may contain electronic equipment components such as a camera module and a motherboard.
  • the main board is electrically connected with the first drive module, the second drive module and the camera module respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请实施例提供一种电子设备、像素结构及显示装置,电子设备的显示装置在第一方向上相邻的两个像素孔之间有第一间距,在第二方向上相邻的两个像素孔之间有第二间距;有机发光体第一方向上有第一尺寸、第二方向上有第二尺寸;第一尺寸与第一间距不相等,第二尺寸与第二间距不相等;摄像头模组透过显示装置采集图像。

Description

电子设备、像素结构及显示装置
本申请要求于2019年02月01日提交中国专利局、申请号为201910107751.6、申请名称为“电子设备、像素结构及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,特别涉及一种电子设备、像素结构及显示装置。
背景技术
随着通信技术的发展,诸如智能手机等电子设备越来越普及。在电子设备的使用过程中,电子设备可以采用其显示屏显示画面。
发明内容
本申请实施例提供一种电子设备、像素结构及显示装置,可以改善衍射干扰。
本申请实施例提供了一种电子设备,其包括显示装置和摄像头模组,所述显示装置包括:
像素定义层,所述像素定义层包括呈阵列设置的多个像素孔,在第一方向上相邻的两个所述像素孔之间具有第一间距,在第二方向上相邻的两个所述像素孔之间具有第二间距;
有机发光层,所述有机发光层包括多个有机发光体,每一个所述有机发光体设置于一个所述像素孔内,每一个所述有机发光体在所述第一方向上具有第一尺寸,每一个所述有机发光体在所述第二方向上具有第二尺寸;
其中,所述第一方向与所述第二方向垂直,所述第一尺寸与所述第一间距不相等,所述第二尺寸与所述第二间距不相等;
所述摄像头模组至少部分与所述像素孔相对设置,并透过所述显示装置采集图像。
本申请实施例提供了一种像素结构,其包括:
像素定义层,所述像素定义层包括呈阵列设置的多个像素孔,在第一方向上相邻的两个所述像素孔之间具有第一间距,在第二方向上相邻的两个所述像素孔之间具有第二间距;
有机发光层,所述有机发光层包括多个有机发光体,每一个所述有机发光体设置于一个所述像素孔内,每一个所述有机发光体在所述第一方向上具有第一尺寸,每一个所述有机发光体在所述第二方向上具有第二尺寸;
其中,所述第一方向与所述第二方向垂直,所述第一尺寸与所述第一间距不相等,所述第二尺寸与所述第二间距不相等。
本申请实施例提供了一种显示装置,其包括:
像素定义层,所述像素定义层包括第一部分所述第一部分包括呈阵列设置的多个像素孔,在第一方向上相邻的两个所述像素孔之间具有第一间距,在第二方向上相邻的两个所述像素孔之间具有第二间距;
有机发光层,所述有机发光层包括多个有机发光体,每一个所述有机发光体设置于一个所述像素孔内,每一个所述有机发光体在所述第一方向上具有第一尺寸,每一个所述有机发光体在所述第二方向上具有第二尺寸;
其中,所述第一方向与所述第二方向垂直,所述第一尺寸与所述第一间距不相等,所述第二尺寸与所述第二间距不相等。
本申请实施例提供了一种显示装置,其包括第一显示面板和第二显示面板;
所述第一显示面板设置有缺口,所述缺口在所述第一显示面板的厚度方向上贯穿所述第一显示面板,所述第二显示面板设置在所述缺口内;
其中,所述第二显示面板的像素结构包括:
像素定义层,所述像素定义层包括呈阵列设置的多个像素孔,在第一方向上相邻的两个所述像素孔之间具有第一间距,在第二方向上相邻的两个所述像素孔之间具有第二间距;
有机发光层,所述有机发光层包括多个有机发光体,每一个所述有机发光体设置于一个所述像素孔内,每一个所述有机发光体在所述第一方向上具有第一尺寸,每一个所述有机发光体在所述第二方向上具有第二尺寸;
其中,所述第一方向与所述第二方向垂直,所述第一尺寸与所述第一间距不相等,所述第二尺寸与所述第二间距不相等。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的电子设备的结构示意图。
图2为本申请实施例提供的电子设备的透光区的像素结构的示意图。
图3为本申请实施例提供的电子设备的透光区的像素结构的另一示意图。
图4为本申请实施例提供的电子设备透光区的像素结构的远场衍射光强示意图。
图5为本申请实施例提供的电子设备透光区的像素结构的远场衍射光强包络示意图。
图6为本申请实施例提供的电子设备透光区的像素结构的一维衍射极次间距示意图。
图7为本申请实施例提供的电子设备透光区的像素结构的光斑远场衍射光强示意图。
图8a-8k为本申请实施例提供的像素结构的衍射图样的光强包络和衍射级次分布示意图。
图9a-9h为本申请实施例提供的电子设备透光区的像素结构的衍射图样的光强包络和衍射级次分布另一示意图。
图10为本申请实施例提供的电子设备透光区的像素结构的周期单元间隔变化时能量分布示意图。
图11为本申请实施例提供的电子设备的透光区的像素结构的又一示意图。
图12为本申请实施例提供的电子设备的透光区的截面示意图。
图13为本申请实施例提供的电子设备的透光区的另一截面示意图。
图14为本申请实施例提供的电子设备的透光区的又一截面示意图。
图15为本申请实施例提供的电子设备的透光区的再一截面示意图。
图16为本申请实施例提供的电子设备的另一结构示意图。
图17为本申请实施例提供的电子设备的像素定义层示意图。
图18为本申请实施例提供的电子设备的又一结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,电子设备100包括壳体120、显示装置140和摄像头模组160,显示装置140包括显示面板142和驱动电路144,驱动电路144能够驱动显示面板142显示各种图像。显示装置140设置在壳体120 上,壳体120可以包括后盖和边框124,边框124围绕后盖的周缘设置,显示装置140设置于边框124内,显示装置140和后盖可以作为电子设备100的相对的两面。摄像头模组160设置在壳体120的后盖和显示装置140之间。也可以理解为,摄像头模组160包括获取图像的获取图像面,显示装置140包括显示面和相对显示面的显示背面,摄像头模组160的获取图像面朝向显示装置140的显示背面设置,摄像头模组160获取透过显示装置140的光信号,并根据获取的光信号得到图像。在一些实施例中,摄像头模组160可以作为电子设备100的前置摄像头,摄像头模组160可以透过显示装置140获取用户的自拍照等图像。
相关技术中,为了得到更大的屏占比,电子设备的摄像头模组设置在显示屏下方,摄像头模组获取透过显示屏的光信号,从而实现屏下成像。然而,由于显示屏内存在周期性的像素排布结构,这种周期性的像素排布结构会在摄像头模组成像时形成衍射干扰,从而降低屏下成像的质量。
请参阅图2,电子设备的显示装置包括像素定义层250和有机发光层252。其中,像素定义层250包括呈阵列设置的多个像素孔2502,在第一方向上相邻的两个像素孔2502之间具有第一间距h1,在第二方向上相邻的两个像素孔2502之间具有第二间距h2。
有机发光层252包括多个有机发光体2522,每一个有机发光体2522对应设置于一个像素孔2502内,每一个有机发光体2522在第一方向上具有第一尺寸a,每一个有机发光体2522在第二方向上具有第二尺寸b。
其中,第一方向与第二方向垂直,第一尺寸a与第一间距h1不相等,第二尺寸b与第二间距h2不相等。
在第一方向上,有机发光体2522的第一尺寸a与相邻两个像素孔2502的第一间距h1不相等,在第二方向上,有机发光体2522的第二尺寸b与相邻两个像素孔2502的第二间距h2也不相等,可以改善通过本实施例的像素结构的光信号的衍射效应。
其中,多个像素孔2502呈阵列设置,呈阵列设置的多个像素孔2502可以形成相互平行的多列像素孔2502和多行像素孔2502,第一方向可以理解为阵列的行方向,第二方向可以理解为阵列的列方向,或者第一方向可以理解为阵列的列方向,第二方向可以理解为阵列的行方向。
像素结构中的像素孔2502和有机发光体2522均为周期性结构,为方便理解,以一维情况为例,请结合图3,像素结构的透过率函数与远场衍射光强构成傅里叶变换关系。假设每个周期单元的透过率函数为t unit(x),周期单元的宽度为d,每个周期单元由两种材质构成,第一种材质(即有机发光体2522)的宽度为a,第二种材质(即像素定义层250)的宽度为d-a,一维像素结构的透过率函数可表示为:
Figure PCTCN2020073149-appb-000001
其中,
Figure PCTCN2020073149-appb-000002
为卷积符号,comb(x)为一维梳状函数。若采用总宽度为L的平面波照射,则像素结构后的光场分布可表示为:
Figure PCTCN2020073149-appb-000003
对(2)式作傅里叶变化可得远场衍射光场分布如下:
Figure PCTCN2020073149-appb-000004
请参阅图4,图4为
Figure PCTCN2020073149-appb-000005
的远场衍射光场分布,可以理解为仅有透过和不透光两部分组件。为了方便理解,忽略常数项,可以看到远场衍射图样由三部分组成:
第一部分:请参阅图5,周期单元的透过率函数的傅里叶变换FT{t unit(x)},其构成了整个衍射光强的包络,包络形状与周期单元的透过率函数t unit(x)有关(因为t unit(x)宽度为d,所以和间距d也有关);
第二部分:请参阅图6,梳状函数comb(dx),其决定了衍射级次之间的间距,其值仅与周期单元间距d有关;
第三部分:请参阅图7,光斑的傅里叶变换sinc(Lx),其决定了每个衍射光点的大小和形状,其值仅与光斑直径L有关。
根据MATLAB仿真和实验测试数据可以得出衍射级次间距和d成反比关系,随着d的增大,衍射级次间距在逐渐缩小,且当a与d的比例接近a=0.5d时,±1级衍射光强最强,即
Figure PCTCN2020073149-appb-000006
有最大值。
在MATLAB仿真中,按照λ=630nm,材质1的折射率n1=1.79,厚度为d1=0.3μm,材质2的折射率n1=1.64,厚度为d2=1.6μm,材质1的宽度a=18μm,周期单元尺寸d=43μm为初始结构,此时透过率函数可表示为:
Figure PCTCN2020073149-appb-000007
下面分别改变a与d的值,观察衍射光强分布。
改变d值,固定矩形像素孔2502的宽度a=18μm。其中,像素孔2502为矩形,像素孔2502具有第一方向的第一尺寸a,第二方向的第二尺寸b。也可以理解为矩形的像素孔2502的短边宽度为第一尺寸a,长边长度为第二尺寸b。d值为与第一方向相邻两个矩形像素孔2502之间的间距,d值的取值范围为23μm~200μm,根据不同的d值分别得到衍射图样的光强包络和衍射级次分布,具体如图8a-8k所示,其中图8a-8k依次表示为a=18μm、d=23μm;a=18μm、d=33μm;a=18μm、d=43μm;a=18μm、d=53μm;a=18μm、d=63μm;a=18μm、d=73μm;a=18μm、d=83μm;a=18μm、d=93μm;a=18μm、d=103μm;a=18μm、d=150μm;a=18μm、d=200μm的衍射图样的光强包络和衍射光强。其中,图8a-8k中每个附图中的左侧图像为衍射光强包络,右侧图像为衍射光强。
可以看到,衍射级次间距和d值成反比关系,随着d值的增大,衍射级次间距在逐渐缩小,且当a与d的比例接近a=0.5d时,±1级衍射光强最强,即
Figure PCTCN2020073149-appb-000008
有最大值。
二、改变a值,固定周期单元的总宽度d=43μm。a值的取值范围为3μm~38μm,根据不同的a值分别得到衍射图样的光强包络和衍射级次分布,具体如图9a-9h所示,其中图9a-9h依次表示为a=3μm、d=43μm;a=8μm、d=43μm;a=13μm、d=43μm;a=18μm、d=43μm;a=23μm、d=43μm;a=28μm、d=43μm;a=33μm、d=43μm;a=38μm、d=43μm的衍射图样的光强包络和衍射光强。其中,图9a-9h中每个附图中的左侧图像为衍射光强包络,右侧图像为衍射光强。
可以看到,a值的改变不影响衍射级次间距,同样的,当a与d的比例接近a=0.5d时,±1级衍射光强最强,即
Figure PCTCN2020073149-appb-000009
有最大值。
由于有机发光层和像素定义层为重影主要原因,故对有机发光层和像素定义层进行仿真(如通过zemax仿真),观察改变微结构周期单元间隔时衍射级次变化。
将有机发光层和像素定义层的周期单元长度以5um为间隔逐渐由43um增大至78um时,相应的+1、-1、0级光强相对值如表1所示,其中像素孔的第一尺寸a保持不变,第一间距d增大。由于+1、-1级外的更高级次能量始终小于0级能量的10%,而+1、-1级的衍射光强为重影的主要影响因素,因而在本实验 中主要分析+1、-1级与0级,具体可以参阅表1。
表1:
间隔(um) -1级强度、相对位置 0级强度、相对位置 +1级强度、相对位置
43 3195、-0.14 3733、0 3195、0.14
48 2911、-0.13 4487、0 2848、0.13
53 2629、-0.12 5068、0 2629、0.12
58 2323、-0.11 5619、0 2303、0.11
63 2000、-0.10 6496、0 2023、0.10
68 1811、-0.093 6743、0 1750、0.093
73 1656、-0.087 6967、0 1646、0.087
78 1379、-0.08 7504、0 1390、0.08
请参阅图10,图10中示出了有机发光层和像素定义层的周期单元长度变化时能量分布的情况。其中,附图中L1的曲线对应间隔为43um;L2的曲线对应间隔为48um;L3的曲线对应间隔为53um;L4的曲线对应间隔为58um;L5的曲线对应间隔为63um;L6的曲线对应间隔为68um;L7的曲线对应间隔为73um;L8的曲线对应间隔为78um。可以从图中看出,随着有机发光层的有机发光体间隔的增大,衍射级次间的相对位置渐渐向0级(主衍射级)靠拢,反映到所成图像上的现象为重影图像逐渐有向主图像重合的趋势。
同时,随着有机发光体间隔的增大,0级的强度渐渐增强,+-1级的光强渐渐减弱,当周期单元长度为78um、与GFF间隔相同时,主衍射级次光强最大,+1、-1级光强最小。
有机发光体间隔加大后,各衍射级次向中间靠拢且衍射级次间距离变小,+1、-1级光强减弱,但高级次光强渐渐增强。由此可知,第一方向上,有机发光体的第一尺寸a与相邻两个像素孔之间的间距h1的差值越大,衍射就越弱。
请继续参阅图2,在一些实施例中,有机发光体2522的第一尺寸a小于有机发光体2522的第二尺寸b,第二尺寸b与第一间距h1不相等。
其中,有机发光体2522为长条状态,具有短边和长边,短边对应尺寸为第一尺寸a,长边对应尺寸为第二尺寸b。有机发光体2522的第二尺寸b与第一间距h1也不相等。有机发光体2522可以为矩形等形状。
需要说明的是,第一间距h1为像素定义层第一方向相邻两个像素孔之间的间距,有机发光体对应设置在像素孔内,因此,第一间距h1也可以理解为有机发光层第一方向相邻两个有机发光体之间的间距。同理,第二间距h2也可以理解为有机发光层第二方向相邻两个有机发光体之间的间距。
在一些实施例中,有机发光体2522的第一尺寸a小于第一间距h1,第二尺寸b大于第一间距h1。
第一方向上,两个相邻的像素孔2502之间的第一间距h1大于有机发光体2522的第一尺寸a。因为,有机发光体2522的大小一般是固定的,因此,可以增加两个相邻的像素孔2502之间的间距,从而实现第一尺寸a小于第一间距h1。其中,有机发光体2522的第二尺寸b也大于第一间距h1,第一间距h1大于第一尺寸a。可以理解的是,有机发光体2522为长条结构,如矩形等。
在一些实施例中,有机发光体2522的第一尺寸a小于第二尺寸b,第一尺寸a大于第一间距h1。
第一方向上,有机发光体2522的第一尺寸a可以大于两个相邻的像素孔2502之间的第一间距h1,可以改善通过像素结构的光信号的衍射效应。
在一些实施例中,每一像素孔可以为正方形,设置在像素孔内的有机发光体对应也为正方形,有机发光体第一方向的第一尺寸a与第二方向的第二尺寸b相等。第一方向上,有机发光体的第一尺寸a可以大于或小于两个相邻的像素孔的第一间距h1。第二方向上,有机发光体的第二尺寸b可以大于或小于两个相邻的像素孔的第二间距h2,其中,第一间距h1和第二间距h2可以相等也可以不相等,第一间距h1可以大于第二间距h2,第一间距h1也可以小于第二间距h2。可以改善通过像素结构的光信号的衍射效应。
需要说明的是,有机发光体2522的第一尺寸a与第一间距h1的差值越大,改善通过像素结构的光信号的衍射效应的效果越好。第二尺寸b与第二间距h2的差值越大,改善通过像素结构的光信号的衍射效应的效果也越好。
在一些实施例中,每一个像素孔2502可以为矩形,设置在像素孔2502内的有机发光体2522对应也为矩形。第一方向可以理解为阵列的行方向,也可以理解为平行像素孔2502的短边方向,第二方向可以理解为阵列的列方向,也可以理解为平行像素孔2502的长边方向。
请参阅图11,在一些实施例中,像素孔2502及有机发光体2522可以均呈圆角矩形。因为矩形的像素孔2502和有机发光体2522的4个边角为尖角,在光信号透过矩形有机发光体2522后,容易在衍射中形成长条的长虹情况。而圆角矩形的像素孔2502和有机发光体2522,可以减少畸变,可以改善衍射中长条的长虹情况。其中,矩形包括相对设置的两个长边、以及相对设置的两个短边,两个长边通过两个短边连接。圆角矩形可以为四个边角为圆弧形的连接线连接,即,每个长边通过一个圆弧形的连接线与短边连接。圆角矩形也可以为两个长边的两端通过圆弧形的连接线连接,即,两个圆弧形的连接线替换两个短边将两个长边连接。
当然,在其他一些实施例中,配合设置的像素孔2502和有机发光体2522可以设置为椭圆、多边形等其他形状,只要将像素孔2502和有机发光体2522设置成没有锐角或直角的形状即可。例如,有机发光体2522包括相对设置且平行的两个长边,两个长边的一端通过首尾相连的两条连接线连接,其中连接线与长边的夹角、两条连接线之间的夹角均为120度。当然,还可以设置成其他大于90度的角度,还可以设置更多条首尾相连的连接线连接。
需要说明的是,当像素孔2502和有机发光体2522的形状不为矩形时,有机发光体2522包括相对设置的第一侧边和第二侧边、以及将第一侧边和第二侧边连接的且相对设置的第三侧边和第四侧边,有机发光体2522为对称结构,第一侧边和第二侧边的尺寸相等,第三侧边和第四侧边的尺寸相等,第三侧边的尺寸大于第一侧边的尺寸。有机发光体2522在第一方向上的第一尺寸a可以理解为相互平行的第三侧边和第四侧边之间的距离,或者理解为第一侧边的尺寸。有机发光体2522在第二方向上的第二尺寸b可以理解为相互平行的第一侧边和第二侧边之间的距离,或者理解为第三侧边的尺寸。
请参阅图12,在一些实施例中,显示装置包括层叠设置的第一基板220、阳极金属层240、像素定义层250、公共电极层260和第二基板280。像素定义层250设置在阳极金属层240和公共电极层260之间。阳极金属层240、公共电极层260配合驱动有机发光层252,以使有机发光层252显示各种图像。摄像头模组160可以透过显示装置140的任意位置采集图像,即可以获取透过显示装置140的任意位置获取光信号,并根据光信号形成图像。
其中,第一基板220和第二基板280均可以为无色透明的基板,具体可以采用玻璃、树脂等材料,第一基板220和第二基板280还可以为柔性基板,并且显示装置整体为柔性显示装置。
其中,阳极金属层240包括第一阳极金属层242、平坦化层244和第二阳极金属层246。第一阳极金 属层242设置在平坦化层244和像素定义层250之间,第二阳极金属层246设置在平坦化层244和第一基板220之间。
显示装置140还包括薄膜晶体管248,薄膜晶体管248分别连接第一阳极金属层242、第二阳极金属层246和有机发光层252,第一阳极金属层242、第二阳极金属层246和有机发光层252分别连接薄膜晶体管248的不同极。
在一些实施例中,第一阳极金属层242设置在平坦化层244和有机发光层252之间,第一阳极金属层242的材料为纳米银。
第一阳极金属层242包括多条第一导电线,第一导电线沿第一方向延伸,每条第一导电线对应两个像素孔2502之间的部分,用纳米银制成的第一阳极金属层242。其中,用纳米银制成的每条第一导电线在满足阻抗特性的情况下,可以制作的更窄或更薄或更窄且更薄,第一方向上,两个像素孔2502之间的间距h1可以做的更小,使第一间距h1小于第一尺寸a。
在一些实施例中,显示装置还包括薄膜230,薄膜230设置在第一基板220和阳极金属层240之间。薄膜230可以采用SiNx或SiO2制成。
在一些实施例中,显示装置还包括光提取材料层(capping layer,CPL)270。光提取材料层270设置在第二基板280和公共电极层260之间。
需要说明的是,显示装置可以包括薄膜230和光提取材料层270,也可以不包括薄膜230和/或光提取材料层270。
请参阅图13,在一些实施例中,显示装置还包括填充层290,填充层290设置于公共电极层260背离像素定义层250的一侧,填充层290包括多个填充体2902,每一个填充体2902相对一个像素孔2502设置,像素定义层250与填充层290的折射率之差小于像素定义层250与真空的折射率之差。
需要说明的是,光信号透过显示装置140时,光信号透过对应像素孔2502的显示装置第一区域具有第一光程,光信号透过对应非像素孔的显示装置第二区域具有第二光程,两者具有光程差,公共电极层260覆盖于有机发光体2522和像素定义层250,公共电极层260各处的厚度大致相等,公共电极层260对光程差没有影响或影响很小。因为像素定义层250和有机发光体2522的光学参数不同,对应非像素孔的像素定义层250、以及对应像素孔2502区域的有机发光体2522对光程差影响较大。另外,相关技术中,因为显示装置的制程原因,显示装置内相对像素孔2502区域会有一个间隙,该间隙位于公共电极层260背离像素孔2502一侧,因为相对像素定义层250没有间隙,所以该间隙对光程差影响也很大。因为间隙内的真空与像素定义层250的光线参数相差非常大,此时,本申请实施例对应该间隙设置一填充体2902,并且像素定义层250与填充体2902的折射率之差小于像素定义层250与真空的折射率之差,可以改善第一光程和第二光程的光程差,从而改善摄像头160透过显示装置140的成像质量。
具体的,在一些实施例中,公共电极层260具有多个第二凹槽2608,多个第二凹槽2608的开口朝向第二基板280,每一个第二凹槽2608相对一个像素孔2502设置。对应多个第二凹槽2608,光提取材料层270具有多个第三凹槽2709,多个第三凹槽2709的开口朝向第二基板280,每一个第三凹槽2709正对一个像素孔2502,每一个填充体2902设置于一个第三凹槽2709内。
对应公共电极层260的第二凹槽2608,光提取材料层270具有第三凹槽2709,填充体2902设置于第三凹槽2709内,对原显示装置140的结构影响较小。
在一些实施例中,显示装置140对应像素孔2502所在位置具有垂直于第一基板220方向的第一光程,显示装置140对应像素孔2502以外的位置具有垂直于第一基板220方向的第二光程,第一光程等于第二光程。
其中,第一光程可以理解为光信号以垂直于第一基板220方向,从对应像素孔2502所在位置穿过显示装置140的光程。第一光程具体可以为第二基板280、光提取材料层270、填充层290、公共电极层260、有机发光层252、阳极金属层240和第一基板220中各层对应的厚度和折射率的乘积之和。
第二光程可以理解为光信号以垂直于第一基板220方向,从对应非像素孔所在位置穿过显示装置140的光程。第一光程具体可以为第二基板280、光提取材料层270、公共电极层260、像素定义层250、阳极金属层240和第一基板220中各层对应的厚度和折射率的乘积之和。
其中,因为第二基板280、光提取材料层270、公共电极层260、阳极金属层240和第一基板220中每层都覆盖整层,且每层各个位置的厚度大致相等,因此第二基板280、光提取材料层270、公共电极层260、阳极金属层240和第一基板220对应第一光程和第二光程的光程差可以忽略。
需要说明的是,第一光程等于第二光程可以理解为第一光程与第二光程大致相等。
在一些实施例中,填充层还包括连接体,连接体覆盖于公共电极层,并与多个填充体连接。
填充体填充在第三凹槽内,连接体则可以覆盖整层,即连接体覆盖整个公共电极层和填充体。其中,填充体若刚好填充满第三凹槽,则连接体相对的两个面平行。
在一些实施例中,每个填充体可以设置于一个第二凹槽内,填充层的多个填充体对应设置于公共电极层的多个第二凹槽内,光提取材料层则覆盖于填充层和公共电极层。当填充体填充满第二凹槽时,光提取材料层可以设置平铺于公共电极层和填充层。在其他一些实施例中,填充体朝向光提取材料层的表面可以高于或低于公共电极层,即,填充体可以不填满第二凹槽,或高出第二凹槽。
请参阅图14,在一些实施例中,显示装置还包括遮光块272,遮光块272可以为黑色或深色的材料,遮光块272可以用来遮挡进入显示装置240的光线。遮光块272对应薄膜晶体管248设置,遮光块272可以设置在有机发光层252和第二基板280之间,每一个遮光块272至少部分与一个薄膜晶体管248相对设置。例如,薄膜晶体管248在第一基板220上的投影可以位于遮光块272在第一基板220的投影内。如此,可以防止光线进入显示装置后被薄膜晶体管248反射、折射等,从而导致杂光干扰成像。
在一些实施例中,遮光块272可以设置在光提取材料层270,如光提取材料层270对应于薄膜晶体管248的位置设有通孔或凹槽,遮光块272对应设置在通孔或凹槽内,凹槽的开口可以朝向第二基板280,也可以朝向公共电极层260。
在一种实施方式中,第二基板280对应薄膜晶体管248的位置可以设置凹槽,遮光块272对应设置在第二基板280的凹槽内,第二基板280的凹槽的开口朝向公共电极层260。在一种实施方式中,遮光块272还可以设置在有机发光层252和公共电极层260之间的间隙内。
请参阅图15,遮光块272还可以设置在设置了填充层290的显示装置上,具体结构可以采用上述实施例的结构,在此不再赘述。需要说明的是,在其他一些实施例中,遮光块还可以设置在填充层290内。
在一些实施例中,请参阅图16,显示装置240可以包括透光区132和主体区134,透光区132的面积小于主体区134的面积,透光区132的透光率大于主体区134的透光率,摄像头模组160与透光区132相对设置。
透光区132与第一驱动模块1444连接,主体区134与第二驱动模块1442连接,第一驱动模块1444驱动显示装置240的透光区132,第二驱动模块1442驱动显示装置240的主体区134。其中,第一驱动模块1442和第二驱动模块1444可以配合驱动,使透光区132和主体区134共同显示同一图像。如透光区132显示图像的一部分,主体区134显示图像剩下的部分。当摄像头模组160需要获取图像时,第一驱动模块1444驱动透光区132关闭显示,第二驱动模块1442可以继续驱动主体区134显示图像,摄像头模组160通过关闭显示的透光区132获取外界的光信号,并根据光信号得到图像。
在一些实施例中,请参阅图17,并结合图1和图2,像素定义层250包括第一部分254和第二部分256。第一部分254对应透光区,第二部分256对应主体区。第一部分254的面积小于第二部分256的面积,第二部分256也包括呈阵列排布多个有机发光体2522,第一部分254的透光率大于第二部分的透光率。摄像头模组160可以获取透过显示装置140第一部分254获取光信号,并根据光信号形成图像。
在一些实施例中,第一部分254位于像素定义层250的端部。具体的,第一部分254可以位于像素定义层250的顶端或底端或侧边,如像素定义层250为矩形,第二部分256为具有一个缺口的矩形,第一部分254设置在该缺口内,该缺口可以设置在第二部分256的顶边或底边或侧边。当然,第一部分254也可以设置在像素定义层250的中间,也可以理解为第二部分256具有一个厚度方向贯穿第二部分256的通孔,第一部分254设置在该通孔内。
对应的,摄像头模组160对应第一部分设置,摄像头模组160可以获取透过显示装置140的第一部分254获取光信号,对应第一部分254的显示装置140的透光率大于对应第二部分的显示装置12的透光率。具体的,对应第一部分254的有机发光体2522的分布密度更小,即小于对应第二部分256的有机发光体2522的分布密度。第一部分254对应的有机发光体2522的分布密度更小,与有机发光体2522一一对应的不透光的薄膜晶体管248的分布密度也更小,从而提高了第一部分对应的显示装置140的透光率。
在一些实施例中,第一部分254的有机发光体2522的分布密度小于第二部分256的有机发光体2522的分布密度。也可以理解为,第一部分254相邻的两个像素孔2502的间距大于第二部分256相邻的两个像素孔2502的间距,像素定义层250的透光率大于有机发光体2522的透光率,第一部分254的有机发光层252的占比更小,从而使第一部分254的透光率大于第二部分256的透光率。另外,每一个有机发光体2522对应设置一个薄膜晶体管248,薄膜晶体管248是不透光的,第一部分254的有机发光体2522的分布密度更小,对应的薄膜晶体管248的分布密度也更小,从而使第一部分254的透光率大于第二部分256的透光率。
其中,透光区和主体区主要在像素定义层不同。透光区和主体区可以共用同一块第一基板、第二基板等。
需要说明的是,第一部分254对应的阳极金属层240可以用高透光的材料制成,如ITO、纳米银等。第二部分256对应的阳极金属层240可以用高透光的材料制成,也可以用低透光或不透光的材料制成。
在一些实施例中,请参阅图18,显示装置140包括第一显示面板1422和第二显示面板1424,第一显示面板1422设置有缺口110,缺口110在第一显示面板1422的厚度方向上贯穿第一显示面板1422,第一显示面板1422为正常显示的显示面板142。第二显示面板1424设置在缺口110内,第二显示面板1424对应显示装置240的透光区,第一显示面板1422对应显示装置240的主体区。电子设备100的摄像头模组160设置在壳体和第二显示面板1424之间,摄像头模组160获取透过透光区的光信号,并根据获取的光信号得到图像。
第一显示面板1422和第二显示面板1424为两个独立的显示面板,先分别制造好第一显示面板1422和第二显示面板1424,然后再将第二显示面板1424放置在第一显示面板1422的缺口110内。
需要说明的是,第一显示面板1422与第二驱动模块1442连接,第二显示面板1424与第一驱动模块1444连接,第一驱动模块1444驱动第二显示面板1424,第二驱动模块1442驱动第一显示面板1422,第一驱动模块1442和第二驱动模块1444配合驱动,使第一显示面板1422和第二显示面板1424共同显示同一图像。如第一显示面板1422显示图像的一部分,第二显示面板1424显示图像剩下的部分。当摄像头模组需要获取图像时,第一驱动模块1444驱动第二显示面板1424关闭显示,第二驱动模块1442可以继续驱动第一显示面板1422显示图像,摄像头模组通过关闭显示的第二显示面板1424获取外界的光信号,并根据光 信号得到图像。
在一些实施例中,摄像头模组的采集图像的采集面可以做的很小,显示装置的单个有机发光体的面积较大,摄像头模组的采集面等于或小于单个有机发光体的面积。摄像头模组可以透过有机发光体采集图像。
在一些实施例中,摄像头模组的采集图像的采集面可以做的很小,显示装置中相邻两个有机发光体的间隔较大,摄像头模组的采集面等于或小于该间隔。摄像头模组可以透过两个有机发光体的间隔采集图像。
在一些实施例中,请继续参阅图2,本申请实施例的像素结构包括像素定义层250和有机发光层252。
像素定义层250包括呈阵列设置的多个像素孔2502,在第一方向上相邻两个的像素孔2502之间具有第一间距h1,在第二方向上相邻的两个像素孔2502之间具有第二间距h2。
有机发光层252包括多个有机发光体2522,每一个有机发光体2522对应设置于一个像素孔2502内,每一个有机发光体2522在第一方向上具有第一尺寸a,每一个有机发光体2522在第二方向上具有第二尺寸b。
其中,第一方向与第二方向垂直,第一尺寸a与第一间距h1不相等,第二尺寸b与第二间距h2不相等。
虽然像素结构为周期性的结构,但是在第一方向上,有机发光体2522的第一尺寸a与相邻两个像素孔2502的第一间距h1不相等,在第二方向上,有机发光体2522的第二尺寸b与相邻两个像素孔2502的第二间距h2也不相等,可以改善通过像素结构的光信号的衍射效应。
其中,多个像素孔2502呈阵列设置,呈阵列设置的多个像素孔2502可以形成相互平行的多列像素孔2502和多行像素孔2502,第一方向可以理解为阵列的行方向,第二方向可以理解为阵列的列方向,或者第一方向可以理解为阵列的列方向,第二方向可以理解为阵列的行方向。
在一些实施例中,有机发光体2522的第一尺寸a小于第二尺寸b,第二尺寸b与第一间距h1不相等。
有机发光体2522为长条状态,具有短边和长边,短边对应尺寸为第一尺寸a,长边对应尺寸为第二尺寸b。有机发光体2522的第二尺寸b与第一间距h1也不相等。其中,有机发光体2522可以为矩形等形状。
在一些实施例中,有机发光体2522的第一尺寸a小于第一间距h1,第二尺寸b大于第一间距h1。
第一方向上,两个相邻的像素孔2502之间的第一间距h1大于有机发光体2522的第一尺寸a。因为,有机发光体2522的大小一般是固定的,因此,可以增加两个相邻的像素孔2502之间的间距,从而实现第一尺寸a小于第一间距h1。其中,有机发光体2522的第二尺寸b也大于第一间距h1,第一间距h1大于第一尺寸a。可以理解的是,有机发光体2522为长条结构,如矩形等。
在一些实施例中,有机发光体2522的第一尺寸a小于第二尺寸b,第一尺寸a大于第一间距h1。
第一方向上,有机发光体2522的第一尺寸a可以大于两个相邻的有机发光体2522的第一间距h1。可以改善通过像素结构的光信号的衍射效应。
在一些实施例中,每一个像素孔2502可以为正方形,设置在像素孔2502内的有机发光体2522对应也为正方形,有机发光体2522第一方向的第一尺寸a与第二方向的第二尺寸b相等。第一方向上,有机发光体2522的第一尺寸a可以大于或小于两个相邻的像素孔2502的第一间距h1。第二方向上,有机发光体2522的第二尺寸b可以大于或小于两个相邻的像素孔2502的第二间距h2,其中,第一间距h1和第二间距h2可以相等也可以不相等,第一间距h1可以大于第二间距h2,第一间距h1也可以小于第二间距h2。可以改善通过像素结构的光信号的衍射效应。
需要说明的是,有机发光体2522的第一尺寸a与第一间距h1的差值越大,改善通过像素结构的光信号的衍射效应的效果越好。第二尺寸b与第二间距h2的差值越大,改善通过像素结构的光信号的衍射效应的效果也越好。
在一些实施例中,每一个像素孔2502可以为矩形,设置在像素孔2502内的有机发光体2522对应也为矩形。第一方向可以理解为阵列的行方向,也可以理解为平行像素孔2502的短边方向,第二方向可以理解为阵列的列方向,也可以理解为平行像素孔2502的长边方向。
在一些实施例中,请继续参阅图11,像素孔2502及有机发光体2522均呈圆角矩形。因为矩形的像素孔2502和有机发光体2522的4个边角为尖角,在光信号透过矩形有机发光体2522后,容易在衍射中形成长条的长虹情况。而圆角矩形的像素孔2502和有机发光体2522,可以减少畸变,可以改善衍射中长条的长虹情况。其中,矩形包括相对设置的两个长边、以及相对设置的两个短边,两个长边通过两个短边连接。圆角矩形可以为四个边角为圆弧形的连接线连接,即,每个长边通过一个圆弧形的连接线与短边连接。圆角矩形也可以为两个长边的两端通过圆弧形的连接线连接,即,两个圆弧形的连接线替换两个短边将两个长边连接。
当然,在其他一些实施例中,配合设置的像素孔2502和有机发光体2522可以设置为椭圆、多边形等其他形状,只要将像素孔2502和有机发光体2522设置成没有锐角或直角的形状即可。例如,有机发光体2522包括相对设置且平行的两个长边,两个长边的一端通过首尾相连的两条连接线连接,其中连接线与长边的夹角、两条连接线之间的夹角均为120度。当然,还可以设置成其他大于90度的角度,还可以设置更多条首尾相连的连接线连接。
需要说明的是,当像素孔2502和有机发光体2522的形状不为矩形时,有机发光体2522包括相对设置的第一侧边和第二侧边、以及将第一侧边和第二侧边连接的且相对设置的第三侧边和第四侧边,有机发光体2522为对称结构,第一侧边和第二侧边的尺寸相等,第三侧边和第四侧边的尺寸相等,第三侧边的尺寸大于第一侧边的尺寸。有机发光体2522在第一方向上的第一尺寸a可以理解为相互平行的第三侧边和第四侧边之间的距离,或者理解为第一侧边的尺寸。有机发光体2522在第二方向上的第二尺寸b可以理解为相互平行的第一侧边和第二侧边之间的距离,或者理解为第三侧边的尺寸。
在一些实施例中,像素孔2502及有机发光体2522均呈圆角矩形。有机发光体2522为圆角矩形,可以减少畸变,可以改善衍射中长条的长虹情况。
在一些实施例中,请继续参阅图2,并结合图17,本申请实施例的显示装置包括像素定义层250和有机发光层252。
像素定义层250包括第一部分254,第一部分254包括呈阵列设置的多个像素孔2502,在第一方向上相邻的两个像素孔2502之间具有第一间距h1,在第二方向上相邻的两个像素孔2502之间具有第二间距h2。
有机发光层252包括多个有机发光体2522,每一个有机发光体2522对应设置于一个像素孔2502内,每一个有机发光体2522在第一方向上具有第一尺寸a,每一个有机发光体2522在第二方向上具有第二尺寸b。
其中,第一方向与第二方向垂直,第一尺寸a与第一间距h1不相等,第二尺寸b与第二间距h2不相等。
虽然像素结构为周期性的结构,但是在第一方向上,有机发光体2522的第一尺寸a与相邻的两个像素孔2502的第一间距h1不相等,在第二方向上,有机发光体2522的第二尺寸b与相邻两个像素孔2502的第二间距h2也不相等,可以改善通过像素结构的光信号的衍射效应。
其中,多个像素孔2502呈阵列设置,呈阵列设置的多个像素孔2502可以形成相互平行的多列像素孔2502和多行像素孔2502,第一方向可以理解为阵列的行方向,第二方向可以理解为阵列的列方向,或者第一方向可以理解为阵列的列方向,第二方向可以理解为阵列的行方向。
在一些实施例中,有机发光体2522的第一尺寸a小于第二尺寸b,第二尺寸b与第一间距h1不相等。
有机发光体2522为长条状态,具有短边和长边,短边对应尺寸为第一尺寸a,长边对应尺寸为第二尺寸b。有机发光体2522的第二尺寸b与第一间距h1也不相等。其中,有机发光体2522可以为矩形等形状。
在一些实施例中,有机发光体2522的第一尺寸a小于第一间距h1,第二尺寸b大于第一间距h1。
第一方向上,两个相邻的像素孔2502之间的第一间距h1大于有机发光体2522的第一尺寸a。因为,有机发光体2522的大小一般是固定的,因此,可以增加两个相邻的像素孔2502之间的间距,从而实现第一尺寸a小于第一间距h1。其中,有机发光体2522的第二尺寸b也大于第一间距h1,第一间距h1大于第一尺寸a。可以理解的是,有机发光体2522为长条结构,如矩形等。
在一些实施例中,有机发光体2522的第一尺寸a小于第二尺寸b,第一尺寸a大于第一间距h1。
第一方向上,有机发光体2522的第一尺寸a可以大于两个相邻的有机发光体2522的第一间距h1。如此可以改善通过像素结构的光信号的衍射效应。
在一些实施例中,请继续参阅图12,显示装置140还包括平坦化层244和第一阳极金属层242,第一阳极金属层242设置在平坦化层244和有机发光层之间,第一阳极金属层242的材料为纳米银。
第一阳极金属层242包括多条第一导电线,第一导电线沿第一方向延伸,每条第一导电线对应两个像素孔2502之间的部分,用纳米银制成的第一阳极金属层242,用纳米银制成的每条第一导电线在满足阻抗特性的情况下,可以制作的更窄或更薄或更窄且更薄,第一方向上,两个像素孔2502之间的间距h1可以做的更小,使第一间距h1小于第一尺寸a。
在一些实施例中,每一个像素孔2502可以为正方形,设置在像素孔2502内的有机发光体2522对应也为正方形,有机发光体2522第一方向的第一尺寸a与第二方向的第二尺寸b相等。第一方向上,有机发光体2522的第一尺寸a可以大于或小于两个相邻的像素孔2502的第一间距h1。第二方向上,有机发光体2522的第二尺寸b可以大于或小于两个相邻的像素孔2502的第二间距h2,其中,第一间距h1和第二间距h2可以相等也可以不相等,第一间距h1可以大于第二间距h2,第一间距h1也可以小于第二间距h2。可以改善通过像素结构的光信号的衍射效应。
需要说明的是,有机发光体2522的第一尺寸a与第一间距h1的差值越大,改善通过像素结构的光信号的衍射效应的效果越好。第二尺寸b与第二间距h2的差值越大,改善通过像素结构的光信号的衍射效应的效果也越好。
在一些实施例中,每一个像素孔2502可以为矩形,设置在像素孔2502内的有机发光体2522对应也为矩形。第一方向可以理解为阵列的行方向,也可以理解为平行像素孔2502的短边方向,第二方向可以理解为阵列的列方向,也可以理解为平行像素孔2502的长边方向。
在一些实施例中,请继续参阅图11,像素孔2502及有机发光体2522均呈圆角矩形。因为矩形的像素孔2502和有机发光体2522的4个边角为尖角,在光信号透过矩形有机发光体2522后,容易在衍射中形成长条的长虹情况。而圆角矩形的像素孔2502和有机发光体2522,可以减少畸变,可以改善衍射中长条的长虹情况。其中,矩形包括相对设置的两个长边、以及相对设置的两个短边,两个长边通过两个短边连接。圆角矩形可以为四个边角为圆弧形的连接线连接,即,每个长边通过一个圆弧形的连接线与短边连接。圆角矩形也可以为两个长边的两端通过圆弧形的连接线连接,即,两个圆弧形的连接线替换两个 短边将两个长边连接。
当然,在其他一些实施例中,配合设置的像素孔2502和有机发光体2522可以设置为椭圆、多边形等其他形状,只要将像素孔2502和有机发光体2522设置成没有锐角或直角的形状即可。例如,有机发光体2522包括相对设置且平行的两个长边,两个长边的一端通过首尾相连的两条连接线连接,其中连接线与长边的夹角、两条连接线之间的夹角均为120度。当然,还可以设置成其他大于90度的角度,还可以设置更多条首尾相连的连接线连接。
需要说明的是,当像素孔2502和有机发光体2522的形状不为矩形时,有机发光体2522包括相对设置的第一侧边和第二侧边、以及将第一侧边和第二侧边连接的且相对设置的第三侧边和第四侧边,有机发光体2522为对称结构,第一侧边和第二侧边的尺寸相等,第三侧边和第四侧边的尺寸相等,第三侧边的尺寸大于第一侧边的尺寸。有机发光体2522在第一方向上的第一尺寸a可以理解为相互平行的第三侧边和第四侧边之间的距离,或者理解为第一侧边的尺寸。有机发光体2522在第二方向上的第二尺寸b可以理解为相互平行的第一侧边和第二侧边之间的距离,或者理解为第三侧边的尺寸。
在一些实施例中,像素孔2502及有机发光体2522均呈圆角矩形。有机发光体2522为圆角矩形,可以减少畸变,可以改善衍射中长条的长虹情况。
请继续参阅图13,在一些实施例中,显示装置还包括填充层290,填充层290设置于公共电极层260背离像素定义层250的一侧,填充层290包括多个填充体2902,每一个填充体2902相对一个像素孔2502设置,像素定义层250与填充层290的折射率之差小于像素定义层250与真空的折射率之差。
具体的,在一些实施例中,公共电极层260具有多个第二凹槽2608,多个第二凹槽2608的开口朝向第二基板280,每一个第二凹槽2608相对一个像素孔2502设置。对应多个第二凹槽2608,光提取材料层270具有多个第三凹槽2709,多个第三凹槽2709的开口朝向第二基板280,每一个第三凹槽2709正对一个像素孔2502,每个填充体2902设置于一个第三凹槽2709内。
在一些实施例中,每个填充体可以设置于一个第二凹槽内,填充层的多个填充体对应设置于公共电极层的多个第二凹槽内,光提取材料层则覆盖于填充层和公共电极层。当填充体填充满第二凹槽时,光提取材料层可以设置平铺于公共电极层和填充层。在其他一些实施例中,填充体朝向光提取材料层的表面可以高于或低于公共电极层,即,填充体可以不填满第二凹槽,或高出第二凹槽。
在一些实施例中,请继续参阅图14,显示装置还包括遮光块272,遮光块272可以为黑色或深色的材料,遮光块272可以用来遮挡进入显示装置的光线。遮光块272对应薄膜晶体管248设置,遮光块272可以设置在公共电极层260和第二基板280之间,薄膜晶体管248在第一基板220上的投影位于遮光块272在第一基板220的投影内。如此,可以防止光线进入显示装置后被薄膜晶体管248反射、折射等,从而导致杂光干扰成像。具体的,遮光块272可以设置在光提取材料层270,如光提取材料层270对应于薄膜晶体管248的位置设有通孔或凹槽,遮光块272对应设置在通孔或凹槽内,凹槽的开口可以朝向第二基板280,也可以朝向公共电极层260。在一种实施方式中,第二基板280对应薄膜晶体管248的位置可以设置凹槽,遮光块272对应设置在第二基板280的凹槽内,第二基板280的凹槽的开口朝向公共电极层260。在一种实施方式中,遮光块272还可以设置在有机发光层252和公共电极层260之间的间隙内。
请继续参阅图15,遮光块272还可以设置在设置了填充层290的显示装置上,具体结构可以采用上述实施例的结构,在此不再赘述。需要说明的是,在其他一些实施例中,遮光块还可以设置在填充层290内。
在一些实施例中,请继续参阅图16,显示装置240可以包括透光区132和主体区134,透光区132的面积小于主体区134的面积,透光区132的透光率大于主体区134的透光率,摄像头模组160与透光区132 相对设置。
透光区132与第一驱动模块1444连接,主体区134与第二驱动模块1442连接,第一驱动模块1444驱动显示装置240的透光区132,第二驱动模块1442驱动显示装置240的主体区134。其中,第一驱动模块1442和第二驱动模块1444可以配合驱动,使透光区132和主体区134共同显示同一图像。如透光区132显示图像的一部分,主体区134显示图像剩下的部分。当摄像头模组160需要获取图像时,第一驱动模块1444驱动透光区132关闭显示,第二驱动模块1442可以继续驱动主体区134显示图像,摄像头模组160通过关闭显示的透光区132获取外界的光信号,并根据光信号得到图像。
在一些实施例中,请继续参阅图17,在一些实施例中,像素定义层250包括第一部分254和第二部分256,第一部分254的面积小于第二部分256的面积,第二部分256也包括呈阵列排布多个有机发光体2522,第一部分254的透光率大于主体256区的透光率。第一部分254的像素结构可以为上述任意一个实施例中第一部分254的像素结构。对应的,摄像头模组160可以获取透过显示装置140第一部分254获取光信号,并根据光信号形成图像。
第一部分254位于像素定义层250的端部。具体的,第一部分254可以位于像素定义层250的顶端或底端或侧边,如像素定义层250为矩形,第二部分256为具有一个缺口的矩形,第一部分254设置在该缺口内,该缺口可以设置在第二部分256的顶边或底边或侧边。当然,第一部分254也可以设置在像素定义层250的中间,也可以理解为第二部分256具有一个厚度方向贯穿第二部分256的通孔,第一部分254设置在该通孔内。
对应的,摄像头模组160对应第一部分254设置,摄像头模组160可以获取透过显示装置140的第一部分254获取光信号,对应第一部分254的显示装置140第一部分的透光率大于对应主体区的显示装置12第二部分的透光率。具体的,对应第一部分254的有机发光体2522的分布密度更小,即小于对应第二部分256的有机发光体2522的分布密度。第一部分254对应的有机发光体2522的分布密度更小,与有机发光体2522一一对应的不透光的薄膜晶体管248的分布密度也更小,从而提高了透光区对应的显示装置140第一部分的透光率。
在一些实施例中,第一部分254的有机发光体2522的分布密度小于第二部分256的有机发光体2522的分布密度。也可以理解为,第一部分254相邻的两个像素孔2502的间距大于第二部分256相邻的两个像素孔2502的间距,像素定义层250的透光率大于有机发光体2522的透光率,第一部分254的有机发光体2522的占比更小,从而使第一部分254的透光率大于第二部分256的透光率。另外,每一个有机发光体2522对应设置一个薄膜晶体管248,薄膜晶体管248是不透光的,第一部分254的有机发光体2522的分布密度更小,对应的薄膜晶体管248的分布密度也更小,从而使第一部分254的透光率大于第二部分256的透光率。
需要说明的是,第一部分254对应的阳极金属层240可以用高透光的材料制成,如ITO、纳米银等。第二部分256对应的阳极金属层240可以用高透光的材料制成,也可以用低透光或不透光的材料制成。
在一些实施例中,在第二部256的第一方向上相邻两个有机发光体2522之间具有第三间距,第一尺寸与第三间距相等或相近。
在一些实施例中,请继续参阅图18,显示装置140包括第一显示面板1422和第二显示面板1424,第一显示面板1422设置有缺口110,缺口110在第一显示面板1422的厚度方向上贯穿第一显示面板1422,第一显示面板1422为正常显示的显示面板142。第二显示面板1424设置在缺口110内。电子设备100的摄像头模组160设置在壳体120和第二显示面板1424之间,摄像头模组160获取透过第二显示面板的光信号,并根据获取的光信号得到图像。
第一显示面板1422和第二显示面板1424为两个独立的显示面板,先分别制造好第一显示面板1422和第二显示面板1424,然后再将第二显示面板1424放置在第一显示面板1422的缺口110内。
第一显示面板1422设置有至少一个缺口110。缺口110在第一显示面板1422的厚度方向上贯穿第一显示面板1422。第二显示面板1424设置在缺口110内,第一显示面板1422和第二显示面板1424朝同一方向进行显示。
在一些实施例中,缺口110可以为规则形状诸如长方形、圆形等。缺口110也可以为不规则形状。
电子设备100的第一显示面板1422和第二显示面板1424可同时显示相同的画面,第一显示面板1422和第二显示面板1424也可同时显示不同的画面。
缺口110可以为第一显示面板1422其中一个侧边开口形成,缺口110也可以形成在第一显示面板1422的中间。
需要说明的是,第一显示面板1422与第二驱动模块1442连接,第二显示面板1424与第一驱动模块1444连接,第一驱动模块1444驱动第二显示面板1424,第二驱动模块1442驱动第一显示面板1422,第一驱动模块1442和第二驱动模块1444配合驱动,使第一显示面板1422和第二显示面板1424共同显示同一图像。如第一显示面板1422显示图像的一部分,第二显示面板1424显示图像剩下的部分。当摄像头模组需要获取图像时,第一驱动模块1444驱动第二显示面板1424关闭显示,第二驱动模块1442可以继续驱动第一显示面板1422显示图像,摄像头模组通过关闭显示的第二显示面板1424获取外界的光信号,并根据光信号得到图像。
在一些实施例中,第一显示面板和/或第二显示面板可为结合导电电容触摸传感器电极层或者其他触摸传感器部件(例如,电阻触摸传感器部件、声学触摸传感器部件、基于力的触摸传感器部件、基于光的触摸传感器部件等)的触摸屏显示器,或者可为非触敏的显示器。电容触摸屏电极可由氧化铟锡焊盘或者其他透明导电结构的阵列形成。
电子设备100的壳体120可由塑料、玻璃、陶瓷、纤维复合材料、金属(例如,不锈钢、铝等)、其他合适的材料、或这些材料的任意两种或更多种的组合形成。壳体120可使用一体式配置形成,在该一体式配置中,一些或全部壳体120被加工或模制成单一结构,或者可使用多个结构(例如,内框架结构、形成外部外壳表面的一种或多种结构等)形成。在一些实施例中,壳体120可以形成电子设备100的整机地。
显示装置可设置在壳体的一面。显示装置和壳体可以形成收纳空间,显示装置和壳体之间形成的收纳空间可以收纳电子设备的器件诸如摄像头模组和主板等。其中,主板分别与第一驱动模块、第二驱动模块及摄像头模组电性连接。
以上对本申请实施例提供的电子设备、像素结构及显示装置进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (24)

  1. 一种电子设备,包括显示装置和摄像头模组,所述显示装置包括:
    像素定义层,所述像素定义层包括呈阵列设置的多个像素孔,在第一方向上相邻的两个所述像素孔之间具有第一间距,在第二方向上相邻的两个所述像素孔之间具有第二间距;
    有机发光层,所述有机发光层包括多个有机发光体,每一个所述有机发光体设置于一个所述像素孔内,每一个所述有机发光体在所述第一方向上具有第一尺寸,每一个所述有机发光体在所述第二方向上具有第二尺寸;
    其中,所述第一方向与所述第二方向垂直,所述第一尺寸与所述第一间距不相等,所述第二尺寸与所述第二间距不相等;
    所述摄像头模组至少部分与所述像素孔相对设置,并透过所述显示装置采集图像。
  2. 根据权利要求1所述的电子设备,其中,所述第一尺寸小于所述第二尺寸,所述第二尺寸与所述第一间距不相等。
  3. 根据权利要求2所述的电子设备,其中,所述第一尺寸小于所述第一间距,所述第二尺寸大于所述第一间距。
  4. 根据权利要求2所述的电子设备,其中,所述第一尺寸大于所述第一间距。
  5. 根据权利要求4所述的电子设备,其中,所述显示装置还包括平坦化层和第一阳极金属层,所述第一阳极金属层设置在所述平坦化层和所述有机发光层之间,所述第一阳极金属层的材料为纳米银。
  6. 根据权利要求1所述的电子设备,其中,所述像素孔及所述有机发光体均呈圆角矩形。
  7. 根据权利要求1所述的电子设备,其中,所述显示装置包括透光区和主体区,所述透光区的面积小于所述主体区的面积,所述透光区的透光率大于所述主体区的透光率,所述摄像头模组与所述透光区相对设置。
  8. 根据权利要求7所述的电子设备,其中,所述显示装置还包括层叠设置的第一基板、阳极金属层、公共电极层和第二基板;
    所述像素定义层设置在所述阳极金属层和所述公共电极层之间,所述像素定义层包括第一部分和第二部分,所述第一部分对应所述透光区,所述第二部分对应所述主体区。
  9. 根据权利要求7所述的电子设备,其中,所述显示装置包括第一显示面板和所述第二显示面板,所述第一显示面板设置有缺口,所述缺口在所述第一显示面板的厚度方向上贯穿所述第一显示面板,所述第二显示面板设置在所述缺口内;
    所述主体区对应所述第一显示面板,所述透光区对应所述第二显示面板。
  10. 根据权利要求7所述的电子设备,其中,所述电子设备还包括处理器,所述显示装置和所述摄像头模组均与所述处理器电性连接;
    当接收到拍摄指令时,所述处理器控制所述透光区关闭显示,并控制所述摄像头模组透过所述透光区采集图像;
    当未接收到拍摄指令,且接收到显示图像指令时,所述处理器控制所述透光区和所述主体区共同显示图像。
  11. 一种像素结构,包括:
    像素定义层,所述像素定义层包括呈阵列设置的多个像素孔,在第一方向上相邻的两个所述像素孔之间具有第一间距,在第二方向上相邻的两个所述像素孔之间具有第二间距;
    有机发光层,所述有机发光层包括多个有机发光体,每一个所述有机发光体设置于一个所述像素孔内,每一个所述有机发光体在所述第一方向上具有第一尺寸,每一个所述有机发光体在所述第二方向上具有第二尺寸;
    其中,所述第一方向与所述第二方向垂直,所述第一尺寸与所述第一间距不相等,所述第二尺寸与所述第二间距不相等。
  12. 根据权利要求11所述的像素结构,其中,所述第一尺寸小于所述第二尺寸,所述第二尺寸与所述第一间距不相等。
  13. 根据权利要求12所述的像素结构,其中,所述第一尺寸小于所述第一间距,所述第二尺寸大于所述第一间距。
  14. 根据权利要求12所述的像素结构,其中,所述第一尺寸大于所述第一间距。
  15. 根据权利要求11所述的像素结构,其中,所述像素孔及所述有机发光体均呈圆角矩形。
  16. 一种显示装置,包括:
    像素定义层,所述像素定义层包括第一部分所述第一部分包括呈阵列设置的多个像素孔,在第一方向上相邻的两个所述像素孔之间具有第一间距,在第二方向上相邻的两个所述像素孔之间具有第二间距;
    有机发光层,所述有机发光层包括多个有机发光体,每一个所述有机发光体设置于一个所述像素孔内,每一个所述有机发光体在所述第一方向上具有第一尺寸,每一个所述有机发光体在所述第二方向上具有第二尺寸;
    其中,所述第一方向与所述第二方向垂直,所述第一尺寸与所述第一间距不相等,所述第二尺寸与所述第二间距不相等。
  17. 根据权利要求16所述的显示装置,其中,所述第一尺寸小于所述第二尺寸,所述第二尺寸与所述第一间距不相等。
  18. 根据权利要求17所述的显示装置,其中,所述第一尺寸小于所述第一间距,所述第二尺寸大于所述第一间距。
  19. 根据权利要求17所述的显示装置,其中,所述第一尺寸大于所述第一间距。
  20. 根据权利要求19所述的显示装置,其中,所述显示装置还包括平坦化层和第一阳极金属层,所述第一阳极金属层设置在所述平坦化层和所述有机发光层之间,所述第一阳极金属层的材料为纳米银。
  21. 根据权利要求16所述的显示装置,其中,所述像素孔及所述有机发光体均呈圆角矩形。
  22. 根据权利要求17所述的显示装置,其中,所述显示装置包括透光区和主体区,所述透光区的面积小于所述主体区的面积,所述透光区的透光率大于所述主体区的透光率;
    所述像素定义层还包括第二部分,所述第一部分对应所述透光区,所述第二部分对应所述主体区。
  23. 根据权利要求17所述的显示装置,其中,所述显示装置还包括层叠设置的第一基板、阳极金属层、公共电极层和第二基板;
    所述像素定义层设置在所述阳极金属层和所述公共电极层之间,所述像素定义层包括第一部分和第二部分,所述第一部分对应所述透光区,所述第二部分对应所述主体区。
  24. 一种显示装置,包括第一显示面板和第二显示面板;
    所述第一显示面板设置有缺口,所述缺口在所述第一显示面板的厚度方向上贯穿所述第一显示面板,所述第二显示面板设置在所述缺口内;
    其中,所述第二显示面板的像素结构包括:
    像素定义层,所述像素定义层包括呈阵列设置的多个像素孔,在第一方向上相邻的两个所述像素孔之间具有第一间距,在第二方向上相邻的两个所述像素孔之间具有第二间距;
    有机发光层,所述有机发光层包括多个有机发光体,每一个所述有机发光体设置于一个所述像素孔内,每一个所述有机发光体在所述第一方向上具有第一尺寸,每一个所述有机发光体在所述第二方向上具有第二尺寸;
    其中,所述第一方向与所述第二方向垂直,所述第一尺寸与所述第一间距不相等,所述第二尺寸与所述第二间距不相等。
PCT/CN2020/073149 2019-02-01 2020-01-20 电子设备、像素结构及显示装置 WO2020156309A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20749755.3A EP3916790A4 (en) 2019-02-01 2020-01-20 ELECTRONIC DEVICE, PIXEL STRUCTURE AND DISPLAY DEVICE
US17/382,068 US20210351253A1 (en) 2019-02-01 2021-07-21 Electronic Device and Display Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910107751.6 2019-02-01
CN201910107751.6A CN111524932A (zh) 2019-02-01 2019-02-01 电子设备、像素结构及显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/382,068 Continuation US20210351253A1 (en) 2019-02-01 2021-07-21 Electronic Device and Display Apparatus

Publications (1)

Publication Number Publication Date
WO2020156309A1 true WO2020156309A1 (zh) 2020-08-06

Family

ID=71841160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073149 WO2020156309A1 (zh) 2019-02-01 2020-01-20 电子设备、像素结构及显示装置

Country Status (4)

Country Link
US (1) US20210351253A1 (zh)
EP (1) EP3916790A4 (zh)
CN (1) CN111524932A (zh)
WO (1) WO2020156309A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11412120B2 (en) 2020-12-31 2022-08-09 Google Llc Reducing a hole-in-active-area size for flexible displays
US11706517B2 (en) 2021-03-10 2023-07-18 Google Llc Vertically long apertures for computing device cameras

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079731A (zh) * 2020-08-19 2022-02-22 Oppo广东移动通信有限公司 图像处理方法、装置、存储介质以及终端
CN113555411A (zh) * 2021-07-29 2021-10-26 合肥维信诺科技有限公司 显示面板和显示装置
WO2024031315A1 (zh) * 2022-08-09 2024-02-15 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
US20240118772A1 (en) * 2023-11-30 2024-04-11 Google Llc Mitigating Display Diffraction Flares for Under-Display Sensing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090021714A (ko) * 2007-08-28 2009-03-04 엘지전자 주식회사 유기전계발광소자
CN105047092A (zh) * 2015-08-06 2015-11-11 上海和辉光电有限公司 显示器及其像素阵列
CN108074950A (zh) * 2016-11-11 2018-05-25 乐金显示有限公司 电致发光显示设备及其制造方法
CN109271829A (zh) * 2017-07-17 2019-01-25 金佶科技股份有限公司 取像装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4170179B2 (ja) * 2003-01-09 2008-10-22 株式会社 日立ディスプレイズ 有機elパネルの製造方法および有機elパネル
JP2008098033A (ja) * 2006-10-13 2008-04-24 Canon Inc 有機el表示装置
US7697053B2 (en) * 2006-11-02 2010-04-13 Eastman Kodak Company Integrated display having multiple capture devices
JP2011150583A (ja) * 2010-01-22 2011-08-04 Sony Corp 撮像装置付き画像表示装置
US8941583B2 (en) * 2011-02-15 2015-01-27 Copytele, Inc. Dual particle electrophoretic display and method of manufacturing same
KR102290785B1 (ko) * 2014-11-18 2021-08-19 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102449593B1 (ko) * 2016-01-15 2022-09-30 삼성전자주식회사 카메라 장치를 제어하기 위한 방법 및 그 전자 장치
CN105679796A (zh) * 2016-01-20 2016-06-15 信利(惠州)智能显示有限公司 显示面板及制备方法
KR102446875B1 (ko) * 2016-01-22 2022-09-26 삼성디스플레이 주식회사 표시 장치
CN105633292B (zh) * 2016-03-24 2019-04-02 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法
KR102683935B1 (ko) * 2016-12-30 2024-07-10 엘지디스플레이 주식회사 터치 스크린 일체형 표시장치와 그의 제조방법
KR102489711B1 (ko) * 2017-10-12 2023-01-19 삼성디스플레이 주식회사 표시 장치
CN114355678B (zh) * 2018-02-09 2023-11-03 京东方科技集团股份有限公司 显示基板和显示装置
WO2019187085A1 (ja) * 2018-03-30 2019-10-03 シャープ株式会社 表示デバイス及びその製造方法
CN108717244B (zh) * 2018-05-18 2021-03-26 京东方科技集团股份有限公司 显示装置及其控制方法、存储介质
JP7182906B2 (ja) * 2018-06-12 2022-12-05 株式会社ジャパンディスプレイ 表示装置及び電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090021714A (ko) * 2007-08-28 2009-03-04 엘지전자 주식회사 유기전계발광소자
CN105047092A (zh) * 2015-08-06 2015-11-11 上海和辉光电有限公司 显示器及其像素阵列
CN108074950A (zh) * 2016-11-11 2018-05-25 乐金显示有限公司 电致发光显示设备及其制造方法
CN109271829A (zh) * 2017-07-17 2019-01-25 金佶科技股份有限公司 取像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3916790A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11412120B2 (en) 2020-12-31 2022-08-09 Google Llc Reducing a hole-in-active-area size for flexible displays
US11706517B2 (en) 2021-03-10 2023-07-18 Google Llc Vertically long apertures for computing device cameras

Also Published As

Publication number Publication date
EP3916790A4 (en) 2022-03-23
EP3916790A1 (en) 2021-12-01
US20210351253A1 (en) 2021-11-11
CN111524932A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2020156309A1 (zh) 电子设备、像素结构及显示装置
WO2021098137A1 (zh) 显示基板、显示面板及显示装置
CN106157818B (zh) 一种柔性显示面板、其制作方法及显示装置
CN107632453B (zh) 显示面板及制造方法和显示装置
KR102405198B1 (ko) 감소된 모아레 패턴들을 갖는 터치 디스플레이 시스템
US10642391B2 (en) Touch panel and display device
US9483149B2 (en) Conductive film, display device and touch panel comprising same, and conductive film pattern determination method
US10156924B2 (en) Metal grid, touch screen display device and a manufacture method for touch screen
CN110323354B (zh) 显示面板及显示装置
KR20180067226A (ko) 지문감지가 가능한 터치 센서, 이를 채용한 표시 장치 및 전자 기기
CN105807969A (zh) 触控显示面板及触控显示装置
WO2015143862A1 (zh) 触摸屏、其制作方法及显示装置
CN110783482B (zh) 显示面板及其制作方法、显示屏及显示装置
JP5884763B2 (ja) タッチパネル用電極基板、及びタッチパネル、ならびに画像表示装置
US11322559B2 (en) Conductive member, conductive film, display device having the same, touch panel, method of producing wiring pattern of conductive member, and method of producing wiring pattern of conductive film
US20150116605A1 (en) Display panel
WO2020155127A1 (zh) 电子设备及显示装置
TWI576729B (zh) 觸控顯示面板及觸控顯示裝置
US9538654B2 (en) Conductive film, method for manufacturing the same, and touch screen including the same
TWI727671B (zh) 指紋影像感測器與電子裝置
KR20160051598A (ko) 터치 감응 디바이스 및 터치 감응 디바이스를 제조하기 위한 생산 방법
US9865223B2 (en) Optoelectronic modulation stack
CN108319081B (zh) 液晶显示面板、液晶显示面板制备方法及显示装置
JP2014186687A (ja) タッチパネル用電極基板、及びタッチパネル、ならびに画像表示装置
TW202107254A (zh) 觸控面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20749755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020749755

Country of ref document: EP

Effective date: 20210825