WO2020155965A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2020155965A1
WO2020155965A1 PCT/CN2019/128491 CN2019128491W WO2020155965A1 WO 2020155965 A1 WO2020155965 A1 WO 2020155965A1 CN 2019128491 W CN2019128491 W CN 2019128491W WO 2020155965 A1 WO2020155965 A1 WO 2020155965A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser chip
substrate
gap
light
circuit
Prior art date
Application number
PCT/CN2019/128491
Other languages
English (en)
French (fr)
Inventor
慕建伟
王欣南
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2020155965A1 publication Critical patent/WO2020155965A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4245Mounting of the opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Definitions

  • This application relates to the field of optical communication technology, and in particular to an optical module.
  • the optical module generally refers to an integrated module used for photoelectric conversion, which can convert optical signals into electrical signals and convert electrical signals into optical signals, playing an important role in the field of optical communications.
  • the optical module includes an upper shell and a lower shell.
  • the upper shell and the lower shell form a cavity with open ends.
  • the cavity mainly contains a light emitting submodule, a light receiving submodule and a circuit board, and the light emitting submodule And the light receiving sub-module can be collectively referred to as the optical sub-module.
  • the light emission sub-module mainly includes a light emission chip and an optical lens.
  • the common light emitting chip of the optical module is a laser chip, and the laser has become the preferred light source for optical modules and even optical fiber transmission with better single-wavelength characteristics and better wavelength tuning characteristics.
  • the function of the optical lens is to converge the light, and the light emitted from the light emitting chip is in a divergent state. In order to facilitate the subsequent optical path design and the coupling of light into the optical fiber, the convergence processing is required.
  • a laser chip is attached to the surface of a CoC (chip on carrier) structure, and is connected to the circuit on the surface of the CoC structure by wire bonding. Since the wire bonding position of the laser chip is far from the circuit on the surface of the CoC structure, the wire bonding distance is longer, and the longer wire bonding distance is not conducive to high-frequency signal transmission and directly affects the high-frequency performance of the optical module.
  • CoC chip on carrier
  • the present application provides an optical module, which shortens the wire bonding length between the laser chip and the circuit on the CoC surface, and facilitates the transmission of high-frequency signals.
  • the application provides an optical module, including a substrate having an upper surface; a bottom substrate located on the upper surface of the substrate; a lens located on the upper surface of the substrate for concentrating light; and a top substrate located on the
  • the upper surface of the bottom substrate is provided with a notch, the opening of the notch extends in the direction of the lens, the upper surface of the top substrate is provided with an anode circuit; the laser chip is located in the notch and is arranged on the bottom substrate The light emitted from the upper surface of the laser chip is directed toward the lens along the opening of the gap, and the anode on the upper surface of the laser chip and the anode circuit are electrically connected by wire bonding.
  • FIG. 1 is a schematic diagram of the external structure of an optical module provided by an embodiment of the application
  • Figure 3 is a schematic diagram of the external structure of the optical emission sub-module of the application.
  • Figure 4 is an exploded view of the structure of the optical emission sub-module provided by the prior art
  • Fig. 5 is a schematic diagram of a partial structure of a laser assembly provided by the prior art
  • Fig. 6 is a schematic diagram of a partial structure of a laser assembly provided by the prior art
  • FIG. 7 is a schematic plan view of the structure shown in FIG. 6;
  • FIG. 8 is a schematic diagram of a partial structure of the optical emission sub-module of the application.
  • FIG. 9 is a schematic diagram of an embodiment of the optical emission sub-module of this application.
  • FIG. 10 is a schematic diagram of another embodiment of the optical emission sub-module of this application.
  • FIG. 11 is a schematic partial cross-sectional view of the optical emission sub-module of this application.
  • FIG. 12 is another partial cross-sectional schematic diagram of the light emitting sub-module of this application.
  • FIG. 13 is a schematic diagram of an embodiment of the optical emission sub-module of this application.
  • FIG. 14 is a schematic diagram of another embodiment of the optical emission sub-module of this application.
  • the embodiment of the present application provides an optical module.
  • the following first introduces specific embodiments of the optical module of the present application.
  • FIG. 1 is a schematic diagram of the external structure of an optical module provided by an embodiment of this application
  • FIG. 2 is an exploded view of the structure of an optical module provided by an embodiment of this application.
  • the optical module includes an upper housing 11, a lower housing 12 and a handle 13.
  • the upper shell 11 and the lower shell 12 are combined to form a cavity with two open ends.
  • One end of the cavity is used to connect to the optical fiber, which is the optical port 14, and the handle 13 is set at one end of the optical port for holding the optical module.
  • the electrical port generally has an electrical connector exposed outside the housing for easy insertion into the host computer.
  • a common electrical connector is shown as the golden finger formed at the end of the circuit board 21 in Figure 2.
  • the cavity formed by the upper casing 11 and the lower casing 12 includes a circuit board 21, a light emitting sub-module 22 and a light receiving sub-module 23.
  • the light emitting sub-module 22 is arranged on one end edge of the length direction of the circuit board 21, and a gold finger for electrical communication with the outside of the optical module is arranged on the other end edge of the length direction of the circuit board 21.
  • the optical module has an upper shell and a lower shell.
  • the light emitting sub-module inside the optical module also has a shell type package.
  • the shell of the light emitting sub-module is called the shell
  • the shell of the optical module is called the shell (including Upper shell and lower shell).
  • Figure 2 shows a specific packaging method of the light emitting sub-module and the light receiving sub-module.
  • the light emitting sub-module is set on the surface of the circuit board, and the light receiving sub-module is set on the surface of the circuit board; in another common packaging method Wherein, the light emitting sub-module is physically separated from the circuit board, and the electrical connection is realized through a flexible board; in another common packaging method, the light receiving sub-module is physically separated from the circuit board, and the electrical connection is realized through the flexible board.
  • the circuit board is electrically connected to the light emitting sub-module and the light receiving sub-module, and electrical devices such as chips, capacitors, and resistors are arranged on the circuit board. Select the chip to be set according to the needs of the product. Common chips include microprocessor MCU, clock data recovery chip CDR, laser driver chip, transimpedance amplifier TIA chip, limiting amplifier LA chip, power management chip, etc.; among them, transimpedance amplifier Closely related to the light detection chip, some products will package the transimpedance amplifier and the light detection chip together, such as packaged in the same TO package or the same housing; the light detection chip and the transimpedance amplifier can also be packaged separately, Set the transimpedance amplifier on the circuit board.
  • electrical devices such as chips, capacitors, and resistors are arranged on the circuit board. Select the chip to be set according to the needs of the product. Common chips include microprocessor MCU, clock data recovery chip CDR, laser driver chip, transimpedance amplifier TIA chip, limiting amplifier LA chip, power
  • the chip on the circuit board can be an all-in-one chip.
  • the laser driver chip and the MCU chip can be merged into one chip, or the laser driver chip, the limiting amplifier chip and the MCU can be merged into one chip. It is the integration of circuits, but the functions of individual circuits have not disappeared because of aggregation, but the circuit forms are integrated. Therefore, when the circuit board is equipped with three independent chips: MCU, laser drive chip and limiting amplifier chip, this is the same as setting a single chip with three functions in one on the circuit.
  • Fig. 3 is a schematic diagram of the external structure of the optical emission sub-module of the application.
  • the top opening of the housing 221 of the light emitting sub-module is covered and sealed by a cover plate 222.
  • An optical fiber adapter 223 is arranged on one side wall of the housing 221, and the optical fiber is connected to the optical fiber adapter 223, and the light inside the housing is injected into the optical fiber through the optical fiber adapter 223.
  • the housing 221 of the light emitting sub-module 22 is embedded in the circuit board 21.
  • FIG. 4 is an exploded view of the structure of the optical emission sub-module provided by the prior art.
  • a laser component 227 and an optical multiplexing component 228 are provided in the sealed cavity formed by the housing 221 and the cover plate 222; the laser component 227 has a laser chip, a collimating lens and other devices.
  • the formed multiple beams of collimated light are incident into the optical multiplexing component 228, and the optical multiplexing component 228 combines the multiple beams into one beam of light and enters the optical fiber adapter 223.
  • the fiber optic adapter 223 has an isolator 224 in it to prevent light from being reflected back into the laser chip.
  • One side of the housing 221 has an opening 225 for the circuit board to extend into the housing 221 through the opening 225, and the other side of the housing has a groove 226 for the circuit board to extend into the groove to clamp the housing.
  • Laser chips are common light emitting chips for optical modules. Lasers have become the preferred light source for optical modules and even optical fiber transmission with better single wavelength characteristics and better wavelength tuning characteristics. Other types of light, such as LED light, are common in optical communications. The system is generally not used. Even if this kind of light source is used in a special optical communication system, the characteristics of the light source and the chip structure are quite different from the laser, making the optical module using laser and the optical module using other light sources have a greater difference. Those skilled in the art generally do not think that these two types of optical modules can provide technical inspiration to each other.
  • the function of the optical lens is to converge the light, and the light emitted from the light emitting chip is in a divergent state. In order to facilitate the subsequent optical path design and the coupling of light into the optical fiber, the convergence processing is required.
  • the common convergence is to converge divergent light into parallel light, and converge divergent light and parallel light into convergent light.
  • the light emission sub-module has a packaging structure to encapsulate laser chips, etc.
  • the existing packaging structures include coaxial packaging TO-CAN, silicon optical packaging, chip-on-board lens component packaging COB-LENS, and micro-optics XMD packaging.
  • Packaging is also divided into airtight packaging and non-airtight packaging.
  • the package provides a stable and reliable working environment for the laser chip, and on the other hand forms an external electrical connection and light output.
  • the optical module will adopt different packages to make the optical emission sub-module.
  • the laser chip has a vertical cavity surface to emit light, and there is also an edge emitting.
  • the different direction of the laser chip's light output will also affect the choice of package form.
  • Fig. 5 is a schematic diagram of the structure of a laser assembly provided by the prior art.
  • the laser assembly includes a substrate 51, an electrical connection plate 52, a CoC structure 53, a laser chip 54 and a collimating lens 55.
  • the laser assembly may include multiple laser chips and collimating lenses. Specifically, 4 CoC structures, 4 laser chips, and 4 collimating lenses are shown in FIG. 5. The 4 laser chips emit 4 different wavelengths of light to achieve the superposition of 4 communication rates.
  • the laser chip is located on the surface of the CoC structure, the CoC structure provides power supply connection for the laser chip, the electrical connection board is used to realize the circuit connection, and the collimating lens is located in the light emitting direction of the laser chip to converge the divergent light emitted by the laser chip into parallel light.
  • FIG. 6 is a schematic diagram of a partial structure of a laser assembly provided in the prior art
  • FIG. 7 is a schematic plan view of the structure shown in FIG. 6.
  • the upper surface of the CoC structure body is provided with optoelectronic devices such as a circuit 56 and a laser chip 54.
  • the circuit 56 is formed by connecting conductive sheets of different shapes, and each conductive sheet serves as a branch of the circuit 56 to form a plurality of conductive paths.
  • FIG. 5 or 7 it can be seen that the light beam emitted by the laser chip 54 when it is working is directed to the lens 55, and the coupling is completed by converging or collimating the lens.
  • the objective thickness of the laser chip 54 makes its wire bonding position higher than the upper surface of the CoC structure by a certain distance. Compared with the wire bonding position on the upper surface of the CoC structure, the wire bonding position is higher than the surface of the CoC structure. Will lead to longer wire bonding.
  • the wire bonding length of the laser chip 54 and the circuit 56 is very important to the performance of high-speed devices, because the wire bonding can be equivalent to a component with both resistance and inductance characteristics in high frequency characteristics, and the longer the wire bonding, the greater the parasitic inductance.
  • the anode circuit realizes high-speed signal transmission. It is hoped that the wire connecting to the anode circuit should be as short as possible and the arc height as low as possible. The purpose is to reduce parasitic parameters and improve the performance of high-speed devices. The longer wire bonding distance is not conducive to signal transmission, especially the transmission of high-speed signals.
  • the present application provides a light emitting sub-module, and the above-mentioned optical module includes the light emitting sub-module.
  • the following describes specific embodiments of the optical emission sub-module of the present application.
  • the light emission sub-module provided by the embodiment of the present application includes a housing as shown in FIG. 3 or 4, specifically a housing 221 and a cover plate 222.
  • the top opening of the housing 221 is covered and sealed by the cover plate 222.
  • the light emitting sub-module may further include a top substrate 81, a bottom substrate 82, a lens (not shown in FIG. 8) and a laser chip 54, the bottom substrate 82 and the lens are respectively located on the upper surface of the substrate;
  • the top substrate 81, the bottom substrate 82, the lens and the laser chip 54 are all located in the cavity formed by the aforementioned housing.
  • the top substrate 81 is fixed on the bottom substrate 82;
  • the top substrate 81 is provided with a notch 811; the laser chip 54 is located in the notch 811 and is fixed on the surface of the bottom substrate 82; the opening of the notch 811 extends to the edge of the side where the lens 55 is located, and the light beam emitted by the laser chip 54 is passed through the notch 811.
  • the lens 55 receives;
  • the upper surface 812 of the top substrate 81 is provided with a circuit 56, and the laser chip 54 is wired and connected to the circuit 56.
  • the CoC structure includes stacked two-layer substrates, namely, a top substrate and a bottom substrate, and a gap is opened from the top substrate, the laser chip is placed in the gap, and the lower surface of the laser chip is attached to the bottom substrate s surface.
  • the lower surface of the laser chip has a cathode, and the upper surface has an anode.
  • the circuit 56 may specifically include an anode circuit (first branch) 561 for wire connection with optoelectronic devices on the CoC surface to supply power to these devices, high-speed signal transmission through the anode circuit, and a cathode circuit ( The second branch or ground circuit) 562.
  • the anode on the upper surface of the laser chip is connected to the anode circuit (first branch) 561 by wire.
  • the depth of the gap can be used to offset the thickness of the laser chip, thereby reducing the height of the upper surface of the laser chip relative to the upper surface of the top substrate, so that the anode and the anode circuit (first branch) of the laser chip 561 When wire bonding, the wire bonding length between the laser chip and the circuit 56 can be shortened.
  • the opening of the notch 811 extends on the top substrate 81 along the edge of the side where the lens 55 is located in the light-emitting direction of the laser chip 54, so that the notch 811 provides light output
  • An optical path allows the light beam emitted by the laser chip to be directed to the lens through the optical path provided by the gap, and finally received by the lens, thereby realizing the transmission of high-frequency signals.
  • top substrate and the bottom substrate may specifically be two metalized ceramic boards with different thicknesses, such as aluminum nitride (ALN) boards, which provide multiple soldering surfaces for the packaging of optoelectronic devices.
  • ABN aluminum nitride
  • the presence of the underlying substrate can increase the deformation space of the overall CoC structure and improve the stability of the CoC structure.
  • the length of the gold wire 83 connecting the laser chip 54 and the circuit 56 is significantly shortened, and the height of the wire arc is significantly reduced. It can be seen that the optical emission sub-module of this application is beneficial to signal transmission and optimizes the high-frequency performance of the optical module.
  • FIG. 9 is a schematic diagram of another embodiment of the optical emission sub-module of this application. Different from the embodiment shown in FIG. 8, the light emission sub-module shown in FIG. 9 further includes a monitoring light detector 84; the monitoring light detector 84 is located in the gap 811 together with the laser chip 54 and is wired to the circuit 56.
  • the monitoring light detector is used to receive the light beam emitted by the laser chip to realize the optical power monitoring function.
  • the side-emitting laser chip will emit two beams with opposite transmission directions; the monitoring light detector and the lens are respectively set in the two light-emitting directions of the laser chip, so that the laser chip emits One beam of light passes through the gap and is directed toward the lens, and the other beam is directed toward the monitoring light detector located in the gap at the same time.
  • FIG. 10 is a schematic diagram of another embodiment of the optical emission sub-module of this application.
  • a metal layer 85 is provided between the top substrate 81 and the bottom substrate 82; specifically, the metal layer is attached to the upper surface of the bottom substrate, the top substrate has via holes, and the cathode circuit of the circuit 56 (the second branch Or ground circuit 562 is connected to the metal layer 85 through a via 86.
  • the cathode circuit (second branch Or ground circuit) 562 is connected to the via hole of the metal layer 85 to ground the circuit 56.
  • the depth of the notch 811 may be equal to the thickness of the top substrate 81.
  • the metal layer 85 located on the upper surface of the bottom substrate at the position corresponding to the notch is exposed.
  • the lower surface of the laser chip 54 is directly attached to the metal layer 85, and the cathode, or ground electrode, on the lower surface is connected to the exposed metal layer to realize the ground connection of the laser chip.
  • the depth of the notch 811 can also be equal to the thickness of the laser chip 54 so that the upper surface of the laser chip can be flush with the upper surface of the top substrate. At this time, the theoretical wire length between the laser chip and the circuit is the smallest.
  • FIG. 11 shows the case where the depth of the notch is smaller than the thickness of the top substrate.
  • the depth of the notch needs to be less than the thickness of the top substrate, that is, the depth of the notch is not less than the thickness of the laser chip, so that the upper surface of the laser chip can be with the top layer.
  • the upper surface of the substrate is flush.
  • the thickness of the laser chip is greater than the thickness of the top substrate, that is, the depth of the notch is not greater than the thickness of the laser chip, it is necessary to provide a recess on the bottom substrate so that the laser chip is set in the recess through the notch.
  • the notch extends to the bottom substrate in the longitudinal direction, as shown in FIG. 12, and will not be repeated here.
  • a conductive sheet 813 can be provided on the inner surface of the bottom of the gap, and the lower surface of the laser chip can be attached to the conductive sheet 813 , In order to realize the ground connection of the laser chip. Both grounding and cathode connections implement a signal loop corresponding to the anode.
  • the notch 811 involved in the embodiment of the present application can have different shapes and forms.
  • it can be a special-shaped space area that is integrally formed to accommodate the laser chip alone or simultaneously accommodates the laser chip and the monitoring light detector. It includes two separate space areas for accommodating the laser chip and the monitoring light detector.
  • Figure 13 is a possible implementation of the optical emission sub-module of this application.
  • the notch 811 is divided into two areas, which are respectively a first accommodating area 8111 and a second accommodating area 8112, wherein the laser chip is arranged in the first accommodating area, and the monitoring light detector is arranged In the second housing area.
  • the monitoring photodetector also needs to receive the light emitted by the laser chip in order to realize the optical power monitoring function, therefore, in this implementation manner, the first accommodating area and the second accommodating area are connected to make the laser chip The emitted light can be directed to the monitoring light detector through the connected area.
  • the notch provides an integrally formed accommodating space, and the accommodating space includes two areas, namely the first accommodating area and the second accommodating area.
  • the laser chip and the monitoring light detector are located in the integrated space at the same time, and are located in the aforementioned two areas respectively.
  • the first accommodating area and the second accommodating area are naturally connected, and this connected area is exactly equivalent to a light-transmitting port, so that the light beam emitted by the laser chip can pass through the light-transmitting port to be Monitor the light detector receiving.
  • the notch has a simple shape without any sidewalls, which not only provides more usable space for device packaging, but also reduces the quality of the top substrate to a certain extent, and if the depth of the notch is greater than that of the top layer
  • the thickness of the substrate can also reduce the quality of the underlying substrate, which is conducive to the weight reduction of the CoC structure.
  • the simple notch shape makes the processing of the product easier.
  • Fig. 14 is another possible implementation of the optical emission sub-module of this application.
  • the gap may include a first gap 8113 and a second gap 8114; the laser chip 54 is disposed in the first gap 8113, and the monitoring light detector 84 is disposed in the second gap 8114.
  • a light-transmitting port 8115 is provided on the partition between the first notch and the second notch, so that the monitoring light detector can receive the light emitted by the laser chip.
  • the gap provides two mutually independent accommodation spaces, namely the first gap and the second gap.
  • the laser chip and the monitoring light detector are respectively located in the corresponding accommodation space. Since there is a partition wall between the first gap and the second gap, that is, a partition, a light-transmitting port needs to be opened on the partition.
  • the light-transmitting port may be a light-transmitting hole, so that the light beam emitted by the laser chip passes through The light-transmitting hole is directed toward the monitoring light detector to be received by it, thereby realizing the optical power monitoring function.
  • the cross-sections of the first notch and the second notch may have the same shapes as the cross-sections of the laser chip and the monitoring light detector, respectively, and the space provided by the first notch and the second notch may be slightly larger than that of the laser chip And the volume of the monitoring photodetector, so that the sidewall of the notch can achieve clearance fit with the laser chip and the monitoring photodetector.
  • the two independent accommodation spaces provided by the gap are fully utilized.
  • the sidewalls of the gap are matched with the gap between the laser chip and the monitoring light detector, which can improve the laser chip and the monitoring light detector.
  • the package stability, and because the gap occupies a smaller space on the top substrate, this more compact structure design helps to further reduce the volume of the CoC structure, thereby further highlighting the advantages of the CoC structure.
  • the light emitting sub-module may also include electronic devices for adjusting temperature.
  • the optical emission sub-module may include multiple laser chips. After the optical signals of multiple wavelengths emitted by the multiple laser chips are combined into one light, the light is transmitted out of the optical module through the optical fiber, and then enters the external communication optical fiber.
  • the light emitting sub-module may also include a semiconductor cooler TEC to change the temperature of the laser chip; it may also include a temperature sensor for temperature detection; it may also include a substrate to provide For the attachment platform of the CoC structure, the substrate can be fabricated into different shapes and structures according to actual needs. The shape and structure design of the substrate does not belong to the common knowledge or common technical means of those skilled in the art, and may be a creative shape and structure.
  • an embodiment of the present application provides an optical module, wherein the light emitting sub-module includes a housing and a top substrate, a bottom substrate, a lens and a laser chip located inside the housing; the top substrate is fixed on the bottom substrate On; because the top substrate is provided with a gap, the laser chip is located in the gap and fixed on the surface of the bottom substrate, so the height of the upper surface of the laser chip relative to the upper surface of the top substrate can be reduced; and because the upper surface of the top substrate is provided with For the circuit, the laser chip is connected to the circuit by wire bonding, so the wire length between the laser chip and the circuit can be shortened.
  • the notch extends to the edge of one side of the lens, so that the light beam emitted by the laser chip can be received by the lens through the notch, thereby realizing high-frequency signal transmission.
  • the optical module provided in the embodiments of the present application shortens the wire bonding length of the laser chip and optimizes the high-frequency performance of the optical module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光模块,具有光发射次模块(22),光发射次模块(22)包括壳体(221)以及位于壳体(221)内部的顶层基板(81)、底层基板(82)、透镜(55)和激光芯片(54);顶层基板(81)固定在底层基板(82)上;由于顶层基板(81)设有缺口(811),激光芯片(54)位于缺口(811)中,并固定在底层基板(82)的上表面上,因此能够降低激光芯片(54)上表面相对于顶层基板(81)上表面的高度;又由于顶层基板(81)的上表面设有电路,激光芯片(54)与电路打线连接,因此能够缩短激光芯片(54)与电路的打线长度。此外,缺口(811)向透镜(55)一侧的边缘延伸,使得激光芯片(54)发出的光束可以通过缺口(811)被透镜(55)接收,进而实现高频信号传输。

Description

一种光模块
本申请要求在2019年02月01日提交中国专利局、申请号为201910104934.2、发明名称为“一种光模块”,中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,尤其涉及一种光模块。
背景技术
光模块通常指用于光电转换的一种集成模块,可以将光信号转换为电信号,以及将电信号转换为光信号,在光通信领域发挥着重要作用。光模块包括上壳体与下壳体,上壳体及下壳体形成两端开口的腔体,在腔体中主要包裹了光发射次模块、光接收次模块以及电路板,光发射次模块及光接收次模块可以统称为光学次模块。
光发射次模块中主要包括光发射芯片及光学透镜。光模块常见的光发射芯片为激光芯片,激光以较好的单波长特性及较佳的波长调谐特性成为光模块乃至光纤传输的首选光源。光学透镜的作用是汇聚光,从光发射芯片发出的光呈发散状态,为了便于后续的光路设计及光耦合进光纤,都需要对进行汇聚处理。
通常,激光芯片附着在一CoC(chip on carrier)结构的表面上,并通过打线的方式与CoC结构表面上的电路连接。由于激光芯片的打线位置距离CoC结构表面的电路较远,导致打线距离较长,而较长的打线距离则会不利于高频信号传输,直接影响到光模块的高频性能。
发明内容
本申请提供了光模块,缩短了激光芯片与CoC表面的电路的打线长度,有利于高频信号的传输。
本申请提供了一种光模块,包括衬底,其具有上表面;底层基板,位于所述衬底上表面;透镜,位于所述衬底上表面,用于汇聚光;顶层基板,位于所述底层基板的上表面,设置有缺口,所述缺口的开口向所述透镜方向延伸,所述顶层基板的上表面设有阳极电路;激光芯片,位于所述缺口中,并设置在所述底层基板的上表面,其发出的光沿所述缺口的开口射向所述透镜,所述激光芯片上表面的阳极与所述阳极电路通过打线实现电连接。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的光模块的外部结构示意图;
图2为本申请实施例光模块的结构爆炸图;
图3为本申请光发射次模块外部结构示意图;
图4为已有技术提供的光发射次模块的结构爆炸图;
图5为已有技术提供的一种激光组件的局部结构示意图;
图6为已有技术提供的一种激光组件的局部结构示意图;
图7为图6所示结构的平面示意图;
图8为本申请光发射次模块的局部结构示意图;
图9为本申请光发射次模块的一个实施例示意图;
图10为本申请光发射次模块的另一个实施例示意图;
图11为本申请光发射次模块的一个局部剖面示意图;
图12为本申请光发射次模块的另一个局部剖面示意图;
图13为本申请光发射次模块的一个实施例示意图;
图14为本申请光发射次模块的另一个实施例示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请实施例提供一种光模块。下面首先介绍本申请光模块的具体实施例。
图1为本申请实施例提供的光模块的外部结构示意图,图2为本申请实施例提供的光模块的结构爆炸图。如图1、2所示,该光模块包括上壳体11、下壳体12及手柄13。上壳体11与下壳体12结合成两端开口的腔体,该腔体的一端用于与光纤连接,是为光口14,手柄13设置在光口一端,用于手持光模块,以方便在手持状态下将光模块插入上位机;该腔体的另一端用于与上位机电连接,是为电口15,电口一端需要插入上位机中。电口一般有电连接器裸露在壳体外,便于插入上位机中,常见的电连接器如图2中电路板21末端形成的金手指。
如图2所示,在上壳体11和下壳体12形成的腔体中,包括电路板21、光发射次模块22以及光接收次模块23。具体地,光发射次模块22设置在电路板21长度方向的一端边缘,在电路板21长度方向的另一端边缘设置有用于与光模块外部进行电通信的金手指。光模块具有上壳体、下壳体,在光模块内部的光发射次模块同样具有壳式封装,为了便于区分,光发射次模块的壳称为壳体,光模块的壳称为外壳(包括上壳体及下壳体)。
图2示出了一种具体的光发射次模块及光接收次模块的封装方式,光发射次模块设置在电路板表面,光接收次模块设置在电路板表面;在另一种常见的封装方式中,光发射次模块与电路板物理分离,通过柔性板实现电连接;在另一种常见的封装方式中,光接收次模块与电路板物理分离,通过柔性板实现电连接。
需要说明的是,电路板分别与光发射次模块及光接收次模块电连接,电路板上设置有芯片、电容、电阻等电器件。根据产品的需求选择需要设置的芯片,常见的芯片包括微处理器MCU、时钟数据恢复芯片CDR、激光驱动芯片、跨阻放大器TIA芯片、限幅放大器LA芯片、电源管理芯片等;其中跨阻放大器与光探测芯片紧密关联,部分产品会将跨阻放大器与光探测芯片封装在一起,如封装在同一TO管壳中或同一壳体中;也可以将光探测芯片与跨阻放大器分开分装,将跨阻放大器设置在电路板上。
还需说明的是,电路板上的芯片可以是多合一芯片,比如将激光驱动芯片与MCU芯片融合为一个芯片,也可以将激光驱动芯片、限幅放大器芯片及MCU融合为一个芯片,芯片是电路的集成,但各个电路的功能并没有因为集合而消失,只是电路形态发生整合。所以,当电路板上设置有MCU、激光驱动芯片及限幅放大器芯片三个独立芯片,这与电路上设置一个三功能合一的单个芯片,方案是等同的。
图3为本申请光发射次模块的外部结构示意图。如图3所示,光发射次模块的壳体221的顶部开口由盖板222盖合密封。在壳体221的一侧壁上设置有光纤适配器223,光纤接入光纤适配器223中,壳体内部的光通过光纤适配器223射入光纤中。光发射次模块22的壳体221嵌入电路板21中。
图4为已有技术提供的光发射次模块的结构爆炸图。如图4所示,在壳体221与盖板222形成的密封腔体中,设置有激光组件227、光复用组件228;激光组件227中具有激光芯片、准直透镜等器件。形成的多束准直光射入光复用组件228中,再由光复用组件228将多束光合并为一束光射入光纤适配器223中。光纤适配器223中具有隔离器224,用于防止光反射回激光芯片中。壳体221的一侧具有开口225,便于电路板通过该开口225伸入壳体221中,壳体侧边另一侧具有凹槽226,便于电路板伸入凹槽以夹住壳体。
激光芯片是光模块常见的光发射芯片,激光以较好的单波长特性及较佳的波长调谐特性成为光模块乃至光纤传输的首选光源,而其他类型的光如LED光等,常见的光通信系统一般不会采用,即使特殊的光通信系统中采用了这种光源,其光源的特性及芯片结构与激光存在较大的差别,使得采用激光的光模块与采用其他光源的光模块存在较大的技术差别,本领域技术人员一般不会认为这两种类型的光模块可以相互给与以技术启示。光学透镜的作用是汇聚光,从光发射芯片发出的光呈发散状态,为了便于后续的光路设计及光耦合进光纤,都需要对进行汇聚处理。常见的汇聚是将发散光汇聚为平行光,将发散光、平行光汇聚为汇聚光。
光发射次模块具有封装结构,以将激光芯片等封装起来,已有的封装结构包括同轴封装TO-CAN、硅光封装、板上芯片透镜组件封装COB-LENS、微光学XMD封装。封装还分为气密性封装及非气密性封装,封装一方面为激光芯片提供稳定、可靠的工作环境,另一方面形成对外的电连接及光输出。根据产品设计及工艺,光模块会采用不同的封装以制作光发射次模块。
激光芯片有垂直腔面出光,也有边发光,激光芯片出光方向的不同也会影响对封装形态的选择。
图5为已有技术提供的一种激光组件结构示意图。如图5所示,激光组件包括衬底51、电连接板52、CoC结构53、激光芯片54及准直透镜55。激光组件可以包括多个激光芯片和准直透镜。具体地,图5中示出了4个CoC结构、4个激光芯片及4个准直透镜。4个激光芯片发出4种不同波长的光,实现4路通信速率的叠加。激光芯片位于CoC结构表面,CoC结构为激光芯片提供供电连接,电连接板用于实现电路连接,准直透镜位于激光芯片出光方向上,用于将激光芯片发出的发散光汇聚为平行光。
图6为已有技术提供的一种激光组件的局部结构示意图,图7为图6所示结构的平面示意图。如图6、7所示,CoC结构主体的上表面设置有电路56和激光芯片54等光电器件。电路56由不同形状的导电片连接组成,各导电片作为电路56的支路,形成多条导电路径。根据图5或7可知,激光芯片54在工作时发出的光束射向透镜55,通过透镜汇聚或准置以完成耦合。
由图6可以看出,激光芯片54的客观厚度使其打线位置高出CoC结构的上表面一定的距离,与打线位置位于CoC结构的上表面相比,打线位置高于CoC结构表面会导致打线较长。激光芯片54与电路56的打线长度对高速器件的性能至关重要,因为打线在高频特性上可以等效一个同时具有电阻和电感特性的元件,而打线越长,寄生电感越大,同时在生产中打线长度以及弧度的不可控因素较多,导致器件封装时难以准确预估打线实际等效的电阻电感效应,使器件性能不可控。同时电阻和电感的引入会对器件的高频特性造成影响,不利于高频传输。因此,在高速器件的封装中,阳极电路实现高速信号的传输,希望与阳极电路连接的打线,其长度尽量短、线弧高度尽量低,目的是减少寄生参数,提高高速器件的性能。而较长的打线距离则不利于信号的传输,尤其影响高速信号的传输。
为解决上述已有技术存在的技术问题,本申请提供了一种光发射次模块,且上述光模块包括该光发射次模块。下面介绍本申请光发射次模块的具体实施例。
本申请实施例提供的光发射次模块,包括如图3或4所示的壳体,具体为壳体221及盖板222,壳体221的顶部开口由盖板222盖合密封。
参阅图8,该光发射次模块还可以包括的顶层基板81、底层基板82、透镜(图8中未示出)和激光芯片54,底层基板82及透镜分别位于衬底上表面;
其中顶层基板81、底层基板82、透镜和激光芯片54均位于上述壳体形成的腔体中。
顶层基板81固定在底层基板82上;
顶层基板81设有缺口811;激光芯片54位于缺口811中,并固定在底层基板82的表面上;缺口811的开口向透镜55所在的一侧边缘延伸,激光芯片54发出的光束通过缺口811被透镜55接收;
顶层基板81的上表面812设有电路56,激光芯片54与电路56打线连接。
上述实施例中,CoC结构包括堆叠设置的双层基板,即顶层基板和底层基板,并自顶层基板开设一个缺口,将激光芯片设置在缺口中,并使激光芯片的下表面贴附在底层基板的表面。
激光芯片的下表面具有阴极,上表面具有阳极。电路56具体可以包括用于与CoC表面的光电器件打线连接以为这些器件供电的阳极电路(第一支路)561,通过阳极电路实现高速信号的传输,和,用于接地连接的阴极电路(第二支路或接地电路)562。本实施例中,激光芯片上表面的阳极与阳极电路(第一支路)561打线连接。
由于激光芯片位于缺口中,因此可以利用缺口的深度抵消激光芯片的厚度,进而降低激光芯片上表面相对于顶层基板上表面的高度,以在激光芯片的阳极与阳极电路(第一支路)561打线连接时,能够缩短激光芯片与电路56的打线长度。
另外,由于激光芯片发出的光束需要通过透镜进行汇聚或准置,因此缺口811的开口在顶层基板81上沿激光芯片54的出光方向透镜55所在一侧的边缘延伸,以使缺口811为出光提供一个光路,使激光芯片发出的光束可以通过缺口提供的光路射向透镜,最终被透镜接收,从而实现高频信号的传输。
需要说明的是,顶层基板和底层基板具体可以为两层厚度不同的金属化陶瓷板,例如氮化铝(ALN)板,该两层金属化陶瓷板为光电器件的封装提供多个焊接面,如本申请技术方案涉及的顶层基板的上表面。另外,底层基板的存在可以增大CoC整体结构的形变空间,提高CoC结构的稳定性。
参阅图8可知,与图6相比,连接激光芯片54和电路56的金线83长度明显缩短,线弧高度明显降低。可见,本申请光发射次模块有利于信号传输,优化光模块的高频性能。
图9为本申请光发射次模块的另一个实施例示意图。与图8所示实施例不同的是,图9所示光发射次模块还包括监控光探测器84;监控光探测器84与激光芯片54一同位于缺口811中,并与电路56打线连接。
监控光探测器用于接收激光芯片发出的光束,以实现光功率监控功能。一般地,针对采用边发光激光芯片的方案,边发光激光芯片会发出两束传输方向相反的光束;将监控光探测器和透镜分别设置在激光芯片的两个出光方向上,进而使激光芯片发出的其中一束光穿过缺口射向透镜,另一束光则射向与其同时位于缺口中的监控光探测器。
图10为本申请光发射次模块的另一个实施例示意图。如图10所示,顶层基板81与底层基板82之间设有金属层85;具体地,金属层附着在底层基板的上表面,顶层基板具有过孔,电路56的阴极电路(第二支路或接地电路)562通过过孔86与该金属层85连接。
通过在顶层基板81和底层基板82之间设置金属层85,一方面可以起到为顶层基板81及其上表面的光电器件提供一个参考面的作用,另一方面,阴极电路(第二支路或接地电路)562与该金属层85的过孔连接使电路56接地。
在图10所示实施例的基础上,缺口811的深度可以与顶层基板81的厚度相等,此时,位于底层基板上表面的、缺口对应位置处的金属层85便裸露出来。激光芯片54的下表面直接贴附在金属层85上,其下表面的阴极,或称接地极,便与裸露在外的金属层连接起来,进而实现激光芯片的接地连接。
具体实现中,缺口811的深度还可以与激光芯片54的厚度相等,以使激光芯片的上表面可以与顶层基板上表面相平齐。此时,激光芯片与电路之间的理论打线长度最小。
图11示出了缺口的深度小于顶层基板的厚度的情况。如图11所示,由于激光芯片的厚度小于顶层基板的厚度,因此需要使缺口的深度小于顶层基板的厚度,即缺口的深度不小于激光芯片的厚度,以使激光芯片的上表面可以与顶层基板的上表面相平齐。
当然,如果激光芯片的厚度大于顶层基板的厚度,即缺口的深度不大于所述激光芯片的厚度,则需要在底层基板设置有凹陷,使激光芯片通过缺口设置在所述凹陷中,此时,缺口在纵向方向上会延伸至底层基板,如图12所示,此处不再赘述。
对于图11和图12所示的两种情况,由于金属层85并未裸露出来,因此可以在缺口的底部内表面设置导电片813,并将激光芯片的下表面贴附在该导电片813上,以实现激光芯片的接地连接。接地和阴极连接均实现了与阳极对应的信号环路。
需要说明的是,本申请实施例涉及的缺口811可以具有不同的形状和形式,例如,可以是一体成型的、单独容纳激光芯片或者同时容纳激光芯片及监控光探测器的异形空间区域,也可以是包括分别用于容纳激光芯片和监控光探测器的两个独立的空间区域。
图13为本申请光发射次模块一种可能的实现方式。如图13所示,缺口811分为两个区域,分别为相连通的第一容置区8111和第二容置区8112,其中,激光芯片设置在第一容置区,监控光探测器设置在第二容置区。
值得注意的是,由于监控光探测器也需要接收激光芯片发出的光,以便实现光功率监控功能,因此,本实现方式中第一容置区和第二容置区相连通,以使激光芯片发出的光可以直接经过连通的区域射向监控光探测器。
在图13所示的实现方式中,缺口提供一个一体成型的容纳空间,该容纳空间包括两个区域,即上述第一容置区和第二容置区。激光芯片和监控光探测器同时位于该一体空间中,且分别位于前述的两个区域。在本实现方式中,第一容置区和第二容置区是自然连通的,这一连通的区域恰好相当于一个透光口,使激光芯片发出的光束可以穿过该透光口以被监控光探测器接收。
图13所示的实现方式中,缺口形状简单,不存在任何侧壁,不仅为器件的封装提供更多的可利用空间,而且在一定程度上减轻顶层基板的质量,并且如果缺口的深度大于顶层基板的厚度,还能减轻底层基板的质量,有利于CoC结构走向质轻化。另外,简单的缺口形状,也更加便于产品的加工。
图14为本申请光发射次模块的另一种可能的实现方式。如图14所示,缺口可以包括第一缺口8113和第二缺口8114;激光芯片54设置在第一缺口8113中,监控光探测器84设置在第二缺口8114中。
此外,第一缺口和第二缺口之间的隔板上设有透光口8115,以使监控光探测器接收到激光芯片发出的光。
在图14所示的实现方式中,缺口提供两个相互独立的容纳空间,即上述第一缺口和第二缺口。激光芯片和监控光探测器分别位于相应的容纳空间中。由于第一缺口和第二缺口之间存在一个隔离壁,即隔板,因此,需要在该隔板上开设透光口,该透光口可以为一个透光孔,从而激光芯片发出的光束经透光孔射向监控光探测器被其接收,进而实现光功率监控功能。
在本实现方式中,第一缺口和第二缺口的横截面可以分别具有与激光芯片和监控光探测器的横截面相同的形状,第一缺口和第二缺口所提供的空间可以略大于激光芯片和监控光探测器的体积,以使缺口的侧壁可以与激光芯片和监控光探测器实现间隙配合。
在图14所示的实现方式中,缺口所提供的两个相互独立的容纳空间被充分利用,缺口的侧壁与激光芯片和监控光探测器的间隙配合,可以提高激光芯片和监控光探测器的封装稳定性,并且,由于缺口占用了较小的顶层基板的空间,这种更为紧凑的结构设计,有利于进一步减小CoC结构的体积,从而进一步突出CoC结构的优势。
另外,光发射次模块中还可以包括调节温度的电子器件。光发射次模块中可以包括多个激光芯片,多个激光芯片发射的多个波长的光信号合并成一路光后,通过光纤传出光模块,进而进入外部通信光纤中。根据传输设计以及激光芯片的特性,光发射次模块中还可以包括半导体制冷器TEC,用于改变激光芯片的温度;还可以包括温度传感器,用于温度检测;还可以包括衬底,用于提供CoC结构的附着平台,衬底可以根据实际需要制作成不同的形状结构,衬底的形状结构设计不属于本领域技术人员的公知常识或惯用技术手段,可以是具有创造性的形状结构。
由以上技术方案可知,本申请实施例提供一种光模块,其中,光发射次模块包括壳体以及位于所述壳体内部的顶层基板、底层基板、透镜和激光芯片;顶层基板固定在底层基板上;由于顶层基板设有缺口,激光芯片位于该缺口中,并固定在底层基板的表面上,因此能够降低激光芯片上表面相对于顶层基板上表面的高度;又由于顶层基板的上表面设有电路,激光芯片与该电路打线连接,因此能够缩短激光芯片与电路的打线长度。此外,所述缺口向透镜一侧的边缘延伸,使得激光芯片发出的光束可以通过所述缺口被透镜接收,进而实现高频信号传输。综上所述,本申请实施例提供的光模块,缩短了激光芯片的打线长度,优化了光模块的高频性能。
本说明书中实施例之间相同相似的部分互相参见即可。需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种光模块,其特征在于,包括
    衬底,其具有一个上表面;
    底层基板,位于所述衬底的上表面;
    透镜,位于所述衬底上表面,用于汇聚光;
    顶层基板,位于所述底层基板的上表面,设置有缺口,所述缺口的开口向所述透镜方向延伸,所述顶层基板的上表面设有阳极电路;
    激光芯片,位于所述缺口中,并设置在所述底层基板的上表面,其发出的光沿所述缺口的开口射向所述透镜,所述激光芯片上表面的阳极与所述阳极电路通过打线实现电连接。
  2. 根据权利要求1所述的光模块,其特征在于,所述顶层基板的上表面设有阴极电路,所述底层基板的上表面设有金属层,所述顶层基板设置有过孔,所述过孔连接所述阴极电路及所述金属层;所述激光芯片下表面的阴极设置在所述金属层电上,以实现所述阴极与所述阴极电路的电连接。
  3. 根据权利要求1-2任一项所述的光模块,其特征在于,还包括监控光探测器,所述监控光探测器位于所述缺口中,接收来自所述激光芯片的光。
  4. 根据权利要求1-2任一项所述的光模块,其特征在于,所述激光芯片的上表面与所述顶层基板的上表面具有相同的高度。
  5. 根据权利要求4所述的光模块,其特征在于,所述缺口包括第一缺口和第二缺口;所述激光芯片位于所述第一缺口中,所述监控光探测器位于所述第二缺口中;所述第一缺口与第二缺口之间的隔板上设有透光口。
  6. 一种光模块,其特征在于,包括
    衬底,其具有一个上表面;
    底层基板,位于所述衬底上表面;
    透镜,位于所述衬底上表面,用于汇聚光;
    顶层基板,位于所述底层基板的上表面,设置有缺口,所述缺口的开口向所述透镜方向延伸,所述顶层基板的上表面设有阳极电路;
    激光芯片,位于所述缺口中,其发出的光沿所述缺口的开口射向所述透镜,所述激光芯片上表面的阳极与所述阳极电路通过打线实现电连接。
  7. 根据权利要求6所述的光模块,其特征在于,所述缺口的深度不小于所述激光芯片的厚度,所述缺口的底部设置有导电片,所述激光芯片的阴极设置在所述导电片上。
  8. 根据权利要求6所述的光模块,其特征在于,所述缺口的深度不大于所述激光芯片的厚度,所述底层基板设置有凹陷,所述激光芯片通过所述缺口设置在所述凹陷中,所述凹陷的底部设置有导电片,所述激光芯片的阴极设置在所述导电片上。
  9. 根据权利要求7-8任一项所述的光模块,其特征在于,所述激光芯片的上表面与所述顶层基板的上表面具有相同的高度。
  10. 根据权利要求7-8任一项所述的光模块,其特征在于,所述顶层基板的上表面设有阴极电路,所述顶层基板设置有过孔,所述过孔连接所述阴极电路及所述导电片,以实现所述阴极与所述阴极电路的电连接。
PCT/CN2019/128491 2019-02-01 2019-12-26 一种光模块 WO2020155965A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910104934.2A CN111522102A (zh) 2019-02-01 2019-02-01 一种光模块
CN201910104934.2 2019-02-01

Publications (1)

Publication Number Publication Date
WO2020155965A1 true WO2020155965A1 (zh) 2020-08-06

Family

ID=71840878

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/128491 WO2020155965A1 (zh) 2019-02-01 2019-12-26 一种光模块
PCT/CN2020/073945 WO2020156476A1 (zh) 2019-02-01 2020-01-23 一种光模块

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073945 WO2020156476A1 (zh) 2019-02-01 2020-01-23 一种光模块

Country Status (2)

Country Link
CN (1) CN111522102A (zh)
WO (2) WO2020155965A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488420A (zh) * 2020-10-23 2022-05-13 青岛海信宽带多媒体技术有限公司 一种光模块
CN114637079B (zh) * 2020-12-16 2023-07-14 青岛海信宽带多媒体技术有限公司 一种光模块
CN114791652A (zh) * 2021-01-26 2022-07-26 青岛海信宽带多媒体技术有限公司 一种光模块
CN112965190A (zh) * 2021-04-12 2021-06-15 青岛海信宽带多媒体技术有限公司 一种光模块
WO2022242309A1 (zh) * 2021-05-17 2022-11-24 青岛海信宽带多媒体技术有限公司 光模块
WO2022247947A1 (zh) * 2021-05-28 2022-12-01 青岛海信宽带多媒体技术有限公司 一种光模块
CN113376768A (zh) * 2021-05-28 2021-09-10 武汉英飞光创科技有限公司 具有带尾纤适配器的光模块及其组装方法
CN113359248B (zh) * 2021-06-02 2022-11-15 青岛海信宽带多媒体技术有限公司 一种光模块
WO2022262551A1 (zh) * 2021-06-17 2022-12-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN113703104B (zh) * 2021-08-19 2023-02-14 武汉昱升光电股份有限公司 一种蝶形soa器件及生产耦合方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014582A2 (de) * 1998-09-08 2000-03-16 Heidelberger Druckmaschinen Ag Abschlussstück für lichtleitfasern
CN101174614A (zh) * 2006-11-01 2008-05-07 南茂科技股份有限公司 具有非对称式导线架的多芯片堆栈封装结构
CN102629599A (zh) * 2012-04-06 2012-08-08 天水华天科技股份有限公司 四边扁平无引脚封装件及其生产方法
CN103337483A (zh) * 2013-05-14 2013-10-02 天水华天科技股份有限公司 一种超薄型vsop封装件及其生产方法
CN105334586A (zh) * 2014-08-07 2016-02-17 光兴国际股份有限公司 光学收发器
CN106373925A (zh) * 2016-11-30 2017-02-01 济南市半导体元件实验所 一种抗大电流冲击高可靠表面贴装的二极管及其制备方法
CN109155292A (zh) * 2018-08-16 2019-01-04 深圳市汇顶科技股份有限公司 光学传感模组及其制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308107A (ja) * 1991-07-01 1993-11-19 Sumitomo Electric Ind Ltd 半導体装置及びその製作方法
US6227723B1 (en) * 1999-06-30 2001-05-08 Kyocera Corporation Substrate for mounting an optical component and optical module provided with the same
CN103135182B (zh) * 2011-12-02 2016-09-14 鸿富锦精密工业(深圳)有限公司 光学元件封装结构及其封装方法
CN103984062B (zh) * 2013-02-08 2015-10-14 源杰科技股份有限公司 光电模块及光电模块的封装工艺
CN104836619B (zh) * 2015-03-30 2017-08-29 青岛海信宽带多媒体技术有限公司 一种光器件
CN108761668B (zh) * 2018-05-14 2020-10-23 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014582A2 (de) * 1998-09-08 2000-03-16 Heidelberger Druckmaschinen Ag Abschlussstück für lichtleitfasern
CN101174614A (zh) * 2006-11-01 2008-05-07 南茂科技股份有限公司 具有非对称式导线架的多芯片堆栈封装结构
CN102629599A (zh) * 2012-04-06 2012-08-08 天水华天科技股份有限公司 四边扁平无引脚封装件及其生产方法
CN103337483A (zh) * 2013-05-14 2013-10-02 天水华天科技股份有限公司 一种超薄型vsop封装件及其生产方法
CN105334586A (zh) * 2014-08-07 2016-02-17 光兴国际股份有限公司 光学收发器
CN106373925A (zh) * 2016-11-30 2017-02-01 济南市半导体元件实验所 一种抗大电流冲击高可靠表面贴装的二极管及其制备方法
CN109155292A (zh) * 2018-08-16 2019-01-04 深圳市汇顶科技股份有限公司 光学传感模组及其制作方法

Also Published As

Publication number Publication date
CN111522102A (zh) 2020-08-11
WO2020156476A1 (zh) 2020-08-06

Similar Documents

Publication Publication Date Title
WO2020155965A1 (zh) 一种光模块
US6869231B2 (en) Transmitters, receivers, and transceivers including an optical bench
KR101135073B1 (ko) 저 인덕턴스 광 트랜스미터 서브마운트 어셈블리
US9057850B2 (en) Optoelectronic module
US6841733B2 (en) Laser monitoring and control in a transmitter optical subassembly having a ceramic feedthrough header assembly
CN211603627U (zh) 一种光模块
US20040105627A1 (en) Receiver optical sub-assembly
US20170170339A1 (en) Photoelectric module and optical device
US20110243509A1 (en) Opto-electronic transceiver module system
CN102914836B (zh) 光电混装可挠性印刷线路板及其光接收发送元件安装方法
TW201907190A (zh) 光電轉換模組
US20240241328A1 (en) Optical Module
CN114200596B (zh) 一种光模块
CN212207763U (zh) 一种硅光芯片与有源芯片的耦合结构
JP2007123739A (ja) 光送信モジュール、光送受信モジュール及び光通信装置
CN111239935A (zh) 光模块
US20220404563A1 (en) Optical Module
WO2018105358A1 (ja) フォトカプラ
EP1363328A2 (en) Optical module and optical transceiver module
CN115016074B (zh) 一种光模块
CN114200603B (zh) 一种光模块
CN211905784U (zh) 一种单光口多路并行光发射组件及光模块发射端封装结构
WO2017031960A1 (zh) 一种光模块
CN113589445A (zh) 一种硅光芯片与有源芯片的耦合结构
CN114200598A (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913426

Country of ref document: EP

Kind code of ref document: A1