WO2020155151A1 - 指纹识别装置和电子设备 - Google Patents

指纹识别装置和电子设备 Download PDF

Info

Publication number
WO2020155151A1
WO2020155151A1 PCT/CN2019/074619 CN2019074619W WO2020155151A1 WO 2020155151 A1 WO2020155151 A1 WO 2020155151A1 CN 2019074619 W CN2019074619 W CN 2019074619W WO 2020155151 A1 WO2020155151 A1 WO 2020155151A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
fingerprint sensor
identification device
optical fingerprint
fingerprint
Prior art date
Application number
PCT/CN2019/074619
Other languages
English (en)
French (fr)
Inventor
杜灿鸿
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2019/074619 priority Critical patent/WO2020155151A1/zh
Priority to EP19888253.2A priority patent/EP3731137B1/en
Priority to CN202010769313.9A priority patent/CN111860452B/zh
Priority to CN201980000269.0A priority patent/CN109983471B/zh
Priority to US16/890,553 priority patent/US11170195B2/en
Publication of WO2020155151A1 publication Critical patent/WO2020155151A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1329Protecting the fingerprint sensor against damage caused by the finger
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • the embodiments of the present application relate to the field of fingerprint identification, and more specifically, to a fingerprint identification device and electronic equipment.
  • the fingerprint recognition technology under the optical screen is the reflected light formed by the reflection of the light emitted by the light source through the optical fingerprint sensor, and the reflected light carries the fingerprint information of the finger, so as to realize the fingerprint recognition under the screen.
  • the conventional optical fingerprint identification device may include an optical path guiding structure, and the optical path guiding structure may directly image the light signal reflected by the finger on the fingerprint sensor.
  • the imaging effect of the optical path guiding structure is related to the optical path between the optical path guiding structure and the finger. The longer the optical path between the optical path guiding structure and the finger, the worse the imaging effect. Therefore, how to reduce the optical path between the optical path guide structure and the finger and improve the imaging effect of the optical path guide structure is an urgent problem to be solved.
  • the embodiments of the present application provide a fingerprint identification device and electronic equipment, which can improve the imaging effect of the optical path guide structure.
  • a fingerprint identification device which is suitable for electronic equipment with a display screen, and is characterized in that it comprises: an optical fingerprint sensor, configured to be arranged below the display screen to realize under-screen optical fingerprint detection.
  • the optical fingerprint sensor includes a photosensitive area, the photosensitive area includes a plurality of sensing units, the sensing units are used to detect the light signal reflected on the surface of the finger and returned; the optical path guide structure is used to set the display screen and the Between optical fingerprint sensors, to transmit the light signal reflected on the surface of the finger to the photosensitive area of the optical fingerprint sensor; a filter film, the filter film being formed above the photosensitive area of the fingerprint sensor , Used to filter the optical signal to filter out interference light.
  • the filter film is a coating formed on the surface of the optical fingerprint sensor, and the coating covers the sensing unit of the sensing area.
  • the optical fingerprint sensor is used as the base material of the filter film to support the filter film to form a filter for filtering the interference light.
  • the filter film is a coating film formed on the surface of the optical path guiding structure, and the coating film covers a portion of the optical path guiding structure corresponding to the sensing area of the optical fingerprint sensor.
  • the light path guiding structure serves as a base material of the filter film to support the filter film to form a filter for filtering the interference light.
  • the light path guiding structure is integrated with the filter film and the optical fingerprint sensor on the same optical fingerprint sensor chip; or, the light path guiding structure is provided as an independent component in the Above the optical fingerprint sensor.
  • the light path guiding structure includes a microlens layer and a microporous layer
  • the microlens layer includes a microlens array having a plurality of microlenses
  • the microporous layer includes a microlens array with a plurality of microholes.
  • a micro-hole array is formed under the micro-lens array.
  • each pair of microlenses and microholes corresponds to one of the sensing units of the optical fingerprint sensor;
  • the microlens is used to converge the light signal reflected on the surface of the finger to the microhole, and transmit the light signal to its corresponding sensing unit through the microhole.
  • the microlens and the microhole are aligned with the sensing unit in a direction perpendicular to the surface of the optical fingerprint sensor, so as to transmit the optical signal in the vertical direction to the sensing unit below it.
  • the microlens and the microhole are aligned with the sensing unit in a direction having a certain oblique angle with the surface of the optical fingerprint sensor, so as to transmit the optical signal incident obliquely to it.
  • the sensing unit below.
  • the light path guiding structure further includes a flat layer formed on the surface of the micro lens layer, the flat layer covers the micro lens array, and the filter film is formed on the flat layer The surface, wherein the flat layer is used as a substrate of the filter film to support the filter film.
  • the light path guiding structure further includes a first transparent medium layer and a second transparent medium layer, and the first transparent medium layer is formed above the microporous layer and at least partially fills the microporous layer. Hole; The second transparent medium layer is formed under the microporous layer.
  • the filter film is formed on the lower surface of the second transparent medium layer, and the second transparent medium layer is used as a substrate for supporting the filter film.
  • the light path guiding structure includes a collimator, the collimator is disposed above the filter film, and it includes a collimating through hole array with a plurality of collimating through holes, the The extension direction of the collimating through hole is perpendicular to the surface of the optical fingerprint sensor or has a certain inclination angle with the surface of the optical fingerprint sensor.
  • the upper surface of the optical fingerprint sensor is provided with a first pad for connecting with the substrate.
  • the optical fingerprint sensor is provided with a trench, the surface of the trench is lower than the upper surface of the optical fingerprint sensor, and the surface of the trench is provided with a second pad for connecting with the substrate, The first pad and the second pad are electrically connected through a rewiring layer.
  • the height difference between the surface of the trench and the upper surface of the optical fingerprint sensor is greater than or equal to 30 ⁇ m.
  • the optical fingerprint sensor further includes a through silicon via, and the through silicon via is used to connect the first pad to the substrate.
  • a solder ball for soldering to the substrate is provided on the lower surface of the optical fingerprint sensor, and the first pad is connected to the solder ball through the through silicon via.
  • the optical fingerprint sensor is a back-illuminated fingerprint sensor, and the back-illuminated fingerprint sensor is arranged in an inverted package so that its front faces the substrate and the back faces the display screen, and the filter The optical film is plated on the back of the optical fingerprint sensor.
  • an electronic device including: a display screen, and the fingerprint identification device described in the first aspect and any possible implementation manner in the first aspect.
  • the base material in the traditional filter can be omitted, and the optical fingerprint sensor or the optical path guiding structure can be used as the base of the filter film. material. Therefore, the thickness of the base material can be reduced in the fingerprint identification device, so that the distance between the light path guiding structure and the display screen can be reduced, which is beneficial to improving the imaging effect of the light path guiding structure.
  • FIG. 1 is a schematic structural diagram of an electronic device used in an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a fingerprint identification device provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of another fingerprint identification device provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of another fingerprint identification device provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of another fingerprint identification device provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of another fingerprint identification device provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another fingerprint identification device provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of another fingerprint identification device provided by an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of another fingerprint identification device provided by an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an embodiment of an optical path guiding structure of a fingerprint identification device provided by an embodiment of the present application.
  • embodiments of this application can be applied to optical fingerprint systems, including but not limited to optical fingerprint identification systems and medical diagnostic products based on optical fingerprint imaging.
  • the embodiments of this application only take optical fingerprint systems as an example for illustration, but should not The embodiments of the application constitute any limitation, and the embodiments of the application are also applicable to other systems using optical imaging technology.
  • the optical fingerprint system provided in the embodiments of this application can be applied to smart phones, tablet computers, and other mobile terminals with display screens or other terminal devices; more specifically, in the above-mentioned terminal devices, fingerprint identification
  • the device may specifically be an optical fingerprint device, which may be arranged in a partial area or the entire area below the display screen, thereby forming an under-display optical fingerprint system.
  • the fingerprint identification device can also be partially or fully integrated into the display screen of the terminal device to form an in-display optical fingerprint system.
  • FIG. 1 is a schematic structural diagram of a terminal device to which the embodiment of the application can be applied.
  • the terminal device 10 includes a display screen 120 and an optical fingerprint device 130, wherein the optical fingerprint device 130 is arranged below the display screen 120 Local area.
  • the optical fingerprint device 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array 133 having a plurality of optical sensing units 131, and the area where the sensing array is located or its sensing area is the fingerprint detection area of the optical fingerprint device 130 103.
  • the fingerprint detection area 103 is located in the display area of the display screen 120.
  • the optical fingerprint device 130 can also be arranged in other positions, such as the side of the display screen 120 or the non-transparent area of the edge of the terminal device 10, and the optical fingerprint device 130 can be designed to The optical signal of at least part of the display area of the display screen 120 is guided to the optical fingerprint device 130, so that the fingerprint detection area 103 is actually located in the display area of the display screen 120.
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint device 130, for example, through optical path design such as lens imaging, reflective folding optical path design, or other optical path design such as light convergence or reflection, etc.
  • the area of the fingerprint detection area 103 of the optical fingerprint device 130 can be made larger than the area of the sensing array of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 may also be designed to be substantially the same as the area of the sensing array of the optical fingerprint device 130.
  • the terminal device 10 adopting the above structure does not need to reserve space on the front side for setting fingerprint buttons (such as the Home button), so that a full screen solution can be adopted, that is, the display area of the display screen 120 It can be basically extended to the front of the entire terminal device 10.
  • the optical fingerprint device 130 includes a light detecting part 134 and an optical component 132.
  • the light detecting part 134 includes the sensor array and is electrically connected to the sensor array.
  • the connected reading circuit and other auxiliary circuits can be fabricated on a chip (Die) by a semiconductor process, such as an optical imaging chip or an optical fingerprint sensor.
  • the sensing array is specifically a photodetector (Photodetector) array, which includes A plurality of photodetectors distributed in an array, the photodetectors can be used as the above-mentioned optical sensing unit; the optical component 132 can be arranged above the sensing array of the photodetecting part 134, which can specifically include A filter, a light guide layer or a light path guide structure and other optical elements.
  • the filter layer can be used to filter out ambient light penetrating the finger, and the light guide layer or light path guide structure is mainly used to remove The reflected light reflected from the finger surface is guided to the sensing array for optical detection.
  • the optical assembly 132 and the light detecting part 134 may be packaged in the same optical fingerprint component.
  • the optical component 132 and the optical detection part 134 can be packaged in the same optical fingerprint chip, or the optical component 132 can be arranged outside the chip where the optical detection part 134 is located, for example, the optical component 132 is attached above the chip, or some components of the optical assembly 132 are integrated into the chip.
  • the light guide layer or light path guiding structure of the optical component 132 has multiple implementation schemes.
  • the light guide layer may specifically be a collimator layer made on a semiconductor silicon wafer, which has multiple A collimating unit or a micro-hole array
  • the collimating unit can be specifically a small hole
  • the reflected light reflected from the finger the light that is perpendicularly incident on the collimating unit can pass through and be the optical sensing unit below it
  • the light with an excessively large incident angle is attenuated by multiple reflections inside the collimating unit. Therefore, each optical sensor unit can basically only receive the reflected light reflected by the fingerprint pattern directly above it.
  • the sensor array can detect the fingerprint image of the finger.
  • the light guide layer or the light path guide structure may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses, which The sensing array used to converge the reflected light reflected from the finger to the light detection part 134 below it, so that the sensing array can perform imaging based on the reflected light, thereby obtaining a fingerprint image of the finger.
  • the optical lens layer may further have a pinhole formed in the optical path of the lens unit, and the pinhole may cooperate with the optical lens layer to expand the field of view of the optical fingerprint device to improve the optical The fingerprint imaging effect of the fingerprint device 130.
  • the light guide layer or the light path guide structure may also specifically adopt a micro-lens (Micro-Lens) layer.
  • the micro-lens layer has a micro-lens array formed by a plurality of micro-lenses, which can be grown by semiconductors.
  • a process or other processes are formed above the sensing array of the light detecting part 134, and each microlens may correspond to one of the sensing units of the sensing array.
  • other optical film layers may be formed between the micro lens layer and the sensing unit, such as a dielectric layer or a passivation layer.
  • the micro lens layer and the sensing unit may also include The light-blocking layer of the micro-hole, wherein the micro-hole is formed between its corresponding micro-lens and the sensing unit, the light-blocking layer can block the optical interference between the adjacent micro-lens and the sensing unit, and make the sensing The light corresponding to the unit is condensed into the microhole through the microlens and is transmitted to the sensing unit through the microhole to perform optical fingerprint imaging.
  • a microlens layer can be further provided under the collimator layer or the optical lens layer.
  • the collimator layer or the optical lens layer is used in combination with the microlens layer, its specific laminated structure or optical path may need to be adjusted according to actual needs.
  • the display screen 120 may be a display screen with a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display or a micro-LED (Micro-LED) display Screen.
  • OLED Organic Light-Emitting Diode
  • Micro-LED Micro-LED
  • the optical fingerprint device 130 can use the display unit (i.e., an OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
  • the display screen 120 emits a beam of light 111 to the target finger 140 above the fingerprint detection area 103.
  • the light 111 is reflected on the surface of the finger 140 to form reflected light or pass through all the fingers.
  • the finger 140 scatters to form scattered light.
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Since the ridge and valley of the fingerprint have different light reflection capabilities, the reflected light 151 from the fingerprint ridge and the generated light 152 from the fingerprint ridge have different light intensities.
  • the reflected light passes through the optical component 132, It is received by the sensor array 134 in the optical fingerprint device 130 and converted into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, so that the The terminal device 10 implements an optical fingerprint recognition function.
  • the optical fingerprint device 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint device 130 may be suitable for non-self-luminous display screens, such as liquid crystal display screens or other passively-luminous display screens.
  • the optical fingerprint system of the terminal device 10 may also include an excitation light source for optical fingerprint detection.
  • the excitation light source may specifically be an infrared light source or a light source of non-visible light of a specific wavelength, which may be arranged under the backlight module of the liquid crystal display or arranged in the edge area under the protective cover of the terminal device 10, and the The optical fingerprint device 130 may be arranged under the edge area of the liquid crystal panel or the protective cover and guided by the light path so that the fingerprint detection light can reach the optical fingerprint device 130; or, the optical fingerprint device 130 may also be arranged in the backlight module. Under the group, and the backlight module is designed to allow the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the optical fingerprint device 130 by opening holes or other optical designs on the film layers such as diffuser, brightness enhancement film, and reflective film. .
  • the optical fingerprint device 130 adopts a built-in light source or an external light source to provide an optical signal for fingerprint detection, the detection principle is the same as that described above.
  • the terminal device 10 further includes a transparent protective cover, and the cover may be a glass cover or a sapphire cover, which is located above the display screen 120 and covers the terminal.
  • the front of the device 10. because, in the embodiment of the present application, the so-called finger pressing on the display screen 120 actually refers to pressing on the cover plate above the display screen 120 or covering the surface of the protective layer of the cover plate.
  • the optical fingerprint device 130 may include only one optical fingerprint sensor.
  • the fingerprint detection area 103 of the optical fingerprint device 130 has a small area and a fixed position, so the user is performing fingerprint input At this time, it is necessary to press the finger to a specific position of the fingerprint detection area 103, otherwise the optical fingerprint device 130 may not be able to collect fingerprint images, resulting in poor user experience.
  • the optical fingerprint device 130 may specifically include multiple optical fingerprint sensors; the multiple optical fingerprint sensors may be arranged side by side under the display screen 120 in a splicing manner, and the multiple optical fingerprint sensors The sensing area of the fingerprint sensor together constitutes the fingerprint detection area 103 of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint collection area of the optical fingerprint module 130 103 can be extended to the main area of the lower half of the display screen, that is, to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
  • the fingerprint detection area 130 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • FIG. 2 shows a schematic diagram of the structure of a fingerprint identification device.
  • the fingerprint identification device may also refer to the optical fingerprint device described above.
  • the fingerprint identification device may include at least one optical fingerprint sensor.
  • the optical fingerprint sensor may be arranged below the display screen to receive the light signal reflected by the finger above the display screen.
  • the light signal reflected by the finger may be called a fingerprint detection signal. It is used to generate fingerprint information of the finger.
  • the display screen may be a self-luminous display, such as an OLED display, or a non-self-luminous display, such as a liquid crystal display (LCD) display.
  • a self-luminous display such as an OLED display
  • a non-self-luminous display such as a liquid crystal display (LCD) display.
  • LCD liquid crystal display
  • the display screen shown in Figure 2 is an OLED display screen.
  • the self-luminous unit in the display screen can emit a light signal 211.
  • the light emitted by the light-emitting unit can illuminate the fingerprint area of the finger.
  • the optical signal 211 After the optical signal 211 reaches the finger, it can be reflected or scattered on the surface of the finger to form reflected light or scattered light back to the optical fingerprint sensor.
  • reflected light 212 For ease of description, it is collectively referred to as reflected light 212 below.
  • the reflected light 212 can be received by the optical fingerprint sensor under the display screen for fingerprint collection.
  • the optical fingerprint sensor may include an image sensor with a photosensitive array, capable of receiving light signals 212, and the light signals may be used to generate fingerprint image information of a finger to complete fingerprint image collection.
  • the optical fingerprint identification device may further include an optical path guiding structure for transmitting the optical signal to the optical fingerprint sensor, so that the optical fingerprint sensor can detect the fingerprint information of the finger.
  • the optical path guiding structure may be arranged above the optical fingerprint sensor.
  • the optical fingerprint sensor may include an effective photosensitive area (or simply referred to as photosensitive area), and the optical path guiding structure may be arranged on the effective photosensitive area of the optical fingerprint sensor. Above the area.
  • the effective photosensitive area may specifically be a corresponding area of the sensing array of the optical fingerprint sensor on the surface of the optical fingerprint sensor, that is, the effective photosensitive area is provided with multiple sensing units; in other words, the effective photosensitive area It may be an area where the optical fingerprint sensor is used for fingerprint recognition.
  • the light path guiding structure may include a micro-lens layer 1101 and a micro-hole layer 1106.
  • the micro-lens layer 1101 includes a plurality of micro-lens (Micro-lens or ulens)
  • the microporous layer 1106 may include a plurality of microholes formed in at least one light blocking layer, and one of the plurality of microholes is a microhole array; wherein the microhole array is arranged Under the micro lens array.
  • the microlens can converge the above-mentioned optical signal 212 reflected from the finger to the microhole, and further transmit the optical signal to its corresponding sensing unit through the microhole.
  • the micro lens, the micro hole, and the sensing unit may be aligned in a direction perpendicular to the surface of the optical fingerprint sensor, as shown in FIG. 11, at this time, the micro lens The lens cooperates with the micro-hole to transmit the vertical optical signal 212 to the sensing unit below it.
  • the microlens, the microhole, and the sensing unit may also be aligned in a direction that has a certain inclination angle with the surface of the optical fingerprint sensor, and at this time, the microlens is matched with the microhole.
  • the optical signal incident at an oblique angle can be transmitted to its corresponding sensing unit.
  • the light path guiding structure may also include other optical film layers, such as the passivation layer 1102, the first transparent medium layer 1103, and the second transparent medium layer 1104 shown in FIG. 11, wherein the first transparent medium layer
  • the layer 1103 may be formed above the microporous layer 1106 and at least partially fill the micropores; the passivation layer 1102 may be formed between the microlens layer 1101 and the first dielectric layer 1103, and The second transparent medium layer 1104 is formed under the microporous layer 1106.
  • a buffer layer may be selectively formed between the microlens layer 1101, the passivation layer 1102, the first transparent medium layer 1103, and the second transparent medium layer 1104 as required, and A flat layer may also be formed on the surface of the microlens layer 1101.
  • the optical path guiding structure can be provided as an independent component above the optical fingerprint sensor, or it can be directly grown on the optical fingerprint sensor through a semiconductor manufacturing process, that is, the optical path guiding structure
  • the structure can be integrated in the optical fingerprint sensor to form an integrated optical sensor chip.
  • this structure can reduce the overall thickness of the optical fingerprint device, and is also beneficial to the microlens, the microhole and the The mutual alignment between the sensing units improves the product yield and is also conducive to forming a large-area optical fingerprint device.
  • the light path guiding structure may also be a collimator, and the collimator may be a collimating through hole array with a certain aspect ratio, and the collimating through holes of the collimating through hole array may be allowed to communicate with the through holes.
  • the optical signal with the same extending direction passes through and attenuates the optical signal with a certain angle with the collimating through hole.
  • the collimating through hole of the collimator may be perpendicular to the surface of the collimator, and at this time, it may allow the optical signal reflected by the finger that is perpendicularly incident to the collimator to pass through and be passed by the optical fingerprint sensor under the collimator Received; alternatively, the extension direction of the collimator through hole of the collimator may also have a certain inclination angle with respect to the surface of the collimator, in this case, the collimator may be allowed to have the above The optical signal of the tilt angle passes through and is transmitted to the corresponding sensing unit of the optical fingerprint sensor, and attenuates the optical signal that is inconsistent with the above-mentioned tilt angle.
  • the fingerprint identification device may further include a filter, which may be arranged above the optical path guide structure to filter out ambient light or other interference light in the light signal reflected by the finger, so as to select the required light. Wavelength to reduce the interference of ambient light on fingerprint images.
  • the filter may specifically include an infrared cut filter (IR-cut Filter).
  • the fingerprint identification device shown in FIG. 2 mainly uses the optical path guiding structure (such as the aforementioned microlens or collimator) for imaging, and uses the imaging effect of the optical path guiding structure and the optical path between the optical path guiding structure and the finger related.
  • the optical path may refer to the distance that the optical signal after reflection by the finger needs to reach the optical path guiding structure. Wherein, the longer the optical path between the optical path guiding structure and the finger, the more severe the light diffusion will be, and the worse the imaging effect of the optical path guiding structure. Therefore, in order to improve the imaging effect of the optical path guiding structure, the optical path between the optical path guiding structure and the finger needs to be reduced.
  • the optical path between the light path guiding structure and the finger mainly depends on the distance between the lower surface of the display screen and the light path guiding structure, denoted by P.
  • P min represents the minimum distance between the lower surface of the display screen and the upper surface of the filter.
  • the minimum distance P min is the safety gap that must be reserved for structural assembly.
  • P min is the pre-installed filter The minimum installation gap left, there is a minimum process limit.
  • d is the distance from the lower surface of the filter to the upper surface of the optical path guide structure. This distance is also a safety gap that must be reserved for structural assembly, and there is a minimum process limit.
  • T represents the thickness of the filter
  • n represents the equivalent refractive index of the filter
  • the equivalent optical length of the filter is T/n.
  • the thickness of the entire fingerprint identification device will be greater, which is not conducive to saving size and space.
  • the embodiment of the present application provides a fingerprint identification device, which can reduce the optical path between the optical path guiding structure and the finger, and improve the imaging effect of the optical path guiding structure.
  • the embodiment of the present application analyzes the structure of the filter and obtains that the base material of the filter can be omitted to achieve the purpose of reducing the optical path between the optical path guiding structure and the finger.
  • the technical solutions provided by the embodiments of the present application are described in detail below.
  • Figure 3 is a schematic diagram of a typical filter structure.
  • the structure of the filter includes a substrate and a coating.
  • the substrate can be a glass sheet, a crystal wafer or a thin film sheet, and is mainly used as a carrier for coating.
  • the substrate is generally thicker, and its thickness generally exceeds 100 ⁇ m, that is, T is greater than 100 ⁇ m.
  • Coating is the core of the filter and is used to complete the light wave filtering effect.
  • the coating film is usually very thin, only 1-5 ⁇ m.
  • the embodiment of the application provides a fingerprint identification device, which can omit the filter substrate, and directly plate the coating on the surface of the optical fingerprint sensor or the optical path guiding structure, and use the optical fingerprint sensor or the optical path to guide
  • the structure is used as a coating carrier, so that the same light wave filtering effect can be achieved.
  • the fingerprint identification device omitting the filter substrate can reduce the distance between the light path guiding structure and the lower surface of the display screen, that is, it can reduce the optical path between the light path guiding structure and the finger, and improve The imaging effect of the optical path guiding structure.
  • the thickness of the fingerprint identification device can also be reduced, which is beneficial to saving size and space.
  • the fingerprint identification device includes an optical fingerprint sensor 320 that includes a photosensitive area 321 on which a filter film 310 is plated.
  • the filter film 310 may refer to the coating film described above.
  • the filter film 310 can filter the light signal reaching the photosensitive area 321 to filter out the interference light entering the photosensitive area 321, such as ambient light or other light signals that interfere with the fingerprint detection signal, and only use a specific wavelength band.
  • the optical signal (that is, the optical signal of the wavelength band corresponding to the fingerprint detection signal) reaches the photosensitive area 321 of the optical fingerprint sensor 320; for example, the filter film 310 may be an infrared cut-off filter film, which can filter out optical signals in the infrared wavelength range , Or filter out part of the red wave at the same time.
  • the optical fingerprint sensor coated with a filter film can be used as an optical fingerprint sensor to collect fingerprint images, and can also be used as a base material of a filter film to carry the filter film, and form a filter film together with the filter film. In addition to the interference light filter, the light wave filtering effect is completed. Integrating the filter film on the optical fingerprint sensor can save the base material of the filter, which is beneficial to reduce the thickness of the fingerprint identification device.
  • the filter film can be plated on the photosensitive area of the optical fingerprint sensor, or it can be plated on the entire surface of the optical fingerprint sensor, or it can be plated on an area slightly larger than the photosensitive area, in other words, the filter
  • the film may cover at least part of the sensing unit of the photosensitive area of the optical fingerprint sensor by coating.
  • a buffer layer or a dielectric layer may also be provided between the filter film and the optical fingerprint sensor to ensure good combination between the two and ensure the filtering effect.
  • the implementation of this application The example does not specifically limit this.
  • the photosensitive surface of the sensor faces the front of the fingerprint sensor or the upper surface of the fingerprint sensor.
  • the filter film can be plated on the front of the optical fingerprint sensor, and the optical fingerprint sensor is used as a filter
  • the base material of the film can filter out the ambient light in the light signal reflected by the finger to achieve the effect of light wave filtering.
  • the fingerprint identification device may further include the optical path guiding structure as described above, and the optical path guiding structure may be provided on the filter film.
  • the optical path guiding structure can be used to guide the light signal reflected by the finger to the photosensitive area.
  • the filter film 520 of the filter can be directly formed on the surface of the optical fingerprint sensor 530.
  • the filter film 520 can be disposed on the photosensitive area 531 of the optical fingerprint sensor 530.
  • the optical path guiding structure 510 may adopt the structure shown in FIG. 11 or the collimator structure, which may be grown on the upper surface of the filter film 520 through a semiconductor manufacturing process.
  • the optical path guiding structure 510, the filter The optical film 520 and the optical fingerprint sensor 530 can be integrated on the same chip; alternatively, the optical path guiding structure 510 can also be placed on the upper surface of the filter film 520 as an independent component to filter the light signal reflected by the finger .
  • the second transparent medium layer may be formed above the filter film 520, and a buffer layer or other medium layer or optical film may be provided between the two as required.
  • Floor may be formed above the filter film 520, and a buffer layer or other medium layer or optical film may be provided between the two as required.
  • the surface of the optical fingerprint sensor 530 may also be provided with a first pad 550 connected to the substrate 540.
  • the first pad 550 may also be called a bonding pad or bonding area.
  • the first pad 550 may be provided with an input-output pad (input-output pad, IO pad) for implementing the transmission of internal and external signals of the optical fingerprint sensor 530.
  • the substrate 540 may be a circuit board, such as a flexible printed circuit (FPC) board.
  • the optical fingerprint sensor 530 may be soldered to the substrate 540 through the first pad 550, and the substrate 540 may be used to connect with other peripheral circuits or electronic devices. Electrical interconnection and signal transmission of components.
  • connection method of the first pad 550 and the substrate 540 is usually a wire connection method, for example, the pad is connected to the substrate by wire bonding, as shown in FIG. 5.
  • the first pad 550 may also be connected to the substrate in other ways, which is not limited in the embodiment of the present application.
  • P min represents the distance between the arc top of the lead wire 560 and the lower surface of the display screen 503, and this P min is also the minimum safety gap in the structure assembly
  • d 1 represents the arc top of the lead wire 560 to the upper surface of the light path guiding structure 510. The distance between the surfaces.
  • the arc height of the lead 560 (or bonding wire) connected to the substrate 540 should generally be 100 ⁇ m high, that is, the arc top of the lead 560 is generally 100 ⁇ m higher than the position of the first pad 550 on the optical fingerprint sensor 530.
  • the thickness of the optical path guiding structure 510 integrated on the surface of the optical fingerprint sensor 530 is usually only 20 ⁇ m high. Therefore, the arc top of the lead 560 is higher than the upper surface of the collimator 510 by a distance of d 1 .
  • the reserved safety gap P min is the same, the value of d1 is less than the value of (d+T/n). Therefore, in this architecture, the minimum value of the distance between the light path guiding structure 510 and the display screen 503 is smaller than the distance between the light path guiding structure and the display screen in the architecture shown in FIG. 2.
  • the technical solution provided by the embodiment of the present application can reduce the distance between the display screen 503 and the light path guiding structure 510, and improve the imaging effect of the light path guiding structure 510.
  • the embodiment of the present application also provides another fingerprint identification device, which can further reduce the distance between the optical path guide structure and the display screen.
  • Another fingerprint identification device provided by an embodiment of the present application can further reduce the distance between the optical path guiding structure and the display screen.
  • the optical fingerprint sensor 530 is also provided with a trench, and the surface 534 of the trench is lower than the upper surface 533 of the optical fingerprint sensor 530.
  • the surface 534 of the trench and the optical fingerprint sensor 530 There is a height difference m between the upper surfaces.
  • a trench process can be used to cut a trench on the surface of the optical fingerprint sensor 530, and the surface 534 of the trench is lower than the upper surface 533 of the optical fingerprint sensor 530 by m.
  • the trench may be a groove cut on the surface of the optical fingerprint sensor 530, or a step cut on the surface of the optical fingerprint sensor 530, and the surface of the groove or step is lower than the upper surface of the optical fingerprint sensor 530.
  • the depth of the trench may be determined according to actual needs.
  • the height difference between the surface 534 of the trench and the upper surface of the optical fingerprint sensor 530 may be greater than or equal to 30 ⁇ m.
  • a pad 570 connected to the substrate 540 is provided on the surface 534 of the trench, and the pad 570 may be connected to the substrate 540 by wire bonding.
  • the distance between the arc top of the lead wire 560 and the upper surface of the light path guiding structure 510 in this embodiment is smaller than the distance between the arc top of the lead wire and the upper surface of the light path guiding structure in FIG.
  • the distance from the top of the arc of 560 to the upper surface of the light path guiding structure 510 is less than d 1 , so the distance from the upper surface of the light path guiding structure 510 to the lower surface of the display screen becomes P min +d 1 -m, so the light path guide The distance from the upper surface of the structure 510 to the lower surface of the display screen 503 is further reduced, which can further improve the imaging effect of the light path guiding structure 510.
  • the upper surface 533 of the optical fingerprint sensor 530 is provided with an original pad 550 called the first pad 550.
  • a trench can be cut.
  • a new pad 570 is provided on the surface of the trench, called the second pad 570.
  • the second pad 570 corresponds to the first pad 550, and a conductive layer 580 may be provided on the surface of the cut trench.
  • the conductive layer 580 may connect the first pad 550 to the second pad 570 on the trench.
  • the conductive layer 580 may be a re-wiring layer, and re-wiring may be performed using a redistribution layer (RDL) process, and the first pad 550 is led to the position of the second pad 570 in the trench through RDL wiring.
  • RDL redistribution layer
  • the value of m may be greater than or equal to d 1 .
  • the guide surface of the optical path to the distance between the lower surface of the panel 503 is reduced as the structure 510 P min, P min is the minimum limit process. In this way, the distance between the light path guiding structure 510 and the display screen 503 can be reduced to a minimum, and the imaging effect of the light path guiding structure 510 can be further improved.
  • m can be greater than or equal to 30 ⁇ m.
  • the sink height of 30 ⁇ m is only an example, and the embodiment of the present application is not limited to this.
  • the value of the sinking height m depends on the wire bonding process technology. If the wire bonding process requires a minimum arc top height of 50 ⁇ m, the value of m can be greater than or equal to 30 ⁇ m; if the wire bonding process requires a minimum arc top height of 100 ⁇ m, the value of m can be greater than or equal to 80 ⁇ m. Therefore, the embodiment of the present application does not specifically limit the value of the sinking height m, as long as the arc top height of the lead does not exceed the upper surface of the light path guiding structure.
  • the embodiment of the present application also provides another fingerprint identification device, which can also realize that the distance between the upper surface of the optical path guide structure and the lower surface of the display screen is P min .
  • a through silicon hole 502 connected to the substrate 540 may be provided on the first pad 550.
  • the surface of the through silicon hole 502 may be plated with a conductive layer, for example, metal may be plated to make it conductive, so that the The first pad 550 on the upper surface of the optical fingerprint sensor 530 is connected to the lower surface of the optical fingerprint sensor 530.
  • the aperture of the through silicon via 502 on the lower surface of the optical fingerprint sensor 530 may be connected to the substrate 540, so as to realize the connection between the first pad 550 and the substrate 540.
  • a solder ball 501 can be provided on the lower surface of the optical fingerprint sensor 530, and the solder ball 501 can be used as a new soldering area.
  • the solder ball 501 corresponds to the through silicon via 502, that is, the solder ball 501 corresponds to the first pad 550, and each pad corresponds to a solder ball.
  • the first pad 550 on the upper surface of the optical fingerprint sensor 530 can be wired to the solder ball 501 on the lower surface, and then the solder ball 501 is soldered to the substrate 540 to realize the connection between the optical fingerprint sensor 530 and the substrate 540.
  • the solder ball 501 may be disposed at the aperture of the through silicon via 502, and a corresponding solder ball 501 is disposed at the aperture of each through silicon via 502.
  • the solder balls 501 are arranged in an array on the lower surface of the optical fingerprint sensor 530, and then a conductive layer 580 can be formed on the lower surface of the optical fingerprint sensor 530, and the holes of the through silicon via 502 It is connected to the corresponding solder ball 501, so that the first bonding pad 550 is connected to the solder ball 501 at the designated position.
  • the conductive layer 580 may be, for example, the rewiring layer manufactured by the RDL process described above.
  • solder balls 501 may not be distributed in an array, but may be other distribution forms, as long as the distance between adjacent solder balls can meet the minimum distance between solder balls.
  • the position of the through silicon via 502 is connected to the new soldering area, so that the solder balls 501 in the new soldering area meet the minimum spacing requirement, and avoiding the distance between adjacent through silicon vias 502 being too small, causing circuit failure. Therefore, re-arranging the positions of the solder balls 501 on the lower surface of the optical fingerprint sensor 530 is particularly suitable for situations where the positions of the first pads 550 are too dense.
  • All the first pads 550 on the upper surface of the optical fingerprint sensor 530 can be connected to the solder balls 501 on the lower surface through through silicon vias 502, and the solder balls 501 on the lower surface can be soldered to by surface mount technology (SMT) On the substrate.
  • SMT surface mount technology
  • TSV Through silicon vias
  • the TSV connection method is not limited to the architecture shown in FIG. 7.
  • the TSV packaging method can also be used at the position of the trench to realize the upper surface of the optical path guide structure and The distance between the lower surfaces of the display screen is P min .
  • the TSV packaging process on the surface of the trench is similar to the TSV packaging process on the upper surface of the optical fingerprint sensor, and will not be repeated here.
  • optical fingerprint sensors described above are all described by taking a traditional optical fingerprint sensor as an example, and the photosensitive surface of the optical fingerprint sensor faces the upper surface of the fingerprint sensor or faces the front of the fingerprint sensor. This conventional optical fingerprint sensor is applied to any of the embodiments described above.
  • the fingerprint identification device of the embodiment of the present application may also use a back-illuminated fingerprint sensor.
  • the back-illuminated fingerprint sensor 530 indicates that the photosensitive surface 531 of the optical fingerprint sensor faces the lower surface 507 (or the back side) of the back-illuminated fingerprint sensor 530.
  • the back-illuminated fingerprint sensor 530 can adopt flip-chip packaging technology, that is, the front side 507 of the back-illuminated fingerprint sensor 530 faces downwards and faces the substrate 540.
  • the pad 550 is connected to the substrate 540 to realize the connection between the back-illuminated fingerprint sensor 530 and the substrate 540.
  • the light signal reflected by the finger can reach the photosensitive area 531 on the back of the back-illuminated fingerprint sensor 530, and the photosensitive area 531 can perform fingerprint recognition according to the received light signal.
  • a solder ball 501 can be made at the position of the first pad 550, and the solder ball 501 can be soldered to the substrate 540 to realize the connection between the back-illuminated fingerprint sensor 530 and the substrate 540.
  • a solder ball array can be fabricated on the front 507 of the fingerprint sensor 530, the original first pad 550 can be connected to the designated solder ball 501 through the RDL process, and the back-illuminated fingerprint sensor 530 can be soldered upside down through the solder ball array On the substrate 540, the back-illuminated fingerprint sensor 530 and the substrate 540 are connected.
  • the filter film 520 of the back-illuminated fingerprint sensor 530 provided in this embodiment can be plated on the back 506 of the back-illuminated fingerprint sensor 530.
  • it may be plated on the sensing area on the back 506 of the back-illuminated fingerprint sensor 530.
  • the filter film is plated on the surface of the fingerprint sensor, and the embodiment of the present application is not limited to this.
  • the light filter film 910 can also be plated on the surface of the light path guiding structure 920, and the light path guiding structure 920 is used as a substrate for the coating to achieve the effect of light wave filtering.
  • the filter film 910 may be plated on the upper surface of the light path guiding structure 920.
  • the surface of the microlens layer may be provided with a flat layer, and the filter film 910 can be plated on the surface of the flat layer; alternatively, the filter film 910 can also be plated on the lower surface of the collimator 920; when the light path guiding structure shown in FIG. 11 is used, the filter film 910 It can be specifically plated under the second transparent medium layer.
  • the substrate of the filter can also be omitted, and the collimator and collimator can be reduced. The distance between the displays.
  • the fingerprint identification device of the embodiment of the present application may include an optical path guide structure 920 and an optical fingerprint sensor 940.
  • the surface of the optical path guiding structure 920 may be coated with a filter film 910, and the optical path guiding structure 920 may be disposed on the surface of the optical fingerprint sensor 940, for example, may be disposed on the photosensitive area 930 of the optical fingerprint sensor 940.
  • the light path guiding structure 920 coated with the filter film 910 can filter the light signal reflected by the finger above the display screen and guide the light signal to the photosensitive area 930 of the optical fingerprint sensor 940.
  • the optical fingerprint sensor 940 may receive an optical signal passing through the optical path guiding structure 920, and the optical signal may be used to generate fingerprint information of a finger.
  • the filter film 910 may be specifically a coating formed on the surface of the optical path guiding structure 920, and the coating covering the optical path guiding structure 920 corresponds to the sensing area of the optical fingerprint sensor 940 part.
  • the flat layer of the optical path guiding structure 940 or one of the dielectric layers can be used as the base material of the filter film 910 to support the filter film 910 to form a filter for filtering the interference light.
  • the filter film and the optical path guiding structure can be integrated in the optical fingerprint sensor, thereby realizing an ultra-thin integrated optical fingerprint device.
  • An embodiment of the present application also provides a packaging structure, which may include the fingerprint identification device described above, and a packaging substrate.
  • the packaging substrate may refer to the substrate 540 described above.
  • the packaging substrate may be an FPC board or other circuit boards.
  • the fingerprint identification device may include a fingerprint sensor provided with a pad connected to the packaging substrate, and the pad may be packaged on the packaging substrate by any of the methods described above to realize the connection between the fingerprint sensor and the substrate.
  • the pad can also be called a bonding area connected to the substrate.
  • the fingerprint identification device may be a fingerprint module, or the fingerprint identification device may be a device including a fingerprint module and a substrate, or the fingerprint identification device may be an electronic device including a fingerprint module, The embodiment of the application does not limit this.
  • FIG. 10 is a schematic structural diagram of an electronic device 1000 provided by an embodiment of the present application.
  • the electronic device 1000 has a fingerprint recognition function.
  • the electronic device 1000 may include a fingerprint identification device 1010, and the fingerprint identification device 1010 may be any of the fingerprint identification devices described above. Since the fingerprint identification device 1010 can reduce the distance between the optical path guide structure and the display screen, the thickness of the fingerprint identification device can be reduced. Therefore, the electronic device using the above fingerprint identification device can reduce the thickness of the electronic device and improve the user experience.
  • the electronic device 1000 may include a display screen, and a fingerprint identification device may be disposed under the display screen, and receive the light signal reflected by the finger above the display screen, and the light signal may be used to generate fingerprint information of the finger.
  • the display screen can be a self-luminous display, such as an OLED display, or a non-self-luminous display, such as an LCD display.
  • optical fingerprint sensor in the embodiments of the present application may represent an optical fingerprint sensor chip.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence or parts that contribute to the existing technology or parts of the technical solutions, and the computer software products are stored in a storage medium.
  • Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the division of units or modules or components in the device embodiments described above is only a logical function division, and there may be other divisions in actual implementation.
  • multiple units or modules or components can be combined or integrated.
  • To another system, or some units or modules or components can be ignored or not executed.
  • the aforementioned units/modules/components described as separate/display components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units/modules/components may be selected according to actual needs to achieve the objectives of the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本申请实施例公开了一种指纹识别装置和电子设备,能够提高光路引导结构的成像效果。所述指纹识别装置适用于具有显示屏的电子设备,包括:光学指纹传感器,用于设置在显示屏的下方以实现屏下光学指纹检测,光学指纹传感器包括感光区域,感光区域包括多个感应单元,感应单元用于检测在手指表面反射而返回的光信号;光路引导结构,用于设置在显示屏和光学指纹传感器之间,以将在手指表面反射而返回的光信号传输到光学指纹传感器的感光区域;滤光膜,形成在所述指纹传感器的感光区域的上方,用于对光信号进行滤波以滤除干扰光。

Description

指纹识别装置和电子设备 技术领域
本申请实施例涉及指纹识别领域,并且更具体地,涉及一种指纹识别装置和电子设备。
背景技术
随着手机行业的高速发展,指纹识别技术越来越受到人们重视,屏下指纹识别技术的实用化已成为大众所需。光学屏下指纹识别技术是通过光学指纹传感器采集光源发出的光线在手指发生反射形成的反射光,反射光中携带手指的指纹信息,从而实现屏下指纹识别。
传统的光学指纹识别装置可以包括光路引导结构,光路引导结构可以将手指反射的光信号直接成像在指纹传感器上。但是,光路引导结构的成像效果与光路引导结构与手指之间的光程有关,光路引导结构与手指之间的光程越长,成像效果就越差。因此,如何减小光路引导结构与手指之间的光程,提高光路引导结构的成像效果称为亟需解决的问题。
发明内容
本申请实施例提供了一种指纹识别装置以及电子设备,能够提高光路引导结构的成像效果。
第一方面,提供了一种指纹识别装置,适用于具有显示屏的电子设备,其特征在于,包括:光学指纹传感器,用于设置在所述显示屏的下方以实现屏下光学指纹检测,所述光学指纹传感器包括感光区域,所述感光区域包括多个感应单元,所述感应单元用于检测在手指表面反射而返回的光信号;光路引导结构,用于设置在所述显示屏和所述光学指纹传感器之间,以将所述在手指表面反射而返回的光信号传输到所述光学指纹传感器的感光区域;滤光膜,所述滤光膜形成在所述指纹传感器的感光区域的上方,用于对所述光信号进行滤波以滤除干扰光。
在一些可能的实现方式中,所述滤光膜为形成在所述光学指纹传感器的表面的镀膜,并且所述镀膜覆盖所述感应区域的感应单元。
在一些可能的实现方式中,所述光学指纹传感器作为所述滤光膜的基 材,以承载所述滤光膜而形成用于滤除所述干扰光的滤波器。
在一些可能的实现方式中,所述滤光膜为形成在所述光路引导结构的表面的镀膜,并且所述镀膜覆盖所述光路引导结构与所述光学指纹传感器的感应区域相对应的部分。
在一些可能的实现方式中,所述光路引导结构作为所述滤光膜的基材,以承载所述滤光膜而形成用于滤除所述干扰光的滤波器。
在一些可能的实现方式中,所述光路引导结构与所述滤光膜和所述光学指纹传感器集成在同一个光学指纹传感器芯片;或者,所述光路引导结构作为一个独立的部件设置在所述光学指纹传感器的上方。
在一些可能的实现方式中,所述光路引导结构包括微透镜层和微孔层,所述微透镜层包括具有多个微透镜的微透镜阵列,所述微孔层包括具有多个微孔的微孔阵列,所述微孔阵列形成在所述微透镜阵列的下方。
在一些可能的实现方式中,所述微透镜和所述微孔之间具有一一对应的关系,且每一对微透镜和微孔分别对应于所述光学指纹传感器的其中一个感应单元;所述微透镜用于将所述在手指表面反射而返回的光信号汇聚到所述微孔,并通过所述微孔将所述光信号传输至其对应的感应单元。
在一些可能的实现方式中,所述微透镜和所述微孔以垂直于所述光学指纹传感器表面的方向与所述感应单元进行对齐,以将垂直方向的光信号传输至其下方的感应单元。
在一些可能的实现方式中,所述微透镜和所述微孔以与所述光学指纹传感器表面具有一定倾斜角度的方向与所述感应单元进行对齐,以将倾斜角度入射的光信号传输至其下方的感应单元。
在一些可能的实现方式中,所述光路引导结构还包括形成在所述微透镜层表面的平坦层,所述平坦层覆盖所述微透镜阵列,且所述滤光膜形成在所述平坦层表面,其中所述平坦层用于作为所述滤光膜的基材以承载所述滤光膜。
在一些可能的实现方式中,所述光路引导结构还包括第一透明介质层和第二透明介质层,所述第一透明介质层形成在所述微孔层上方,并至少部分填充所述微孔;所述第二透明介质层形成在所述微孔层的下方。
在一些可能的实现方式中,所述滤光膜形成在所述第二透明介质层的下表面,且所述第二透明介质层用于作为承载所述滤光膜的基材。
在一些可能的实现方式中,所述光路引导结构包括准直器,所述准直器设置于所述滤光膜的上方,且其包括具有多个准直通孔的准直通孔阵列,所述准直通孔的延伸方向垂直于所述光学指纹传感器表面或者与所述光学指纹传感器的表面具有一定的倾斜角度。
在一些可能的实现方式中,所述光学指纹传感器的上表面设置有用于与基板连接的第一焊盘。
在一些可能的实现方式中,所述光学指纹传感器设置有沟渠,所述沟渠的表面低于所述光学指纹传感器的上表面,所述沟渠的表面设置有用于与基板连接的第二焊盘,所述第一焊盘和所述第二焊盘通过重新布线层电连接。
在一些可能的实现方式中,所述沟渠的表面与所述光学指纹传感器的上表面之间的高度差大于或等于30μm。
在一些可能的实现方式中,所述光学指纹传感器还包括硅通孔,所述硅通孔用于将所述第一焊盘连接到所述基板。
在一些可能的实现方式中,所述光学指纹传感器的下表面设置有用于焊接至所述基板的锡球,所述第一焊盘通过所述硅通孔连接至所述锡球。
在一些可能的实现方式中,所述光学指纹传感器为背照式指纹传感器,所述背照式指纹传感器通过倒封装方式进行设置,以使其正面朝向基板而背面朝向显示屏,且所述滤光膜镀在所述光学指纹传感器的背面。
第二方面,提供一种电子设备,包括:显示屏,以及第一方面以及第一方面中任一可能实现的方式中所述的指纹识别装置。
本申请提供的技术方案,通过将滤光膜设置在光学指纹传感器的感光区域的上方,可以省去传统滤光器中的基材,而将光学指纹传感器或光路引导结构作为滤光膜的基材。因此,指纹识别装置中可以减小基材的厚度,从而能够减小光路引导结构与显示屏之间的距离,有利于提高光路引导结构的成像效果。
附图说明
图1是本申请实施例所使用的电子设备的结构示意图。
图2是本申请实施例提供的一种指纹识别装置的结构示意图。
图3是本申请实施例提供的另一种指纹识别装置的结构示意图。
图4是本申请实施例提供的另一种指纹识别装置的结构示意图。
图5是本申请实施例提供的另一种指纹识别装置的结构示意图。
图6是本申请实施例提供的另一种指纹识别装置的结构示意图。
图7是本申请实施例提供的另一种指纹识别装置的结构示意图。
图8是本申请实施例提供的另一种指纹识别装置的结构示意图。
图9是本申请实施例提供的另一种指纹识别装置的结构示意图。
图10是本申请实施例提供的一种电子设备的示意性框图。
图11是本申请实施例提供的指纹识别装置的光路引导结构一种实施例的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例可以应用于光学指纹系统,包括但不限于光学指纹识别系统和基于光学指纹成像的医疗诊断产品,本申请实施例仅以光学指纹系统为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技术的系统等。
作为一种常见的应用场景,本申请实施例提供的光学指纹系统可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他终端设备;更具体地,在上述终端设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(under-display)光学指纹系统。或者,所述指纹识别装置也可以部分或者全部集成至所述终端设备的显示屏内部,从而形成屏内(in-display)光学指纹系统。
如图1所示为本申请实施例可以适用的终端设备的结构示意图,所述终端设备10包括显示屏120和光学指纹装置130,其中,所述光学指纹装置130设置在所述显示屏120下方的局部区域。所述光学指纹装置130包括光学指纹传感器,所述光学指纹传感器包括具有多个光学感应单元131的感应阵列133,所述感应阵列所在区域或者其感应区域为所述光学指纹装置130的指纹检测区域103。如图1所示,所述指纹检测区域103位于所述显示屏120的显示区域之中。在一种替代实施例中,所述光学指纹装置130还可以设置在其他位置,比如所述显示屏120的侧面或者所述终端设备10的边缘非透光区域,并通过光路设计来将所述显示屏120的至少部分显示区域的光信号导引到所述光学指纹装置130,从而使得所述指纹检测区域103实际上 位于所述显示屏120的显示区域。
应当理解,所述指纹检测区域103的面积可以与所述光学指纹装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得所述光学指纹装置130的指纹检测区域103的面积大于所述光学指纹装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,所述光学指纹装置130的指纹检测区域103也可以设计成与所述光学指纹装置130的感应阵列的面积基本一致。
因此,使用者在需要对所述终端设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的终端设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即所述显示屏120的显示区域可以基本扩展到整个终端设备10的正面。
作为一种可选的实现方式,如图1所示,所述光学指纹装置130包括光检测部分134和光学组件132,所述光检测部分134包括所述感应阵列以及与所述感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die),比如光学成像芯片或者光学指纹传感器,所述感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的光学感应单元;所述光学组件132可以设置在所述光检测部分134的感应阵列的上方,其可以具体包括滤光层(filter)、导光层或光路引导结构以及其他光学元件,所述滤光层可以用于滤除穿透手指的环境光,而所述导光层或光路引导结构主要用于从手指表面反射回来的反射光导引至所述感应阵列进行光学检测。
在具体实现上,所述光学组件132可以与所述光检测部分134封装在同一个光学指纹部件。比如,所述光学组件132可以与所述光学检测部分134封装在同一个光学指纹芯片,也可以将所述光学组件132设置在所述光检测部分134所在的芯片外部,比如将所述光学组件132贴合在所述芯片上方,或者将所述光学组件132的部分元件集成在上述芯片之中。
其中,所述光学组件132的导光层或者光路引导结构有多种实现方案,比如,所述导光层可以具体为在半导体硅片制作而成的准直器(Collimator) 层,其具有多个准直单元或者微孔阵列,所述准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到所述准直单元的光线可以穿过并被其下方的光学感应单元接收,而入射角度过大的光线在所述准直单元内部经过多次反射被衰减掉,因此每一个光学感应单元基本只能接收到其正上方的指纹纹路反射回来的反射光,从而所述感应阵列便可以检测出手指的指纹图像。
在另一种实施例中,所述导光层或者光路引导结构也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,其用于将从手指反射回来的反射光汇聚到其下方的光检测部分134的感应阵列,以使得所述感应阵列可以基于所述反射光进行成像,从而得到所述手指的指纹图像。可选地,所述光学透镜层在所述透镜单元的光路中还可以形成有针孔,所述针孔可以配合所述光学透镜层扩大所述光学指纹装置的视场,以提高所述光学指纹装置130的指纹成像效果。
在其他实施例中,所述导光层或者光路引导结构也可以具体采用微透镜(Micro-Lens)层,所述微透镜层具有由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在所述光检测部分134的感应阵列上方,并且每一个微透镜可以分别对应于所述感应阵列的其中一个感应单元。并且,所述微透镜层和所述感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层,更具体地,所述微透镜层和所述感应单元之间还可以包括具有微孔的挡光层,其中所述微孔形成在其对应的微透镜和感应单元之间,所述挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得所述感应单元所对应的光线通过所述微透镜汇聚到所述微孔内部并经由所述微孔传输到所述感应单元以进行光学指纹成像。应当理解,上述光路引导结构的几种实现方案可以单独使用也可以结合使用,比如,可以在所述准直器层或者所述光学透镜层下方进一步设置微透镜层。当然,在所述准直器层或者所述光学透镜层与所述微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
作为一种可选的实施例,所述显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,所述光学指纹装置130可以利用所述OLED显示屏120位于所述指纹检测区 域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指140按压在所述指纹检测区域103时,显示屏120向所述指纹检测区域103上方的目标手指140发出一束光111,该光111在手指140的表面发生反射形成反射光或者经过所述手指140内部散射而形成散射光,在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)与峪(vally)对于光的反射能力不同,因此,来自指纹嵴的反射光151和来自指纹峪的发生过152具有不同的光强,反射光经过光学组件132后,被光学指纹装置130中的感应阵列134所接收并转换为相应的电信号,即指纹检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述终端设备10实现光学指纹识别功能。
在其他实施例中,所述光学指纹装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。在这种情况下,所述光学指纹装置130可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,所述终端设备10的光学指纹系统还可以包括用于光学指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在所述终端设备10的保护盖板下方的边缘区域,而所述光学指纹装置130可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测光可以到达所述光学指纹装置130;或者,所述光学指纹装置130也可以设置在所述背光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达所述光学指纹装置130。当采用所述光学指纹装置130采用内置光源或者外置光源来提供用于进行指纹检测的光信号时,其检测原理与上面描述内容是一致的。
应当理解的是,在具体实现上,所述终端设备10还包括透明保护盖板,所述盖板可以为玻璃盖板或者蓝宝石盖板,其位于所述显示屏120的上方并覆盖所述终端设备10的正面。因为,本申请实施例中,所谓的手指按压在所述显示屏120实际上是指按压在所述显示屏120上方的盖板或者覆盖所述盖板的保护层表面。
另一方面,在某些实施例中,所述光学指纹装置130可以仅包括一个光 学指纹传感器,此时光学指纹装置130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到所述指纹检测区域103的特定位置,否则光学指纹装置130可能无法采集到指纹图像而造成用户体验不佳。在其他替代实施例中,所述光学指纹装置130可以具体包括多个光学指纹传感器;所述多个光学指纹传感器可以通过拼接方式并排设置在所述显示屏120的下方,且所述多个光学指纹传感器的感应区域共同构成所述光学指纹装置130的指纹检测区域103。也即是说,所述光学指纹装置130的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将所述光学指纹模组130的指纹采集区域103可以扩展到所述显示屏的下半部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当所述光学指纹传感器数量足够时,所述指纹检测区域130还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
图2所示为一种指纹识别装置的结构示意图,该指纹识别装置也可以指上文描述的光学指纹装置。该指纹识别装置可以包括至少一个光学指纹传感器,光学指纹传感器可以设置在显示屏的下方,用于接收显示屏上方的手指反射的光信号,所述手指反射的光信号可以称为指纹检测信号,其用于生成手指的指纹信息。
其中,显示屏可以是自发光显示屏,例如OLED显示屏,也可以是非自发光显示屏,例如液晶显示屏(liquid crystal display,LCD)显示屏。
以图2为例,图2所示的显示屏为OLED显示屏。显示屏中的自发光单元可以发出光信号211,当手指按压在显示屏表面的指纹采集区域时,发光单元发出的光可以照亮手指的指纹区域。光信号211到达手指后,可以在手指的表面发生反射或散射,形成返回至光学指纹传感器的反射光或散射光,为便于描述,以下统称为反射光212。反射光212可以被显示屏下方的光学指纹传感器接收到,以进行指纹采集。该光学指纹传感器可以包括具有感光阵列的图像传感器,能够接收光信号212,所述光信号可以用于生成手指的指纹图像信息,完成指纹图像的采集。
该光学指纹识别装置还可以包括光路引导结构,所述光路引导结构用于将所述光信号传输到所述光学指纹传感器,以使所述光学指纹传感器可以检测到所述手指的指纹信息。所述光路引导结构可以设置在所述光学指纹传感 器的上方,具体地,所述光学指纹传感器可以包括有效感光区域(或简称为感光区域),该光路引导结构可以设置在光学指纹传感器的有效感光区域的上方。所述有效感光区域可以具体是所述光学指纹传感器的感应阵列在所述光学指纹传感器表面上的对应区域,即所述有效感光区域设置有多个感应单元;换句话说,所述有效感光区域可以是所述光学指纹传感器用于进行指纹识别的区域。
作为一种实施例,如图11所示,所述光路引导结构可以包括微透镜层1101和微孔层1106,所述微透镜层1101包括由阵列排布的多个微透镜(Micro-lens或ulens)形成的微透镜阵列,所述微孔层1106可以包括在至少一个挡光层形成的多个微孔,所述多个微孔形成一个为微孔阵列;其中,所述微孔阵列设置在所述微透镜阵列的下方。可选地,所述微透镜和所述微孔之间可以是一一对应的关系,并分别进一步对应于光学指纹传感器的其中一个感应单元1202。其中,所述微透镜可以将上述从手指反射的光信号212汇聚到所述微孔,并进一步通过所述微孔将所述光信号传输到其对应的感应单元。
作为一种可选的实现方式,所述微透镜、所述微孔和所述感应单元可以是以垂直于所述光学指纹传感器表面的方向进行对齐,如图11所示,此时所述微透镜与所述微孔配合便可以将垂直方向的光信号212传输至其下方的感应单元。可替代地,所述微透镜、所述微孔和所述感应单元也可以是以与所述光学指纹传感器表面具有一定倾斜角度的方向进行对齐,此时所述微透镜与所述微孔配合便可以将倾斜角度入射的光信号传输至其对应的感应单元。
更进一步地,所述光路引导结构还可以包括其他光学膜层,比如图11所示的钝化层1102、第一透明介质层1103和第二透明介质层1104,其中,所述第一透明介质层1103可以形成在所述微孔层1106上方,并且至少部分填充所述微孔;所述钝化层1102可以形成在所述微透镜层1101和所述第一介质层1103之间,而所述第二透明介质层1104形成在所述微孔层1106的下方。另一方面,所述微透镜层1101、所述钝化层1102、所述第一透明介质层1103和所述第二透明介质层1104之间可以根据需要选择性地形成有缓冲层,且所述微透镜层1101表面也可以形成有平坦层。
另一方面,所述光路引导结构可以作为一个独立部件设置在所述光学指 纹传感器的上方,也可以直接通过半导体制作工艺生长在所述光学指纹传感器的上方,也即是说,所述光路引导结构可以集成在所述光学指纹传感器,从而形成一体式光学传感器芯片,采用这种结构一方面可以减小所述光学指纹装置的整体厚度,也有利于所述微透镜、所述微孔和所述感应单元之间的相互对准,提高产品良率,并且还有利于形成大面积的光学指纹装置。
作为一种替代实施例,所述光路引导结构也可以为准直器,准直器可为具有一定深宽比的准直通孔阵列,所述准直通孔阵列的准直通孔可以允许与通孔延伸方向一致的光信号穿过,并衰减跟准直通孔具有一定夹角的光信号。比如,所述准直器的准直通孔可以垂直于准直器表面,此时其可以允许垂直入射到准直器中的手指反射的光信号穿过,并被准直器下方的光学指纹传感器接收到;可替代地,所述准直器的准直通孔的延伸方向也可以相对于所述准直器表面具有一定的倾斜角度,在这种情况下,所述准直器可以允许具有上述倾斜角度的光信号通过并传输至所述光学指纹传感器相应的感应单元,并衰减掉与上述倾斜角度不一致的光信号。
另外,该指纹识别装置还可以包括滤波器,该滤波器可以设置在所述光路引导结构的上方,用于过滤掉手指反射的光信号中的环境光或者其他干扰光,从而选择出所需要的光波长,减小环境光对指纹图像的干扰。在具体实施例中,所述滤波器可以具体包括红外截止滤波器(IR-cut Filter)。
图2所示的指纹识别装置主要利用所述光路引导结构(比如上述微透镜或者准直器)进行成像,利用所述光路引导结构的成像效果与所述光路引导结构与手指之间的光程有关。该光程可以指,经手指反射之后的光信号到达所述光路引导结构所需要经过的距离。其中,所述光路引导结构与手指之间的光程越长,光线扩散就会越严重,所述光路引导结构的成像效果越差。因此,为了提高所述光路引导结构的成像效果,需要减小所述光路引导结构与手指之间的光程。
通常,对于一个厚度确定的显示屏而言,所述光路引导结构与手指之间的光程主要取决于显示屏下表面与所述光路引导结构之间的距离,用P表示。
在图2所示的架构中,P=P min+d+T/n。
其中,P min表示显示屏的下表面与滤波器的上表面之间的最小距离,该最小距离P min是结构组装上必须预留的安全间隙,换句话说,P min是为安装 滤波器预留的最小安装间隙,存在工艺极限最小值。
d为滤波器的下表面到所述光路引导结构上表面之间的距离,这个距离也是结构组装必须预留的安全间隙,存在工艺极限最小值。
T表示滤波器的厚度,n表示滤波器的等效折射率,因此该滤波器的等效光程为T/n。
综上,在图2所示的架构中,由于工艺上的限制,P值不能继续减小,较大的P值会影响准直器的成像效果。因此,如何设计一种指纹识别装置,提高所述光路引导结构的成像效果成为亟需解决的问题。
此外,如果P值越大,整个指纹识别装置的厚度也会越大,不利于节约尺寸空间。
本申请实施例提供一种指纹识别装置,能够减小所述光路引导结构与手指之间的光程,改善所述光路引导结构的成像效果。
本申请实施例对滤波器的结构进行分析得到,可以通过省去滤波器的基材,以达到减小所述光路引导结构与手指之间的光程的目的。下面对本申请实施例提供的技术方案进行详细描述。
图3是一种典型的滤波器的结构示意图。通常,滤波器的结构包括基材和镀膜。基材可以是玻璃片、水晶片或薄膜片,主要用于作为镀膜的载体。基材通常比较厚,其厚度一般超过100μm,也就是说,T是大于100μm的。镀膜是滤波器的核心,用于完成光波滤除的效果。镀膜通常很薄,只有1~5μm。
考虑到滤波器的基材只是作为镀膜的载体,在光波滤除过程中不占主要作用,而且基材还占用很大的厚度。综上考虑,本申请实施例提供一种指纹识别装置,可以省去滤波器的基材,将镀膜直接镀在光学指纹传感器或所述光路引导结构的表面,以光学指纹传感器或所述光路引导结构作为镀膜的载体,这样也能达到同样的光波滤除的效果。
省去滤波器基材的指纹识别装置,可以减小所述光路引导结构与显示屏下表面之间的距离,也就是说,能够减小所述光路引导结构与手指之间的光程,提高所述光路引导结构的成像效果。此外,省去滤波器的基材后,也能够减小指纹识别装置的厚度,有利于节约尺寸空间。
图4是本申请实施例提供的一种指纹识别装置的示意图,该指纹识别装置包括光学指纹传感器320,该光学指纹传感器320包括感光区域321,在 该感光区域321上镀有滤光膜310。该滤光膜310可以指上文描述的镀膜。
该滤光膜310可以对到达感光区域321的光信号进行滤波,以滤除进入所述感光区域321的干扰光,比如环境光或者其他对指纹检测信号造成干扰的光信号,而仅使特定波段的光信号(即指纹检测信号对应的波段的光信号)到达光学指纹传感器320的感光区域321;比如,所述滤光膜310可以为红外截止滤光膜,其可以滤除红外波段的光信号,或者同时滤除部分红光波。
镀有滤光膜的光学指纹传感器既可以作为光学指纹传感器进行指纹图像的采集,还可以作为滤光膜的基材以承载所述滤光膜,并与所述滤光膜一起形成用于滤除干扰光的滤波器而完成光波滤除的效果。将滤光膜集成在光学指纹传感器上,能够省去滤光器的基材,有利于减小指纹识别装置的厚度。
该滤光膜可以是镀在光学指纹传感器上的感光区域上,还可以是镀在光学指纹传感器的整个表面,或者可以镀在比感光区域稍大一点的区域,换句话说,所述滤光膜可以通过镀膜方式至少覆盖在所述光学指纹传感器的感光区域的部分感应单元。另一方面,根据实际需要,所述滤光膜和所述光学指纹传感器之间也可以设置有缓冲层或者介质层以保证二者之间的具有良好的结合性而保证滤波效果,本申请实施例对此不做具体限定。
对于传统的光学指纹传感器,传感器的感光面朝向指纹传感器的正面,或者朝向指纹传感器的上表面,对于这种情况,可以将滤光膜镀在光学指纹传感器的正面,将光学指纹传感器作为滤光膜的基材,以滤除手指反射的光信号中的环境光,达到光波滤除的效果。
该指纹识别装置还可以包括如上所述的光路引导结构,该光路引导结构可以设置在滤光膜上。该光路引导结构可用于将手指反射的光信号引导至感光区域。
如图5所示,可以将滤波器的滤光膜520直接做到光学指纹传感器530的表面,例如,滤光膜520可以设置在光学指纹传感器530的感光区域531上。这样可以达到同样的光波滤除效果,并且省去了滤波器基材的厚度。光路引导结构510可以采用如图11所示的结构或者准直器结构,其可以通过半导体制作工艺生长在滤光膜520的上表面,在这种情况下所述光路引导结构510、所述滤光膜520和所述光学指纹传感器530可以集成在同一个芯片上;或者,所述光路引导结构510也可以作为一个独立部件放置在滤光膜520的上表面,对手指反射的光信号进行过滤。
当采用图11所示的光路引导结构时,所述第二透明介质层可以形成在所述滤光膜520的上方,且二者之间还可以根据需要设置缓冲层或者其他介质层或光学膜层。
所述光学指纹传感器530的表面还可设置有与基板540连接的第一焊盘550。该第一焊盘550也可以称为焊垫,或者结合区。该第一焊盘550上可设置有输入输出焊盘(input-output pad,IO pad),用于实现所述光学指纹传感器530内部与外部信号的传输。
基板540可以是电路板,如柔性电路板(flexible printed circuit,FPC)板,光学指纹传感器530可以通过第一焊盘550焊接到基板540,并通过基板540实现与其他外围电路或者电子设备的其他元件的电性互连和信号传输。
第一焊盘550与基板540的连接方式通常是使用引线连接的方式,如通过引线键合的方式将焊盘连接到基板,如图5所示。当然,第一焊盘550还可以通过其他的方式连接到基板,本申请实施例对此不做限定。
在图5所示的架构中,所述光路引导结构510的上表面与显示屏503下表面之间的距离P为:P=P min+d 1
其中,P min表示引线560的弧顶到显示屏503下表面之间的距离,该P min也是结构组装上的最小安全间隙,d 1表示引线560的弧顶到所述光路引导结构510的上表面之间的距离。
与基板540连接的引线560(或称结合线)的弧形高度需通常达到100μm高,也就是说,引线560的弧顶通常比光学指纹传感器530上第一焊盘550的位置高100μm。而集成在光学指纹传感器530表面的所述光路引导结构510的厚度通常只有20μm高,因此,引线560的弧顶比准直器510的上表面高出d 1的距离。
很显然,在预留的安全间隙P min相同的情况下,d1的值小于(d+T/n)的值。因此,在该架构中,所述光路引导结构510与显示屏503之间的距离的最小值小于图2所示架构中的所述光路引导结构与显示屏之间的距离。
因此,本申请实施例提供的技术方案能够减小显示屏503与所述光路引导结构510之间的距离,提高所述光路引导结构510的成像效果。另外,所述光路引导结构510与显示屏503之间的距离减小后,也有利于减小指纹识别装置的整体尺寸,节约尺寸空间。
另外,本申请实施例还提供另一种指纹识别装置,能够进一步减小所述光路引导结构与显示屏之间的距离。
图5所示的指纹识别装置,由于引线560弧顶的高度,使得所述光路引导结构510与显示屏503之间存在d 1的距离。本申请实施例提供的另一种指纹识别装置,能够进一步减小所述光路引导结构与显示屏之间的距离。
如图6所示,该光学指纹传感器530上还设置有沟渠(trench),该沟渠的表面534低于光学指纹传感器530的上表面533,换句话说,该沟渠的表面534与光学指纹传感器530的上表面之间存在高度差m。具体地,可以采用沟渠工艺,在光学指纹传感器530的表面切割出一道沟渠,该沟渠的表面534比光学指纹传感器530的上表面533下沉的高度为m。该沟渠可以是在光学指纹传感器530表面切割出的一个凹槽,或者,是在光学指纹传感器530表面切割出的一个台阶,该凹槽或台阶的表面低于光学指纹传感器530的上表面。所述沟渠的深度可以根据实际需要而定,作为一种可选的实施例,所述沟渠的表面534与所述光学指纹传感器530的上表面之间的高度差可以大于或等于30μm。
在该沟渠的表面534设置有与基板540连接的焊盘570,该焊盘570可以通过引线键合的方式连接到基板540。这样,由于沟渠表面的焊盘570位置比图5所示的传感器上表面的第一焊盘550的位置低m的高度,因此,在引线560弧顶到焊盘的距离固定(例如均为100μm)的情况下,本实施例中的引线560弧顶到所述光路引导结构510上表面的距离比图5中引线弧顶到所述光路引导结构上表面的距离小m,也就是说,引线560的弧顶至所述光路引导结构510上表面的距离小于d 1,从而所述光路引导结构510上表面到显示屏下表面的距离变为P min+d 1-m,因此所述光路引导结构510上表面到显示屏503下表面的距离进一步减小,能够进一步提高所述光路引导结构510的成像效果。
作为一种实现方式,该光学指纹传感器530的上表面533上设置有原先的焊盘550,称为第一焊盘550。在第一焊盘550的外侧,可以切割出一道沟渠。在该沟渠的表面设置有新焊盘570,称为第二焊盘570。该第二焊盘570与第一焊盘550对应,在切割出的沟渠表面,可以设置导电层580,该导电层580可以将第一焊盘550连接至沟渠上的第二焊盘570。
该导电层580可以是重新布线层,可以利用重新布线层(redistribution  layer,RDL)工艺进行重新布线,通过RDL走线将第一焊盘550引到沟渠内的第二焊盘570的位置。
可选地,m的值可以大于或等于d 1。当m大于或等于d 1时,所述光路引导结构510上表面到显示屏503下表面之间的距离减小为P min,该P min为工艺极限最小值。通过这种方式,可以将所述光路引导结构510与显示屏503之间的距离减小到最小,能够更进一步地提高所述光路引导结构510的成像效果。
作为一种实现方式,m可以大于或等于30μm。但是30μm的下沉高度仅是一种举例,本申请实施例并不限于此。
为了达到光路引导结构510上表面到显示屏503下表面之间的距离减小为P min,下沉高度m的值取决于引线键合的工艺技术。如果引线键合的工艺要求引线的弧顶高度最小为50μm,则m的值可以大于或等于30μm;如果引线键合的工艺要求引线的弧顶高度最小为100μm,则m的值可以大于或等于80μm。因此,本申请实施例对下沉高度m的值并不做具体限定,只要引线的弧顶高度不超过光路引导结构的上表面即可。
此外,本申请实施例还提供另一种指纹识别装置,也能够实现所述光路引导结构的上表面与显示屏下表面之间的距离为P min
如图7所示,第一焊盘550上可以设置与基板540连接的硅通孔502,该硅通孔502的表面可以镀有导电层,例如可以镀上金属使其导电,从而可以将位于光学指纹传感器530上表面的第一焊盘550连接到光学指纹传感器530的下表面。光学指纹传感器530下表面的硅通孔502的孔口可以与基板540连接,从而实现第一焊盘550与基板540的连接。
该光学指纹传感器530的下表面可以设置锡球501,该锡球501可以作为新焊区。锡球501与硅通孔502对应,也就是说,锡球501与第一焊盘550对应,每个焊盘对应一个锡球。这个过程可以实现将光学指纹传感器530上表面的第一焊盘550引线到下表面的锡球501,然后通过将锡球501焊接到基板540上实现光学指纹传感器530与基板540的连接。
作为一种实现方式,锡球501可以设置在硅通孔502的孔口处,每个硅通孔502的孔口处均设置有一个对应的锡球501。作为另一种实现方式,锡球501在光学指纹传感器530的下表面呈阵列排布,然后可以在光学指纹传感器530的下表面制作导电层580,通过导电层580将硅通孔502的孔口连 接到对应的锡球501上,从而实现将第一焊盘550引线到指定位置的锡球501上。该导电层580例如可以为上文描述的利用RDL工艺制作的重新布线层。
当然,锡球501也可以不是呈阵列分布,可以是其他的分布形式,只要相邻锡球的间距能够满足焊料球的最小间距即可。
通过重新布线,将硅通孔502的位置连接到新焊区,使得新焊区的锡球501满足最小间距的要求,避免相邻硅通孔502之间的距离过小,造成电路故障。因此,在光学指纹传感器530的下表面重新对锡球501的位置进行排列,特别适用于第一焊盘550位置过密的情形。
光学指纹传感器530上表面的所有第一焊盘550均可以通过硅通孔502连接到下表面的锡球501,下表面的锡球501可以通过表面贴装技术(surface mount technology,SMT)焊接到基板上。
通过硅通孔(through silicon vias,TSV)技术进行封装,省去了引线,能够避免采用引线封装所带来的引线弧顶过高的问题。通过TSV封装,同样也能够实现所述光路引导结构510的上表面到显示屏503的下表面之间的距离为P=P min
对于TSV的连接方式,并不限于图7所示的架构,例如,还可以在图6所示架构的基础上,在沟渠的位置采用TSV的封装方式,也能够实现光路引导结构的上表面与显示屏下表面之间的距离为P min。在沟渠表面进行TSV封装与在光学指纹传感器上表面进行TSV封装的过程类似,此处不再赘述。
上文描述的光学指纹传感器均是以传统的光学指纹传感器为例进行描述的,该光学指纹传感器的感光面朝向指纹传感器的上表面,或者朝向指纹传感器的正面。这种传统的光学指纹传感器应用到上文描述的任一种实施例中。
此外,本申请实施例的指纹识别装置还可以使用背照式指纹传感器。如图8所示,背照式指纹传感器530表示光学指纹传感器的感光面531朝向背照式指纹传感器530的下表面507(或称背面)。背照式指纹传感器530可以采用倒装封装技术,也就是说,背照式指纹传感器530的正面507朝下,朝向基板540的封装方式,通过将背照式指纹传感器530上表面507的第一焊盘550连接至基板540,实现背照式指纹传感器530与基板540的连接。
如图8所示,手指反射的光信号可以到达背照式指纹传感器530的背部的感光区域531,感光区域531可以根据接收到的光信号进行指纹识别。
可选地,可以在第一焊盘550的位置制作锡球501,将锡球501焊接至基板540,实现背照式指纹传感器530与基板540的连接。或者,可以在指纹传感器530的正面507制作锡球阵列,通过RDL工艺将原先的第一焊盘550连接到指定的锡球501上,通过锡球阵列可以将背照式指纹传感器530倒置焊接到基板540上,实现背照式指纹传感器530与基板540的连接。
与前面实施例的光学指纹传感器不同,本实施例提供的背照式指纹传感器530的滤光膜520可以镀在背照式指纹传感器530的背面506。例如,可以镀在背照式指纹传感器530背面506的感测区域上。准直器510可以设置在滤光膜520上。这样,光路引导结构510与显示屏503之间的距离也能达到最小,即P=P min
上文均是以滤光膜镀在指纹传感器的表面为例进行描述的,本申请实施例并不限于此。如图9所示,滤光膜910也可以镀在光路引导结构920的表面,将所述光路引导结构920作为镀膜的基材,达到光波滤除的效果。
例如,该滤光膜910可以镀在所述光路引导结构920的上表面,当采用图11所示的光路引导结构时,所述微透镜层表面可以设置有平坦层,且所述滤光膜910可以镀设在所述平坦层的表面;或者,所述滤光膜910也可以镀在准直器920的下表面;当采用图11所示的光路引导结构时,所述滤光膜910可以具体镀设在所述第二透明介质层的下方。
与上文描述的将滤光膜镀在光学指纹传感器的表面的原理类似,将滤光膜镀在光路引导结构的表面后,也同样可以省去滤波器的基材,减小准直器与显示屏之间的距离。
本申请实施例的指纹识别装置可以包括光路引导结构920和光学指纹传感器940。该光路引导结构920的表面可以镀有滤光膜910,且该光路引导结构920可以设置在光学指纹传感器940的表面,例如可以设置在光学指纹传感器940的感光区域930上。
镀有滤光膜910的光路引导结构920可以对显示屏上方的手指反射的光信号进行过滤,并将该光信号引导至光学指纹传感器940的感光区域930。光学指纹传感器940可以接收经过光路引导结构920的光信号,所述光信号可以用于生成手指的指纹信息。
在实施例中,所述滤光膜910可以具体为形成在所述光路引导结构920的表面的镀膜,并且所述镀膜覆盖所述光路引导结构920与所述光学指纹传 感器940的感应区域相对应的部分。其中,所述光路引导结构940的平坦层或者其中一个介质层可以作为所述滤光膜910的基材,以承载所述滤光膜910而形成用于滤除所述干扰光的滤波器。
采用本申请实施例的方案,所述滤光膜和光路引导结构可以集成在所述光学指纹传感器,从而实现超薄一体式光学指纹装置。
本申请实施例还提供一种封装结构,该封装结构可以包括上文描述的指纹识别装置,以及封装基板。该封装基板可以是指上文描述的基板540。该封装基板可以是FPC板或者其他电路板。指纹识别装置可以包括指纹传感器,该指纹传感器上设置有与封装基板连接的焊盘,该焊盘可以通过上文描述的任一种方式封装在该封装基板上,实现指纹传感器与基板的连接。
该焊盘也可以称为与基板连接的结合区。
可选地,在本申请实施例中,指纹识别装置可以为指纹模组,或者,指纹识别装置可以为包括指纹模组和基板的设备,或者指纹识别装置可以为包括指纹模组的电子设备,本申请实施例对此不做限定。
图10是本申请实施例提供的一种电子设备1000的示意性结构图,该电子设备1000具有指纹识别的功能。该电子设备1000可以包括指纹识别装置1010,该指纹识别装置1010可以为上文描述的任一种指纹识别装置。由于该指纹识别装置1010能够减小光路引导结构与显示屏之间的距离,从而能够减小指纹识别装置的厚度。因此,采用上述指纹识别装置的电子设备,能够减小该电子设备的厚度,提高用户体验。
该电子设备1000可以包括显示屏,指纹识别装置可以设置于该显示屏的下方,接收该显示屏上方的手指反射的光信号,该光信号可用于生成手指的指纹信息。
该显示屏可以是自发光的显示屏,例如OLED显示屏,也可以是非自发光的显示屏,例如LCD显示屏。
需要说明的是,本申请实施例中的光学指纹传感器可以表示光学指纹传感器芯片。
需要说明的是,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。
例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表 示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的设备、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的电子设备、装置和方法,可以通过其它的方式实现。
例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护 范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (21)

  1. 一种指纹识别装置,适用于具有显示屏的电子设备,其特征在于,包括:
    光学指纹传感器,用于设置在所述显示屏的下方以实现屏下光学指纹检测,所述光学指纹传感器包括感光区域,所述感光区域包括多个感应单元,所述感应单元用于检测在手指表面反射而返回的光信号;
    光路引导结构,用于设置在所述显示屏和所述光学指纹传感器之间,以将所述在手指表面反射而返回的光信号传输到所述光学指纹传感器的感光区域;
    滤光膜,所述滤光膜形成在所述指纹传感器的感光区域的上方,用于对所述光信号进行滤波以滤除干扰光。
  2. 根据权利要求1所述的指纹识别装置,其特征在于,所述滤光膜为形成在所述光学指纹传感器的表面的镀膜,并且所述镀膜覆盖所述感应区域的感应单元。
  3. 根据权利要求2所述的指纹识别装置,其特征在于,所述光学指纹传感器作为所述滤光膜的基材,以承载所述滤光膜而形成用于滤除所述干扰光的滤波器。
  4. 根据权利要求1所述的指纹识别装置,其特征在于,所述滤光膜为形成在所述光路引导结构的表面的镀膜,并且所述镀膜覆盖所述光路引导结构与所述光学指纹传感器的感应区域相对应的部分。
  5. 根据权利要求4所述的指纹识别装置,其特征在于,所述光路引导结构作为所述滤光膜的基材,以承载所述滤光膜而形成用于滤除所述干扰光的滤波器。
  6. 根据权利要求1-5中任一项所述的指纹识别装置,其特征在于,所述光路引导结构与所述滤光膜和所述光学指纹传感器集成在同一个光学指纹传感器芯片;或者,所述光路引导结构作为一个独立的部件设置在所述光学指纹传感器的上方。
  7. 根据权利要求1-6中任一项所述的指纹识别装置,其特征在于,所述光路引导结构包括微透镜层和微孔层,所述微透镜层包括具有多个微透镜的微透镜阵列,所述微孔层包括具有多个微孔的微孔阵列,所述微孔阵列形 成在所述微透镜阵列的下方。
  8. 根据权利要求7所述的指纹识别装置,其特征在于,所述微透镜和所述微孔之间具有一一对应的关系,且每一对微透镜和微孔分别对应于所述光学指纹传感器的其中一个感应单元;所述微透镜用于将所述在手指表面反射而返回的光信号汇聚到所述微孔,并通过所述微孔将所述光信号传输至其对应的感应单元。
  9. 根据权利要求8所述的指纹识别装置,其特征在于,所述微透镜和所述微孔以垂直于所述光学指纹传感器表面的方向与所述感应单元进行对齐,以将垂直方向的光信号传输至其下方的感应单元。
  10. 根据权利要求8所述的指纹识别装置,其特征在于,所述微透镜和所述微孔以与所述光学指纹传感器表面具有一定倾斜角度的方向与所述感应单元进行对齐,以将倾斜角度入射的光信号传输至其下方的感应单元。
  11. 根据权利要求7所述的指纹识别装置,其特征在于,所述光路引导结构还包括形成在所述微透镜层表面的平坦层,所述平坦层覆盖所述微透镜阵列,且所述滤光膜形成在所述平坦层表面,其中所述平坦层用于作为所述滤光膜的基材以承载所述滤光膜。
  12. 根据权利要求7所述的指纹识别装置,其特征在于,所述光路引导结构还包括第一透明介质层和第二透明介质层,所述第一透明介质层形成在所述微孔层上方,并至少部分填充所述微孔;所述第二透明介质层形成在所述微孔层的下方。
  13. 根据权利要求12所述的指纹识别装置,其特征在于,所述滤光膜形成在所述第二透明介质层的下表面,且所述第二透明介质层用于作为承载所述滤光膜的基材。
  14. 根据权利要求1-6中任一项所述的指纹识别装置,其特征在于,所述光路引导结构包括准直器,所述准直器设置于所述滤光膜的上方,且其包括具有多个准直通孔的准直通孔阵列,所述准直通孔的延伸方向垂直于所述光学指纹传感器表面或者与所述光学指纹传感器的表面具有一定的倾斜角度。
  15. 根据权利要求1-14中任一项所述的指纹识别装置,其特征在于,所述光学指纹传感器的上表面设置有用于与基板连接的第一焊盘。
  16. 根据权利要求15所述的指纹识别装置,其特征在于,所述光学指 纹传感器设置有沟渠,所述沟渠的表面低于所述光学指纹传感器的上表面,所述沟渠的表面设置有用于与基板连接的第二焊盘,所述第一焊盘和所述第二焊盘通过重新布线层电连接。
  17. 根据权利要求16所述的指纹识别装置,所述沟渠的表面与所述光学指纹传感器的上表面之间的高度差大于或等于30μm。
  18. 根据权利要求15-17中任一项所述的指纹识别装置,其特征在于,所述光学指纹传感器还包括硅通孔,所述硅通孔用于将所述第一焊盘连接到所述基板。
  19. 根据权利要求18所述的指纹识别装置,其特征在于,所述光学指纹传感器的下表面设置有用于焊接至所述基板的锡球,所述第一焊盘通过所述硅通孔连接至所述锡球。
  20. 根据权利要求1-3中任一项所述的指纹识别装置,其特征在于,所述光学指纹传感器为背照式指纹传感器,所述背照式指纹传感器通过倒封装方式进行设置,以使其正面朝向基板而背面朝向显示屏,且所述滤光膜镀在所述光学指纹传感器的背面。
  21. 一种电子设备,其特征在于,包括显示屏和如权利要求1至20中任一项所述的指纹识别装置,其中所述指纹识别装置设置在所述显示屏的下方。
PCT/CN2019/074619 2019-02-02 2019-02-02 指纹识别装置和电子设备 WO2020155151A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2019/074619 WO2020155151A1 (zh) 2019-02-02 2019-02-02 指纹识别装置和电子设备
EP19888253.2A EP3731137B1 (en) 2019-02-02 2019-02-02 Fingerprint recognition apparatus and electronic device
CN202010769313.9A CN111860452B (zh) 2019-02-02 2019-02-02 指纹识别装置和电子设备
CN201980000269.0A CN109983471B (zh) 2019-02-02 2019-02-02 指纹识别装置和电子设备
US16/890,553 US11170195B2 (en) 2019-02-02 2020-06-02 Fingerprint identification apparatus and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074619 WO2020155151A1 (zh) 2019-02-02 2019-02-02 指纹识别装置和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/890,553 Continuation US11170195B2 (en) 2019-02-02 2020-06-02 Fingerprint identification apparatus and electronic device

Publications (1)

Publication Number Publication Date
WO2020155151A1 true WO2020155151A1 (zh) 2020-08-06

Family

ID=67073941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074619 WO2020155151A1 (zh) 2019-02-02 2019-02-02 指纹识别装置和电子设备

Country Status (4)

Country Link
US (1) US11170195B2 (zh)
EP (1) EP3731137B1 (zh)
CN (2) CN111860452B (zh)
WO (1) WO2020155151A1 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3693887B1 (en) 2018-12-13 2022-02-16 Shenzhen Goodix Technology Co., Ltd. Fingerprint recognition apparatus and method, and electronic device
US11067884B2 (en) 2018-12-26 2021-07-20 Apple Inc. Through-display optical transmission, reception, or sensing through micro-optic elements
WO2020181493A1 (zh) 2019-03-12 2020-09-17 深圳市汇顶科技股份有限公司 屏下指纹识别装置和电子设备
US10838556B2 (en) 2019-04-05 2020-11-17 Apple Inc. Sensing system for detection of light incident to a light emitting layer of an electronic device display
CN208848221U (zh) 2019-04-10 2019-05-10 深圳市汇顶科技股份有限公司 光学指纹识别装置和电子设备
WO2021035622A1 (zh) * 2019-08-29 2021-03-04 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
WO2020237546A1 (zh) * 2019-05-29 2020-12-03 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN113239856B (zh) * 2019-07-12 2023-08-22 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN110333607A (zh) * 2019-07-17 2019-10-15 上海思立微电子科技有限公司 准直结构及其制作方法
CN110379826A (zh) * 2019-07-26 2019-10-25 上海思立微电子科技有限公司 光学指纹识别芯片以及制造方法
KR20220012360A (ko) 2019-08-02 2022-02-03 선전 구딕스 테크놀로지 컴퍼니, 리미티드 지문 감지 장치 및 전자 디바이스
CN111801688B (zh) * 2019-08-06 2022-03-29 深圳市汇顶科技股份有限公司 光学指纹装置和电子设备
WO2021022488A1 (zh) * 2019-08-06 2021-02-11 深圳市汇顶科技股份有限公司 指纹检测的装置和电子设备
CN112347836A (zh) * 2019-08-07 2021-02-09 华为技术有限公司 指纹识别装置及电子终端
KR102494086B1 (ko) 2019-08-23 2023-01-30 선전 구딕스 테크놀로지 컴퍼니, 리미티드 지문 검출 장치, 방법 및 전자 장치
CN111095285B (zh) * 2019-08-23 2021-09-17 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
WO2021072753A1 (zh) 2019-10-18 2021-04-22 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN111095275B (zh) * 2019-08-29 2023-09-05 深圳市汇顶科技股份有限公司 指纹识别的装置、方法和电子设备
CN111052142B (zh) * 2019-09-06 2023-09-26 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN215869390U (zh) * 2019-09-23 2022-02-18 苹果公司 光学感测系统和电子设备
US20210089741A1 (en) * 2019-09-23 2021-03-25 Apple Inc. Thin-Film Transistor Optical Imaging System with Integrated Optics for Through-Display Biometric Imaging
US11611058B2 (en) 2019-09-24 2023-03-21 Apple Inc. Devices and systems for under display image sensor
US11527582B1 (en) 2019-09-24 2022-12-13 Apple Inc. Display stack with integrated photodetectors
CN110832503B (zh) * 2019-09-27 2023-08-22 深圳市汇顶科技股份有限公司 光学指纹装置,电子设备和测量距离的方法
KR102365607B1 (ko) * 2019-11-01 2022-02-18 선전 구딕스 테크놀로지 컴퍼니, 리미티드 지문 검출 장치 및 전자 장치
CN110674798A (zh) * 2019-11-11 2020-01-10 北京迈格威科技有限公司 光学指纹识别装置及触控终端
CN112989873A (zh) * 2019-12-12 2021-06-18 华为技术有限公司 光学物体纹路识别装置和终端设备
CN113009610A (zh) * 2019-12-19 2021-06-22 上海箩箕技术有限公司 滤光组件及其形成方法和滤光方法
US11592873B2 (en) 2020-02-14 2023-02-28 Apple Inc. Display stack topologies for under-display optical transceivers
US11295664B2 (en) 2020-03-11 2022-04-05 Apple Inc. Display-synchronized optical emitters and transceivers
WO2021184269A1 (zh) * 2020-03-18 2021-09-23 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN111626100B (zh) * 2020-03-26 2024-02-02 天津极豪科技有限公司 屏下指纹装置及显示模组
CN111837132B (zh) * 2020-03-27 2024-02-06 深圳市汇顶科技股份有限公司 指纹检测的装置和电子设备
EP3920087A4 (en) 2020-04-08 2022-03-02 Shenzhen Goodix Technology Co., Ltd. FINGERPRINT IDENTIFICATION METHOD AND EQUIPMENT AND ELECTRONIC DEVICE
US11327237B2 (en) 2020-06-18 2022-05-10 Apple Inc. Display-adjacent optical emission or reception using optical fibers
US11487859B2 (en) 2020-07-31 2022-11-01 Apple Inc. Behind display polarized optical transceiver
WO2022098201A1 (ko) * 2020-11-09 2022-05-12 주식회사 엘엠에스 광학 시트
US11839133B2 (en) 2021-03-12 2023-12-05 Apple Inc. Organic photodetectors for in-cell optical sensing
CN112964308A (zh) * 2021-03-25 2021-06-15 北京灵汐科技有限公司 传感器组件及电子设备
CN114284319B (zh) * 2021-12-14 2023-09-26 武汉华星光电半导体显示技术有限公司 显示面板及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106845451A (zh) * 2017-02-23 2017-06-13 上海理鑫光学科技有限公司 一种指纹成像的光学系统
CN109074477A (zh) * 2017-11-09 2018-12-21 深圳市汇顶科技股份有限公司 光学模组及其加工方法、及终端设备
CN109154869A (zh) * 2016-06-07 2019-01-04 深圳市汇顶科技股份有限公司 用于屏上指纹感应的屏下光学传感器模块的光学准直器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4387980B2 (ja) * 2005-05-10 2009-12-24 Necインフロンティア株式会社 指紋読取装置
US10410037B2 (en) * 2015-06-18 2019-09-10 Shenzhen GOODIX Technology Co., Ltd. Under-screen optical sensor module for on-screen fingerprint sensing implementing imaging lens, extra illumination or optical collimator array
WO2017049318A1 (en) * 2015-09-18 2017-03-23 Synaptics Incorporated Optical fingerprint sensor package
CN106971136B (zh) * 2016-01-14 2023-10-20 深圳市汇顶科技股份有限公司 生物检测装置及其加工方法
US10108841B2 (en) * 2016-03-31 2018-10-23 Synaptics Incorporated Biometric sensor with diverging optical element
EP3593279A4 (en) * 2017-03-10 2020-12-30 Fingerprint Cards AB FINGERPRINT SENSOR MODULE WITH A FINGERPRINT SENSOR DEVICE AND A SUBSTRATE CONNECTED TO THE SENSOR DEVICE
US10331939B2 (en) * 2017-07-06 2019-06-25 Shenzhen GOODIX Technology Co., Ltd. Multi-layer optical designs of under-screen optical sensor module having spaced optical collimator array and optical sensor array for on-screen fingerprint sensing
US20200210671A1 (en) * 2017-07-26 2020-07-02 Shanghai Oxi Technology Co., Ltd Optical Fingerprint Module
US10796128B2 (en) * 2017-12-12 2020-10-06 Fingerprint Cards Ab Optical sensor with ambient light filter
EP3701420B1 (en) * 2018-05-07 2021-04-14 WaveTouch Limited Compact optical sensor for fingerprint detection
WO2019237353A1 (zh) 2018-06-15 2019-12-19 深圳市汇顶科技股份有限公司 屏下生物特征识别装置和电子设备
EP3627385B1 (en) * 2018-08-06 2023-07-05 Shenzhen Goodix Technology Co., Ltd. Under-screen optical fingerprint identification device and electronic device
EP3706036B1 (en) * 2019-01-22 2021-12-22 Shenzhen Goodix Technology Co., Ltd. Fingerprint recognition apparatus and electronic device
CN209525659U (zh) * 2019-02-02 2019-10-22 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109154869A (zh) * 2016-06-07 2019-01-04 深圳市汇顶科技股份有限公司 用于屏上指纹感应的屏下光学传感器模块的光学准直器
CN106845451A (zh) * 2017-02-23 2017-06-13 上海理鑫光学科技有限公司 一种指纹成像的光学系统
CN109074477A (zh) * 2017-11-09 2018-12-21 深圳市汇顶科技股份有限公司 光学模组及其加工方法、及终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3731137A4 *

Also Published As

Publication number Publication date
US11170195B2 (en) 2021-11-09
CN111860452A (zh) 2020-10-30
CN109983471A (zh) 2019-07-05
EP3731137A1 (en) 2020-10-28
EP3731137A4 (en) 2021-03-24
US20200293741A1 (en) 2020-09-17
CN109983471B (zh) 2020-09-18
CN111860452B (zh) 2022-03-04
EP3731137B1 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
WO2020155151A1 (zh) 指纹识别装置和电子设备
US11275922B2 (en) Fingerprint identification apparatus and electronic device
WO2020206894A1 (zh) 光学指纹识别装置和电子设备
EP3770802B1 (en) Fingerprint recognition device and electronic device
EP3267359A1 (en) Fingerprint sensor, fingerprint sensing system, and sensing system using light sources of display panel
KR20180005588A (ko) 디스플레이 패널의 광원들을 이용한 지문 센서, 지문 센서 패키지 및 지문 센싱 시스템
CN210142340U (zh) 指纹识别装置和电子设备
WO2020243926A1 (zh) 光学指纹装置和电子设备
WO2021051737A1 (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
CN210295117U (zh) 指纹芯片和电子设备
CN110692134B (zh) 芯片封装结构和电子设备
WO2021022488A1 (zh) 指纹检测的装置和电子设备
WO2021077368A1 (zh) 指纹识别装置和电子设备
CN111164609B (zh) 指纹识别装置和电子设备
US20200395402A1 (en) Chip package structure and electronic device
CN210864764U (zh) 指纹识别装置和电子设备
CN210052733U (zh) 芯片封装结构和电子设备
WO2020244082A1 (zh) 光学指纹装置、制作方法和电子设备
WO2020206983A1 (zh) 光学指纹装置和电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019888253

Country of ref document: EP

Effective date: 20200605

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE