WO2020154969A1 - 履带式消防机器人及其控制方法 - Google Patents

履带式消防机器人及其控制方法 Download PDF

Info

Publication number
WO2020154969A1
WO2020154969A1 PCT/CN2019/073973 CN2019073973W WO2020154969A1 WO 2020154969 A1 WO2020154969 A1 WO 2020154969A1 CN 2019073973 W CN2019073973 W CN 2019073973W WO 2020154969 A1 WO2020154969 A1 WO 2020154969A1
Authority
WO
WIPO (PCT)
Prior art keywords
crawler
walking
swing arm
fire
control device
Prior art date
Application number
PCT/CN2019/073973
Other languages
English (en)
French (fr)
Inventor
刘江波
王凯
孙兆君
杨占宾
王璐
仇文庆
Original Assignee
西门子股份公司
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子股份公司, 西门子(中国)有限公司 filed Critical 西门子股份公司
Priority to CN201980063333.XA priority Critical patent/CN113518695B/zh
Priority to PCT/CN2019/073973 priority patent/WO2020154969A1/zh
Publication of WO2020154969A1 publication Critical patent/WO2020154969A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C27/00Fire-fighting land vehicles
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/104Suspension devices for wheels, rollers, bogies or frames
    • B62D55/108Suspension devices for wheels, rollers, bogies or frames with mechanical springs, e.g. torsion bars

Definitions

  • the invention relates to the industrial field, in particular to an improved crawler-type fire-fighting robot and a control method thereof.
  • Tracked fire-fighting robots have the advantages of strong ability to traverse obstacles and large contact area with the ground.
  • the ground conditions at the fire site are generally very complex, with many obstacles distributed, but when the road conditions are not good or the obstacles need to be crossed, the crawler of the firefighting robot will be impacted by the outside, so that the chassis of the crawler firefighting robot will vibrate and directly affect
  • the stable operation and reliable operation of the equipment installed on the chassis sometimes even damages the internal electrical components of the equipment, resulting in equipment failure.
  • a crawler-type firefighting robot characterized in that the crawler-type firefighting robot includes: a walking device, which includes: a walking part and a crawler surrounding the periphery of the walking part; a driving device, It is used to drive the movement of the walking part; and, the control device is realized by a programmable logic controller, and the control device is connected with the drive device and controls the operation of the drive device through a control instruction.
  • a walking device which includes: a walking part and a crawler surrounding the periphery of the walking part
  • a driving device It is used to drive the movement of the walking part
  • the control device is realized by a programmable logic controller, and the control device is connected with the drive device and controls the operation of the drive device through a control instruction.
  • the walking part includes: a driving wheel arranged on one side of the walking part and meshing with the crawler, and the driving wheel is suitable for driving on the driving device. Rotate under the driving of the, and then drive the movement of the crawler; a guide wheel is arranged on the other side of the walking part and is in contact with the crawler, wherein the guide wheel is suitable for adjusting the tightness of the crawler; four The road wheels are arranged in sequence along the moving direction of the walking part, and the four road wheels are in contact with the crawlers respectively; and a shock absorption assembly is suspended, and the four road wheels are connected to absorb shock.
  • the walking device further includes: a platform arranged at the top of the walking part, and the platform is suitable for loading operation equipment.
  • the control device is in communication connection with the work equipment, and the work equipment includes at least one of a camera, a water cannon, a manipulator, an alarm lamp, a temperature sensor, and a voltage measuring device.
  • the work equipment includes at least one of a camera, a water cannon, a manipulator, an alarm lamp, a temperature sensor, and a voltage measuring device.
  • the suspension damping assembly further comprises: a swing arm having two branches and adapted to rotate around a rotating shaft at the junction of the two branches, the rotating shaft Fixed to the vehicle body, one end of a branch of the swing arm is hinged to the road wheel; and, first and second dampers, each end of the first and second dampers is fixed to In the vehicle body, the other ends of the first and second dampers are respectively connected to the two branches.
  • the suspension damping assembly further includes a stopper fixed to the walking part, and the stopper is provided on the two branches of the swing arm In order to limit the rotation of the swing arm within a preset angle range.
  • a first damper is connected to an end of the first branch away from the rotating shaft and perpendicular to the first branch
  • the second damper is connected to the An end of the second branch away from the rotating shaft is perpendicular to the second branch.
  • the walking device includes: a first suspension damping assembly located at an end close to the guide wheel, a fourth suspension damping assembly located at an end close to the driving wheel, and
  • the second suspension damping assembly and the third suspension damping assembly are arranged side by side at the middle position of the walking part, wherein the included angle between the two branches of the swing arm in the first suspension damping assembly is An acute angle, the angle between the two branches of the swing arm of the second suspension damping assembly and the third suspension damping assembly is a right angle, and the two branches of the swing arm in the fourth suspension damping assembly The angle between is obtuse.
  • the driving device further includes: a drive; a motor connected to the drive and receiving power and signals provided by the drive; and a reducer, where the motor passes The speed reducer rotates the driving wheel.
  • the control device system further includes: a remote control unit operated to communicate with the control device remotely to send a signal to the control device; at the same time, the control device The device receives the signal sent by the remote control unit in real time.
  • a control method of a crawler-type firefighting robot which is characterized in that it comprises the following steps: when the walking device in the crawler-type firefighting robot needs to change the motion state or switch the motion mode, The remote control unit sends an instruction signal to the control device in the crawler fire-fighting robot; the control device analyzes the instruction signal to determine the type of the instruction signal and retrieve the corresponding control instruction; and, the control The device transmits the control instruction to the driving device in the crawler fire fighting robot to drive the walking device to execute one or more of the motion mode, the steering mode, the stop mode, and the climbing mode.
  • the control device is a programmable logic controller
  • the control instruction is a pulse width modulation signal
  • Fig. 1 shows a schematic diagram of a crawler fire fighting robot according to an embodiment of the present invention.
  • Fig. 2 shows a walking device of a crawler fire fighting robot according to an embodiment of the present invention.
  • Fig. 3 shows a control method of a crawler fire fighting robot according to another embodiment of the present invention.
  • the present invention provides a crawler-type fire-fighting robot, which mainly includes a walking device 10, a driving device 20, and a control device 30.
  • the walking device 10 further includes a walking portion 11 and a crawler 12 surrounding the periphery of the walking portion 11;
  • the driving device 20 is used to drive the walking device 10 to move;
  • the control device 30 can be realized by a programmable logic controller, the control device 30 and the driving device 20 is connected, and the control command is sent to the drive device 20.
  • the tracked fire-fighting robot provided by the present invention has the advantage that it can adapt to different terrain environments, can still maintain transportation operations in complex terrain, and work stably and reliably.
  • the walking device 10 of the crawler fire-fighting robot mainly includes: a driving wheel 13, a guide wheel 14, four road wheels 15 and a suspension shock absorption assembly.
  • the driving wheel 13 meshes with the crawler belt 12, and the driving wheel 13 is adapted to receive the driving signal of the driving device 20 and rotate to drive the crawler belt 12 to move.
  • the guide wheel 14 is used to adjust the tightness of the track 12.
  • the four road wheels 15 are arranged in sequence along the moving direction of the walking portion 11; the suspension shock-absorbing assembly is used to reduce the vibration of the road wheels 15 during travel.
  • the walking device 10 may further include a platform 17 covering the top of the walking portion 11, and the platform 17 is suitable for placing work equipment.
  • the control device 30 is adapted to communicate with work equipment, and the work equipment may be, for example, at least one of a camera, a water cannon, a manipulator, an alarm light, a temperature sensor, and a voltage measuring device.
  • Work equipment such as cameras, manipulators, turrets, etc. can be placed on the platform 17.
  • water cannons can be used to implement fire fighting operations.
  • the traditional system architecture design of crawler firefighting robots usually uses MCU (microcontroller unit) as the central processing unit to control the operation equipment.
  • MCU microcontroller unit
  • the traditional design has the problems of low development process efficiency, low reliability, and poor equipment scalability. .
  • programmable logic controller as the control unit, compared with the traditional MCU-based control system, the reliability is significantly improved.
  • the control system of the crawler fire-fighting robot has good scalability and modular design, which can support the connection of various operating equipment with different interfaces for easy expansion Function and support module development.
  • the driving device 20 mainly includes: a drive 22, a motor 24, and a reducer 26.
  • the motor 24 is connected to the drive 22 and receives power and signals provided by the drive 22; the motor 24 rotates the drive wheel 11 through the reducer 26. It is transmitted to the speed reducer 26 through the transmission shaft, and the speed reducer 26 may be, for example, a gear box provided with a fixed reduction ratio.
  • control device 30 further includes: a remote control unit 32, which is operated to communicate with the control device 30 remotely to send a signal to the control device 30; at the same time, the control device 30 receives the remote control unit 32 in real time. signal of.
  • the remote control unit 32 is very suitable for operation under complicated road conditions and harsh environment, realizes the separation of man and machine, and ensures the safety of operation.
  • work equipment for example, a camera
  • the control device 30 can send the acquired video signal to the remote control unit 32 in real time, so that the operator can grasp the situation at any time, and more Realize the control of crawler fire robot.
  • the present invention also provides a corresponding control method.
  • the control method of the crawler fire-fighting robot may include three steps S1 to S3.
  • step S1 when it is necessary to change the motion state or switch the motion mode of the walking device 10 in the crawler firefighting robot, remotely communicate with the control device 30 through the remote control unit 32, and send a signal to the control device 30.
  • step S2 the control device 30 receives the signal sent by the remote control unit 32 in real time, and the control device 30 determines the signal type according to the input signal and queries the corresponding control command.
  • step S3 the control device 30 transmits a control instruction to the driving device 20 to drive the walking device 10 to execute one or more of the movement mode, change the movement direction, the stop mode, and the climbing mode.
  • the controller 30 is a programmable logic controller, and the control command is implemented by a pulse width modulation signal.
  • the programmable logic controller outputs a PWM (Pulse Width Modulation, pulse width modulation) signal to control the driving device 20, so that the walking device 10 can be controlled to move back and forth, left and right. Since the programmable logic controller can provide industrial-grade PWM signals, stable communication and control with various driving devices 20 can be established.
  • Fig. 2 shows a walking device of a crawler fire fighting robot according to an embodiment of the present invention.
  • each suspension damping assembly mainly includes a swing arm 164 and two dampers.
  • the suspension damping assembly is mainly used to dampen the moving walking part 11, where the walking part 11 includes road wheels 15.
  • a rotating shaft 162 is fixed on the walking part 11, the swing arm 164 is hinged to the rotating shaft 162, and the swing arm 164 can rotate around the rotating shaft 162 as a whole; one end of the swing arm 164 is hinged with the road wheel 15.
  • the swing arm also has two branches, namely, a first branch 1641 and a second branch 1642.
  • first branch 1641 is hinged with the road wheel 15 and the other end is connected with the shaft 162; the first branch 1642 is along the center point of the shaft 162 Extend outward.
  • One ends of the two dampers are respectively fixed to the walking part 11, and the other ends of the two dampers are respectively connected to the two branches.
  • the swing arm adopts a double-branch structure, and a damper is installed on the two branches.
  • the damper may be, for example, a hydraulic damper.
  • the suspension shock-absorbing component provided by the invention has the advantages of large bearing capacity, good shock-absorbing effect, long service life and the like.
  • the parallel dampers can increase the rigidity of the system, and on the other hand, it can increase the bearing capacity of the suspension damping components.
  • the swing arm includes a first branch 1641 and a first branch 1642.
  • One end of the first branch 1641 is hinged with the road wheel 15 and the other end is connected with the rotating shaft 162; the first branch 1642 Extending outward along the center point of the rotating shaft 162, the second branch 12 and the first branch 1642 form a predetermined angle with each other.
  • the two branches of the swing arm can be manufactured by integral molding, wherein the first branch 1641 and the first branch 1642 can have an angle of 90 degrees to make the swing arm have an L shape.
  • the first damper 166 is connected to an end of the first branch 1641 away from the rotating shaft 162 and perpendicular to the first branch 1641
  • the second damper 167 is connected to an end of the second branch 1642 away from the rotating shaft 162 and perpendicular to the second branch 1642.
  • the damper is installed at the end of the swing arm branch away from the rotating shaft 162, and the length of the arm of the swing arm branch can be fully utilized to increase the torque, so that the damper can better exert its damping effect.
  • the installation of the damper perpendicular to the swing arm branch reduces the force on the damper, which is beneficial to protect the damper; and, through multiple tests and simulation tests, it is shown that the use of this installation method can ensure that the suspension damping component achieves ideal damping effect.
  • each swing arm may be equipped with a stopper 168 to ensure the normal use of the damper.
  • the stopper 168 in the suspension damping assembly is fixed to the walking part 11 and is arranged between the two branches (1641, 1642) of the swing arm 164.
  • the limiter 168 can limit the rotation of the swing arm within a preset angle range, thereby preventing the impact load from exceeding the stroke of the damper and damaging the damper, thereby protecting the damper.
  • the damper may be, for example, a compression spring assembly. Experiments have proved that the damper in the suspension damping assembly adopts a compression spring, which has a longer life and achieves a better damping function than the use of a tension spring.
  • the walking device 10 may include a walking portion 11 and four sets of suspension shock-absorbing components, which are a first suspension shock-absorbing component 1610, a second suspension shock-absorbing component 1620, a third suspension shock-absorbing component 1630, and a Four suspension shock absorption components 1640.
  • the walking part 11 further includes a crawler belt 12, a driving wheel 13, a guide wheel 14 and a road wheel 15. The driving wheel 13 is located at one end of the walking part 11 and the guide wheel 14 is located at the other end of the walking part 11.
  • the first to fourth suspension damping components are respectively hinged to one of the four road wheels, the fourth suspension damping component 1640 is arranged in the walking portion 11 near the driving wheel 13, and the first suspension damping component 1610 It is arranged at a position close to the guide wheel 14 in the walking part 11.
  • the second suspension damping assembly 1620 and the third suspension damping assembly 1630 are arranged side by side in the middle of the walking portion 11. That is to say, four road wheels 15 are arranged along the advancing direction of the walking portion 11, and each road wheel 15 is installed with a suspension damping assembly composed of double dampers and swing arms. Each swing arm adopts a double-branch structure, and a damper is installed on the two branches respectively. When the swing arm moves relative to the car body, the two parallel dampers provide the swing arm with supporting force.
  • the driving wheel 13 drives the walking device 10 to move forward in the first direction (for example, the direction from right to left in FIG. 2).
  • the walking device 10 passes through the road surface where the protrusions are attached, the obstacles will impose an and The force opposite to the forward direction (from left to right in Figure 2), the force will drive the swing arm to rotate through the road wheel 15 to compress the damper, and the two dampers in the compressed state will simultaneously apply the swing arm
  • a reaction force is used to absorb the vibration energy generated by the forward impact and walking, thereby pushing the road wheel 15 to continue to advance in the first direction.
  • the swing arm 164 when the traveling walking device 10 encounters an obstacle, under the action of the reaction force exerted by the obstacle on the road wheels 15, the swing arm 164 will rotate counterclockwise around the shaft 162 and compress the damper 166 at the same time. And the damper 167; the two dampers can absorb kinetic energy and reduce vibration, and the two dampers in the compressed state can resist the swing arm 164 in the compressed state to prevent the swing arm 164 from rotating at an excessive angle.
  • the parallel dampers can increase the rigidity of the system, and on the other hand, it can increase the bearing capacity of the suspension damping components.
  • the walking device 10 from left to right are: first suspension damping assembly 1610, second suspension damping assembly 1620, third suspension damping assembly 1630, fourth suspension damping assembly Components 1640.
  • the swing arms in the four groups of suspension damping components adopt different structural designs to improve the seismic performance of the vehicle.
  • the included angle between the two branches of the swing arm in the first suspension damping assembly 1610 is an acute angle
  • the included angle between the two branches of the swing arm of the second suspension damping assembly 1620 and the third suspension damping assembly 1630 is Right angle
  • the angle between the two branches of the swing arm in the fourth suspension damping assembly 1640 is an obtuse angle.
  • the determination of the number of angles between the two branches of the swing arm requires comprehensive consideration of its position in the walking device 10 and the requirements of shock absorption performance.
  • the first suspension damping assembly 1610 is installed at the front end of the walking portion 11, the space is small, so the two branches of the swing arm are at an acute angle to reduce the volume; and the branch at the upper end of the swing arm is further bent And extend upwards to ensure that the connecting part of the damper and the swing arm branch is arranged perpendicular to each other. That is to say, in the first suspension damping assembly 1610, the second suspension damping assembly 1620, and the third suspension damping assembly 1630, the damper and the front swing arm and the middle swing arm branch are installed in vertical swing arms.
  • the vertical swing arm branch installation reduces the force on the damper, which is beneficial to protect the damper.
  • the damper and the swing arm branch connected to it are arranged at an acute angle to ensure that when the damper reaches the maximum stroke, the damper and the pendulum There is still an acute angle between the arm branches, which effectively improves the rapid decrease of the damper reaction arm caused by the rotation of the swing arm, and improves the shock absorption performance.
  • the rotating shaft in the fourth suspension damping assembly 1640 is located in the half area near the bottom of the bisector of the included angle of the track 12.
  • the rotation center of the rear swing arm is located in the lower left half of the bisector of the track included angle, so that the combined external force of the swing arm passes through the back side of the swing arm rotation center to ensure that the swing arm rotates counterclockwise, so that the damper only It is compressed and not stretched, thus effectively protecting the damper.
  • the dampers of the four groups of suspension damping components are used for the dampers of the four groups of suspension damping components to improve the vibration performance of the vehicle.
  • the suspension shock-absorbing components installed at both ends of the walking portion 11 need to have stronger seismic resistance. Therefore, in a specific embodiment, the spring stiffness of the dampers in the first suspension damping assembly 1610 and the fourth suspension damping assembly 1640 is greater than that of the dampers in the second suspension damping assembly 1620 and the third suspension damping assembly 1630 The spring rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

一种履带式消防机器人,包括:行走装置(10),其包括:行走部(11)以及环绕于行走部(11)外围的履带(12);驱动装置(20),用于驱动行走部(11)运动;以及,控制装置(30),由可编程逻辑控制器实现,控制装置(30)与驱动装置(20)连接,并通过控制指令控制驱动装置(20)的运行。

Description

履带式消防机器人及其控制方法 技术领域
本发明涉及工业领域,尤其涉及改进的履带式消防机器人及其控制方法。
背景技术
履带式消防机器人具有穿越障碍物能力强、与地面接触面积大等优点,在救火救灾现场,为避免人员的伤亡,消防机器人被越来越多的投入使用。火灾现场的地面状况一般十分复杂,分布着较多障碍物,但当路面状况不佳或需要穿越障碍物时,消防机器人的履带会受到外界冲击,从而使履带式消防机器人的底盘震动,直接影响底盘上安装设备的平稳运行和可靠工作,有时甚至会损坏设备内部电气元件,导致设备失灵。在现有技术中,普通的履带式消防机器人只有单一悬挂系统或减震结构,其减震效果有限,难以对履带式移动底盘及其附加设备起到较好的保护;而减震效果较好的减震系统结构又较为复杂、不仅对机械加工和组装工艺要求很高,并且由于附加了各类阻尼器和传感器等,维修流程复杂,成本高,实用性不强。并且,履带式消防机器人的传统系统架构设计通常采用MCU(微控制器单元)作为中央处理单元来控制外围设备,存在开发过程效率较低、可靠性不高、以及设备拓展性较差的问题。
发明内容
根据本发明的一个方面,提供了一种履带式消防机器人,其特征在于,所述履带式消防机器人包括:行走装置,其包括:行走部以及环绕于所述行走部外围的履带;驱动装置,用于驱动所述行走部运动;以及,控制装置,由可编程逻辑控制器实现,所述控制装置与所述驱动装置连接,并通过控制指令控制所述驱动装置的运行。
根据一个实施例,在上述履带式消防机器人中,所述行走部包括:一个驱动轮,设置于所述行走部的一侧并与所述履带啮合,所述驱动轮适于在所述驱动装置的驱动下旋转进而带动所述履带运动;一个导向轮,设置于所述行走部的另一侧并与所述履带相接触,其中所述导向轮适于调节所述履带的松紧度;四个负重轮,沿 所述行走部运动方向依次设置,所述四个负重轮分别与所述履带相接触;以及,悬挂减震组件,连接所述四个负重轮以为其减震。
根据一个实施例,在上述履带式消防机器人中,所述行走装置进一步包括:平台,设置于所述行走部顶端,所述平台上适于装载作业设备。
根据一个实施例,在上述履带式消防机器人中,所述控制装置与所述作业设备通信连接,所述作业设备包括摄像机、水炮、机械手、报警灯、温度传感器、电压测量装置中的至少一种。
根据一个实施例,在上述履带式消防机器人中,所述悬挂减震组件进一步包括:一个摆臂,具有两个分支并适于绕位于所述两个分支相接处的转轴旋转,所述转轴固定于所述车体,所述摆臂的一个分支的一个端部与所述负重轮铰接;以及,第一和第二阻尼器,所述第一和第二阻尼器的各自一端分别固定于所述车体,所述第一和第二阻尼器的各自另一端分别连接于所述两个分支。
根据一个实施例,在上述履带式消防机器人中,所述悬挂减震组件进一步包括限位器,其固定于所述行走部,所述限位器设置于所述摆臂的所述两个分支之间,以将所述摆臂的旋转限制在一预设角度范围内。
根据一个实施例,在上述履带式消防机器人中,第一阻尼器连接于所述第一分支的远离所述转轴的一端并与所述第一分支垂直,且所述第二阻尼器连接于所述第二分支的远离所述转轴的一端并与所述第二分支垂直。
根据一个实施例,在上述履带式消防机器人中,所述行走装置包括:位于靠近所述导向轮一端的第一悬挂减震组件、位于靠近所述驱动轮一端的第四悬挂减震组件、以及彼此并排地设置于所述行走部中间位置的第二悬挂减震组件和第三悬挂减震组件,其中,所述第一悬挂减震组件中的所述摆臂两分支之间的夹角为锐角,所述第二悬挂减震组件和所述第三悬挂减震组件的所述摆臂两分支之间的夹角为直角,所述第四悬挂减震组件中的所述摆臂两分支之间的夹角为钝角。
根据一个实施例,在上述履带式消防机器人中,所述驱动装置进一步包括:驱动;电机,与所述驱动连接并接受所述驱动提供的电源和信号;以及,减速器,所述电机通过所述减速器使所述驱动轮旋转。
根据一个实施例,在上述履带式消防机器人中,所述控制装置统进一步包括: 远程控制单元,被操作与所述控制装置进行远程通信,以向所述控制装置发送信号;同时,所述控制装置实时接收所述远程控制单元发送的信号。
根据本发明的另一方面,提供了一种履带式消防机器人的控制方法,其特征在于,包括以下步骤:当需要使所述履带式消防机器人中的行走装置改变运动状态或切换运动模式时,远程控制单元向所述履带式消防机器人中的控制装置发送指令信号;所述控制装置对所述指令信号进行分析,以判断所述指令信号的种类并检索对应的控制指令;以及,所述控制装置将所述控制指令输送至所述履带式消防机器人中的驱动装置,以驱动所述行走装置执行运动模式、转向模式、停止模式、爬坡模式中的一种或多种。
根据一个实施例,在上述履带式消防机器人的控制方法中,所述控制装置为可编程逻辑控制器,所述控制指令为脉宽调制信号。
应当理解,本发明以上的一般性描述和以下的详细描述都是示例性和说明性的,并且旨在为如权利要求所述的本发明提供进一步的解释。
附图说明
包括附图是为提供对本发明进一步的理解,它们被收录并构成本申请的一部分,附图示出了本发明的实施例,并与本说明书一起起到解释本发明原理的作用。附图中:
图1示出了根据本发明的一个实施例的履带式消防机器人的示意图。
图2示出了根据本发明的一个实施例的履带式消防机器人的行走装置。
图3示出了根据本发明的另一实施例的履带式消防机器人控制方法。
附图标记说明:
10              行走装置
20              驱动装置
30              控制装置
11              行走部
12                 履带
13                 驱动轮
14                 导向轮
15                 负重轮
162                转轴
164                摆臂
1641               第一分支
1642               第二分支
166                第一阻尼器
167                第二阻尼器
168                限位器
17                 平台
1610               第一悬挂减震组件
1620               第二悬挂减震组件
1630               第三悬挂减震组件
1640               第四悬挂减震组件
22                 驱动
24                 电机
26                 减速器
32                 远程控制单元
具体实施方式
现在将详细参考附图描述本发明的实施例。现在将详细参考本发明的优选实 施例,其示例在附图中示出。在任何可能的情况下,在所有附图中将使用相同的标记来表示相同或相似的部分。此外,尽管本发明中所使用的术语是从公知公用的术语中选择的,但是本发明说明书中所提及的一些术语可能是申请人按他或她的判断来选择的,其详细含义在本文的描述的相关部分中说明。此外,要求不仅仅通过所使用的实际术语,而是还要通过每个术语所蕴含的意义来理解本发明。
参考图1和图2来更详细地讨论本发明的基本原理和优选实施例。本发明提供了一种履带式消防机器人,该履带式消防机器人主要包括:行走装置10、驱动装置20和控制装置30。其中,行走装置10进一步包括行走部11以及环绕于行走部11外围的履带12;驱动装置20用于驱动行走装置10运动;控制装置30可以由可编程逻辑控制器实现,控制装置30与驱动装置20连接,将控制指令输送至驱动装置20。
本发明的提供的履带式消防机器人的优点在于能够适应不同的地形环境,在复杂地形中依然可以保持运输作业,工作稳定可靠。
具体的,如图2所示,履带式消防机器人的行走装置10主要包括:一个驱动轮13、一个导向轮14、四个负重轮15和悬挂减震组件。驱动轮13与履带12啮合,驱动轮13适于接收驱动装置20的驱动信号并旋转以带动履带12运动。导向轮14用于调节履带12的松紧度。四个负重轮15沿行走部11运动方向依次设置;悬挂减震组件用于降低负重轮15在行进中的震动。
此外,行走装置10还可以包括平台17,平台17覆盖于行走部11顶端,平台17适于放置作业设备。控制装置30适于与作业设备通信,作业设备可以是例如摄像机、水炮、机械手、报警灯、温度传感器、电压测量装置中的至少一种。平台17上可以放置作业设备,例如摄像头、机械手、炮台等。在一个具体的实施例中,可以通过水炮实现消防作业。
履带式消防机器人的传统系统架构设计通常采用MCU(微控制器单元)作为中央处理单元来控制作业设备,传统的设计存在开发过程效率较低、可靠性不高、以及设备拓展性较差的问题。采用可编程逻辑控制器作为控制单元,与传统的应用MCU的控制系统相比,可靠性显著提高。并且,由于可编程逻辑控制器具有良好的扩展性和模块化设计,而使得履带式消防机器人的控制系统具有良好的扩展性和 模块化设计,可以支持连接各种不同接口的作业设备,便于扩展功能和支持模块开发。
在一个具体的实施例中,驱动装置20主要包括:驱动22、电机24和减速器26。电机24与驱动22连接并接受驱动22提供的电源和信号;电机24通过减速器26使驱动轮11旋转。通过传动轴传递至减速器26,减速器26可以是例如设置有固定减速比的齿轮箱。
在一个优选的实施例中,控制装置30统进一步包括:远程控制单元32,被操作与控制装置30进行远程通信,以向控制装置30发送信号;同时,控制装置30实时接收远程控制单元32发送的信号。远程控制单元32非常适合在路况复杂,环境恶劣的条件下作业,实现人机分离,保证作业安全。举例来说,作业设备(例如,摄像头)可以将实时获取的视频信息发送至控制装置30,控制装置30可以将获得的视频信号实时发送至远程控制单元32,操作人员可以随时掌握现场情况,更好地实现对履带式消防机器人的控制。
此外,本发明还提供了一种相应的控制方法,在如图3所示的实施例中,该履带式消防机器人的控制方法可以包括S1至S3三个步骤。在步骤S1中:当需要使履带式消防机器人中的行走装置10改变运动状态或切换运动模式时,通过远程控制单元32与控制装置30进行远程通信,向控制装置30发送信号。在步骤S2中:控制装置30实时接收远程控制单元32发送的信号,并且控制装置30根据输入信号判断信号种类并查询对应的控制指令。在步骤S3中,控制装置30将控制指令输送至驱动装置20,以驱动行走装置10执行运动模式、改变运动方向、停止模式、爬坡模式中的一种或多种。在一个具体的实施例中,控制器30为可编程逻辑控制器,控制指令通过脉宽调制信号实现。可编程逻辑控制器输出PWM(Pulse Width Modulation,脉宽调制)信号来控制驱动装置20,从而可以控制行走装置10前后左右运动。由于可编程逻辑控制器可以提供工业级PWM信号,从而可以建立与各种驱动装置20的稳定的通信和控制。
图2示出了根据本发明的一个实施例的履带式消防机器人的行走装置。作为悬挂减震组件的示例,每一个悬挂减震组件主要包括一个摆臂164和两个阻尼器。悬挂减震组件主要用于对运动的行走部11进行减震,其中,行走部11包括负重 轮15。如图所示,行走部11上固定有转轴162,摆臂164铰接于转轴162,摆臂164可以整体绕转轴162旋转;摆臂164的一个端部与负重轮15铰接。摆臂上还具有两个分支,即,第一分支1641和第二分支1642,第一分支1641的一端与负重轮15铰接,另一端与转轴162连接;第一分支1642沿转轴162的中心点向外延伸。两个阻尼器的一端分别固定于行走部11,两个阻尼器的另一端分别连接于两个分支。也就是说,摆臂采用双分支结构,在两个分支上分别安装一个阻尼器,阻尼器可以是例如油压阻尼器。当负重轮15在行进时遇到前行障碍或地面不平时,负重轮15会带动摆臂164产生相对于行走部11的运动,而两个阻尼器并联同时会对摆臂施加一个反作用力,用于吸收前行撞击和行走震动能量。本发明提供的悬挂减震组件具有承载能力大,减震效果好,使用寿命长等优点。采用双阻尼器的并联结构,一方面并联阻尼器可以增大系统的刚度,另一方面可以增大悬挂减震组件的承载能力。
具体的,在如图2所述的实施例中,摆臂包括第一分支1641和第一分支1642,第一分支1641的一端与负重轮15铰接,另一端与转轴162连接;第一分支1642沿转轴162的中心点向外延伸,第二分支12和第一分支1642彼此之间呈一预设角度。例如,摆臂的两个分支可以是一体成型制造,其中第一分支1641和第一分支1642之间可以呈90度角以使摆臂呈L形。作为一个优选的实施例,为了最大限度的发挥阻尼器的缓冲减震作用,第一阻尼器166连接于第一分支1641的远离转轴162的一端并与第一分支1641垂直,且第二阻尼器167连接于第二分支1642的远离转轴162的一端并与第二分支1642垂直。阻尼器安装于摆臂分支的远离转轴162的端部,可以完全利用摆臂分支的力臂长度,增大力矩,从而使阻尼器更好地发挥其阻尼效果。阻尼器垂直于摆臂分支安装使得阻尼器受力减小,有利于保护阻尼器;并且,通过多次试验和仿真测试表明,采用这样的安装方式,可以保证悬挂减震组件实现理想的减震效果。
此外,优选地,可以为每一个摆臂配备限位器168以保证阻尼器的正常使用。悬挂减震组件中的限位器168固定于行走部11,设置于摆臂164的两个分支(1641,1642)之间。限位器168能够将摆臂的旋转限制在一预设角度范围内,从而防止冲击载荷超过阻尼器的行程而破坏阻尼器,对阻尼器起到保护的作用。优选 的,阻尼器可以是例如压缩弹簧组件。实验证明,在悬挂减震组件中的阻尼器采用压缩弹簧,压缩弹簧的寿命更长,并且相比于采用拉伸弹簧会实现更好的减震功能。
以上所讨论的悬挂减震组件可以适用于履带式消防机器人的行走装置10中,从而帮助行进中的履带式消防机器人的行走装置10提升减震效果。如图2所示,该行走装置10可以包括行走部11和四组悬挂减震组件,分别为第一悬挂减震组件1610、第二悬挂减震组件1620、第三悬挂减震组件1630、第四悬挂减震组件1640。行走部11进一步包括履带12、驱动轮13、导向轮14和负重轮15,驱动轮13位于行走部11的一端,导向轮14位于行走部11的另一端。第一至第四悬挂减震组件分别与所述四个负重轮中的其中一个铰接,第四悬挂减震组件1640设置于行走部11中靠近驱动轮13的位置,第一悬挂减震组件1610设置于行走部11中靠近导向轮14的位置。第二悬挂减震组件1620和第三悬挂减震组件1630彼此并排地设置在行走部11的中部。也就是说,沿行走部11前进方向布置四个负重轮15,每一个负重轮15均安装有双阻尼器并联摆臂构成的悬挂减震组件。每一个摆臂采用双分支结构,在两个分支上分别安装一个阻尼器,当摆臂发生相对车体运动时,两个并联的阻尼器给摆臂提供支反力。
下面结合附图对本发明做进一步说明。驱动轮13驱动行走装置10沿第一方向前进运动(例如,图2中从右向左的方向),当行走装置10通过附着凸起物的路面时,障碍物会对负重轮15施加一个与前进方向相反的作用力(图2中从左向右的方向),该作用力会通过负重轮15带动摆臂旋转从而压缩阻尼器,而处于压缩状态的两个阻尼器同时会对摆臂施加一个反作用力,用于吸收前行撞击和行走产生的震动能量,从而推动负重轮15继续向第一方向前进。也就是说,当行进中的行走装置10遇障碍物时,在障碍物对负重轮15施加的反作用力的作用下,摆臂164会绕着转轴162沿着逆时针旋转并同时压缩阻尼器166和阻尼器167;两个阻尼器能够吸收动能、降低震动,并且处于压缩状态的两个阻尼器在压缩状态下可以与摆臂164相抵持,避免摆臂164旋转的角度过大。采用双阻尼器的并联结构,一方面并联阻尼器可以增大系统的刚度,另一方面可以增大悬挂减震组件的承载能力。
在图2所示的实施例中,行走装置10中从左到右依次为:第一悬挂减震组件 1610、第二悬挂减震组件1620、第三悬挂减震组件1630、第四悬挂减震组件1640。四组悬挂减震组件中的摆臂采用不同的结构设计以改善整车的抗震性能。具体的,第一悬挂减震组件1610中的摆臂两分支之间的夹角为锐角,第二悬挂减震组件1620和第三悬挂减震组件1630的摆臂两分支之间的夹角为直角,第四悬挂减震组件1640中的摆臂两分支之间的夹角为钝角。摆臂两分支之间的夹角度数的确定需要综合考虑其位于行走装置10中的位置以及减震性能的要求。例如,由于第一悬挂减震组件1610安装于行走部11的前端部,空间较小,因此其摆臂的两分支之间呈锐角以减小体积;并且,位于摆臂上端的分支进一步弯折并向上延伸,以保证阻尼器与摆臂分支的连接部分相互垂直设置。也就是说,在第一悬挂减震组件1610、第二悬挂减震组件1620和第三悬挂减震组件1630中,阻尼器与前摆臂、中间摆臂分支之间均为垂直摆臂分支安装,垂直摆臂分支安装使得阻尼器受力减小,有利于保护阻尼器。与其他三组悬挂减震组件不同,在第四悬挂减震组件1640中,阻尼器和与之相连接的摆臂分支之间为锐角布置,保证在阻尼器达到最大行程时,阻尼器与摆臂分支之间仍为锐角,有效改善了因摆臂旋转而造成的阻尼器支反力臂迅速减小的情况,提升了减震性能。此外,第四悬挂减震组件1640中的转轴位于履带12夹角角平分线靠近底部的半区。也就是说,后摆臂的旋转中心位于履带夹角角平分线左下半区,使摆臂所受的合外力通过摆臂旋转中心后侧,确保摆臂逆时针旋转,从而使阻尼器只会被压缩而不至于被拉伸,从而有效保护了阻尼器。
进一步地,在保证阻尼器安全使用的条件下,对四组悬挂减震组件的阻尼器采用不同刚度的弹簧以改善整车的震动性能。具体的,由于行走部11的端部最先与障碍物发生碰撞,所以安装在行走部11两端的悬挂减震组件需要具备更强的抗震能力。因此,在一个具体的实施例中,第一悬挂减震组件1610和第四悬挂减震组件1640中阻尼器的弹簧刚度大于第二悬挂减震组件1620和第三悬挂减震组件1630中阻尼器的弹簧刚度。
在本文中,“示意性”表示“充当实例、例子或说明”,不应将在本文中被描述为“示意性”的任何图示、实施方式解释为一种更优选的或更具优点的技术方案。尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上 述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。此外,不应将权利要求中的任何附图标记视为限制所涉及的权利要求。“包括”一词不排除其它权利要求或说明书中未列出的装置或步骤;本文描述中的“第一”、“第二”仅为描述方便区分不同的对象,不具有实际意义,不表示这两个对象之间有实质的不同,而且也并不表示任何特定的顺序。
本领域技术人员可显见,可对本发明的上述示例性实施例进行各种修改和变型而不偏离本发明的精神和范围。因此,旨在使本发明覆盖落在所附权利要求书及其等效技术方案范围内的对本发明的修改和变型。

Claims (12)

  1. 一种履带式消防机器人,其特征在于,所述履带式消防机器人包括:
    行走装置(10),其包括:行走部(11)以及环绕于所述行走部(11)外围的履带(12);
    驱动装置(20),用于驱动所述行走部(11)运动;以及,
    控制装置(30),由可编程逻辑控制器实现,所述控制装置(30)与所述驱动装置(20)连接,并通过控制指令控制所述驱动装置(20)的运行。
  2. 如权利要求1所述的履带式消防机器人,其特征在于,所述行走部(11)包括:
    一个驱动轮(13),设置于所述行走部(11)的一侧并与所述履带(12)啮合,所述驱动轮(13)适于在所述驱动装置(20)的驱动下旋转进而带动所述履带(12)运动;
    一个导向轮(14),设置于所述行走部(11)的另一侧并与所述履带(12)相接触,其中所述导向轮(14)适于调节所述履带(12)的松紧度;
    四个负重轮(15),沿所述行走部(11)运动方向依次设置,所述四个负重轮(15)分别与所述履带(12)相接触;以及,
    悬挂减震组件,连接所述四个负重轮(15)以为其减震。
  3. 如权利要求1所述的履带式消防机器人,其特征在于,所述行走装置(10)进一步包括:平台(17),设置于所述行走部(11)顶端,所述平台(17)上适于装载作业设备。
  4. 如权利要求3所述的履带式消防机器人,其特征在于,所述控制装置(30)与所述作业设备通信连接,所述作业设备包括摄像机、水炮、机械手、报警灯、温度传感器、电压测量装置中的至少一种。
  5. 如权利要求2所述的履带式消防机器人,其特征在于,所述悬挂减震组件进一步包括:
    一个摆臂(164),具有两个分支(1641,1642)并适于绕位于所述两个分支(1641,1642)相接处的转轴(162)旋转,所述转轴(162)固定于所述行走部(11),所述摆臂的一个分支(14)的一个端部与所述负重轮(15)铰接;以及,
    第一和第二阻尼器(22,24),所述第一和第二阻尼器(22,24)的各自一端分别固定于所述行走部(11),所述第一和第二阻尼器(22,24)的各自另一端分别连接于所述两个分支(1641,1642)。
  6. 如权利要求5所述的履带式消防机器人,其特征在于,所述悬挂减震组件进一步包括:限位器(168),其固定于所述行走部(11),所述限位器(168)设置于所述摆臂(164)的所述两个分支(1641,1642)之间,以将所述摆臂(164)的旋转限制在一预设角度范围内。
  7. 如权利要求5所述的履带式消防机器人,其特征在于,第一阻尼器(166)连接于所述第一分支(1641)的远离所述转轴(162)的一端并与所述第一分支(1641)垂直,且所述第二阻尼器(167)连接于所述第二分支(1642)的远离所述转轴(162)的一端并与所述第二分支(1642)垂直。
  8. 如权利要求5所述的履带式消防机器人,其特征在于,所述行走装置(10)包括:位于靠近所述导向轮(14)一端的第一悬挂减震组件(1610)、位于靠近所述驱动轮(13)一端的第四悬挂减震组件(1640)、以及彼此并排地设置于所述行走部(11)中间位置的第二悬挂减震组件(1620)和第三悬挂减震组件(1630),其中,所述第一悬挂减震组件(1610)中的所述摆臂两分支之间的夹角为锐角,所述第二悬挂减震组件(1620)和所述第三悬挂减震组件(1630)的所述摆臂两分支之间的夹角为直角, 所述第四悬挂减震组件(1640)中的所述摆臂两分支之间的夹角为钝角。
  9. 如权利要求1所述的履带式消防机器人,其特征在于,所述驱动装置(20)进一步包括:
    驱动(22);
    电机(24),与所述驱动(22)连接并接受所述驱动(22)提供的电源和信号;以及,
    减速器(26),所述电机(24)通过所述减速器(26)使所述驱动轮(11)旋转。
  10. 如权利要求1所述的履带式消防机器人,其特征在于,所述控制装置(30)统进一步包括:
    远程控制单元(32),被操作与所述控制装置(30)进行远程通信,以向所述控制装置(30)发送信号;同时,所述控制装置(30)实时接收所述远程控制单元(32)发送的信号。
  11. 一种履带式消防机器人的控制方法,其特征在于,包括以下步骤:
    当需要使所述履带式消防机器人中的行走装置(10)改变运动状态或切换运动模式时,远程控制单元(32)向所述履带式消防机器人中的控制装置(30)发送指令信号(S1);
    所述控制装置(30)对所述指令信号进行分析,以判断所述指令信号的种类并检索对应的控制指令(S2);以及,
    所述控制装置(30)将所述控制指令输送至所述履带式消防机器人中的驱动装置(20),以驱动所述行走装置(10)执行运动模式、转向模式、停止模式、爬坡模式中的一种或多种(S3)。
  12. 如权利要求11所述的履带式消防机器人控制方法,其特征在于,所述控制装置(30)为可编程逻辑控制器,所述控制指令为脉宽调制信号。
PCT/CN2019/073973 2019-01-30 2019-01-30 履带式消防机器人及其控制方法 WO2020154969A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980063333.XA CN113518695B (zh) 2019-01-30 2019-01-30 履带式消防机器人及其控制方法
PCT/CN2019/073973 WO2020154969A1 (zh) 2019-01-30 2019-01-30 履带式消防机器人及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/073973 WO2020154969A1 (zh) 2019-01-30 2019-01-30 履带式消防机器人及其控制方法

Publications (1)

Publication Number Publication Date
WO2020154969A1 true WO2020154969A1 (zh) 2020-08-06

Family

ID=71840758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073973 WO2020154969A1 (zh) 2019-01-30 2019-01-30 履带式消防机器人及其控制方法

Country Status (2)

Country Link
CN (1) CN113518695B (zh)
WO (1) WO2020154969A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113877112A (zh) * 2021-10-19 2022-01-04 徐敏 一种自动爬楼清障无人消防车
CN115159010A (zh) * 2022-07-21 2022-10-11 安恒智能科技有限公司 一种低压开关柜的自动化生产线
CN116279056A (zh) * 2023-05-05 2023-06-23 东北大学佛山研究生创新学院 一种救援小车及其运行方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3762478A (en) * 1972-03-08 1973-10-02 P Cummins Remote controlled hazard-fighting vehicle
CN105216893A (zh) * 2015-10-03 2016-01-06 上海大学 一种刚度可调的履带式移动机器人悬挂系统
CN205287338U (zh) * 2015-11-30 2016-06-08 袁英峰 消防灭火机器人
CN105999598A (zh) * 2016-08-02 2016-10-12 中信重工开诚智能装备有限公司 一种防爆消防灭火侦察机器人
KR20160139305A (ko) * 2015-05-27 2016-12-07 양동국 화재 진압 소방로봇
CN107233680A (zh) * 2017-05-19 2017-10-10 芜湖普唯特智能装备有限公司 一种消防机器人
CN107875549A (zh) * 2017-11-07 2018-04-06 山东阿图机器人科技有限公司 防爆消防侦察灭火机器人及工作方法
CN108686324A (zh) * 2018-06-20 2018-10-23 南阳防爆电气研究所有限公司 一种消防灭火侦察防爆机器人

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205997982U (zh) * 2016-07-31 2017-03-08 山东国兴智能科技有限公司 一种非对称并联阻尼式履带车
CN107140043B (zh) * 2017-06-01 2023-03-14 西安航空学院 一种采矿勘测装置
CN107875550A (zh) * 2017-11-07 2018-04-06 山东阿图机器人科技有限公司 一种面向复杂地面环境的消防灭火机器人
CN108177691A (zh) * 2018-02-05 2018-06-19 周韵 降低履带转向阻力的转向辅助装置
CN109050695B (zh) * 2018-09-28 2021-12-28 山东国兴智能科技股份有限公司 一种全地形消防机器人及工作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3762478A (en) * 1972-03-08 1973-10-02 P Cummins Remote controlled hazard-fighting vehicle
KR20160139305A (ko) * 2015-05-27 2016-12-07 양동국 화재 진압 소방로봇
CN105216893A (zh) * 2015-10-03 2016-01-06 上海大学 一种刚度可调的履带式移动机器人悬挂系统
CN205287338U (zh) * 2015-11-30 2016-06-08 袁英峰 消防灭火机器人
CN105999598A (zh) * 2016-08-02 2016-10-12 中信重工开诚智能装备有限公司 一种防爆消防灭火侦察机器人
CN107233680A (zh) * 2017-05-19 2017-10-10 芜湖普唯特智能装备有限公司 一种消防机器人
CN107875549A (zh) * 2017-11-07 2018-04-06 山东阿图机器人科技有限公司 防爆消防侦察灭火机器人及工作方法
CN108686324A (zh) * 2018-06-20 2018-10-23 南阳防爆电气研究所有限公司 一种消防灭火侦察防爆机器人

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113877112A (zh) * 2021-10-19 2022-01-04 徐敏 一种自动爬楼清障无人消防车
CN115159010A (zh) * 2022-07-21 2022-10-11 安恒智能科技有限公司 一种低压开关柜的自动化生产线
CN115159010B (zh) * 2022-07-21 2024-05-07 安恒智能科技有限公司 一种低压开关柜的自动化生产线
CN116279056A (zh) * 2023-05-05 2023-06-23 东北大学佛山研究生创新学院 一种救援小车及其运行方法

Also Published As

Publication number Publication date
CN113518695B (zh) 2024-03-22
CN113518695A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2020154969A1 (zh) 履带式消防机器人及其控制方法
CN109303994B (zh) 一种消防侦察灭火机器人及其工作方法
CN107140052B (zh) 一种具有悬挂系统的轮腿式六足机器人
US20210091544A1 (en) Climbing robot traveling along overhead line
CN207564459U (zh) 一种越障机器人
CN108340981B (zh) 一种全地形多用途移动机器人
CN108454718B (zh) 一种履带式被动自适应机器人
CN201516604U (zh) 模块化履带摇臂式煤矿井下探测机器人
CN108673469B (zh) 面向危险灾害现场环境的履带可变形机器人移动平台
CN203157679U (zh) 一种通用遥控轮式移动机器人
CN210258605U (zh) 一种高性能自适应履带底盘装置
CN104057835A (zh) 一种通用遥控轮式移动机器人
CN206155604U (zh) 一种非对称上导轮自张紧式履带行走机构
CN110282042B (zh) 一种高性能自适应履带底盘装置及工作方法
CN109303993B (zh) 履带式消防机器人
CN203158114U (zh) 基于蓝牙控制的智能越障机器人
CN111572656A (zh) 一种具备阻尼缓冲特性的悬挂系统及履带式移动平台
CN111824286A (zh) 一种变足式移动机器人
CN215513129U (zh) 一种可移动机器人全轮系悬挂减震底盘
CN215155104U (zh) 一种基于履带式麦克纳姆轮的消防机器人
CN116080317A (zh) 一种侦察机器人
CN212044703U (zh) 一种用于移动机器人的室外用移动底盘
CN212447844U (zh) 一种变足式移动机器人
CN111497548B (zh) 一种主动减振式消防机器人底座装置及控制方法
CN205203189U (zh) 摆臂式无人四驱平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912923

Country of ref document: EP

Kind code of ref document: A1