WO2020154899A1 - 压力计算方法及其装置、电子设备以及触控系统 - Google Patents

压力计算方法及其装置、电子设备以及触控系统 Download PDF

Info

Publication number
WO2020154899A1
WO2020154899A1 PCT/CN2019/073721 CN2019073721W WO2020154899A1 WO 2020154899 A1 WO2020154899 A1 WO 2020154899A1 CN 2019073721 W CN2019073721 W CN 2019073721W WO 2020154899 A1 WO2020154899 A1 WO 2020154899A1
Authority
WO
WIPO (PCT)
Prior art keywords
coding
signal
sampling
pressure
sampling period
Prior art date
Application number
PCT/CN2019/073721
Other languages
English (en)
French (fr)
Inventor
梁启权
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to EP19858632.3A priority Critical patent/EP3709139B1/en
Priority to PCT/CN2019/073721 priority patent/WO2020154899A1/zh
Priority to CN201980000102.4A priority patent/CN111758084A/zh
Priority to US16/818,369 priority patent/US11301078B2/en
Publication of WO2020154899A1 publication Critical patent/WO2020154899A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04142Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position the force sensing means being located peripherally, e.g. disposed at the corners or at the side of a touch sensing plate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04162Control or interface arrangements specially adapted for digitisers for exchanging data with external devices, e.g. smart pens, via the digitiser sensing hardware
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving

Definitions

  • the embodiments of the present application relate to the field of touch technology, and in particular, to a pressure calculation method and device, electronic equipment, and touch system.
  • Touch input replaces traditional keyboard input, providing users with a convenient and fast input method when using electronic devices such as mobile phones and tablets.
  • one of the technical problems solved by the embodiments of the present application is to provide a pressure calculation method and device, electronic equipment, and touch control system to overcome the above-mentioned defects in the prior art.
  • the embodiment of the application provides a pressure calculation method, which includes:
  • the pressure data in the sampling period is calculated according to the phase difference between adjacent frames of the coding sampling signal in the sampling period.
  • the embodiment of the present application provides a signal generation method, which includes:
  • the coding signal is used to be sampled to obtain a coding sampling signal, so as to calculate the pressure data in the sampling period according to the phase difference between adjacent frames in the sampling period of the coding sampling signal.
  • An embodiment of the application provides a pressure calculation device, which includes:
  • the data sampling unit is used to sample the phase-encoded and continuously coded coding signal within a set sampling period to obtain a coding sampling signal;
  • the pressure calculation unit is configured to calculate the pressure data in the sampling period according to the phase difference between adjacent frames of the coding sampling signal in the sampling period.
  • An embodiment of the present application provides a signal generation device, which includes:
  • the encoding unit is used to perform phase encoding on the signal to be coded to generate the coded signal
  • the coding unit is configured to continuously perform continuous coding using the coding signal according to the set coding period;
  • the coding signal is used to be sampled to obtain a coding sampling signal, so as to calculate the pressure data in the sampling period according to the phase difference between adjacent frames of the coding sampling signal in the sampling period.
  • An embodiment of the application provides an electronic device, which includes the pressure calculation device or the signal generation device described in the embodiment of the application.
  • An embodiment of the present application provides a touch system, which includes a stylus and a touch screen.
  • One end of the stylus and the touch screen includes the signal generating device of any embodiment of the present application, and the other end includes any of the present application.
  • a coding sample signal is obtained by sampling the phase-encoded and continuously-coded coding signal within a set sampling period; and the coding sample signal is obtained according to the coding sample signal.
  • the phase difference between adjacent frames in the period is calculated, and the pressure data in the sampling period is calculated, which improves the reporting rate, further improves the writing followability, and increases the writing experience.
  • FIG. 1 is a schematic diagram of a touch control system provided in Embodiment 1 of the application;
  • FIG. 2 is a schematic flowchart of a signal generation method in Embodiment 2 of this application;
  • FIG. 3 is a schematic diagram of a coding signal in Embodiment 3 of the application.
  • 4A is a schematic diagram of the waveform of the coding signal when the step is 45 degrees in the fourth embodiment of the application;
  • 4B is a schematic diagram of a specific coding signal when the step is 45 degrees in the fourth embodiment of the application;
  • 5A is a schematic diagram of the waveform of the coding signal when the step is 90 degrees in the fifth embodiment of the application;
  • 5B is a schematic diagram of a specific coding signal when the step is 90 degrees in the fifth embodiment of the application.
  • 6A is a schematic diagram of the waveform of the coding signal when the step is 180 degrees in the sixth embodiment of the application;
  • 6B is a schematic diagram of a specific coding signal when the step is 180 degrees in the sixth embodiment of the application;
  • FIG. 7 is a schematic flow chart of the pressure calculation method in Embodiment 7 of this application.
  • FIG. 8A is a schematic diagram of comparison between coding and sampling periods when the corresponding step is 45 degrees in Embodiment 8 of the application;
  • 8B is another schematic diagram of comparison between coding and sampling periods when the corresponding step is 45 degrees in the ninth embodiment of the application;
  • 8C is another schematic diagram of comparison between coding and sampling periods when the corresponding step is 45 degrees in the tenth embodiment of the application;
  • FIG. 9 is a schematic diagram of comparison between coding and sampling periods when the corresponding step is 90 degrees in the eleventh embodiment of the application.
  • FIG. 10 is a schematic diagram of comparison between coding and sampling periods when the corresponding step is 180 degrees in the twelfth embodiment of the application;
  • FIG. 11 is a schematic diagram of the structure of the pressure calculation device in the thirteenth embodiment of the application.
  • FIG. 12 is a schematic structural diagram of a signal generating device in Embodiment 14 of this application.
  • a coding sample signal is obtained by sampling the phase-encoded and continuously-coded coding signal within a set sampling period; and the coding sample signal is obtained according to the coding sample signal.
  • the phase difference between adjacent frames in the period is calculated, and the pressure data in the sampling period is calculated. Since the coordinate calculation and the pressure calculation can be considered at the same time, the coding based on the pressure and the coordinate calculation can be performed simultaneously, thereby shortening the coding period and correspondingly It avoids the coding period occupying too long a sampling period, thereby improving the reporting rate, further improving writing followability, and increasing writing experience.
  • FIG. 1 is a schematic diagram of a touch system provided in Embodiment 1 of the application; as shown in FIG. 1, the touch system includes a stylus and a touch screen, and the touch screen includes a sensing channel X, a driving channel Y, and a touch controller
  • the touch controller includes a drive circuit and a sensing circuit.
  • the touch screen detects the tip coordinate position of the stylus, the tip electrode of the stylus continuously sends out the coding signal to complete the encoding, because the stylus and the sensing channel X , There will be a coupling capacitor between the driving channel Y and the coding signal is coupled to the sensing channel X and the driving channel Y through the coupling capacitor.
  • the driving channel and the sensing channel of the touch screen will be connected to the sensing circuit of the touch controller.
  • the sensing circuit of the touch controller performs sampling of the coding signal to calculate the pressure data in the sampling period according to the phase difference between adjacent frames of the coding sampling signal in the sampling period.
  • the stylus sends a coding signal to the touch screen, and the touch screen samples the coding signal as an example.
  • the touch The screen sends a coding signal to the stylus, and the stylus samples the coding signal.
  • Figure 2 is a schematic flow chart of the signal generation method in the second embodiment of this application; as shown in Figure 2, in this embodiment, it includes:
  • S201 Perform phase encoding on the signal to be coded according to the coding protocol to generate the coded signal;
  • step S201 during encoding, the encoding signals of adjacent frames in each encoding period have a phase difference according to a set step.
  • the coding signal in one coding period includes a multi-frame coding signal
  • the phase difference of the coding signal of two adjacent frames has a set step
  • the multi-frame coding signal includes n frames Coordinate coding signal and m-frame pressure coding signal, n is greater than or equal to 2, m is greater than or equal to 0.
  • the step of the phase difference between the coding signals of two adjacent frames may be 45 degrees, 90 degrees, and 180 degrees.
  • the step set in different coding cycles remains unchanged, or it can be set to be dynamically adjustable.
  • the coding signals of two adjacent frames have the same step or it is also called fixed.
  • the steps are all 45 degrees, 90 degrees, and 180 degrees.
  • the setting of the step is specifically determined according to the definition of the pressure level in the application scenario. The tighter the pressure level, the smaller the step, and the looser the pressure level, the larger the step.
  • the specific numerical value of the step is illustrated here by way of example and is not particularly limited. In some embodiments, the step may also be 30 degrees.
  • the phase of the coding signal of the first frame is used as the reference phase, and the reference phase is 0.
  • the reference phase is 0.
  • the application will be The above embodiments can be adjusted adaptively.
  • S202 Use the coding signal to perform continuous coding according to the set coding period.
  • the coding signal in one coding period includes a multi-frame coding signal, and the phase difference between the coding signals of two adjacent frames
  • the multi-frame coding signal includes n frames of coordinate coding signals and m frames of pressure coding signals, for example, the n frames of coordinate coding signals are continuous, and the m frames of pressure coding signal are continuous;
  • the n-frame coordinate coding signal is located before the m-frame pressure coding signal.
  • the coordinate calculation involved in the coding sampling signal is defined as the coordinate coding sampling signal
  • the pressure calculation involved is defined as the pressure coding sampling signal.
  • the naming here is only relative, and does not limit the coordinate coding sampling signal can only be used for coordinate calculation, and does not limit the pressure coding sampling signal can only be used for pressure calculation, in fact, the coordinate coding sampling signal is also It can participate in pressure calculation, or pressure coding sampling signal can also participate in coordinate calculation.
  • the m-frame pressure coding signal does not necessarily have to be continuous. According to the requirements of the application scenario, it can also be set such that the n-frame coordinate coding signal is interspersed with pressure coding signals to form mutually spaced signals.
  • the m-frame pressure coding signal and the n-frame coordinate coding signal spaced apart from each other.
  • the specific number of frames of the pressure coding signal and the coordinate coding signal can be flexibly set according to the pressure level. The higher the pressure level, the higher the number of frames, especially the higher the number of frames of the pressure coding signal.
  • Fig. 4A is a schematic diagram of the waveform of the coding signal when the step is 45 degrees in the fourth embodiment of the application; as shown in Fig. 4A, taking the coding signal as a square wave with a complete cycle corresponding to a phase of 360 degrees as an example, in frame P_0
  • the P_1 frame coordinate coding signal is started, and after the P_1 frame coordinate coding signal is delayed by 135 degrees, the P_2 frame coordinate coding signal is started, and so on.
  • the fact that the coding signal is a square wave is only an example, and the coding signal may actually be a sine wave or a triangle.
  • Table 1 is a schematic diagram of the pressure mapping relationship when the step is 45 degrees in Figure 4A.
  • Table 1 when the pressure mapping relationship is established, if the phase difference between the P_0 and P_1 frame coordinate coding signals is used to represent the pressure state value P0, according to the phase difference from 0 degrees to 315 degrees, P0 has a total of 8 pressures The state is represented by 0, 1...7 respectively; in the same way, the phase difference between the P_1 coordinate coding signal and the P_2 frame pressure coding signal is used to represent the pressure state value P1, then P1 has a total of 8 pressure states, respectively 0, 1...7 to represent; and so on.
  • Table 1 shows the pressure mapping relationship when the step is 45 degrees in Figure 4A
  • Fig. 4B is a schematic diagram of a specific coding signal when the step is 45 degrees in the fourth embodiment of the application; as shown in Fig. 4B, if there are 3 frames of coding signal in a coding period (denoted as T), that is, P_0 , P_1 represents two frames of coordinate coding signals, P_2 represents a frame of pressure coding signals, when establishing a pressure mapping relationship, if the phase difference between the P_0 and P_1 frame coordinate coding signals represents the pressure state value P0, according to the phase difference from 45 degrees to 315 degrees, P0 has a total of 8 pressure states, which are represented by 0, 1...7; in the same way, the phase difference between the P_1 coordinate coding signal and the P_2 frame coordinate coding signal is used to represent the pressure state value P1, then P1 has a total of 8 pressure states, which are represented by 0, 1...7.
  • T+1 In another coding cycle (denoted as T+1), there are 3 frames of coding signals, that is, P_0, P_3 represent two frames of coordinate coding signals, P_4 represents a frame of pressure coding signals, and the corresponding pressure state values are respectively P2 P3 indicates that there are 8 pressure states respectively. If two scan cycles are defined to output an effective pressure, it can be seen that 8*8*8*8 totaling 4096 pressure states will be generated, that is, the transmission of 4096 pressure levels can be realized.
  • Figure 4C is a schematic diagram of another specific coding signal when the step is 45 degrees; if there are 2 frames of coding signal in a coding cycle (denoted as T), corresponding to the above-mentioned X-direction and Y-direction channels, P_0 represents one Frame coordinate coding signal, P_1 also represents a frame coordinate coding signal.
  • T a coding cycle
  • P_0 represents one Frame coordinate coding signal
  • P_1 also represents a frame coordinate coding signal.
  • the pressure state value corresponding to another coding cycle (denoted as T+1) is represented by P1, and there are also 8 pressure states respectively. If two scan cycles are defined to output an effective pressure level, it can be seen that a total of 64 pressure states will be generated 8*8, that is, 64 pressure levels can be transmitted.
  • Figure 5A is a schematic diagram of the waveform of the coding signal when the step is 90 degrees in the fifth embodiment of the application; as shown in Figure 5A, taking the coding signal as a square wave as an example, the coding signal is delayed by 90 degrees after the coordinate coding signal of the P_0 frame (I.e. 360 degrees/4) then start the P_1 frame coordinate coding signal, delay the P_1 frame coordinate coding signal after 270 degrees (360 degrees*3/4) and then start the P_2 frame coordinate coding signal, and so on.
  • the coding signal is a square wave is only an example, and the coding signal may actually be a sine wave or a triangle.
  • Table 2 is a schematic diagram of the pressure mapping relationship when the step is 90 degrees in FIG. 5A.
  • Table 2 when the pressure mapping relationship is established, if the phase difference between the P_0 and P_1 frame coordinate coding signals is used to represent the pressure state value P0, according to the phase difference from 0 degrees to 270 degrees, P0 has a total of 4 pressures The state is represented by 0, 1...3 respectively; in the same way, the phase difference between the P_1 coordinate coding signal and the P_2 frame coordinate coding signal is used to represent the pressure state value P1, then P1 has a total of 4 pressure states, respectively 0, 1...3 to represent; the phase difference between the P_2, P_3 frame pressure coding signals is used to represent the pressure state value P2, then P2 has a total of 4 pressure states, which are represented by 0, 1...7, and so on .
  • Table 2 shows the pressure mapping relationship when the step is 90 degrees in Figure 5A
  • 5B is a schematic diagram of a specific coding signal when the step is 90 degrees in the fifth embodiment of the application; if there are 5 frames of coding signals in a coding period, P_0 and P_1 respectively represent a frame of coordinate coding signals , P_2 to P_4 respectively represent a frame of pressure coding signal.
  • Fig. 6A is a schematic diagram of the waveform of the coding signal when the step is 180 degrees in the sixth embodiment of the application; as shown in Fig. 6A, taking the coding signal as a square wave as an example, the coding signal is at the coordinates of the P_0 frame and the coordinates of the P_1 frame There is no delay between the coding signals. After the P_1 frame coordinate coding signal is delayed by 180 degrees, the P_2 frame coordinate coding signal is started, and so on.
  • the fact that the coding signal is a square wave is only an example, and the coding signal may actually be a sine wave or a triangle.
  • Table 3 is a schematic diagram of the pressure mapping relationship when the step is 180 degrees in FIG. 6A.
  • Table 3 when the pressure mapping relationship is established, if the phase difference between the P_0 and P_1 frame coordinate coding signals is used to represent the pressure state value P0, according to the phase difference from 0 degrees to 180 degrees, P0 has a total of 2 types of pressure The state is represented by 0 and 1 respectively; in the same way, the phase difference between the P_1 coordinate coding signal and the P_2 frame coordinate coding signal is used to represent the pressure state value P1, then P1 has a total of 2 pressure states, respectively 0, 1 To represent.
  • Table 3 shows the pressure mapping relationship when the step is 180 degrees in Figure 6A
  • 6B is a schematic diagram of a specific coding signal when the step is 180 degrees in the sixth embodiment of the application; if there are 9 frames of coding signals in a coding period, that is, P_0 and P_1 respectively represent a frame of coordinate coding signals, P_2 to P_8 respectively represent a frame of pressure coding signal.
  • the phase difference between the P_0 and P_1 frame coordinate coding signals represents the pressure state value P0, according to the phase difference from 0 degrees to 180 degrees, then P0 has two pressure states in total, which are represented by 0 and 1, respectively; if you use the P_1 and P_2 frame coordinates to code the phase difference between the signals, if you use the P_2, P_3 frame coordinates to code the phase difference between the signals, if you use P_3, The phase difference between the P_4 frame coordinate coding signals...and so on, respectively represent the pressure state values P1, P2, P3, P5, P6, P7.
  • Figure 7 is a schematic flow chart of the pressure calculation method in the seventh embodiment of the application; as shown in Figure 7, it includes:
  • the sensing circuit on the touch screen can perform coding sampling.
  • the sampling period can be flexibly set according to the application scenario, and the coding signal can be obtained by referring to the previous signal generation method embodiment.
  • S702 Calculate pressure data in the sampling period according to the phase difference between adjacent frames of the coding sampling signal in the sampling period.
  • step S702 when determining the pressure data between the stylus pen and the touch screen in the sampling period according to the coding sampling signal including at least the coordinate sampling signal in step S702, it may specifically include at least the coordinate sampling
  • the coding sampling signal of the signal determines the pressure state value between the stylus pen and the touch screen in the sampling period, and the pressure state value represents the magnitude of the pressure.
  • the coding signal is obtained by encoding the to-be-coded signal based on phase encoding, when determining the pressure in the sampling period, it is determined based on all the data including the coordinate sampling signal. The phase between the coded sampling signals determines the pressure in the sampling period.
  • the difference between the coding sampling signals in one sampling period may be determined.
  • the corresponding phases are subjected to adjacent difference to determine the pressure in the sampling period.
  • the pressure in the sampling period is specifically based on the coding sampling signal in the sampling period.
  • the phase difference between adjacent frames and the pre-established pressure mapping relationship determine the pressure data in the sampling period.
  • the pre-established pressure implicit relationship can be based on the phase difference between adjacent signals to characterize different pressure levels.
  • the phase difference is within the sampling period.
  • the combinations between adjacent frames represent different stress levels. Therefore, the phase difference between adjacent frame signals in the coding sample signal is determined within a sampling period, and matched with the pre-established pressure mapping relationship, so as to determine the corresponding pressure level or pressure state value, as Pressure data.
  • the phase-encoded and continuously coded coding signal is sampled within the set sampling period, continuous n frames of coordinate sampling signals and continuous m frames of pressure sampling signals are obtained, and the n frames of coordinate sampling signals And the pressure sampling signal of m frames can constitute a coding sampling signal as a whole; therefore, when calculating the pressure data in the sampling period, according to the phase difference between adjacent sampling signals in a sampling period, the The pressure data between the stylus and the touch screen during the sampling period. That is, in this case, by extension, the n frames of coordinate sampling signals are continuous, and the m frames of pressure sampling signals are continuous, which can form a continuous multi-frame sampling signal as a whole.
  • phase adjacent difference When performing phase adjacent difference, If n is greater than or equal to 2, according to the phase difference between the adjacent frame coordinate sampling signals in the n frame coordinate sampling signal, the n frame coordinate sampling signal and the m frame pressure sampling signal between the adjacent coordinate sampling signal and the pressure sampling signal Phase difference; In addition, if m is greater than or equal to 2, the phase adjacent difference between the pressure sampling signals of m frames obtains the phase difference between the pressure sampling signals of adjacent frames in the pressure sampling signal of m frames, and jointly participates in the calculation of pressure data.
  • it may further include: calculating a touch position according to the coordinate sampling signal.
  • This step can be executed after step S702, can also be executed between step S701 and step S702, or can be executed as long as the coordinate sampling signal is obtained.
  • Figure 8A is a schematic diagram of comparison between coding and sampling period when the corresponding step is 45 degrees in Embodiment 8 of the application; the coding situation corresponding to the step of 45 degrees, as shown in Figure 8A, when the signal is generated,
  • the coding cycle phase-encode the signal to be coded according to the phase difference of 45 degrees to obtain the coded signal and perform continuous coding.
  • the coded signal is sampled in a sampling period to obtain the coded sampling signal.
  • the pressure data P0,...PN-1 are obtained, and the coordinate data X, Y are obtained at the same time.
  • Fig. 8B is another schematic diagram of comparison between coding and sampling period when the corresponding step is 45 degrees in the ninth embodiment of the application; the coding situation corresponding to the step of 45 degrees, as shown in Fig. 8b, when the signal is generated, A total of three frames of coded signals are obtained by phase-encoding the to-be-coded signal according to the phase difference of 45 degrees in a coding cycle, including two frames of coordinate coding signals and one frame of pressure coding signals.
  • one sampling Period T sampling the coding signal to obtain the corresponding coordinate sampling signal and pressure sampling signal, according to the phase adjacent difference between the coordinate sampling signal and the pressure sampling signal and the phase adjacent difference between the pressure sampling signal to obtain the pressure data P0, P1; if there are two sampling periods to output the pressure once, then in the next sampling period T+1, the pressure data P2 and P3 are obtained, and the pressure is determined according to the pressure data P0, P1, P2, and P3; at the same time according to the coordinates Sampling the signal to obtain coordinate data X and Y.
  • the four pressure data can show a total of 4*4*4*4 pressure levels for a total of 4096 pressure levels.
  • Figure 8C is another schematic diagram of comparison between coding and sampling period when the corresponding step is 45 degrees in the tenth embodiment of the application; the coding situation corresponding to the step of 45 degrees, as shown in Figure 8C, when the signal is generated, In a coding cycle, phase-encode the to-be-coded signal with a phase difference of 45 degrees to obtain a total of two frames of coding signals, both of which are coordinate coding signals.
  • the coding signal is Sampling is performed to obtain the corresponding coordinate sampling signal, and the pressure data P0 is obtained according to the phase adjacent difference between the coordinate sampling signals; if there are two sampling periods to output the pressure once, the pressure data will be obtained in the next sampling period T+1 P1: Determine the pressure according to the pressure data P0 and P1; at the same time, obtain coordinate data X and Y according to the coordinate sampling signal.
  • one pressure data can correspond to eight pressure states, if the pressure is output once in two sampling periods, the two pressure data can be shown as 8*8 and a total of 64 pressures. The level of pressure.
  • Figure 9 is a schematic diagram of comparison between coding and sampling period when the corresponding step is 90 degrees in the eleventh embodiment of the application; the coding situation corresponding to the step of 90 degrees, as shown in Figure 9, when the signal is generated,
  • a coding cycle according to the phase difference of 90 degrees, phase-encode the to-be-coded signal to obtain two frames of coordinate coding signals (P_0, P_1) and two frames of pressure coding signals (P_2, P_3), and in the pressure calculation,
  • the coding signal is sampled to obtain the coordinate sampling signal and the pressure sampling signal.
  • the pressure data P0 is obtained , P1, P2, and obtain coordinate data X and Y according to the coordinate sampling signal.
  • one pressure data can correspond to 4 pressure states. Therefore, if the pressure is output once in a sampling period, the three pressure data can be 4*4*4 in total and 64 types in total. The pressure level of the pressure level.
  • Figure 10 is a schematic diagram of the comparison between coding and sampling period when the corresponding step is 180 degrees in the twelfth embodiment of the application; the coding situation corresponding to the step of 180 degrees, as shown in Figure 10, when the signal is generated,
  • the signal to be coded is phase-encoded to obtain two frames of coordinate coding signals (P_0, P_1) and two frames of pressure coding signals (P_2, P_3 togetherP_8), and in the pressure calculation
  • the coding signal is sampled to obtain the coding sampling signal.
  • the pressure is obtained Data P0, P1, P2...P7, and coordinate data X, Y are obtained according to the coordinate sampling signal.
  • the total of the three pressure data can be 2*2*2*2* 2*2*2*2 total 256 pressure levels.
  • the sampling start point and the sampling end point can be adjusted, for example, the entire sampling period is less than the coding period, such as
  • the sampling start point is several us (such as 50us) later than the coding start point
  • the sampling end point is several us (such as 50us) earlier than the coding end point.
  • each pressure state data can be represented by a bit.
  • the width of the pressure coding signal and the width of the coordinate coding signal can be flexibly set according to actual needs.
  • the length of coding period and sampling period can be flexibly set according to actual needs.
  • FIG. 11 is a schematic structural diagram of a pressure calculation device in Embodiment 13 of this application; as shown in FIG. 11, it includes:
  • the data sampling unit 1101 is configured to sample the phase-encoded and continuously coded coding signal within a set sampling period to obtain a coding sampling signal;
  • the pressure calculation unit 1102 is configured to calculate the pressure data in the sampling period according to the phase difference between adjacent frames of the coding sampling signal in the sampling period.
  • FIG. 12 is a schematic structural diagram of a signal generating device in Embodiment 14 of this application; as shown in FIG. 12, it includes:
  • the encoding unit 1201 is configured to perform phase encoding on the signal to be coded to generate the coded signal;
  • the coding unit 1202 is configured to use the coding signal to perform continuous coding according to the set coding period;
  • the coding signal is used to be sampled to obtain a coding sampling signal, so as to calculate the pressure data in the sampling period according to the phase difference between adjacent frames of the coding sampling signal in the sampling period.
  • An embodiment of the present application also provides an electronic device, which includes the pressure calculation device or the signal generation device described in any embodiment of the present application.
  • the electronic device is the stylus pen, and the signal generating device is configured on the stylus pen; correspondingly, the pressure calculation device is configured on the stylus pen; Described on the touch screen.
  • the electronic device may also be the touch screen, and the signal generating device is configured on the touch screen; correspondingly, the pressure calculation device is configured on the stylus.
  • one end of the stylus and touch screen includes the signal generating device in any embodiment of the present application, and the other end includes the pressure in any embodiment of the present application.
  • Computing device includes the signal generating device in any embodiment of the present application, and the other end includes the pressure in any embodiment of the present application.
  • the coding signal may also only include the pressure coding signal.
  • the coding sampling signal only includes the pressure sampling signal, and the pressure data is calculated based on the phase difference between the pressure sampling signals.
  • the coding sampling signals include at least two frames of pressure sampling signals.
  • the electronic devices in the embodiments of this application exist in various forms, including but not limited to:
  • Mobile communication equipment This type of equipment is characterized by mobile communication functions, and its main goal is to provide voice and data communications.
  • Such terminals include: smart phones (such as iPhone), multimedia phones, functional phones, and low-end phones.
  • Ultra-mobile personal computer equipment This type of equipment belongs to the category of personal computers, has calculation and processing functions, and generally also has mobile Internet features.
  • Such terminals include: PDA, MID and UMPC devices, such as iPad.
  • Portable entertainment equipment This type of equipment can display and play multimedia content.
  • Such devices include: audio, video players (such as iPod), handheld game consoles, e-books, as well as smart toys and portable car navigation devices.
  • Server A device that provides computing services.
  • the structure of a server includes a processor, hard disk, memory, system bus, etc.
  • the server is similar to a general computer architecture, but due to the need to provide highly reliable services, it is in terms of processing capacity and stability. , Reliability, security, scalability, and manageability.

Abstract

一种压力计算方法,包括:在设定的采样周期内对经过相位编码并连续打码的打码信号进行采样,得到打码采样信号(S701);根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差,计算所述采样周期内的压力数据(S702)。压力计算方法提高了报点率,进一步提高了书写跟随性,增加了书写体验。使用该压力计算方法的装置、电子设备以及触控系统。

Description

压力计算方法及其装置、电子设备以及触控系统 技术领域
本申请实施例涉及触控技术领域,尤其涉及一种压力计算方法及其装置、电子设备以及触控系统。
背景技术
触控输入替代传统的键盘输入,为用户在使用电子设备如手机和平板电脑过程中提供了便捷快速的输入方式。
除了可以直接用手去对触控屏进行触控操作,为了进一步提高用户体验,还可以使用触控笔对触控屏进行触控操作。尤其随着触控屏的普及,配合该触控屏的触控笔应用也变得越来越广泛。而报点率是体现触控笔与触控屏之间交互有效性的一个重要指标,报点率越高,书写跟随性越好越流畅,书写体验也就越好。但是,现有技术中在生成打码信号时,打码周期占用采样周期过长,使得报点率较低,导致书写跟随性较差。
发明内容
有鉴于此,本申请实施例所解决的技术问题之一在于提供一种压力计算方法及其装置、电子设备以及触控系统,用以克服现有技术中的上述缺陷。
本申请实施例提供一种压力计算方法,其包括:
在设定的采样周期内对经过相位编码并连续打码的打码信号进行采样,得到打码采样信号;
根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差,计算所述采样周期内的压力数据。
本申请实施例提供一种信号生成方法,其包括:
对待打码信号进行相位编码,以生成打码信号;
根据设定的打码周期,使用所述打码信号连续进行连续打码;
其中,所述打码信号用于被采样得到打码采样信号,以根据所述打码采样信号在采样周期内的相邻帧之间的相位差计算所述采样周期内的压力数据。
本申请实施例提供一种压力计算装置,其包括:
数据采样单元,用于在设定的采样周期内对经过相位编码并连续打码的打码信号进行采样,得到打码采样信号;
压力计算单元,用于根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差,计算所述采样周期内的压力数据。
本申请实施例提供一种信号生成装置,其包括:
编码单元,用于对待打码信号进行相位编码,以生成打码信号;
打码单元,用于根据设定的打码周期,使用所述打码信号连续进行连续打码;
其中,所述打码信号用于被采样得到打码采样信号,以根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差计算所述采样周期内的压力数据。
本申请实施例提供一种电子设备,其包括本申请实施例所述的压力计算装置或者信号生成装置。
本申请实施例提供一种触控系统,其包括触控笔以及触控屏,所述触控笔和触控屏中一端包括本申请任一实施例的信号生成装置,另外一端包括本申请任一实施例的压力计算装置
本申请实施例提供的技术方案中,通过在设定的采样周期内对经过相位编码并连续打码的打码信号进行采样,得到打码采样信号;根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差,计算所述采样周期内的压力数据,提高了报点率,进一步提高了书写跟随性,增加了书写体验。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本申请实施例的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1为本申请实施例一提供的触控系统示意图;
图2为本申请实施例二中信号生成方法流程示意图;
图3为本申请实施例三中打码信号的示意图;
图4A为本申请实施例四中步进为45度时的打码信号的波形示意图;
图4B为本申请实施例四中步进为45度时的一种具体打码信号示意图;
图5A为本申请实施例五中步进为90度时的打码信号的波形示意图;
图5B为本申请实施例五中步进为90度时的一种具体打码信号示意图;
图6A为本申请实施例六中步进为180度时的打码信号的波形示意图;
图6B为本申请实施例六中步进为180度时的一种具体打码信号示意图;
图7为本申请实施例七中压力计算方法流程示意图;
图8A为本申请实施例八中对应步进为45度时打码和采样周期的一对照示意图;
图8B为本申请实施例九中对应步进为45度时打码和采样周期的另一对照示意图;
图8C为本申请实施例十中对应步进为45度时打码和采样周期的再一对照示意图;
图9为本申请实施例十一中对应步进为90度时打码和采样周期的一对照示意图;
图10为本申请实施例十二中对应步进为180度时打码和采样周期的一对照示意图;
图11为本申请实施例十三中压力计算装置的结构示意图;
图12为本申请实施例十四中信号生成装置的结构示意图。
具体实施方式
实施本申请实施例的任一技术方案必不一定需要同时达到以上的所有优点。
下面结合本申请实施例附图进一步说明本申请实施例具体实现。
本申请实施例提供的技术方案中,通过在设定的采样周期内对经过相位编码并连续打码的打码信号进行采样,得到打码采样信号;根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差,计算所述采样周期内的压力数据,由于可以同时考虑坐标计算和压力计算同时进行基于压力和坐标计算的编码,从而缩短了打码周期,对应地,避免了打码周期占用采样周期过长,从而提高了报点率,进一步提高了书写跟随性,增加了书写体验。
图1为本申请实施例一提供的触控系统示意图;如图1所示,该触控系统包括触控笔以及触控屏,触控屏包括感应通道X、驱动通道Y、触控控制器,所述触控控制器包括驱动电路和感应电路,当触摸屏检测触控笔的笔尖坐标位置时,由触控笔的笔尖电极连续发出完成编码的打码信号,由于触控笔与感应通道X、驱动通道Y与之间都会存在耦合电容,打码信号经过耦合电容耦合到感应通道X、驱动通道Y上,此时触摸屏的驱动通道与感应通道都会连接到触 摸控制器的感应电路上,由触摸控制器的感应电路来进行打码信号的采样,以根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差,计算所述采样周期内的压力数据。
以下实施例中,以触控笔向触控屏发送打码信号,触控屏采样所述打码信号为例进行说明,但是,需要说明的是,在一些应用场景中,也可以由触控屏向触控笔发送打码信号,触控笔采样所述打码信号。
图2为本申请实施例二中信号生成方法流程示意图;如图2所示,本实施例中,其包括:
S201、根据打码协议对待打码信号进行相位编码,以生成打码信号;
步骤S201中,在进行编码时,使得每一打码周期内相邻帧打码信号之间按照设定的步进具有相位差。
本实施例中,一个打码周期内的所述打码信号包括多帧打码信号,相邻两帧打码信号的相位差具有设定的步进,所述多帧打码信号包括n帧坐标打码信号以及m帧压力打码信号,n大于等于2,m大于等于0。
可选地,在本申请的任一实施例中,相邻两帧打码信号的相位差的步进可以为45度、90度、180度。
比如,不同的打码周期中设定的步进保持不变,或者,也可以设置成可动态调整。在同一个打码周期中,相邻两帧打码信号的具有相同的步进或者又称之为固定不变,比如步进均是45度、90度、180度。步进的设定具体根据应用场景中压力等级的定义来确定,压力等级越紧密,则步进越小,压力等级越宽松,则步进越大。当然,需要说明的是,此处步进的具体数值进行是举例说明,并非特别限定,在一些实施例中,步进还可以是30度。
下述实施例的描述中,基于第一帧打码信号的相位作为基准相位,且该基准相位为0进行说明,但是,在一些实施例中,如果该基准相位不为0,则对本申请下述实施例进行适应性调整即可。
S202、根据设定的打码周期,使用所述打码信号进行连续打码。
本实施例中,参见图3,为本申请实施例三中打码信号的示意图;一个打码周期内的所述打码信号包括多帧打码信号,相邻两帧打码信号的相位差具有设定的步进,所述多帧打码信号包括n帧坐标打码信号以及m帧压力打码信号,比如所述n帧坐标打码信号连续,所述m帧压力打码信号连续;n帧坐标打码信号位于m帧压力打码信号之前。
实际上,此处需要说明的是,打码采样信号中参与坐标计算的定义为坐 标打码采样信号,而参与压力计算的定义为压力打码采样信号。此处的命名仅仅是相对而言,并不限定坐标打码采样信号只能用于坐标计算,以及并不限定压力打码采样信号只能用于压力计算,实际上,坐标打码采样信号也可以参与压力计算,或者,压力打码采样信号也可以参与坐标计算。
需要说明的是,所述m帧压力打码信号并非必然要连续,也可以根据应用场景的需求,设置成所述n帧坐标打码信号中穿插设置有压力打码信号以形成相互间隔开的所述m帧压力打码信号、以及相互间隔开的所述n帧坐标打码信号。另外,压力打码信号和坐标打码信号的具体帧数可以根据压力等级的需要灵活设置,压力等级越高,帧数越高,尤其是压力打码信号的帧数越高。
图4A为本申请实施例四中步进为45度时的打码信号的波形示意图;如图4A所示,以打码信号为一个完整周期对应360度相位的方波为例,在P_0帧坐标打码信号之后延迟45度再开始P_1帧坐标打码信号,在P_1帧坐标打码信号之后延迟135度再开始P_2帧坐标打码信号,依次类推。此处,需要说明的是,打码信号为方波仅仅是示例,打码信号实际还可以是正弦波或三角等。
表一为图4A中步进为45度时的压力映射关系示意。如表一所示,在建立压力映射关系时,如果用P_0、P_1帧坐标打码信号之间相位差表示压力状态值P0,按照相位差从0度到315度,则P0共计有8种压力状态,分别用0、1……7来表示;同理,用P_1坐标打码信号和P_2帧压力打码信号之间相位差表示压力状态值P1,则P1共计有8种压力状态,分别用0、1……7来表示;依次类推。
表一图4A中步进为45度时的压力映射关系示意
P_0和P_1相位差 P0的压力状态值 P_1和P_2相位差 P1的压力状态值
0 0 0 0
45 1 45 1
90 2 90 2
135 3 135 3
180 4 180 4
225 5 225 5
270 6 270 6
315 7 315 7
图4B为本申请实施例四中步进为45度时的一种具体打码信号示意图; 如图4B所示,假如一个打码周期(记为T)内有3帧打码信号,即P_0、P_1表示两帧坐标打码信号,P_2表示一帧压力打码信号,在建立压力映射关系时,如果用P_0、P_1帧坐标打码信号之间相位差表示压力状态值P0,按照相位差从45度到315度,则P0共计有8种压力状态,分别用0、1……7来表示;同理,用P_1坐标打码信号和P_2帧坐标打码信号之间相位差表示压力状态值P1,则P1共计有8种压力状态,分别用0、1……7来表示。另外一个打码周期(记为T+1),有3帧打码信号,即P_0、P_3表示两帧坐标打码信号,P_4表示一帧压力打码信号,对应的压力状态值分别用P2、P3表示,则同样分别对应有8中压力状态。假如定义两个扫描周期才能输出一次有效的压力大小的话,由此可知,会产生8*8*8*8共计4096种压力状态,即可以实现4096压力等级的传输。
图4C为步进为45度时的另一种具体打码信号示意图;假如一个打码周期(记为T)内有2帧打码信号,分别对应上述X方向和Y方向通道,P_0表示一帧坐标打码信号,P_1同样表示一帧坐标打码信号,在建立压力映射关系时,如果用P_0、P_1帧坐标打码信号之间相位差表示压力状态值P0,按照相位差从0度到315度,则P0共计有8种压力状态,分别用0、1……7来表示。另外一个打码周期(记为T+1)对应的压力状态值用P1表示,则同样分别对应有8中压力状态。假如定义两个扫描周期才能输出一次有效的压力大小的话,由此可知,共计会产生8*8共计64种压力状态,即可以实现64压力等级的传输。
图5A为本申请实施例五中步进为90度时的打码信号的波形示意图;如图5A所示,以打码信号为方波为例,在P_0帧坐标打码信号之后延迟90度(即360度/4)再开始P_1帧坐标打码信号,在P_1帧坐标打码信号之后延迟270度(360度*3/4)再开始P_2帧坐标打码信号,依次类推。此处,需要说明的是,打码信号为方波仅仅是示例,打码信号实际还可以是正弦波或三角等。
表二为图5A中步进为90度时的压力映射关系示意。如表二所示,在建立压力映射关系时,如果用P_0、P_1帧坐标打码信号之间相位差表示压力状态值P0,按照相位差从0度到270度,则P0共计有4种压力状态,分别用0、1……3来表示;同理,用P_1坐标打码信号和P_2帧坐标打码信号之间相位差表示压力状态值P1,则P1共计有4种压力状态,分别用0、1……3来表示;用P_2、P_3帧压力打码信号之间相位差表示压力状态值P2,则P2共计有4种压力状态,分别用0、1……7来表示,依次类推。
表二为图5A中步进为90度时的压力映射关系示意
P_0和P_1相位差° P0的压力状态值 P_1和P_2相位差 P1的压力状态值
0 0 0 0
90 1 90 1
180 2 180 2
270 3 270 3
图5B为本申请实施例五中步进为90度时的一种具体打码信号示意图;假如一个打码周期内有5帧打码信号,其中,P_0、P_1分别表示一帧坐标打码信号,P_2到P_4分别表示一帧压力打码信号,在建立压力映射关系时,如果用P_0、P_1帧坐标打码信号之间相位差表示压力状态值P0,按照相位差从0度到270度,则P0共计有4种压力状态,分别用0、1……3来表示;如果用P_1、P_2帧坐标打码信号之间相位差、如果用P_2、P_3帧坐标打码信号之间相位差、如果用P_3、P_4帧坐标打码信号之间相位差分别表示压力状态值P1、P2、P3;另外一个打码周期对应的压力状态值用P0、P1、P2、P3表示,则同样分别对应有4种压力状态。假如定义一个扫描周期才能输出一次有效的压力大小的话,由此可知,共计会产生4*4*4*4共计256种压力状态,即可以实现256压力等级的传输。
图6A为本申请实施例六中步进为180度时的打码信号的波形示意图;如图6A所示,以打码信号为方波为例,在P_0帧坐标打码信号与P_1帧坐标打码信号之间不存在延迟,在P_1帧坐标打码信号之后延迟180度再开始P_2帧坐标打码信号,依次类推。此处,需要说明的是,打码信号为方波仅仅是示例,打码信号实际还可以是正弦波或三角等。
表三为图6A中步进为180度时的压力映射关系示意。如表三所示,在建立压力映射关系时,如果用P_0、P_1帧坐标打码信号之间相位差表示压力状态值P0,按照相位差从0度到180度,则P0共计有2种压力状态,分别用0、1来表示;同理,用P_1坐标打码信号和P_2帧坐标打码信号之间相位差表示压力状态值P1,则P1共计有2种压力状态,分别用0、1来表示。
表三为图6A中步进为180度时的压力映射关系示意
P_0和P_1相位差° P0的压力状态值 P_1和P_2相位差 P1的压力状态值
0 0 0 0
180 1 180 1
图6B为本申请实施例六中步进为180度时的一种具体打码信号示意图; 假如一个打码周期内有9帧打码信号,即P_0、P_1分别表示一帧坐标打码信号,P_2到P_8分别表示一帧压力打码信号,在建立压力映射关系时,如果用P_0、P_1帧坐标打码信号之间相位差表示压力状态值P0,按照相位差从0度到180度,则P0共计有2种压力状态,分别用0、1来表示;如果用P_1、P_2帧坐标打码信号之间相位差、如果用P_2、P_3帧坐标打码信号之间相位差、如果用P_3、P_4帧坐标打码信号之间相位差……以此类推分别表示压力状态值P1、P2、P3、P5、P6、P7。假如定义一个扫描周期才能输出一次有效的压力大小的话,由此可知,共计会产生2*2*2*2*2*2*2*2共计256种压力状态,即可以实现256压力等级的传输。
图7为本申请实施例七中压力计算方法流程示意图;如图7所示,其包括:
S701、在设定的采样周期内对经过相位编码并连续打码的打码信号进行采样,得到打码采样信号;
本实施例中,如前所述,可以由触控屏端的感应电路进行打码的采样。采样周期可以根据应用场景灵活设置,打码信号具体可以参照之前信号生成方法实施例中得到。
S702、根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差,计算所述采样周期内的压力数据。
本实施例中,在步骤S702中根据至少包括坐标采样信号的所述打码采样信号,确定所述采样周期内触控笔与触控屏之间的压力数据时,具体可以根据至少包括坐标采样信号的所述打码采样信号,确定所述采样周期内触控笔与触控屏之间的压力状态值,所述压力状态值表征所述压力的大小。
进一步地,参照上述打码信号的生成中,由于是基于相位编码对待打码信号进行编码得到打码信号,因此,在确定所述采样周期内的压力大小时,根据至少包括坐标采样信号的所述打码采样信号之间的相位,确定所述采样周期内的压力大小。
具体地,根据至少包括坐标采样信号的所述打码采样信号之间的相位,确定所述采样周期内的压力大小时,可以对一个所述采样周期内的所述打码采样信号之间分别对应的相位进行相邻差分,以确定所述采样周期内的压力大小。
进一步地,实施例中,在步骤S702中根据至少包括坐标采样信号的所述打码采样信号确定所述采样周期内的压力大小时,具体根据所述打码采样信 号在所述采样周期内的相邻帧之间的相位差,以及预先建立的压力映射关系,确定所述采样周期内的压力数据。比如预先建立的压力隐射关系可以是基于相邻信号间的相位差表征不同的压力等级,在预先建立的压力映射关系中,对于一个设定相位差的步进,在所述采样周期内相邻帧之间的组合表示不同的压力等级。因此,在一个采样周期内确定出打码采样信号中相邻帧信号之间的相位差,并与预先建立的压力映射关系进行匹配,从而确定对应的压力等级或者又称之压力状态值,作为压力数据。
对应地,假如在设定的采样周期内对经过相位编码并连续打码的打码信号进行采样,得到连续的n帧坐标采样信号以及连续的m帧压力采样信号,所述n帧坐标采样信号以及m帧压力采样信号整体上可以组成打码采样信号;因此,在计算所述采样周期内的压力数据时,根据一个采样周期内具有相邻关系的采样信号之间的相位差,确定所述采样周期内触控笔与触控屏之间的压力数据。即此种情况下,推而广之,所述n帧坐标采样信号连续,以及所述m帧压力采样信号连续,在整体上可以组成连续的多帧采样信号,在进行相位相邻差分时,如果n大于等于2的话,根据n帧坐标采样信号中相邻帧坐标采样信号之间的相位差,n帧坐标采样信号以及m帧压力采样信号中相邻坐标采样信号与压力采样信号之间的相位差;另外,如果m大于等于2的话,m帧压力采样信号之间进行相位相邻差分得到m帧压力采样信号中相邻帧压力采样信号之间的相位差,共同参与压力数据的计算。
在上述实施例的基础上,还可以包括:根据所述坐标采样信号,计算触控位置。该步骤可以在步骤S702之后执行,也可以在步骤S701和步骤S702之间执行,或者,在只要得到坐标采样信号之后就可以执行。
图8A为本申请实施例八中对应步进为45度时打码和采样周期的一对照示意图;对应步进为45度的打码情形,如图8A所示,在信号生成时,在一个打码周期内按照相位差为45度对待打码信号进行相位编码得到打码信号并进行连续的打码,而在压力计算时,在一个采样周期,对打码信号进行采样得到打码采样信号,根据相邻帧的所述打码采样信号之间的相位相邻差分,得到压力数据P0、……PN-1,同时得到坐标数据X、Y。
图8B为本申请实施例九中对应步进为45度时打码和采样周期的另一对照示意图;对应步进为45度的打码情形,如图8b所示,在信号生成时,在一个打码周期内按照相位差为45度对待打码信号进行相位编码得到共计三帧打码信号,其中两帧坐标打码信号以及一帧压力打码信号,而在压力计算时,在 一个采样周期T,对打码信号进行采样得到对应的坐标采样信号以及压力采样信号,根据坐标采样信号以及压力采样信号之间的相位相邻差分以及压力采样信号之间的相位相邻差分,得到压力数据P0、P1;如果就有两个采样周期输出一次压力大小,则在下一个采样周期T+1,得到压力数据P2、P3,根据压力数据P0、P1、P2、P3,确定压力大小;同时根据坐标采样信号得到坐标数据X、Y。
本实施例中,如前表一所述,由于一个压力数据可对应八种压力状态,因此,四个压力数据共计可表4*4*4*4共计4096种压力等级的压力大小。
图8C为本申请实施例十中对应步进为45度时打码和采样周期的再一对照示意图;对应步进为45度的打码情形,如图8C所示,在信号生成时,在一个打码周期内按照相位差为45度对待打码信号进行相位编码得到共计两帧打码信号,其中均是坐标打码信号,而在压力计算时,在一个采样周期T,对打码信号进行采样得到对应的坐标采样信号,根据坐标采样信号之间的相位相邻差分,得到压力数据P0;如果就有两个采样周期输出一次压力大小,则在下一个采样周期T+1,得到压力数据P1,根据压力数据P0、P1,确定压力大小;同时根据坐标采样信号得到坐标数据X、Y。
本实施例中,如前表一所述,由于一个压力数据可对应八种压力状态,因此,如果两个采样周期输出一次压力大小,则两个压力数据共计可表8*8共计64种压力等级的压力大小。
图9为本申请实施例十一中对应步进为90度时打码和采样周期的一对照示意图;对应步进为90度的打码情形,如图9所示,在信号生成时,在一个打码周期内按照相位差为90度对待打码信号进行相位编码得到两帧坐标打码信号(P_0、P_1)以及两帧压力打码信号(P_2、P_3),而在压力计算时,在一个采样周期,对打码信号进行采样得到坐标采样信号和压力采样信号,根据坐标采样信号以及压力采样信号之间的相位相邻差分以及压力采样信号之间的相位相邻差分,得到压力数据P0、P1、P2,同时根据坐标采样信号得到坐标数据X、Y。
本实施例中,如前表二所述,由于一个压力数据可对应4种压力状态,因此,如果一个采样周期输出一次压力大小,则三个压力数据共计可表4*4*4共计64种压力等级的压力大小。
图10为本申请实施例十二中对应步进为180度时打码和采样周期的一对照示意图;对应步进为180度的打码情形,如图10所示,在信号生成时,在一 个打码周期内按照相位差为180度对待打码信号进行相位编码得到两帧坐标打码信号(P_0、P_1)以及两帧压力打码信号(P_2、P_3……P_8),而在压力计算时,在一个采样周期,对打码信号进行采样得到打码采样信号,根据对应的坐标采样信号以及压力采样信号之间的相位相邻差分以及压力采样信号之间的相位相邻差分,得到压力数据P0、P1、P2……P7,同时根据坐标采样信号得到坐标数据X、Y。
本实施例中,如前表三所述,由于一个压力数据下对应2种压力状态,因此,如果一个采样周期输出一次压力大小,则三个压力数据共计可表2*2*2*2*2*2*2*2共计256种压力等级的压力大小。
在上述图8A-图10中,基于对打码和采样的同步性要求不高时,在一个采样周期内,可以调整采样起始点和采样结束点,比如使得整个采样周期小于打码周期,比如采样起始点晚于打码起始点若干us(如50us),采样结束点早于打码结束点点若干us(如50us)。
上述实施例中,每一个压力状态数据可以由bit位来表示。压力打码信号的宽度、坐标打码信号的宽度根据实际需求灵活设置。打码周期、采样周期的长短根据实际需求灵活设置。
图11为本申请实施例十三中压力计算装置的结构示意图;如图11所示,其包括:
数据采样单元1101,用于在设定的采样周期内对经过相位编码并连续打码的打码信号进行采样,得到打码采样信号;
压力计算单元1102,用于根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差,计算所述采样周期内的压力数据。
图12为本申请实施例十四中信号生成装置的结构示意图;如图12所示,其包括:
编码单元1201,用于对待打码信号进行相位编码,以生成打码信号;
打码单元1202,用于根据设定的打码周期,使用所述打码信号进行连续打码;
其中,所述打码信号用于被采样得到打码采样信号,以根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差计算所述采样周期内的压力数据。
本申请实施例还提供一种电子设备,其包括本申请任一实施例中所述的压力计算装置或者信号生成装置。
可选地,在本申请的任一实施例中,所述电子设备为所述触控笔,所述信号生成装置配置在所述触控笔上;对应地,所述压力计算装置配置在所述触控屏上。所述电子设备也可以为所述触控屏,所述信号生成装置配置在所述触控屏上;对应地,所述压力计算装置配置在所述触控笔上。
进一步地,在上述本申请实施例的触控系统,所述触控笔和触控屏中一端包括本申请任一实施例中的信号生成装置,另外一端包括本申请任一实施例中的压力计算装置。
需要说明的是,在其他示例中,打码信号也可以只包括压力打码信号,此时,打码采样信号只包括压力采样信号,基于压力采样信号之间的相位差进行压力数据的计算,同时若考虑到又要进行触控位置计算的话,在一个打码周期内,至少包括两帧压力打码信号,对应地,在一个采样周期内,打码采样信号至少包括两帧压力采样信号。
本申请实施例的电子设备以多种形式存在,包括但不限于:
(1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机(例如iPhone)、多媒体手机、功能性手机,以及低端手机等。
(2)超移动个人计算机设备:这类设备属于个人计算机的范畴,有计算和处理功能,一般也具备移动上网特性。这类终端包括:PDA、MID和UMPC设备等,例如iPad。
(3)便携式娱乐设备:这类设备可以显示和播放多媒体内容。该类设备包括:音频、视频播放器(例如iPod),掌上游戏机,电子书,以及智能玩具和便携式车载导航设备。
(4)服务器:提供计算服务的设备,服务器的构成包括处理器、硬盘、内存、系统总线等,服务器和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。
(5)其他具有数据交互功能的电子装置。
至此,已经对本主题的特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作可以按照不同的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序,以实现期望的结果。在某些实施方式中, 多任务处理和并行处理可以是有利的。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书中的各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (18)

  1. 一种压力计算方法,其特征在于,包括:
    在设定的采样周期内对经过相位编码并连续打码的打码信号进行采样,得到打码采样信号;
    根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差,计算所述采样周期内的压力数据。
  2. 根据权利要求1所述的方法,其特征在于,根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差,计算所述采样周期内的压力数据,包括:根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差,以及预先建立的压力映射关系,计算所述采样周期内的压力数据。
  3. 根据权利要求2所述的方法中,其特征在于,所述预先建立的压力映射关系中,对于一个设定相位差的步进,在所述采样周期内相邻帧之间的相位差的不同组合表示不同的压力等级。
  4. 根据权利要求3所述的方法,其特征在于,相邻两帧打码信号的相位差的步进为45度、90度、180度中的任意一种。
  5. 根据权利要求3所述的方法,其特征在于,在同一采样周期内,所述步进固定不变。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,一个打码周期内的所述打码信号包括多帧打码信号,所述多帧打码信号包括n帧坐标打码信号以及m帧压力打码信号,n大于等于2,m大于等于0。
  7. 根据权利要求6所述的方法,其特征在于,所述n帧坐标打码信号连续,所述m帧压力打码信号连续;
    对应地,在设定的采样周期内对经过相位编码并连续打码的打码信号进行采样,得到打码采样信号,包括:在设定的采样周期内对经过相位编码并连续打码的打码信号进行采样,得到连续的n帧坐标采样信号以及连续的m帧压力采样信号,所述n帧坐标采样信号以及m帧压力采样信号组成所述打码采样信号;
    对应地,根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差,计算所述采样周期内的压力数据,包括:根据一个采样周期内n帧坐标采样信号中相邻帧坐标采样信号之间的相位差、m帧压力采样信号中相邻帧压力采样信号之间的相位差,以及n帧坐标采样信号以及m帧压力采样信号中相邻坐标 采样信号与压力采样信号之间的相位差,计算所述采样周期内的压力数据。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,还包括:根据所述打码采样信号,计算触控位置。
  9. 一种信号生成方法,其特征在于,包括:
    对待打码信号进行相位编码,以生成打码信号;
    根据设定的打码周期,使用所述打码信号进行连续打码;
    其中,所述打码信号用于被采样得到打码采样信号,以根据所述打码采样信号在采样周期内的相邻帧之间的相位差计算所述采样周期内的压力数据。
  10. 根据权利要求9所述的方法,其特征在于,相邻两帧打码信号的相位差的步进为45度、90度、180度中的任意一种。
  11. 根据权利要求9所述的方法,其特征在于,在同一打码周期内,所述步进固定不变。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,一个打码周期内的所述打码信号包括多帧打码信号,所述多帧打码信号包括n帧坐标打码信号以及m帧压力打码信号,n大于等于2,m大于等于0。
  13. 根据权利要求12所述的方法,其特征在于,所述n帧坐标打码信号连续,所述m帧压力打码信号连续。
  14. 一种压力计算装置,其特征在于,包括:
    数据采样单元,用于在设定的采样周期内对经过相位编码并连续打码的打码信号进行采样,得到打码采样信号;
    压力计算单元,用于根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差,计算所述采样周期内的压力数据。
  15. 一种信号生成装置,其特征在于,包括:
    编码单元,用于对待打码信号进行相位编码,以生成打码信号;
    打码单元,用于根据设定的打码周期,使用所述打码信号进行连续打码;
    其中,所述打码信号用于被采样得到打码采样信号,以根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差计算所述采样周期内的压力数据。
  16. 一种电子设备,其特征在于,包括权利要求14所述的压力计算装置或者权利要求15所述的信号生成装置。
  17. 根据权利要求16所述的电子设备,其特征在于,所述电子设备为所述触控笔,所述信号生成装置配置在所述触控笔上;对应地,所述压力计算装置配置在所述触控屏上。
  18. 一种触控系统,其特征在于,包括触控笔以及触控屏,所述触控笔和触控屏中一端包括信号生成装置,另外一端包括压力计算装置;
    所述信号生成装置包括:
    编码单元,用于对待打码信号进行相位编码,以生成打码信号;
    打码单元,用于根据设定的打码周期,使用所述打码信号进行连续打码;
    其中,所述打码信号用于被采样得到打码采样信号,以根据所述打码采样信号在采样周期内的相邻帧之间的相位差计算所述采样周期内的压力数据;
    所述压力计算装置包括:
    数据采样单元,用于在设定的采样周期内对经过相位编码并连续打码的打码信号进行采样,得到打码采样信号;
    压力计算单元,用于根据所述打码采样信号在所述采样周期内的相邻帧之间的相位差,计算所述采样周期内的压力数据。
PCT/CN2019/073721 2019-01-29 2019-01-29 压力计算方法及其装置、电子设备以及触控系统 WO2020154899A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19858632.3A EP3709139B1 (en) 2019-01-29 2019-01-29 Pressure calculation method and apparatus using same, electronic device, and touch system
PCT/CN2019/073721 WO2020154899A1 (zh) 2019-01-29 2019-01-29 压力计算方法及其装置、电子设备以及触控系统
CN201980000102.4A CN111758084A (zh) 2019-01-29 2019-01-29 压力计算方法及其装置、电子设备以及触控系统
US16/818,369 US11301078B2 (en) 2019-01-29 2020-03-13 Method for pressure calculation and apparatus thereof, electronic device and touch system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/073721 WO2020154899A1 (zh) 2019-01-29 2019-01-29 压力计算方法及其装置、电子设备以及触控系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/818,369 Continuation US11301078B2 (en) 2019-01-29 2020-03-13 Method for pressure calculation and apparatus thereof, electronic device and touch system

Publications (1)

Publication Number Publication Date
WO2020154899A1 true WO2020154899A1 (zh) 2020-08-06

Family

ID=71732480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073721 WO2020154899A1 (zh) 2019-01-29 2019-01-29 压力计算方法及其装置、电子设备以及触控系统

Country Status (4)

Country Link
US (1) US11301078B2 (zh)
EP (1) EP3709139B1 (zh)
CN (1) CN111758084A (zh)
WO (1) WO2020154899A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11435859B2 (en) 2020-11-02 2022-09-06 Microsoft Technology Licensing, Llc Driving signals for capacitive touch-sensitive surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147675A (zh) * 2010-02-05 2011-08-10 株式会社和冠 指示体、位置检测装置和位置检测方法
WO2015182222A1 (ja) * 2014-05-27 2015-12-03 株式会社ワコム 指示体検出装置及びその信号処理方法
CN107278285A (zh) * 2017-02-10 2017-10-20 深圳市汇顶科技股份有限公司 压力检测方法及其装置以及电子终端
CN206649490U (zh) * 2017-02-10 2017-11-17 深圳市汇顶科技股份有限公司 压力检测装置以及电子终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5968922B2 (ja) * 2011-03-02 2016-08-10 パーセプティブ ピクセル インコーポレイテッド タッチ・センサにおけるノイズ低減
US10474277B2 (en) * 2016-05-31 2019-11-12 Apple Inc. Position-based stylus communication
CN107969152A (zh) * 2016-08-26 2018-04-27 深圳市汇顶科技股份有限公司 信号发射方法、信号解析方法、主动笔及触控屏
US11221705B2 (en) * 2017-03-15 2022-01-11 Mitsubishi Electric Corporation Touch panel and display device including a pressure-sensitive sensor
KR102534250B1 (ko) * 2018-03-26 2023-05-18 삼성전자주식회사 터치 컨트롤러, 터치 센싱 장치, 및 터치 센싱 방법
EP3637231B1 (en) * 2018-08-13 2023-05-10 Shenzhen Goodix Technology Co., Ltd. Signal transmitting method, signal receiving method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147675A (zh) * 2010-02-05 2011-08-10 株式会社和冠 指示体、位置检测装置和位置检测方法
WO2015182222A1 (ja) * 2014-05-27 2015-12-03 株式会社ワコム 指示体検出装置及びその信号処理方法
CN107278285A (zh) * 2017-02-10 2017-10-20 深圳市汇顶科技股份有限公司 压力检测方法及其装置以及电子终端
CN206649490U (zh) * 2017-02-10 2017-11-17 深圳市汇顶科技股份有限公司 压力检测装置以及电子终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3709139A4 *

Also Published As

Publication number Publication date
US11301078B2 (en) 2022-04-12
EP3709139A1 (en) 2020-09-16
US20200241720A1 (en) 2020-07-30
CN111758084A (zh) 2020-10-09
EP3709139B1 (en) 2022-08-31
EP3709139A4 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
WO2020210951A1 (zh) 触控显示面板的电容检测方法、触控显示面板的电容检测电路及触控显示面板
CN109379678B (zh) 非线性补偿方法、装置、存储介质及终端设备
CN103826136B (zh) 一种快速离散余弦反变换的方法和终端
CN107798717A (zh) 电子毛笔书写方法、装置、计算机设备和存储介质
WO2021088083A1 (zh) 触控检测方法、触控检测电路、触控芯片以及电子设备
WO2020154899A1 (zh) 压力计算方法及其装置、电子设备以及触控系统
WO2022171055A1 (zh) 折叠结构、电子设备和折叠角度确定方法
US10997966B2 (en) Voice recognition method, device and computer storage medium
WO2020181404A1 (zh) 触控芯片、触控检测方法、触控检测系统及电子设备
CN105654080B (zh) 手写笔的操作控制方法及装置
CN110941302B (zh) 一种电压调节器控制方法、装置和电压调节器及介质
CN112783369A (zh) 触控检测方法和触控设备
US8289069B2 (en) Touch apparatus
CN102129321A (zh) 基于触摸屏的轨迹记录、比较方法
CN104933329A (zh) 生物数据处理方法、装置及便携式移动手持设备
CN101799796A (zh) 一种触摸屏计算器及其对输入数据进行多步运算的方法
CN111027344B (zh) 一种显示方法及装置
CN108845765B (zh) 一种nand数据读取方法、系统、设备及存储介质
CN109219792B (zh) 一种消除触控屏lcd干扰的方法及装置
US20130330017A1 (en) Phase shift reduction in touch signals
CN112019961A (zh) 降噪耳机的降噪参数调试方法、降噪参数调试装置及终端
US20120257109A1 (en) Apparatus, system and method for providing touch inputs
US10042486B1 (en) Dynamic demodulation waveform adjustment for tonal noise mitigation
WO2023115288A1 (zh) 数据传输装置、方法、电子设备、介质和智能交互平板
CN111382562B (zh) 文本相似度的确定方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019858632

Country of ref document: EP

Effective date: 20200316

NENP Non-entry into the national phase

Ref country code: DE