WO2022171055A1 - 折叠结构、电子设备和折叠角度确定方法 - Google Patents

折叠结构、电子设备和折叠角度确定方法 Download PDF

Info

Publication number
WO2022171055A1
WO2022171055A1 PCT/CN2022/075374 CN2022075374W WO2022171055A1 WO 2022171055 A1 WO2022171055 A1 WO 2022171055A1 CN 2022075374 W CN2022075374 W CN 2022075374W WO 2022171055 A1 WO2022171055 A1 WO 2022171055A1
Authority
WO
WIPO (PCT)
Prior art keywords
folding
pressure
folding angle
pressure value
spring
Prior art date
Application number
PCT/CN2022/075374
Other languages
English (en)
French (fr)
Inventor
孟海波
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022171055A1 publication Critical patent/WO2022171055A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1641Details related to the display arrangement, including those related to the mounting of the display in the housing the display being formed by a plurality of foldable display components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1675Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
    • G06F1/1679Miscellaneous details related to the relative movement between the different enclosures or enclosure parts for locking or maintaining the movable parts of the enclosure in a fixed position, e.g. latching mechanism at the edge of the display in a laptop or for the screen protective cover of a PDA

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a folding structure, an electronic device and a method for determining a folding angle.
  • folding screens have been widely promoted and applied.
  • Electronic devices using folding screens can adjust the size of the screen according to the needs of users, and the change of the screen size corresponds to the change of the folding angle. Therefore, the determination of the folding angle is the key to realizing intelligent interaction. step.
  • the folding screen solutions in the related art are basically implemented based on the rotating shaft. This solution will lead to a large thickness of the whole machine, and the rotation angle and rotation range are easily limited by the size of the rotating shaft itself, thereby affecting the user experience. It can be seen that the existing folding screen solution has the problem of poor folding effect.
  • the purpose of the embodiments of the present application is to provide a folding structure, an electronic device and a method for determining a folding angle, which can solve the problem of poor folding effect of the existing folding screen solutions.
  • the embodiments of the present application provide a folding structure, including:
  • the first casing and the second casing are connected by the elastic connecting member, and the first casing can rotate relative to the second casing;
  • the pressure detection part is connected to the elastic connection part, and is used for detecting the pressure value of the elastic connection part.
  • embodiments of the present application provide an electronic device, including the folding structure described in the first aspect.
  • an embodiment of the present application provides a method for determining a folding angle, which is applied to the folding structure according to the first aspect, and the method includes:
  • the folding angle of the folding structure is determined.
  • an embodiment of the present application provides a device for determining a folding angle, which is applied to the folding structure described in the first aspect above, and the device for determining a folding angle includes:
  • an acquisition module configured to acquire the first pressure value detected by the pressure detection component of the folded structure
  • a determination module configured to determine the folding angle of the folding structure according to the first pressure value.
  • an embodiment of the present application provides an electronic device, including the foldable structure described in the first aspect, the electronic device further comprising a processor, a memory, and storage on the memory and on the processor A running program or instruction, when the program or instruction is executed by the processor, implements the steps of the method for determining the folding angle according to the third aspect.
  • an embodiment of the present application provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the folding angle determination as described in the third aspect is implemented steps of the method.
  • an embodiment of the present application provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the third aspect The method for determining the folding angle.
  • embodiments of the present application provide a computer program product, the computer program product is stored in a non-transitory storage medium, and the computer program product is executed by at least one processor to implement the third aspect.
  • an embodiment of the present application provides a communication device, including a processor, a memory, and a program or instruction stored in the memory and executable on the processor, the program or instruction being processed by the processor
  • the method for determining the folding angle according to the third aspect is implemented when the controller is executed.
  • the folding structure includes: a first casing, a second casing, an elastic connecting part and a pressure detecting part, wherein the first casing and the second casing pass through the elastic connecting part
  • the first casing is rotatable relative to the second casing;
  • the pressure detection part is connected with the elastic connection part, and is used for detecting the pressure value of the elastic connection part.
  • FIG. 1 is a schematic diagram of the appearance structure of a fully unfolded folded structure provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the appearance structure of a fully folded folded structure provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the internal structure of a fully unfolded folding structure provided by an embodiment of the present application.
  • FIG. 4 is a partially enlarged schematic structural diagram of a fully unfolded folded structure provided by an embodiment of the present application.
  • FIG. 5 is an overall effect diagram of a fully folded folding structure provided by an embodiment of the present application.
  • FIG. 6 is a partially enlarged schematic structural diagram of a fully folded folded structure provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of a method for determining a folding angle provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the relationship between the feedback value of the pressure sensor and the length of the spring provided by the embodiment of the present application;
  • FIG. 9 is a schematic diagram of a mathematical model between a folding angle and a spring compression length provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the relationship between the feedback value of the pressure sensor and the folding angle provided by the embodiment of the present application;
  • FIG. 11 is a schematic structural diagram of a device for determining a folding angle provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another electronic device provided by an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and distinguish between “first”, “second”, etc.
  • the objects are usually of one type, and the number of objects is not limited.
  • the first object may be one or more than one.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • FIGS. 1 to 6 are schematic structural diagrams of folded structures with different folding states and different viewing angles provided by the embodiments of the present application.
  • the folded structure 10 includes: The first housing 11, the second housing 12, the elastic connecting part 13 and the pressure detecting part 14, wherein,
  • the first casing 11 and the second casing 12 are connected by the elastic connecting member 13, and the first casing 11 can rotate relative to the second casing 12;
  • the pressure detecting member 14 is connected to the elastic connecting member 13 for detecting the pressure value of the elastic connecting member 13 .
  • the folding structure 10 includes two relatively rotatable housings, namely a first housing 11 and a second housing 12 , and as shown in FIG. 3 , the first housing
  • the casing 11 and the second casing 12 can be connected by the elastic connecting member 13, so that the first casing 11 and the second casing 12 can be fully unfolded into a large screen to enjoy the large-screen operation experience, and can also be completely folded into a large screen. Case-sized screen for easy storage.
  • the first casing 11 may be any one of the two casings of the folding structure 10
  • the second casing 11 is correspondingly the other casing of the two casings of the folding structure 10 .
  • a pressure detection component 14 for detecting the pressure value of the elastic connecting component 13 in different active states can also be added, specifically , the pressure detection part 14 can be arranged at the movable end of the elastic connection part 13, and the pressure detection part 14 can also be attached to the elastic connection part 13, for example, it can be arranged in a certain shell of the folding structure 10, such as the first shell 11
  • the pressure detection part 14 is used to detect the pressure value of the elastic connecting part 13 under different folding states, and then determine the corresponding folding angle according to the pressure value, that is, to determine the folding structure based on the pressure value detected by the pressure detection part 14 10 folding angle.
  • the first end 131 of the elastic connecting member 13 is connected to the pressure detecting member 14 , and the second end 132 of the elastic connecting member 13 is disposed on the second housing 12 .
  • one end of the elastic connecting member 13 is connected to the pressure detecting member 14
  • the other end of the elastic connecting member 13 is disposed on the second housing 12
  • the second end 132 of the elastic connecting member 13 can be its fixed end, that is, the second end 132 remains fixed during the folding movement of the folding structure 10, and the first end 131 of the elastic connecting member 13 can be folded. Different pressures are generated on the pressure detecting member 14 during the movement.
  • the pressure value change generated by the elastic connecting member 13 on the pressure detection member 14 during the folding movement can be detected by the pressure detection member 14, and then the corresponding folding angle of the folding structure 10 can be determined based on the detected pressure value.
  • 10 has a simple structure and is easy to detect.
  • the pressure detection component 14 is disposed on the first housing 11 , and the pressure detection component 14 includes a pressure sensor 141 , a spring 142 , a slider 143 and a chute 144 , the pressure sensor 141 , the spring 142 and the The sliding blocks 143 are all located in the chute 144;
  • the first end of the spring 142 is fixed at one end of the chute 144 , the second end of the spring 142 is connected with the pressure sensor 141 , the pressure sensor 141 is also connected with the slider 143 , and the slider 143 is also connected with the first end 131 of the elastic connecting member 13 Connected, the slider 143 can slide along the chute 144 .
  • the pressure detection component 14 may include a pressure sensor 141 , a spring 142 , a slider 143 and a chute 144 , wherein the chute 144 is provided in the first housing 11 , Used as a sliding channel for the slider 143, the pressure sensor 141, the spring 142 and the slider 143 are all arranged in the chute 144, wherein the spring 142 can be located in the chute 144 on the side close to the second housing 12, the pressure sensor 141 and the slider 143 are located on the other side of the chute 144 away from the second housing 12, or the spring 142 may be located in the chute 144 on the side away from the second housing 12, and the pressure sensor 141 and the slider 143 are located at The chute 144 is close to the other side of the second housing 12 .
  • the first end of the spring 142 is fixed at one end of the chute 144, for example, the end of the chute 144 close to the second housing 12, or the other end of the chute 144 away from the second housing 12,
  • the second end of the spring 142 is connected to the pressure sensor 141, for example, it can be close to the pressure sensor 141 to ensure that the pressure on the pressure sensor 141 is equal to the rebound force of the spring 142, and the pressure sensor 141 is also connected to the slider 143, such as can Fixed on one side of the sliding block 143 , the sliding block 143 is also connected with the first end 131 of the elastic connecting member 13 .
  • the second housing 12 can drive other parts of the elastic connecting member 13 to move through the fixed second end 132 of the elastic connecting member 13 , thereby driving the slider 143 and the pressure sensor 141 to move at the same time.
  • the spring 142 is compressed or stretched under the movement of the slider 143 and the pressure sensor 141, and the compression and rebound force of the spring 142 also changes accordingly. Based on this movement principle, the folding of the folding structure 10 can be calculated. The conversion relationship between the angle and the pressure value detected by the pressure sensor 141 .
  • This embodiment can not only ensure the effect of easy folding of the folding structure 10, reduce the complexity of the folding structure, but also ensure that the pressure value change during the folding process can be detected more accurately based on this structure, and then the folding of the folding structure 10 can be accurately determined. angle.
  • the first end of the spring 142 is fixed in the chute 144 near the end of the second housing 12 .
  • the first end of the spring 142 can be fixed at the end of the sliding groove 144 close to the second housing 12 , that is, as shown in FIG. 4 , the spring 142 is located close to the second housing 12 and On one side of the elastic connecting member 13, when the first housing 11 is the left housing, the spring 142 is located on the right side of the chute 144, and one end is fixed on the right end of the chute 144, and the pressure sensor 141 and the slider 143 are located on the right side of the chute 144. On the left side of the groove 144 , the other free end of the spring 142 is connected with the pressure sensor 141 , and the slider 143 is also connected with the end of the elastic connecting member 13 .
  • the spring 142 can be in a certain compressed state or in a natural state.
  • the initial length of the spring 142 is X 0
  • the initial pressure value detected by the pressure sensor 141 is F 0 .
  • the second casing 12 can drive other parts of the elastic connecting member 13 to move toward the second casing 12 through the fixing point of the elastic connecting member 13 , that is, the second end 132 , and connect with the elastic connecting member 13 .
  • the end of the spring 143 that is, the slider 143 connected to the first end 131 will also move in the direction of the second housing 12 , as shown in FIG. 5 and FIG. , the compression and rebound force of the spring 142 gradually increases, and the pressure value detected by the pressure sensor 141 also increases gradually.
  • the shortest spring 142 is X m
  • the spring 142 rebound force is the maximum F m
  • the pressure The pressure value detected by the sensor 141 is also F m .
  • the pressure sensor 141 is a piezoresistive pressure sensor.
  • a piezoresistive pressure sensor can be selected as the pressure detection device in the embodiment of the present application, wherein the piezoresistive pressure sensor is made by using the piezoresistive effect of single crystal silicon and microelectronic technology, and is a A new physical property sensor.
  • the piezoresistive pressure sensor used has the advantages of higher sensitivity, good dynamic response, high precision, high technology maturity, good stability, low cost, etc., and is easy to miniaturize and integrate, and is more suitable for In a folded structure that is elastically connected and not bulky.
  • the elastic connecting member 13 is a hinged structure.
  • the elastic connecting member 13 may adopt a hinged structure to ensure that the folding structure 10 has a simple and stable structure and good folding performance, thereby improving user experience and broader application prospects.
  • the hinged structure in addition to the hinge meshing structure inside the fuselage to ensure that the screen is not stretched and damaged during bending, the hinged structure can also be set at the upper and lower ends of the folding structure. Elastic connection parts and pressure detection parts to enhance the stability of the overall structure.
  • the folding structure in the embodiment of the present application includes: a first casing, a second casing, an elastic connecting member and a pressure detecting member, wherein the first casing and the second casing are connected by the elastic connecting member , and the first casing is rotatable relative to the second casing; the pressure detection component is connected with the elastic connecting component for detecting the pressure value of the elastic connecting component.
  • Embodiments of the present application further provide an electronic device, including the folding structure provided by the embodiments in FIG. 1 to FIG. 6 .
  • the electronic device can achieve the same beneficial effects as those of the embodiments shown in FIG. 1 to FIG. 6 , which are not repeated here in order to avoid repetition.
  • FIG. 7 is a flowchart of a method for determining a folding angle provided by an embodiment of the present application, which is applied to the folding structure described in the foregoing embodiments. As shown in FIG. 7, the method includes:
  • Step 701 Acquire a first pressure value detected by a pressure detection component of the folded structure.
  • Step 702 Determine the folding angle of the folding structure according to the first pressure value.
  • the folding angle determination method of the present embodiment can be used to determine the folding angle of the folding structure.
  • obtaining the first pressure value detected by the pressure detection component of the folded structure may be obtained by reading the current pressure value reading of the pressure detection component to obtain the first pressure value.
  • the above-mentioned determination of the folding angle of the folding structure according to the first pressure value may be based on a predetermined corresponding relationship between the pressure value and the folding angle to determine the folding angle corresponding to the first pressure value, so as to obtain the folding The folding angle of the structure, or, based on a predetermined conversion calculation formula between the pressure and the folding angle, the first pressure value is converted and calculated to obtain the folding angle of the folding structure.
  • the conversion between the pressure and the folding angle can be predetermined based on the spring mechanics principle and the relationship between the central angle, the folding angle and the compression length of the spring relationship, such as determining the conversion calculation formula between pressure and folding angle, or establishing a one-to-one correspondence between each pressure value and folding angle. Therefore, when the folding angle of the folding structure needs to be determined, the first pressure value currently detected by the pressure detection component of the folding structure can be obtained, and then the first pressure value can be converted based on the predetermined conversion relationship. , to obtain the converted folding angle, that is, the current folding angle of the folding structure.
  • the conversion calculation formula between the pressure and the folding angle can be determined as follows:
  • the second calculation formula is converted to obtain a conversion calculation formula, wherein the specific state includes a fully unfolded state or In the fully folded state, the folding angle in the fully unfolded state is 180 degrees, and the folding angle in the fully folded state is 0 degrees.
  • ⁇ a a2-a1
  • the change in the length of the spring when the central angle transitions from a1 to a2 is used to represent the change in the length of the spring, so according to the difference between the arc length and the central angle
  • the pressure value F is known, but the folding angle is unknown, so the above formula can be transformed.
  • the pressure detection component includes a pressure sensor, a spring, a slider and a chute;
  • the step 702 includes:
  • the first pressure value is converted and calculated to obtain the folding angle of the folding structure
  • the relationship between the folding angle A and the feedback value F of the pressure sensor can be as shown in FIG. 10 .
  • the read feedback value F of the pressure sensor that is, the first pressure value
  • the folding angle of the folding structure can be quickly determined, and since the formula is derived based on the spring mechanics principle and the mathematical formula related to the central angle, the folding determined based on the formula and the current pressure value can be guaranteed. The angle is more accurate and reliable.
  • the first pressure value detected by the pressure detection component of the folding structure is obtained; the folding angle of the folding structure is determined according to the first pressure value. In this way, the folding angle of the folding structure can be quickly and accurately determined in this way.
  • the execution body may be a device for determining the folding angle, or a control module in the device for determining the folding angle for executing the method for determining the folding angle.
  • the method for determining the folding angle performed by the folding angle determining device is taken as an example to describe the folding angle determining device provided in the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of the device for determining a folding angle provided by an embodiment of the present application, which is applied to the folding structure described in the foregoing embodiments.
  • the device 1100 for determining a folding angle includes:
  • an acquisition module 1101, configured to acquire the first pressure value detected by the pressure detection component of the folding structure
  • a determination module 1102 configured to determine the folding angle of the folding structure according to the first pressure value.
  • the pressure detection component includes a pressure sensor, a spring, a slider and a chute;
  • the determining module 1102 is configured to perform conversion calculation on the first pressure value based on a predetermined conversion calculation formula between the pressure and the folding angle to obtain the folding angle of the folding structure;
  • A represents the folding angle
  • F represents the first pressure value
  • F 0 represents the fully expanded
  • F m represents the pressure value in the fully folded state
  • K represents the elastic coefficient of the spring
  • R represents the rotation radius of the folded structure.
  • the device for determining the folding angle acquires the first pressure value detected by the pressure detection component of the folding structure; and determines the folding angle of the folding structure according to the first pressure value. In this way, the folding angle determining device can quickly and accurately determine the folding angle of the folding structure.
  • the device for determining the folding angle in the embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant).
  • UMPC ultra-mobile personal computer
  • netbook or a personal digital assistant
  • non-mobile electronic devices can be servers, network attached storage (Network Attached Storage, NAS), personal computer (personal computer, PC), television (television, TV), teller machine or self-service machine, etc., this application Examples are not specifically limited.
  • Network Attached Storage NAS
  • personal computer personal computer, PC
  • television television
  • teller machine or self-service machine etc.
  • the device for determining the folding angle in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the device for determining the folding angle provided in the embodiment of the present application can implement each process implemented by the method embodiment in FIG. 7 , and to avoid repetition, details are not described here.
  • an embodiment of the present application further provides an electronic device 1200, including a processor 1201, a memory 1202, a program or instruction stored in the memory 1202 and executable on the processor 1201,
  • an electronic device 1200 including a processor 1201, a memory 1202, a program or instruction stored in the memory 1202 and executable on the processor 1201,
  • the program or instruction is executed by the processor 1201
  • each process of the above-mentioned embodiment of the method for determining the folding angle can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the electronic devices in the embodiments of the present application include the aforementioned mobile electronic devices and non-mobile electronic devices.
  • FIG. 13 is a schematic diagram of a hardware structure of an electronic device implementing an embodiment of the present application.
  • the electronic device 1300 includes but is not limited to: a radio frequency unit 1301, a network module 1302, an audio output unit 1303, an input unit 1304, a sensor 1305, a display unit 1306, a user input unit 1307, an interface unit 1308, a memory 1309, a processor 1310, and a folding screen 1311 and other components.
  • the electronic device 1300 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1310 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. consumption management and other functions.
  • a power source such as a battery
  • the structure of the electronic device shown in FIG. 13 does not constitute a limitation on the electronic device.
  • the electronic device may include more or less components than the one shown, or combine some components, or arrange different components, which will not be repeated here. .
  • the processor 1310 is configured to acquire the first pressure value detected by the pressure detection component of the folding screen 1311;
  • the folding angle of the folding screen is determined.
  • the pressure detection component includes a pressure sensor, a spring, a slider and a chute;
  • the processor 1310 is configured to perform a conversion calculation on the first pressure value based on a predetermined conversion calculation formula between the pressure and the folding angle to obtain the folding angle of the folding structure;
  • A represents the folding angle
  • F represents the first pressure value
  • F 0 represents the fully expanded
  • F m represents the pressure value in the fully folded state
  • K represents the elastic coefficient of the spring
  • R represents the rotation radius of the folding screen.
  • the electronic device in this embodiment acquires the first pressure value detected by the pressure detection component of the folding screen; and determines the folding angle of the folding screen according to the first pressure value. In this way, the electronic device can quickly and accurately determine the folding angle of the folding screen.
  • the input unit 1304 may include a graphics processor (Graphics Processing Unit, GPU) 13041 and a microphone 13042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1306 may include a display panel 13061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1307 includes a touch panel 13071 and other input devices 13072 .
  • the touch panel 13071 is also called a touch screen.
  • the touch panel 13071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 13072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described herein again.
  • Memory 1309 may be used to store software programs as well as various data, including but not limited to application programs and operating systems.
  • the processor 1310 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs, and the like, and the modem processor mainly processes wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1310.
  • the folding screen 1311 may be a folding structure as shown in FIG. 1 to FIG. 6 , including a first casing, a second casing, an elastic connecting part and a pressure detecting part. For details, please refer to the relevant introduction in the foregoing embodiments, here No longer.
  • the embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above-mentioned embodiment of the method for determining the folding angle can be achieved, and can achieve The same technical effect, in order to avoid repetition, will not be repeated here.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above embodiment of the method for determining a folding angle and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • An embodiment of the present application further provides a communication device, the communication device includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, where the program or instruction is processed by the processor
  • the communication device includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, where the program or instruction is processed by the processor
  • each process of the above embodiment of the method for determining the folding angle can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application further provides a computer program product, the computer program product is stored in a non-volatile storage medium, and the computer program product is configured to be executed by at least one processor to implement the above method for determining the folding angle In order to avoid repetition, the details are not repeated here.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Abstract

本申请公开了一种折叠结构、电子设备和折叠角度确定方法,属于通信技术领域。折叠结构,包括:第一壳体、第二壳体、弹性连接部件和压力检测部件,其中,所述第一壳体和所述第二壳体通过所述弹性连接部件连接,且所述第一壳体可相对所述第二壳体转动;所述压力检测部件与所述弹性连接部件连接,用于检测所述弹性连接部件的压力值。

Description

折叠结构、电子设备和折叠角度确定方法
相关申请的交叉引用
本申请主张在2021年02月09日在中国提交的中国专利申请No.202110180357.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种折叠结构、电子设备和折叠角度确定方法。
背景技术
目前,折叠屏得到较大推广应用,采用折叠屏的电子设备,可以根据用户的需求调整屏幕的大小,而屏幕大小的改变对应折叠角度发生变化,因此,折叠角度的确定是实现智能交互的关键步骤。然而,相关技术中的折叠屏方案基本上都是基于转轴来实现的,这种方案会导致整机厚度较大,转动角度和转动幅度容易受到转轴本身尺寸的限制,进而影响用户使用体验。可见,现有折叠屏方案存在折叠效果较差的问题。
发明内容
本申请实施例的目的是提供一种折叠结构、电子设备和折叠角度确定方法,能够解决现有折叠屏方案折叠效果较差的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种折叠结构,包括:
第一壳体、第二壳体、弹性连接部件和压力检测部件,其中,
所述第一壳体和所述第二壳体通过所述弹性连接部件连接,且所述第一壳体可相对所述第二壳体转动;
所述压力检测部件与所述弹性连接部件连接,用于检测所述弹性连接部件的压力值。
第二方面,本申请实施例提供了一种电子设备,包括如第一方面所述的 折叠结构。
第三方面,本申请实施例提供了一种折叠角度确定方法,应用于如第一方面所述的折叠结构,所述方法包括:
获取所述折叠结构的压力检测部件检测到的第一压力值;
根据所述第一压力值,确定所述折叠结构的折叠角度。
第四方面,本申请实施例提供了一种折叠角度确定装置,应用于上述第一方面所述的折叠结构,所述折叠角度确定装置包括:
获取模块,用于获取所述折叠结构的压力检测部件检测到的第一压力值;
确定模块,用于根据所述第一压力值,确定所述折叠结构的折叠角度。
第五方面,本申请实施例提供了一种电子设备,包括如第一方面所述的折叠结构,该电子设备还包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的折叠角度确定方法的步骤。
第六方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第三方面所述的折叠角度确定方法的步骤。
第七方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第三方面所述的折叠角度确定方法。
第八方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品被存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第三方面所述的折叠角度确定方法。
第九方面,本申请实施例提供了一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的折叠角度确定方法。
在本申请实施例中,折叠结构包括:第一壳体、第二壳体、弹性连接部件和压力检测部件,其中,所述第一壳体和所述第二壳体通过所述弹性连接部件连接,且所述第一壳体可相对所述第二壳体转动;所述压力检测部件与所述弹性连接部件连接,用于检测所述弹性连接部件的压力值。这样,由于 采用的是弹性连接部件和压力检测部件来实现,从而相比现有转轴式折叠屏结构,整机厚度会相对较薄一些,且转动角度和转动幅度不会受到转轴的限制,能够获得更好的折叠效果。
附图说明
图1是本申请实施例提供的一种完全展开的折叠结构的外观结构示意图;
图2是本申请实施例提供的一种完全折叠的折叠结构的外观结构示意图;
图3是本申请实施例提供的一种完全展开的折叠结构的内部结构示意图;
图4是本申请实施例提供的一种完全展开的折叠结构的局部放大结构示意图;
图5是本申请实施例提供的一种完全折叠的折叠结构的整体效果图;
图6是本申请实施例提供的一种完全折叠的折叠结构的局部放大结构示意图;
图7是本申请实施例提供的一种折叠角度确定方法的流程图;
图8是本申请实施例提供的压力传感器的反馈值与弹簧长度的关系示意图;
图9是本申请实施例提供的折叠角与弹簧压缩长度之间的数学模型示意图;
图10是本申请实施例提供的压力传感器的反馈值与折叠角的关系示意图;
图11是本申请实施例提供的一种折叠角度确定装置的结构示意图;
图12是本申请实施例提供的一种电子设备的结构示意图;
图13是本申请实施例提供的另一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的折叠结构进行详细地说明。
请参见图1至图6,图1至图6为本申请实施例提供的不同折叠状态、不同视角的折叠结构的结构示意图,如图1、图2和图3所示,折叠结构10包括:第一壳体11、第二壳体12、弹性连接部件13和压力检测部件14,其中,
第一壳体11和第二壳体12通过弹性连接部件13连接,且第一壳体11可相对第二壳体12转动;
压力检测部件14与弹性连接部件13连接,用于检测弹性连接部件13的压力值。
本申请实施例中,如图1和图2所示,折叠结构10包括可相对转动的两个壳体,即第一壳体11和第二壳体12,又如图3所示,第一壳体11和第二壳体12可通过弹性连接部件13连接,使得第一壳体11和第二壳体12可完全展开成一块大屏幕,以享受大屏操作体验,也可完全折叠成一个壳体大小的屏幕,以便收纳。需说明的是,第一壳体11可以是折叠结构10的两个壳体中的任一壳体,第二壳体11则相应为折叠结构10的两个壳体中的另一壳体。
为了能对折叠结构10的折叠角度进行检测,以保证后续能够基于折叠角度实现相关交互功能,还可以加入用于检测弹性连接部件13在不同活动状态下的压力值的压力检测部件14,具体地,压力检测部件14可以设置在弹性 连接部件13的活动末端,压力检测部件14也可依附于弹性连接部件13设置,例如,可以在折叠结构10的某一壳体如第一壳体11中设置压力检测部件14,用于检测不同折叠状态下弹性连接部件13所承受的压力值,进而根据压力值,确定对应的折叠角度,也即实现基于压力检测部件14检测到的压力值来确定折叠结构10的折叠角度。
可选地,如图3所示,弹性连接部件13的第一端131与压力检测部件14连接,弹性连接部件13的第二端132设置于第二壳体12。
即一种实施方式中,如图3所示,弹性连接部件13的一端如第一端131与压力检测部件14连接,弹性连接部件13的另一端如第二端132设置在第二壳体12中,弹性连接部件13的第二端132可以为其固定末端,即第二端132在折叠结构10的折叠运动中是保持固定不动的,弹性连接部件13的第一端131则可以在折叠运动中对压力检测部件14产生不同的压力。这样,可以通过压力检测部件14检测弹性连接部件13在折叠运动中对压力检测部件14所产生的压力值变化,进而能够基于检测到的压力值确定折叠结构10对应的折叠角度,不仅使折叠结构10具备简单的结构,且易于检测。
可选地,如图4所示,压力检测部件14设置于第一壳体11,且压力检测部件14包括压力传感器141、弹簧142、滑块143和滑槽144,压力传感器141、弹簧142和滑块143均位于滑槽144中;
弹簧142的第一端固定在滑槽144的一端,弹簧142的第二端与压力传感器141连接,压力传感器141还与滑块143连接,滑块143还与弹性连接部件13的第一端131连接,滑块143可沿滑槽144滑动。
即一种具体的实施方式中,如图4所示,压力检测部件14可包括压力传感器141、弹簧142、滑块143和滑槽144,其中,滑槽144设置在第一壳体11中,用作滑块143的滑动通道,压力传感器141、弹簧142和滑块143则均设置于滑槽144中,其中弹簧142可以位于滑槽144中靠近第二壳体12的一侧,压力传感器141和滑块143则位于滑槽144中远离第二壳体12的另一侧,也可以是弹簧142位于滑槽144中远离第二壳体12的一侧,压力传感器 141和滑块143则位于滑槽144中靠近第二壳体12的另一侧。
具体地,弹簧142的第一端固定在滑槽144的一端,如可以是滑槽144的靠近第二壳体12的一端,也可以是滑槽144的远离第二壳体12的另一端,弹簧142的第二端则与压力传感器141连接,如可以紧挨压力传感器141,以保证压力传感器141所受的压力大小等于弹簧142的反弹力,压力传感器141还与滑块143连接,如可以固定于滑块143的一侧,滑块143还与弹性连接部件13的第一端131连接。这样,在折叠结构10的折叠运动过程中,第二壳体12可通过弹性连接部件13的固定第二端132带动弹性连接部件13的其他部分运动,进而可带动滑块143、压力传感器141在滑槽144中运动,弹簧142则在滑块143和压力传感器141的运动下被压缩或被拉伸,弹簧142的压缩反弹力也发生相应变化,基于此运动原理,可以推算出折叠结构10的折叠角度与压力传感器141检测到的压力值之间的转换关系。
通过该实施方式,既可以保证折叠结构10易于折叠的效果,降低折叠结构复杂度,又能保证基于该结构能够较为准确地检测出折叠过程中的压力值变化,进而准确确定折叠结构10的折叠角度。
可选地,弹簧142的第一端固定在滑槽144中靠近第二壳体12的一端。
即一种实施方式中,弹簧142的第一端可以固定在滑槽144中靠近第二壳体12的一端,也就是说,可以如图4所示,弹簧142位于靠近第二壳体12和弹性连接部件13的一侧,当第一壳体11为左侧壳体时,弹簧142位于滑槽144的右侧,且一端固定在滑槽144的右端,压力传感器141和滑块143位于滑槽144的左侧,且弹簧142的另一自由端与压力传感器141连接,滑块143还与弹性连接部件13的末端连接。
这样,当折叠结构10完全展开时,弹簧142可以处于一定的压缩状态,或者处于自然状态,此时弹簧142的初始长度为X 0,压力传感器141检测到的初始压力值为F 0
当折叠结构10开始折叠时,第二壳体12可通过弹性连接部件13的固定点也即第二端132,带动弹性连接部件13的其他部分向第二壳体12移动, 与弹性连接部件13的末端也即第一端131相连的滑块143也会伴随着向第二壳体12所在方向移动,如图5和图6所示,此时弹簧142在滑块143的移动下被不断压缩,弹簧142的压缩反弹力逐渐增大,压力传感器141检测到的压力值也会逐渐增大,当折叠结构10完全折叠时,弹簧142最短为X m,弹簧142反弹力最大为F m,压力传感器141检测到的压力值也为F m
通过该实施方式,可保证在折叠结构10折叠程度越大时,相应的弹簧压缩量和反弹力也越大,压力传感器141检测到的压力值也越高,且弹簧反弹力与对压力传感器141的压力值是相等的,进而能够保证基于此原理较为准确容易地检测出折叠结构的折叠角度。
可选地,压力传感器141为压阻式压力传感器。
即一种实施方式中,可以选择压阻式压力传感器作为本申请实施例中的压力检测器件,其中,压阻式压力传感器是利用单晶硅的压阻效应和微电子技术制成,是一种新的物性型传感器。该实施方式中,采用的压阻式压力传感器,具有灵敏度更高、动态响应好、精度高、技术成熟度高、稳定性好、成本低等优点,且易于微型化和集成化,较适用于弹性连接结构且体积不大的折叠结构中。
可选地,弹性连接部件13为铰链式结构。
即一种实施方式中,弹性连接部件13可以采用铰链式结构,以保证折叠结构10结构简单稳定、折叠性能好,进而提高用户使用体验,应用前景也更为广泛。
需说明的是,对于上述铰链式折叠结构,除了机身内部的铰链啮合结构来保证屏幕在弯曲时不被拉伸损坏之外,还可以在折叠结构上下两端分别设置所述铰链式结构的弹性连接部件和压力检测部件,以增强整体结构的稳定性。
本申请实施例中的折叠结构包括:第一壳体、第二壳体、弹性连接部件和压力检测部件,其中,所述第一壳体和所述第二壳体通过所述弹性连接部件连接,且所述第一壳体可相对所述第二壳体转动;所述压力检测部件与所 述弹性连接部件连接,用于检测所述弹性连接部件的压力值。这样,由于采用的是弹性连接部件和压力检测部件来实现,从而相比现有转轴式折叠结构,整机厚度会相对较薄一些,且转动角度和转动幅度不会受到转轴的限制,能够获得更好的折叠效果。
本申请实施例还提供一种电子设备,包括图1至图6中实施例所提供的折叠结构。本实施例中,所述电子设备能达到和图1至图6所示实施例相同的有益效果,为避免重复,这里不再赘述。
请参见图7,图7为本申请实施例提供的折叠角度确定方法的流程图,应用于前述实施例中所述的折叠结构,如图7所示,所述方法包括:
步骤701、获取所述折叠结构的压力检测部件检测到的第一压力值。
步骤702、根据所述第一压力值,确定所述折叠结构的折叠角度。
在前述实施例中所介绍的折叠结构的基础上,可以采用本实施例中的折叠角度确定方法来确定折叠结构的折叠角度。
其中,上述获取所述折叠结构的压力检测部件检测到的第一压力值,可以是读取所述压力检测部件当前的压力值读数,得到所述第一压力值。
上述根据所述第一压力值,确定所述折叠结构的折叠角度,可以是基于预先确定的压力值与折叠角度的对应关系,确定所述第一压力值对应的折叠角度,从而得到所述折叠结构的折叠角度,或者,基于预先确定的压力与折叠角的转换计算公式,对所述第一压力值进行转换计算,进而得到所述折叠结构的折叠角度。
具体地,在所述压力检测部件包括压力传感器、弹簧、滑块和滑槽时,可以基于弹簧力学原理和圆心角、折叠角与弹簧压缩长度之间的关系,预先确定压力与折叠角的转换关系,如确定压力与折叠角之间的转换计算公式,或建立各压力值与折叠角度的一一对应关系。从而在需要确定折叠结构的折叠角度时,可以获取所述折叠结构的压力检测部件当前所检测到的第一压力值,再基于预先确定的所述转换关系,对所述第一压力值进行转换,得到转换后的折叠角度,也即所述折叠结构当前的折叠角度。
其中,如图4所示,所述压力检测部件包括压力传感器、弹簧、滑块和滑槽时,可以通过如下方式确定压力与折叠角之间的转换计算公式:
基于弧长、半径和圆心角之间的数学关系,建立所述折叠结构的弹簧的变化长度与所述折叠结构的旋转半径和折叠变化角度之间的第一计算公式;
基于所述弹簧的弹力计算公式和所述第一计算公式,确定压力与折叠角之间的第二计算公式;
基于所述第二计算公式,以及所述折叠结构在特定状态时的折叠角度和压力值,对所述第二计算公式进行转换,得到转换计算公式,其中,所述特定状态包括完全展开状态或完全折叠状态,所述完全展开状态下的折叠角度为180度,所述完全折叠状态下的折叠角度为0度。
具体地,所述压力传感器的反馈值F(也即检测到的压力值)与弹簧长度X的关系如图8所示,可使用公式F=K·ΔX表示,其中,ΔX=X-X 0,K为弹簧弹性系数,ΔX为弹簧压缩量,X 0为弹簧未折叠也即未受力时的长度。
折叠角与弹簧压缩长度之间的数学模型可如图9所示,其中,A1和A2分别表示折叠前和折叠后的折叠角度,a1和a2则分别表示折叠前和折叠后的圆心角,R表示旋转半径,R由折叠结构实际结构决定,根据图9可知,Δa=a2-a1,使用圆心角从a1过渡至a2时的弧长变化来表示弹簧长度变化,从而根据弧长与圆心角之间的数学关系可得,ΔX=R·Δa=R(a2-a1),而圆心角与折叠角的关系为A=π-a,因此可进一步得到,ΔX=R(a2-a1)=R((π-A2)-(π-A1))=R(A1-A2)。
综合以上公式F=K·ΔX和ΔX=R(A1-A2),可以得出压力和折叠角的数学关系为:F=K·ΔX=KR(A1-A2)。
由于在实际使用过程中,对于折叠结构而言,压力值F已知,而折叠角度未知,故可以对上式进行转化。具体可以是,定义折叠结构完全展开时,折叠角度为180°,即为π,完全折叠时折叠角度为0°,则可以将上式转化为:F-F 0=K·ΔX=KR(π-A),或者F-F m=K·ΔX=KR(0-A),进而可得A=π-(F-F 0)/KR,或者,A=(F m-F)/KR。
也就是说,一种实施方式中,所述压力检测部件包括压力传感器、弹簧、滑块和滑槽;
所述步骤702包括:
基于预先确定的压力与折叠角的转换计算公式,对所述第一压力值进行转换计算,得到所述折叠结构的折叠角度;
其中,所述转换计算公式可以表示为A=π-(F-F 0)/KR,或A=(F m-F)/KR,其中,A表示折叠角度,F表示第一压力值,F 0表示完全展开状态时的压力值,F m表示完全折叠状态时的压力值,K表示所述弹簧的弹性系数,R表示所述折叠结构的旋转半径。
这样,折叠角A与压力传感器的反馈值F的关系可以如图10所示。
该实施方式中,可以基于上述转换公式A=π-(F-F 0)/KR,或A=(F m-F)/KR,将读取到的压力传感器的反馈值F也即第一压力值代入公式中进行计算,便可快速确定所述折叠结构的折叠角度,且由于该公式是基于弹簧力学原理和圆心角相关数学公式推导出来的,从而可保证基于该公式和当前压力值确定的折叠角度较为准确可信。
本实施例中的折叠角度确定方法,获取折叠结构的压力检测部件检测到的第一压力值;根据所述第一压力值,确定所述折叠结构的折叠角度。这样,通过该方式可快速准确地确定折叠结构的折叠角度。
需要说明的是,本申请实施例提供的折叠角度确定方法,执行主体可以为折叠角度确定装置,或者该折叠角度确定装置中的用于执行折叠角度确定方法的控制模块。本申请实施例中以折叠角度确定装置执行折叠角度确定方法为例,说明本申请实施例提供的折叠角度确定装置。
请参见图11,图11为本申请实施例提供的折叠角度确定装置的结构示意图,应用于前述实施例中所述的折叠结构,如图11所示,折叠角度确定装置1100包括:
获取模块1101,用于获取所述折叠结构的压力检测部件检测到的第一压力值;
确定模块1102,用于根据所述第一压力值,确定所述折叠结构的折叠角度。
可选地,所述压力检测部件包括压力传感器、弹簧、滑块和滑槽;
确定模块1102用于基于预先确定的压力与折叠角的转换计算公式,对所述第一压力值进行转换计算,得到所述折叠结构的折叠角度;
其中,所述转换计算公式为A=π-(F-F 0)/KR,或A=(F m-F)/KR,其中,A表示折叠角度,F表示第一压力值,F 0表示完全展开状态时的压力值,F m表示完全折叠状态时的压力值,K表示所述弹簧的弹性系数,R表示所述折叠结构的旋转半径。
本实施例中的折叠角度确定装置,获取折叠结构的压力检测部件检测到的第一压力值;根据所述第一压力值,确定所述折叠结构的折叠角度。这样,折叠角度确定装置可快速准确地确定折叠结构的折叠角度。
本申请实施例中的折叠角度确定装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的折叠角度确定装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的折叠角度确定装置能够实现图7的方法实施例实现的各个过程,为避免重复,这里不再赘述。
可选地,如图12所示,本申请实施例还提供一种电子设备1200,包括处理器1201,存储器1202,存储在存储器1202上并可在所述处理器1201上 运行的程序或指令,该程序或指令被处理器1201执行时实现上述折叠角度确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
图13为实现本申请实施例的一种电子设备的硬件结构示意图。
该电子设备1300包括但不限于:射频单元1301、网络模块1302、音频输出单元1303、输入单元1304、传感器1305、显示单元1306、用户输入单元1307、接口单元1308、存储器1309、处理器1310以及折叠屏1311等部件。
本领域技术人员可以理解,电子设备1300还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1310逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图13中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,处理器1310,用于获取所述折叠屏1311的压力检测部件检测到的第一压力值;
根据所述第一压力值,确定所述折叠屏的折叠角度。
可选地,所述压力检测部件包括压力传感器、弹簧、滑块和滑槽;
处理器1310,用于基于预先确定的压力与折叠角的转换计算公式,对所述第一压力值进行转换计算,得到所述折叠结构的折叠角度;
其中,所述转换计算公式为A=π-(F-F 0)/KR,或A=(F m-F)/KR,其中,A表示折叠角度,F表示第一压力值,F 0表示完全展开状态时的压力值,F m表示完全折叠状态时的压力值,K表示所述弹簧的弹性系数,R表示所述折叠屏的旋转半径。
本实施例中的电子设备,获取折叠屏的压力检测部件检测到的第一压力值;根据所述第一压力值,确定所述折叠屏的折叠角度。这样,电子设备可 快速准确地确定折叠屏的折叠角度。
应理解的是,本申请实施例中,输入单元1304可以包括图形处理器(Graphics Processing Unit,GPU)13041和麦克风13042,图形处理器13041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1306可包括显示面板13061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板13061。用户输入单元1307包括触控面板13071以及其他输入设备13072。触控面板13071,也称为触摸屏。触控面板13071可包括触摸检测装置和触摸控制器两个部分。其他输入设备13072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。存储器1309可用于存储软件程序以及各种数据,包括但不限于应用程序和操作系统。处理器1310可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1310中。折叠屏1311可以是如图1至图6中所示的折叠结构,包括第一壳体、第二壳体、弹性连接部件和压力检测部件,具体可参见前述实施例中的相关介绍,此处不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述折叠角度确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述折叠角度确定方法实施例的各个过程,且能达到相同的技术效果,为避免重 复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例还提供一种通信设备,所述通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现上述折叠角度确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被配置成被至少一个处理器执行以实现上述折叠角度确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光 盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (16)

  1. 一种折叠结构,包括:第一壳体、第二壳体、弹性连接部件和压力检测部件,其中,
    所述第一壳体和所述第二壳体通过所述弹性连接部件连接,且所述第一壳体可相对所述第二壳体转动;
    所述压力检测部件与所述弹性连接部件连接,用于检测所述弹性连接部件的压力值。
  2. 根据权利要求1所述的折叠结构,其中,所述弹性连接部件的第一端与所述压力检测部件连接,所述弹性连接部件的第二端设置于所述第二壳体。
  3. 根据权利要求2所述的折叠结构,其中,所述压力检测部件设置于所述第一壳体,且所述压力检测部件包括压力传感器、弹簧、滑块和滑槽,所述压力传感器、所述弹簧和所述滑块均位于所述滑槽中;
    所述弹簧的第一端固定在所述滑槽的一端,所述弹簧的第二端与所述压力传感器连接,所述压力传感器还与所述滑块连接,所述滑块还与所述弹性连接部件的第一端连接,所述滑块可在所述滑槽内滑动。
  4. 根据权利要求3所述的折叠结构,其中,所述弹簧的第一端固定在所述滑槽中靠近所述第二壳体的一端。
  5. 根据权利要求3所述的折叠结构,其中,所述压力传感器为压阻式压力传感器。
  6. 根据权利要求1所述的折叠结构,其中,所述弹性连接部件为铰链式结构。
  7. 一种电子设备,包括权利要求1至6中任一项所述的折叠结构。
  8. 一种折叠角度确定方法,应用于权利要求1至6中任一项所述的折叠结构,所述方法包括:
    获取所述折叠结构的压力检测部件检测到的第一压力值;
    根据所述第一压力值,确定所述折叠结构的折叠角度。
  9. 根据权利要求8所述的方法,其中,所述压力检测部件包括压力传感器、弹簧、滑块和滑槽;
    所述根据所述第一压力值,确定所述折叠结构的折叠角度,包括:
    基于预先确定的压力与折叠角的转换计算公式,对所述第一压力值进行转换计算,得到所述折叠结构的折叠角度;
    其中,所述转换计算公式为A=π-(F-F 0)/KR,或A=(F m-F)/KR,其中,A表示折叠角度,F表示第一压力值,F 0表示完全展开状态时的压力值,F m表示完全折叠状态时的压力值,K表示所述弹簧的弹性系数,R表示所述折叠结构的旋转半径。
  10. 一种折叠角度确定装置,应用于权利要求1至6中任一项所述的折叠结构,所述折叠角度确定装置包括:
    获取模块,用于获取所述折叠结构的压力检测部件检测到的第一压力值;
    确定模块,用于根据所述第一压力值,确定所述折叠结构的折叠角度。
  11. 根据权利要求10所述的折叠角度确定装置,其中,所述压力检测部件包括压力传感器、弹簧、滑块和滑槽;
    所述确定模块用于基于预先确定的压力与折叠角的转换计算公式,对所述第一压力值进行转换计算,得到所述折叠结构的折叠角度;
    其中,所述转换计算公式为A=π-(F-F 0)/KR,或A=(F m-F)/KR,其中,A表示折叠角度,F表示第一压力值,F 0表示完全展开状态时的压力值,F m表示完全折叠状态时的压力值,K表示所述弹簧的弹性系数,R表示所述折叠结构的旋转半径。
  12. 一种电子设备,包括权利要求1至6中任一项所述的折叠结构,所述电子设备还包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求8或9所述的折叠角度确定方法的步骤。
  13. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求8或9所述的折叠角度确定 方法的步骤。
  14. 一种芯片,包括处理器和通信接口,所述通信接口和所述处理器耦合,其中,所述处理器用于运行程序或指令,实现如权利要求8至9任一项所述的折叠角度确定方法的步骤。
  15. 一种计算机程序产品,所述计算机程序产品被存储在非瞬态的可读存储介质中,其中,所述计算机程序产品被至少一个处理器执行以实现如权利要求8至9任一项所述的折叠角度确定方法的步骤。
  16. 一种通信设备,被配置为执行如权利要求8至9任一项所述的折叠角度确定方法的步骤。
PCT/CN2022/075374 2021-02-09 2022-02-07 折叠结构、电子设备和折叠角度确定方法 WO2022171055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110180357.2A CN112882541A (zh) 2021-02-09 2021-02-09 折叠结构、电子设备和折叠角度确定方法
CN202110180357.2 2021-02-09

Publications (1)

Publication Number Publication Date
WO2022171055A1 true WO2022171055A1 (zh) 2022-08-18

Family

ID=76056253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075374 WO2022171055A1 (zh) 2021-02-09 2022-02-07 折叠结构、电子设备和折叠角度确定方法

Country Status (2)

Country Link
CN (1) CN112882541A (zh)
WO (1) WO2022171055A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112882541A (zh) * 2021-02-09 2021-06-01 维沃移动通信有限公司 折叠结构、电子设备和折叠角度确定方法
CN115118815B (zh) * 2022-08-29 2023-02-03 荣耀终端有限公司 防反折报警方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106910427A (zh) * 2017-02-23 2017-06-30 武汉华星光电技术有限公司 一种显示器及其柔性显示屏的平展方法
US20170208157A1 (en) * 2016-01-18 2017-07-20 Lg Electronics Inc. Mobile terminal
CN111182100A (zh) * 2019-12-31 2020-05-19 网易(杭州)网络有限公司 折叠屏控制方法及装置
CN111596727A (zh) * 2020-05-21 2020-08-28 北京小米移动软件有限公司 终端设备、控制方法、装置及存储介质
CN112882541A (zh) * 2021-02-09 2021-06-01 维沃移动通信有限公司 折叠结构、电子设备和折叠角度确定方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106641091A (zh) * 2016-11-23 2017-05-10 青岛盛鑫琴院机电科技有限公司 可显示压力的轴向弹性杆
CN207779610U (zh) * 2018-01-06 2018-08-28 佛山市顺德区亚数工业自动化科技有限公司 一种气浴送料机的气压检测装置
CN207941939U (zh) * 2018-01-09 2018-10-09 江苏苏美达车轮有限公司 用于轮毂生产的成品率高的智能型重力铸造系统
CN208325770U (zh) * 2018-04-18 2019-01-04 佛山市揽德包装机械有限公司 一种包装机的放膜机构
CN208577076U (zh) * 2018-07-02 2019-03-05 贵州省贵福菌业发展有限公司 一种用于生产油茶菇的传送装置
CN208409893U (zh) * 2018-07-06 2019-01-22 广州市第五中学 一种篮球演示机器人
CN109752333A (zh) * 2019-02-28 2019-05-14 广州市鹭江远科技有限公司 一种用于食品重金属检测的便于切换的原子光谱吸收仪
CN212391162U (zh) * 2020-06-18 2021-01-22 上海山松仪器仪表有限公司 一种防爆电接点压力表

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170208157A1 (en) * 2016-01-18 2017-07-20 Lg Electronics Inc. Mobile terminal
CN106910427A (zh) * 2017-02-23 2017-06-30 武汉华星光电技术有限公司 一种显示器及其柔性显示屏的平展方法
CN111182100A (zh) * 2019-12-31 2020-05-19 网易(杭州)网络有限公司 折叠屏控制方法及装置
CN111596727A (zh) * 2020-05-21 2020-08-28 北京小米移动软件有限公司 终端设备、控制方法、装置及存储介质
CN112882541A (zh) * 2021-02-09 2021-06-01 维沃移动通信有限公司 折叠结构、电子设备和折叠角度确定方法

Also Published As

Publication number Publication date
CN112882541A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2022171055A1 (zh) 折叠结构、电子设备和折叠角度确定方法
AU2018203008B2 (en) Foldable electronic apparatus and interfacing method thereof
US10970026B2 (en) Application launching in a multi-display device
CN110462556B (zh) 显示控制方法及装置
JP7066054B2 (ja) 角度決定回路、角度決定方法、および折りたたみ式スクリーン端末
KR101939724B1 (ko) 전자 디바이스, 입력/출력 장치 및 그 방법
US10248224B2 (en) Input based on interactions with a physical hinge
EP2708983A2 (en) Method for auto-switching user interface of handheld terminal device and handheld terminal device thereof
CN106648494B (zh) 一种信息处理方法及电子设备
WO2017161803A1 (zh) 一种设置的调节方法和终端
WO2022063166A1 (zh) 参数调节方法、装置及电子设备
WO2017161827A1 (zh) 一种调节相机焦距的方法和终端
WO2017032078A1 (zh) 一种界面控制方法及移动终端
WO2021115171A1 (zh) 可穿戴设备及控制方法
KR20130105414A (ko) 정보 처리 방법, 화상 수집 유닛 구동 방법 및 전기 장치
US20230222989A1 (en) Automatic input style selection or augmentation for an external display device
WO2015149047A1 (en) Alternate dynamic keyboard for convertible tablet computers
WO2017161814A1 (zh) 一种终端的控制方法及装置
CN110489038B (zh) 界面显示方法及终端设备
WO2022111458A1 (zh) 图像拍摄方法和装置、电子设备及存储介质
JP7329150B2 (ja) タッチボタン、制御方法及び電子機器
AU2014306699B2 (en) Anti-arcing circuit
JP7236551B2 (ja) キャラクタ推薦方法、キャラクタ推薦装置、コンピュータ装置およびプログラム
WO2024012083A1 (zh) 一种车辆运行过程中soc精度验证系统、方法、装置和上位机
EP3710910B1 (en) Multi-panel computing device having integrated magnetic coupling structure(s)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE