WO2020153078A1 - パルスアーク溶接の倣い制御方法、制御装置、溶接システム、溶接プログラム及び溶接電源 - Google Patents

パルスアーク溶接の倣い制御方法、制御装置、溶接システム、溶接プログラム及び溶接電源 Download PDF

Info

Publication number
WO2020153078A1
WO2020153078A1 PCT/JP2019/050375 JP2019050375W WO2020153078A1 WO 2020153078 A1 WO2020153078 A1 WO 2020153078A1 JP 2019050375 W JP2019050375 W JP 2019050375W WO 2020153078 A1 WO2020153078 A1 WO 2020153078A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
detection signal
arc
average value
arc voltage
Prior art date
Application number
PCT/JP2019/050375
Other languages
English (en)
French (fr)
Inventor
昇吾 中司
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201980089682.9A priority Critical patent/CN113329837B/zh
Priority to US17/424,515 priority patent/US20220088695A1/en
Priority to EP19911887.8A priority patent/EP3915710A4/en
Publication of WO2020153078A1 publication Critical patent/WO2020153078A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/0216Seam profiling, e.g. weaving, multilayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • B23K9/1012Power supply characterised by parts of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • B23K9/1043Power supply characterised by the electric circuit
    • B23K9/1056Power supply characterised by the electric circuit by using digital means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • B23K9/1043Power supply characterised by the electric circuit
    • B23K9/1056Power supply characterised by the electric circuit by using digital means
    • B23K9/1062Power supply characterised by the electric circuit by using digital means with computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting

Definitions

  • the present invention relates to a copy arc welding control method, control device, welding system, welding program, and welding power source. More specifically, in the welding line copying control of pulse arc welding, even with pulse arc welding, it is possible to perform highly accurate welding line copying control, a copying control method of pulse arc welding, a control device, a welding system, and a welding program. And the welding power source.
  • an arc sensor which is a non-contact sensor, is used as a method for controlling the copying of a welding line.
  • the arc sensor responds to changes in the distance between the welding wire energization point (the contact point between the welding wire and the contact tip) and the base metal (hereinafter also referred to as the "chip-base metal distance" or “protrusion”). Utilizes the characteristics that welding current and arc voltage change.
  • the torch determines that it is aimed at the groove center, i.e. on the weld line, and these changes are asymmetric in the behavior on the left and right sides of the weaving. If so, a method of determining that the torch is out of the welding line and then controlling to move the weaving center so as to be symmetrical can be mentioned.
  • the arc sensor is a method that monitors the welding current and arc voltage and determines the torch position from the amount of electrical change, but when the welding current and arc voltage have a pulsed waveform, that is, pulse arc
  • the copying control is applied to the welding method, in addition to changes in welding current and arc voltage due to the distance between the tip and the base metal, periodic changes due to pulses are also combined, so electrical change information corresponding to protrusion changes can be accurately obtained. Since it cannot be extracted, there is a risk that the welding line tracing accuracy will be lower than in the case where the pulse arc welding method is not used.
  • the peak voltage Vp is limited to a peak voltage fluctuation range Vpc ⁇ Vpc centered on a predetermined peak voltage reference value Vpc.
  • the peak voltage limit value Vpf is calculated, the base voltage Vb is limited within the base voltage fluctuation range Vbc ⁇ Vbc centered on the predetermined base voltage reference value Vbc, and the base voltage limit value Vbf is calculated.
  • the welding torch is made to follow the welding line and pulse arc welding is performed.
  • the present invention has been made in view of the above-described problems, and its object is to obtain a high precision without being affected by a welding current or an arc voltage having a pulse shape even when using a pulse arc welding method. It is an object of the present invention to provide a profile control method for pulse arc welding, a control device, a welding system, a welding program, and a welding power source that enable extraction of protrusion change information.
  • the above-described object of the present invention is achieved by the following configuration (1) of the contour control method for pulse arc welding.
  • a welding torch is weaved in a groove, and a tracing is made to follow a welding line from an electrical change amount X detected during the weaving.
  • the electrical change amount X includes at least one of the welding current detection signal Io and the arc voltage detection signal Vo as a parameter, With a predetermined period Tf as one section, an average value Yn of the electrical variation X in each section is calculated,
  • a copying control method for pulse arc welding characterized in that the protrusion change information in the groove is extracted based on the average value Yn and the welding line is followed.
  • a preferred embodiment of the present invention relating to the copy control method of pulse arc welding relates to the following (2) to (7).
  • (3) The electrical change amount X is a ratio (Vo/Io) of the arc voltage detection signal Vo to the welding current detection signal Io, or a ratio (Io/Io) of the welding current detection signal Io to the arc voltage detection signal Vo.
  • Vo control method for pulse arc welding according to (1) or (2) above, wherein Vo) is included as a parameter.
  • the average value Yn is the electric power in the predetermined period Tf when the electrical change amount X is a ratio (Io/Vo) of the welding current detection signal Io to the arc voltage detection signal Vo.
  • the copying control method for pulse arc welding according to (3) above which is a value obtained by multiplying the average value of the dynamic change amount X by a predetermined set voltage Vset.
  • the frequency filter is a low-pass filter having a cutoff frequency selected from the range of 10 to 120 Hz.
  • a predetermined upper limit value is calculated by adding a predetermined upper limit range value with the average value Yn of the electrical change amount X in one section before the measurement target period as a central value, and a predetermined lower limit range value.
  • the above-mentioned object of the present invention is achieved by the following configuration (8) of the control device.
  • (8) In pulse arc welding in which welding current and arc voltage are periodically changed and welded, a welding torch is weaved in a groove, and control is performed to follow the welding line from the electrical change amount X detected during the weaving.
  • the electrical change amount X includes at least one of the welding current detection signal Io and the arc voltage detection signal Vo as a parameter,
  • a control device wherein a predetermined period Tf is set as one section, and an average value Yn of the electrical change amount X in each section is calculated.
  • a preferred embodiment of the present invention related to the control device relates to the following (9).
  • (9) The control device according to (8), wherein the protrusion change information in the groove is extracted based on the average value Yn and controlled so as to follow the welding line.
  • the above-mentioned object of the present invention is achieved by the following configuration (10) of the welding system.
  • (10) In pulse arc welding in which welding current and arc voltage are cyclically changed and welded, a welding torch is weaved in a groove, and control is performed to follow the welding line from the amount of electrical change X detected during the weaving.
  • a welding system with functions, The electrical change amount X includes at least one of the welding current detection signal Io and the arc voltage detection signal Vo as a parameter, With a predetermined period Tf as one section, an average value Yn of the electrical variation X in each section is calculated, A welding system having a function of extracting protrusion change information in the groove on the basis of the average value Yn and controlling so as to follow the welding line.
  • the above-mentioned object of the present invention is achieved by the following configuration (11) of the welding program.
  • (11) In pulse arc welding in which welding current and arc voltage are periodically changed and welded, a welding torch is weaved in a groove, and a welding line is followed from an electrical variation X detected during the weaving.
  • a welding program for welding Weaving the welding torch within the groove, Detecting the electrical variation X during the weaving; Calculating a mean value Yn of the electrical change amount X in each section with a predetermined period Tf as one section; Extracting protrusion change information in the groove based on the average value Yn; Following the welding line based on the protrusion change information,
  • a welding program comprising:
  • a welding power source comprising: An electric power supply unit that supplies electric power to generate an arc and perform welding, A current control unit that receives signals such as a feed speed command, a welding current command, and an arc voltage command, and calculates a control amount of the power supply unit, A current detection unit that detects a welding current Iw during welding and outputs a welding current detection signal Io; A voltage detector that detects the arc voltage Vw during welding and outputs an arc voltage detection signal Vo;
  • the electrical variation X includes at least one of the welding current detection signal Io and the arc voltage detection signal Vo as a parameter, With a predetermined period Tf as one section, an average value Yn of the electrical variation X in each section is calculated, A control unit that controls the
  • control device According to the copying control method, control device, welding system, welding program, and welding power source for pulse arc welding of the present invention, it is necessary for arc copying control without being affected by the periodic changes in welding current and arc voltage due to pulses. It becomes possible to extract the torch protrusion change information with high accuracy, and it is possible to realize accurate welding line copying control.
  • FIG. 1 is a schematic view of a welding system according to an embodiment capable of carrying out copy control welding according to the present invention.
  • FIG. 2 is a configuration diagram relating to an arc copying control system of the welding system shown in FIG.
  • FIG. 3A is a graph showing a welding current waveform and an arc voltage waveform of pulse arc welding, and protrusion change information extracted from the welding current waveform and the arc voltage waveform by a conventional control method.
  • FIG. 3B is a graph showing a welding current waveform and an arc voltage waveform of pulse arc welding, and protrusion change information extracted from the welding current waveform and the arc voltage waveform by the control method according to the present invention.
  • FIG. 4 is an enlarged view of the detected welding current and arc voltage detection signals.
  • FIG. 5A is a graph showing a welding current waveform and an arc voltage waveform when an abnormal voltage occurs, and protrusion change information extracted from the welding current waveform and the arc voltage waveform by a conventional control method.
  • FIG. 5B is a graph showing a welding current waveform and an arc voltage waveform when an abnormal voltage occurs, and protrusion change information extracted by the control method according to the present invention from the welding current waveform and the arc voltage waveform.
  • FIG. 5C shows a welding current waveform and an arc voltage waveform when an abnormal voltage occurs, and a protrusion extracted from the welding current waveform and the arc voltage waveform by a control method of a modified example of the present invention to which a filtering process by a frequency filter is applied. It is a graph which shows change information.
  • the present embodiment is an example of the case where the welding robot is used, and the copying control of the present invention is not limited to the configuration of the present embodiment.
  • the copying control of the present invention may be mounted on an automatic device using a dolly. Further, in this embodiment, the pulse arc welding method is used.
  • FIG. 1 is a schematic diagram showing a configuration example of an arc welding system 1 according to this embodiment.
  • the arc welding system 1 includes a welding robot 120, a feeding device 130, a shield gas supply device 140, a welding power source 150, a robot controller 160, and a copying device 170.
  • the copying apparatus 170 is arranged between the welding power source 150 and the robot controller 160 in the figure, the function of the copying apparatus 170 may be provided to the welding power source 150 or the robot controller 160.
  • the welding power source 150 is connected to the welding electrode via a positive power cable, and is connected to the object to be welded (hereinafter also referred to as “base material” or “workpiece”) 200 via a negative power cable. This connection is for welding with reverse polarity, and for welding with positive polarity, the welding power source 150 is connected to the base material 200 via a positive power cable and the welding electrode via a negative power cable. Connected to.
  • the welding power source 150 is also connected by a signal line to the feeding device 130 of the consumable electrode (hereinafter, also referred to as “welding wire”) 100, and can control the feeding speed of the welding wire 100.
  • the welding robot 120 has a welding torch 110 as an end effector.
  • the welding torch 110 has an energizing mechanism (contact tip) for energizing the welding wire 100.
  • the welding wire 100 generates an arc from the tip by energization from the contact tip, and the heat thereof welds the base material 200 which is the object of welding.
  • the welding torch 110 is equipped with a shield gas nozzle (mechanism for ejecting shield gas).
  • the shield gas may be either carbon dioxide gas, argon gas, or a mixed gas such as argon gas+carbon dioxide gas. It is more preferable to use carbon dioxide gas as the shield gas, and it is more preferable to use a mixed gas of argon gas mixed with 10 to 30% carbon dioxide gas.
  • the shield gas is supplied from the shield gas supply device 140.
  • the welding wire 100 used in this embodiment may be either a solid wire containing no flux or a flux-cored wire containing flux.
  • the material of the welding wire 100 is not particularly limited, and for example, mild steel, stainless steel, aluminum, or titanium can be used.
  • the diameter of the welding wire 100 is not particularly limited. In the case of this embodiment, the upper limit of the diameter is preferably 1.6 mm and the lower limit thereof is 0.8 mm.
  • the robot controller 160 controls the operation of the welding robot 120.
  • the robot controller 160 holds in advance teaching data that defines an operation pattern of the welding robot 120, a welding start position, a welding end position, a welding condition, a weaving operation, and the like, and instructs the welding robot 120 of these to provide the welding data. Control the behavior of.
  • the robot controller 160 gives the welding power source 150 welding conditions such as welding current, arc voltage, and feeding speed during the welding operation according to the teaching data.
  • the welding power supply 150 supplies electric power to the welding wire 100 and the object to be welded 200 according to a command from the robot controller 160, thereby generating an arc between the welding wire 100 and the object to be welded 200. Further, the welding power source 150 outputs a signal for controlling the speed at which the welding wire 100 is fed to the feeding device 130 according to a command from the robot controller 160.
  • FIG. 2 is a configuration diagram relating to the arc copying control system of the present embodiment.
  • the work 200 has a groove.
  • the V groove shown in FIG. 2 is an example, and the present invention is applicable to other groove shapes and fillet welding.
  • the welding portion 11 is viewed from the welding advancing direction, and is welded to the workpiece 200 by the welding robot 120 while weaving the welding torch 110 in the left-right direction in FIG.
  • the robot controller 160 includes a teaching data storage unit 21 that stores and stores teaching data created in advance, a teaching data analysis unit 22 that analyzes the teaching data, and a robot driving unit 50 that controls each axis of the welding robot 120 ( A trajectory planning unit 20 that generates servo command information for issuing a command to a servo driver).
  • the teaching data storage unit 21 stores teaching data that defines an operation pattern of the welding robot 120 and the like.
  • the teaching data is created in advance by an operator using a teaching device (not shown).
  • the method of creation may be other than the teaching pendant.
  • teaching data may be created on a personal computer and stored in the teaching data storage unit 21 by wireless or wired communication.
  • the teaching data analysis unit 22 calls the teaching data from the teaching data storage unit 21 and analyzes the teaching data, for example, when a welding start operation is performed. By analyzing the teaching data, teaching trajectory information and welding condition command information are generated.
  • the teaching locus information is information that defines the locus of the welding robot 120 in the welding operation including the welding speed, the weaving conditions, and the like.
  • the welding condition command information is information for issuing commands relating to welding current, arc voltage, feed rate, etc. in welding work, and includes control commands for each welding condition including arc ON/OFF commands. .. Then, the teaching data analysis unit 22 outputs the generated teaching trajectory information to the trajectory planning unit 20. Further, the teaching data analysis unit 22 may output the generated welding condition command information to the welding power source 150.
  • the arc voltage command 25 or the feed speed command 26 outputs the arc voltage command signal Vr or the feed speed command signal Fr to the welding power source 150, respectively.
  • the trajectory planning unit 20 calculates the target position of the welding robot 120 based on the teaching trajectory information input from the teaching data analysis unit 22 and generates servo command information for controlling each axis of the welding robot 120. .. Then, the trajectory planning unit 20 outputs the generated servo command information to the robot driving unit 50 of the welding robot 120.
  • the welding robot 120 operates based on the servo command information.
  • the servo command information includes weaving position command information for commanding a position at which the welding torch 110 is to be weaved, and the trajectory planning unit 20 outputs the teaching trajectory information output from the teaching data analysis unit 22 and the later-described teaching trajectory information.
  • the horizontal shift detection unit 24 Based on the protrusion change information output from the electrical change amount calculation unit 40, the horizontal shift detection unit 24, which will be described later, detects the horizontal shift amount from the welding line.
  • the trajectory planning unit 20 resets the weaving position command information based on the correction amount, and outputs the servo command information to the robot drive unit 50 of the welding robot 120.
  • the welding power source 150 receives a signal such as a power supply speed command, a welding current command, or an arc voltage command, and a control amount of the power supply unit 30, and a power supply unit 30 that supplies electric power for generating an arc to perform welding.
  • a current control unit 33 that detects the welding current Iw during welding, outputs a welding current detection signal Io, detects an arc voltage Vw during welding, and outputs an arc voltage detection signal Vo And a voltage detection unit 32 that operates.
  • the power supply unit 30 of the welding power source 150 receives a commercial power supply such as three-phase 200V as an input, and inputs the AC voltage according to an error amplification signal output from a current control unit 33, which will be described later. Output control is performed by a rectifier or the like, and arc voltage Vw and welding current Iw are output. Also, a reactor may be configured to smooth the output voltage.
  • the current control unit 33 of the welding power source 150 has a function of setting various parameters related to the welding current flowing through the welding wire 100.
  • the current control unit 33 is a pulse current, and the peak current, the base current, etc. are based on the welding condition command information (arc voltage command 25, feed speed command 26) input from the robot controller 160. Determine the parameters for pulse welding.
  • the pulse waveform is not particularly limited, and may be a sine wave, a trapezoidal shape, or a triangular wave.
  • the voltage setting signal Vr is compared with the voltage detection signal Vo detected by the voltage detection unit 32, the difference between the voltage setting signal Vr and the voltage detection signal Vo is amplified, and the current control unit 33 causes the voltage error amplification signal Vo.
  • a command for controlling the pulse frequency and increasing or decreasing the welding current is set as the current setting control signal Ir so that the length of the arc (arc length) generated between the tip of the welding wire 100 and the work 200 becomes constant. , And outputs it to the power supply unit 30 to control the welding current Iw.
  • the current control unit 33 finely adjusts the wire melting rate through the control of the welding current Iw, and executes constant voltage control that makes the distance between the tip and the base metal constant. Furthermore, the current control unit 33 includes a pulse state generation unit 34 and a pulse cycle counter 35 to determine one pulse period.
  • the pulse period counter 35 receives the pulse signal from the pulse state generation unit 34, starts counting from the pulse start point based on the pulse start or end state signal, and moves to the next pulse start point. Reset the counter. After resetting, counting is further started, and the count value Pcnt is output to the electrical change amount calculation unit 40.
  • the electrical change amount calculation unit 40 determines the period of one pulse or the start or end of a pulse based on the received count value Pcnt.
  • the current detection unit 31 detects the welding current Iw during welding and outputs the welding current detection signal Io.
  • the welding current detection signal Io is digitally converted by the A/D conversion unit and input to the current control unit 33 and the electrical change amount calculation unit 40.
  • the voltage detection unit 32 detects the arc voltage Vw during welding and outputs the arc voltage detection signal Vo.
  • the arc voltage detection signal Vo is digitally converted by the A/D conversion unit and input to the current control unit 33 and the electrical change amount calculation unit 40.
  • the copying apparatus 170 is an example of a control apparatus having a function of controlling copying, and includes an electrical change amount calculation unit 40 that extracts protrusion change information.
  • an electrical change amount calculation unit 40 that extracts protrusion change information.
  • at least one electrical change amount X of the welding current detection signal Io detected by the current detection unit 31 or the arc voltage detection signal Vo detected by the voltage detection unit 32 is calculated as the electrical change amount. Input to the section 40.
  • the detection signals Io and Vo (electrical change amount X) at the input welding current Iw and arc voltage Vw are shown in FIG.
  • the pulse shape is as shown.
  • FIG. 4 is an enlarged part of a graph showing changes in the welding current detection signal Io and the arc voltage detection signal Vo with respect to time t, as shown in FIGS. 3A and 3B.
  • the average value Yn of the electrical change amount X is calculated as T n ⁇ 1 ).
  • the average value Yn of this one section is transmitted to the robot controller 160 at a transmission cycle determined.
  • the period Tf is set to one pulse which is the most preferable period.
  • one period of the transmission period determined by the robot controller 160 is set as the period. It may be Tf.
  • a plurality of pulse cycles or a plurality of transmission cycles determined by the robot controller 160 may be set as one section as the period Tf.
  • the average value Yn is calculated by setting the period Tf for two pulse periods and setting the period Tf as one section. Note that the information of the period Tf is given to the electrical change amount calculation unit 40 by the above-described count value Pcnt when one pulse period is one section, for example.
  • X is the electrical variation
  • T n -T n-1 are predetermined duration (Tf)
  • Yn is the average value of the electric change amount X.
  • At least one of the welding current detection signal Io and the arc voltage detection signal Vo is input as the signal input to the electrical change amount calculation unit 40, that is, the electrical change amount X. It is preferable to input both the welding current detection signal Io and the arc voltage detection signal Vo. Further, Io/Vo (reciprocal of resistance), which is the ratio of the welding current detection signal Io to the arc voltage detection signal Vo, or Vo/Io (resistance), which is the ratio of the arc voltage detection signal Vo to the welding current detection signal Io. More preferably, the average value of the pulse 1 section Tf, which is a predetermined period, is calculated. The reason for inputting both the welding current detection signal Io and the arc voltage detection signal Vo will be described in detail later in ⁇ External characteristics>.
  • the set voltage Vset and the set current Iset may be input to the electrical change amount calculation unit 40. That is, the set voltage Vset or the set current Iset is included as an input value. It is preferable to input the set voltage Vset. That is, as shown in the following equation (2), the amount of electrical change X is determined in advance when Io/Vo (reciprocal of resistance), which is the ratio of the welding current detection signal Io to the arc voltage detection signal Vo. A value obtained by multiplying the average value of the electrical change amount X in the period Tf by a preset voltage Vset is output as the average value Yn.
  • Io/Vo reciprocal of resistance
  • the unit of the average value Yn calculated by multiplying the average value of the electrical change amount X by the set voltage Vset becomes the same as Io, Since it can be made compatible with the conventional robot controller that controls only the welding current detection signal Io, it is more preferable from the viewpoint of versatility.
  • Io is the welding current detection signal
  • Vo is the arc voltage detection signal
  • T n -T n-1 are predetermined duration (Tf)
  • Vset is predetermined set voltage
  • FIG. 3A shows the welding current detection signal Io ((a) in the figure), the arc voltage detection signal Vo ((b) in the figure), and the welding current detection signal Io at a predetermined sampling period (for example, 5 ⁇ s).
  • 3) shows the protrusion change information ((c) in the figure) obtained by the conventional control method of sampling in FIG.
  • FIG. 3B is calculated by the equation (1) using the welding current detection signal Io ((a) in the figure) and the arc voltage detection signal Vo ((b) in the figure) and the control method according to the present embodiment.
  • the projected change information ((c) in the figure) is shown. As shown in FIG.
  • a signal blur occurs in the signal (waveform information of the electrical change amount X) that is the protrusion change information, whereas as shown in FIG. 3B.
  • the control method of the present embodiment in the signal that becomes the protrusion change information (waveform information of the average value Yn of the electrical change amount X), there is almost no signal blur, and the signal can be obtained with high accuracy. I understand.
  • the left-right deviation detection unit 24 of the robot controller 160 detects a left-right difference according to the protrusion change information input from the electrical change amount calculation unit 40, and outputs it to the correction amount calculation unit 23.
  • the correction amount calculation unit 23 calculates the correction amount for the weaving center and outputs the correction amount to the trajectory planning unit 20 of the robot controller 160.
  • the calculation method of the left-right deviation and the correction amount is not particularly limited, and for example, any method such as a method of detecting a power spectrum, a method of calculating the distance between the contact tip and the base material 200 (projection length calculation method), a pattern matching method, or the like can be used. A method may be used.
  • the method of detecting the power spectrum in this embodiment is a method of detecting the power spectrum of the average value Yn synchronized with the weaving frequency. This method is based on that when the welding torch 110 is swung around the welding line, the waveform of the time series data (protrusion change information) of the average value Yn changes at a frequency twice the weaving frequency. That is, when the welding torch 110 is swinging along the welding line (normal case), the waveform of the protrusion change information has a maximum frequency component twice the weaving frequency. On the other hand, when the welding torch 110 is largely deviated to the right or left from the welding line, the weaving frequency component becomes maximum, and the frequency component twice the weaving frequency cannot be substantially confirmed. Utilizing this characteristic, the lateral shift amount of the torch position is determined from the ratio of the weaving frequency of the power spectrum and the frequency component of twice the weaving frequency.
  • the distance between the contact tip and the base metal 200 when the welding torch 110 is swung in the groove is calculated, and the position of the welding line is determined from the torch position.
  • the distance between the contact tip and the base material 200 is calculated by a copying control unit (not shown) based on the detected wire feeding speed, welding current Iw, and arc voltage Vw.
  • the pattern matching method in the present embodiment extracts a parameter indicating the pattern shape (protrusion change information) of the average value Yn, and a parameter estimated from this and various conditions such as weaving frequency, circuit inductance, groove condition, and welding condition. Pattern is recognized, and the amount of left-right deviation is calculated.
  • the average value Yn output from the electrical change amount calculation unit 40 is filtered by a frequency filter (not shown), and then the protrusion change information extraction unit (the left-right deviation detection unit 24, It is preferable to input to the correction amount calculation unit 23).
  • a frequency filter By passing through a frequency filter, a more accurate signal can be obtained.
  • this frequency filter is a low-pass filter and that the cutoff frequency is selected from the range of 10 to 120 Hz.
  • the electrical change amount calculating unit 40 sets 1 of the measurement target period (for example, the period of T n ⁇ T n ⁇ 1 in FIG. 4) which is the period being calculated.
  • the upper limit value of the average value Yn is determined according to the predetermined upper limit range value UL and lower limit range value LL (for example, ⁇ 20A with respect to the center value).
  • (Yn(n-1)+UL) and the lower limit value (Yn(n-1)-LL) are set, and the calculated average value Yn of the measurement target period is the upper limit control value (Yn(n-1)+UL).
  • the value exceeds the lower limit or when the value falls below the lower limit control value (Yn(n-1)-LL) it is preferable to control a predetermined process.
  • the average value (Yn(n-1)) of one section before is substituted, and the upper limit value (Yn(n-1)+UL) or the lower limit value (Yn(n-1)-LL) may be used as a substitute.
  • the average value (Yn(n-1)) of the previous section is used. It is good to substitute.
  • FIGS. 5A to 5C show an example in which an abnormal signal is generated in the arc voltage detection signal Vo. More specifically, FIG. 5A shows the welding current detection signal Io ((a) in the figure), the arc voltage detection signal Vo ((b) in the figure), and the welding current detection signal Io at a predetermined sampling cycle (for example, (C) in the drawing is shown by the conventional control method for sampling at 5 ⁇ s). Further, FIG. 5B shows the welding current detection signal Io ((a) in the figure) and the arc voltage detection signal Vo ((b) in the figure) and the welding current detection signal Io at a predetermined sampling period (for example, 5 ⁇ s).
  • a predetermined sampling cycle for example, (C) in the drawing is shown by the conventional control method for sampling at 5 ⁇ s.
  • FIG. 5B shows the welding current detection signal Io ((a) in the figure) and the arc voltage detection signal Vo ((b) in the figure) and the welding current detection signal Io at a predetermined sampling period (for
  • FIG. 5C shows the welding current detection signal Io ((a) in the figure) and the arc voltage detection signal Vo ((b) in the figure) and the welding current detection signal Io at a predetermined sampling period (for example, 5 ⁇ s).
  • 3 shows the protrusion change information extracted by the control method of the present modification sampled by.
  • the signal (waveform information of the electrical change amount X), which is the protruding change information extracted by the conventional control method, has a signal blur.
  • the signal (waveform information of the average value Yn of the electrical change amount X), which is the protruding change information extracted by the control method of the present embodiment is the abnormality occurrence portion in the arc voltage detection signal Vo.
  • a pulse-like waveform is seen.
  • FIG. 5C when the average value Yn of the measurement target period exceeds the upper limit control value or the lower limit control value, it is extracted by a control method of a modified example in which a predetermined process is controlled.
  • the signal (waveform information of the average value Yn of the electrical change amount X) serving as the protrusion change information it can be seen that the signal displacement and the pulse waveform are not seen, and the protrusion change information with high accuracy can be obtained.
  • the drooping characteristic is selected as the output characteristic in which the current hardly changes even if the voltage changes, and the slope of the drooping characteristic is optimally set to stabilize the pulse cycle and arc stability.
  • the external characteristic is set as the drooping characteristic
  • the change in the welding current due to the change in the protruding length is due to the output characteristic of the constant voltage characteristic (the output characteristic in which the voltage hardly changes even if the current changes). Smaller than if. Therefore, the conventional method of performing the arc tracing control by the behavior of the welding current cannot obtain the accurate arc tracing control even if the welding workability is advantageous.
  • the output characteristics of the external characteristics are not particularly limited, and even if the output characteristics are, for example, constant voltage characteristics, constant current characteristics, or drooping characteristics, accurate arc copying is performed. Control can be achieved. Note that it is preferable to use a characteristic close to the drooping characteristic in order to achieve the above-described pulse cycle and arc stability. Specifically, it is more preferable to set the slope of the external characteristic in the range of -1V/100A to -15V/100A, and to set the slope of the external characteristic in the range of -3V/100A to -12V/100A. More preferable.
  • the average value Yn is the average value of Io/Vo during the predetermined period Tf or the average value of Vo/Io during the predetermined period Tf.
  • a copying apparatus 170 is provided separately from the welding power source 150 and the robot controller 160 as a function of controlling copying. Even if the control unit having such a function is provided in the welding power source 150 or the robot controller 160, the same effect can be obtained.
  • the electrical change amount X includes at least one of the welding current detection signal Io and the arc voltage detection signal Vo as a parameter, With a predetermined period Tf as one section, an average value Yn of the electrical variation X in each section is calculated,
  • a copying control method for pulse arc welding characterized in that the protrusion change information in the groove is extracted based on the average value Yn and the welding line is followed. According to this configuration, even when the pulse arc welding method is used, it is possible to extract the protrusion change information with high accuracy without being affected by the welding current or the arc voltage having a pulse shape.
  • the electrical change amount X is a ratio (Vo/Io) of the arc voltage detection signal Vo to the welding current detection signal Io, or a ratio (Io/Io) of the welding current detection signal Io to the arc voltage detection signal Vo.
  • the average value Yn is the electric power in the predetermined period Tf when the electrical change amount X is a ratio (Io/Vo) of the welding current detection signal Io to the arc voltage detection signal Vo.
  • the scanning control method according to (3) above which is a value obtained by multiplying the average value of the dynamic change amount X by a predetermined set voltage Vset.
  • the unit of the average value Yn calculated by multiplying the average value of Io/Vo in the predetermined period Tf by the set voltage Vset is the same as Io, and only the conventional current detection signal Io is obtained. It can be made compatible with the robot controller controlled by.
  • a predetermined upper limit value is calculated by adding a predetermined upper limit range value with the average value Yn of the electrical change amount X in one section before the measurement target period as a central value, and a predetermined lower limit range value.
  • a welding torch is weaved in a groove, and control is performed to follow the welding line from the electrical change amount X detected during the weaving.
  • the electrical change amount X includes at least one of the welding current detection signal Io and the arc voltage detection signal Vo as a parameter,
  • a control device wherein a predetermined period Tf is set as one section, and an average value Yn of the electrical change amount X in each section is calculated. According to this configuration, it is possible to extract the protrusion change information with high accuracy without being affected by the welding current or the arc voltage, which has a pulse shape.
  • the electrical change amount X includes at least one of the welding current detection signal Io and the arc voltage detection signal Vo as a parameter, With a predetermined period Tf as one section, an average value Yn of the electrical variation X in each section is calculated, A welding system having a function of extracting protrusion change information in the groove on the basis of the average value Yn and controlling so as to follow the welding line. According to this configuration, it is possible to extract the protrusion change information with high accuracy without being affected by the welding current or the arc voltage, which has a pulse shape.
  • a welding program for welding Weaving the welding torch within the groove, Detecting the electrical variation X during the weaving; Calculating a mean value Yn of the electrical change amount X in each section with a predetermined period Tf as one section; Extracting protrusion change information in the groove based on the average value Yn; Following the welding line based on the protrusion change information, A welding program comprising: According to this configuration, it is possible to accurately extract the protrusion change information without being affected by the welding current or the arc voltage having the pulse shape, and accurately follow the welding line.
  • a welding power source comprising: An electric power supply unit that supplies electric power to generate an arc and perform welding, A current control unit that receives signals such as a feed speed command, a welding current command, and an arc voltage command, and calculates a control amount of the power supply unit, A current detection unit that detects a welding current Iw during welding and outputs a welding current detection signal Io; A voltage detector that detects the arc voltage Vw during welding and outputs an arc voltage detection signal Vo;
  • the electrical variation X includes at least one of the welding current detection signal Io and the arc voltage detection signal Vo as a parameter, With a predetermined period Tf as one section, an average value Yn of the electrical variation X in each section is calculated, A control unit that controls the protrusion change information in the groove based on the average value Yn to follow the welding
  • Arc Welding System 11 Welding Section 20 Trajectory Planning Section 21 Teaching Data Storage Section 22 Teaching Data Analysis Section 23 Correction Amount Calculation Section 24 Left/Right Deviation Detection Section 25 Arc Voltage Command 26 Feeding Speed Command 30 Power Supply Section 31 Current Detection Section 32 Voltage Detection unit 33 Current control unit 34 Pulse state generation unit 35 Pulse period counter 36 Current setting unit 40 Electrical change amount calculation unit (control device) 50 Robot drive unit 100 Welding wire (consumable electrode) 110 Welding torch 120 Welding robot 130 Feeding device 140 Shield gas supplying device 150 Welding power source 160 Robot controller (control device) 170 Copying device (control device) 200 Base metal (workpiece, work piece) Iw welding current Io welding current detection signal Ir current setting control signal Iset setting current LL lower limit range value Tf predetermined period (pulse 1 section) UL Upper limit range value Vset Set voltage Vw Arc voltage Vo Arc voltage detection signal Vr Arc voltage command signal Fr Feeding

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Arc Welding Control (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

パルスアーク溶接法を用いた場合においても、パルス形状である溶接電流やアーク電圧の影響を受けることなく、高精度な突出し変化情報の抽出が可能となるパルスアーク溶接の倣い制御方法、制御装置、溶接システム、溶接プログラム及び溶接電源を提供する。ウィービング時に検出される電気的変化量Xは、溶接電流検出信号Io及びアーク電圧検出信号Voのうち少なくとも1つをパラメータとして含み、あらかじめ定めた期間Tfを1区間として、1区間ごとにおける電気的変化量Xの平均値Ynを算出し、平均値Ynに基づいて、開先内の突出し変化情報を抽出して溶接線を追従する、パルスアーク溶接の倣い制御方法。

Description

パルスアーク溶接の倣い制御方法、制御装置、溶接システム、溶接プログラム及び溶接電源
 本発明は、パルスアーク溶接の倣い制御方法、制御装置、溶接システム、溶接プログラム及び溶接電源に関する。より詳細には、パルスアーク溶接の溶接線倣い制御において、パルスアーク溶接であっても高精度の溶接線倣い制御が可能となる、パルスアーク溶接の倣い制御方法、制御装置、溶接システム、溶接プログラム及び溶接電源に関する。
 従来、溶接線の倣い制御方法として、非接触センサであるアークセンサが用いられる。アークセンサは、溶接ワイヤの通電点(溶接ワイヤとコンタクトチップの接触点)と母材間の距離(以下、「チップ・母材間距離」又は「突出し」ともいう)が変化すると、それに応じて溶接電流やアーク電圧が変化するという特性を利用する。
 アークセンサの具体的な適用例としては、開先内で溶接トーチをウィービングさせ、開先幅方向のチップ・母材間距離の変化を、検出した溶接電流やアーク電圧の変化から読み取り、これらの変化がウィービング左側と右側での挙動において対称となっていれば、トーチは開先中心、すなわち溶接線を狙っていると判断し、これらの変化がウィービング左側と右側での挙動において非対称となっていれば、トーチは溶接線から外れていると判断して、その後対称になるようにウィービング中心を移動させるように制御する方法が挙げられる。
 このように、アークセンサは溶接電流やアーク電圧を監視して、その電気的変化量からトーチ位置を判断する方法であるが、溶接電流やアーク電圧がパルス状の波形になる場合、すなわちパルスアーク溶接法に倣い制御を適用する場合は、チップ・母材間距離による溶接電流やアーク電圧の変化以外に、パルスによる周期的な変化も合わさるため、突出し変化に相当する電気的変化情報を精度良く抽出することができず、パルスアーク溶接法を用いない場合に比べて、溶接線の倣い精度が低くなるおそれがあった。
 このパルスアーク溶接法を適用した場合の倣い制御方法として、特許文献1では、ピーク電圧Vpを、あらかじめ定めたピーク電圧基準値Vpcを中心値とするピーク電圧変動範囲Vpc±ΔVpc内に制限してピーク電圧制限値Vpfを算出し、ベース電圧Vbを、あらかじめ定めたベース電圧基準値Vbcを中心値とするベース電圧変動範囲Vbc±ΔVbc内に制限してベース電圧制限値Vbfを算出し、オシレート半周期毎のピーク電圧制限値Vpf及び/又はベース電圧制限値Vbfに基づいて溶接トーチを溶接線に倣わせてパルスアーク溶接している。これにより、種々の要因によってアーク電圧に重畳する異常電圧を除去したアーク電圧制限値、ピーク電圧制限値又はベース電圧制限値に基づいて位置ズレ値を正確に算出することができ、高精度な倣い制御を実現するようにした技術が開示されている。
日本国特開2004-82152号公報
 しかしながら、特許文献1に記載のパルスアーク溶接の倣い制御方法では、アーク電圧のパルス波形に発生する異常電圧の除去のみであって、トーチ位置に係る溶接電流やアーク電圧の挙動へ及ぼすパルス波形の影響については何ら考慮されていない。言い換えれば、溶接電流やアーク電圧を検出するサンプリング周期(またはロボットコントローラへの伝送周期)次第で、パルス波形中のピーク位置又はベース位置の値を取ることもあり得るため、トーチ突出し変化情報に係る溶接電流やアーク電圧の挙動を精度良く抽出することができないおそれがあり、改善の余地があった。
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、パルスアーク溶接法を用いた場合においても、パルス形状である溶接電流やアーク電圧の影響を受けることなく、高精度な突出し変化情報の抽出が可能となるパルスアーク溶接の倣い制御方法、制御装置、溶接システム、溶接プログラム及び溶接電源を提供することにある。
 本発明の上記目的は、パルスアーク溶接の倣い制御方法に係る下記(1)の構成により達成される。
(1) 溶接電流及びアーク電圧を周期的に変化させて溶接するパルスアーク溶接において、開先内で溶接トーチをウィービングさせ、前記ウィービング時に検出される電気的変化量Xから溶接線を追従する倣い制御方法であって、
 前記電気的変化量Xは、溶接電流検出信号Io及びアーク電圧検出信号Voのうち少なくとも1つをパラメータとして含み、
 あらかじめ定めた期間Tfを1区間として、前記1区間ごとにおける前記電気的変化量Xの平均値Ynを算出し、
 前記平均値Ynに基づいて、前記開先内の突出し変化情報を抽出して前記溶接線を追従することを特徴とするパルスアーク溶接の倣い制御方法。
 パルスアーク溶接の倣い制御方法に係る本発明の好ましい実施形態は、下記(2)~(7)に関する。
(2) 前記期間Tfは、前記電気的変化量Xのパルス1周期又はパルスの複数周期とする、上記(1)に記載のパルスアーク溶接の倣い制御方法。
(3) 前記電気的変化量Xは、前記溶接電流検出信号Ioに対するアーク電圧検出信号Voの比率(Vo/Io)、又は前記アーク電圧検出信号Voに対する前記溶接電流検出信号Ioの比率(Io/Vo)をパラメータとして含む、上記(1)又は(2)に記載のパルスアーク溶接の倣い制御方法。
(4) 前記平均値Ynは、前記電気的変化量Xを前記アーク電圧検出信号Voに対する前記溶接電流検出信号Ioの比率(Io/Vo)とした場合における、前記あらかじめ定めた期間Tfにおける前記電気的変化量Xの平均値に、あらかじめ定めた設定電圧Vsetを乗じた値である、上記(3)に記載のパルスアーク溶接の倣い制御方法。
(5) 周波数フィルタで濾波された前記電気的変化量Xを用いて前記平均値Ynを算出する、上記(1)~(4)のいずれか1つに記載のパルスアーク溶接の倣い制御方法。
(6) 前記周波数フィルタは、10~120Hzの範囲から選択されるカットオフ周波数を有するローパスフィルタである、上記(5)に記載のパルスアーク溶接の倣い制御方法。
(7) 測定対象期間の1区間前における前記電気的変化量Xの平均値Ynを中心値として、あらかじめ定めた上限範囲値を加算して上限制限値を算出するとともに、あらかじめ定めた下限範囲値を減算して下限制限値を算出し、
 前記測定対象期間の前記平均値Ynが前記上限制限値を超える場合、又は前記下限制限値を下回る場合に、あらかじめ定めた処理を行う、上記(1)~(6)のいずれか1つに記載のパルスアーク溶接の倣い制御方法。
 本発明の上記目的は、制御装置に係る下記(8)の構成により達成される。
(8) 溶接電流及びアーク電圧を周期的に変化させて溶接するパルスアーク溶接において、開先内で溶接トーチをウィービングさせ、前記ウィービング時に検出される電気的変化量Xから溶接線を追従する制御装置であって、
 前記電気的変化量Xは、溶接電流検出信号Io及びアーク電圧検出信号Voのうち少なくとも1つをパラメータとして含み、
 あらかじめ定めた期間Tfを1区間として、前記1区間ごとにおける前記電気的変化量Xの平均値Ynを算出することを特徴とする制御装置。
 制御装置に係る本発明の好ましい実施形態は、下記(9)に関する。
(9) 前記平均値Ynに基づいて、前記開先内の突出し変化情報を抽出して前記溶接線を追従するように制御する、上記(8)に記載の制御装置。
 本発明の上記目的は、溶接システムに係る下記(10)の構成により達成される。
(10) 溶接電流及びアーク電圧を周期的に変化させて溶接するパルスアーク溶接において、開先内で溶接トーチをウィービングさせ、前記ウィービング時に検出される電気的変化量Xから溶接線を追従する制御機能を備える溶接システムであって、
 前記電気的変化量Xは、溶接電流検出信号Io及びアーク電圧検出信号Voのうち少なくとも1つをパラメータとして含み、
 あらかじめ定めた期間Tfを1区間として、前記1区間ごとにおける前記電気的変化量Xの平均値Ynを算出し、
 前記平均値Ynに基づいて、前記開先内の突出し変化情報を抽出して前記溶接線を追従するように制御する機能を備えることを特徴とする溶接システム。
 本発明の上記目的は、溶接プログラムに係る下記(11)の構成により達成される。
(11) 溶接電流及びアーク電圧を周期的に変化させて溶接するパルスアーク溶接において、開先内で溶接トーチをウィービングさせ、前記ウィービング時に検出される電気的変化量Xから溶接線を追従して溶接する溶接プログラムであって、
 開先内で溶接トーチをウィービングさせるステップと、
 前記ウィービング時に前記電気的変化量Xを検出するステップと、
 あらかじめ定めた期間Tfを1区間として、前記1区間ごとにおける前記電気的変化量Xの平均値Ynを算出するステップと、
 前記平均値Ynに基づいて、前記開先内の突出し変化情報を抽出するステップと、
 前記突出し変化情報に基づいて前記溶接線を追従するステップと、
を備えることを特徴とする溶接プログラム。
 本発明の上記目的は、溶接電源に係る下記(12)の構成により達成される。
(12) 溶接電流及びアーク電圧を周期的に変化させて溶接するパルスアーク溶接において、開先内で溶接トーチをウィービングさせ、前記ウィービング時に検出される電気的変化量Xから溶接線を追従する機能を備える溶接電源であって、
 アークを発生させて溶接を行うための電力を供給する電力供給部と、
 送給速度指令、溶接電流指令、アーク電圧指令などの信号を受け取り、前記電力供給部の制御量を演算する電流制御部と、
 溶接中の溶接電流Iwを検出し、溶接電流検出信号Ioを出力する電流検出部と、
 溶接中のアーク電圧Vwを検出し、アーク電圧検出信号Voを出力する電圧検出部と、
 前記電気的変化量Xは、前記溶接電流検出信号Io及び前記アーク電圧検出信号Voのうち少なくとも1つをパラメータとして含み、
 あらかじめ定めた期間Tfを1区間として、前記1区間ごとにおける前記電気的変化量Xの平均値Ynを算出し、
 前記平均値Ynに基づいて、前記開先内の突出し変化情報を抽出して前記溶接線を追従するように制御する制御部と、
を備えることを特徴とする溶接電源。
 本発明のパルスアーク溶接の倣い制御方法、制御装置、溶接システム、溶接プログラム及び溶接電源によれば、パルスによる溶接電流やアーク電圧の周期的変化に影響を受けることなく、アーク倣い制御に必要となるトーチ突出し変化情報を高精度に抽出することが可能となり、精度の良い溶接線の倣い制御が実現できる。
図1は、本発明に係る倣い制御溶接を実施可能な一実施形態の溶接システムの概略図である。 図2は、図1に示す溶接システムのアーク倣い制御系に係る構成図である。 図3Aは、パルスアーク溶接の溶接電流波形及びアーク電圧波形と、該溶接電流波形及びアーク電圧波形から、従来の制御方法により抽出した突出し変化情報を示すグラフである。 図3Bは、パルスアーク溶接の溶接電流波形及びアーク電圧波形と、該溶接電流波形及びアーク電圧波形から、本発明に係る制御方法により抽出した突出し変化情報を示すグラフである。 図4は、入力された溶接電流及びアーク電圧の検出信号の拡大図である。 図5Aは、異常電圧が発生した場合の溶接電流波形及びアーク電圧波形と、該溶接電流波形及びアーク電圧波形から、従来の制御方法により抽出した突出し変化情報を示すグラフである。 図5Bは、異常電圧が発生した場合の溶接電流波形及びアーク電圧波形と、該溶接電流波形及びアーク電圧波形から、本発明に係る制御方法により抽出した突出し変化情報を示すグラフである。 図5Cは、異常電圧が発生した場合の溶接電流波形及びアーク電圧波形と、該溶接電流波形及びアーク電圧波形から、周波数フィルタによるフィルタリング処理を適用した本発明の変形例の制御方法により抽出した突出し変化情報を示すグラフである。
 以下、本発明に係る溶接システムの一実施形態について図面を参照しつつ説明する。なお、本実施形態は溶接ロボットを用いた場合の一例であり、本発明の倣い制御は本実施形態の構成に限定されるものではない。例えば、台車を用いた自動装置に本発明の倣い制御を搭載しても良い。また、本実施形態ではパルスアーク溶接方法を用いている。
<システム構成>
 図1は、本実施形態に係るアーク溶接システム1の構成例を示す概略図である。アーク溶接システム1は、溶接ロボット120と、送給装置130と、シールドガス供給装置140と、溶接電源150と、ロボットコントローラ160と、倣い装置170を備えている。図中では、倣い装置170を溶接電源150とロボットコントローラ160の間に配置しているが、倣い装置170の機能を、溶接電源150やロボットコントローラ160に持たせても良い。
 溶接電源150は、プラスのパワーケーブルを介して溶接電極に接続され、マイナスのパワーケーブルを介して被溶接物(以下、「母材」又は「ワーク」ともいう)200と接続されている。この接続は、逆極性で溶接を行う場合であり、正極性で溶接を行う場合、溶接電源150は、プラスのパワーケーブルを介して母材200に接続され、マイナスのパワーケーブルを介して溶接電極に接続される。また、溶接電源150は、消耗式電極(以下、「溶接ワイヤ」ともいう)100の送給装置130とも信号線によって接続され、溶接ワイヤ100の送り速度を制御することができる。
 溶接ロボット120は、エンドエフェクタとして、溶接トーチ110を備えている。溶接トーチ110は、溶接ワイヤ100に通電させる通電機構(コンタクトチップ)を有している。溶接ワイヤ100は、コンタクトチップからの通電により、先端からアークを発生し、その熱で溶接の対象である母材200を溶接する。
 さらに、溶接トーチ110は、シールドガスノズル(シールドガスを噴出する機構)を備える。シールドガスは、炭酸ガス、アルゴンガス、又は、例えばアルゴンガス+炭酸ガスといった混合ガスのいずれでも良い。なお、シールドガスとしては炭酸ガスを用いる場合がより好ましく、混合ガスの場合には、アルゴンガスに10~30%の炭酸ガスを混合したガスを用いる場合がより好ましい。シールドガスは、シールドガス供給装置140から供給される。
 本実施形態で使用する溶接ワイヤ100は、フラックスを含まないソリッドワイヤと、フラックスを含むフラックス入りワイヤのどちらでも良い。また、溶接ワイヤ100の材質も特に限定されず、例えば、軟鋼、ステンレス、アルミニウム、チタンが使用可能である。さらに、溶接ワイヤ100の径も特に問わない。本実施形態の場合、好ましくは、径の上限を1.6mm、下限を0.8mmとする。
 ロボットコントローラ160は、溶接ロボット120の動作を制御する。ロボットコントローラ160は、あらかじめ溶接ロボット120の動作パターン、溶接開始位置、溶接終了位置、溶接条件、ウィービング動作等を定めた教示データを保持し、溶接ロボット120に対してこれらを指示して溶接ロボット120の動作を制御する。また、ロボットコントローラ160は、教示データに従い、溶接作業中の溶接電流、アーク電圧、送給速度等の溶接条件を溶接電源150に与える。
 溶接電源150は、ロボットコントローラ160からの指令により、溶接ワイヤ100及び被溶接物200に電力を供給することで、溶接ワイヤ100と被溶接物200との間にアークを発生させる。また、溶接電源150は、ロボットコントローラ160からの指令により、送給装置130に、溶接ワイヤ100を送給する速度を制御するための信号を出力する。
<アーク倣い制御系に係る機能構成>
 図2は、本実施形態のアーク倣い制御系に係る構成図である。本実施形態において、ワーク200は開先を有する。なお、図2に示すV開先は一例であり、本発明は他の開先形状やすみ肉溶接であっても適用可能である。溶接部11は、溶接進行方向から見たものであり、ワーク200に対し、溶接ロボット120によって、溶接トーチ110を図2における左右方向にウィービングさせながら溶接する。
<ロボットコントローラの機能構成>
 ロボットコントローラ160は、あらかじめ作成された教示データを記憶して格納する教示データ格納部21と、教示データを解析する教示データ解析部22と、溶接ロボット120の各軸を制御するロボット駆動部50(サーボドライバ)へ指令を行うためのサーボ指令情報を生成する軌跡計画部20を備える。
 教示データ格納部21は、溶接ロボット120の動作パターン等を定めた教示データを格納する。教示データは、作業者により、図示しない教示器によってあらかじめ作成される。なお、作成方法は教示ペンダント以外でも良い。例えば、パソコン上で教示データを作成し、無線または有線通信等により教示データ格納部21に格納しても良い。
 教示データ解析部22は、例えば、溶接開始の操作が行われたことを契機として、教示データ格納部21から教示データを呼び込み、教示データを解析する。この教示データの解析により、教示軌跡情報及び溶接条件指令情報が生成される。教示軌跡情報は、溶接速度、ウィービング条件等を含む溶接作業における溶接ロボット120の軌跡を定めた情報である。また、溶接条件指令情報は、溶接作業における溶接電流、アーク電圧、送給速度などに関する指令を行うための情報であり、アークON/OFFの指令を含め、各溶接条件の制御指令などが含まれる。そして、教示データ解析部22は、生成した教示軌跡情報を軌跡計画部20に出力する。また、教示データ解析部22は、生成した溶接条件指令情報を溶接電源150に出力しても良い。例えば、アーク電圧指令25または送給速度指令26によって、それぞれアーク電圧指令信号Vrまたは送給速度指令信号Frが、溶接電源150へ出力される。
 軌跡計画部20は、教示データ解析部22から入力された教示軌跡情報をもとに、溶接ロボット120の目標位置を計算し、溶接ロボット120の各軸を制御するためのサーボ指令情報を生成する。そして、軌跡計画部20は、生成したサーボ指令情報を溶接ロボット120のロボット駆動部50へ出力する。
 溶接ロボット120は、サーボ指令情報に基づく動作を行う。また、サーボ指令情報には、溶接トーチ110をウィービングさせる位置を指令するためのウィービング位置指令情報が含まれており、軌跡計画部20は、教示データ解析部22から出力される教示軌跡情報および後述する電気的変化量算出部40から出力される突出し変化情報を元に、後述する左右ズレ検出部24が溶接線からの左右のズレ量を検出する。後述する補正量算出部23は、左右のズレ量から、ウィービング中心に対する補正量を算出する。軌跡計画部20は、補正量を元にウィービング位置指令情報を再設定し、サーボ指令情報を溶接ロボット120のロボット駆動部50へ出力する。
<溶接電源の機能構成>
 溶接電源150は、アークを発生させて溶接を行うための電力を供給する電力供給部30と、送給速度指令、溶接電流指令又はアーク電圧指令などの信号を受け取り、電力供給部30の制御量を演算する電流制御部33と、溶接中の溶接電流Iwを検出し、溶接電流検出信号Ioを出力する電流検出部31と、溶接中のアーク電圧Vwを検出し、アーク電圧検出信号Voを出力する電圧検出部32と、を備える。
 溶接電源150の電力供給部30は、3相200V等の商用電源を入力として、入力された交流電圧を、後述する電流制御部33から出力される誤差増幅信号にしたがって、インバータ制御、インバータトランス、整流器等で出力制御を行い、アーク電圧Vwおよび溶接電流Iwを出力する。また、出力電圧を平滑するためにリアクトルを構成しても良い。
 溶接電源150の電流制御部33は、溶接ワイヤ100に流れる溶接電流に係る各種のパラメータを設定する機能を持つ。本実施形態の場合、パルス電流であって、電流制御部33は、ロボットコントローラ160から入力される溶接条件指令情報(アーク電圧指令25、送給速度指令26)を基としてピーク電流、ベース電流などパルス溶接のパラメータを決定する。なお、パルス波形は、特に限定されず、サイン波、台形形状、三角波のいずれであっても良い。
 また、電圧設定信号Vrは、電圧検出部32によって検出された電圧検出信号Voと比較され、電圧設定信号Vrと電圧検出信号Voとの差分を増幅し、電流制御部33が、電圧誤差増幅信号を元に、溶接ワイヤ100の先端とワーク200間に発生するアークの長さ(アーク長)が一定になるように、パルス周波数を制御し、溶接電流を増減させる指令を電流設定制御信号Irとして、電力供給部30へ出力し、溶接電流Iwを制御する。
 換言すると、電流制御部33は、溶接電流Iwの制御を通じて、ワイヤ溶融速度を微調整し、チップ・母材間距離を一定にする定電圧制御を実行する。さらに、電流制御部33は、1パルス期間を判別するため、パルス状態生成部34およびパルス周期カウンタ35を備える。パルス周期カウンタ35はパルス状態生成部34からパルス信号を入力し、パルスの開始または終了の状態信号を基に、パルスの開始点からカウントを開始し、次のパルスの開始点に移行した場合にカウンタをリセットする。リセット後に更にカウントを開始し、このカウント値Pcntを電気的変化量算出部40に出力する。電気的変化量算出部40は、受け取ったカウント値Pcntを基に、1パルスの期間やパルスの開始または終了を判別する。
 電流検出部31は、溶接中の溶接電流Iwを検出して溶接電流検出信号Ioを出力する。溶接電流検出信号IoはA/D変換部でデジタル変換され、電流制御部33および電気的変化量算出部40へ入力される。
 電圧検出部32は、溶接中のアーク電圧Vwを検出してアーク電圧検出信号Voを出力する。アーク電圧検出信号VoはA/D変換部でデジタル変換され、電流制御部33および電気的変化量算出部40へ入力される。
<倣い装置の機能構成>
 倣い装置170は、倣いを制御する機能を持つ制御装置の一例であって、突出し変化情報を抽出する電気的変化量算出部40を備える。本実施形態においては、電流検出部31から検出される溶接電流検出信号Io又は電圧検出部32から検出されるアーク電圧検出信号Voのうち、少なくとも1つの電気的変化量Xを電気的変化量算出部40へ入力する。
 本実施形態においては、前述の通り、パルスアーク溶接方法を用いているため、入力された溶接電流Iw、アーク電圧Vwにおける各々の検出信号Io、Vo(電気的変化量X)は、図4に示すようなパルス形状となる。なお、図4は、図3Aや図3Bに示されるような、時間tに対する溶接電流検出信号Io及びアーク電圧検出信号Voの変化を表すグラフの一部を拡大したものである。
 電気的変化量算出部40は、下記式(1)に基づいて、あらかじめ定められた期間Tf、例えば、電気的変化量Xのパルス1周期を1区間(図4においては、Tf=T-Tn-1)として、電気的変化量Xの平均値Ynを算出する。この1区間の平均値Ynをロボットコントローラ160に定められた伝送周期で送信する。
 本実施形態では、精度の良い突出し変化情報が得られやすいことから、期間Tfとして最も好ましいパルス1周期とし、1区間としているが、例えば、ロボットコントローラ160に定められた伝送周期の1周期を期間Tfとしても良い。また、パルスの複数周期、またはロボットコントローラ160に定められた伝送周期の複数周期を、期間Tfとして1区間としても良い。例えば、パルス2周期分を期間Tfとし、その期間Tfを1区間として、平均値Ynを算出する。
 なお、期間Tfの情報は、例えば、パルス1周期を1区間とする場合、前述したカウント値Pcntによって、電気的変化量算出部40へ与えられる。
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)中、Xは電気的変化量、T-Tn-1はあらかじめ定めた期間(Tf)、Ynは電気的変化量Xの平均値である。
 電気的変化量算出部40へ入力する信号、すなわち電気的変化量Xとして、溶接電流検出信号Io又はアーク電圧検出信号Voのうち、少なくとも一方を入力する。好ましくは、溶接電流検出信号Io及びアーク電圧検出信号Voの双方を入力するのが良い。また、アーク電圧検出信号Voに対する溶接電流検出信号Ioの比率であるIo/Vo(抵抗の逆数)、又は、溶接電流検出信号Ioに対するアーク電圧検出信号Voの比率であるVo/Io(抵抗)とし、あらかじめ定めた期間であるパルス1区間Tfの平均値を算出することがより好ましい。溶接電流検出信号Io及びアーク電圧検出信号Voをともに入力する理由は、後述する<外部特性>にて詳述する。
 また、溶接電流検出信号Io及びアーク電圧検出信号Voに加えて、設定電圧Vsetまたは設定電流Isetのうち少なくとも1つの信号を電気的変化量算出部40に入力しても良い。すなわち、設定電圧Vsetまたは設定電流Isetを入力値として含める。好ましくは、設定電圧Vsetを入力すると良い。すなわち、下記式(2)に示すように、電気的変化量Xを、アーク電圧検出信号Voに対する溶接電流検出信号Ioの比率であるIo/Vo(抵抗の逆数)とした場合における、あらかじめ定めた期間Tfでの電気的変化量Xの平均値に、あらかじめ定めた設定電圧Vsetを乗じた値を、平均値Ynとして出力する。電気的変化量Xとして、Io/Voを用いた場合において、電気的変化量Xの平均値に対して設定電圧Vsetを乗じることで、算出される平均値Ynの単位がIoと同じになり、従来の溶接電流検出信号Ioのみで制御するロボットコントローラと互換性を持たせることができるため、汎用性の観点から更に好ましい。
Figure JPOXMLDOC01-appb-M000002
 なお、式(2)中、Ioは溶接電流検出信号、Voはアーク電圧検出信号、T-Tn-1はあらかじめ定めた期間(Tf)、Vsetはあらかじめ定めた設定電圧、Ynは電気的変化量X(=Vo/Io)の平均値である。
 ここで、図3Aは、溶接電流検出信号Io(図中の(a))及びアーク電圧検出信号Vo(図中の(b))と、溶接電流検出信号Ioを所定のサンプル周期(例えば、5μs)でサンプリングする従来の制御方法による突出し変化情報(図中の(c))を示している。また、図3Bは、溶接電流検出信号Io(図中の(a))及びアーク電圧検出信号Vo(図中の(b))と、本実施形態による制御方法を用いて式(1)により算出された突出し変化情報(図中の(c))を示している。
 図3Aに示すように、従来の制御方法によれば、突出し変化情報となる信号(電気的変化量Xの波形情報)において、信号のブレが発生するのに対して、図3Bに示すように、本実施形態の制御方法によれば、突出し変化情報となる信号(電気的変化量Xの平均値Ynの波形情報)において、信号のブレがほとんど発生せず、その信号が高精度で得られることが分かる。
 ロボットコントローラ160の左右ズレ検出部24は、電気的変化量算出部40から入力された突出し変化情報に従って、左右の差を検出して、補正量算出部23へ出力する。補正量算出部23は、ウィービング中心に対する補正量を算出し、ロボットコントローラ160の軌跡計画部20へ補正量を出力する。左右ズレ及び補正量の算出方法は特に限定されず、例えば、パワースペクトルを検出する方式、コンタクトチップと母材200間を演算で求める方式(突出し長さ演算方式)、パターンマッチング法等、いずれの方式を用いても良い。
 本実施形態におけるパワースペクトルを検出する方式は、ウィービング周波数に同期した平均値Ynのパワースペクトルを検出する方式である。この方式は、溶接線を中心に溶接トーチ110を揺動させると、平均値Ynの時系列データ(突出し変化情報)の波形がウィービング周波数の2倍の周波数で変化することに基づく。すなわち、溶接線に倣って溶接トーチ110が揺動している場合(正常の場合)、突出し変化情報の波形は、ウィービング周波数の2倍の周波数の成分が最大となる。一方、溶接トーチ110が溶接線から右または左に大きくずれる場合は、ウィービング周波数の成分が最大となり、ウィービング周波数の2倍の周波数の成分がほぼ確認できなくなる。この特性を利用し、パワースペクトルのウィービング周波数およびウィービング周波数の2倍の周波数の成分の比からトーチ位置の左右ズレ量を判断する。
 本実施形態における突出し長さ演算方式は、開先内で溶接トーチ110を揺動させた場合のコンタクトチップと母材200間の距離を演算で求め、トーチ位置から溶接線の位置を判断する。コンタクトチップと母材200間の距離は、検出したワイヤ送給速度、溶接電流Iw、アーク電圧Vwを基に、不図示の倣い制御部で演算により求める。演算したコンタクトチップと母材200間の距離でリサージュ図を描画することで、溶接トーチ110の位置を抽出することができ、正常の場合と比較することで、溶接線からの左右ズレ量を算出することができる。
 本実施形態におけるパターンマッチング法は、平均値Ynのパターン形状(突出し変化情報)を示すパラメータを抽出し、これとウィービング周波数、回路インダクタンス、開先条件、溶接条件等の各種条件から推定されるパラメータをパターン認識し、左右ズレ量を算出する。
(変形例)
 また、本実施形態の変形例として、電気的変化量算出部40から出力される平均値Ynに対し、不図示の周波数フィルタでフィルタリング処理した後、突出し変化情報抽出部(左右ズレ検出部24、補正量算出部23)へ入力することが好ましい。周波数フィルタを通すことで、より精度の良い信号を得ることができる。さらに、この周波数フィルタは、ローパスフィルタとし、10~120Hzの範囲から選択されるカットオフ周波数であることがより好ましい。
 また、異常電圧が発生する場合には、電気的変化量算出部40において、算出中の区間である測定対象期間(例えば、図4中のT-Tn-1の期間とする)の1区間前の平均値(Yn(n-1))を中心値として、あらかじめ定めた上限範囲値UL、及び下限範囲値LL(例えば、中心値に対し±20A)に従い、平均値Ynの上限制限値(Yn(n-1)+UL)、及び下限制限値(Yn(n-1)-LL)を設け、算出した測定対象期間の平均値Ynが、上限制御値(Yn(n-1)+UL)を超える場合、又は下限制御値(Yn(n-1)-LL)を下回る場合においては、あらかじめ定めた処理の制御を行うことが好ましい。
 上限制御値又は下限制御値を超えた場合の具体的な処理としては、例えば、測定対象期間の平均値Ynについて、1区間前の平均値(Yn(n-1))を代用、上限制限値(Yn(n-1)+UL)、又は下限制限値(Yn(n-1)-LL)を代用する等が挙げられ、好ましくは、1区間前の平均値(Yn(n-1))で代用すると良い。
 このように制御することで、アーク電圧検出信号Voに顕著な異常信号が発生する場合においても、精度の良い突出し変化情報が得られる。
 なお、図5A~図5Cは、アーク電圧検出信号Voに異常信号が発生した場合の例を示している。より具体的に、図5Aは、溶接電流検出信号Io(図中の(a))及びアーク電圧検出信号Vo(図中の(b))と、溶接電流検出信号Ioを所定のサンプル周期(例えば、5μs)でサンプリングする、従来の制御方法による突出し変化情報(図中の(c))を示している。また、図5Bは、溶接電流検出信号Io(図中の(a))及びアーク電圧検出信号Vo(図中の(b))と、溶接電流検出信号Ioを所定のサンプル周期(例えば、5μs)でサンプリングする、本実施形態の制御方法により抽出された突出し変化情報(図中の(c))を示している。また、図5Cは、溶接電流検出信号Io(図中の(a))及びアーク電圧検出信号Vo(図中の(b))と、溶接電流検出信号Ioを所定のサンプル周期(例えば、5μs)でサンプリングする、本変形例の制御方法により抽出された突出し変化情報を示している。
 図5Aに示すように、従来の制御方法により抽出された突出し変化情報となる信号(電気的変化量Xの波形情報)は、信号のブレが発生している。また、図5Bに示すように、本実施形態の制御方法により抽出された突出し変化情報となる信号(電気的変化量Xの平均値Ynの波形情報)は、アーク電圧検出信号Voにおける異常発生部分に対応して、パルス状波形が見られる。
 一方、図5Cに示すように、測定対象期間の平均値Ynが、上限制御値又は下限制御値を超えた場合、あらかじめ定めた処理の制御を行うようにした変形例の制御方法により抽出された突出し変化情報となる信号(電気的変化量Xの平均値Ynの波形情報)では、信号のブレやパルス状波形が見られず、精度の高い突出し変化情報が得られることが分かる。
<外部特性>
 パルスアーク溶接法において、外部特性として、電圧が変化しても電流はほとんど変化しない出力特性となる垂下特性を選択し、その垂下特性の傾きを最適に設定することでパルス周期およびアークの安定性を図る手法がある。しかしながら、外部特性を垂下特性として設定した場合、その出力特性上、突出し長さの変動にともなった溶接電流の変化は、定電圧特性(電流が変化しても電圧はほとんど変化しない出力特性)の場合よりも小さくなる。このため、溶接電流の挙動でアーク倣い制御を行う従来の方法では、溶接作業性に利点があったとしても、精度の良いアーク倣い制御が得られなかった。
 本実施形態に係る倣い制御方法においては、外部特性の出力特性は特に問わず、その出力特性が例えば、定電圧特性、定電流特性、垂下特性のいずれの特性を用いても精度の良いアーク倣い制御を達成することができる。なお、上述のパルス周期及びアークの安定性を図るためには、垂下特性に近い特性を用いることが好ましい。具体的には、-1V/100A~-15V/100Aの範囲で外部特性の傾きを設定することがより好ましく、-3V/100A~-12V/100Aの範囲で外部特性の傾きを設定することがさらに好ましい。本実施形態では、この傾きの外部特性を設定した場合でも、平均値Ynとして、あらかじめ定めた期間TfにおけるIo/Voの平均値、又はあらかじめ定めた期間TfにおけるVo/Ioの平均値を用いることで、定電圧特性の場合と同じく精度の良いアーク倣いが得られる。換言すれば、IoやVoを用いた場合では、外部特性が影響して倣い性能が劣る可能性がある。
 なお、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良等が可能である。例えば、本実施形態においては、図2に示すように、アーク溶接システム1において、倣いを制御する機能を持つものとして、溶接電源150やロボットコントローラ160とは別に倣い装置170を設けているが、このような機能を持つ制御部を、溶接電源150内やロボットコントローラ160内に設けるものであっても同様の効果を得ることができる。
 以上の通り、本明細書には次の事項が開示されている。
(1) 溶接電流及びアーク電圧を周期的に変化させて溶接するパルスアーク溶接において、開先内で溶接トーチをウィービングさせ、前記ウィービング時に検出される電気的変化量Xから溶接線を追従する倣い制御方法であって、
 前記電気的変化量Xは、溶接電流検出信号Io及びアーク電圧検出信号Voのうち少なくとも1つをパラメータとして含み、
 あらかじめ定めた期間Tfを1区間として、前記1区間ごとにおける前記電気的変化量Xの平均値Ynを算出し、
 前記平均値Ynに基づいて、前記開先内の突出し変化情報を抽出して前記溶接線を追従することを特徴とするパルスアーク溶接の倣い制御方法。
 この構成によれば、パルスアーク溶接法を用いた場合においても、パルス形状である溶接電流やアーク電圧の影響を受けることなく、高精度な突出し変化情報の抽出が可能となる。
(2) 前記期間Tfは、前記電気的変化量Xのパルス1周期又はパルスの複数周期とする、上記(1)に記載のパルスアーク溶接の倣い制御方法。
 この構成によれば、精度の良い突出し変化情報が得られる。
(3) 前記電気的変化量Xは、前記溶接電流検出信号Ioに対するアーク電圧検出信号Voの比率(Vo/Io)、又は前記アーク電圧検出信号Voに対する前記溶接電流検出信号Ioの比率(Io/Vo)をパラメータとして含む、上記(1)又は(2)に記載の倣い制御方法。
 この構成によれば、定電圧特性、定電流特性、垂下特性などの外部特性の出力特性に係わらず、精度の良いアーク倣い制御を達成することができる。
(4) 前記平均値Ynは、前記電気的変化量Xを前記アーク電圧検出信号Voに対する前記溶接電流検出信号Ioの比率(Io/Vo)とした場合における、前記あらかじめ定めた期間Tfにおける前記電気的変化量Xの平均値に、あらかじめ定めた設定電圧Vsetを乗じた値である、上記(3)に記載の倣い制御方法。
 この構成によれば、あらかじめ定めた期間TfにおけるIo/Voの平均値に、設定電圧Vsetを乗じることで、算出される平均値Ynの単位がIoと同じになり、従来の電流検出信号Ioのみで制御するロボットコントローラと互換性を持たせることができる。
(5) 周波数フィルタで濾波された前記電気的変化量Xを用いて前記平均値Ynを算出する、上記(1)~(4)のいずれか1つに記載の倣い制御方法。
 この構成によれば、精度の良い突出し変化情報が得られる。
(6) 前記周波数フィルタは、10~120Hzの範囲から選択されるカットオフ周波数を有するローパスフィルタである、上記(5)に記載の倣い制御方法。
 この構成によれば、精度の良い突出し変化情報が得られる。
(7) 測定対象期間の1区間前における前記電気的変化量Xの平均値Ynを中心値として、あらかじめ定めた上限範囲値を加算して上限制限値を算出するとともに、あらかじめ定めた下限範囲値を減算して下限制限値を算出し、
 前記測定対象期間の前記平均値Ynが前記上限制限値を超える場合、又は前記下限制限値を下回る場合に、あらかじめ定めた処理を行う、上記(1)~(6)のいずれか1つに記載の倣い制御方法。
 この構成によれば、アーク電圧に異常電圧が発生する場合においても、精度の良い突出し変化情報が得られる。
(8) 溶接電流及びアーク電圧を周期的に変化させて溶接するパルスアーク溶接において、開先内で溶接トーチをウィービングさせ、前記ウィービング時に検出される電気的変化量Xから溶接線を追従する制御装置であって、
 前記電気的変化量Xは、溶接電流検出信号Io及びアーク電圧検出信号Voのうち少なくとも1つをパラメータとして含み、
 あらかじめ定めた期間Tfを1区間として、前記1区間ごとにおける前記電気的変化量Xの平均値Ynを算出することを特徴とする制御装置。
 この構成によれば、パルス形状である溶接電流やアーク電圧の影響を受けることなく、高精度な突出し変化情報の抽出が可能となる。
(9) 前記平均値Ynに基づいて、前記開先内の突出し変化情報を抽出して前記溶接線を追従するように制御する、上記(8)に記載の制御装置。
 この構成によれば、パルス形状である溶接電流やアーク電圧の影響を受けることなく、高精度な突出し変化情報の抽出が可能となる。
(10) 溶接電流及びアーク電圧を周期的に変化させて溶接するパルスアーク溶接において、開先内で溶接トーチをウィービングさせ、前記ウィービング時に検出される電気的変化量Xから溶接線を追従する制御機能を備える溶接システムであって、
 前記電気的変化量Xは、溶接電流検出信号Io及びアーク電圧検出信号Voのうち少なくとも1つをパラメータとして含み、
 あらかじめ定めた期間Tfを1区間として、前記1区間ごとにおける前記電気的変化量Xの平均値Ynを算出し、
 前記平均値Ynに基づいて、前記開先内の突出し変化情報を抽出して前記溶接線を追従するように制御する機能を備えることを特徴とする溶接システム。
 この構成によれば、パルス形状である溶接電流やアーク電圧の影響を受けることなく、高精度な突出し変化情報の抽出が可能となる。
(11) 溶接電流及びアーク電圧を周期的に変化させて溶接するパルスアーク溶接において、開先内で溶接トーチをウィービングさせ、前記ウィービング時に検出される電気的変化量Xから溶接線を追従して溶接する溶接プログラムであって、
 開先内で溶接トーチをウィービングさせるステップと、
 前記ウィービング時に前記電気的変化量Xを検出するステップと、
 あらかじめ定めた期間Tfを1区間として、前記1区間ごとにおける前記電気的変化量Xの平均値Ynを算出するステップと、
 前記平均値Ynに基づいて、前記開先内の突出し変化情報を抽出するステップと、
 前記突出し変化情報に基づいて前記溶接線を追従するステップと、
を備えることを特徴とする溶接プログラム。
 この構成によれば、パルス形状である溶接電流やアーク電圧の影響を受けることなく、高精度な突出し変化情報の抽出が可能となり、正確に溶接線を追従することができる。
(12) 溶接電流及びアーク電圧を周期的に変化させて溶接するパルスアーク溶接において、開先内で溶接トーチをウィービングさせ、前記ウィービング時に検出される電気的変化量Xから溶接線を追従する機能を備える溶接電源であって、
 アークを発生させて溶接を行うための電力を供給する電力供給部と、
 送給速度指令、溶接電流指令、アーク電圧指令などの信号を受け取り、前記電力供給部の制御量を演算する電流制御部と、
 溶接中の溶接電流Iwを検出し、溶接電流検出信号Ioを出力する電流検出部と、
 溶接中のアーク電圧Vwを検出し、アーク電圧検出信号Voを出力する電圧検出部と、
 前記電気的変化量Xは、前記溶接電流検出信号Io及び前記アーク電圧検出信号Voのうち少なくとも1つをパラメータとして含み、
 あらかじめ定めた期間Tfを1区間として、前記1区間ごとにおける前記電気的変化量Xの平均値Ynを算出し、
 前記平均値Ynに基づいて、前記開先内の突出し変化情報を抽出して前記溶接線を追従するように制御する制御部と、
を備えることを特徴とする溶接電源。
 この構成によれば、パルス形状である溶接電流やアーク電圧の影響を受けることなく、高精度な突出し変化情報の抽出が可能となる。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2019年1月22日出願の日本特許出願(特願2019-008490)に基づくものであり、その内容は本出願の中に参照として援用される。
1    アーク溶接システム
11   溶接部
20   軌跡計画部
21   教示データ格納部
22   教示データ解析部
23   補正量算出部
24   左右ズレ検出部
25   アーク電圧指令
26   送給速度指令
30   電力供給部
31   電流検出部
32   電圧検出部
33   電流制御部
34   パルス状態生成部
35   パルス周期カウンタ
36   電流設定部
40   電気的変化量算出部(制御装置)
50   ロボット駆動部
100  溶接ワイヤ(消耗式電極)
110  溶接トーチ
120  溶接ロボット
130  送給装置
140  シールドガス供給装置
150  溶接電源
160  ロボットコントローラ(制御装置)
170  倣い装置(制御装置)
200  母材(被溶接物、ワーク)
Iw   溶接電流
Io   溶接電流検出信号
Ir   電流設定制御信号
Iset 設定電流
LL   下限範囲値
Tf   あらかじめ定めた期間(パルス1区間)
UL   上限範囲値
Vset 設定電圧
Vw   アーク電圧
Vo   アーク電圧検出信号
Vr   アーク電圧指令信号
Fr   送給速度指令信号
Pcnt カウント値
X    電気的変化量
Yn   電気的変化量Xの平均値
Yn(n-1)    1区間前の電気的変化量Xの平均値
Yn(n-1)+UL 上限制限値
Yn(n-1)-LL 下限制限値

Claims (12)

  1.  溶接電流及びアーク電圧を周期的に変化させて溶接するパルスアーク溶接において、開先内で溶接トーチをウィービングさせ、前記ウィービング時に検出される電気的変化量Xから溶接線を追従する倣い制御方法であって、
     前記電気的変化量Xは、溶接電流検出信号Io及びアーク電圧検出信号Voのうち少なくとも1つをパラメータとして含み、
     あらかじめ定めた期間Tfを1区間として、前記1区間ごとにおける前記電気的変化量Xの平均値Ynを算出し、
     前記平均値Ynに基づいて、前記開先内の突出し変化情報を抽出して前記溶接線を追従することを特徴とするパルスアーク溶接の倣い制御方法。
  2.  前記期間Tfは、前記電気的変化量Xのパルス1周期又はパルスの複数周期とする、請求項1に記載のパルスアーク溶接の倣い制御方法。
  3.  前記電気的変化量Xは、前記溶接電流検出信号Ioに対するアーク電圧検出信号Voの比率(Vo/Io)、又は前記アーク電圧検出信号Voに対する前記溶接電流検出信号Ioの比率(Io/Vo)をパラメータとして含む、請求項1又は2に記載のパルスアーク溶接の倣い制御方法。
  4.  前記平均値Ynは、前記電気的変化量Xを前記アーク電圧検出信号Voに対する前記溶接電流検出信号Ioの比率(Io/Vo)とした場合における、前記あらかじめ定めた期間Tfにおける前記電気的変化量Xの平均値に、あらかじめ定めた設定電圧Vsetを乗じた値である、請求項3に記載のパルスアーク溶接の倣い制御方法。
  5.  周波数フィルタで濾波された前記電気的変化量Xを用いて前記平均値Ynを算出する、請求項1又は2に記載のパルスアーク溶接の倣い制御方法。
  6.  前記周波数フィルタは、10~120Hzの範囲から選択されるカットオフ周波数を有するローパスフィルタである、請求項5に記載のパルスアーク溶接の倣い制御方法。
  7.  測定対象期間の1区間前における前記電気的変化量Xの平均値Ynを中心値として、あらかじめ定めた上限範囲値を加算して上限制限値を算出するとともに、あらかじめ定めた下限範囲値を減算して下限制限値を算出し、
     前記測定対象期間の前記平均値Ynが前記上限制限値を超える場合、又は前記下限制限値を下回る場合に、あらかじめ定めた処理を行う、請求項1又は2に記載のパルスアーク溶接の倣い制御方法。
  8.  溶接電流及びアーク電圧を周期的に変化させて溶接するパルスアーク溶接において、開先内で溶接トーチをウィービングさせ、前記ウィービング時に検出される電気的変化量Xから溶接線を追従する制御装置であって、
     前記電気的変化量Xは、溶接電流検出信号Io及びアーク電圧検出信号Voのうち少なくとも1つをパラメータとして含み、
     あらかじめ定めた期間Tfを1区間として、前記1区間ごとにおける前記電気的変化量Xの平均値Ynを算出することを特徴とする制御装置。
  9.  前記平均値Ynに基づいて、前記開先内の突出し変化情報を抽出して前記溶接線を追従するように制御する、請求項8に記載の制御装置。
  10.  溶接電流及びアーク電圧を周期的に変化させて溶接するパルスアーク溶接において、開先内で溶接トーチをウィービングさせ、前記ウィービング時に検出される電気的変化量Xから溶接線を追従する制御機能を備える溶接システムであって、
     前記電気的変化量Xは、溶接電流検出信号Io及びアーク電圧検出信号Voのうち少なくとも1つをパラメータとして含み、
     あらかじめ定めた期間Tfを1区間として、前記1区間ごとにおける前記電気的変化量Xの平均値Ynを算出し、
     前記平均値Ynに基づいて、前記開先内の突出し変化情報を抽出して前記溶接線を追従するように制御する機能を備えることを特徴とする溶接システム。
  11.  溶接電流及びアーク電圧を周期的に変化させて溶接するパルスアーク溶接において、開先内で溶接トーチをウィービングさせ、前記ウィービング時に検出される電気的変化量Xから溶接線を追従して溶接する溶接プログラムであって、
     開先内で溶接トーチをウィービングさせるステップと、
     前記ウィービング時に前記電気的変化量Xを検出するステップと、
     あらかじめ定めた期間Tfを1区間として、前記1区間ごとにおける前記電気的変化量Xの平均値Ynを算出するステップと、
     前記平均値Ynに基づいて、前記開先内の突出し変化情報を抽出するステップと、
     前記突出し変化情報に基づいて前記溶接線を追従するステップと、
    を備えることを特徴とする溶接プログラム。
  12.  溶接電流及びアーク電圧を周期的に変化させて溶接するパルスアーク溶接において、開先内で溶接トーチをウィービングさせ、前記ウィービング時に検出される電気的変化量Xから溶接線を追従する機能を備える溶接電源であって、
     アークを発生させて溶接を行うための電力を供給する電力供給部と、
     送給速度指令、溶接電流指令、アーク電圧指令などの信号を受け取り、前記電力供給部の制御量を演算する電流制御部と、
     溶接中の溶接電流Iwを検出し、溶接電流検出信号Ioを出力する電流検出部と、
     溶接中のアーク電圧Vwを検出し、アーク電圧検出信号Voを出力する電圧検出部と、
     前記電気的変化量Xは、前記溶接電流検出信号Io及び前記アーク電圧検出信号Voのうち少なくとも1つをパラメータとして含み、
     あらかじめ定めた期間Tfを1区間として、前記1区間ごとにおける前記電気的変化量Xの平均値Ynを算出し、
     前記平均値Ynに基づいて、前記開先内の突出し変化情報を抽出して前記溶接線を追従するように制御する制御部と、
    を備えることを特徴とする溶接電源。
     
PCT/JP2019/050375 2019-01-22 2019-12-23 パルスアーク溶接の倣い制御方法、制御装置、溶接システム、溶接プログラム及び溶接電源 WO2020153078A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980089682.9A CN113329837B (zh) 2019-01-22 2019-12-23 脉冲电弧焊接的仿形控制方法、控制装置、焊接系统、焊接程序以及焊接电源
US17/424,515 US20220088695A1 (en) 2019-01-22 2019-12-23 Pulse arc welding profile control method, control device, welding system, welding program, and welding power supply
EP19911887.8A EP3915710A4 (en) 2019-01-22 2019-12-23 PULSE ARC WELDING PROFILE CONTROL METHOD, CONTROL DEVICE, WELDING SYSTEM, WELDING PROGRAM AND WELDING POWER SUPPLY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-008490 2019-01-22
JP2019008490A JP7251988B2 (ja) 2019-01-22 2019-01-22 パルスアーク溶接の倣い制御方法、制御装置、溶接システム、溶接プログラム及び溶接電源

Publications (1)

Publication Number Publication Date
WO2020153078A1 true WO2020153078A1 (ja) 2020-07-30

Family

ID=71735473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050375 WO2020153078A1 (ja) 2019-01-22 2019-12-23 パルスアーク溶接の倣い制御方法、制御装置、溶接システム、溶接プログラム及び溶接電源

Country Status (5)

Country Link
US (1) US20220088695A1 (ja)
EP (1) EP3915710A4 (ja)
JP (1) JP7251988B2 (ja)
CN (1) CN113329837B (ja)
WO (1) WO2020153078A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082152A (ja) 2002-08-26 2004-03-18 Daihen Corp パルスアーク溶接の倣い制御方法
JP2009183976A (ja) * 2008-02-06 2009-08-20 Panasonic Corp 溶接制御方法および溶接装置
JP2017185513A (ja) * 2016-04-04 2017-10-12 株式会社神戸製鋼所 アーク倣い溶接方法
JP2018149567A (ja) * 2017-03-13 2018-09-27 株式会社神戸製鋼所 溶接状態判定システム及び溶接状態判定方法
JP2019008490A (ja) 2017-06-23 2019-01-17 キヤノン株式会社 情報処理チップへのデータ入出力制御

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4663309B2 (ja) * 2004-12-21 2011-04-06 株式会社ダイヘン パルスアーク溶接のアーク長制御方法
JP5070119B2 (ja) * 2008-04-24 2012-11-07 株式会社ダイヘン パルスアーク溶接の出力制御方法
JP5450150B2 (ja) * 2010-02-18 2014-03-26 株式会社神戸製鋼所 アーク溶接システムによるチップ−母材間距離の制御方法およびアーク溶接システム
JP5538181B2 (ja) * 2010-10-26 2014-07-02 川崎重工業株式会社 アーク溶接の制御システムおよび制御方法
US10857610B2 (en) * 2015-08-18 2020-12-08 Illinois Tool Works Inc. Method and apparatus for pulse welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082152A (ja) 2002-08-26 2004-03-18 Daihen Corp パルスアーク溶接の倣い制御方法
JP2009183976A (ja) * 2008-02-06 2009-08-20 Panasonic Corp 溶接制御方法および溶接装置
JP2017185513A (ja) * 2016-04-04 2017-10-12 株式会社神戸製鋼所 アーク倣い溶接方法
JP2018149567A (ja) * 2017-03-13 2018-09-27 株式会社神戸製鋼所 溶接状態判定システム及び溶接状態判定方法
JP2019008490A (ja) 2017-06-23 2019-01-17 キヤノン株式会社 情報処理チップへのデータ入出力制御

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3915710A4

Also Published As

Publication number Publication date
JP7251988B2 (ja) 2023-04-04
JP2020116595A (ja) 2020-08-06
CN113329837B (zh) 2022-07-19
US20220088695A1 (en) 2022-03-24
EP3915710A4 (en) 2022-12-07
EP3915710A1 (en) 2021-12-01
CN113329837A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
JP6221076B2 (ja) アーク溶接制御方法およびアーク溶接装置
EP3208024B1 (en) Arc welding control method
EP2576118B1 (en) Short arc welding system
JP2016508071A (ja) アーク溶接プロセスを制御するシステム及び方法
KR102090049B1 (ko) 아크 트래킹 용접 방법 및 아크 트래킹 용접 장치
CN109963679B (zh) 电弧跟踪焊接中的偏移量的检测方法
WO2020153078A1 (ja) パルスアーク溶接の倣い制御方法、制御装置、溶接システム、溶接プログラム及び溶接電源
EP2576119B1 (en) Short arc welding system
WO2021153011A1 (ja) ガスシールドアーク溶接の出力制御方法、溶接システム、溶接電源及び溶接制御装置
CN115397597B (zh) 焊接电源、焊接系统、焊接电源的控制方法以及存储介质
WO2018088372A1 (ja) アーク溶接の表示装置及び表示方法
CN114682878A (zh) 用于运行焊接机器人的具有焊缝跟踪的焊接方法
JP2022099368A (ja) パルスアーク溶接電源
JP2021186821A (ja) パルスアーク溶接電源
CN109420822B (zh) 脉冲电弧焊接控制方法
JP5495758B2 (ja) プラズマミグ溶接方法
WO2023223739A1 (ja) 溶接ビード形状の制御方法、電源制御方法、積層造形方法、制御装置、電源装置、溶接システム、積層造形システム及びプログラム
JP2009045662A (ja) 溶接電源
JPH09253846A (ja) 溶接装置の電気的特性の計測方法
CN105382377B (zh) 电弧焊接方法
JP2024069804A (ja) パルスアーク溶接の溶接品質判定方法
JPH10175067A (ja) セルフシールドアーク溶接方法
JP2020151748A (ja) パルスアーク溶接制御方法
JP2014184457A (ja) 溶接電源の出力制御方法
JP2023064534A (ja) 重ね隅肉溶接方法及び溶接装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019911887

Country of ref document: EP

Effective date: 20210823