WO2020153071A1 - セラミックヒータ - Google Patents

セラミックヒータ Download PDF

Info

Publication number
WO2020153071A1
WO2020153071A1 PCT/JP2019/050259 JP2019050259W WO2020153071A1 WO 2020153071 A1 WO2020153071 A1 WO 2020153071A1 JP 2019050259 W JP2019050259 W JP 2019050259W WO 2020153071 A1 WO2020153071 A1 WO 2020153071A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
resistance heating
peripheral side
heating element
outer peripheral
Prior art date
Application number
PCT/JP2019/050259
Other languages
English (en)
French (fr)
Inventor
征樹 石川
修一郎 本山
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN201980077625.9A priority Critical patent/CN113170535B/zh
Priority to KR1020217013833A priority patent/KR102581102B1/ko
Priority to JP2020567432A priority patent/JP7212070B2/ja
Publication of WO2020153071A1 publication Critical patent/WO2020153071A1/ja
Priority to US17/302,080 priority patent/US11984329B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0233Industrial applications for semiconductors manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/005Heaters using a particular layout for the resistive material or resistive elements using multiple resistive elements or resistive zones isolated from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/016Heaters using particular connecting means

Definitions

  • the present invention relates to a ceramic heater.
  • ⁇ Semiconductor manufacturing equipment uses ceramic heaters to heat wafers.
  • a so-called two-zone heater is known as such a ceramic heater.
  • As a two-zone heater of this type as disclosed in Patent Document 1, an inner peripheral resistance heating element and an outer peripheral resistance heating element are embedded in the same plane in a ceramic substrate, and It is known that the heat generated from each resistance heating element is independently controlled by independently applying a voltage.
  • Each resistance heating element is composed of a coil made of a refractory metal such as tungsten.
  • the present invention has been made to solve such a problem, and its main purpose is to suppress the occurrence of temperature unevenness in the inner peripheral side zone.
  • the ceramic heater of the present invention is A ceramic plate having a wafer mounting surface and having a circular inner peripheral side zone and an annular outer peripheral side zone, A two-dimensionally shaped inner peripheral side resistance heating element provided in the inner peripheral side zone, A coil-shaped outer peripheral resistance heating element provided in the outer peripheral zone, Equipped with In the inner peripheral side zone, the terminal of the inner peripheral side resistance heating element and the terminal of the outer peripheral side resistance heating element are arranged, It is a thing.
  • a coil-shaped resistance heating element on the outer peripheral side is arranged in the outer peripheral zone, so a relatively large amount of heat can be obtained.
  • the two-dimensional shape is adopted as the shape of the resistance heating element on the inner circumference side instead of the coil shape, it is possible to reduce the line width and the space between the lines. Therefore, it is possible to suppress the occurrence of temperature unevenness in the inner peripheral side zone.
  • the resistance heating element on the inner peripheral side may be wired over the entire inner peripheral side zone through the gap between the terminals. Since the two-dimensional shape is adopted as the shape of the resistance heating element on the inner circumference side, it is possible to reduce the line width or the space between the lines. Therefore, the resistance heating element on the inner peripheral side can be wired over the entire inner peripheral side zone through the gap between the terminals.
  • the area of the inner peripheral side zone may be smaller than the area of the outer peripheral side zone. Even in such a case, since the inner resistance heating element has a two-dimensional shape and the line width can be narrowed or the space between lines can be narrowed, the inner resistance heating element can be Can be wired throughout.
  • the resistance heating element on the inner peripheral side and the resistance heating element on the outer peripheral side may be provided on the same plane parallel to the wafer mounting surface inside the ceramic plate.
  • parallel includes not only the case of being completely parallel but also the case of being substantially parallel (for example, within the range of tolerance).
  • the term “same” includes not only the case of being completely the same but also the case of being substantially the same (for example, within the range of tolerance).
  • the inner peripheral side zone is one zone
  • the outer peripheral side zone is divided into two or more zones
  • the outer peripheral side resistance heating element is independent for each zone. And may be wired. Since the outer peripheral resistance heating element is independently wired in each of the two or more zones, the number of terminals of the outer peripheral resistance heating element increases in accordance with the number of zones. Further, it is necessary to wire the inner resistance heating element so as to pass between more terminals. Even in such a case, since the inner resistance heating element has a two-dimensional shape and the line width can be narrowed or the space between the lines can be narrowed, the inner resistance heating element can be Can be wired throughout.
  • FIG. 3 is a vertical sectional view of the ceramic heater 10. Sectional drawing when the ceramic plate 20 is horizontally cut along the resistance heating elements 22, 24, 26, and 28 and seen from above.
  • FIG. 1 is a perspective view of the ceramic heater 10
  • FIG. 2 is a vertical sectional view of the ceramic heater 10 (a sectional view when the ceramic heater 10 is cut along a plane including a central axis)
  • FIG. 3 is a resistance heating element 22 of a ceramic plate 20.
  • 24, 26, 28 is a cross-sectional view when it is horizontally cut and viewed from above.
  • FIG. 3 shows a state in which the ceramic plate 20 is substantially viewed from the wafer mounting surface 20a. It should be noted that in FIG. 3, hatching showing the cut surface is omitted.
  • the ceramic heater 10 is used to heat a wafer to be subjected to processing such as etching and CVD, and is installed in a vacuum chamber (not shown).
  • the ceramic heater 10 has a disk-shaped ceramic plate 20 having a wafer mounting surface 20a, and a ceramic plate 20 coaxial with the ceramic plate 20 on a surface (back surface) 20b of the ceramic plate 20 opposite to the wafer mounting surface 20a. And a tubular shaft 40 joined together.
  • the ceramic plate 20 is a disc-shaped plate made of a ceramic material typified by aluminum nitride or alumina.
  • the diameter of the ceramic plate 20 is, for example, about 300 mm.
  • the wafer mounting surface 20a of the ceramic plate 20 is provided with fine irregularities (not shown) by embossing.
  • the ceramic plate 20 is divided into a small circular inner peripheral side zone Z1 and an annular outer peripheral side zone Z2 by a virtual boundary BL (see FIG. 3) concentric with the ceramic plate 20.
  • the diameter of the virtual boundary BL is, for example, about 200 mm.
  • the area of the inner peripheral side zone Z1 is smaller than the area of the outer peripheral side zone Z2.
  • the outer peripheral side zone Z2 is divided into three annular zones, that is, outer peripheral side first to third zones Z21 to Z23 by virtual boundaries BL1 and BL2 (see FIG. 3) concentric with the ceramic plate 20.
  • An inner peripheral side resistance heating element 22 is embedded in the inner peripheral side zone Z1 of the ceramic plate 20, and outer peripheral side first to third resistive heating elements 24, 26, in the outer peripheral side first to third zones Z21 to Z23, respectively. 28 is buried. These resistance heating elements 22, 24, 26, 28 are provided on the same plane parallel to the wafer mounting surface 20a.
  • the inner resistance heating element 22 includes a pair of terminals 22a arranged in the central portion of the ceramic plate 20 (a region of the back surface 20b of the ceramic plate 20 surrounded by the cylindrical shaft 40). , 22b from one side to the other side.
  • the resistance heating element 22 on the inner circumference side starts from the terminal 22a, passes through the terminals 24a, 24b, 26a, 26b, 28a, and 28b, and is folded back at a plurality of folding portions in a one-stroke manner. It is formed so as to reach the terminal 22b after being wired in almost the entire area of the circumferential zone Z1.
  • the inner resistance heating element 22 is a two-dimensional heating element made of a refractory metal or a carbide thereof, and is produced by printing a paste, for example.
  • Examples of the two-dimensional shape include a ribbon shape (flat and elongated shape) and a mesh shape.
  • the refractory metal include tungsten, molybdenum, tantalum, platinum, rhenium, hafnium and alloys thereof.
  • Examples of the carbide of the high melting point metal include tungsten carbide and molybdenum carbide. Since the inner resistance heating element 22 has a two-dimensional shape, the line width can be reduced, the distance between the lines can be reduced, the length between terminals can be increased, and the cross-sectional area can be reduced. Therefore, by adjusting these, the electrical resistance between the terminals of the inner resistance heating element 22 can be easily adjusted.
  • the outer peripheral side first resistance heating element 24 originates from one of the pair of terminals 24a and 24b arranged in the central portion of the ceramic plate 20 and is folded back at the folding portion in a one-stroke writing manner. It is formed so as to reach the other of the pair of terminals 24a and 24b after being wired over substantially the entire area of the outer peripheral side first zone Z21.
  • the outer peripheral second resistance heating element 26 originates from one of the pair of terminals 26a and 26b arranged in the central portion of the ceramic plate 20 and is folded back at the folded portion in a one-stroke writing manner while being in the outer peripheral second zone.
  • the wiring is formed over almost the entire area of Z22 and then reaches the other of the pair of terminals 26a and 26b.
  • the outer peripheral side third resistance heating element 28 originates from one of the pair of terminals 28a and 28b arranged in the central portion of the ceramic plate 20, and is folded back at the folding portion in a one-stroke writing manner while being in the outer peripheral side third zone. It is formed so as to reach almost the entire area of Z23 and then reach the other of the pair of terminals 28a and 28b.
  • the first to third resistance heating elements 24, 26, 28 on the outer peripheral side are coils made of a high melting point metal or a carbide thereof. However, a lead wire from each terminal 24a, 24b to the outer peripheral side first zone Z21 and a lead wire from each terminal 26a, 26b to the outer peripheral side second zone Z22 and each terminal 28a, 28b to the outer peripheral side third zone Z23.
  • the leader line is made of a wire line or a printed ribbon rather than a coil.
  • the tubular shaft 40 is made of a ceramic such as aluminum nitride or alumina, like the ceramic plate 20.
  • the cylindrical shaft 40 has an inner diameter of, for example, about 40 mm and an outer diameter of, for example, about 60 mm.
  • the upper end of the tubular shaft 40 is diffusion bonded to the ceramic plate 20.
  • power supply rods 42a and 42b connected to the pair of terminals 22a and 22b of the inner resistance heating element 22 are arranged inside the tubular shaft 40.
  • the power supply rods 44 a and 44 b connected to the pair of terminals 24 a and 24 b of the outer peripheral side first resistance heating element 24 and the pair of terminals of the outer peripheral side second resistance heating element 26 are connected.
  • Power supply rods 46a and 46b connected to 26a and 26b, respectively, and power supply rods 48a and 48b connected to the pair of terminals 28a and 28b of the outer peripheral third resistance heating element 28 are also arranged.
  • the power supply rods 42a and 42b are connected to the inner power supply side 32
  • the power supply rods 44a and 44b are connected to the outer power supply side first power supply 34
  • the power supply rods 46a and 46b are connected to the outer power supply side second power supply 36
  • the power supply rod 48a. , 48b are connected to the outer peripheral third power source 38. Therefore, the inner peripheral side zone Z1 heated by the inner peripheral side resistance heating element 22 and the outer peripheral side zones Z21, Z22, Z23 heated by the outer peripheral side first to third resistance heating elements 24, 26, 28 are individually provided. The temperature can be controlled.
  • the ceramic heater 10 is installed in a vacuum chamber (not shown), and the wafer W is mounted on the wafer mounting surface 20a of the ceramic heater 10. Then, the power supplied to the inner resistance heater 22 is supplied to the inner resistance heating element 22 so that the temperature of the inner zone Z1 detected by the inner thermocouple (not shown) becomes a predetermined inner target temperature. Adjust by 32. Further, the temperature of the outer peripheral side first to third zones Z21 to Z23 respectively detected by the outer peripheral side first to third thermocouples is set so as to reach the predetermined outer peripheral side first to third target temperatures. The power supplied to the first to third resistance heating elements 24, 26, 28 is adjusted by the first to third power sources 34, 36, 38 on the outer peripheral side.
  • the temperature of the wafer W is controlled to a desired temperature.
  • the inside of the vacuum chamber is set to a vacuum atmosphere or a reduced pressure atmosphere, plasma is generated in the vacuum chamber, and the wafer W is subjected to CVD film formation or etching using the plasma.
  • coil-shaped outer peripheral side first to third resistance heating elements 24, 26, 28 are provided in the outer peripheral side zone Z2 (outer peripheral side first to third zones Z21 to Z23). Since it is arranged, a relatively large amount of heat can be obtained. On the other hand, since the two-dimensional shape is adopted as the shape of the inner resistance heating element 22 instead of the coil shape, it is possible to reduce the line width or the space between the lines. Therefore, it is possible to suppress the occurrence of temperature unevenness in the inner circumferential side zone Z1.
  • the inner resistance heating element 22 is wired over the entire inner circumference zone Z1 through the gaps between the terminals 22a, 22b, 24a, 24b, 26a, 26b, 28a, 28b.
  • the inner peripheral resistance heating element 22 can be wired over the entire inner peripheral zone Z1 through the gap between the terminals.
  • the area of the inner peripheral side zone Z1 is smaller than the area of the outer peripheral side zone Z2, but even in such a case, the inner peripheral side resistance heating element 22 has a two-dimensional shape and the line width is thin. Since the distance between the lines can be narrowed, the inner peripheral resistance heating element 22 can be wired over the entire inner peripheral zone Z1.
  • the outer peripheral side zone Z2 is divided into three outer peripheral side first to third zones Z21 to Z23, and the outer peripheral side first to third resistance heating elements 24, 26 and 28 are independent of each zone. It is wired. Therefore, a total of eight terminals are arranged in the inner peripheral zone Z1. Even in such a case, since the inner resistance heating element 22 has a two-dimensional shape and the line width can be reduced or the distance between the lines can be reduced, the inner resistance heating element 22 is Wiring can be provided throughout the side zone Z1.
  • the inner peripheral resistance heating element 22 by changing the electric resistance between the terminals of the inner peripheral resistance heating element 22 according to the cross-sectional area of the inner peripheral resistance heating element 22 and the length of the wiring, the inner peripheral resistance heating element 22 is changed.
  • the electric resistance between the terminals may be set to be higher than the electric resistance between the terminals of the outer peripheral first to third resistance heating elements 24, 26, 28.
  • the electric resistance between the terminals of the inner peripheral resistance heating element 22 may be set to be lower than the electric resistance between the respective terminals of the outer peripheral first to third resistance heating elements 24, 26, 28. You may set so that it may become the same. In this way, the heat generation amount of the inner resistance heating element 22 in the inner zone Z1 can be appropriately set according to the user's request.
  • the outer peripheral side zone Z2 is divided into three small zones, but the outer peripheral side zone Z2 may be one zone, may be divided into two small zones, or four or more. It may be divided into small zones. In either case, the resistance heating element is wired independently for each zone.
  • the small zone may be formed in an annular shape by dividing the outer peripheral side zone Z2 at the boundary line of the concentric circle with the ceramic plate 20 as in the above-described embodiment, or may be a line segment extending radially from the center of the ceramic plate 20.
  • the outer peripheral side zone Z2 may be divided to form a fan shape (a shape in which the side surface of a truncated cone is developed).
  • the inner zone Z1 is described as one zone, but it may be divided into a plurality of small zones. In that case, a two-dimensional resistance heating element is wired independently for each small zone.
  • the small zone may be formed into an annular shape and a circular shape by dividing the inner peripheral side zone Z1 at the boundary line of the ceramic plate 20 and a concentric circle, or may be a line segment radially extending from the center of the ceramic plate 20 to the inner peripheral side. It may be formed into a fan shape (a shape in which the side surface of a cone is developed) by dividing the zone Z1.
  • a material having a high volume resistivity may be used.
  • an example of the volume resistivity at 20° C. is 5.5 ⁇ 10 6 [ ⁇ m] for tungsten and 53 ⁇ 10 6 [ ⁇ m] for tungsten carbide. Therefore, when tungsten carbide is used, the electric resistance between the terminals can be increased as compared with the case where tungsten is used.
  • the ceramic plate 20 may have an electrostatic electrode built therein.
  • the wafer W can be electrostatically attracted to the wafer mounting surface 20a by applying a voltage to the electrostatic electrode after mounting the wafer W on the wafer mounting surface 20a.
  • the ceramic plate 20 may have an RF electrode built therein.
  • a shower head (not shown) is arranged above the wafer mounting surface 20a with a space provided, and high-frequency power is supplied between the parallel plate electrodes including the shower head and the RF electrodes. By doing so, plasma can be generated and the wafer W can be subjected to CVD film formation or etching using the plasma.
  • the electrostatic electrode may also be used as the RF electrode.
  • the inner resistance heating element 22 is wired over the entire inner peripheral zone Z1 through the gap between the terminals, but the present invention is not limited to this.
  • the inner resistance heating element 22 may be wired over the entire inner peripheral side zone Z1 without passing through the gap between the terminals.
  • the present invention can be used for semiconductor manufacturing equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

セラミックヒータ10は、セラミックプレート20を備えている。セラミックプレート20は、ウエハ載置面を有し、円形の内周側ゾーンZ1と環状の外周側ゾーンZ2(外周側第1~第3ゾーンZ21~Z23)とを備えている。内周側ゾーンZ1には、二次元形状の内周側抵抗発熱体22が設けられている。外周側第1~第3ゾーンZ21~Z23には、それぞれコイル状の外周側第1~第3抵抗発熱体24,26,28が設けられている。内周側ゾーンZ1には、内周側抵抗発熱体22の端子と外周側第1~第3抵抗発熱体24,26,28の端子とが配置されている。

Description

セラミックヒータ
 本発明は、セラミックヒータに関する。
 半導体製造装置においては、ウエハを加熱するためのセラミックヒータが採用されている。こうしたセラミックヒータとしては、いわゆる2ゾーンヒータが知られている。この種の2ゾーンヒータとしては、特許文献1に開示されているように、セラミック基体中に、内周側抵抗発熱体と外周側抵抗発熱体とを同一平面に埋設し、各抵抗発熱体にそれぞれ独立して電圧を印加することにより、各抵抗発熱体からの発熱を独立して制御するものが知られている。各抵抗発熱体は、タングステンなどの高融点金属からなるコイルで構成されている。
特許第3897563号公報
 しかしながら、内周側ゾーンには、内周側抵抗発熱体の端子や外周側抵抗発熱体の端子を設ける必要があるため、コイル状の内周側抵抗発熱体では高密度に配線することが困難であった。そのため、内周側ゾーンで温度ムラが生じるおそれがあった。
 本発明はこのような課題を解決するためになされたものであり、内周側ゾーンの温度ムラが生じるのを抑制することを主目的とする。
 本発明のセラミックヒータは、
 ウエハ載置面を有し、円形の内周側ゾーンと環状の外周側ゾーンとを備えたセラミックプレートと、
 前記内周側ゾーンに設けられた二次元形状の内周側抵抗発熱体と、
 前記外周側ゾーンに設けられたコイル状の外周側抵抗発熱体と、
 を備え、
 前記内周側ゾーンには、前記内周側抵抗発熱体の端子と前記外周側抵抗発熱体の端子とが配置されている、
 ものである。
 このセラミックヒータでは、外周側ゾーンにはコイル状の外周側抵抗発熱体を配置したため、比較的大きな発熱量を得ることができる。一方、内周側抵抗発熱体の形状としてコイル状ではなく二次元形状を採用したため、線幅を細くしたり線間を狭くしたりすることができる。したがって、内周側ゾーンの温度ムラが生じるのを抑制することができる。
 本発明のセラミックヒータにおいて、前記内周側抵抗発熱体は、前記端子の間隙を通って前記内周側ゾーンの全体にわたって配線されていてもよい。内周側抵抗発熱体の形状として二次元形状を採用したため、線幅を細くしたり線間を狭くしたりすることができる。そのため、内周側抵抗発熱体を端子の間隙を通って内周側ゾーンの全体にわたって配線することができる。
 本発明のセラミックヒータにおいて、前記内周側ゾーンの面積は、前記外周側ゾーンの面積より狭くてもよい。このような場合であっても、内周側抵抗発熱体は二次元形状であり線幅を細くしたり線間を狭くしたりすることができるため、内周側抵抗発熱体を内周側ゾーンの全体にわたって配線することができる。
 本発明のセラミックヒータにおいて、前記内周側抵抗発熱体と前記外周側抵抗発熱体は、前記セラミックプレートの内部で前記ウエハ載置面に平行な同一平面上に設けられていてもよい。なお、「平行」とは、完全に平行な場合のほか、実質的に平行な場合(例えば公差の範囲に入る場合など)も含む。「同一」とは、完全に同一な場合のほか、実質的に同一な場合(例えば公差の範囲に入る場合など)も含む。
 本発明のセラミックヒータにおいて、前記内周側ゾーンは、1つのゾーンであり、前記外周側ゾーンは、2つ以上のゾーンに分けられており、前記外周側抵抗発熱体は、前記ゾーンごとに独立して配線されていてもよい。外周側抵抗発熱体は2つ以上のゾーンのそれぞれに独立して配線されているため、外周側抵抗発熱体の端子の数はゾーン数に応じて増加する。また、内周側抵抗発熱体はより多くの端子の間を通るように配線する必要がある。このような場合であっても、内周側抵抗発熱体は二次元形状であり線幅を細くしたり線間を狭くしたりすることができるため、内周側抵抗発熱体を内周側ゾーンの全体にわたって配線することができる。
セラミックヒータ10の斜視図。 セラミックヒータ10の縦断面図。 セラミックプレート20を抵抗発熱体22,24,26,28に沿って水平に切断して上方からみたときの断面図。
 本発明の好適な実施形態を、図面を参照しながら以下に説明する。図1はセラミックヒータ10の斜視図、図2はセラミックヒータ10の縦断面図(セラミックヒータ10を中心軸を含む面で切断したときの断面図)、図3はセラミックプレート20の抵抗発熱体22,24,26,28に沿って水平に切断して上方からみたときの断面図である。図3は、実質的にセラミックプレート20をウエハ載置面20aからみたときの様子を表している。なお、図3では、切断面を表すハッチングを省略した。
 セラミックヒータ10は、エッチングやCVDなどの処理が施されるウエハを加熱するために用いられるものであり、図示しない真空チャンバ内に設置される。このセラミックヒータ10は、ウエハ載置面20aを有する円盤状のセラミックプレート20と、セラミックプレート20のウエハ載置面20aとは反対側の面(裏面)20bにセラミックプレート20と同軸となるように接合された筒状シャフト40とを備えている。
 セラミックプレート20は、窒化アルミニウムやアルミナなどに代表されるセラミック材料からなる円盤状のプレートである。セラミックプレート20の直径は、例えば300mm程度である。セラミックプレート20のウエハ載置面20aには、図示しないが細かな凹凸がエンボス加工により設けられている。セラミックプレート20は、セラミックプレート20と同心円の仮想境界BL(図3参照)によって小円形の内周側ゾーンZ1と円環状の外周側ゾーンZ2とに分けられている。仮想境界BLの直径は、例えば200mm程度である。内周側ゾーンZ1の面積は、外周側ゾーンZ2の面積よりも狭い。外周側ゾーンZ2は、セラミックプレート20と同心円の仮想境界BL1,BL2(図3参照)によって3つの環状ゾーン、すなわち外周側第1~第3ゾーンZ21~Z23に分けられている。セラミックプレート20の内周側ゾーンZ1には内周側抵抗発熱体22が埋設され、外周側第1~第3ゾーンZ21~Z23にはそれぞれ外周側第1~第3抵抗発熱体24、26,28が埋設されている。これらの抵抗発熱体22,24,26,28は、ウエハ載置面20aに平行な同一平面上に設けられている。
 内周側抵抗発熱体22は、図3に示すように、セラミックプレート20の中央部(セラミックプレート20の裏面20bのうち筒状シャフト40で囲まれた領域)に配設された一対の端子22a,22bの一方から他方に至るように形成されている。ここでは、内周側抵抗発熱体22は、端子22aから端を発し、端子24a,24b,26a,26b,28a,28bの間を通りながら一筆書きの要領で複数の折り返し部で折り返されつつ内周側ゾーンZ1のほぼ全域に配線されたあと、端子22bに至るように形成されている。内周側抵抗発熱体22は、高融点金属又はその炭化物で作製された二次元形状の発熱体であり、例えばペーストを印刷することにより作製される。二次元形状としては、例えばリボン状(平らで細長い形状)やメッシュ状などが挙げられる。高融点金属としては、例えば、タングステン、モリブデン、タンタル、白金、レニウム、ハフニウム及びこれらの合金が挙げられる。高融点金属の炭化物としては、例えば、炭化タングステンや炭化モリブデンなどが挙げられる。内周側抵抗発熱体22は、二次元形状のため、線幅を細くしたり線間を狭めたり端子間長さを長くしたり断面積を小さくしたりすることができる。そのため、これらを調整することにより、内周側抵抗発熱体22の端子間の電気抵抗を容易に調整することができる。
 外周側第1抵抗発熱体24は、図3に示すように、セラミックプレート20の中央部に配設された一対の端子24a,24bの一方から端を発し、一筆書きの要領で折り返し部で折り返されつつ外周側第1ゾーンZ21のほぼ全域に配線されたあと一対の端子24a,24bの他方に至るように形成されている。外周側第2抵抗発熱体26は、セラミックプレート20の中央部に配設された一対の端子26a,26bの一方から端を発し、一筆書きの要領で折り返し部で折り返されつつ外周側第2ゾーンZ22のほぼ全域に配線されたあと一対の端子26a,26bの他方に至るように形成されている。外周側第3抵抗発熱体28は、セラミックプレート20の中央部に配設された一対の端子28a,28bの一方から端を発し、一筆書きの要領で折り返し部で折り返されつつ外周側第3ゾーンZ23のほぼ全域に配線されたあと一対の端子28a,28bの他方に至るように形成されている。外周側第1~第3抵抗発熱体24,26,28は、高融点金属又はその炭化物で作製されたコイルである。但し、各端子24a,24bから外周側第1ゾーンZ21までの引き出し線や各端子26a,26bから外周側第2ゾーンZ22までの引き出し線や各端子28a,28bから外周側第3ゾーンZ23までの引き出し線は、コイルではなく、ワイヤ線又は印刷によるリボンで作製されている。
 筒状シャフト40は、セラミックプレート20と同じく窒化アルミニウム、アルミナなどのセラミックで形成されている。筒状シャフト40の内径は、例えば40mm程度、外径は例えば60mm程度である。この筒状シャフト40は、上端がセラミックプレート20に拡散接合されている。筒状シャフト40の内部には、図2に示すように、内周側抵抗発熱体22の一対の端子22a,22bのそれぞれに接続される給電棒42a,42bが配置されている。また、筒状シャフト40の内部には、外周側第1抵抗発熱体24の一対の端子24a,24bのそれぞれに接続される給電棒44a,44bや外周側第2抵抗発熱体26の一対の端子26a,26bのそれぞれに接続される給電棒46a,46bや外周側第3抵抗発熱体28の一対の端子28a,28bのそれぞれに接続される給電棒48a,48bも配置されている。給電棒42a,42bは内周側電源32に接続され、給電棒44a,44bは外周側第1電源34に接続され、給電棒46a,46bは外周側第2電源36に接続され、給電棒48a,48bは外周側第3電源38に接続されている。そのため、内周側抵抗発熱体22によって加熱される内周側ゾーンZ1と外周側第1~第3抵抗発熱体24,26,28によって加熱される外周側ゾーンZ21,Z22,Z23とをそれぞれ個別に温度制御することができる。
 次に、セラミックヒータ10の使用例について説明する。まず、図示しない真空チャンバ内にセラミックヒータ10を設置し、そのセラミックヒータ10のウエハ載置面20aにウエハWを載置する。そして、図示しない内周側熱電対によって検出された内周側ゾーンZ1の温度が予め定められた内周側目標温度となるように内周側抵抗発熱体22に供給する電力を内周側電源32によって調整する。また、図示しない外周側第1~第3熱電対によってそれぞれ検出された外周側第1~第3ゾーンZ21~Z23の温度が予め定められた外周側第1~第3目標温度となるように外周側第1~第3抵抗発熱体24,26,28に供給する電力を外周側第1~第3電源34,36,38によって調整する。これにより、ウエハWの温度が所望の温度になるように制御される。そして、真空チャンバ内を真空雰囲気もしくは減圧雰囲気になるように設定し、真空チャンバ内にプラズマを発生させ、そのプラズマを利用してウエハWにCVD成膜を施したりエッチングを施したりする。
 以上説明した本実施形態のセラミックヒータ10では、外周側ゾーンZ2(外周側第1~第3ゾーンZ21~Z23)にはコイル状の外周側第1~第3抵抗発熱体24,26,28を配置したため、比較的大きな発熱量を得ることができる。一方、内周側抵抗発熱体22の形状としてコイル状ではなく二次元形状を採用したため、線幅を細くしたり線間を狭くしたりすることができる。したがって、内周側ゾーンZ1の温度ムラが生じるのを抑制することができる。
 また、内周側抵抗発熱体22は、端子22a,22b,24a,24b,26a,26b,28a,28bの間隙を通って内周側ゾーンZ1の全体にわたって配線されている。本実施形態では、内周側抵抗発熱体22の形状として二次元形状を採用したため、線幅を細くしたり線間を狭くしたりすることができる。そのため、内周側抵抗発熱体22を端子の間隙を通って内周側ゾーンZ1の全体にわたって配線することができる。
 また、内周側ゾーンZ1の面積は、外周側ゾーンZ2の面積よりも狭いが、このような場合であっても、内周側抵抗発熱体22は二次元形状であり線幅を細くしたり線間を狭くしたりすることができるため、内周側抵抗発熱体22を内周側ゾーンZ1の全体にわたって配線することができる。
 更に、外周側ゾーンZ2は外周側第1~第3ゾーンZ21~Z23の3つに分けられており、外周側第1~第3抵抗発熱体24,26,28はそれぞれのゾーンに独立して配線されている。そのため、内周側ゾーンZ1には、合計8つの端子が配置されている。このような場合であっても、内周側抵抗発熱体22は二次元形状であり線幅を細くしたり線間を狭くしたりすることができるため、内周側抵抗発熱体22を内周側ゾーンZ1の全体にわたって配線することができる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態において、内周側抵抗発熱体22の断面積や配線の長さによって内周側抵抗発熱体22の端子間の電気抵抗を変化させることにより、内周側抵抗発熱体22の端子間の電気抵抗を、外周側第1~第3抵抗発熱体24,26,28のそれぞれの端子間の電気抵抗よりも高くなるように設定してもよい。あるいは、内周側抵抗発熱体22の端子間の電気抵抗を、外周側第1~第3抵抗発熱体24,26,28のそれぞれの端子間の電気抵抗よりも低くなるように設定したり、同じになるように設定してもよい。こうすることにより、内周側ゾーンZ1における内周側抵抗発熱体22の発熱量をユーザの要望に応じて適宜設定することができる。
 上述した実施形態では、外周側ゾーンZ2を3つの小ゾーンに分割したが、外周側ゾーンZ2は1つのゾーンであってもよいし、2つの小ゾーンに分割してもよいし、4つ以上の小ゾーンに分割してもよい。いずれの場合も抵抗発熱体はゾーンごとに独立して配線される。小ゾーンは、上述した実施形態のようにセラミックプレート20と同心円の境界線で外周側ゾーンZ2を分割することにより環状に形成してもよいし、セラミックプレート20の中心から放射状に延びる線分で外周側ゾーンZ2を分割することにより扇形(円錐台の側面を展開した形状)に形成してもよい。
 上述した実施形態では、内周側ゾーンZ1は1つのゾーンとして説明したが、複数の小ゾーンに分割されていてもよい。その場合、小ゾーンごとに二次元形状の抵抗発熱体を独立して配線する。小ゾーンは、セラミックプレート20と同心円の境界線で内周側ゾーンZ1を分割することにより環状と円形状に形成してもよいし、セラミックプレート20の中心から放射状に延びる線分で内周側ゾーンZ1を分割することにより扇形(円錐の側面を展開した形状)に形成してもよい。
 上述した実施形態において、各抵抗発熱体22,24,26,28の端子間の電気抵抗を高くしたい場合には、体積抵抗率の高い材料を用いてもよい。例えば、20℃における体積抵抗率の一例を挙げると、タングステンが5.5×106[Ω・m]、炭化タングステンが53×106[Ω・m]である。そのため、炭化タングステンを用いれば、タングステンを用いた場合に比べて端子間の電気抵抗を高くすることができる。
 上述した実施形態において、セラミックプレート20に静電電極を内蔵してもよい。その場合、ウエハ載置面20aにウエハWを載置したあと静電電極に電圧を印加することによりウエハWをウエハ載置面20aに静電吸着することができる。あるいは、セラミックプレート20にRF電極を内蔵してもよい。その場合、ウエハ載置面20aの上方にスペースをあけて図示しないシャワーヘッドを配置し、シャワーヘッドとRF電極とからなる平行平板電極間に高周波電力を供給する。こうすることによりプラズマを発生させ、そのプラズマを利用してウエハWにCVD成膜を施したりエッチングを施したりすることができる。なお、静電電極をRF電極と兼用してもよい。
 上述した実施形態では、内側抵抗発熱体22は端子の間隙を通って内周側ゾーンZ1の全体にわたって配線されているものとしたが、特にこれに限定されるものではない。例えば、内側抵抗発熱体22は端子の間隙を通ることなく内周側ゾーンZ1の全体にわたって配線されるようにしてもよい。
 本出願は、2019年1月25日に出願された日本国特許出願第2019-011301号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、半導体製造装置に利用可能である。
10 セラミックヒータ、20 セラミックプレート、20a ウエハ載置面、20b 裏面、22 内周側抵抗発熱体、22a,22b 端子、24 外周側第1抵抗発熱体、24a,24b 端子、26 外周側第2抵抗発熱体、26a,26b 端子、28 外周側第3抵抗発熱体、28a,28b 端子、32 内周側電源、34 外周側第1電源、36 外周側第2電源、38 外周側第3電源、40 筒状シャフト、42a,42b,44a,44b,46a,46b,48a,48b 給電棒、BL,BL1,BL2 仮想境界、W ウエハ、Z1 内周側ゾーン、Z2 外周側ゾーン、Z21 外周側第1ゾーン、Z22 外周側第2ゾーン、Z23 外周側第3ゾーン。

Claims (5)

  1.  ウエハ載置面を有し、円形の内周側ゾーンと環状の外周側ゾーンとを備えたセラミックプレートと、
     前記内周側ゾーンに設けられた二次元形状の内周側抵抗発熱体と、
     前記外周側ゾーンに設けられたコイル状の外周側抵抗発熱体と、
     を備え、
     前記内周側ゾーンには、前記内周側抵抗発熱体の端子と前記外周側抵抗発熱体の端子とが配置されている、
     セラミックヒータ。
  2.  前記内周側抵抗発熱体は、前記端子の間隙を通って前記内周側ゾーンの全体にわたって配線されている、
     請求項1に記載のセラミックヒータ。
  3.  前記内周側ゾーンの面積は、前記外周側ゾーンの面積より狭い、
     請求項1又は2に記載のセラミックヒータ。
  4.  前記内周側抵抗発熱体と前記外周側抵抗発熱体は、前記セラミックプレートの内部で前記ウエハ載置面に平行な同一平面上に設けられている、
     請求項1~3のいずれか1項に記載のセラミックヒータ。
  5.  前記内周側ゾーンは、1つのゾーンであり、
     前記外周側ゾーンは、2つ以上のゾーンに分けられており、前記外周側抵抗発熱体は、前記ゾーンごとに独立して配線されている、
     請求項1~4のいずれか1項に記載のセラミックヒータ。
PCT/JP2019/050259 2019-01-25 2019-12-23 セラミックヒータ WO2020153071A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980077625.9A CN113170535B (zh) 2019-01-25 2019-12-23 陶瓷加热器
KR1020217013833A KR102581102B1 (ko) 2019-01-25 2019-12-23 세라믹 히터
JP2020567432A JP7212070B2 (ja) 2019-01-25 2019-12-23 セラミックヒータ
US17/302,080 US11984329B2 (en) 2019-01-25 2021-04-23 Ceramic heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-011301 2019-01-25
JP2019011301 2019-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/302,080 Continuation US11984329B2 (en) 2019-01-25 2021-04-23 Ceramic heater

Publications (1)

Publication Number Publication Date
WO2020153071A1 true WO2020153071A1 (ja) 2020-07-30

Family

ID=71736802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050259 WO2020153071A1 (ja) 2019-01-25 2019-12-23 セラミックヒータ

Country Status (6)

Country Link
US (1) US11984329B2 (ja)
JP (1) JP7212070B2 (ja)
KR (1) KR102581102B1 (ja)
CN (1) CN113170535B (ja)
TW (1) TWI813839B (ja)
WO (1) WO2020153071A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102639158B1 (ko) * 2019-07-23 2024-02-22 삼성전자주식회사 웨이퍼 처리 장치 및 이를 이용한 웨이퍼 처리 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063691A (ja) * 2003-08-13 2005-03-10 Ngk Insulators Ltd 加熱装置
JP2009009795A (ja) * 2007-06-27 2009-01-15 Taiheiyo Cement Corp セラミックスヒーター

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897563B2 (ja) 2001-10-24 2007-03-28 日本碍子株式会社 加熱装置
JP3888531B2 (ja) * 2002-03-27 2007-03-07 日本碍子株式会社 セラミックヒーター、セラミックヒーターの製造方法、および金属部材の埋設品
JP4761723B2 (ja) * 2004-04-12 2011-08-31 日本碍子株式会社 基板加熱装置
JP4450106B1 (ja) * 2008-03-11 2010-04-14 東京エレクトロン株式会社 載置台構造及び処理装置
KR101357928B1 (ko) 2010-09-24 2014-02-03 엔지케이 인슐레이터 엘티디 반도체 제조 장치 부재
CN202230996U (zh) * 2011-09-01 2012-05-23 中微半导体设备(上海)有限公司 温度可分区调控的静电吸盘
JP6084906B2 (ja) * 2013-07-11 2017-02-22 日本碍子株式会社 セラミックヒータ
JP6979016B2 (ja) * 2016-08-10 2021-12-08 日本碍子株式会社 セラミックヒータ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063691A (ja) * 2003-08-13 2005-03-10 Ngk Insulators Ltd 加熱装置
JP2009009795A (ja) * 2007-06-27 2009-01-15 Taiheiyo Cement Corp セラミックスヒーター

Also Published As

Publication number Publication date
JPWO2020153071A1 (ja) 2021-09-30
KR20210066918A (ko) 2021-06-07
CN113170535B (zh) 2023-07-07
CN113170535A (zh) 2021-07-23
TW202031092A (zh) 2020-08-16
US20210242048A1 (en) 2021-08-05
JP7212070B2 (ja) 2023-01-24
KR102581102B1 (ko) 2023-09-20
US11984329B2 (en) 2024-05-14
TWI813839B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
JP7216746B2 (ja) セラミックヒータ
WO2019181500A1 (ja) マルチゾーンヒータ
US20210235548A1 (en) Ceramic heater
WO2020153071A1 (ja) セラミックヒータ
US10679873B2 (en) Ceramic heater
US20210227639A1 (en) Ceramic heater and method of manufacturing the same
JP7321990B2 (ja) セラミックヒータ
TWI837264B (zh) 陶瓷加熱器
JP2000340344A (ja) 円盤状ヒータ
JP6789081B2 (ja) 保持装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912112

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567432

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217013833

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912112

Country of ref document: EP

Kind code of ref document: A1