WO2020152889A1 - 装置診断装置、プラズマ処理装置及び装置診断方法 - Google Patents

装置診断装置、プラズマ処理装置及び装置診断方法 Download PDF

Info

Publication number
WO2020152889A1
WO2020152889A1 PCT/JP2019/029762 JP2019029762W WO2020152889A1 WO 2020152889 A1 WO2020152889 A1 WO 2020152889A1 JP 2019029762 W JP2019029762 W JP 2019029762W WO 2020152889 A1 WO2020152889 A1 WO 2020152889A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma processing
probability distribution
sensor
processing apparatus
diagnostic
Prior art date
Application number
PCT/JP2019/029762
Other languages
English (en)
French (fr)
Inventor
祥太 梅田
玉置 研二
角屋 誠浩
正貴 石黒
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2019/029762 priority Critical patent/WO2020152889A1/ja
Priority to KR1020207017597A priority patent/KR102425936B1/ko
Priority to JP2020532826A priority patent/JP6841980B2/ja
Priority to US16/971,255 priority patent/US20220157580A1/en
Priority to CN201980007659.0A priority patent/CN112585727B/zh
Priority to TW109122971A priority patent/TWI738411B/zh
Publication of WO2020152889A1 publication Critical patent/WO2020152889A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24578Spatial variables, e.g. position, distance

Definitions

  • the present invention relates to a device diagnostic device, a plasma processing device, and a device diagnostic method.
  • plasma treatment is performed to turn the substance into plasma and remove the substance on the wafer by the action of the substance.
  • a device diagnosis technique is required that estimates the difference between the devices and then feeds back to the device manufacturing process and performs component deterioration diagnosis.
  • Patent Document 1 As such a device diagnosis technique, for example, there is Patent Document 1.
  • the anomaly detection device estimates a state in which noise is removed from the summary value by applying statistical modeling to the summary value that summarizes the observed values, and one period ahead is estimated based on the estimation. A predicted value is generated by predicting the summary value. The abnormality detection device detects whether or not there is an abnormality in the monitoring target device based on the predicted value.”
  • Patent Document 1 since the probability distribution of the measurement value (sensor value) of the state sensor of the diagnosis target device is generally used for the device diagnosis, a probability distribution estimation technique is required. As described above, the plasma processing apparatuses may differ from one apparatus to another. Therefore, in the method of Patent Document 1, it is necessary to acquire a large amount of data for each apparatus in order to detect an abnormality with high accuracy.
  • An object of the present invention is to estimate a probability distribution with a small amount of sensor values in a device diagnostic device.
  • An apparatus diagnostic apparatus is an apparatus diagnostic apparatus for diagnosing a state of a plasma processing apparatus, and uses a first sensor value acquired by a first sensor in a first plasma processing apparatus to generate a probability distribution function.
  • Prior distribution information including the previously obtained for each of the first sensor, the previously obtained prior distribution information, by the second sensor in the second plasma processing apparatus different from the first plasma processing apparatus
  • An apparatus diagnostic apparatus is an apparatus diagnostic apparatus for diagnosing a state of a plasma processing apparatus, using a probability distribution function using a first sensor value acquired by a first sensor in a first plasma processing apparatus.
  • Prior distribution information including the previously obtained for each of the first sensor, the previously obtained prior distribution information, and the second sensor value obtained by the second sensor in the second plasma processing apparatus and
  • the probability distribution in each of the second sensors corresponding to each of the first sensors is estimated based on, and the first likelihood, which is the likelihood for the estimated probability distribution, and the likelihood for the normal distribution. Is compared with the second likelihood, and if the first likelihood is greater than the second likelihood, the state of the second plasma processing apparatus is diagnosed using the estimated probability distribution. When the second likelihood is higher than the first likelihood, the state of the second plasma processing apparatus is diagnosed using the normal distribution.
  • a plasma processing apparatus is a plasma processing apparatus including a processing chamber in which a sample is plasma-processed and an apparatus diagnostic apparatus for diagnosing a state of the apparatus itself, wherein the apparatus diagnostic apparatus is a plasma processing apparatus different from the apparatus itself.
  • Prior distribution information including a probability distribution function using a first sensor value obtained by the first sensor in the device is previously obtained for each of the first sensors, and the previously obtained prior distribution information, Estimating a probability distribution in each of the second sensors corresponding to each of the first sensors based on the second sensor value acquired by the second sensor in the own device, and the estimated probability distribution Is used to diagnose the state of the device itself.
  • An apparatus diagnostic method is a method for diagnosing a state of a plasma processing apparatus, wherein a probability distribution function is obtained by using a first sensor value acquired by a first sensor in a first plasma processing apparatus.
  • a step of diagnosing is a method for diagnosing a state of a plasma processing apparatus, wherein a probability distribution function is obtained by using a first sensor value acquired by a first sensor in a first plasma processing apparatus.
  • the probability distribution can be estimated with a small amount of sensor values in the device diagnostic device.
  • the plasma processing apparatus 1 has a processing unit 10 and a storage unit 11.
  • the processing unit 10 processes the wafer (sample 102) by generating plasma 101 inside the processing chamber 104 according to the set processing conditions.
  • the storage unit 11 has a sensor value storage unit 12 and a management value storage unit 13.
  • the sensor value storage unit 12 stores the measured value of the sensor 103 of the apparatus during wafer processing for each processing step set as time series data.
  • the sensor 103 constitutes a state sensor group and measures temperature and pressure.
  • the sensor value storage unit 12 calculates and stores main statistical values (for example, average value or standard deviation) from time series data for use in device diagnosis. In this embodiment, this statistical value will be used as a sensor value thereafter.
  • main statistical values for example, average value or standard deviation
  • the average value is used as the statistical value.
  • Each column of sensor values corresponds to the type of sensor, and each row corresponds to each wafer.
  • Information such as an apparatus ID, a processing step ID, a processing condition ID, and a wafer ID is stored together with the sensor value.
  • the device ID is information that identifies the plasma processing device 1 that has performed the processing.
  • the processing step ID and the processing condition ID are information for specifying the processing step and the processing condition, respectively, and are used to specify the monitoring target.
  • the wafer ID stores information that identifies the processed wafer.
  • the management value storage unit 13 stores management values such as processing date and time and processing conditions.
  • the device diagnostic device 2 is a computer having a common unit 20, an individual control unit 23, and a storage unit 26.
  • the device diagnostic device 2 and the device group 3 of the plasma processing device 1 are connected via a network, and data communication is possible with each other.
  • the device group 3 includes an existing device group A in which a large amount of sensor values are accumulated, and a device group which is a device diagnosis target in which a large amount of sensor values are not accumulated for reasons such as device startup. It is described separately as B.
  • the apparatus group A does not necessarily have to have a plurality of plasma processing apparatuses 1 as long as there is a plasma processing apparatus 1 serving as a reference.
  • the device group B to be diagnosed does not necessarily have to have the plurality of plasma processing devices 1.
  • the common unit 20 has a common distribution function selection unit 21 and a prior distribution setting unit 22, and prior to performing the device diagnosis of the device group B, the prior distribution information for each sensor from the sensor values accumulated in the device group A in advance. Is extracted and stored in the prior distribution storage unit 27 included in the storage unit 26. An example of the processing content of the common unit 20 will be described in (3) Processing of common unit described later.
  • the individual control unit 23 has a probability distribution estimation unit 24 and a device state diagnosis unit 25.
  • the probability distribution estimation unit 24 estimates a probability distribution followed by each sensor 103 as a posterior distribution from the sensor value of each plasma processing apparatus of the apparatus group B acquired at the time of apparatus state diagnosis and the extracted prior distribution information, and the probability distribution It is stored in the storage unit 28.
  • the device state diagnosis unit 25 calculates a device state value such as a difference between devices and stores it in the device diagnosis value storage unit 29.
  • a device state value such as a difference between devices
  • the device diagnosis value storage unit 29 An example of the processing content of the individual processing unit 23 will be described in (4) Processing of individual processing unit described later.
  • An output unit 40 and an input unit 41 are connected to the device group 3 and the device diagnostic device 2.
  • the output unit 40 is, for example, a display or a printer, and is a device that graphically outputs information to the user based on the information in the storage unit 26.
  • a display example will be described in (5) Display example by output unit described later.
  • the input unit 41 is, for example, an input device such as a mouse or a keyboard that receives information input by a user operation.
  • a sensor value which is a history of plasma processing in the processing step to be monitored, is stored in the sensor value storage unit 12 in advance. ..
  • a plasma process for example, an aging process or a cleaning process for adjusting the state of the processing unit 10 commonly performed in a plurality of processes is designated.
  • the sensor value storage unit 12 of the device group A From the sensor value storage unit 12 of the device group A, the sensor value of the designated processing step ID is acquired. (S101)
  • the sensor value accumulated by the device group A is set in the prior distribution. Can be used for.
  • the prior distribution setting unit 22 executes the processes of S103 to S104 for each sensor 103 and each probability distribution function candidate.
  • the probability distribution function candidate is a probability distribution function that each sensor 103 of the plasma processing apparatus 1 can follow as a candidate.
  • a normal distribution, a skewed normal distribution, a mixed normal distribution, a Cauchy distribution, etc. are set as probability distribution function candidates (S102).
  • the prior distribution setting unit 22 estimates the probability distribution parameter of the probability distribution function candidate for the sensor value of the sensor 103.
  • the probability distribution parameter is, for example, a value corresponding to the average value and the standard deviation in the case of normal distribution, and has different types for each probability distribution function.
  • the Markov chain Monte Carlo method (Markov Chain Monte Carlo method, MCMC method) is used to estimate the probability distribution parameter, for example.
  • the MCMC method considers the probability distribution parameter as a random variable, and then generates a large number of random samples from the product of the prior distribution and the likelihood of the probability distribution parameter proportional to the posterior distribution of the probability distribution parameter to generate the posterior probability distribution parameter. This is a method for estimating the distribution (S103).
  • the estimated probability distribution parameter is obtained as a probability distribution, but for example, the value is uniquely determined from the value that maximizes the posterior probability.
  • the prior distribution setting unit 22 uses the probability distribution at this time, calculates the log likelihood, which is the degree of fitting of the obtained sensor values of the device group A (S104).
  • the common distribution function selection unit 21 selects, from the probability distribution function candidates, the probability distribution function having the maximum log likelihood as the probability distribution function common to the device group A for each sensor 103. .. Further, the estimated value of the probability distribution parameter regarding the selected probability distribution function is stored in the prior distribution storage unit 27 as the prior distribution when estimating the probability distribution of the sensor values of the device group B. Further, the estimated value of the probability distribution parameter regarding the normal distribution is also stored in the prior distribution storage unit 27 together with the probability distribution function with the maximum log-likelihood (S105).
  • the information of prior distribution is stored for each sensor.
  • the row of the probability distribution function stores the name of the probability distribution function selected in S105 of FIG.
  • the probability distribution parameter row stores the prior distribution of each probability distribution parameter set using the posterior distribution of the probability distribution parameter estimated in S103 of FIG. As an example, a normal distribution having the mean and standard deviation of the posterior distribution is set as the prior distribution of each probability distribution parameter.
  • the log likelihood row stores the log likelihood calculated in S104 of FIG.
  • the sensor value of the processing step ID specified in S101 of FIG. 3 is acquired from the sensor value storage unit 12 of the plasma processing apparatus 1 that is the diagnosis target of the apparatus group B (S201).
  • the probability distribution estimation unit 24 executes the processing of S203 to S205 for each sensor of the acquired sensor value (S202).
  • the prior distribution information corresponding to the sensor is acquired from the prior distribution storage unit 27 (S203).
  • the posterior distribution of the probability distribution parameter is estimated by the MCMC method using the acquired sensor values.
  • the log likelihood with respect to the sensor value is calculated in the same manner as S104 in FIG. This process is performed for both the probability distribution function selected in S105 of FIG. 3 and the normal distribution (S204).
  • the log-likelihood is compared between the probability distribution estimated by the probability distribution function selected in S105 of FIG. 3 and the probability distribution estimated by the normal distribution, and the probability distribution having a large log-likelihood is set as the estimation result for the sensor, It is stored in the probability distribution storage unit 28 (S205).
  • the robustness of the estimation result can be enhanced by determining the probability distribution function together with the sensor value of the device group B.
  • probability distribution information is stored for each sensor shown in each column of sensor names.
  • the probability distribution information to be stored is the probability distribution function, the probability distribution parameter, and the log likelihood, as in FIG.
  • the probability distribution parameter may store the estimated posterior distribution in the same manner as in FIG. 4, or may store a uniquely determined value such as a value that maximizes the posterior probability as in FIGS. 6A and 6B. good.
  • the probability distribution with a large log likelihood is determined, and this corresponds to FIG. 6B.
  • the device diagnostic value is calculated using the data stored in the probability distribution storage unit 28 (S206). For example, when calculating the difference between devices as the device diagnostic value, first, the probability distribution information of the reference plasma processing device 1 and the plasma processing device 1 to be diagnosed is acquired from the probability distribution storage unit 28. The acquired distance between the probability distributions is stored in the device state diagnostic value storage unit 29 as an inter-device difference diagnostic value. As a distance index between probability distributions, Kullback-Leibler divergence, Jensen-Shannon divergence, or the like is used.
  • the device ID row stores an ID that identifies the two plasma processing devices 1 to be compared.
  • the device-to-device difference diagnosis value row stores the device-to-device difference diagnosis value calculated for each sensor.
  • the output unit 40 uses the information stored in the storage unit 11 and the storage unit 26 to display the diagnosis result of the device state and the estimation result of the probability distribution.
  • the inter-device difference diagnosis value of the corresponding device ID stored in the device state value storage unit 29 is acquired, and is displayed as a graph for each sensor as in D104.
  • a sensor having a large difference between the reference plasma processing apparatus 1 and the apparatus can be determined and can be used for adjustment or the like.
  • the sensor 103 can be generally classified into a plurality of groups according to measurement target parts, measurement target items, and the like. It is registered in advance as a sensor group, and the device difference diagnostic value of each sensor belonging to the sensor group is integrated, and the device difference diagnostic value is displayed for each sensor group, as in D103. By doing so, the parts to be adjusted become clear.
  • the histogram is a histogram of the measured values of the sensor values stored in the sensor value storage unit 12, and the solid line is the probability distribution estimation result stored in the probability distribution storage unit 28.
  • the histogram of the sensor values of the sensor name X2 of the devices having the device IDs C1 and C4 and the estimation result of the probability distribution are displayed. This allows the user to confirm whether the estimated probability distribution is valid. Further, for example, when the two probability distributions to be compared are moving in parallel, the initialization of the sensor 103 is considered, and the like, which can be utilized for devising a countermeasure against the device diagnosis result.
  • the output unit 40 outputs the difference between the plasma processing apparatuses in the probability distribution as the diagnostic value of the state of the plasma processing apparatus 1, and also changes the transition width of the probability distribution over time. Output.
  • the device diagnosis can be performed by extracting the prior distribution information common to the device group and then estimating the probability distribution including the non-normal distribution together with the sensor value newly acquired by the device to be diagnosed.
  • FIG. 1 shows a configuration in which the apparatus diagnostic device 2 and the plasma processing apparatus 1 are connected via a network, but the present invention is not limited to the above configuration, and as shown in FIG. May include the device diagnostic device 2.
  • the plasma processing apparatus 1 includes a processing chamber 104 in which the sample 102 is plasma-processed and an apparatus diagnostic apparatus 2 that diagnoses the state of the apparatus itself.
  • the plasma processing apparatus 1 has the processing unit 10 and the storage unit 11 shown in FIG.
  • the processing unit 10 processes the wafer (sample 102) by generating plasma 101 inside the processing chamber 104 according to the set processing conditions.
  • the device diagnosis device 2 has a common unit 20, an individual control unit 23, and a storage unit 26, similarly to the configuration shown in FIG.

Abstract

プラズマ処理装置の状態を診断する装置診断装置において、第一のプラズマ処理装置における第一のセンサにより取得された第一のセンサ値を用いて確率分布関数を含む事前分布情報を前記第一のセンサの各々に対して予め求め、前記予め求められた事前分布情報と、前記第一のプラズマ処理装置と異なる第二のプラズマ処理装置における第二のセンサにより取得された第二のセンサ値とを基に前記第一のセンサの各々に対応する前記第二のセンサの各々における確率分布を推定し、前記推定された確率分布を用いて前記第二のプラズマ処理装置の状態を診断する。

Description

装置診断装置、プラズマ処理装置及び装置診断方法
本発明は、装置診断装置、プラズマ処理装置及び装置診断方法に関する。
 プラズマ処理装置では、半導体のウェハ上に微細形状を形成する。このため、物質をプラズマ化し、その物質の作用によりウェハ上の物質を除去するプラズマ処理を行う。
 プラズマ処理装置の製造時に複数の装置間で使用する共通部品に個体差(装置間差)があると、装置個体間のプラズマ状態の違いが生じる。このため、装置製造工場からの装置出荷前の最終検査時に原因部品を特定して交換あるいは調整するのに長時間を要するという問題があった。また、装置出荷後に半導体製造工場で想定寿命以上に使用した消耗部品の劣化が生じると同様にして装置間差が生じ得る。
 装置間差が生じると、所望の加工品質を得られなくなり、部品交換による予期せぬダウンタイムが生じる等の問題が起こる。そこで、調整の迅速化や予期せぬダウンタイム低減のために、装置間差を推定した上で、装置製造工程へのフィードバックや部品劣化診断を行う装置診断技術が求められる。
 このような装置診断技術として、例えば、特許文献1がある。特許文献1には、「異常検知装置は、観測値をまとめた要約値に対して統計モデリングを適用することにより、要約値からノイズを除去した状態を推測し、当該推測に基づき一期先の要約値を予測した予測値を生成する。異常検知装置は、予測値に基づき、監視対象装置の異常有無を検知する。」と記載されている。
WO2018/061842号公報
 特許文献1では、装置診断には一般に診断対象装置の状態センサの測定値(センサ値)の確率分布を用いるため、確率分布推定技術を要する。上述のように、プラズマ処理装置には装置間差が生じ得るため、特許文献1の方法では、高精度に異常検知するためには、装置毎にデータを大量に取得する必要がある。
 しかし、例えば、既存の工程に新規に装置を立上げる際や、新規工程に適用する際において、センサ値の大量取得は困難であるため、少量のセンサ値で確率分布を推定する方法が必要である。
 本発明の目的は、装置診断装置において、少量のセンサ値で確率分布を推定することにある。
 本発明の一態様の装置診断装置は、プラズマ処理装置の状態を診断する装置診断装置において、第一のプラズマ処理装置における第一のセンサにより取得された第一のセンサ値を用いて確率分布関数を含む事前分布情報を前記第一のセンサの各々に対して予め求め、前記予め求められた事前分布情報と、前記第一のプラズマ処理装置と異なる第二のプラズマ処理装置における第二のセンサにより取得された第二のセンサ値とを基に前記第一のセンサの各々に対応する前記第二のセンサの各々における確率分布を推定し、前記推定された確率分布を用いて前記第二のプラズマ処理装置の状態を診断することを特徴とする。
 本発明の一態様の装置診断装置は、プラズマ処理装置の状態を診断する装置診断装置において、第一のプラズマ処理装置における第一のセンサにより取得された第一のセンサ値を用いて確率分布関数を含む事前分布情報を前記第一のセンサの各々に対して予め求め、前記予め求められた事前分布情報と、第二のプラズマ処理装置における第二のセンサにより取得された第二のセンサ値とを基に前記第一のセンサの各々に対応する前記第二のセンサの各々における確率分布を推定し、前記推定された確率分布に対する尤度である第一の尤度と、正規分布に対する尤度である第二の尤度とを比較し、前記第一の尤度が前記第二の尤度より大きい場合、前記推定された確率分布を用いて前記第二のプラズマ処理装置の状態を診断し、前記第二の尤度が前記第一の尤度より大きい場合、前記正規分布を用いて前記第二のプラズマ処理装置の状態を診断することを特徴とする。
 本発明の一態様のプラズマ処理装置は、試料がプラズマ処理される処理室と自装置の状態を診断する装置診断装置とを備えるプラズマ処理装置において、前記装置診断装置は、自装置と異なるプラズマ処理装置における第一のセンサにより取得された第一のセンサ値を用いて確率分布関数を含む事前分布情報を前記第一のセンサの各々に対して予め求め、前記予め求められた事前分布情報と、自装置における第二のセンサにより取得された第二のセンサ値とを基に前記第一のセンサの各々に対応する前記第二のセンサの各々における確率分布を推定し、前記推定された確率分布を用いて前記自装置の状態を診断することを特徴とする。
 本発明の一態様の装置診断方法は、プラズマ処理装置の状態を診断する装置診断方法において、第一のプラズマ処理装置における第一のセンサにより取得された第一のセンサ値を用いて確率分布関数を含む事前分布情報を前記第一のセンサの各々に対して予め求める工程と、前記予め求められた事前分布情報と、第二のプラズマ処理装置における第二のセンサにより取得された第二のセンサ値とを基に前記第一のセンサの各々に対応する前記第二のセンサの各々における確率分布を推定する工程と、前記推定された確率分布を用いて前記第二のプラズマ処理装置の状態を診断する工程とを有することを特徴とする。
 本発明に一態様によれば、装置診断装置において、少量のセンサ値で確率分布を推定することができる。
実施例のプラズマ処理装置の装置診断装置の構成図である。 プラズマ処理装置のセンサ値記憶部に格納するデータの例を示す図である。 装置群Aのセンサ値を用いた装置診断装置の共通部の処理を示すフローチャートである。 装置診断装置の事前分布記憶部に格納するデータの例を示す図である。 装置診断装置の個別制御部の処理を示すフローチャートである。 確率分布決定前における装置診断装置の確率分布記憶部に格納するデータの例を示す図である。 確率分布決定後における装置診断装置の確率分布記憶部に格納するデータの例を示す図である。 装置診断装置の装置診断値記憶部に格納するデータの例を示す図である。 装置診断結果の表示画面の例を示す図である。 確率分布推定結果の表示画面の例を示す図である。 実施例のプラズマ処理装置の構成図である。
 以下、実施例について、図面を参照しながら説明する。なお、実施例を説明するための全図において、同一部には原則として同一符号を付し、その繰り返しの説明は省略する。
 (1)プラズマ処理装置
 図1を参照して、プラズマ処理装置1の構成について説明する。
 図1に示すように、プラズマ処理装置1は、処理部10と記憶部11を有する。処理部10は設定した加工条件に従い、処理室104の内部にプラズマ101を発生させてウェハ(試料102)を加工する。
 記憶部11は、センサ値記憶部12と管理値記憶部13を有する。センサ値記憶部12は、ウェハ加工中に装置のセンサ103の測定値を時系列データとして設定した加工ステップ毎に記憶する。例えば、センサ103は、状態センサ群を構成し温度や圧力を測定する。
 さらに、センサ値記憶部12は、装置診断において使用するために、時系列データから主要な統計値(例えば、平均値や標準偏差)を算出して記憶する。本実施例においては、本統計値をセンサ値として以後使用する。
 図2を参照して、センサ値記憶部12に格納するデータの例について説明する。
 図2では、統計値として平均値を用いている。センサ値の各列はセンサの種類に対応し、各行はウェハ1枚1枚に対応している。センサ値と共に、装置IDや加工ステップID、加工条件ID、ウェハID等の情報も格納されている。装置IDは、加工を行ったプラズマ処理装置1を特定する情報である。加工ステップID、加工条件IDはそれぞれ加工ステップ、加工条件を特定する情報であり、監視対象の指定に用いる。ウェハIDには、加工したウェハを特定する情報を格納する。管理値記憶部13は、加工日時や加工条件等の管理値を記憶する。
 (2)装置診断装置
 図1を参照して、装置診断装置2の構成について説明する。
 図1に示すように、装置診断装置2は、共通部20と個別制御部23と記憶部26を有する計算機である。装置診断装置2とプラズマ処理装置1の装置群3はネットワークを介して接続されており、相互にデータ通信が可能である。
 本実施例においては、装置群3は、センサ値が多量に蓄積された既存の装置群Aと、装置立上げ等の理由からセンサ値が多量に蓄積されておらず装置診断対象である装置群Bとに分けて記載している。
 基準となるプラズマ処理装置1があれば必ずしも装置群Aは複数のプラズマ処理装置1を有する必要はない。また、診断対象である装置群Bも必ずしも複数のプラズマ処理装置1を有する必要はない。さらに、装置群Aと装置群Bで重複するプラズマ処理装置がある構成としてもよい。
 共通部20は、共通分布関数選択部21と事前分布設定部22を有し、装置群Bの装置診断を実施する前に予め、装置群Aに蓄積されたセンサ値からセンサ毎に事前分布情報を抽出して記憶部26が有する事前分布記憶部27に記憶する処理を行う。共通部20の処理内容の例については、後述の(3)共通部の処理において説明する。
 個別制御部23は、確率分布推定部24と装置状態診断部25を有する。確率分布推定部24が、装置状態診断時に取得した装置群Bの個々のプラズマ処理装置のセンサ値と抽出済みの事前分布情報とから各センサ103の従う確率分布を事後分布として推定し、確率分布記憶部28に記憶する。
 そして、推定したセンサ値の確率分布を基に、装置状態診断部25が装置間差等の装置状態値を算出し、装置診断値記憶部29に記憶する。個別処理部23の処理内容の例については、後述の(4)個別処理部の処理において説明する。
 装置群3と装置診断装置2には出力部40と入力部41が接続されている。出力部40は、例えばディスプレイやプリンタ等であり、記憶部26の情報を基にユーザに対してグラフィカルに情報を出力する装置である。表示例については、後述の(5)出力部による表示例において説明する。入力部41は、例えば、マウスやキーボード等の、ユーザの操作による情報入力を受け付ける入力装置である。
 (3)共通部の処理
 図3を参照して、装置診断装置2の共通部20で行われる装置群Aのセンサ値を用いて事前分布を設定する処理の例について説明する。
 共通部20の処理を実行する前には、予め装置群Aの各プラズマ処理装置1において、監視対象の加工ステップにおけるプラズマ処理中の履歴であるセンサ値をセンサ値記憶部12に格納しておく。
 監視対象の加工ステップとして、複数の工程で共通に行う処理部10の状態を整えるためのプラズマ処理(例えば、エージング処理やクリーニング処理)を指定する。装置群Aのセンサ値記憶部12から、指定した加工ステップIDのセンサ値を取得する。(S101)
 このように複数の工程で共通に行うプラズマ処理のセンサ値を用いることで、例えば装置群Bが新規工程への適用の際であっても、装置群Aが蓄積したセンサ値を事前分布の設定に利用することができる。
 次に、事前分布設定部22は、各センサ103、各確率分布関数候補に対してS103~S104の処理を実行する。ここで、確率分布関数候補とは、プラズマ処理装置1の各センサ103が従い得る確率分布関数を予め候補として設定したものである。例えば、正規分布、歪正規分布、混合正規分布、コーシー分布等を確率分布関数候補として設定しておく(S102)。
 事前分布設定部22は、当該センサ103のセンサ値に対して当該確率分布関数候補の確率分布パラメータを推定する。確率分布パラメータは、例えば正規分布であれば平均値と標準偏差に相当する値であり、確率分布関数毎に異なる種類を有する。確率分布パラメータの推定には、例えば、マルコフ連鎖モンテカルロ法(Markov Chain Monte Carlo method、MCMC法)を利用する。MCMC法は、確率分布パラメータを確率変数とみなした上で、確率分布パラメータの事後分布に比例する確率分布パラメータの事前分布と尤度の積から乱数サンプルを大量に発生させて確率分布パラメータの事後分布を推定する手法である(S103)。
 推定した確率分布パラメータは確率分布として得られるが、例えば事後確率が最大となる値から一意に値を定める。このときの確率分布を用いて、事前分布設定部22は得られている装置群Aのセンサ値に対する当て嵌まりの度合いである対数尤度を算出する(S104)。
 最後に、共通分布関数選択部21は、各センサ103に対して、装置群Aで共通する確率分布関数として、対数尤度が最大となった確率分布関数を確率分布関数候補の中から選択する。また、選択した確率分布関数に関する確率分布パラメータの推定値を、装置群Bのセンサ値の確率分布を推定する際の事前分布として事前分布記憶部27に格納する。また、正規分布に関する確率分布パラメータの推定値も対数尤度が最大となった確率分布関数と併せて事前分布記憶部27に格納する(S105)。
 図4を参照して、事前分布記憶部27に格納するデータの例について説明する。
 図4に示すように、センサ毎に事前分布の情報を格納する形態となっている。確率分布関数の行は、図3のS105で選択した確率分布関数の名称を格納する。確率分布パラメータの行は、図3のS103で推定した確率分布パラメータの事後分布を用いて設定した各確率分布パラメータの事前分布を格納する。例として、事後分布の平均と標準偏差を有する正規分布を各確率分布パラメータの事前分布として設定している。対数尤度の行は、図3のS104で算出した対数尤度を格納している。
 このように、装置群Aのセンサ値を用いて装置群で共通性が最大の確率分布関数を事前分布情報とすることで、装置群Bに対しても共通に使える事前分布を抽出でき、非正規分布であっても少量のセンサ値での確率分布推定を可能とする。
 (4)個別制御部の処理
 図5を参照して、装置診断装置2の個別制御部23で行われる確率分布の推定と装置診断の処理の例について説明する。
 装置群Bの診断対象とするプラズマ処理装置1のセンサ値記憶部12から、図3のS101で指定した加工ステップIDのセンサ値を取得する(S201)。
 確率分布推定部24は、取得したセンサ値の各センサに対して、S203~S205の処理を実行する(S202)。
 まず、事前分布記憶部27から当該センサに対応する事前分布情報を取得する(S203)。
 次に、取得した事前分布情報を事前分布として設定した上で、取得したセンサ値を用いてMCMC法により、確率分布パラメータの事後分布を推定する。推定した確率分布パラメータを用いて、図3のS104と同様にしてセンサ値に対する対数尤度を算出する。本処理は、図3のS105で選択した確率分布関数の場合と、正規分布の場合両方に対して実施する(S204)。
 次に、図3のS105で選択した確率分布関数で推定した確率分布と正規分布で推定した確率分布とで対数尤度を比較し、対数尤度が大きい確率分布を当該センサに対する推定結果とし、確率分布記憶部28に格納する(S205)。
 このように、装置群Bのセンサ値も併せて確率分布関数を決定することで推定結果のロバスト性を高めることができる。
 図6A及び図6Bを参照して、各センサの確率分布決定前後における確率分布記憶部28に格納するデータの例について説明する。
 図6A及び図6Bに示すように、センサ名の各列に示すセンサ毎に確率分布情報を格納する。格納する確率分布情報は、図4と同様に、確率分布関数と確率分布パラメータ及び対数尤度である。
 確率分布パラメータは図4と同様に推定した事後分布を格納するものとしても良いし、図6Aと図6Bのように例えば事後確率が最大となる値のように一意に定まる値を格納しても良い。図6Aの各センサにおける正規分布を含む二つの確率分布関数のうち、対数尤度の大きい確率分布を決定した後が図6Bに相当する。
 最後に、確率分布記憶部28に格納したデータを用いて装置診断値を算出する(S206)。例えば、装置間差を装置診断値として算出する場合は、まず、基準となるプラズマ処理装置1と診断対象のプラズマ処理装置1の確率分布情報を確率分布記憶部28から取得する。取得した確率分布間の距離を装置間差診断値として装置状態診断値記憶部29に格納する。確率分布間の距離指標としては、Kullback-LeiblerダイバージェンスやJensen-Shannonダイバージェンス等を用いる。
 図7を参照して、装置間差を装置診断値として算出する場合における、装置診断値記憶部29に格納するデータの例について説明する。
 図7に示すように、装置ID行には、比較する2台のプラズマ処理装置1を特定するIDを格納する。装置間差診断値行に、センサ毎に算出した装置間差診断値を格納する。
 (5)出力部による表示例
 出力部40は、記憶部11や記憶部26に格納された情報を用いて、装置状態の診断結果や確率分布の推定結果を表示する。
 図8を参照して、装置間差診断結果の表示画面D100の例について説明する。
 図8に示すように、D102に注目する装置IDを入力する。これにより、装置状態値記憶部29に格納された該当する装置IDの装置間差診断値を取得し、D104のように、センサ毎にグラフで表示する。この結果、基準となるプラズマ処理装置1との装置間差が大きいセンサを判断することができ、調整等に利用することができる。
 センサ103は通常、測定対象部品や測定対象項目等によって複数の群に分類することができる。センサ群として予め登録しておき、D103のように、センサ群に属する各センサの装置間差診断値を積算し、センサ群毎に装置間差診断値を表示する。こうすることで、調整対象の部品が明確となる。
 全センサの装置間差診断値を積算することで、D101のように、プラズマ処理装置1毎の比較も表示する。
 図9を参照して、センサ値の分布と確率分布記憶部28に格納された確率分布の推定結果を確認する画面D105の例について説明する。
 図9に示すように、装置IDやセンサ名を入力し、確認する対象を決定した後、グラフを表示する。複数の装置IDを入力することで、比較表示することができる。ヒストグラムがセンサ値記憶部12に格納されたセンサ値の測定値のヒストグラムであり、実線が確率分布記憶部28に格納された確率分布推定結果である。
 例えば、図9では装置IDがC1、C4の装置のセンサ名X2のセンサ値のヒストグラムと確率分布の推定結果を表示している。これにより、使用者は推定された確率分布が妥当なものであるかどうかを確認することができる。また、例えば、比較する二つの確率分布が平行移動している場合であればセンサ103の初期化を検討する等、装置診断結果に対する対策を考案することに活用することができる。
 このように、図8及び図9に示すように、出力部40は、プラズマ処理装置1の状態の診断値として確率分布のプラズマ処理装置間差を出力するとともに確率分布の経時的な推移幅も出力する。
 上記実施例によれば、プラズマ処理装置において、例えば装置立上げ時や新規工程への適用時や出荷前の調整時に、診断対象装置のセンサ値が多量に取得できていない場合においても、既存の装置群で共通する事前分布情報を抽出した上で、診断対象の装置で新規に取得したセンサ値と併せて非正規分布を含めた確率分布を推定することで装置診断を可能とする。
 以上、実施例について説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、図1では、装置診断装置2とプラズマ処理装置1がネットワークを介して接続された構成を示したが、本発明は上記構成に限定されず、図10に示すように、プラズマ処理装置1が装置診断装置2を備える構成であっても良い。この場合、プラズマ処理装置1は、試料102がプラズマ処理される処理室104と自装置の状態を診断する装置診断装置2とを備える。
 図10に示すように、プラズマ処理装置1は、図1に示す処理部10と記憶部11を有する。処理部10は設定した加工条件に従い、処理室104の内部にプラズマ101を発生させてウェハ(試料102)を加工する。
 また、装置診断装置2は、図1に示す構成と同様に、共通部20と個別制御部23と記憶部26を有する。
1 プラズマ処理装置
2 装置診断装置
3 装置群
10 処理部
11 記憶部
12 センサ値記憶部
13 管理値記憶部
20 共通部
21 共通分布関数選択部
22 事前分布設定部
23 個別制御部
24 確率分布推定部
25 装置状態診断部
26 記憶部
27 事前分布記憶部
28 確率分布記憶部
29 装置診断値記憶部
40 出力部
41 入力部

Claims (8)

  1. プラズマ処理装置の状態を診断する装置診断装置において、
    第一のプラズマ処理装置における第一のセンサにより取得された第一のセンサ値を用いて確率分布関数を含む事前分布情報を前記第一のセンサの各々に対して予め求め、前記予め求められた事前分布情報と、前記第一のプラズマ処理装置と異なる第二のプラズマ処理装置における第二のセンサにより取得された第二のセンサ値とを基に前記第一のセンサの各々に対応する前記第二のセンサの各々における確率分布を推定し、前記推定された確率分布を用いて前記第二のプラズマ処理装置の状態を診断することを特徴とする装置診断装置。
  2. 請求項1に記載の装置診断装置において、
    前記第一のプラズマ処理装置は、複数であり、
    前記第一のセンサの各々における予め求められた確率分布関数は、前記第一のプラズマ処理装置の各々に対して求められた確率分布関数の中で最も多くの前記第一のプラズマ処理装置に求められた確率分布関数であることを特徴とする装置診断装置。
  3. 請求項2に記載の装置診断装置において、
    前記第一のセンサの各々における予め求められた確率分布関数は、確率分布関数の候補の中から尤度を基に選択されることを特徴とする装置診断装置。
  4. プラズマ処理装置の状態を診断する装置診断装置において、
    第一のプラズマ処理装置における第一のセンサにより取得された第一のセンサ値を用いて確率分布関数を含む事前分布情報を前記第一のセンサの各々に対して予め求め、前記予め求められた事前分布情報と、第二のプラズマ処理装置における第二のセンサにより取得された第二のセンサ値とを基に前記第一のセンサの各々に対応する前記第二のセンサの各々における確率分布を推定し、前記推定された確率分布に対する尤度である第一の尤度と、正規分布に対する尤度である第二の尤度とを比較し、
    前記第一の尤度が前記第二の尤度より大きい場合、前記推定された確率分布を用いて前記第二のプラズマ処理装置の状態を診断し、
    前記第二の尤度が前記第一の尤度より大きい場合、前記正規分布を用いて前記第二のプラズマ処理装置の状態を診断することを特徴とする装置診断装置。
  5. 請求項1に記載の装置診断装置において、
    前記確率分布は、マルコフ連鎖モンテカルロ法を用いて推定されることを特徴とする装置診断装置。
  6. 請求項1に記載の装置診断装置において、
    前記第二のプラズマ処理装置の状態の診断値として前記確率分布のプラズマ処理装置間差を出力するとともに前記確率分布の経時的な推移幅も出力することを特徴とする装置診断装置。
  7. 試料がプラズマ処理される処理室と自装置の状態を診断する装置診断装置とを備えるプラズマ処理装置において、
    前記装置診断装置は、自装置と異なるプラズマ処理装置における第一のセンサにより取得された第一のセンサ値を用いて確率分布関数を含む事前分布情報を前記第一のセンサの各々に対して予め求め、前記予め求められた事前分布情報と、自装置における第二のセンサにより取得された第二のセンサ値とを基に前記第一のセンサの各々に対応する前記第二のセンサの各々における確率分布を推定し、前記推定された確率分布を用いて前記自装置の状態を診断することを特徴とするプラズマ処理装置。
  8. プラズマ処理装置の状態を診断する装置診断方法において、
    第一のプラズマ処理装置における第一のセンサにより取得された第一のセンサ値を用いて確率分布関数を含む事前分布情報を前記第一のセンサの各々に対して予め求める工程と、
    前記予め求められた事前分布情報と、第二のプラズマ処理装置における第二のセンサにより取得された第二のセンサ値とを基に前記第一のセンサの各々に対応する前記第二のセンサの各々における確率分布を推定する工程と、
    前記推定された確率分布を用いて前記第二のプラズマ処理装置の状態を診断する工程とを有することを特徴とする装置診断方法。
PCT/JP2019/029762 2019-07-30 2019-07-30 装置診断装置、プラズマ処理装置及び装置診断方法 WO2020152889A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/029762 WO2020152889A1 (ja) 2019-07-30 2019-07-30 装置診断装置、プラズマ処理装置及び装置診断方法
KR1020207017597A KR102425936B1 (ko) 2019-07-30 2019-07-30 장치 진단 장치, 플라스마 처리 장치 및 장치 진단 방법
JP2020532826A JP6841980B2 (ja) 2019-07-30 2019-07-30 装置診断装置、プラズマ処理装置及び装置診断方法
US16/971,255 US20220157580A1 (en) 2019-07-30 2019-07-30 Diagnosis apparatus, plasma processing apparatus and diagnosis method
CN201980007659.0A CN112585727B (zh) 2019-07-30 2019-07-30 装置诊断装置、等离子体处理装置以及装置诊断方法
TW109122971A TWI738411B (zh) 2019-07-30 2020-07-08 裝置診斷裝置、電漿處理裝置及裝置診斷方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029762 WO2020152889A1 (ja) 2019-07-30 2019-07-30 装置診断装置、プラズマ処理装置及び装置診断方法

Publications (1)

Publication Number Publication Date
WO2020152889A1 true WO2020152889A1 (ja) 2020-07-30

Family

ID=71736287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029762 WO2020152889A1 (ja) 2019-07-30 2019-07-30 装置診断装置、プラズマ処理装置及び装置診断方法

Country Status (6)

Country Link
US (1) US20220157580A1 (ja)
JP (1) JP6841980B2 (ja)
KR (1) KR102425936B1 (ja)
CN (1) CN112585727B (ja)
TW (1) TWI738411B (ja)
WO (1) WO2020152889A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015308A (zh) * 2021-03-17 2021-06-22 中国科学技术大学 一种等离子体电流计算方法及装置
WO2023286142A1 (ja) * 2021-07-13 2023-01-19 株式会社日立ハイテク 診断装置及び診断方法並びにプラズマ処理装置及び半導体装置製造システム
WO2023148967A1 (ja) * 2022-02-07 2023-08-10 株式会社日立ハイテク 診断装置、診断方法、半導体製造装置システム及び半導体装置製造システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270581A (ja) * 2001-03-07 2002-09-20 Hitachi Ltd プラズマ処理装置及び処理方法
JP2003347275A (ja) * 2002-05-30 2003-12-05 Toshiba Corp 半導体製造装置の管理値設定装置
JP2010165949A (ja) * 2009-01-16 2010-07-29 Ritsumeikan パーティクル汚染事象予測装置、パーティクル汚染事象予測方法、及び、パーティクル汚染事象予測プログラム
JP2013041954A (ja) * 2011-08-15 2013-02-28 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
JP2014022695A (ja) * 2012-07-24 2014-02-03 Hitachi High-Technologies Corp プラズマ処理装置及びその校正方法
WO2018061842A1 (ja) * 2016-09-27 2018-04-05 東京エレクトロン株式会社 異常検知プログラム、異常検知方法および異常検知装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214119B1 (en) * 1986-04-18 2001-04-10 Applied Materials, Inc. Vacuum substrate processing system having multiple processing chambers and a central load/unload chamber
US5347460A (en) * 1992-08-25 1994-09-13 International Business Machines Corporation Method and system employing optical emission spectroscopy for monitoring and controlling semiconductor fabrication
CN100426471C (zh) * 2002-06-05 2008-10-15 东京毅力科创株式会社 处理装置用的多变量解析方法、处理装置的控制装置、处理装置的控制系统
US7072811B2 (en) * 2002-07-15 2006-07-04 Carnegie Mellon University Method and system for identifying regeneration points in a Markov chain Monte Carlo simulation
US6927076B2 (en) * 2002-10-05 2005-08-09 Taiwan Semiconductor Manufacturing Co., Ltd Method for recovering a plasma process
US7050880B2 (en) * 2003-12-30 2006-05-23 Sc Solutions Chemical-mechanical planarization controller
CN100359660C (zh) * 2005-01-27 2008-01-02 北京北方微电子基地设备工艺研究中心有限责任公司 一种等离子体刻蚀工艺的终点检测方法
JP4170315B2 (ja) * 2005-05-30 2008-10-22 インターナショナル・ビジネス・マシーンズ・コーポレーション 異常判断装置、制御方法、自動車およびプログラム
US8366829B2 (en) * 2005-08-05 2013-02-05 Advanced Micro-Fabrication Equipment, Inc. Asia Multi-station decoupled reactive ion etch chamber
JP4754419B2 (ja) * 2006-07-03 2011-08-24 学校法人立命館 プラズマ異常放電診断方法、プラズマ異常放電診断システム及びコンピュータプログラム
JP2008218898A (ja) * 2007-03-07 2008-09-18 Hitachi High-Technologies Corp プラズマ処理装置
JP5353265B2 (ja) * 2009-01-26 2013-11-27 パナソニック株式会社 プラズマ処理装置
JP5363213B2 (ja) * 2009-06-30 2013-12-11 東京エレクトロン株式会社 異常検出システム、異常検出方法、記憶媒体及び基板処理装置
KR101117928B1 (ko) * 2010-06-07 2012-02-29 명지대학교 산학협력단 플라즈마 공정 진단 시스템 및 이에 있어서 종료점 검출 방법 및 장치
JP5436351B2 (ja) * 2010-06-21 2014-03-05 日本電信電話株式会社 状態推定装置、状態推定方法、およびプログラム
US8581217B2 (en) * 2010-10-08 2013-11-12 Advanced Ion Beam Technology, Inc. Method for monitoring ion implantation
JP5773613B2 (ja) * 2010-10-25 2015-09-02 東京エレクトロン株式会社 異常原因分析方法及び異常分析プログラム
JP5791555B2 (ja) * 2012-03-23 2015-10-07 日本電信電話株式会社 状態追跡装置、方法、及びプログラム
JP2016103496A (ja) * 2014-11-27 2016-06-02 株式会社日立ハイテクノロジーズ プラズマ処理装置
US10043690B2 (en) * 2015-03-31 2018-08-07 Lam Research Corporation Fault detection using showerhead voltage variation
JP6462477B2 (ja) * 2015-04-27 2019-01-30 東京エレクトロン株式会社 被処理体を処理する方法
US9892012B2 (en) * 2015-12-30 2018-02-13 International Business Machines Corporation Detecting anomalous sensors
US10817796B2 (en) * 2016-03-07 2020-10-27 D-Wave Systems Inc. Systems and methods for machine learning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270581A (ja) * 2001-03-07 2002-09-20 Hitachi Ltd プラズマ処理装置及び処理方法
JP2003347275A (ja) * 2002-05-30 2003-12-05 Toshiba Corp 半導体製造装置の管理値設定装置
JP2010165949A (ja) * 2009-01-16 2010-07-29 Ritsumeikan パーティクル汚染事象予測装置、パーティクル汚染事象予測方法、及び、パーティクル汚染事象予測プログラム
JP2013041954A (ja) * 2011-08-15 2013-02-28 Hitachi High-Technologies Corp プラズマ処理装置およびプラズマ処理方法
JP2014022695A (ja) * 2012-07-24 2014-02-03 Hitachi High-Technologies Corp プラズマ処理装置及びその校正方法
WO2018061842A1 (ja) * 2016-09-27 2018-04-05 東京エレクトロン株式会社 異常検知プログラム、異常検知方法および異常検知装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015308A (zh) * 2021-03-17 2021-06-22 中国科学技术大学 一种等离子体电流计算方法及装置
CN113015308B (zh) * 2021-03-17 2022-07-15 中国科学技术大学 一种等离子体电流计算方法及装置
WO2023286142A1 (ja) * 2021-07-13 2023-01-19 株式会社日立ハイテク 診断装置及び診断方法並びにプラズマ処理装置及び半導体装置製造システム
JP7289992B1 (ja) * 2021-07-13 2023-06-12 株式会社日立ハイテク 診断装置及び診断方法並びにプラズマ処理装置及び半導体装置製造システム
WO2023148967A1 (ja) * 2022-02-07 2023-08-10 株式会社日立ハイテク 診断装置、診断方法、半導体製造装置システム及び半導体装置製造システム
JP7442013B2 (ja) 2022-02-07 2024-03-01 株式会社日立ハイテク 診断装置、診断方法、半導体製造装置システム及び半導体装置製造システム

Also Published As

Publication number Publication date
JPWO2020152889A1 (ja) 2021-02-18
US20220157580A1 (en) 2022-05-19
KR20210015741A (ko) 2021-02-10
CN112585727A (zh) 2021-03-30
TW202105107A (zh) 2021-02-01
KR102425936B1 (ko) 2022-07-28
TWI738411B (zh) 2021-09-01
JP6841980B2 (ja) 2021-03-10
CN112585727B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2020152889A1 (ja) 装置診断装置、プラズマ処理装置及び装置診断方法
KR101019459B1 (ko) 결함 진단을 위한 분류된 결함 시그니처들
US8989888B2 (en) Automatic fault detection and classification in a plasma processing system and methods thereof
KR101018545B1 (ko) 적응형 다변수 결함 검출
US7809450B2 (en) Self-correcting multivariate analysis for use in monitoring dynamic parameters in process environments
US8295966B2 (en) Methods and apparatus to predict etch rate uniformity for qualification of a plasma chamber
JP4615222B2 (ja) ライン末端データマイニングとプロセスツールデータマイニングとの相関
KR101708077B1 (ko) 프로세싱 챔버의 예측 예방 보전을 위한 방법 및 장치
US7844558B2 (en) Incremental learning of nonlinear regression networks for machine condition monitoring
US20180284739A1 (en) Quality control apparatus, quality control method, and quality control program
JP2009080612A (ja) 分布の評価方法、製品の製造方法、分布の評価プログラム及び分布の評価システム
US20190196458A1 (en) Method for selecting leading associated parameter and method for combining critical parameter and leading associated parameter for equipment prognostics and health management
JP7153142B2 (ja) レシピ情報提示システム、レシピエラー推定システム
WO2020166236A1 (ja) 作業効率評価方法、作業効率評価装置、及びプログラム
JP6825753B1 (ja) 高炉の異常判定装置、高炉の異常判定方法、及び高炉の操業方法
KR20160099389A (ko) 반도체 제조 공정에서 통계적 방법을 이용하여, 가스 누출을 감지하는 방법 장치
JP7290484B2 (ja) 異常検知装置、異常検知システム、及び異常検知方法
KR101620850B1 (ko) 가상다중센서 기술을 이용한 센서 건전성 평가 방법 및 시스템
US11586984B2 (en) Method for verifying the production process of field devices by means of a machine-learning system or of a prognosis system
CN117063065A (zh) 诊断装置、半导体制造装置系统、半导体装置制造系统以及诊断方法
TW202318475A (zh) 診斷裝置及診斷方法以及電漿處理裝置及半導體裝置製造系統
US20100063610A1 (en) Method of process modules performance matching
Farhang Doost VALUE OF INFORMATION IN CONDITION BASED MAINTENANCE USING PROPORTIONAL HAZARDS MODELS: A COMPARISON OF MAINTENANCE STRATEGIES
JP2005277290A (ja) 歩留解析装置及び歩留解析方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020532826

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911235

Country of ref document: EP

Kind code of ref document: A1