WO2020151544A1 - 一种发动机电子水泵的控制方法和系统 - Google Patents

一种发动机电子水泵的控制方法和系统 Download PDF

Info

Publication number
WO2020151544A1
WO2020151544A1 PCT/CN2020/072190 CN2020072190W WO2020151544A1 WO 2020151544 A1 WO2020151544 A1 WO 2020151544A1 CN 2020072190 W CN2020072190 W CN 2020072190W WO 2020151544 A1 WO2020151544 A1 WO 2020151544A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
water pump
temperature
speed
water outlet
Prior art date
Application number
PCT/CN2020/072190
Other languages
English (en)
French (fr)
Inventor
信松岭
杨金鹏
晏双鹤
王岩
梁涛
杨中华
刘云辉
杜田田
谭振东
张召
李�浩
张�浩
顾亚松
付东波
董清泉
胡宇辰
马磊
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP20744840.8A priority Critical patent/EP3916208A4/en
Publication of WO2020151544A1 publication Critical patent/WO2020151544A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P2007/168By varying the cooling capacity of a liquid-to-air heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/36Heat exchanger mixed fluid temperature

Definitions

  • the invention relates to the technical field of engine cooling systems, in particular to a control method and system of an engine electronic water pump.
  • the engine is a device that converts chemical energy into mechanical energy through combustion. A large amount of heat energy is generated in the process.
  • the engine itself must maintain a normal working temperature, so it needs to be equipped with a suitable cooling system.
  • most models of engine use mechanical water pumps.
  • the pump speed corresponds to the engine speed in a certain ratio, that is, the cooling water flow is only controlled by the engine speed and cannot adapt to all working conditions, such as slow climbing, low engine speed, low cooling water flow, but high thermal load, which cannot meet the actual heat dissipation of the engine Demands increase engine temperature and reduce operating efficiency.
  • the electronic water pump is directly controlled by the engine control unit and is not affected by the engine speed.
  • the cooling water flow can be flexibly adjusted according to the actual heat dissipation requirements of the engine.
  • small flow demand conditions reducing the output power of the electronic water pump can reduce fuel consumption.
  • large flow demand conditions increasing the output power of the electronic water pump can reduce the thermal load, thereby increasing the intake air volume and pre-ignition angle, and increasing the torque output.
  • the electronic water pump of some products is only used as an additional independent cooling system and does not completely replace the mechanical water pump; the control of the electronic water pump of some products completely relies on PID adjustment, and the control stability is relatively poor; the target water temperature of the engine outlet for some products in all working conditions is The same value, the engine performance is poor.
  • the present invention aims to provide a control method for an engine electronic water pump to solve the technical problems of the mechanical water pump and the electronic water pump.
  • the present invention provides a control method of an engine electronic water pump, the method including:
  • the target speed of the electronic water pump is used to control the engine electronic water pump.
  • said obtaining the target temperature of the engine water outlet and the basic pump speed of the electronic water pump includes:
  • the basic pump speed of the electronic water pump is obtained.
  • the obtaining the environmental temperature correction coefficient, and based on the basic pump speed of the electronic water pump, the PID control correction coefficient, and the environmental temperature correction coefficient, obtaining the target speed of the electronic water pump includes:
  • the target speed of the electronic water pump is obtained.
  • obtaining the basic pump speed of the electronic water pump includes:
  • a first temperature sensor installed at the water outlet of the engine is used to obtain the actual temperature of the water outlet of the engine
  • a second temperature sensor installed at the water outlet of the radiator is used to obtain the actual temperature of the water outlet of the radiator.
  • control method of the engine electronic water pump of the present invention has the following advantages:
  • the method of the present invention controls the target speed of the electronic water pump in two steps.
  • the first step is to output the target speed of the electronic fan and the basic pump speed to achieve pre-control and improve the responsiveness of the system.
  • the second step is the combination of PID and ambient temperature. Correct the basic pump speed to improve control accuracy.
  • Another object of the present invention is to provide an engine electronic water pump control system to solve the technical problems of the mechanical water pump and the electronic water pump.
  • the present invention provides a control system for an engine electronic water pump, the system including:
  • the first acquisition module is used to acquire the target temperature of the engine water outlet and the basic pump speed of the electronic water pump;
  • the second acquisition module is used to acquire the PID control correction coefficient based on the target temperature of the engine water outlet and the measured temperature of the engine water outlet;
  • the third acquisition module is used to acquire the environmental temperature correction coefficient, and obtain the target speed of the electronic water pump based on the basic pump speed of the electronic water pump, the PID control correction coefficient and the environmental temperature correction coefficient;
  • the control module is used to control the engine electronic water pump by using the target speed of the electronic water pump.
  • the first obtaining module includes:
  • the first acquisition sub-module is used to acquire the thermal load of the engine combustion system and the target temperature of the engine water outlet based on the engine speed and engine torque;
  • the second acquisition sub-module is used to acquire the basic pump speed of the electronic water pump based on the thermal load of the engine combustion system and the measured temperature of the water outlet of the radiator.
  • the third acquisition module includes:
  • the coefficient acquisition sub-module based on the ambient temperature, acquires the ambient temperature correction coefficient
  • the target speed acquisition module is used to acquire the target speed of the electronic water pump based on the basic pump speed of the electronic water pump, the PID control correction coefficient and the ambient temperature correction coefficient.
  • control module includes:
  • the third acquisition sub-module is used to acquire the target speed of the electronic fan based on the thermal load of the engine combustion system and the measured temperature of the water outlet of the radiator;
  • the control sub-module is used to control the engine electronic water pump by using the target speed of the electronic fan and the target speed of the electronic water pump.
  • system further includes:
  • the first temperature acquisition module is configured to acquire the actual temperature of the engine water outlet by using the first temperature sensor installed at the engine water outlet;
  • the second temperature acquiring module is used for acquiring the actual temperature of the water outlet of the radiator by using a second temperature sensor installed at the water outlet of the radiator.
  • the present invention provides a computing processing device, including:
  • a memory in which computer-readable codes are stored
  • One or more processors when the computer-readable code is executed by the one or more processors, the computing processing device executes the aforementioned control method of the engine electronic water pump.
  • the present invention provides a computer program, including computer readable code, when the computer readable code runs on a computing processing device, causing the computing processing device to execute the aforementioned control method of the engine electronic water pump .
  • the present invention provides a computer-readable medium in which the aforementioned computer program is stored.
  • control system of the engine electronic water pump of the present invention has the following advantages:
  • the system of the present invention controls the target speed of the electronic water pump in two steps.
  • the first step is to output the target speed of the electronic fan and the basic pump speed to achieve pre-control and improve the responsiveness of the system.
  • the second step is the combination of PID and ambient temperature. Correct the basic pump speed to improve control accuracy.
  • Figure 1 is a flow chart of the steps of a method for controlling an electronic water pump for an engine according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for controlling an electronic water pump for an engine according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram of a control system of an engine electronic water pump according to an embodiment of the present invention
  • Fig. 4 schematically shows a block diagram of a computing processing device for executing the method according to the present invention
  • Fig. 5 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present invention.
  • an embodiment of the present invention provides a method for controlling an engine electronic water pump, the method includes:
  • Step 101 Obtain the target temperature of the engine water outlet and the basic pump speed of the electronic water pump.
  • the engine speed, engine torque, and the preset first relationship are used to obtain the thermal load of the engine combustion system and the target temperature of the engine water outlet, and based on the thermal load of the engine combustion system, the actual measured temperature of the radiator water outlet and the preset
  • the second relationship is to obtain the basic pump speed of the electronic water pump.
  • the preset first relationship is generated based on previous experimental data.
  • the experimental data here includes a preset engine water outlet temperature and the use of the preset engine water outlet temperature to obtain the engine speed and torque required to reach the temperature , And use the engine speed and torque to obtain the thermal load of the engine combustion system.
  • the preset second relationship is also generated based on previous experimental data.
  • the experimental data here includes the previously obtained thermal load of the engine combustion system, as well as the real-time measured temperature of the radiator outlet and the obtained basic pump speed of the electronic water pump.
  • Step 102 Obtain a PID control correction coefficient based on the target temperature of the engine water outlet and the actual measured temperature of the engine water outlet.
  • obtaining the PID control correction coefficient of the temperature sensor includes: when the target temperature of the engine water outlet is higher than the actual measured temperature of the engine water outlet, the PID control of the temperature sensor is corrected
  • the coefficient is set to a number less than 1. More specifically: the greater the value of the engine water outlet target temperature being higher than the actual measured temperature of the engine water outlet, the smaller the PID control correction coefficient of the temperature sensor, and the higher the engine water outlet target temperature The smaller the value of the actual temperature measured at the engine water outlet, the larger the PID control correction coefficient of the temperature sensor.
  • the target temperature of the engine water outlet is 85°C
  • the measured temperature of the engine water outlet is 82°C
  • the PID correction coefficient is 0.96
  • the target temperature of the engine water outlet is 85°C
  • the measured temperature of the engine water outlet is 84°C
  • the PID correction coefficient is 0.98.
  • the PID control correction coefficient of the temperature sensor is set to a number greater than 1. More specifically, when the target temperature of the engine water outlet is lower than the actual measured temperature of the engine water outlet The greater the value of the temperature, the greater the PID control correction coefficient of the temperature sensor, the smaller the value at which the target temperature of the engine water outlet is lower than the actual measured temperature of the engine water outlet, the smaller the PID control correction coefficient of the temperature sensor.
  • the target temperature of the engine water outlet is 90°C
  • the measured temperature of the engine water outlet is 92°C
  • the PID correction coefficient is 1.02
  • the target temperature of the engine water outlet is 85°C
  • the measured temperature of the engine water outlet is 95°C
  • the PID correction coefficient is 1.12.
  • Step 103 Obtain the environmental temperature correction coefficient, and obtain the target speed of the electronic water pump based on the basic pump speed of the electronic water pump, the PID control correction coefficient and the environmental temperature correction coefficient.
  • the target speed of the electronic water pump is determined by the basic pump speed of the electronic water pump, the PID control correction coefficient and the ambient temperature correction coefficient.
  • the target speed of the electronic water pump Is greater than the basic pump speed of the electronic water pump;
  • the PID control correction coefficient and the ambient temperature correction coefficient are less than 1, the target speed of the electronic water pump is less than the basic pump speed of the electronic water pump;
  • the basic pump speed of the electronic water pump is 45000r /min
  • PID control correction coefficient is 1.03
  • the ambient temperature correction coefficient is 1.02
  • the target speed of the electronic water pump is 47277r/min;
  • the basic pump speed of the electronic water pump is 10000r/min, the PID control correction coefficient is 0.96, and the environmental temperature correction coefficient
  • the target speed of the electronic water pump is 9408r/min.
  • Step 104 Use the target speed of the electronic water pump to control the engine electronic water pump.
  • control of the target speed of the electronic water pump is carried out in two steps.
  • the first step is to directly output the basic pump speed of the electronic water pump according to the thermal load of the engine combustion system and the measured temperature of the water outlet of the radiator to realize pre-control and improve the system response.
  • PID and ambient temperature jointly modify the basic pump speed of the electronic water pump to improve the control accuracy.
  • said obtaining the target temperature of the engine water outlet and the basic pump speed of the electronic water pump includes:
  • the basic pump speed of the electronic water pump is obtained.
  • the relationship between the engine speed and engine torque and the thermal load of the engine combustion system is specifically: the higher the engine speed, the greater the engine torque, and the higher the thermal load of the engine combustion system, that is to say, the thermal load of the engine combustion system is higher.
  • load and engine speed and engine torque There is a strong positive correlation between load and engine speed and engine torque. Specifically, the higher the speed, the greater the torque and the higher the thermal load. For example: when the engine speed is 4000r/min and the engine torque is 260Nm, the thermal load of the engine combustion system is 0.65; when the engine speed is 1400r/min and the engine torque is 40Nm, the thermal load of the engine combustion system is 0.2.
  • the engine speed and engine torque are also positively correlated with the target temperature of the engine water outlet.
  • the target temperature of the water outlet will reach the upper limit and will not continue to increase.
  • the target temperature of the water outlet of the radiator is 90°C; when the engine speed is 1400r/min and the engine With a torque of 40Nm, the target temperature of the radiator outlet is 83°C.
  • the basic pump speed of the electronic water pump has a strong correlation with the thermal load of the engine combustion system and the measured temperature of the radiator outlet. For example, when the thermal load of the engine combustion system is 0.65, the measured temperature of the radiator outlet is At 95°C, the basic pump speed of the electronic water pump is 45000 r/min. When the thermal load of the engine combustion system is 0.2 and the measured temperature of the water outlet of the radiator is 80°C, the basic pump speed of the electronic water pump is 10000 r/min. In this embodiment, when the thermal load of the engine combustion system is large and the actual measured temperature of the radiator outlet is high, the target speed of the electronic fan is relatively increased.
  • the electronic fan does not need to be turned on.
  • the target speed of the electronic fan is 4000r/min.
  • the target speed of the electronic fan is 0r/min.
  • the obtaining the environmental temperature correction coefficient, and based on the basic pump speed of the electronic water pump, the PID control correction coefficient, and the environmental temperature correction coefficient, obtaining the target speed of the electronic water pump includes:
  • the target speed of the electronic water pump is obtained.
  • the environmental temperature correction coefficient is a number close to 1.
  • the environmental temperature correction coefficient is set to be larger, and when the environmental temperature is low, the environmental temperature correction coefficient is set accordingly The setting is smaller.
  • the ambient temperature correction coefficient when the ambient temperature is 40°C, the ambient temperature correction coefficient is 1.02, and when the ambient temperature is 0°C, the ambient temperature correction coefficient is 0.96.
  • obtaining the basic pump speed of the electronic water pump includes:
  • the engine speed, engine torque, and the preset first relationship are used to obtain the thermal load of the engine combustion system and the target temperature of the engine water outlet, and based on the thermal load of the engine combustion system, the actual measured temperature of the radiator water outlet and the preset
  • the second relationship is to obtain the target speed of the electronic fan.
  • the preset first relationship is generated based on previous experimental data.
  • the experimental data here includes a preset engine water outlet temperature and the use of the preset engine water outlet temperature to obtain the engine speed and torque required to reach the temperature , And use the engine speed and torque to obtain the thermal load of the engine combustion system.
  • the preset second relationship is also generated based on previous experimental data, where the experimental data includes the previously obtained thermal load of the engine combustion system, the real-time measured temperature of the radiator water outlet and the obtained target speed of the electronic fan.
  • the control of the target speed of the electronic water pump is carried out in two steps.
  • the first step is to directly output the target speed of the electronic fan and the basic pump speed according to the thermal load of the engine combustion system and the measured temperature of the water outlet of the radiator to achieve pre-control and improve
  • the second step is to correct the basic pump speed by PID and the ambient temperature to improve the control accuracy.
  • only the target speed of the electronic water pump is corrected, and the target speed of the electronic fan is not corrected. The reason is that the electronic fan has a slower response than the electronic water pump, so the system stability is higher than that of correcting the target speed of the electronic fan.
  • a first temperature sensor installed at the water outlet of the engine is used to obtain the actual temperature of the water outlet of the engine.
  • a second temperature sensor installed at the water outlet of the radiator is used to obtain the actual temperature of the water outlet of the radiator.
  • the first temperature sensor is used to measure the actual temperature of the water outlet of the engine in real time to achieve accurate control of the electronic water pump.
  • the second temperature sensor is used to measure the actual temperature of the water outlet of the radiator in real time to realize accurate control of the electronic water pump.
  • the control of the target speed of the electronic water pump is carried out in two steps.
  • the first step is to directly output the target speed of the electronic fan and the basic pump speed according to the thermal load of the engine combustion system and the measured temperature of the water outlet of the radiator to achieve pre-control and improve
  • the second step is to correct the basic pump speed by PID and the ambient temperature to improve the control accuracy.
  • Temperature is the performance of the thermal load. The thermal load transfers heat to the wall through the combustion chamber, and then is taken away by the cooling water, which causes the temperature of the cooling water to rise, and then the cooling water on the wall flows to the temperature sensor, which takes a certain time.
  • Hysteresis for example, during rapid acceleration, the heat load rises sharply, and the temperature at the sensor hardly changes at this time. If the electronic water pump is only controlled by the PID of the temperature sensor, the speed of the electronic water pump will not change, that is, the heat dissipation of the combustion chamber will not However, at this time, a large amount of heat dissipation is required to ensure that the combustion chamber will not be locally overheated and damage the engine. If it is used based on the thermal load of the engine combustion system and the measured temperature of the radiator outlet, the target speed and basic pump speed of the electronic fan are directly output.
  • the pre-control mode of the electronic water pump will immediately respond to the speed of the electronic water pump, increase the speed, increase the heat dissipation, and prevent local overheating of the combustion chamber. Therefore, compared with PID control only by temperature, pre-control improves responsiveness and ensures engine safety. Due to the production dispersion, the electronic water pump may not reach the target temperature of the engine water outlet under the basic pump speed condition. PID correction is carried out to improve the control accuracy. In addition, because the heat dissipation is strongly related to the ambient temperature, the lower the ambient temperature, the more Conducive to the heat dissipation of the cooling water, the speed of the electronic water pump can be reduced to achieve the same heat dissipation effect.
  • the speed of the electronic water pump needs to be increased to achieve the same heat dissipation effect. Therefore, the ambient temperature correction coefficient is increased to further improve the control accuracy; this implementation For example, the target speed of the electronic fan is not corrected because the electronic fan responds more slowly than the electronic water pump, so it is more stable than the system that corrects the target speed of the electronic fan.
  • the present invention also provides a control system for an engine electronic water pump, the system includes:
  • a control system for an engine electronic water pump comprising:
  • the first obtaining module 301 is used to obtain the target temperature of the engine water outlet and the basic pump speed of the electronic water pump;
  • the second acquisition module 302 is configured to acquire the PID control correction coefficient based on the target temperature of the engine water outlet and the actual measured temperature of the engine water outlet;
  • the third obtaining module 303 is configured to obtain the environmental temperature correction coefficient, and obtain the target speed of the electronic water pump based on the basic pump speed of the electronic water pump, the PID control correction coefficient, and the environmental temperature correction coefficient;
  • the control module 304 is used to control the engine electronic water pump by using the target speed of the electronic water pump.
  • the first obtaining module 301 includes:
  • the first acquisition sub-module is used to acquire the thermal load of the engine combustion system and the target temperature of the engine water outlet based on the engine speed and engine torque;
  • the second acquisition sub-module is used to acquire the basic pump speed of the electronic water pump based on the thermal load of the engine combustion system and the measured temperature of the water outlet of the radiator.
  • the third obtaining module 303 includes:
  • the coefficient acquisition sub-module based on the ambient temperature, acquires the ambient temperature correction coefficient
  • the target speed acquisition module is used to obtain the target speed of the electronic water pump based on the basic pump speed of the electronic water pump, the PID control correction coefficient and the ambient temperature correction coefficient.
  • control module 304 includes:
  • the third acquisition sub-module is used to acquire the target speed of the electronic fan based on the thermal load of the engine combustion system and the measured temperature of the water outlet of the radiator;
  • the control sub-module is used to control the engine electronic water pump by using the target speed of the electronic fan and the target speed of the electronic water pump.
  • system further includes:
  • the first temperature acquisition module is configured to acquire the actual temperature of the engine water outlet by using the first temperature sensor installed at the engine water outlet;
  • the second temperature acquiring module is used for acquiring the actual temperature of the water outlet of the radiator by using a second temperature sensor installed at the water outlet of the radiator.
  • the system described in the embodiment of the present invention controls the target speed of the electronic water pump in two steps.
  • the first step is to directly output the target speed and basic pump speed of the electronic fan according to the thermal load of the engine combustion system and the measured temperature of the radiator outlet. Control, improve the responsiveness of the system, the second step is to correct the basic pump speed by PID and the ambient temperature to improve the control accuracy.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in the computing processing device according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals. Such signals can be downloaded from Internet websites, or provided on carrier signals, or provided in any other form.
  • FIG. 4 shows a computing processing device that can implement the method according to the present invention.
  • the computing processing device traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing program codes 1031 of any method steps in the above methods.
  • the storage space 1030 for program codes may include various program codes 1031 for implementing various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 5.
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 4.
  • the program code can be compressed in a suitable form, for example.
  • the storage unit includes computer-readable codes 1031', that is, codes that can be read by, for example, a processor such as 1010. These codes, when run by a computing processing device, cause the computing processing device to execute the method described above. The various steps.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the invention can be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In the unit claims enumerating several devices, several of these devices may be embodied in the same hardware item.
  • the use of the words first, second, and third does not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

一种发动机电子水泵的控制方法,包括:获取发动机出水口目标温度、电子水泵基本泵速;基于发动机出水口目标温度和发动机出水口实测温度,获取PID控制修正系数;获取环境温度修正系数,并基于电子水泵基本泵速、PID控制修正系数和环境温度修正系数,获取电子水泵的目标转速;利用电子水泵的目标转速对发动机电子水泵进行控制。还提供了一种发动机电子水泵的控制系统。该控制方法对电子水泵目标转速的控制分两步进行,第一步输出电子风扇目标转速和基本泵速,实现预控,提高了系统响应性,第二步由PID和环境温度共同对基本泵速进行修正,提高控制精度。

Description

一种发动机电子水泵的控制方法和系统
本申请要求在2019年01月24日提交中国专利局、申请号为201910069236.3、发明名称为“一种发动机电子水泵的控制方法和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及发动机冷却系统技术领域,特别涉及一种发动机电子水泵的控制方法和系统。
背景技术
发动机是通过燃烧将化学能转化为机械能的装置,过程中产生大量的热能,而发动机本身必须保持正常的工作温度,所以需要配备适合的冷却系统,目前大部分车型发动机采用机械水泵,机械水泵的泵速以一定比率对应发动机转速,即冷却水流量仅受发动机转速控制,无法适应全部工况,比如缓慢爬坡,发动机转速低,冷却水流量低,但热负荷高,无法满足发动机的实际散热需求,使得发动机温度升高,运行效率降低。
电子水泵由发动机控制单元直接对转速进行控制,不受发动机转速影响,可以依据发动机的实际散热需求灵活调整冷却水流量。在小流量需求工况,降低电子水泵输出功率,可以降低油耗,在大流量需求工况,提高电子水泵输出功率,可以降低热负荷,进而提高进气量及提前点火角,提高扭矩输出。但目前部分产品电子水泵仅作为额外的独立的冷却系统,未完全替代机械水泵;部分产品对电子水泵的控制完全依靠PID调节,控制稳定性相对差;部分产品全部工况的发动机出口目标水温为同一值,发动机的性能表现差。
发明内容
有鉴于此,本发明旨在提出一种发动机电子水泵控制方法,以解决上述机械水泵与电子水泵存在的技术问题。
为达到上述目的,本发明的技术方案是这样实现的:
在一实施例中,本发明提供一种发动机电子水泵的控制方法,所述方法包括:
获取发动机出水口目标温度、电子水泵基本泵速;
基于发动机出水口目标温度和发动机出水口实测温度,获取PID控制修正系数;
获取环境温度修正系数,并基于电子水泵基本泵速、PID控制修正系数和环境温度修正系数,获取电子水泵的目标转速;
利用电子水泵的目标转速对发动机电子水泵进行控制。
进一步的,所述获取发动机出水口目标温度、电子水泵基本泵速包括:
基于发动机转速、发动机扭矩,获取发动机燃烧系统热负荷和发动机出水口目标温度;
基于发动机燃烧系统热负荷、散热器出水口实测温度,获取电子水泵基本泵速。
进一步的,所述获取环境温度修正系数,并基于电子水泵基本泵速、PID控制修正系数和环境温度修正系数,获取电子水泵的目标转速包括:
基于环境温度,获取环境温度修正系数;
基于电子水泵基本泵速、PID控制修正系数和环境温度修正系数,获取电子水泵的目标转速。
进一步的,基于发动机燃烧系统热负荷、散热器出水口实测温度,获取电子水泵基本泵速包括:
基于发动机燃烧系统热负荷、散热器出水口实测温度,获取电子风扇目标转速;
利用电子风扇目标转速和电子水泵的目标转速对发动机电子水泵进行控制。
进一步的,利用安装在发动机出水口的第一温度传感器获取发动机出水口实测温度;
利用安装在散热器出水口的第二温度传感器获取散热器出水口实测温度。
相对于现有技术,本发明所述的发动机电子水泵的控制方法具有以下优势:
本发明所述的方法对电子水泵目标转速的控制分两步进行,第一步输出电子风扇目标转速和基本泵速,实现预控,提高了系统响应性,第二步由PID和环境温度共同对基本泵速进行修正,提高控制精度。
本发明的另一目的在于提出一种发动机电子水泵控制系统,以解决上述机械水泵与电子水泵存在的技术问题。
为达到上述目的,本发明的技术方案是这样实现的:
在一实施例中,本发明提供一种发动机电子水泵的控制系统,所述系统包括:
第一获取模块,用于获取发动机出水口目标温度、电子水泵基本泵速;
第二获取模块,用于基于发动机出水口目标温度和发动机出水口实测温度,获取PID控制修正系数;
第三获取模块,用于获取环境温度修正系数,并基于电子水泵基本泵速、PID控制修正系数和环境温度修正系数,获取电子水泵的目标转速;
控制模块,用于利用电子水泵的目标转速对发动机电子水泵进行控制。
进一步的,所述第一获取模块包括:
第一获取子模块,用于基于发动机转速、发动机扭矩,获取发动机燃烧系统热负荷和发动机出水口目标温度;
第二获取子模块,用于基于发动机燃烧系统热负荷、散热器出水口实测温度,获取电子水泵基本泵速。
进一步的,所述第三获取模块包括:
系数获取子模块,基于环境温度,获取环境温度修正系数;
目标转速获取模块,用于基于电子水泵基本泵速、PID控制修正系数和环境温度修正系数,获取电子水泵的目标转速。
进一步的,所述控制模块包括:
第三获取子模块,用于基于发动机燃烧系统热负荷、散热器出水口实测温度,获取电子风扇目标转速;
控制子模块,用于利用电子风扇目标转速和电子水泵的目标转速对发动机电子水泵进行控制。
进一步的,所述系统还包括:
第一温度获取模块,用于利用安装在发动机出水口的第一温度传感器获取发动机出水口实测温度;
第二温度获取模块,用于利用安装在散热器出水口的第二温度传感器获取散热器出水口实测温度。
在一实施例中,本发明提供一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行前述的发动机电子水泵的控制方法。
在一实施例中,本发明提供一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行前述的发动机电子水泵的控制方法。
在一实施例中,本发明提供一种计算机可读介质,其中存储了前述的计算机程序。
相对于现有技术,本发明所述的发动机电子水泵的控制系统具有以下优势:
本发明所述的系统对电子水泵目标转速的控制分两步进行,第一步输出电子风扇目标转速和基本泵速,实现预控,提高了系统响应性,第二步由PID和环境温度共同对基本泵速进行修正,提高控制精度。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下 面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例所述的一种发动机电子水泵的控制方法步骤流程图;
图2为本发明实施例所述的一种发动机电子水泵的控制方法流程图;
图3为本发明实施例所述的一种发动机电子水泵的控制系统结构框图;
图4示意性地示出了用于执行根据本发明的方法的计算处理设备的框图;
图5示意性地示出了用于保持或者携带实现根据本发明的方法的程序代码的存储单元。
具体实施例
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参照图1和图2,本发明实施例提供了一种发动机电子水泵的控制方法,所述方法包括:
步骤101,获取发动机出水口目标温度、电子水泵基本泵速。
本实施例中,利用发动机转速、发动机扭矩以及预设的第一关系,获取发动机燃烧系统热负荷及发动机出水口目标温度,并基于发动机燃烧系统热负荷、散热器出水口实测温度以及预设的第二关系,获取电子水泵基本泵速。所述预设的第一关系基于先前的实验数据生成,此处的实验数据包括预先设定的发动机出水口温度以及利用预先设定的发动机出水口温度获得需要达到所述温度的发动机转速和扭矩,和利用所述发动机转速和扭矩获取发动机燃烧系统热负荷。所述预设的第二关系同样基于先前的实验数据生成,此处 的实验数据包括先前得到的发动机燃烧系统热负荷,以及实时测得的散热器出水口实测温度和获得电子水泵基本泵速。
步骤102,基于发动机出水口目标温度和发动机出水口实测温度,获取PID控制修正系数。
本实施例,基于发动机出水口目标温度和发动机出水口实测温度,获取温度传感器的PID控制修正系数包括:当发动机出水口目标温度高于发动机出水口实测温度时,则将温度传感器的PID控制修正系数设置为小于1的数,更为具体的:所述发动机出水口目标温度高于发动机出水口实测温度的数值越大,温度传感器的PID控制修正系数越小,所述发动机出水口目标温度高于发动机出水口实测温度的数值越小,温度传感器的PID控制修正系数越大。例如,当发动机出水口目标温度为85℃,发动机出水口实测温度为82℃,PID修正系数为0.96;当发动机出水口目标温度为85℃,发动机出水口实测温度为84℃,PID修正系数为0.98。
当发动机出水口目标温度低于发动机出水口实测温度时,则将温度传感器的PID控制修正系数设置为大于1的数,更为具体的,当所述发动机出水口目标温度低于发动机出水口实测温度的数值越大,温度传感器的PID控制修正系数越大,所述发动机出水口目标温度低于发动机出水口实测温度的数值越小,温度传感器的PID控制修正系数越小。例如,当发动机出水口目标温度为90℃,发动机出水口实测温度为92℃,PID修正系数为1.02;当发动机出水口目标温度为85℃,发动机出水口实测温度为95℃,PID修正系数为1.12。
步骤103,获取环境温度修正系数,并基于电子水泵基本泵速、PID控制修正系数和环境温度修正系数,获取电子水泵的目标转速。
本实施例中,所述电子水泵目标转速由电子水泵基本泵速、PID控制修正系数和环境温度修正系数共同决定,当PID控制修正系数和环境温度修正系数大于1时,所述电子水泵目标转速大于电子水泵基本泵速;当PID控制修正系数和环境温度修正系数小于1时,所述电子水泵目标转速小于电子水泵基本泵速;在更具体的实施例中,当电子水泵基本泵速为45000r/min,PID控制修正系数为1.03,环境温度修正系数为1.02时,电子水泵的目标转速为 47277r/min;当电子水泵基本泵速为10000r/min,PID控制修正系数为0.96,环境温度修正系数为0.98时,电子水泵的目标转速为9408r/min。
步骤104,利用电子水泵的目标转速对发动机电子水泵进行控制。
本实施例中,对电子水泵目标转速的控制分两步进行,第一步依据发动机燃烧系统热负荷及散热器出水口实测温度,直接输出电子水泵基本泵速,实现预控,提高了系统响应性,第二步由PID和环境温度共同对电子水泵基本泵速进行修正,提高控制精度。
进一步的,所述获取发动机出水口目标温度、电子水泵基本泵速包括:
基于发动机转速和发动机扭矩,获取发动机燃烧系统热负荷和发动机出水口目标温度;
基于发动机燃烧系统热负荷、散热器出水口实测温度,获取电子水泵基本泵速。
本实施例中,所述发动机转速和发动机扭矩与发动机燃烧系统热负荷之间的关系具体为:发动机转速越高、发动机扭矩越大,发动机燃烧系统热负荷越高,也就是说发动机燃烧系统热负荷与发动机转速和发动机扭矩之间成正的强相关关系,具体为,转速越高扭矩越大,热负荷越高。例如:当发动机转速为4000r/min、发动机扭矩260Nm,则发动机燃烧系统热负荷为0.65;当发动机转速为1400r/min、发动机扭矩40Nm,则发动机燃烧系统热负荷为0.2。本实施例中,所述发动机转速和发动机扭矩与发动机出水口目标温度之间同样成正的强相关关系,转速越高扭矩越大,发动机出水口目标温度越高,但是当扭矩、转速提高到一定区域,出水口目标温度就会达到上限,不会继续增加,例如:当发动机转速为4000r/min、发动机扭矩260Nm,则散热器出水口目标温度为90℃;当发动机转速为1400r/min、发动机扭矩40Nm,则散热器出水口目标温度为83℃。
本实施例中,所述电子水泵基本泵速与所述发动机燃烧系统热负荷、散热器出水口实测温度成强相关关系,例如:当发动机燃烧系统热负荷为0.65,散热器出水口实测温度为95℃时,所述电子水泵基本泵速为45000r/min。当发动机燃烧系统热负荷为0.2,散热器出水口实测温度为80℃时,所述电子水泵基本泵速为10000r/min。本实施例中,当所述发动机燃烧系统热负荷较 大时、散热器出水口实测温度较高时,将所述电子风扇目标转速相对调高,当所述发动机燃烧系统热负荷较小、散热器出水口实测温度较低时,不需要打开所述电子风扇。例如:当发动机燃烧系统热负荷为0.65,散热器出水口实测温度为95℃时,所述电子风扇目标转速为4000r/min。当发动机燃烧系统热负荷为0.2,散热器出水口实测温度为80℃时,所述电子风扇目标转速为0r/min。
进一步的,所述获取环境温度修正系数,并基于电子水泵基本泵速、PID控制修正系数和环境温度修正系数,获取电子水泵的目标转速包括:
基于发动机出水口目标温度和发动机出水口实测温度,获取PID控制修正系数;
基于环境温度,获取环境温度修正系数;
基于电子水泵基本泵速、PID控制修正系数和环境温度修正系数,获取电子水泵的目标转速。
本实施例中,所述环境温度修正系数为接近于1的数,当环境温度较高时,将环境温度修正系数相应的设置的大一点,当环境温度较低时,将环境温度修正系数相应的设置的小一点。在更为具体的实施例中,当环境温度为40℃时,环境温度修正系数为1.02,当环境温度为0℃时,环境温度修正系数为0.96。
进一步的,基于发动机燃烧系统热负荷、散热器出水口实测温度,获取电子水泵基本泵速包括:
基于发动机燃烧系统热负荷、散热器出水口实测温度,获取电子风扇目标转速;
利用电子风扇目标转速和电子水泵的目标转速对发动机电子水泵进行控制。
本实施例中,利用发动机转速、发动机扭矩以及预设的第一关系,获取发动机燃烧系统热负荷及发动机出水口目标温度,并基于发动机燃烧系统热负荷、散热器出水口实测温度以及预设的第二关系,获取电子风扇目标转速。所述预设的第一关系基于先前的实验数据生成,此处的实验数据包括预先设 定的发动机出水口温度以及利用预先设定的发动机出水口温度获得需要达到所述温度的发动机转速和扭矩,和利用所述发动机转速和扭矩获取发动机燃烧系统热负荷。所述预设的第二关系同样基于先前的实验数据生成,此处的实验数据包括先前得到的发动机燃烧系统热负荷,以及实时测得的散热器出水口实测温度和获得电子风扇目标转速。
本实施例中,对电子水泵目标转速的控制分两步进行,第一步依据发动机燃烧系统热负荷及散热器出水口实测温度,直接输出电子风扇目标转速和基本泵速,实现预控,提高了系统响应性,第二步由PID和环境温度共同对基本泵速进行修正,提高控制精度。本实施例仅对电子水泵的目标转速进行修正、未对电子风扇目标转速进行修正,是因为电子风扇比电子水泵响应慢,所以相比修正电子风扇目标转速的系统稳定性高。
进一步,利用安装在发动机出水口的第一温度传感器获取发动机出水口实测温度。
利用安装在散热器出水口的第二温度传感器获取散热器出水口实测温度。
本实施例中,利用第一温度传感器实时测量发动机出水口实测温度,实现对电子水泵的准确控制。
利用第二温度传感器实时测量散热器出水口实测温度,实现对电子水泵的准确控制。
本实施例中,对电子水泵目标转速的控制分两步进行,第一步依据发动机燃烧系统热负荷及散热器出水口实测温度,直接输出电子风扇目标转速和基本泵速,实现预控,提高了系统响应性,第二步由PID和环境温度共同对基本泵速进行修正,提高控制精度。温度是热负荷的表现,热负荷通过燃烧室将热量传递到壁面,再由冷却水带走,导致冷却水温度升高,然后壁面的冷却水流动到温度传感器处,这需要一定的时间,具有滞后性,比如急加速过程中,热负荷急剧上升,而此时传感器处温度几乎没有变化,如果电子水泵仅受温度传感器的PID控制,那么电子水泵转速不会变化,即燃烧室散热量不会变化,但是,此时需要大的散热量,保证燃烧室不会出现局部过热而损坏发动机,如果采用依据发动机燃烧系统热负荷及散热器出水口实测温 度,直接输出电子风扇目标转速和基本泵速的预控方式,则电子水泵转速会立即反应,提高转速,增大散热量,防止燃烧室出现局部过热。所以相比仅由温度进行PID控制,预控提高了响应性,保证发动机安全。由于生产散差,可能导致电子水泵在基本泵速条件下不能达到发动机出水口的目标温度,对其进行PID修正,提高控制精度,另外由于散热量与环境温度强相关,环境温度越低,越有利于冷却水的散热,则可以降低电子水泵转速,即达到相同的散热效果,相反的,则需要提高电子水泵转速达到相同的散热效果,所以增加环境温度修正系数,进一步提高控制精度;本实施例不对电子风扇目标转速进行修正,是因为电子风扇比电子水泵响应慢,所以相比修正电子风扇目标转速的系统稳定性高。
参照图3,本发明还提供了一种发动机电子水泵的控制系统,所述系统包括:
一种发动机电子水泵的控制系统,所述系统包括:
第一获取模块301,用于获取发动机出水口目标温度、电子水泵基本泵速;
第二获取模块302,用于基于发动机出水口目标温度和发动机出水口实测温度,获取PID控制修正系数;
第三获取模块303,用于获取环境温度修正系数,并基于电子水泵基本泵速、PID控制修正系数和环境温度修正系数,获取电子水泵的目标转速;
控制模块304,用于利用电子水泵的目标转速对发动机电子水泵进行控制。
进一步的,所述第一获取模块301包括:
第一获取子模块,用于基于发动机转速、发动机扭矩,获取发动机燃烧系统热负荷和发动机出水口目标温度;
第二获取子模块,用于基于发动机燃烧系统热负荷、散热器出水口实测温度,获取电子水泵基本泵速。
进一步的,所述第三获取模块303包括:
系数获取子模块,基于环境温度,获取环境温度修正系数;
目标转速获取模块,用于基于电子水泵基本泵速、PID控制修正系数和 环境温度修正系数,获取电子水泵的目标转速。
进一步的,所述控制模块304包括:
第三获取子模块,用于基于发动机燃烧系统热负荷、散热器出水口实测温度,获取电子风扇目标转速;
控制子模块,用于利用电子风扇目标转速和电子水泵的目标转速对发动机电子水泵进行控制。
进一步的,所述系统还包括:
第一温度获取模块,用于利用安装在发动机出水口的第一温度传感器获取发动机出水口实测温度;
第二温度获取模块,用于利用安装在散热器出水口的第二温度传感器获取散热器出水口实测温度。本发明实施例所述的系统对电子水泵目标转速的控制分两步进行,第一步依据发动机燃烧系统热负荷及散热器出水口实测温度,直接输出电子风扇目标转速和基本泵速,实现预控,提高了系统响应性,第二步由PID和环境温度共同对基本泵速进行修正,提高控制精度。
对于系统实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图4示出了可以实现根据本发明的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器 1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图5所述的便携式或者固定存储单元。该存储单元可以具有与图4的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (13)

  1. 一种发动机电子水泵的控制方法,其特征在于,所述方法包括:
    获取发动机出水口目标温度、电子水泵基本泵速;
    基于发动机出水口目标温度和发动机出水口实测温度,获取PID控制修正系数;
    获取环境温度修正系数,并基于电子水泵基本泵速、PID控制修正系数和环境温度修正系数,获取电子水泵的目标转速;
    利用电子水泵的目标转速对发动机电子水泵进行控制。
  2. 根据权利要求1所述的方法,其特征在于,所述获取发动机出水口目标温度、电子水泵基本泵速包括:
    基于发动机转速、发动机扭矩,获取发动机燃烧系统热负荷和发动机出水口目标温度;
    基于发动机燃烧系统热负荷、散热器出水口实测温度,获取电子水泵基本泵速。
  3. 根据权利要求1所述的方法,其特征在于,所述获取环境温度修正系数,并基于电子水泵基本泵速、PID控制修正系数和环境温度修正系数,获取电子水泵的目标转速包括:
    基于环境温度,获取环境温度修正系数;
    基于电子水泵基本泵速、PID控制修正系数和环境温度修正系数,获取电子水泵的目标转速。
  4. 根据权利要求2所述的方法,其特征在于,基于发动机燃烧系统热负荷、散热器出水口实测温度,获取电子水泵基本泵速包括:
    基于发动机燃烧系统热负荷、散热器出水口实测温度,获取电子风扇目标转速;
    利用电子风扇目标转速和电子水泵的目标转速对发动机电子水泵进行控制。
  5. 根据权利要求2所述的方法,其特征在于,利用安装在发动机出水口的第一温度传感器获取发动机出水口实测温度;
    利用安装在散热器出水口的第二温度传感器获取散热器出水口实测温度。
  6. 一种发动机电子水泵的控制系统,其特征在于,所述系统包括:
    第一获取模块,用于获取发动机出水口目标温度、电子水泵基本泵速;
    第二获取模块,用于基于发动机出水口目标温度和发动机出水口实测温度,获取PID控制修正系数;
    第三获取模块,用于获取环境温度修正系数,并基于电子水泵基本泵速、PID控制修正系数和环境温度修正系数,获取电子水泵的目标转速;
    控制模块,用于利用电子水泵的目标转速对发动机电子水泵进行控制。
  7. 根据权利要求6所述的系统,其特征在于,所述第一获取模块包括:
    第一获取子模块,用于基于发动机转速、发动机扭矩,获取发动机燃烧系统热负荷和发动机出水口目标温度;
    第二获取子模块,用于基于发动机燃烧系统热负荷、散热器出水口实测温度,获取电子水泵基本泵速。
  8. 根据权利要求6所述的系统,其特征在于,所述第三获取模块包括:
    系数获取子模块,基于环境温度,获取环境温度修正系数;
    目标转速获取模块,用于基于电子水泵基本泵速、PID控制修正系数和环境温度修正系数,获取电子水泵的目标转速。
  9. 根据权利要求7所述的系统,其特征在于,所述控制模块包括:
    第三获取子模块,用于基于发动机燃烧系统热负荷、散热器出水口实测温度,获取电子风扇目标转速;
    控制子模块,用于利用电子风扇目标转速和电子水泵的目标转速对发动机电子水泵进行控制。
  10. 根据权利要求7所述的系统,其特征在于,所述系统还包括:
    第一温度获取模块,用于利用安装在发动机出水口的第一温度传感器获取发动机出水口实测温度;
    第二温度获取模块,用于利用安装在散热器出水口的第二温度传感器获取散热器出水口实测温度。
  11. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-5中任一项所述的发动机电子水泵的控制方法。
  12. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-5中的任一项所述的发动机电子水泵的控制方法。
  13. 一种计算机可读介质,其中存储了如权利要求12所述的计算机程序。
PCT/CN2020/072190 2019-01-24 2020-01-15 一种发动机电子水泵的控制方法和系统 WO2020151544A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20744840.8A EP3916208A4 (en) 2019-01-24 2020-01-15 METHOD AND SYSTEM FOR CONTROLLING AN ELECTRONIC WATER PUMP OF AN ENGINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910069236.3 2019-01-24
CN201910069236.3A CN110805487B (zh) 2019-01-24 2019-01-24 一种发动机电子水泵的控制方法和系统

Publications (1)

Publication Number Publication Date
WO2020151544A1 true WO2020151544A1 (zh) 2020-07-30

Family

ID=69487237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072190 WO2020151544A1 (zh) 2019-01-24 2020-01-15 一种发动机电子水泵的控制方法和系统

Country Status (3)

Country Link
EP (1) EP3916208A4 (zh)
CN (1) CN110805487B (zh)
WO (1) WO2020151544A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467243A (zh) * 2020-11-12 2021-03-09 浙江合众新能源汽车有限公司 电池包冷却控制方法及装置
CN114575984A (zh) * 2020-11-30 2022-06-03 上海汽车集团股份有限公司 一种发动机热管理控制方法及控制单元
CN114636519A (zh) * 2022-05-17 2022-06-17 杭州泰尚智能装备有限公司 电子水泵气密测试机构及其控制方法
CN114645770A (zh) * 2021-05-25 2022-06-21 长城汽车股份有限公司 一种对尿素喷嘴的保护控制方法、装置、电子设备与车辆
CN115163281A (zh) * 2022-06-15 2022-10-11 重庆长安汽车股份有限公司 一种发动机热管理系统的电子水泵控制方法、系统及存储介质
CN115962040A (zh) * 2023-02-02 2023-04-14 重庆赛力斯新能源汽车设计院有限公司 一种发动机冷却控制方法、系统、设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113685258B (zh) * 2021-07-15 2022-06-28 东风汽车集团股份有限公司 发动机电子水泵的控制方法及终端设备
CN114899447A (zh) * 2022-04-25 2022-08-12 一汽解放汽车有限公司 散热控制方法、装置、计算机设备和存储介质
CN115492674A (zh) * 2022-09-26 2022-12-20 长城汽车股份有限公司 电动水泵和散热风扇的控制方法及装置
CN115773174B (zh) * 2022-11-26 2024-03-29 重庆长安汽车股份有限公司 一种发动机电子水泵的控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288309A (ja) * 1986-06-06 1987-12-15 Kawasaki Heavy Ind Ltd 舶用デイ−ゼル機関のための主冷却海水ポンプの速度制御方法
CN1884804A (zh) * 2005-06-22 2006-12-27 比亚迪股份有限公司 发动机水冷系统及冷却方法
US20110135508A1 (en) * 2009-12-04 2011-06-09 Hyundai Motor Company Variable water pump control system and the control method thereof
JP2013044295A (ja) * 2011-08-25 2013-03-04 Daimler Ag エンジン冷却装置
CN103711566A (zh) * 2013-01-23 2014-04-09 日立汽车部件(苏州)有限公司 发动机系统
CN104481667A (zh) * 2014-12-10 2015-04-01 安徽江淮汽车股份有限公司 一种电子水泵控制方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19641558A1 (de) * 1996-10-09 1998-04-16 Voith Turbo Kg Verfahren und Steuerung zur Regelung des Kühlkreislaufes eines Fahrzeuges mittels einer thermisch geregelten Wasserpumpe
DE19939138A1 (de) * 1999-08-18 2001-02-22 Bosch Gmbh Robert Verfahren zur Temperaturregelung des Kühlmittels eines Verbrennungsmotors mittels einer elektrisch betriebenen Kühlmittelpumpe
US7267086B2 (en) * 2005-02-23 2007-09-11 Emp Advanced Development, Llc Thermal management system and method for a heat producing system
JP2008185021A (ja) * 2007-01-31 2008-08-14 Toyota Motor Corp 車両用冷却装置
KR101241213B1 (ko) * 2010-12-03 2013-03-13 기아자동차주식회사 전동식 워터펌프 제어장치 및 방법
JP6287961B2 (ja) * 2015-06-01 2018-03-07 トヨタ自動車株式会社 内燃機関の冷却装置
CN106246328B (zh) * 2016-08-26 2018-12-07 广州汽车集团股份有限公司 一种汽车发动机水冷系统电子水泵的控制方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288309A (ja) * 1986-06-06 1987-12-15 Kawasaki Heavy Ind Ltd 舶用デイ−ゼル機関のための主冷却海水ポンプの速度制御方法
CN1884804A (zh) * 2005-06-22 2006-12-27 比亚迪股份有限公司 发动机水冷系统及冷却方法
US20110135508A1 (en) * 2009-12-04 2011-06-09 Hyundai Motor Company Variable water pump control system and the control method thereof
JP2013044295A (ja) * 2011-08-25 2013-03-04 Daimler Ag エンジン冷却装置
CN103711566A (zh) * 2013-01-23 2014-04-09 日立汽车部件(苏州)有限公司 发动机系统
CN104481667A (zh) * 2014-12-10 2015-04-01 安徽江淮汽车股份有限公司 一种电子水泵控制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3916208A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467243A (zh) * 2020-11-12 2021-03-09 浙江合众新能源汽车有限公司 电池包冷却控制方法及装置
CN114575984A (zh) * 2020-11-30 2022-06-03 上海汽车集团股份有限公司 一种发动机热管理控制方法及控制单元
CN114575984B (zh) * 2020-11-30 2023-10-03 上海汽车集团股份有限公司 一种发动机热管理控制方法及控制单元
CN114645770A (zh) * 2021-05-25 2022-06-21 长城汽车股份有限公司 一种对尿素喷嘴的保护控制方法、装置、电子设备与车辆
CN114645770B (zh) * 2021-05-25 2023-03-03 长城汽车股份有限公司 一种对尿素喷嘴的保护控制方法、装置、电子设备与车辆
CN114636519A (zh) * 2022-05-17 2022-06-17 杭州泰尚智能装备有限公司 电子水泵气密测试机构及其控制方法
CN114636519B (zh) * 2022-05-17 2022-08-09 杭州泰尚智能装备有限公司 电子水泵气密测试机构及其控制方法
CN115163281A (zh) * 2022-06-15 2022-10-11 重庆长安汽车股份有限公司 一种发动机热管理系统的电子水泵控制方法、系统及存储介质
CN115163281B (zh) * 2022-06-15 2024-01-12 重庆长安汽车股份有限公司 一种发动机热管理系统的电子水泵控制方法及系统
CN115962040A (zh) * 2023-02-02 2023-04-14 重庆赛力斯新能源汽车设计院有限公司 一种发动机冷却控制方法、系统、设备及存储介质
CN115962040B (zh) * 2023-02-02 2024-06-11 重庆赛力斯新能源汽车设计院有限公司 一种发动机冷却控制方法、系统、设备及存储介质

Also Published As

Publication number Publication date
CN110805487A (zh) 2020-02-18
EP3916208A1 (en) 2021-12-01
EP3916208A4 (en) 2022-07-20
CN110805487B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2020151544A1 (zh) 一种发动机电子水泵的控制方法和系统
JP6874216B2 (ja) サーバのファン回転数制御
CN100389401C (zh) 风扇转速自动控制方法
US8718836B2 (en) Fan control system and method
CN102654130B (zh) 一种对计算机进行温度控制的方法和计算机
US8606429B2 (en) System and method for controlling an electronic device fan
US20120329377A1 (en) Fan control system, computer system, and method for controlling fan speed thereof
CN111912120B (zh) 燃气热水器中零冷水的控制方法、系统、设备和介质
US20150002999A1 (en) Electronic device and method for adjusting fan of electronic device
CN112443883B (zh) 电子膨胀阀控制方法、装置及热泵机组
WO2021190224A1 (zh) 一种可变截面涡轮增压器的控制方法、装置及车辆
US20210310680A1 (en) Temperature differential based fan control
WO2020107721A1 (zh) 热泵热水器控制方法及热泵热水器
US8423200B2 (en) System and method for cooling an electronic device with multiple fans
CN109185208B (zh) 一种风扇调速方法及相关装置
WO2024093236A1 (zh) 空调内机控制方法、装置、电控盒及存储介质
WO2024021568A1 (zh) 窗机空调及其控制板温度控制方法、装置、设备及介质
TWI494748B (zh) 風扇控制方法及其筆記型電腦
CN114135391B (zh) 中冷器控制系统、控制方法以及装置
CN116360566A (zh) 风扇调速方法、装置、计算机设备、存储介质和程序产品
CN115492674A (zh) 电动水泵和散热风扇的控制方法及装置
WO2021057304A1 (zh) 可变压缩比发动机的控制方法及装置
TWI847396B (zh) 固態硬碟的溫度控制系統及其方法
CN115143648A (zh) 热水器及其控制方法、存储介质
CN117189340A (zh) 一种除湿控制方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020744840

Country of ref document: EP

Effective date: 20210824