WO2020151379A1 - 一种无人机旋翼表面微结构减阻膜及其制造方法 - Google Patents

一种无人机旋翼表面微结构减阻膜及其制造方法 Download PDF

Info

Publication number
WO2020151379A1
WO2020151379A1 PCT/CN2019/123600 CN2019123600W WO2020151379A1 WO 2020151379 A1 WO2020151379 A1 WO 2020151379A1 CN 2019123600 W CN2019123600 W CN 2019123600W WO 2020151379 A1 WO2020151379 A1 WO 2020151379A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
film
microstructure
drag
groove
Prior art date
Application number
PCT/CN2019/123600
Other languages
English (en)
French (fr)
Inventor
鲁艳军
伍晓宇
陈盛贵
周超兰
徐斌
刘家俊
李佳骏
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2020151379A1 publication Critical patent/WO2020151379A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/18Aerodynamic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/46Blades
    • B64C27/467Aerodynamic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor

Definitions

  • the application relates to the technical field of drag reduction films, in particular to a drag reduction film with microstructure on the surface of an unmanned aerial vehicle rotor and a manufacturing method thereof.
  • the blades of propellers are made of carbon fiber structure with high strength and high modulus, which are light in weight and high in hardness, and it is not easy to process microstructures on the surface. Therefore, special drag reduction methods are required.
  • the key to the drag reduction technology of the drag reduction film is the manufacturing technology of the drag reduction film, and the key to the manufacturing technology is the formation of the fine grooves on the surface of the drag reduction film. Aerodynamic studies have shown that the structure of this fine groove can take many forms. According to the requirements of aerodynamics, the peaks forming the groove should be as sharp as possible, otherwise the drag reduction effect will not be good. The tolerance of the groove width S and height h should be within 0.005mm, and at the same time, to avoid sticking on the outer surface of the aircraft If there are too many seams, the width of the drag reduction film cannot be too small.
  • micro grooves there are many methods for making micro grooves, such as casting, printing, cold rolling, roll forming, etc.
  • two kinds of extrusion roll forming method and hot pressing are commonly used to make grooves.
  • One of the objectives of the embodiments of the present application is to provide a microstructure drag reduction film on the surface of an unmanned aerial vehicle rotor, aiming to solve the problem of poor drag reduction effect of the drag reduction film.
  • a microstructure drag reduction film on the surface of an unmanned aerial vehicle rotor comprising: an isolation layer, and a microstructure layer provided on one side of the isolation layer, and the surface of the microstructure layer is provided with parallel arrangement Micro grooves, the micro grooves are V-shaped or rectangular or U-shaped, the width S of the micro grooves is 0.02 mm to 0.4 mm, and the height H of the micro grooves is 0.05 mm to 0.3 mm.
  • the micro groove is V-shaped, and the apex angle ⁇ of the micro groove is 50°-60°.
  • the apex angle ⁇ of the micro groove is 55°.
  • a glue layer is further provided on the side of the isolation layer away from the microstructure layer.
  • the thickness of the microstructure layer is 0.15 mm to 0.4 mm
  • the thickness of the isolation layer is 0.11 mm to 0.12 mm
  • the thickness of the adhesive layer is 0.05 mm to 0.13 mm.
  • the width S of the micro groove is 0.05 mm to 0.1 mm, and the height H of the micro groove is 0.12 mm to 0.2 mm.
  • the drag reducing film is an acrylic film.
  • a method for manufacturing a microstructure drag reducing film on the surface of an unmanned aerial vehicle rotor which includes the following processing steps:
  • step S3 Put the mold core with micro-grooves in step S2 into the molding machine, put in the raw materials for the drag reducing film, and produce micro-grooves that meet the design requirements by micro injection molding or hot pressing.
  • step S4 Coat the side of the drag reduction film in step S3 away from the micro groove with a glue layer, and the drag reduction film is tightly attached to the surface of the drone rotor through the glue layer.
  • the shape of the mold core is made to match the shape of the drag reduction film required by the design.
  • the grinding wheel is a super-hard abrasive grinding wheel
  • the dressing method adopts a dry contact discharge method
  • the rotation speed N of the grinding wheel is 2000 to 5000 rpm
  • the normal feed depth h is 0.001mm ⁇ 0.005mm
  • the feed speed V of the grinding wheel is 100 ⁇ 1000mm/min.
  • the mold core is a cemented carbide mold core or a mold steel mold core.
  • the micro groove in the step S2, is V-shaped or rectangular or U-shaped, the width S of the micro groove is 0.02 mm to 0.4 mm, and the height H of the micro groove It is 0.05mm ⁇ 0.3mm.
  • the micro groove is V-shaped, and the apex angle ⁇ of the micro groove is 50°-60°.
  • the width S of the micro groove is 0.05 mm to 0.1 mm, and the height H of the micro groove is 0.12 mm to 0.2 mm.
  • the drag reducing film is made of acrylic material.
  • the drag reduction film has a good drag reduction effect due to the micro grooves on the surface.
  • the drag reduction film can effectively reduce the resistance of the rotor during flight, thereby reducing the energy consumption of the drone and improving the endurance of the drone.
  • the method for manufacturing a microstructure drag reducing film on the surface of an unmanned aerial vehicle rotor provided by the embodiments of the present application has the beneficial effects that the drag reducing film is micro-injected or hot-pressed by a mold core, and the shape of the micro groove on the mold core is controlled.
  • the shape of the micro groove on the drag reduction film can be controlled, so that the processing quality and dimensional accuracy of the micro groove are high, and the shape is controllable, which meets the requirements of a large area, sharp peak center and high precision in the surface forming of the drag reduction film.
  • micro-injection molding or hot press molding compared with the traditional method of direct processing of the film, can also eliminate the influence of the thickness error of the plastic film itself on the molding accuracy, so that the drag reducing film can be high-quality and large-scale produce.
  • FIG. 1 is a schematic structural diagram of a microstructure drag reducing film on the surface of a drone rotor blade provided by an embodiment of the application;
  • FIG. 2 is a schematic flow chart of a method for manufacturing a microstructure drag reducing film on the surface of a drone rotor blade according to another embodiment of the application;
  • Fig. 3 is a schematic diagram of processing a cemented carbide die core with a grinding wheel in another embodiment of the application;
  • FIG. 4 is a schematic diagram of the injection molding process of forming a drag reduction film with an injection material and a cemented carbide core in another embodiment of the application;
  • FIG. 5 is a schematic diagram of the explosion of the drag reducing film and the rotor in another embodiment of the application;
  • FIG. 6 is a schematic diagram of the drag reducing film tightly attached to part of the rotor in another embodiment of the application.
  • an embodiment of the present application provides a microstructure drag reduction film on the surface of an unmanned aerial vehicle rotor.
  • the drag reduction film 1 includes an isolation layer 11, and a side of the isolation layer 11
  • the microstructure layer 12 is provided with alternately arranged microgrooves 121 on the surface of the microstructure layer 12.
  • the microgrooves 121 are V-shaped or rectangular or U-shaped.
  • the width S of the microgrooves 121 is 0.02mm ⁇ 0.4mm.
  • the height H of the groove 121 is 0.05mm ⁇ 0.3mm.
  • the drag reduction film 1 has a good drag reduction effect due to the micro grooves 121 on the surface. When the drag reduction film 1 is attached to the surface of the drone rotor 5, it can be effective The resistance of the rotor 5 during flight is reduced, thereby reducing the energy consumption of the drone, and therefore, improving the endurance of the drone.
  • the micro groove 121 is V-shaped, and the vertex angle ⁇ of the micro groove 121 is 50°-60°.
  • a plurality of micro grooves 121 are wavy on the surface of the micro structure layer 12.
  • the apex angle ⁇ is 55°, so that the drag reduction effect of the drag reduction film 1 is better.
  • a glue layer 2 is further provided on the side of the isolation layer 11 away from the microstructure layer 12, and the glue layer 2 is used to tightly attach the drag reducing film 1 to the rotor 5.
  • the thickness of the microstructure layer 12 is 0.15 mm to 0.4 mm
  • the thickness of the isolation layer 11 is 0.11 mm to 0.12 mm
  • the thickness of the adhesive layer 2 is 0.05 mm to 0.13 mm.
  • the width S of the micro groove 121 is 0.05 mm to 0.1 mm, and the height H of the micro groove 121 is 0.12 mm to 0.2 mm.
  • the drag reducing film 1 is made of a polymer material, such as a thermoplastic plastic material.
  • the drag reducing film 1 is an acrylic film, specifically made of acrylic material.
  • a method for manufacturing a microstructure drag reduction film on the surface of an unmanned aerial vehicle rotor includes the following processing steps:
  • step S3 Put the mold core 4 with the micro-grooves 121 in step S2 into the molding machine, put in the raw materials for the drag reduction film, and make the micro-grooves 121 by micro-injection molding or hot pressing. Design required microstructure drag reduction film 1;
  • step S4 Coat the side of the drag reducing film 1 in step S3 away from the micro groove 121 with a glue layer 2, and the drag reducing film 1 is tightly attached to the surface of the drone rotor 5 through the glue layer 2.
  • the shape of the micro trench 121 is determined first.
  • the micro trench 121 is V-shaped.
  • the micro trench 121 may be rectangular or U-shaped. Therefore, the microtip 31 of the grinding wheel 3 is trimmed into a V shape. In the process of forming the microtip 31, it is necessary to constantly check whether the microtip 31 is trimmed to meet the design requirements.
  • the grinding wheel 3 is fixed on the first numerical control processing machine tool, and the grinding wheel 3 is dressed with the grinding wheel shaft on the second numerical control processing machine tool.
  • the mold core 4 is a cemented carbide mold core or a mold steel mold core.
  • the mold core 4 is a cemented carbide mold core.
  • the surface of the cemented carbide mold core 4 is micro-grinded using the grinding wheel 3. After a micro-groove 121 is processed, equal interval parameters are set, and then the micro-groove 121 is repeatedly processed. In this process, the parameters of the micro trench 121 can be reasonably adjusted, and a number of cemented carbide mold cores with different parameters can be manufactured to verify the influence of different parameters on the drag reduction effect of the drag reduction film 1.
  • the molding machine can be a micro injection molding machine or a hot press molding machine, and the drag reducing film 1 is injection molded by a micro injection molding machine, or hot press molded by a hot press molding machine.
  • the production of the drag reducing film 1 has The advantages of stable forming, high precision and mass production.
  • the raw material of the drag reducing film 1 is a polymer material, such as a thermoplastic plastic material.
  • the raw material of the drag reducing film 1 is acrylic powder material.
  • the UAV After the manufactured drag reduction film 1 is tightly attached to the rotor 5, the UAV can be flight tested to test the drag reduction effect. In this process, the drag reduction effect of the micro groove 121 with different parameters can be obtained. Thus, it is convenient to choose different drag reducing films 1 according to different flight requirements.
  • the present application provides a method for manufacturing a microstructure drag reduction film on the surface of an unmanned aerial vehicle rotor.
  • the drag reduction film 1 is injection molded or hot-pressed by a mold core 4, and the reduction can be controlled by the shape of the micro groove 121 on the mold core 4.
  • the shape of the micro groove 121 on the resist film 1 makes the processing quality and dimensional accuracy of the micro groove 121 high, and the shape is controllable, which meets the requirements of a large area, sharp peak center and high precision in the surface forming of the drag reduction film 1.
  • the use of injection molding or hot press molding compared to the traditional method of directly processing the film, can also eliminate the influence of the thickness error of the plastic film itself on the molding accuracy, so that the drag reducing film can be produced in high quality and mass production.
  • the shape of the cemented carbide core or the mold steel mold core is made into a shape suitable for the drag reducing film 1.
  • the purpose of this is to make the drag reduction film 1 formed by the cemented carbide core or the mold steel core directly meet the requirements of use.
  • the shape of the cemented carbide mold core and the mold steel mold core may be different from the shape of the drag reduction film 1, and then the molded drag reduction film 1 will be trimmed into the desired shape of the drag reduction film. 1.
  • step S1 the grinding wheel 3 is first installed on the grinding wheel shaft of the first processing machine tool, and then the core 4 is fixed on the worktable of the first processing machine tool, and then the grinding wheel 3 is micro-grinded on the surface of the mold core 4.
  • Process the first micro-groove 121 when the first micro-groove 121 is completed, the grinding wheel 3 is returned to a preset distance in the normal direction, and the second micro-groove 121 is processed along the preset grinding path; The above process is repeated until the required number of micro grooves 121 is completed.
  • the grinding wheel 3 is a super-hard abrasive grinding wheel, wherein the super-hard abrasive grinding wheel is made of cubic boron nitride material or diamond material.
  • the dressing method adopts the dry contact discharge method, where the rotating speed N of the grinding wheel 3 is 2000 ⁇ 5000 rpm, the normal feed depth h of the grinding wheel 3 is 0.001mm ⁇ 0.005mm, and the feed speed V of the grinding wheel 3 is 100 ⁇ 1000mm/min, which has the advantage of smooth processing and effectively ensures the processing accuracy.
  • the dry contact discharge method (ECD, Electro-Contact Discharge is the use of micro-abrasive cutting copper electrodes distributed on the surface of the grinding wheel 3 to generate pulsed electric spark discharge with the metal bond of the grinding wheel 3 to gradually remove the metal bond and achieve high-efficiency dressing of the grinding wheel 3.
  • step S2 the width S of the micro groove 121 is 0.02 mm to 0.4 mm, the height H of the micro groove 121 is 0.05 mm to 0.3 mm, and the vertex angle ⁇ of the micro groove 121 is 50° to 60°. In this embodiment, the apex angle ⁇ is 55°, so that the micro-trench 121 has the best drag reduction effect.
  • step S1 the grinding wheel 3 rotates around the grinding wheel shaft of the second processing lathe, and the grinding wheel 3 performs a pair of grinding and dressing with the grinding wheel dresser on the second processing lathe along the preset grinding path, and the fine tip of the grinding wheel 3
  • the front end face of 31 is trimmed into the required specific shape.
  • step S3 the micro injection molding machine adopts a BABYPLAST micro injection molding machine.
  • the micro injection molding machine has a mold temperature control box and a hydraulic water cooling box for controlling the molding and cooling efficiency of the drag reducing film 1 and improving the production efficiency.
  • the injection molding material is acrylic powder.
  • the core 4 is made of die steel or hard alloy material, which has the advantages of high hardness, high precision, not easy to wear and easy to clean.
  • the mold core 4 with the micro-array structure of the micro-grooves 121 provided in the present application is micro-grinding on the rake surface of the grinding wheel 3 that has been trimmed by the micro-tip 31 facing the surface of the mold core 4, so that the mold core 4
  • the surface is processed with parallel and evenly spaced micro grooves 121, and then the processed mold core 4 is placed in the micro injection molding machine, and the acrylic powder injection material is used for injection molding to obtain the drag reducing film 1.
  • the micro grooves on the drag reducing film 1 The groove 121 is re-engraved on the micro-groove 121 structure on the surface of the mold core 4, so that the micro-groove 121 on the drag reduction film 1 has high processing quality and dimensional accuracy, and the shape is controllable. Areas, sharp peaks and high precision are required.
  • the manufacturing method of the drag reducing film 1 provided in this application has popularization significance, and can be extended to large spacecraft, passenger airplanes, etc.
  • the manufacturing method of the drag reducing film 1 of the present application uses a micro-injection molding method in the process, which changes the direct processing method of the film in the traditional method, and eliminates the influence of the thickness error of the plastic film itself on the molding accuracy; Structurally, the trimming size of the micro tip 31 of the grinding wheel 3 can be adjusted, and there is room for optimization.
  • the parameters of the micro groove 121 of the mold core 4 are changed, under the premise of ensuring the processing accuracy, the formed drag reduction film 1 can be compared Larger ones are used to facilitate the implementation of drag reduction technology.
  • the materials should also have excellent processing properties such as uniform structure, compactness, no impurities, and good corrosion resistance.
  • the metal chips are easy to be cleaned, to avoid the intermittent phenomenon of the formed micro groove 121 caused by the blockage of the mold due to the residue.
  • the micro-injection molding machine can easily heat and cool the drag reduction film 1 through the mold temperature control box and the hydraulic water cooling box.
  • the film used in the drag reduction film 1 can also be a thermoplastic film, and its molding adopts hot pressing and cooling shaping processes. The rate of heating and cooling affects the quality and efficiency of the molding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

一种无人机旋翼(5)表面微结构减阻膜(1),该无人机旋翼(5)表面微结构减阻膜(1)包括隔离层(11),以及,设于隔离层(11)一侧的微结构层(12),微结构层(12)表面设有平行排列的微型沟槽(121),微型沟槽(121)呈V形或矩形或U形,微型沟槽(121)的宽度S为0.02mm~0.4mm,微型沟槽(121)的高度H为0.05mm~0.3mm。减阻膜(1)因表面具有微型沟槽(121)而具有良好的减阻效果,当减阻膜(1)贴附在无人机旋翼(5)表面后,能有效减少旋翼(5)飞行时所受到的阻力,从而能减少无人机的耗能量,提高了无人机的续航能力。

Description

一种无人机旋翼表面微结构减阻膜及其制造方法
本申请要求于2019年01月24日在中国专利局提交的、申请号为201910068662.5、发明名称为“一种无人机旋翼表面微结构减阻膜及其制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及减阻膜技术领域,具体涉及一种无人机旋翼表面微结构减阻膜及其制造方法。
背景技术
目前,无人机技术发展迅猛。在解决无人机续航性能问题时可以全方位考虑,除了提升电池性能,还可以从螺旋桨或旋翼或机翼的气动特性上入手。
目前螺旋桨的桨叶为高强度、高模量的碳纤维结构,质量轻硬度高,不易在其表面加工微结构,因此需要特殊的减阻方式。
在实际应用中的常见减阻方法有:优化设计、聚合物涂层(或喷射)、柔性壁面、壁面加温及气幕屏蔽等方法。这些方法虽然在原理上可行,减阻效果也比较明显,但是在大型航天器上应用时,技术问题难以攻克,有的需要较大程度地改变航天器结构或外形,有的需要配备一些特殊的辅助设备。
有相关研究表明,在机翼表面贴上微结构薄膜可以减小阻力,这种方法使用简单,维护方便,拆装容易,不改变机翼外形。减阻贴膜可以有效的减小飞机紊流摩擦阻力,是减阻研究领域提出的新概念。
减阻膜减阻技术的关键是减阻膜的制造技术,而制造技术的关键是减阻膜表面微细沟槽的成型。空气动力学研究表明,这种微细沟槽的结构可以有多种形式。按照空气动力学的要求,形成沟槽的峰顶要尽量尖锐,否则减阻效果不好,对沟槽宽度S和高度h的公差应在0.005mm以内,同时为避免在飞机外表面贴敷时拼缝过多,减阻膜的幅面不能太小。
目前,制作微沟槽可以有多种方法,比如流延、印制、冷轧、辊型等,实际常用于制造沟槽的是挤膜辊型法和热压制两种。但是这两种方法,在表面成型出具有较大面积、峰顶尖锐、精度很高的细小沟槽, 还比较困难,使得减阻膜的减阻效果不好。
技术问题
本申请实施例的目的之一在于:提供一种无人机旋翼表面微结构减阻膜,旨在解决减阻膜的减阻效果不佳的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种无人机旋翼表面微结构减阻膜,包括:隔离层,以及,设于所述隔离层一侧的微结构层,所述微结构层表面设有平行排列的微型沟槽,所述微型沟槽呈V形或矩形或U形,所述微型沟槽的宽度S为0.02mm~0.4mm,所述微型沟槽的高度H为0.05mm~0.3mm。
在一个实施例中,所述微型沟槽呈V形,所述微型沟槽的顶角角度β为50°~60°。
在一个实施例中,所述微型沟槽的顶角角度β为55°。
在一个实施例中,所述隔离层远离所述微结构层的一侧还设有胶层。
在一个实施例中,所述微结构层的厚度为0.15mm~0.4mm,所述隔离层的厚度为0.11mm~0.12mm,所述胶层的厚度为0.05mm~0.13mm。
在一个实施例中,所述微型沟槽的宽度S为0.05mm~0.1mm,所述微型沟槽的高度H为0.12mm~0.2mm。
在一个实施例中,所述减阻膜为亚克力膜。
第二方面,提供了一种无人机旋翼表面微结构减阻膜的制造方法,包括以下处理步骤:
S1、根据减阻膜的微型沟槽设计要求,将砂轮的微尖端修整成所述微型沟槽所需要的形状;
S2、根据微型沟槽的设计要求,使所述砂轮在模芯的表面逐一加工出多条平行的微型沟槽,直至所述微型沟槽的数量达到设计要求;
S3、将步骤S2中具有微型沟槽的模芯放入到成型机中,投入制作减阻膜的原材料,并通过微注塑成型或热压成型的方式制作出具有微型沟槽且符合设计要求的微结构减阻膜;
S4、将步骤S3中的减阻膜上背离微型沟槽的一侧涂覆胶层,通过胶层将减阻膜紧贴在无人机旋翼表面。
在一个实施例中,在进行步骤S1之前,根据减阻膜的设计要求,将所述模芯的形状制作成与设计要求的减阻膜形状相适配。
在一个实施例中,在所述步骤S1中,所述砂轮为超硬磨料砂轮,所述修整方法采用干式接触放电法,所述砂轮的转速N为2000~5000转/分,所述砂轮的法向进给深度h为0.001mm~0.005mm,所述砂轮的进给速度V为100~1000mm/分。
在一个实施例中,所述模芯为硬质合金模芯或模具钢模芯。
在一个实施例中,在所述步骤S2中,所述微型沟槽呈V形或矩形或U形,所述微型沟槽的宽度S为0.02mm~0.4mm,所述微型沟槽的高度H为0.05mm~0.3mm。
在一个实施例中,所述微型沟槽呈V形,所述微型沟槽的顶角角度β为50°~60°。
在一个实施例中,所述微型沟槽的宽度S为0.05mm~0.1mm,所述微型沟槽的高度H为0.12mm~0.2mm。
在一个实施例中,所述减阻膜采用亚克力材料制成。
有益效果
本申请实施例提供的一种无人机旋翼表面微结构减阻膜的有益效果在于:减阻膜因表面具有微型沟槽而具有良好的减阻效果,当减阻膜贴附在无人机旋翼表面后,能有效减少旋翼飞行时所受到的阻力,从而能减少无人机的耗能量,提高了无人机续航能力。
本申请实施例提供的一种无人机旋翼表面微结构减阻膜的制作方法的有益效果在于:减阻膜通过模芯微注塑或热压成型,通过控制模芯上的微型沟槽的形状就能控制减阻膜上微型沟槽的形状,使得微型沟槽的加工质量和尺寸精度高、形状可控,符合减阻膜表面成型应具有较大面积、峰顶尖锐、精度高的要求,同时,采用微注塑成型或热压成型的方式,相对传统方法对薄膜直接加工的方式,还能消除塑料薄膜本身的厚度误差对成型精度造成的影响,使得该减阻膜能高质量的大批量生产。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请一实施例提供的一种无人机旋翼表面微结构减阻膜的结构示意图;
图2为本申请另一实施例提供的一种无人机旋翼表面微结构减阻膜的制造方法的流程示意图;
图3为本申请另一实施例中砂轮加工硬质合金模芯的加工示意图;
图4为本申请另一实施例中注塑材料与硬质合金模芯形成减阻膜的注塑过程示意图;
图5为本申请另一实施例中减阻膜与旋翼爆炸示意图;
图6为本申请另一实施例中减阻膜紧贴至部分旋翼上的示意图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
请参考图1-图6所示,本申请一实施例提供的一种无人机旋翼表面微结构减阻膜,该减阻膜1包括:隔离层11,以及,设于隔离层11一侧的微结构层12,微结构层12表面设有排列交替的微型沟槽121,微型沟槽121呈V形或矩形或U形,微型沟槽121的宽度S为0.02mm~0.4mm,微型沟槽121的高度H为0.05mm~0.3mm,该减阻膜1因表面具有微型沟槽121而具有良好的减阻效果,当减阻膜1贴附在无人机旋翼5表面后,能有效减少旋翼5飞行时所受到的阻力,从而能减少无人机的耗能量,因此,提高了无人机的续航能力。
在本实施例中,微型沟槽121呈V形,微型沟槽121的顶角角度β为50°~60°。多条微型沟槽121在微结构层12表面呈波浪状。
在本实施例中,顶角角度β为55°,这样减阻膜1的减阻效果更好。
在本实施例中,在隔离层11远离微结构层12的一侧还设有胶层2,胶层2用于将减阻膜1紧贴在旋翼5上。
在本实施例中,微结构层12的厚度为0.15mm~0.4mm,隔离层11的厚度为0.11mm~0.12mm,胶层2的厚度为0.05mm~0.13mm。
在本实施例中,微型沟槽121的宽度S为0.05mm~0.1mm,微型沟槽121的高度H为0.12mm~0.2mm。
在本实施例中,减阻膜1采用聚合物材料制成,例如热塑性塑胶材料制成。在本实施例中,减阻膜1为亚克力膜,具体采用亚克力材料制成。
请参考图1-图6所示,本申请另一实施例提供的一种无人机旋翼表面微结构减阻膜的制作方法,包括以下处理步骤:
S1、根据减阻膜1的微型沟槽121设计要求,将砂轮3的微尖端31修整成微型沟槽121所需要的形状;
S2、根据微型沟槽的设计要求,使砂轮3在模芯4的表面逐一加工出多条平行的微型沟槽121,直至微型沟槽121的数量达到设计要求;
S3、将步骤S2中具有微型沟槽121的模芯4放入到成型机中,投入制作减阻膜的原材料,并通过微注塑成型或热压成型的方式制作出具有微型沟槽121且符合设计要求的微结构减阻膜1;
S4、将步骤S3中的减阻膜1上背离微型沟槽121的一侧涂覆胶层2,通过胶层2将减阻膜1紧贴在无人机旋翼5表面。
在步骤S2之前,先确定微型沟槽121的形状,在本实施例中,微型沟槽121呈V形,在其他实施例中,微型沟槽121可以呈矩形或U形。因此,将砂轮3的微尖端31修整成V型,在修成微尖端31的过程中,需要不断地检测微尖端31是否修整符合设计要求。在本实施例中,砂轮3固定在第一数控加工机床上,砂轮3通过与第二数控加工机床上的砂轮轴进行修整。
在本实施例中,模芯4采用硬质合金模芯或者模具钢模芯。模芯4为硬质合金模芯,利用砂轮3在硬质合金模芯4的表面进行微磨削加工,加工完成一条微型沟槽121后设置等间隔间距参数,然后重复加工微型沟槽121,在该过程中,可对微型沟槽121的参数进行合理调整,制造出多个参数不一的硬质合金模芯,用于验证不同参数对减阻膜1减阻效果的影响。
在本实施例中,成型机可以是微注塑成型机或热压成型机,减阻膜1通过微注塑成型机注塑成型,或通过热压成型机热压成型,该减阻膜1的生产具有成型稳定,精度高、可大批量生产的优点。在本实施例中,减阻膜1的原材料为聚合物材料,如热塑性塑胶材料。减阻膜1的原材料为亚克力粉材料。
将制作好的减阻膜1紧贴在旋翼5上后,可对无人机进行飞行试验,测试减阻效果,这此过程中,可得到不同参数的微型沟槽121参数的减阻效果,从而方便根据不同的飞行要求,选择不同的减阻膜1。
本申请提供的一种无人机旋翼表面微结构减阻膜的制造方法,减阻膜1通过模芯4注塑或热压成型,通过模芯4上的微型沟槽121的形状就能控制减阻膜1上微型沟槽121的形状,使得微型沟槽121的加工质量和尺寸精度高、形状可控,符合减阻膜1表面成型应具有较大面积、峰顶尖锐、精度高的要求,同时,采用注塑或热压成型的方式,相对传统方法对薄膜直接加工的方式,还能消除塑料薄膜本身的厚度误差对成型精度造成的影响,使得该减阻膜能高质量的大批量生产。
在进行步骤S1之前,根据减阻膜1的设计要求,将硬质合金模芯或者模具钢模芯的形状制作成与减阻膜1相适配的形状。这样做的目的在于,使硬质合金模芯或模具钢模芯成型出来的减阻膜1直接符合使用要求。当然,在其他实施例中,硬质合金模芯和模具钢模芯的形状可与减阻膜1的形状不同,后续再对成型后的减阻膜1进行修剪成所需要形状的减阻膜1。
在步骤S1中,先将砂轮3安装在第一加工机床的砂轮轴上,然后再芯4固定在第一加工机床的工作台上,然后使砂轮3在模芯4的表面进行微磨削,加工出第一条微型沟槽121;当完成第一条微型沟槽121后,使砂轮3沿法向方向退回预设距离,并沿着预设磨削路径继续加工第二微型沟槽121;重复上述加工过程,直至完成微型沟槽121所需要的条数。
在步骤S1中,砂轮3采用超硬磨料砂轮,其中,超硬磨料砂轮为立方氮化硼材料或金刚石材料制成。其中,修整方法采用干式接触放电法,其中,砂轮3的转速N为2000~5000转/分,砂轮3的法向进给深度h为0.001mm~0.005mm,砂轮3的进给速度V为100~1000mm/分,这样具有加工平稳的优点,有效保证了加工精度。
在本实施例中,干式接触放电法 (ECD,Electro-Contact Discharge)是利用砂轮3表面分布的微磨粒切削铜电极卷起的切屑与砂轮3金属结合剂发生脉冲电火花放电,逐渐微去除金属结合剂,实现高效率对砂轮3进行修锐修整。
在步骤S2中,微型沟槽121的宽度S为0.02mm~0.4mm,微型沟槽121的高度H为0.05mm~0.3mm,微型沟槽121的顶角角度β为50°~60°。在本实施例中,顶角角度β为55°,这样得到了微型沟槽121的减阻效果最佳。
在步骤S1中,砂轮3绕着第二加工车床的砂轮轴旋转,且砂轮3沿着预设磨削路径与第二加工车床上的砂轮修整器进行对磨修整,并将砂轮3的微尖端31的前端面修整成所需要的特定形状。
在步骤S3中,其中微注塑成型机采用BABYPLAST微注塑成型机,微注塑成型机具有模具温度控制箱和液压水冷却箱,用于控制减阻膜1的成型和冷却效率,提高生产效率。
在本实施例中,注塑材料为亚克力粉。模芯4采用模具钢或硬质合金材料制成,具有硬度高、精度高、不易磨损和方便清理等优点
本申请提供的具有微型沟槽121的微阵列结构的模芯4是通过微尖端31修整过的砂轮3的前刀面面对模芯4的表面进行微磨削加工,从而在模芯4的表面加工出平行等间距的微型沟槽121,再将加工好的模芯4放到微注塑成型机中,用亚克力粉注塑材料进行注塑成型得到减阻膜1,减阻膜1上的微型沟槽121复刻于模芯4表面的微型沟槽121结构,使得减阻膜1上的微型沟槽121的加工质量和尺寸精度高,形状可控,符合减阻膜1表面成型应具有较大面积、峰顶尖锐、精度很高的要求。本申请提供的减阻膜1制造方法具有推广意义,可以推广到大型航天器,客运飞机等。
同时,本申请的减阻膜1的制造方法,在过程上用微注塑成型方法,改变了传统方法上对薄膜直接加工的方式,消除了塑料薄膜本身厚度的误差对成型精度造成的影响;在结构上砂轮3的微尖端31修整尺寸可调控,具有优化空间,在改变模芯4的微型沟槽121参数时,可以在保证加工精度的前提下, 可使成型出的减阻膜1幅面比较大一些, 以利减阻技术的实施;在模具型腔材料上,除一般的强度、刚度要求外, 材料还应具有组织均匀、致密、无杂质, 耐腐蚀性好等优良的加工性能。模芯4在加工时金属屑易于清除干净, 避免因残留物使模具堵塞而造成成型出的微型沟槽121呈断续现象。
微注塑成型机通过模具温度控制箱和液压水冷却箱容易实现对减阻膜1的加热和冷却,减阻膜1所用薄膜还可以是热塑性塑料薄膜, 其成型采用热压成型和冷却定型工艺, 加热和冷却的速率对成型质量和效率均有影响。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (15)

  1. 一种无人机旋翼表面微结构减阻膜,其特征在于,包括:隔离层,以及,设于所述隔离层一侧的微结构层,所述微结构层表面设有平行排列的微型沟槽,所述微型沟槽呈V形或矩形或U形,所述微型沟槽的宽度S为0.02mm~0.4mm,所述微型沟槽的高度H为0.05mm~0.3mm。
  2. 根据权利要求1所述的一种无人机旋翼表面微结构减阻膜,其特征在于:所述微型沟槽呈V形,所述微型沟槽的顶角角度β为50°~60°。
  3. 根据权利要求2所述的一种无人机旋翼表面微结构减阻膜,其特征在于:所述微型沟槽的顶角角度β为55°。
  4. 根据权利要求3所述的一种无人机旋翼表面微结构减阻膜,其特征在于:所述隔离层远离所述微结构层的一侧还设有胶层。
  5. 根据权利要求4所述的一种无人机旋翼表面微结构减阻膜,其特征在于:所述微结构层的厚度为0.15mm~0.4mm,所述隔离层的厚度为0.11mm~0.12mm,所述胶层的厚度为0.05mm~0.13mm。
  6. 根据权利要求1所述的一种无人机旋翼表面微结构减阻膜,其特征在于:所述微型沟槽的宽度S为0.05mm~0.1mm,所述微型沟槽的高度H为0.12mm~0.2mm。
  7. 根据权利要求1所述的一种无人机旋翼表面微结构减阻膜,其特征在于:所述减阻膜为亚克力膜。
  8. 一种无人机旋翼表面微结构减阻膜的制造方法,其特征在于,包括以下处理步骤:
    S1、根据减阻膜的微型沟槽设计要求,将砂轮的微尖端修整成所述微型沟槽所需要的形状;
    S2、根据微型沟槽的设计要求,使所述砂轮在模芯的表面逐一加工出多条平行的微型沟槽,直至所述微型沟槽的数量达到设计要求;
    S3、将步骤S2中具有微型沟槽的模芯放入到成型机中,投入制作减阻膜的原材料,并通过微注塑成型或热压成型的方式制作出具有微型沟槽且符合设计要求的微结构减阻膜;
    S4、将步骤S3中的减阻膜上背离微型沟槽的一侧涂覆胶层,通过胶层将减阻膜紧贴在无人机旋翼表面。
  9. 根据权利要求8所述的一种无人机旋翼表面微结构减阻膜的制造方法,其特征在于:在进行步骤S1之前,根据减阻膜的设计要求,将模芯的形状制作成与设计要求的减阻膜形状相适配。
  10. 根据权利要求8所述的一种无人机旋翼表面微结构减阻膜的制造方法,其特征在于:在步骤S1中,所述砂轮为超硬磨料砂轮,所述修整方法采用干式接触放电法,所述砂轮的转速N为2000~5000转/分,所述砂轮的法向进给深度h为0.001mm~0.005mm,所述砂轮的进给速度V为100~1000mm/分。
  11. 根据权利要求9所述的一种无人机旋翼表面微结构减阻膜的制造方法,其特征在于:所述模芯为硬质合金模芯或模具钢模芯。
  12. 根据权利要求8所述的一种无人机旋翼表面微结构减阻膜的制造方法,其特征在于:在所述步骤S2中,所述微型沟槽呈V形或矩形或U形,所述微型沟槽的宽度S为0.02mm~0.4mm,所述微型沟槽的高度H为0.05mm~0.3mm。
  13. 根据权利要求12所述的一种无人机旋翼表面微结构减阻膜的制造方法,其特征在于:所述微型沟槽呈V形,所述微型沟槽的顶角角度β为50°~60°。
  14. 根据权利要求13所述的一种无人机旋翼表面微结构减阻膜的制造方法,其特征在于:所述微型沟槽的宽度S为0.05mm~0.1mm,所述微型沟槽的高度H为0.12mm~0.2mm。
  15. 根据权利要求8-14中任一项所述的一种无人机旋翼表面微结构减阻膜的制造方法,其特征在于:所述减阻膜采用亚克力材料制成。
PCT/CN2019/123600 2019-01-24 2019-12-06 一种无人机旋翼表面微结构减阻膜及其制造方法 WO2020151379A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910068662.5A CN109795673B (zh) 2019-01-24 2019-01-24 一种无人机旋翼表面微结构减阻膜的制造方法
CN201910068662.5 2019-01-24

Publications (1)

Publication Number Publication Date
WO2020151379A1 true WO2020151379A1 (zh) 2020-07-30

Family

ID=66560232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123600 WO2020151379A1 (zh) 2019-01-24 2019-12-06 一种无人机旋翼表面微结构减阻膜及其制造方法

Country Status (2)

Country Link
CN (1) CN109795673B (zh)
WO (1) WO2020151379A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117864337A (zh) * 2023-12-18 2024-04-12 中国船舶集团有限公司第七一九研究所 一种水下水动力实时预测方法及可变倾角微沟槽减阻结构
CN117864337B (zh) * 2023-12-18 2024-06-07 中国船舶集团有限公司第七一九研究所 一种水下水动力实时预测方法及可变倾角微沟槽减阻结构

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109795673B (zh) * 2019-01-24 2024-03-26 深圳大学 一种无人机旋翼表面微结构减阻膜的制造方法
CN110484151A (zh) * 2019-08-29 2019-11-22 浙江大学 微沟槽减阻柔性薄膜及其制备方法
CN111559396A (zh) * 2020-06-04 2020-08-21 清华大学 一种新型减阻降噪微结构表面及其制备方法
CN112027051A (zh) * 2020-09-15 2020-12-04 中国商用飞机有限责任公司 一种适用于飞机机身的薄膜减阻机构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708772A (zh) * 2009-11-24 2010-05-19 南京航空航天大学 一种变体机翼蒙皮及其驱动方法
CN101885381A (zh) * 2010-07-15 2010-11-17 沈阳航空航天大学 带凹坑的机翼
CN103821801A (zh) * 2014-02-23 2014-05-28 中国科学院工程热物理研究所 一种减阻肋条
CN104647168A (zh) * 2015-01-30 2015-05-27 华南理工大学 一种具有曲面微沟槽结构的飞行体及其制造方法
US20150337447A1 (en) * 2014-05-22 2015-11-26 The Boeing Company Co-bonded electroformed abrasion strip
CN105644770A (zh) * 2015-12-30 2016-06-08 哈尔滨工业大学 仿鲨鱼皮的减阻机翼
CN109795673A (zh) * 2019-01-24 2019-05-24 深圳大学 一种无人机旋翼表面微结构减阻膜及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201461226U (zh) * 2009-08-05 2010-05-12 中国科学院工程热物理研究所 一种叶片
CN201650619U (zh) * 2009-12-25 2010-11-24 阳江市新力工业有限公司 一种风机叶片
DE202011106150U1 (de) * 2011-09-28 2012-01-10 Helmut-Wolfgang Merten Rotoren, Propeller und dergleichen, mit einem Sandfischhaut-Oberflächenprofil
CN102673772B (zh) * 2012-05-28 2014-10-15 哈尔滨工业大学 飞艇蒙皮用具有减阻微沟槽结构的pu或tpu薄膜
CN102672958B (zh) * 2012-05-28 2014-06-11 哈尔滨工业大学 飞艇蒙皮用TiO2涂覆型PU或TPU薄膜减阻微沟槽的制备方法
CN103967834B (zh) * 2014-05-27 2016-03-30 山东理工大学 大型冷却塔风机叶片高逼真、非均一型仿鲨鱼沟槽微结构的设计方法
CN105317734A (zh) * 2014-06-25 2016-02-10 华北电力大学(保定) 一种脊状表面减阻的翼型叶片
CN209814265U (zh) * 2019-01-24 2019-12-20 深圳大学 一种具有微结构减阻膜的无人机旋翼

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708772A (zh) * 2009-11-24 2010-05-19 南京航空航天大学 一种变体机翼蒙皮及其驱动方法
CN101885381A (zh) * 2010-07-15 2010-11-17 沈阳航空航天大学 带凹坑的机翼
CN103821801A (zh) * 2014-02-23 2014-05-28 中国科学院工程热物理研究所 一种减阻肋条
US20150337447A1 (en) * 2014-05-22 2015-11-26 The Boeing Company Co-bonded electroformed abrasion strip
CN104647168A (zh) * 2015-01-30 2015-05-27 华南理工大学 一种具有曲面微沟槽结构的飞行体及其制造方法
CN105644770A (zh) * 2015-12-30 2016-06-08 哈尔滨工业大学 仿鲨鱼皮的减阻机翼
CN109795673A (zh) * 2019-01-24 2019-05-24 深圳大学 一种无人机旋翼表面微结构减阻膜及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117864337A (zh) * 2023-12-18 2024-04-12 中国船舶集团有限公司第七一九研究所 一种水下水动力实时预测方法及可变倾角微沟槽减阻结构
CN117864337B (zh) * 2023-12-18 2024-06-07 中国船舶集团有限公司第七一九研究所 一种水下水动力实时预测方法及可变倾角微沟槽减阻结构

Also Published As

Publication number Publication date
CN109795673B (zh) 2024-03-26
CN109795673A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
WO2020151379A1 (zh) 一种无人机旋翼表面微结构减阻膜及其制造方法
CN209814265U (zh) 一种具有微结构减阻膜的无人机旋翼
CN107805808B (zh) 一种电射流沉积-激光熔覆微织构刀具制备方法
CN111215970B (zh) 一种微结构模具超声空化辅助超声磁力抛光方法
CN105269284A (zh) 一种内凹形复杂轮廓pcd刀具的超精密高效制备工艺方法
WO2014146620A1 (zh) 一种光学元件的磨抛装置及方法
JP2011516318A5 (zh)
CN110116372B (zh) 一种超硬磨料砂轮复合式高效精密修整方法
CN108790370B (zh) 一种单侧火烧面复合石材板的制造方法
CN103707206B (zh) 一种复合材料纤维微刃的螺旋砂轮
CN115592581B (zh) 一种磨粒有序排布砂轮的激光钎焊制备装置
CN212859944U (zh) 一种玻璃热弯模具加工成型的系统
CN109016274B (zh) 一种利用数控雕刻技术结合石蜡基片制作微流控芯片模具的方法
CN104551926A (zh) 硬质光学材料抛光模复合结构及制作方法
CN207154944U (zh) 一种工具电极自动补偿的放电铣削加工装置
CN203918456U (zh) 数控车削、粗磨、精磨同步加工机床
CN109311111B (zh) 一种超硬磨料镀层电极放电磨削复合加工装置及方法
CN205616774U (zh) 一种微结构硬质合金模具
CN106272025B (zh) 一种回转体工件自旋转磨粒流抛光用的夹具及其设计方法
CN202200190U (zh) 研磨砂轮
CN211028257U (zh) 分层面铣刀
He et al. Improving the machining quality of micro structures by using electrophoresis-assisted ultrasonic micromilling machining
CN207223774U (zh) 一种磨粒图案分布砂轮的制作装置
CN210307281U (zh) 一种非平面按键分片装置
CN211163563U (zh) 一种可重复使用的硅片倒角磨边砂轮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09-11-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19912110

Country of ref document: EP

Kind code of ref document: A1