CN104647168A - 一种具有曲面微沟槽结构的飞行体及其制造方法 - Google Patents

一种具有曲面微沟槽结构的飞行体及其制造方法 Download PDF

Info

Publication number
CN104647168A
CN104647168A CN201510053233.2A CN201510053233A CN104647168A CN 104647168 A CN104647168 A CN 104647168A CN 201510053233 A CN201510053233 A CN 201510053233A CN 104647168 A CN104647168 A CN 104647168A
Authority
CN
China
Prior art keywords
curved surface
flying body
low power
skive
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510053233.2A
Other languages
English (en)
Inventor
谢晋
鲁艳军
李青
罗敏健
杨林丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201510053233.2A priority Critical patent/CN104647168A/zh
Publication of CN104647168A publication Critical patent/CN104647168A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/02Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/22Single-purpose machines or devices for particular grinding operations not covered by any other main group characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

本发明公开了一种具有曲面微沟槽结构的飞行体及其制造方法。该飞行体包括圆柱体和圆锥头,沿着圆锥头的曲表面轴向截面轮廓间隔均匀分布多条微沟槽,曲表面为抛物面或椭圆面的二维旋转面。加工时,先将柱状材料加工成带有圆锥头的曲面轮廓的粗糙曲表面的飞行体;然后利用细粒度金刚石砂轮的圆环端面边角沿着曲表面轮廓加工成光滑的曲表面;最后,将砂轮轴向转向与工件旋转轴垂直或者倾斜成一定角度并保持工件固定,利用高速旋转的金刚石砂轮V形尖端沿着光滑的曲表面轮廓径向进给将曲表面加工出微沟槽。该方法将飞行体加工出有规则可控的微沟槽结构的光滑曲表面,能够减小飞行体的空气阻力和增强雷达的散射,最终实现飞行的减阻和隐形。

Description

一种具有曲面微沟槽结构的飞行体及其制造方法
技术领域
本发明涉及硬脆性零部件的微细精密制造技术领域,具体涉及一种具有曲面微沟槽结构的飞行体及其制造方法。
背景技术
陶瓷、玻璃、硬质合金等硬脆性材料被广泛用于工业、汽车制造业和航空航天领域。例如,工业用微型钻头需要加工螺旋微沟槽;在摩擦学领域,发动机缸套工作表面被加工出微沟槽能够存储润滑油同时产生流体润滑膜,从而改善缸套与活塞间的润滑状况达到降低部件磨损和延长部件使用寿命;在光学应用领域,在石英基板表面加工出微米尺度的微沟槽阵列可实现光纤的自适应定位,降低光学零部件的封装成本;在热传导领域,在热管内壁加工出槽深250微米的梯形沟槽能通过毛细作用提高热管的传热极限及降低传热平均热阻,从而提升热管的散热性能。
目前,微沟槽功能表面的应用逐渐向曲面空间结构方向发展。但是,硬脆材料的曲表面精密加工非常困难,常用的激光加工和蚀刻加工尚未能加工大面积且高形状精度的微结构曲表面。飞行体表面材料要求较硬,具有曲面微沟槽结构的飞行体尚未见报道。
发明内容
本发明的目的在于克服现有技术存在的问题,提供一种具有气流导流作用,可以防止湍流,能有效减小飞行体的空气阻力的具有曲面微沟槽结构的飞行体及其制造方法。
本发明利用金刚石砂轮的端面边角先将圆柱体工件加工出光滑的曲表面,然后利用金刚石砂轮的V形尖端在已加工的光滑曲表面上加工出直微沟槽或螺旋微沟槽结构。该微沟槽结构曲表面的磨削方法不但能够获得高质量和高精度的曲表面轮廓,而且还可以加工出轮廓清晰,无破损且边缘整齐的微沟槽结构。
本发明目的通过如下技术方案实现:
一种具有曲面微沟槽结构的飞行体,包括圆柱体和圆锥头,圆柱体与圆锥头连成一体;沿着圆锥头的曲表面轴向截面轮廓间隔均匀分布多条微沟槽,所述微沟槽为V形槽,微沟槽的深度为50~900微米,微沟槽夹角为30~120度;曲表面为抛物面或椭圆面的二维旋转面。
优选地,相邻两条微沟槽在圆周方向的分度角度为5~30度。
所述圆柱体和圆锥头的材料为陶瓷、玻璃或硬质钢。
所述的具有曲面微沟槽结构的飞行体的制造方法,包括如下步骤:
1)将柱状材料加工成带有圆锥头的曲面轮廓的粗糙曲表面的飞行体;
2)利用细粒度的金刚石砂轮沿曲线磨削路径对圆锥头的曲表面进行精磨削加工,将飞行体加工成光滑的曲表面飞行体;所述曲线磨削路径为抛物线轨迹,方程为z=y2/a,其中z为沿飞行体轴向方向的飞行体头部的曲表面轮廓的横坐标值,y为飞行体头部的曲表面轮廓的纵坐标值;a为常系数,可以通过待定系数方法确定;
3)将V形尖端的金刚石砂轮的轴线方向与工件轴向方向垂直或者倾斜30~60度,在工件轴向的垂直截面上保持飞行体不动,利用V形尖端的金刚石砂轮的V形尖端沿着尖端圆与曲表面轮廓相切的砂轮中心的刀具轨迹在光滑曲表面上加工出一根微沟槽;再将飞行体沿着其圆周方向转动一个分度角度,加工出第二根微沟槽,如此依次在圆锥头的曲表面加工出具有直微沟槽或者螺旋微沟槽;刀具轨迹与曲线磨削路径相同。
优选地,所述将柱状材料加工成带有圆锥头的曲面轮廓的粗糙曲表面的飞行体通过如下方法实现:将柱状材料固定在三爪研磨器,使柱状材料轴向方向与砂轮轴线方向一致,在工件轴向的垂直截面上,利用粗粒度的金刚石砂轮的圆环端面边角采用轴向分层进给的磨削路径对陶瓷进行粗磨削加工,将柱状材料的毛坯轮廓加工成带有圆锥头的曲面轮廓,得到粗糙曲表面的飞行体;所述磨削路径是沿柱状材料轴向方向按设定的数控直线往复路径分层进给的往返折线。
所述粗粒度的金刚石砂轮由金刚石磨料和青铜结合剂组成,金刚石磨料粒度为60~200目;加工中,粗粒度的金刚石砂轮的转速为2000~5000转/分;成型加工的进给深度为10~50微米/每行程,进给速度为3~30毫米/分。
所述细粒度的金刚石砂轮由金刚石磨料和树脂结合剂组成,金刚石磨料粒度为1500~4000目;所述V形尖端的金刚石砂轮由金刚石磨料和青铜结合剂组成,金刚石磨料粒度为240~1500目,V尖端角度为30~90°。
加工中,所述细粒度的金刚石砂轮的进给深度为1~10微米/每行程,进给速度为1~5毫米/分;所述V形尖端的金刚石砂轮的进给深度为3~50微米/每行程,进给速度为2~20毫米/分。
本发明与现有技术相比具有如下优点:
(1)本发明微沟槽结构被制造到飞行体曲表面上,可以产生新的功能,实现减阻和隐形。所制造出的微沟槽结构具有气流导流作用,可以防止湍流,能有效减小飞行体的空气阻力,提高飞行稳定性,增强雷达散射能力。
(2)本发明利用微细修整后的V形尖端的金刚石砂轮可以在光滑的曲表面制造出微沟槽结构;与激光、刻蚀加工相比,微沟槽底部轮廓更加光滑,微沟槽形状更加清晰,且无破损。
(3)本发明制造方法与普通的车削加工方式相比,采用精密成型磨削方法可以将工件加工出光滑的曲表面,表面质量好,形状精度高。
附图说明
图1为本发明圆锥头的曲表面轮廓成型粗加工示意图。
图2为本发明圆锥头的曲表面轮廓成型精加工示意图。
图3为本发明圆锥头的曲表面加工直微沟槽结构示意图。
图4为实施例2圆锥头的曲表面加工螺旋微沟槽示意图。
具体实施方式
为更好理解本发明,下面结合附图和实施例对本发明做进一步的说明,但是本发明要求保护的范围并不局限于实施例表示的范围。
一种具有曲面微沟槽结构的飞行体,包括圆柱体和圆锥头,圆柱体与圆锥头连成一体;沿着圆锥头的曲表面轴向截面轮廓均匀分布微沟槽,微沟槽为V形槽,微沟槽的深度为50~900微米,微沟槽夹角为30~120度,微沟槽在圆周方向的分度角度为5~30度;曲表面为抛物面或椭圆面的二维旋转面。
一种具有曲面微沟槽结构的飞行体的制造方法,包括如下步骤:
1)将柱状材料(如圆柱体陶瓷棒)固定在三爪研磨器并随之旋转,粗粒度的金刚石砂轮2固定在砂轮轴上;如图1所示,首先,使柱状材料轴向方向与砂轮轴线方向一致,在工件轴向的垂直截面上,利用粗粒度的金刚石砂轮2的圆环端面边角6采用轴向分层进给的磨削路径5对陶瓷进行粗磨削加工,将飞行体从圆柱体结构的毛坯轮廓4加工成带有圆锥头的曲面轮廓3,得到粗糙曲表面的飞行体1。磨削路径5是沿陶瓷棒轴向方向按设定的数控直线往复路径分层进给的往返折线。
2)如图2所示,利用细粒度的金刚石砂轮7沿曲线磨削路径8对成型曲面进行精磨削加工,从而将飞行体1加工成光滑的曲表面飞行体;曲线磨削路径8为抛物线轨迹,方程为z=y2/a,其中z为沿飞行体轴向方向的飞行体头部的曲表面轮廓的横坐标值,y为飞行体头部的曲表面轮廓的纵坐标值;a为常系数,可以通过待定系数方法确定。
3)如图3所示,将砂轮轴线方向与工件轴向方向垂直或者倾斜30~60度,在工件轴向的垂直截面上保持飞行体不动,利用微细修整成V形尖端的金刚石砂轮9的V形尖端10沿着尖端圆与曲表面轮廓相切的砂轮中心的刀具轨迹11在光滑曲表面3上加工出一根微沟槽12;微沟槽12为V形沟槽,其V沟槽深度为50~900微米,沟槽夹角为30~120度,再将飞行体沿着其圆周方向转动一个分度角度(5~30度),加工出第二根微沟槽,如此依次将飞行体1加工出具有直微沟槽或者螺旋微沟槽结构曲表面的飞行体。刀具轨迹11与曲线磨削路径8相同。
所述飞行体1是微晶玻璃陶瓷,也可为玻璃、硅、硬质钢等硬脆性材料。所述粗粒度的金刚石砂轮2由金刚石磨料和青铜结合剂组成,金刚石磨料粒度为60~200目;所述细粒度的金刚石砂轮7由金刚石磨料和树脂结合剂组成,金刚石磨料粒度为1500~4000目;V形尖端的金刚石砂轮9由金刚石磨料和青铜结合剂组成,金刚石磨料粒度为240~1500目,V尖端角度为30~90°。
在飞行体轮廓成型加工过程中,金刚石砂轮行走轨迹为抛物线或圆锥线轨迹,粗粒度的金刚石砂轮2转速为2000~5000转/分;粗加工成型阶段进给深度为10~50微米/每行程,进给速度为3~30毫米/分;精加工成型阶段,细粒度的金刚石砂轮7进给深度为1~10微米/每行程,进给速度为1~5毫米/分;在飞行体微沟槽加工过程中,V形尖端的金刚石砂轮9的转速为2000~5000转/分,进给深度为3~50微米/每行程,进给速度为2~20毫米/分。
通过精密曲面磨削和V尖端微细磨削相结合的方法可以将陶瓷加工成高精度的具有微沟槽结构的光滑曲表面,加工精度可以控制在0.5%以内。
实施例1
采用CNC精密磨床(SMRART B818)加工陶瓷棒,将圆柱形陶瓷棒固定在米其林三爪研磨器(MCL‐550)上并随之旋转,飞行体旋转速度n=500转/分,金刚石砂轮固定在砂轮轴上。加工飞行体1的粗粒度的金刚石砂轮2的直径为160毫米、厚度为10毫米,由金刚石磨料和青铜结合剂组成,金刚石磨料粒度为120目;加工光滑曲面飞行体的细粒度的金刚石砂轮7的直径为150毫米、厚度为4毫米,由金刚石磨料和树脂结合剂组成,金刚石磨料粒度为3000目;加工具有微沟槽结构的光滑曲面飞行体的V尖端的金刚石砂轮9的直径为160毫米,厚度为4毫米,V尖端角度为60度,由金刚石磨料和青铜结合剂组成,金刚石磨料粒度为600目。加工后的飞行体总长度为70毫米,外围直径为30毫米,飞行体曲面轮廓轴向长度为32毫米。陶瓷材料为微晶玻璃陶瓷。
首先,使陶瓷棒轴向方向与砂轮轴线方向一致,在工件轴向的垂直截面上,利用金刚石砂轮2的圆环端面边角6采用分层进给的磨削路径5(磨削路径5是沿陶瓷棒轴向方向按设定的数控直线往复路径分层进给往返折线)对陶瓷进行粗磨削加工,将飞行体从毛坯轮廓4加工成型到曲面轮廓3,加工出粗糙曲表面的飞行体1(如图1所示),砂轮转速N=2500转/分,进给速度vf=10毫米/分,进给深度a=30微米;然后,在同样的方位,利用金刚石砂轮7沿曲线磨削路径8(抛物线轨迹,其方程为z=y2/7,z为飞行体头部的曲表面轮廓的横坐标值(沿飞行体轴向方向),y为飞行体头部的曲表面轮廓的纵坐标值(沿飞行体圆周方向))对成型曲面进行精磨削加工,将飞行体1加工成光滑的曲表面飞行体(如图2所示),砂轮转速N=2500转/分,进给速度vf=4毫米/分,进给深度a=5微米;最后,将砂轮轴线方向与工件轴向方向垂直,在工件轴向的垂直截面上,此时保持飞行体不动,利用微细修整成V形尖端的金刚石砂轮9的V形尖端10沿着尖端圆与曲表面轮廓相切的砂轮中心的刀具轨迹11(抛物线轨迹,其方程为z=y2/7,z为飞行体头部的曲表面轮廓的横坐标值(沿飞行体轴向方向),y为飞行体头部的曲表面轮廓的纵坐标值(沿飞行体圆周方向))在光滑曲表面3上加工出一根微沟槽12(V形沟槽,其沟槽深度为800微米,沟槽夹角为60度),再将飞行体沿着其圆周方向转动一个分度角度(分度角度为15度),照同样方法加工出第二根微沟槽,依次将飞行体1加工成具有微沟槽结构曲表面的飞行体(如图3所示,飞行体旋转的分度角度为15度,砂轮转速N=2500转/分,进给速度vf=15毫米/分,粗加工进给深度a=50微米(累积进给深度为750微米),精加工进给深度a=5微米(累积进给深度为50微米)。
采用精密磨削和微细磨削组合加工工艺可以将飞行体加工成具有微沟槽结构的光滑曲表面,加工出的微沟槽结构深度约为800微米、夹角为61.5度和尖端圆弧半径为48微米。微沟槽结构曲表面的平均形状误差为142微米,微沟槽深度误差仅为3微米,加工精度可控制到0.5%以内。将飞行体固定在Kistler 9257A三坐标测力仪上,利用YL90S‐2华申牌空气压缩机的喷气嘴模拟空气气流作用于飞行体头部,进行风动实验测试,检测飞行体所受的空气轴向和侧面阻力。通过风动实验结果可知微沟槽结构曲表面所受空气阻力比光滑和粗糙曲表面分别减小约36%和42%,也比光滑曲表面减小横侧力约39%。主要因为微沟槽结构是沿气流方向加工的,具有导流导向、减阻、稳固作用,而且粗糙表面可能会引起湍流。因此,在陶瓷光滑曲表面加工出规则可控的直微沟槽结构可以减小飞行体的空气阻力,提高飞行稳定性。
实施例2
首先,使陶瓷棒轴向方向与砂轮轴线方向一致,在工件轴向的垂直截面上,利用金刚石砂轮2的圆环端面边角6采用分层进给的磨削路径5(磨削路径5是沿陶瓷棒轴向方向按设定的数控直线往复路径分层进给往返折线)对陶瓷进行粗磨削加工,将飞行体从毛坯轮廓4加工成型到曲面轮廓3,加工出粗糙曲表面的飞行体1(如图1所示),砂轮转速N=2500转/分,进给速度vf=10毫米/分,进给深度a=30微米;然后,在同样的方位,利用金刚石砂轮7沿曲线磨削路径8(抛物线轨迹,其方程为z=y2/7,z为飞行体头部的曲表面轮廓的横坐标值(沿飞行体轴向方向),y为飞行体头部的曲表面轮廓的纵坐标值(沿飞行体圆周方向))对成型曲面进行精磨削加工,将飞行体1加工成光滑的曲表面飞行体,砂轮转速N=2500转/分,进给速度vf=4毫米/分,进给深度a=5微米;最后,将砂轮轴线方向与工件轴向方向倾斜一个角度(倾斜角度为45度),在工件轴向的垂直截面上,此时保持飞行体不动,利用微细修整成V形尖端的金刚石砂轮9的V形尖端10沿着刀具轨迹13(抛物线轨迹,其方程为z=y2/2,z为飞行体头部的曲表面轮廓的横坐标值(沿飞行体轴向方向),y为飞行体头部的曲表面轮廓的纵坐标值(沿飞行体圆周方向)))在光滑曲表面3上加工出一根微沟槽14(V形沟槽,其V沟槽深度为500微米,沟槽夹角为60度),再将飞行体沿着其圆周方向转动一个分度角度,照同样方法加工出第二根微沟槽,依次将飞行体1加工成具有螺旋微沟槽结构曲表面的飞行体(如图4所示),飞行体旋转的分度角度为15度,砂轮转速N=2500转/分,进给速度vf=10毫米/分,粗加工进给深度a=30微米(累积进给深度为450微米),精加工进给深度a=5微米(累积进给深度为50微米)。
为研究微沟槽结构对光吸收与反射的效果,探索微沟槽结构飞行体的隐形效果。利用软件TracePro70(CHS)对三种不同结构的飞行体进行光路模拟,分析其反射功率。模拟结果可知,相比无微沟槽结构的飞行体,具有直微沟槽结构和螺旋微沟槽结构的飞行体可以分别减少反射功率约17%和3%。说明具有微沟槽结构的飞行体可以提高其隐形效果,增强雷达散射。这是因为微沟槽结构增大了其表面积,能够增强其吸光能力,减少反射。利用ANSYS 14.0软件对飞行体头部进行有限元流体动力学分析,分析其轴向受力和扭矩,模拟结果可知,相比无微沟槽结构的飞行体,具有直微沟槽结构的飞行体可以减少轴向力约9%,减少扭矩约90%;具有螺旋微沟槽结构的飞行体可以减少轴向力约5%,增大扭矩约5倍。这说明加工螺旋微沟槽结构可以增强飞行体的飞行穿透力。因此,在陶瓷光滑曲表面加工出规则可控的螺旋微沟槽结构可以提高隐形效果,增强雷达散射和飞行体的飞行穿透力。

Claims (8)

1.一种具有曲面微沟槽结构的飞行体,包括圆柱体和圆锥头,圆柱体与圆锥头连成一体;其特征在于,沿着圆锥头的曲表面轴向截面轮廓间隔均匀分布多条微沟槽,所述微沟槽为V形槽,微沟槽的深度为50~900微米,微沟槽夹角为30~120度;曲表面为抛物面或椭圆面的二维旋转面。
2.根据权利要求1所述的具有曲面微沟槽结构的飞行体,其特征在于,相邻两条微沟槽在圆周方向的分度角度为5~30度。
3.根据权利要求1所述的曲面微沟槽结构的飞行体,其特征在于,所述圆柱体和圆锥头的材料为陶瓷、玻璃或硬质钢。
4.权利要求1所述的具有曲面微沟槽结构的飞行体的制造方法,其特征在于包括如下步骤:
1)将柱状材料加工成带有圆锥头的曲面轮廓的粗糙曲表面的飞行体;
2)利用细粒度的金刚石砂轮沿曲线磨削路径对圆锥头的曲表面进行精磨削加工,将飞行体加工成光滑的曲表面飞行体;所述曲线磨削路径为抛物线轨迹,方程为z=y2/a,其中z为沿飞行体轴向方向的飞行体头部的曲表面轮廓的横坐标值,y为飞行体头部的曲表面轮廓的纵坐标值;a为常系数,可以通过待定系数方法确定;
3)将V形尖端的金刚石砂轮的轴线方向与工件轴向方向垂直或者倾斜30~60度,在工件轴向的垂直截面上保持飞行体不动,利用V形尖端的金刚石砂轮的V形尖端沿着尖端圆与曲表面轮廓相切的砂轮中心的刀具轨迹在光滑曲表面上加工出一根微沟槽;再将飞行体沿着其圆周方向转动一个分度角度,加工出第二根微沟槽,如此依次在圆锥头的曲表面加工出具有直微沟槽或者螺旋微沟槽;刀具轨迹与曲线磨削路径相同。
5.根据权利要求4所述的具有曲面微沟槽结构的飞行体的制造方法,其特征在于,所述将柱状材料加工成带有圆锥头的曲面轮廓的粗糙曲表面的飞行体通过如下方法实现:将柱状材料固定在三爪研磨器,使柱状材料轴向方向与砂轮轴线方向一致,在工件轴向的垂直截面上,利用粗粒度的金刚石砂轮的圆环端面边角采用轴向分层进给的磨削路径对陶瓷进行粗磨削加工,将柱状材料的毛坯轮廓加工成带有圆锥头的曲面轮廓,得到粗糙曲表面的飞行体;所述磨削路径是沿柱状材料轴向方向按设定的数控直线往复路径分层进给的往返折线。
6.根据权利要求5所述的具有曲面微沟槽结构的飞行体的制造方法,其特征在于,所述粗粒度的金刚石砂轮由金刚石磨料和青铜结合剂组成,金刚石磨料粒度为60~200目;加工中,粗粒度的金刚石砂轮的转速为2000~5000转/分;成型加工的进给深度为10~50微米/每行程,进给速度为3~30毫米/分。
7.根据权利要求4所述的具有曲面微沟槽结构的飞行体的制造方法,其特征在于,所述细粒度的金刚石砂轮由金刚石磨料和树脂结合剂组成,金刚石磨料粒度为1500~4000目;所述V形尖端的金刚石砂轮由金刚石磨料和青铜结合剂组成,金刚石磨料粒度为240~1500目,V尖端角度为30~90°。
8.根据权利要求4所述的具有曲面微沟槽结构的飞行体的制造方法,其特征在于,加工中,所述细粒度的金刚石砂轮的进给深度为1~10微米/每行程,进给速度为1~5毫米/分;所述V形尖端的金刚石砂轮的进给深度为3~50微米/每行程,进给速度为2~20毫米/分。
CN201510053233.2A 2015-01-30 2015-01-30 一种具有曲面微沟槽结构的飞行体及其制造方法 Pending CN104647168A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510053233.2A CN104647168A (zh) 2015-01-30 2015-01-30 一种具有曲面微沟槽结构的飞行体及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510053233.2A CN104647168A (zh) 2015-01-30 2015-01-30 一种具有曲面微沟槽结构的飞行体及其制造方法

Publications (1)

Publication Number Publication Date
CN104647168A true CN104647168A (zh) 2015-05-27

Family

ID=53239076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510053233.2A Pending CN104647168A (zh) 2015-01-30 2015-01-30 一种具有曲面微沟槽结构的飞行体及其制造方法

Country Status (1)

Country Link
CN (1) CN104647168A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108622375A (zh) * 2018-04-25 2018-10-09 朱晓义 从流体连续性中产生推动力或升力的运动装置
CN109018382A (zh) * 2018-08-07 2018-12-18 深圳市福来过科技有限公司 一种飞机发动机变形整流罩结构
CN109397034A (zh) * 2018-11-19 2019-03-01 重庆大学 一种仿生肋状表面砂带磨削工艺及装置
WO2020151379A1 (zh) * 2019-01-24 2020-07-30 深圳大学 一种无人机旋翼表面微结构减阻膜及其制造方法
CN112355811A (zh) * 2020-11-03 2021-02-12 自贡硬质合金有限责任公司 一种非连贯环槽的加工方法
US11396364B2 (en) 2017-04-26 2022-07-26 Xiaoyi Zhu Aircraft generating larger thrust and lift by fluid continuity
CN116534246A (zh) * 2023-07-05 2023-08-04 中国空气动力研究与发展中心计算空气动力研究所 一种流向涡调制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB334828A (en) * 1929-02-27 1930-09-11 Herbert Lindner Method of making screw threads by grinding
US3631758A (en) * 1969-08-22 1972-01-04 Ind Modulator Systems Corp Process for grooving fluid-bearing bars, and resulting articles
RU2071904C1 (ru) * 1992-11-10 1997-01-20 Товарищество с ограниченной ответственностью "Автоштамп" Устройство для суперфинишной обработки
CN204504945U (zh) * 2015-01-30 2015-07-29 华南理工大学 一种具有曲面微沟槽结构的飞行体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB334828A (en) * 1929-02-27 1930-09-11 Herbert Lindner Method of making screw threads by grinding
US3631758A (en) * 1969-08-22 1972-01-04 Ind Modulator Systems Corp Process for grooving fluid-bearing bars, and resulting articles
RU2071904C1 (ru) * 1992-11-10 1997-01-20 Товарищество с ограниченной ответственностью "Автоштамп" Устройство для суперфинишной обработки
CN204504945U (zh) * 2015-01-30 2015-07-29 华南理工大学 一种具有曲面微沟槽结构的飞行体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鲁艳军等: "陶瓷飞行体的微沟槽结构曲面精密磨削与减阻性能", 《机械工程学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11396364B2 (en) 2017-04-26 2022-07-26 Xiaoyi Zhu Aircraft generating larger thrust and lift by fluid continuity
US11858617B2 (en) 2017-04-26 2024-01-02 Xiaoyi Zhu Propeller-driven helicopter or airplane
CN108622375A (zh) * 2018-04-25 2018-10-09 朱晓义 从流体连续性中产生推动力或升力的运动装置
CN109018382A (zh) * 2018-08-07 2018-12-18 深圳市福来过科技有限公司 一种飞机发动机变形整流罩结构
CN109397034A (zh) * 2018-11-19 2019-03-01 重庆大学 一种仿生肋状表面砂带磨削工艺及装置
WO2020151379A1 (zh) * 2019-01-24 2020-07-30 深圳大学 一种无人机旋翼表面微结构减阻膜及其制造方法
CN112355811A (zh) * 2020-11-03 2021-02-12 自贡硬质合金有限责任公司 一种非连贯环槽的加工方法
CN116534246A (zh) * 2023-07-05 2023-08-04 中国空气动力研究与发展中心计算空气动力研究所 一种流向涡调制装置
CN116534246B (zh) * 2023-07-05 2023-09-12 中国空气动力研究与发展中心计算空气动力研究所 一种流向涡调制装置

Similar Documents

Publication Publication Date Title
CN104647168A (zh) 一种具有曲面微沟槽结构的飞行体及其制造方法
KR101479829B1 (ko) 총형 커터의 제조 방법 및 총형 커터의 연삭 공구
CN109333385B (zh) 一种带有微结构的金刚石砂轮及其制备方法
CN103862346B (zh) 一种微细铣刀螺旋曲面的无瞬心包络磨削方法
CN105571971A (zh) 一种金刚石刀具预修有色金属试件的单颗磨粒连续划擦测试方法
US7494305B2 (en) Raster cutting technology for ophthalmic lenses
CN109070315A (zh) 一种微沟槽加工用的砂轮工具及其制造方法
CN103769960B (zh) 一种具有微切削刃阵列结构的球形铣刀的制造方法
CN103991040B (zh) 一种发动机气门成型cbn砂轮的加工方法
CN204504945U (zh) 一种具有曲面微沟槽结构的飞行体
Yuan et al. Structural design and fabrication of polycrystalline diamond micro ball-end mill
CN107457703B (zh) 一种端面全跳动优于2μm的青铜金刚石砂轮盘精密修整方法
US20060205321A1 (en) Super-abrasive machining tool and method of use
CN110202424B (zh) 一种贯通式微透镜阵列工件的仿形抛光方法
Wang et al. Arc envelope grinding of sapphire steep aspheric surface with sic-reinforced resin-bonded diamond wheel
CN109807720B (zh) 一种微透镜阵列光学元件的范成式加工方法
CN104440408B (zh) 一种副喷口类精密件的磨削加工方法
CN101758450B (zh) 多功能珩磨头
Lin et al. Analytical modelling of both parallel and cross grinding with arc-shaped wheel for grinding-induced damage and grinding force
US20150004880A1 (en) Method for finishing complex shapes in workpieces
CN109299514A (zh) 斜轴磨削自由曲面的砂轮路径生成方法
JP3840661B2 (ja) ボールエンドミル
CN103921203A (zh) 汽轮机主汽阀调节阀内孔的珩磨加工方法
CN111113168B (zh) 一种微小径铣磨复合pcd球头铣刀及其刃磨方法
CN105717031A (zh) 一种cbn刀具预修黑色金属试件的单颗磨粒连续划擦测试方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150527

RJ01 Rejection of invention patent application after publication