CN111559396A - 一种新型减阻降噪微结构表面及其制备方法 - Google Patents

一种新型减阻降噪微结构表面及其制备方法 Download PDF

Info

Publication number
CN111559396A
CN111559396A CN202010499529.8A CN202010499529A CN111559396A CN 111559396 A CN111559396 A CN 111559396A CN 202010499529 A CN202010499529 A CN 202010499529A CN 111559396 A CN111559396 A CN 111559396A
Authority
CN
China
Prior art keywords
reduction
noise
paint
microstructure
shaped groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010499529.8A
Other languages
English (en)
Inventor
翁鼎
庞作波
陈磊
汪家道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202010499529.8A priority Critical patent/CN111559396A/zh
Publication of CN111559396A publication Critical patent/CN111559396A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/02Construction details of vehicle bodies reducing air resistance by modifying contour ; Constructional features for fast vehicles sustaining sudden variations of atmospheric pressure, e.g. when crossing in tunnels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/38Constructions adapted to reduce effects of aerodynamic or other external heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/10Trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明涉及一种新型减阻降噪微结构表面及其制备方法,该表面具有垂直于流体方向的沟槽微结构,通过改善亚音速飞行器固/气界面的近壁面流场特性,有效降低壁面摩擦阻力和气动噪声。减阻降噪微结构表面的制备是通过油漆表面冷压成型的方式实现的。新型减阻降噪表面制备技术可以解决高速列车、商用飞机、无人机等高速航行体航行时的减阻及降噪问题,且具有经济、实用、易于加工及产业化等优点。

Description

一种新型减阻降噪微结构表面及其制备方法
技术领域
本发明涉及领域,尤其涉及,具体为本发明涉及一种新型减阻降噪微结构表面及其制备方法,可降低空气介质中运动航行体表面摩擦阻力和气动噪声,属于机械工程表面处理技术与流体动力学技术领域。
背景技术
高速列车、商用飞机、无人机等高速航行体在空气介质中运动时,空气阻力是影响其能耗的重大因素,该阻力主要由摩擦阻力和压差阻力等组成,其中摩擦阻力占比较大,另外摩擦阻力的增加,会导致气动噪声的增大等问题。因此,减小告诉航行体运行过程中的摩擦阻力,有助于节约资源,提高航行体的航速和航程,还能够有效降低运行中的气动噪声。
近年来,随着航空工业的不断发展,尤其是无人机产业的不断壮大,减小飞机阻力,提高飞机的航程问题变得尤为迫切。截止目前,已形成气动外形优化,表面修形,自身轻量化等多种减阻技术手段,其中,表面修形技术可以在保证飞机外形结构和气动布局的情况下,减小飞机阻力,且使用方便、维护简单,具有广阔的前景。
美国3M公司曾花费数年时间研发沟槽贴膜减阻技术,并在多个型号的飞机上进行试验和应用。该减阻方法,采用顺流向沟槽减阻理论和技术,通过使层流到紊流的转捩点后移来减小摩擦阻力。其通过理论计算及试验验证,顺流向沟槽的最大减阻率为8%。空客公司的A320试验机的结构表面该技术可以节油1%~2%,实际减阻效果十分有限。
高速铁路的发展进程中,减阻节能同样是一个重大挑战。减小空气阻力已经成为高速列车研发过程中的关键问题之一。目前,相关研究机构主要以高速列车车头外形的优化设计,以及车体外露部件气动优化,来减小高速列车运行中的空气阻力。该技术可以在一定程度上降低高速列车运行时的压差阻力,但对于表面摩擦阻力的降低效果不明显。而通过沟槽减阻等表面修形技术,改善车体表面的近壁面流场特性,从而减小固/气壁面剪切造成的摩擦阻力,则可以在现有减阻措施的基础上,进一步优化其气动性能,降低运行过程中的空气阻力和气动噪声。
发明内容
本发明的目的在于针对现有技术的不足,提供一种新型减阻降噪微结构表面及其制备方法。该表面可以同航行体的后期表面涂层加工相结合,在不改变其外部气动造型的基础上,减小航行过程中的表面摩擦阻力,从而提高航行体的航程、航速,达到节能目的;此外,该技术对于抑制气动噪声也有其独到的效果。该微结构表面制备技术,减阻降噪效果明显,加工制备简便,可应用于复杂曲面制备,对于解决商用飞机、高速列车、无人机在运行过程中的空气阻力与气动噪声问题具有独特优势。
本发明技术方案如下:
一种新型减阻降噪为结构表面,其特征在于,该微结构表面是具有周期性V型沟槽单元的FEVE氟碳树脂漆层。
带有周期性V型沟槽单元的FEVE氟碳树脂漆层,其特征在于,所述周期性V型沟槽单元在FC树脂漆表层沿垂直于流体方向等间距分布,如图1所示,沟槽的深度h为10~50μm,V型沟槽顶角α的范围为15°~120°,V型沟槽单元的周期λ为30~600μm。
本发明中,垂直于流体方向的V型沟槽FEVE氟碳树脂漆层,能够显著改善航行体在空气介质中运动时,固/气界面的近壁面流场特性,有效降低运动中的表面摩擦阻力。同时,固/气界面之间的空气剪切是航行体产生气动噪声的主要原因,通过V型沟槽单元,实现沟槽内流体的微漩涡流动,从而实现近壁面空气流动与沟槽内微漩涡能量的有效传递,减小固/气界面空气的剪切作用强度,降低航行体运动过程中的气动噪声。
此外,本发明还提供了一种制备所述减阻降噪微结构表面的方法,其特征在于,该方法的制备步骤如下:
(1)制备具有特定几何尺寸、等间距分布的V型凸起形貌的光固树脂膜,如图2所示。
(2)将普通FEVE氟碳树脂油漆喷涂于基体表面,油漆的厚度为40~120μm。
(3)喷涂油漆静止干燥0~120min,将光固树脂膜粘贴在油漆表面,加压0~50g/mm2,保压时间为18~36h,去除油漆表面光固树脂膜,得到具有微结构表面的油漆层。
本发明所述得一种新型减阻降噪微结构表面的制备方法,具有简单易行、成本低廉、制造周期短、适用范围广,有着良好的工程应用前景。
附图说明
图1为具有V型沟槽微结构的FEVE氟碳树脂漆表面形貌结构示意图;
图2为光固树脂膜表面V型凸起形貌单元的结构示意图。
具体实施方式
本发明具有减阻降噪新型微结构表面,是具有周期性V型沟槽单元的FEVE氟碳树脂漆层。其中周期性V型沟槽单元在FEVE氟碳树脂漆表层沿垂直于流体方向等间距分布,如图1所示,沟槽的深度h为10~100μm,V型沟槽顶角α的范围为15°~150°,V型沟槽单元的周期λ为30~600μm。
本发明中的新型微结构表面,可以通过油漆表面冷压成型的方式进行制备:首先制备具有特定几何尺寸、等间距分布的V型凸起形貌的光固树脂膜,如图2所示。然后将普通FEVE氟碳树脂油漆喷涂于基体表面,油漆的厚度为40~120μm。喷涂油漆静止干燥0~120min,将光固树脂膜粘贴在油漆表面,加压0~50g/mm2,保压时间为18~36h,去除油漆表面光固树脂膜,得到具有微结构表面的油漆层。
按照上述方法制备的垂直于流体方向的V型沟槽FEVE氟碳树脂漆层,能够显著改善航行体在空气介质中运动时,固/气界面的近壁面流场特性,有效降低运动中的表面摩擦阻力。同时,固/气界面之间的空气剪切是航行体产生气动噪声的主要原因,通过V型沟槽单元,实现沟槽内流体的微漩涡流动,从而实现近壁面空气流动与沟槽内微漩涡能量的有效传递,减小固/气界面空气的剪切作用强度,降低航行体运动过程中的气动噪声。
下面结合实例对所提出的具有减阻降噪效果的新型微结构表面及其制备方法做进一步详细说明。
实施例1
制备具有等间距均匀分布有V型凸起形貌的光固树脂膜,V型凸起形貌单元的高度h为55μm,顶角α为114°,周期λ为510μm。将该光固树脂膜,贴于喷涂FC树脂漆干燥10min的航行体表面,表面加压2.5g/mm2,24h后去除光固树脂膜,得到V型沟槽微结构表面,其中V型沟槽的深度h为50μm,顶角α为120°,周期λ为510μm,垂直于流向方向分布。在0.4倍音速下,可以有效降低航行体表面的摩擦阻力达26.3%。
实施例2
制备具有等间距均匀分布有V型凸起形貌的光固树脂膜,V型凸起形貌单元的高度h为12μm,顶角α为55°,周期λ为35μm。将该光固树脂膜,贴于喷涂FC树脂漆干燥20min的航行体表面,表面加压1.5g/mm2,24h后去除光固树脂膜,得到V型沟槽微结构表面,其中V型沟槽的深度h为10μm,顶角α为60°,周期λ为35μm,垂直于流向方向分布。在0.2倍音速下,航行体表面的摩擦阻力下降17.1%,气动噪声降低1.8dB。

Claims (3)

1.一种新型减阻降噪微结构表面,其特征在于微结构表面是具有周期性V型沟槽单元的FEVE氟碳树脂漆层。
2.按照权利要求1所述得一种新型减阻降噪微结构表面,其特征在于,所述周期性V型沟槽单元在FEVE氟碳树脂漆表层沿垂直于流体方向等间距分布,沟槽的深度h为10~100μm,V型沟槽顶角α的范围为15°~150°,V型沟槽单元的周期λ为30~600μm。
3.一种新型减阻降噪微结构表面制备如权利要求1所述,其特征在于,该方法的制备步骤如下:
(1)制备具有特定几何尺寸、等间距分布的V型凸起形貌的光固树脂膜;
(2)将普通FEVE氟碳树脂油漆喷涂于基体表面,油漆的厚度为40~120μm;
(3)喷涂油漆静止干燥0~120min,将光固树脂膜粘贴在油漆表面,加压0~50g/mm2,保压时间为18~36h,去除油漆表面光固树脂膜,得到具有微结构表面的油漆层。
CN202010499529.8A 2020-06-04 2020-06-04 一种新型减阻降噪微结构表面及其制备方法 Pending CN111559396A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010499529.8A CN111559396A (zh) 2020-06-04 2020-06-04 一种新型减阻降噪微结构表面及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010499529.8A CN111559396A (zh) 2020-06-04 2020-06-04 一种新型减阻降噪微结构表面及其制备方法

Publications (1)

Publication Number Publication Date
CN111559396A true CN111559396A (zh) 2020-08-21

Family

ID=72073784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010499529.8A Pending CN111559396A (zh) 2020-06-04 2020-06-04 一种新型减阻降噪微结构表面及其制备方法

Country Status (1)

Country Link
CN (1) CN111559396A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102689459A (zh) * 2012-06-01 2012-09-26 清华大学 一种减阻降噪沟槽贴膜及其制备方法
CN102941728A (zh) * 2012-11-20 2013-02-27 清华大学 一种仿生减阻降噪薄膜的制备方法
KR20150018986A (ko) * 2013-08-12 2015-02-25 한국철도기술연구원 표면진동을 이용한 철도차량용 공기저항 감소장치
CN108580227A (zh) * 2018-04-20 2018-09-28 清华大学 一种超疏水油漆表面的快速制备方法
CN109795673A (zh) * 2019-01-24 2019-05-24 深圳大学 一种无人机旋翼表面微结构减阻膜及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102689459A (zh) * 2012-06-01 2012-09-26 清华大学 一种减阻降噪沟槽贴膜及其制备方法
CN102941728A (zh) * 2012-11-20 2013-02-27 清华大学 一种仿生减阻降噪薄膜的制备方法
KR20150018986A (ko) * 2013-08-12 2015-02-25 한국철도기술연구원 표면진동을 이용한 철도차량용 공기저항 감소장치
CN108580227A (zh) * 2018-04-20 2018-09-28 清华大学 一种超疏水油漆表面的快速制备方法
CN109795673A (zh) * 2019-01-24 2019-05-24 深圳大学 一种无人机旋翼表面微结构减阻膜及其制造方法

Similar Documents

Publication Publication Date Title
Chen et al. Biomimetic drag reduction study on herringbone riblets of bird feather
CN108162995B (zh) 一种空气导流装置及利用其减小空气压差阻力的方法
CN110866351B (zh) 机翼扰流板增阻微织构设计与基于cfrp材料的制造法
CN102689459B (zh) 一种减阻降噪沟槽贴膜及其制备方法
Jamei et al. Numerical investigation on aerodynamic characteristics of a compound wing-in-ground effect
WO2021036858A1 (zh) 微沟槽减阻柔性薄膜及其制备方法
CN111559396A (zh) 一种新型减阻降噪微结构表面及其制备方法
CN111539069A (zh) 一种仿真计算高速列车表面微结构减阻的方法
CN109543362B (zh) 一种具有高效空气减阻功能的仿沙丘微结构及其优化设计方法
CN110788182B (zh) 微沟槽表面结构的超声辅助柔性滚压成形方法及装置
CN111498084A (zh) 一种应用于高空高速长航时无人机的低阻层流翼型
Murayama et al. Noise Reduction Design for Flap Side-edges toward FQUROH Flight Demonstration
Zheng et al. Drag reduction using bionic groove surface for underwater vehicles
Buresti et al. Methods for the drag reduction of bluff bodies and their application to heavy road-vehicles
Hage et al. Yaw angle effects on optimized riblets
Aslani et al. Short-takeoff marine vehicle with circulation flow control of wing-in-ground effect
Li et al. Numerical research on drag-reduction characteristics of a body of revolution based on periodic forcing
Ito et al. Noise Reduction of Regional Jet Two-Wheel Main Landing Gear
CN108327894B (zh) 一种仿沙垄气动减阻舌形微结构
CN108955784B (zh) 一种表面带有仿生微结构的v锥流量计
Li et al. Aerodynamic drag analysis of double-deck container vehicles with different structures
Yin et al. Numerical Analysis on Drag Reduction of High-Speed Train Using Rough Surface
CN101818836B (zh) 天然气管道内壁涂层形貌的滚压成型方法及其滚压成型装置
Chowdhury et al. Aerodynamic design of an energy-efficient light truck by biomimicry
Sang et al. Research on the Influence of Vacuum Pipe Blocking Ratio on the Aerodynamic Characteristics of Super High Speed Train

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200821

RJ01 Rejection of invention patent application after publication