WO2020151360A1 - 一种锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料及其制备方法 - Google Patents

一种锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料及其制备方法 Download PDF

Info

Publication number
WO2020151360A1
WO2020151360A1 PCT/CN2019/121139 CN2019121139W WO2020151360A1 WO 2020151360 A1 WO2020151360 A1 WO 2020151360A1 CN 2019121139 W CN2019121139 W CN 2019121139W WO 2020151360 A1 WO2020151360 A1 WO 2020151360A1
Authority
WO
WIPO (PCT)
Prior art keywords
doped
porous carbon
nitrogen
defect
cobalt
Prior art date
Application number
PCT/CN2019/121139
Other languages
English (en)
French (fr)
Inventor
陈忠伟
毛治宇
Original Assignee
苏州沃泰丰能电池科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州沃泰丰能电池科技有限公司 filed Critical 苏州沃泰丰能电池科技有限公司
Publication of WO2020151360A1 publication Critical patent/WO2020151360A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material

Definitions

  • the invention relates to the field of energy conversion and storage materials and devices, in particular to a porous carbon pore-loaded cobalt cluster material doped with nitrogen and containing defects for a zinc-air battery and a preparation method thereof.
  • the metal-air battery is a new type of battery that uses active metals such as lithium, zinc, magnesium, aluminum, etc. as the negative electrode, and oxygen as the positive electrode.
  • the oxygen is obtained from the air through the positive electrode porous material.
  • the conversion between chemical energy and electrochemical energy is achieved through the reaction of oxygen reduction and oxygen evolution.
  • zinc-air batteries have received widespread attention due to their cheap and easy availability and high energy density of up to 1218Wh/kg, and they are one of the next-generation battery technologies with the most commercial prospects.
  • the oxygen reduction and oxygen evolution reactions in the air electrode part usually have problems such as excessive overpotential and activity degradation after multiple cycles due to their slow reaction kinetics.
  • the noble metals platinum and iridium have good catalytic activity and stability, they can solve the above problems to a certain extent, but due to their high cost, looking for alternative non-noble metal catalysts with high activity and high stability has become the field of A big challenge.
  • CN102247869A discloses a spherical nitrogen-doped carbon-supported non-noble metal oxygen reduction catalyst and its preparation method
  • CN101884932A discloses a nitrogen-doped carbon nanofiber oxygen reduction catalyst and its preparation method Preparation method and application
  • CN104689857A discloses a method for preparing a nitrogen-doped porous carbon material and a catalyst containing the material and uses
  • CN107359320A discloses a nitrogen-doped porous carbon/MoS 2 sodium ion battery negative electrode and a preparation method
  • CN103265008B A nitrogen-doped porous carbon and a preparation method thereof are disclosed.
  • CN103477480B discloses a core-shell structure dual-function catalyst for metal-air storage batteries/fuel cells
  • CN200953374Y discloses a zinc-air battery, with air-containing electrodes having phase The contact protruding part, the gap between the air electrode and the battery case forms an air flow channel, and the air electrode is a wave shape composed of multiple units.
  • the main differences between these reports and the present invention are: 1. The materials are different, and there are titanium nitride materials in the present invention that do not exist in other reports; 2. The loading methods are different, and the present invention focuses on pore loading instead of other reports. The load of the material itself. 3. There are differences in synthesis methods. 4. It is obviously different from other materials used in zinc-air batteries.
  • the material of the present invention is a nitrogen-doped cobalt cluster material supported by carbon pores containing defects and a zinc-air battery application containing the material.
  • the nitrogen-doped porous carbon containing defects refers to defects caused by the imperfect arrangement of molecules or atoms in the porous carbon material, exposing more active molecules or atoms.
  • Porous carbon containing defects promotes the special structure to have more active sites and higher specific surface area, and to load more cobalt clusters, which is conducive to the high capacity and stability of the zinc-air battery.
  • the purpose of the present invention is to provide a nitrogen-doped and defect-containing porous carbon pore-supported cobalt cluster material for a zinc-air battery and a preparation method thereof.
  • the nitrogen-doped cobalt cluster material supported by carbon pores containing defects according to the present invention has excellent specific capacity and good stability in a zinc-air battery, low cost, suitable for industrial production, and wide application fields.
  • a nitrogen-doped and defect-containing porous carbon pore-supported cobalt cluster material for a zinc-air battery wherein the material comprises nitrogen-doped and defect-containing porous carbon and cobalt(II) clusters, so The nitrogen-doped and defect-containing porous carbon is a carrier, the cobalt (II) clusters are supported in the nitrogen-doped and defect-containing porous carbon pores, and the nitrogen-doped and defect-containing porous carbon pores
  • the supported cobalt cluster material is used as a bifunctional catalyst for oxygen reduction reaction and oxygen evolution reaction.
  • the foregoing zinc-air battery uses nitrogen-doped porous carbon pores containing defects to support cobalt cluster materials, wherein, in weight percentage, the weight ratio of the nitrogen-doped porous carbon and the titanium nitride is (85% -95%): (5%-15%).
  • the aforementioned zinc-air battery uses nitrogen-doped porous carbon pores containing defects to support cobalt cluster materials, wherein the crystal grain size of the cobalt clusters is 9.8-14.1 nm.
  • the foregoing zinc-air battery uses nitrogen-doped porous carbon pores containing defects to support cobalt cluster materials, wherein the porous carbon pores have a size of 7.1-20.5 nm.
  • the aforementioned zinc-air battery uses nitrogen-doped and defect-containing porous carbon pores supporting cobalt cluster material, wherein the pore volume of the nitrogen-doped and defect-containing porous carbon pore supporting cobalt cluster material is 107.8 cm 3 /g , The specific surface area is 1917m 2 /g.
  • a method for preparing the above-mentioned nitrogen-doped and defect-containing porous carbon pore-supported cobalt cluster material for a zinc-air battery includes the following steps:
  • step b Immerse the product obtained in the above step a in a saturated solution of cobalt acetylacetonate/ethyl acetate for 4-8 hours, and then collect the product by filtration;
  • step b In an ammonia atmosphere, the product obtained in step b is calcined under certain conditions to obtain nitrogen-doped and defect-containing porous carbon pores supporting cobalt cluster materials.
  • the present invention has at least the following advantages:
  • the nitrogen-doped and defect-containing porous carbon pore-loaded cobalt cluster material of the present invention is composed of cobalt clusters and nitrogen-doped and defect-containing porous carbon in the pores: on the one hand, cobalt clusters have better properties Oxygen reduction and oxygen precipitation reaction activity, and carbon materials have high conductivity, which is conducive to the transmission of electrons; on the other hand, the cobalt clusters are combined with nitrogen-doped porous carbon containing defects, and the limitation of pore loading is utilized The effect promotes the uniform distribution of cobalt nanoparticles, and the porous structure in the material is beneficial to increase its surface area, thereby enhancing the oxygen reduction and oxygen evolution reaction activity of the cobalt active material.
  • the nitrogen-doped and defect-containing porous carbon pore-supported cobalt cluster material provided according to the present invention is used as a dual-functional catalyst for oxygen reduction reaction and oxygen evolution reaction in a zinc-air battery, which greatly improves zinc -The stability and excellent specific capacity of the air battery.
  • the present invention provides a nitrogen-doped and defect-containing porous carbon pore-supported cobalt cluster material and a preparation method thereof, and provides the application of the material in a zinc-air battery, which is more suitable for practical use and has Industrial use value. It has many of the above-mentioned advantages and practical values, and no similar design has been published or used in similar products, and it is indeed innovative. It has great improvements in preparation methods and functions, and has technical advantages Great progress, and has produced useful and practical effects, and compared with the existing battery materials, it has a number of enhanced functions, so it is more suitable for practical use, and has a wide range of industrial use value. It is a novel and progressive , Practical new design.
  • Figure 1a shows the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 and the nitrogen-doped carbon channel-supported cobalt cluster material prepared in Comparative Example 1 and a comparative example 2 XRD comparison chart of KJ-600 porous carbon
  • Figure 1b shows the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 of the present invention and the nitrogen-doped composite prepared in Comparative Example 1.
  • Figure 2a is a dark-field TEM image of the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 of the present invention
  • Figure 2b is the nitrogen-doped prepared in Example 1 of the present invention
  • Figure 2c is the dark-field TEM of the cobalt cluster material loaded on the nitrogen-doped porous carbon pores containing defects prepared in Example 1 of the present invention.
  • Figures 2d and 2f are the bright field TEM global images of the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 of the present invention
  • Figure 2e is according to Example 1 of the present invention
  • the bright-field TEM local high-resolution enlarged view of the nitrogen-doped and defect-containing porous carbon pore-supporting cobalt cluster material prepared in FIG. 2g, 2h, and 2i are the nitrogen-doped and containing cobalt cluster materials prepared in Example 1 of the present invention.
  • Image of defective porous carbon pores loaded with cobalt cluster material f Scanning image of the electron energy loss spectrum of carbon, cobalt, and nitrogen in the selected area;
  • Figure 3a is a C1s diagram of the XPS characterization of the nitrogen-doped and defect-containing porous carbon channel-supporting cobalt cluster material prepared in Example 1 of the present invention
  • Figure 3b is the nitrogen-doped prepared in Example 1 of the present invention
  • Fig. 3c is the Co2p characterization of the nitrogen-doped and defect-containing porous carbon channel-loaded cobalt cluster material XPS characterization prepared in Example 1 of the present invention Figure
  • Figure 3d is a nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material XAS characterization of Co element diagram prepared in Example 1 of the present invention
  • FIG. 4a shows the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 according to the present invention and the nitrogen-doped carbon channel-supported cobalt cluster material prepared in Comparative Example 1 and a comparative example 3
  • the oxygen reduction activity diagram of the prepared Pt/C sample Fig. 4b shows the nitrogen-doped and defect-containing porous carbon channel-loaded cobalt cluster material prepared in Example 1 of the present invention and the nitrogen prepared in Comparative Example 1.
  • FIG. 4c is the nitrogen-doped and defect-containing porous carbon pores prepared in Example 1 of the present invention Tafel diagram of oxygen reduction reaction performance of the cobalt-loaded cluster material and the nitrogen-doped carbon channel-loaded cobalt cluster material prepared in Comparative Example 1 and the Pt/C sample prepared in Comparative Example 3;
  • FIG. 4d is an implementation according to the present invention The nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 and the nitrogen-doped carbon channel-supported cobalt cluster material prepared in Comparative Example 1 and the Ir/C sample prepared in Comparative Example 4 Tafel diagram of the oxygen evolution reaction performance;
  • Fig. 5 is a nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 of the present invention, a nitrogen-doped carbon channel-supported cobalt cluster material prepared in Comparative Example 1, and a comparative example 3 Performance graphs of zinc-air batteries of the prepared Pt/C sample and the Ir/C sample prepared in Comparative Example 4;
  • Fig. 6 is a nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 of the present invention, a nitrogen-doped carbon channel-supported cobalt cluster material prepared in Comparative Example 1, and a comparative example 3
  • Figure 7a is a bright-field TEM image of the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 2 of the present invention
  • Figure 7b is the nitrogen-doped carbon-doped material prepared in Example 2 of the present invention Dark-field TEM local high-resolution magnified image of the impurity and defect-containing porous carbon channel supported cobalt cluster material;
  • Figure 8a is a dark-field TEM image of the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 3 of the present invention
  • Figure 8b is a nitrogen-doped carbon-doped material prepared in Example 2 of the present invention The dark-field TEM local high-resolution enlarged image of the cobalt cluster material supported by the porous carbon pores containing defects;
  • Figure 9a is a global dark-field TEM image of the porous carbon material prepared in Comparative Example 1 according to the present invention
  • Figure 9b is a local high-resolution enlarged view of the dark-field TEM
  • Figure 10 is a TEM image of a porous carbon material prepared in Comparative Example 2 according to the present invention.
  • Fig. 11 is a zinc-air battery prepared by the nitrogen-doped and defect-containing porous carbon channel supported cobalt cluster material according to the present invention.
  • a nitrogen-doped and defect-containing porous carbon pore-supported cobalt cluster material for a zinc-air battery wherein the material comprises nitrogen-doped and defect-containing porous carbon and cobalt(II) clusters,
  • the nitrogen-doped and defect-containing porous carbon is a carrier, the cobalt (II) clusters are supported in the nitrogen-doped and defect-containing porous carbon pores, and the nitrogen-doped and defect-containing porous carbon
  • the channel-loaded cobalt cluster material is used as a dual-functional catalyst for the oxygen reduction reaction and the oxygen evolution reaction. The following will be discussed in detail according to specific embodiments.
  • the electrocatalytic oxygen evolution performance test was performed in a three-electrode system (a saturated Ag/AgCl electrode was a reference electrode, a platinum wire was a counter electrode, and the electrolyte was a 0.1 mol/L KOH aqueous solution saturated with N 2 ).
  • Figure 1a shows the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 and the nitrogen-doped carbon channel-supported cobalt cluster material prepared in Comparative Example 1 and a comparative example 2 XRD comparison chart of KJ-600 porous carbon. It can be seen that the three new peaks in the nitrogen-doped and defect-containing porous carbon pore-supported cobalt cluster material prepared in Example 1 are the diffraction peaks of metallic cobalt atoms, and its structure is cubic structure, and the space group is Fm3m , Indicating that the cobalt precursor is reduced to cobalt clusters.
  • the crystal grain size of the cobalt cluster is about 12 nm.
  • the size of the porous carbon is 1.35 nm.
  • the cobalt cluster grain size in the cobalt cluster material supported by the nitrogen-doped porous carbon pores prepared in Comparative Example 1 is 22.5 nm.
  • Figure 1b shows the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 of the present invention and the nitrogen-doped carbon channel-supported cobalt cluster material prepared in Comparative Example 1 and a comparative example 2 Raman spectroscopic characterization diagram of KJ-600 porous carbon.
  • the peaks at 1340 and 1580 cm -1 in the cobalt cluster material supported by nitrogen-doped and defective porous carbon channels are attributed to the vibration peaks of the defective C 6 ring.
  • Example I D 1 / I G value Example 1 1.96 I D / I G 1.50 higher values than the comparative embodiment, the display former has more defects.
  • Figures 1c, 1d, and 1e respectively correspond to the nitrogen-doped carbon channel-supporting cobalt cluster material prepared in Comparative Example 1 according to the present invention and the nitrogen-doped and defect-containing porous carbon channel-supporting cobalt cluster prepared in Example 1
  • the results show that the material prepared in Example 1 has the most defects.
  • Figure 1f shows the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 according to the present invention and the nitrogen-doped carbon channel-supported cobalt cluster material prepared in Comparative Example 1 and a comparative example 2 BET test comparison chart of KJ-600 porous carbon.
  • g is the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 of the present invention and the nitrogen-doped carbon channel-supported cobalt cluster material prepared in Comparative Example 1 and Comparative Example 2 Pore size distribution diagram of KJ-600 porous carbon.
  • FIG. 2a is a global dark-field TEM image of the nitrogen-doped and defect-containing porous carbon channel-loaded cobalt cluster material prepared in Example 1 of the present invention. It can be seen from the figure that the white cobalt clusters are evenly distributed in the carbon.
  • Combining Figures 2g, 2h, and 2i are diagrams of the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 of the present invention. f Scanning of the electron energy loss spectrum of carbon, cobalt, and nitrogen in the selected area The figure can further prove the uniformity of the distribution of cobalt clusters.
  • FIG. 2b is a selected area diffraction pattern of the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 of the present invention, indicating that the cobalt clusters are polycrystalline nanoparticles.
  • Figure 2c is a partial high-resolution enlarged view of the dark-field TEM of the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 of the present invention;
  • Figures 2d and f are in Example 1 of the present invention Bright field TEM image of the prepared nitrogen-doped and defect-containing porous carbon channel-supporting cobalt cluster material;
  • Figure 2e According to the preparation of the present invention in Example 1 of the present invention, the nitrogen-doped and defect-containing porous carbon channel supports cobalt clusters High-resolution magnified image of the material in bright field TEM. The above results indicate that the cobalt clusters are supported in the carbon pores.
  • Figure 3a is a C1s diagram of the XPS characterization of the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 of the present invention, in which CC, CN and 284.6 eV, 285.6 and 288.8 eV respectively The CO peak and the CN bond indicate that nitrogen is doped in the carbon lattice; Fig.
  • FIG. 3b is the N1s graph of the XPS characterization of the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 of the present invention, Among them, 398.2eV, 399.9eV and 401.3eV are nitrogen in pyridine, nitrogen and quaternary nitrogen in pyrrole, respectively;
  • Figure 3c is a porous carbon channel with nitrogen doped and containing defects prepared in Example 1 according to the present invention loaded with cobalt
  • the Co2p diagram of cluster material XPS characterization, 803.1eV and 785.2eV are Co sat,2p1/2 and Co sat,2p3/2 , respectively, while 795.9eV is Co 2p1/2 and 780.5eV is Co 2p3/2 .
  • Fig. 3d is a diagram of Co element characterized by XAS of the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 of the present invention, indicating
  • FIG. 4a shows the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 according to the present invention and the nitrogen-doped carbon channel-supported cobalt cluster material prepared in Comparative Example 1 and a comparative example 3
  • the oxygen reduction activity graph of the prepared Pt/C sample The results showed that the initial voltage of the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material was 0.938V, and the half-wave potential was 0.847V, which were significantly higher than the initial voltage of 0.925V and half-wave in Comparative Example 1. The potential is 0.816V, which is also better than the performance of commercial Pt/C.
  • Figure 4c is a Tafel diagram of the oxygen reduction reaction performance of the above three materials.
  • the Tafel slope is 57.4mV/dec, which is higher than 59.6mV/dec of Pt/C and 76.4mV/dec of the nitrogen-doped porous carbon pore-supported cobalt cluster material.
  • dec. 4b shows the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 according to the present invention and the nitrogen-doped carbon channel-supported cobalt cluster material prepared in Comparative Example 1 and a comparative implementation The oxygen evolution activity diagram of the Ir/C sample prepared in Example 4.
  • the potential of the cobalt cluster material loaded on the 10mA/cm 2 nitrogen-doped porous carbon channel containing defects is 1.593V, which is 78 mV lower than that of the nitrogen-doped porous carbon channel loaded cobalt cluster material and is lower than commercialized Ir/C is 42mV lower.
  • Figure 4d is a Tafel diagram of the oxygen evolution reaction performance of the above three materials.
  • the Tafel slope of the cobalt cluster material supported by the nitrogen-doped porous carbon pores containing defects is 70.1mV/dec, which is lower than the nitrogen-doped porous carbon pores
  • the supported cobalt cluster material is 84.8mV/dec and the commercial Ir/C catalyst is 100mV/dec.
  • Fig. 5 is a nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 of the present invention, a nitrogen-doped carbon channel-supported cobalt cluster material prepared in Comparative Example 1, and a comparative example 3
  • Fig. 6 is a nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 1 of the present invention, a nitrogen-doped carbon channel-supported cobalt cluster material prepared in Comparative Example 1, and a comparative example 3
  • Figure 7a is a bright-field TEM image of the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 2 of the present invention
  • Figure 7b is the nitrogen-doped carbon-doped material prepared in Example 2 of the present invention
  • Figure 8a is a dark-field TEM image of the nitrogen-doped and defect-containing porous carbon channel-supported cobalt cluster material prepared in Example 3 of the present invention
  • Figure 8b is a nitrogen-doped carbon-doped material prepared in Example 2 of the present invention
  • Fig. 9a is a global dark-field TEM image of the porous carbon material prepared in Comparative Example 1 according to the present invention
  • Fig. 9b is a local high-resolution enlarged view of the dark-field TEM. It can be seen from the figure that the white cobalt clusters are relatively evenly distributed in the carbon pores.
  • Fig. 10 is a TEM image of a porous carbon material prepared in Comparative Example 2 according to the present invention. It can be seen from the figure that the calcined porous carbon was successfully prepared.
  • the nitrogen-doped and defect-containing porous carbon pores of the present invention support cobalt cluster materials, wherein the cobalt clusters have better oxygen reduction and oxygen evolution reaction activity, and the carbon material has high conductivity. Conducive to the transmission of electrons.
  • cobalt clusters By recombining cobalt clusters with nitrogen-doped carbon pores containing defects, the confinement effect of the pore loading promotes the uniform distribution of cobalt nanoparticles, thereby enhancing the oxygen reduction and oxygen precipitation reaction activities of the cobalt active material.
  • the porous structure in the material is beneficial to increase its surface area, thereby improving the stability of the zinc-air battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明涉及一种锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料,其中所述材料包含氮掺杂且含缺陷的多孔碳和钴(II)团簇,所述氮掺杂且含缺陷的多孔碳为载体,所述钴(II)团簇负载在所述氮掺杂且含缺陷的多孔碳孔道中,所述的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料用作氧还原反应和氧析出反应的双功能催化剂。本发明还公开了上述材料的制备方法。依据本发明公开的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料,其在锌-空气电池中具有优异的氧还原和氧析出反应活性,很大程度上提高了锌-空气电池的稳定性和优良的比容量。本发明步骤简单,可控,易于实现工业化生产。

Description

一种锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料及其制备方法 技术领域
本发明涉及能源转化与存储材料及器件领域,具体地,涉及一种锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料及其制备方法。
背景技术
金属-空气电池是一类新型电池,其以活泼金属,如锂、锌、镁、铝等为负极,氧气作为正极的化学电池,其中氧气通过正极多孔材料从空气中获得。通过氧还原和氧析出反应来实现化学能和电化学能之间的转化。在所有不同种类的金属-空气电池中,由于锌的廉价易得和高能量密度可达1218Wh/kg,锌-空气电池受到广泛关注,是最具商业化前景的下一代电池技术之一。然而,作为锌-空气电池最重要的部件,空气电极部分的氧还原和氧析出反应由于其反应动力学较慢通常存在过电势过大以及多次循环后活性衰减等问题。虽然贵金属铂和铱具有很好的催化活性和稳定性,能一定程度上较好地解决上述问题,但是由于其成本高昂,寻找高活性和高稳定性的可替代的非贵金属催化剂成为该领域的一大挑战。
现有技术中,关于氮掺杂且含缺陷的碳孔道负载的钴团簇材料未见有公开报道。虽然氮掺杂多孔碳材料已有一些报道,例如CN102247869A公开了一种球状氮掺杂碳载非贵金属氧还原催化剂及其制备方法;CN101884932A公开了一种氮掺杂碳纳米纤维氧还原催化剂及其制备方法和应用;CN104689857A公开了一种氮掺杂多孔碳材料的制备方法以及含该材料的催化剂及用途;CN107359320A公开了一种氮掺杂多孔碳/MoS 2钠离子电池负极及制备方法;CN103265008B公开了一种氮掺杂多孔碳及其制备方法。同时锌空电池应用也有一些报道,如CN103477480B公开了一种用于金属空气蓄电池/燃料电池的核壳结构双功能催化剂;CN200953374Y公开了一种锌空气电池,含空气电极具有与电池壳体内壁相接触的突出部分,空气电极与电池壳体之间的空隙形成空 气流道,空气电极为多个单元组成的波浪形。然而这些报道与本发明的主要区别在于:1.材料不同,本发明中还存在其他报道中不存在的氮化钛材料;2.负载方法不同,本发明侧重于孔道负载,而非其他报道中的材料本身的负载。3.合成方法存在区别。4.与其他锌-空气电池所用材料存在明显区别。
本发明所述材料为一种氮掺杂且含缺陷的碳孔道负载的钴团簇材料以及含该材料的锌-空气电池应用。其中,氮掺杂且含缺陷的多孔碳是指由于该多孔碳材料中分子或原子的不完美排列而导致产生缺陷,暴露出更多的活性分子或原子。含缺陷的多孔碳促使该特殊结构具有较多的活性位点和更高的比表面积,负载较多的钴团簇,有利于锌-空气电池的高容量和稳定性。
发明内容
本发明的目的在于提供一种锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料及其制备方法。根据本发明提供的氮掺杂且含缺陷的碳孔道负载的钴团簇材料在锌-空气电池中具有优良的比容量和良好的稳定性,成本低廉,适合于工业化生产,应用领域广泛。
本发明的目的及解决其技术问题采用以下的技术方案来实现。依据本发明提出的一种锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料其中所述材料包含氮掺杂且含缺陷的多孔碳和钴(II)团簇,所述氮掺杂且含缺陷的多孔碳为载体,所述钴(II)团簇负载在所述氮掺杂且含缺陷的多孔碳孔道中,所述的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料用作氧还原反应和氧析出反应的双功能催化剂。
前述的锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料,其中,以重量百分数计,所述氮掺杂多孔碳和所述氮化钛的重量比为(85%-95%):(5%-15%)。
前述的锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料,其中所述钴团簇的晶粒尺寸为9.8-14.1nm。
前述的锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料,其中所述多孔碳孔道尺寸为7.1-20.5nm。
前述的锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料,其中所述氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的孔体积为107.8cm 3/g,比表面积为1917m 2/g。
本发明的目的及解决其技术问题还采用以下的技术方案来实现。依据本发明提出的一种制备上述的锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的方法,该方法包括以下步骤:
a.70-90℃下,将碳置于氨气流中吸附水蒸气;
b.将上述步骤a中得到的产物浸入到乙酰丙酮钴/乙酸乙酯饱和溶液中4-8小时,然后过滤收集产物;
c.氨气气氛中,将上述步骤b中得到的产物在一定条件下煅烧,即得氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料。
前述的制备方法,其中所述步骤c中所述煅烧条件为:温度700-900℃,时间:1-3h。
借由上述技术方案,本发明(名称)至少具有下列优点:
(1)本发明的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料是通过钴团簇与氮掺杂且含缺陷的多孔碳在孔道中复合:一方面,钴团簇具有较好的氧还原和氧析出反应活性,而碳材料具有很高导电性,有利于电子的传输;另一方面,通过钴团簇与氮掺杂且含缺陷的多孔碳复合,利用孔道负载的限域效应促进钴纳米颗粒的均匀分布,而材料中的多孔结构有利于增大其表面积,从而增强了钴活性材料的氧还原和氧析出反应活性。
(2)依据本发明提供的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料在锌-空气电池中用作氧还原反应和氧析出反应的双功能催化剂,很大程度上提高了锌-空气电池的稳定性和优良的比容量。
(3)本发明步骤简单,可控,易于实现工业化生产。
综上所述,本发明提供的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料及其制备方法,并提供该材料在锌-空气电池中的应用,从而更加适于实用,且具有产业上的利用价值。其具有上述诸多的优点及实用价值,并在类似产品中未见有类似的设计公开发表或使用而确属创新,其不论在制备方法上或功能上皆有较大的改进,在技 术上有较大的进步,并产生了好用及实用的效果,且较现有的电池用材料具有增进的多项功效,从而更加适于实用,而具有产业的广泛利用价值,诚为一新颖、进步、实用的新设计。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例详细说明如后。
本发明的具体制备方法及其结构由以下实施例详细给出。
附图说明
图1a为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料与对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料以及对比实施例2的KJ-600多孔碳的XRD对比图;图1b为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料与对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料以及对比实施例2的KJ-600多孔碳的拉曼光谱表征图;图1c、1d、1e分别对应于根据本发明的对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料与实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料以及对比实施例2的KJ-600多孔碳的I D/I G的轮廓图;图1f为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料与对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料以及对比实施例2的KJ-600多孔碳的BET测试对比图;图1g为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料与对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料以及对比实施例2的KJ-600多孔碳的孔径分布图;
图2a为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的暗场TEM全局图;图2b为根据本发明实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的选区衍射图;图2c为根据本发明实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的暗场TEM局部高分辨放大图;图2d和2f为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的明场TEM全局图;图2e根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的明场TEM 局部高分辨放大图;图2g、2h和2i为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的图f选择区域中电子能量损失谱碳、钴、氮元素扫描图;
图3a为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料XPS表征的C1s图;图3b为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料XPS表征的N1s图;图3c为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料XPS表征的Co2p图;图3d为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料XAS表征的Co元素图;
图4a为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料与对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料以及对比实施例3制备的Pt/C样品的氧还原活性图;图4b为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料与对比实施例1中制备的氮掺杂碳孔道负载的钴团簇材料以及对比实施例4制备的Ir/C样品的氧析出活性图;图4c为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料与对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料以及对比实施例3制备的Pt/C样品氧还原反应性能的Tafel图;图4d为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料与对比实施例1中制备的氮掺杂碳孔道负载的钴团簇材料以及对比实施例4制备的Ir/C样品的氧析出反应性能的Tafel图;
图5为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料、对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料、对比实施例3制备的Pt/C样品与对比实施例4制备的Ir/C样品混合材料的锌-空气电池性能图;
图6为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料、对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料、对比实施例3制备的Pt/C样品与对比实施例4制备的Ir/C样品混合材料的锌-空气电池稳定性能图;
图7a为根据本发明的实施例2中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的明场TEM全局图;图7b为根据本发明的实施例2中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的暗场TEM局部高分辨放大图;
图8a为根据本发明的实施例3中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的暗场TEM全局图;图8b为根据本发明的实施例2中制备的氮掺杂且含缺陷的多孔碳孔道负载的钴团簇材料的暗场TEM局部高分辨放大图;
图9a为根据本发明的对比实施例1中制备的多孔碳材料的暗场TEM全局图;图9b为其暗场TEM局部高分辨放大图;
图10为根据本发明的对比实施例2中制备的多孔碳材料的TEM图;
图11为根据本发明的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料制得的锌-空气电池。
具体实施方式
下面结合附图和实施例对本发明作进一步的阐述,应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后本领域技术人员可以对本发明做各种改动或修改,这些等价同样落于本申请所附权利要求书所限定的范围。
依据本发明提供的一种锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料,其中所述材料包含氮掺杂且含缺陷的多孔碳和钴(II)团簇,所述氮掺杂且含缺陷的多孔碳为载体,所述钴(II)团簇负载在所述氮掺杂且含缺陷的多孔碳孔道中,所述的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料用作氧还原反应和氧析出反应的双功能催化剂。以下将根据具体实施例详细论述。
实施例1
80℃下,取商业化购得的KJ-600碳(购自阿克苏诺贝尔公司)1g置于氨气流中吸附水蒸气,然后将其浸入到乙酰丙酮钴/乙酸乙酯饱和溶液中6小时,之后进行过滤。氨气气氛下,将所得样品置于 马弗炉中并于800℃下煅烧1小时。TGA分析表明其中氮掺杂多孔碳的质量比为89%。
将上述所得的掺杂且含缺陷的多孔碳孔道负载钴团簇材料作为催化剂,在旋转圆盘电极上进行线性伏安扫描测试,转速为1600rpm,测试所用氧饱和0.1mol/L氢氧化钾溶液,测得的结果如图4所示。
实施例2
按实施例1相同的操作,只是调整氮掺杂多孔碳的质量比,具体为:
80℃下,取商业化购得的KJ-600碳(购自阿克苏诺贝尔公司)1.1g置于氨气流中吸附水蒸气,然后将其浸入到乙酰丙酮钴/乙酸乙酯饱和溶液中6小时,之后进行过滤。氨气气氛下,将所得样品置于马弗炉中并于800℃下煅烧1小时。TGA分析表明其中氮掺杂多孔碳的质量比为95%。
实施例3
按实施例1相同的操作,只是调整氮掺杂多孔碳的质量比,具体为:
80℃下,取商业化购得的KJ-600碳(购自阿克苏诺贝尔公司)0.95g置于氨气流中吸附水蒸气,然后将其浸入到乙酰丙酮钴/乙酸乙酯饱和溶液中6小时,之后进行过滤。氨气气氛下,将所得样品置于马弗炉中并于800℃下煅烧1小时。TGA分析表明其中氮掺杂多孔碳的质量比为85%。
对比实施例1
将商业化购得的KJ-600碳(购自阿克苏诺贝尔公司)1g浸入到乙酰丙酮钴/乙酸乙酯饱和溶液中6小时,之后进行过滤。氨气气氛下,将所得样品置于马弗炉中并在800℃下煅烧1小时。TGA分析表明其中氮掺杂多孔碳的质量比为87%。
对比实施例2
氨气气氛下,取商业化购得的KJ-600碳(购自阿克苏诺贝尔公司)1g置于马弗炉中并在800℃下煅烧1小时。
对比实施例3
将从日本Tanaka Kikinzoku Kogyo公司购得的商品Pt/C样品(46wt%)20.0mg,加入3.6mL乙醇(广州化学试剂厂)及5%Nafion溶液(Dupont公司)0.4mL,超声分散均匀。移取10μL悬浮液滴在玻碳电极(d=5mm)的表面,于45℃下烘干,在表面形成一层均匀分散的催化剂薄膜。干燥后作为工作电极,在三电极体系(饱和Ag/AgCl电极为参比电极,铂丝为对电极,电解液为O 2饱和的0.1mol/L KOH水溶液)中进行电催化氧气还原性能测试。
对比实施例4
将从Premetek公司购得的商品Ir/C样品(20wt%)1.0mg,加入4.0mL乙醇(广州化学试剂厂),1.0mL异丙醇(广州化学试剂厂)及5%Nafion溶液(Dupont公司)25μL,超声分散均匀。移取10μL悬浮液滴在玻碳电极(d=5mm)的表面,于45℃下烘干,在表面形成一层均匀分散的催化剂薄膜。干燥后作为工作电极,在三电极体系(饱和Ag/AgCl电极为参比电极,铂丝为对电极,电解液为N 2饱和的0.1mol/L KOH水溶液)中进行电催化氧气析出性能测试。
附图说明如下:
图1a为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料与对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料以及对比实施例2的KJ-600多孔碳的XRD对比图。从中可以看出实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料中三个新出现的峰为金属钴原子的衍射峰,其结构为立方结构,空间群为Fm3m,表明钴前驱体被还原为钴团簇。该钴团簇的晶粒尺寸大约为12nm。多孔碳尺寸为1.35nm。而对比实施例1中制备的氮掺杂多孔碳孔道负载的钴团簇材料中的钴团簇晶粒尺寸为22.5nm。这些发现表明,对比实施例1制备出的材料为氮掺杂多孔碳与钴团簇的机械混合。
图1b为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料与对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料以及对比实施例2的KJ-600多孔碳的拉曼光谱表征图。氮掺杂且含缺陷的多孔碳孔道负载的钴团簇材料中在1340和 1580cm -1处的峰归因于缺陷的C 6环的振动峰。而实施例1的I D/I G值1.96比对比实施例1的I D/I G值1.50更高,显示前者具有更多的缺陷。
图1c、1d、1e分别对应于根据本发明的对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料与实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料以及对比实施例2的KJ-600多孔碳的I D/I G的轮廓图。图越红亮表明缺陷越少。结果表明实施例1制备出的材料缺陷最多。
图1f为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料与对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料以及对比实施例2的KJ-600多孔碳的BET测试对比图。g为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料与对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料以及对比实施例2的KJ-600多孔碳的孔径分布图。结果表明,对比实施例2的商业KJ多孔碳比表面积为1302m 2/g,其孔体积为4.1cm 3/g。而实施例1制备出的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料比表面积增至1917m 2/g,其孔体积为107.8cm 3/g。
图2a为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的暗场TEM全局图。从图中可以看出白色钴团簇均匀分布在碳中。结合图2g、2h和2i为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的图f选择区域中电子能量损失谱碳、钴、氮元素扫描图,可进一步证明钴团簇的分布均匀性。图2b为根据本发明实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的选区衍射图,表明钴团簇为多晶纳米颗粒。图2c为根据本发明实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的暗场TEM局部高分辨放大图;图2d和f为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的明场TEM全局图;图2e根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的明场TEM局部高分辨放大图。上述结果表明钴团簇负载在碳孔道中。
图3a为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料XPS表征的C1s图,其中在284.6eV,285.6 和288.8eV处分别为C-C,C-N和C-O峰,而C-N键表明氮掺杂在碳晶格中;图3b为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料XPS表征的N1s图,其中398.2eV,399.9eV和401.3eV处分别为吡啶中的氮,吡咯中的氮和季氮;图3c为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料XPS表征的Co2p图,其中803.1eV和785.2eV分别为Co sat,2p1/2和Co sat,2p3/2,而795.9eV为Co 2p1/2,780.5eV为Co 2p3/2。图3d为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料XAS表征的Co元素图,表明在该材料中存在Co-N-C键。
图4a为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料与对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料以及对比实施例3制备的Pt/C样品的氧还原活性图。结果显示氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的起始电压为0.938V,半波电位为0.847V,均明显高于对比实施例1中的起始电压0.925V和半波电位0.816V,同时也优于商业化Pt/C的性能。图4c为上述三种材料氧还原反应性能的Tafel图,其Tafel斜率为57.4mV/dec,高于Pt/C的59.6mV/dec和氮掺杂多孔碳孔道负载钴团簇材料的76.4mV/dec。图4b为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料与对比实施例1中制备的氮掺杂碳孔道负载的钴团簇材料以及对比实施例4制备的Ir/C样品的氧析出活性图。从图中可以看出在10mA/cm 2氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的电位为1.593V,较氮掺杂多孔碳孔道负载钴团簇材料低78mV且比商业化Ir/C低42mV。图4d为上述三种材料氧析出反应性能的Tafel图,其中氮掺杂且含缺陷的多孔碳孔道负载的钴团簇材料的Tafel斜率为70.1mV/dec,均低于氮掺杂多孔碳孔道负载钴团簇材料的84.8mV/dec和商业化Ir/C催化剂的100mV/dec。
图5为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料、对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料、对比实施例3制备的Pt/C样品与对比实施例4制备的Ir/C样品混合材料的锌-空气电池性能图。结果表明,氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料组装的电池能量密度达到 135mW/cm 2,高于氮掺杂多孔碳孔道负载钴团簇材料组装的电池的105mW/cm 2和Pt/C与Ir/C组装电池的110mW/cm 2
图6为根据本发明的实施例1中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料、对比实施例1中制备的氮掺杂碳孔道负载钴团簇材料、对比实施例3制备的Pt/C样品与对比实施例4制备的Ir/C样品混合材料的锌-空气电池稳定性能图。结果显示,氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料组装的电池稳定时间达到250小时,高于氮掺杂多孔碳孔道负载的钴团簇材料组装的电池的150小时和Pt/C与Ir/C组装电池的21小时。
图7a为根据本发明的实施例2中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的明场TEM全局图;图7b为根据本发明的实施例2中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的暗场TEM局部高分辨放大图。从图中可以看出黑色钴团簇颗粒较均匀分布在氮掺杂含缺陷的碳孔道中。
图8a为根据本发明的实施例3中制备的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的暗场TEM全局图;图8b为根据本发明的实施例2中制备的氮掺杂且含缺陷的多孔碳孔道负载的钴团簇材料的暗场TEM局部高分辨放大图。从图中可以看出白色钴团簇颗粒较均匀分布在氮掺杂含缺陷的碳孔道中。
图9a为根据本发明的对比实施例1中制备的多孔碳材料的暗场TEM全局图;图9b为其暗场TEM局部高分辨放大图。从图中可以看出,白色钴团簇相对较均匀地分布在碳孔中。
图10为根据本发明的对比实施例2中制备的多孔碳材料的TEM图。从图中可以看出,煅烧后的多孔碳成功制备出。
综上所述,本发明公开的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料,其中钴团簇具有较好的氧还原和氧析出反应活性,而碳材料具有很高导电性,有利于电子的传输。通过钴团簇与氮掺杂且含缺陷的碳孔复合,利用孔道负载的限域效应促进钴纳米颗粒的均匀分布,从而增强了钴活性材料的氧还原和氧析出反应活性。并且材料中的多孔结构有利于增大其表面积,进而提高锌-空气电池的稳定性。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应该涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (7)

  1. 一种锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料,其中所述材料包含氮掺杂且含缺陷的多孔碳和钴(II)团簇,所述氮掺杂且含缺陷的多孔碳为载体,所述钴(II)团簇负载在所述氮掺杂且含缺陷的多孔碳孔道中,所述的氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料用作氧还原反应和氧析出反应的双功能催化剂。
  2. 根据权利要求1所述的锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料,其中,以重量百分数计,所述氮掺杂多孔碳和所述氮化钛的重量比为(85%-95%):(5%-15%)。
  3. 根据权利要求1所述的锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料,其中所述钴团簇的晶粒尺寸为9.8-14.1nm。
  4. 根据权利要求1所述的锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料,其中所述多孔碳孔道尺寸为7.1-20.5nm。
  5. 根据权利要求1所述的锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料,其中所述氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的孔体积为107.8cm 3/g,比表面积为1917m 2/g。
  6. 一种制备权利要求1-5中任一项所述的锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料的方法,该方法包括以下步骤:
    a.70-90℃下,将碳置于氨气流中吸附水蒸气;
    b.将上述步骤a中得到的产物浸入到乙酰丙酮钴/乙酸乙酯饱和溶液中4-8小时,然后过滤收集产物;
    c.氨气气氛中,将上述步骤b中得到的产物在一定条件下煅烧,即得氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料。
  7. 根据权利要求6所述的制备方法,其中所述步骤c中所述煅烧条件为:温度700-900℃,时间:1-3h。
PCT/CN2019/121139 2019-01-25 2019-11-27 一种锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料及其制备方法 WO2020151360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910071813.2 2019-01-25
CN201910071813.2A CN111490259B (zh) 2019-01-25 2019-01-25 一种锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2020151360A1 true WO2020151360A1 (zh) 2020-07-30

Family

ID=71736360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121139 WO2020151360A1 (zh) 2019-01-25 2019-11-27 一种锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料及其制备方法

Country Status (2)

Country Link
CN (1) CN111490259B (zh)
WO (1) WO2020151360A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115367726A (zh) * 2021-05-19 2022-11-22 北京化工大学 一种氧掺杂氮化钛杂化和氮掺杂的多孔碳材料及其制备方法和应用
CN112018400B (zh) * 2020-08-28 2022-05-31 华中科技大学 富勒烯基Fe、N掺杂富孔碳材料及其制备方法和应用
CN112259903A (zh) * 2020-09-23 2021-01-22 华南师范大学 一种氮掺杂多孔碳负载金属钴材料及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226490A (ja) * 2012-04-24 2013-11-07 Nagoya Univ 金属ナノクスラスター担持カーボン多孔体
CN106669758A (zh) * 2016-12-26 2017-05-17 华东理工大学 一种氮掺杂多孔碳层包覆非贵金属纳米颗粒氧电极双功能催化剂及其制备方法
CN107994236A (zh) * 2017-11-29 2018-05-04 山东旭晟东阳新材料科技有限公司 一种锌空气电池催化剂材料的制备方法
CN108793126A (zh) * 2018-06-05 2018-11-13 华南理工大学 一种缺陷可控的吡啶氮掺杂多孔石墨烯及制备与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670066B2 (en) * 2011-03-15 2017-06-06 University Of Kentucky Research Foundation Carbon particles
CN104518226B (zh) * 2013-09-29 2017-07-18 中国科学院大连化学物理研究所 一种锂·空气或锂氧电池正极用多孔碳材料
CN103551152B (zh) * 2013-10-25 2016-04-20 四川理工学院 一种碳基非贵金属氧还原催化剂
JP2017039630A (ja) * 2015-08-21 2017-02-23 出光興産株式会社 多孔質炭素材料及びその製造方法
CN105645408B (zh) * 2016-03-09 2017-10-13 湘潭大学 一种利用枣核制备氮掺杂多孔碳材料的工艺以及超级电容器电极的制备方法
CN106229519B (zh) * 2016-07-29 2018-12-04 辽宁科技大学 一种利用煤炭制备自掺杂双功能氧反应电催化剂的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226490A (ja) * 2012-04-24 2013-11-07 Nagoya Univ 金属ナノクスラスター担持カーボン多孔体
CN106669758A (zh) * 2016-12-26 2017-05-17 华东理工大学 一种氮掺杂多孔碳层包覆非贵金属纳米颗粒氧电极双功能催化剂及其制备方法
CN107994236A (zh) * 2017-11-29 2018-05-04 山东旭晟东阳新材料科技有限公司 一种锌空气电池催化剂材料的制备方法
CN108793126A (zh) * 2018-06-05 2018-11-13 华南理工大学 一种缺陷可控的吡啶氮掺杂多孔石墨烯及制备与应用

Also Published As

Publication number Publication date
CN111490259A (zh) 2020-08-04
CN111490259B (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
Han et al. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting
Amin et al. A highly efficient bifunctional catalyst for alkaline air-electrodes based on a Ag and Co3O4 hybrid: RRDE and online DEMS insights
Zhang et al. MOF-assisted synthesis of octahedral carbon-supported PtCu nanoalloy catalysts for an efficient hydrogen evolution reaction
Wu et al. Electrocatalytic activity and stability of Ag-MnOx/C composites toward oxygen reduction reaction in alkaline solution
Alegre et al. Bifunctional oxygen electrode based on a perovskite/carbon composite for electrochemical devices
CN108906113A (zh) 一种高负载量的贵金属单原子催化剂及其制备方法和应用
WO2020151360A1 (zh) 一种锌-空气电池用氮掺杂且含缺陷的多孔碳孔道负载钴团簇材料及其制备方法
CN107749483B (zh) 一种用于氢空燃料电池阴极材料的催化剂及其制备方法
KR20140039147A (ko) 금속 공기 배터리/연료 전지용 코어-쉘 구조의 이작용성 촉매
CN111509242A (zh) 燃料电池用电极催化剂、及使催化剂活化的方法
Ai et al. Robust interfacial Ru-RuO2 heterostructures for highly efficient and ultrastable oxygen evolution reaction and overall water splitting in acidic media
WO2018179006A1 (en) Palladium based selenides as highly stable and durable cathode materials in fuel cell for green energy production
Zhang et al. Hollow waxberry-like cobalt–nickel oxide/S, N-codoped carbon nanospheres as a trifunctional electrocatalyst for OER, ORR, and HER
JP2017208204A (ja) 電池電極、電池電極触媒層用組成物及び電池
JP6757933B2 (ja) 白金担持体とそれを用いた酸素還元触媒およびその製造方法ならびに燃料電池、金属空気電池
CN112002915B (zh) 一种氧电极双功能催化剂、制备方法及应用
EP3867966A1 (en) Carbon nanomaterial for use as a catalyst
Li et al. Boron monosulfide as an electrocatalyst for the oxygen evolution reaction
Hu et al. Engineering cobalt nitride nanosheet arrays with rich nitrogen defects as a bifunctional robust oxygen electrocatalyst in rechargeable Zn–air batteries
CN115704097A (zh) 一种m1m2-载体结构的双原子催化剂的制备方法及用途
Sun et al. Pd–Ru/C as the electrocatalyst for hydrogen peroxide reduction
Dong et al. Scalable solid-phase synthesis of defect-rich graphene for oxygen reduction electrocatalysis
Liu et al. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over nitrogen-doped carbon encapsulating CoNi nanoparticles
Zhuang et al. Perovskite La0. 5Ca0. 5CoO3-δ nanocrystals on graphene as a synergistic catalyst for rechargeable zinc-air batteries
CN114068950B (zh) 基于多孔碳支撑的超细亚纳米金复合材料电催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911732

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19911732

Country of ref document: EP

Kind code of ref document: A1