WO2020151276A1 - 加工聚苯乙烯、石墨烯纳米复合微结构阵列的方法与装置 - Google Patents

加工聚苯乙烯、石墨烯纳米复合微结构阵列的方法与装置 Download PDF

Info

Publication number
WO2020151276A1
WO2020151276A1 PCT/CN2019/113344 CN2019113344W WO2020151276A1 WO 2020151276 A1 WO2020151276 A1 WO 2020151276A1 CN 2019113344 W CN2019113344 W CN 2019113344W WO 2020151276 A1 WO2020151276 A1 WO 2020151276A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
vacuum
polystyrene
vacuum chamber
protective gas
Prior art date
Application number
PCT/CN2019/113344
Other languages
English (en)
French (fr)
Inventor
陈云
龙俊宇
周双
陈新
高健
刘强
汪正平
张胜辉
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Priority to US16/717,331 priority Critical patent/US10850304B2/en
Publication of WO2020151276A1 publication Critical patent/WO2020151276A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene

Definitions

  • the invention relates to the field of ultraviolet laser processing, in particular to a method and device for processing polystyrene and graphene nano-composite microstructure arrays.
  • Graphene has a variety of excellent and atypical properties, including high surface area, high carrier mobility, thermal conductivity, high transmittance, excellent mechanical properties, good chemical stability and biocompatibility, making graphene It has broad application prospects in the fields of microelectronics, energy storage, flexible displays, transparent conductive electrodes, composite materials and bionic devices.
  • the dispersibility is mainly improved by improving the preparation technology and preparation process of composite materials; or by functional modification of graphene to improve the dispersibility.
  • the methods developed mainly include: solution intercalation method, microsphere covering reduction method, in-situ emulsion polymerization method, Pickering emulsion polymerization method, click chemistry method, ATRP method, etc.
  • these methods have many steps, complicated operations, low production efficiency, and difficult quality control.
  • azobisisobutamidine hydrochloride (AIBA) used in this solution is a highly toxic reagent, and graphene cannot be directly coated on polystyrene microspheres.
  • the graphene oxide needs to be reduced. There are many steps, The production efficiency is low and the cost is high.
  • Chinese patent CN102344700A provides a method for preparing graphene/polystyrene conductive composites: firstly prepare graphene oxide, then prepare cationic polystyrene microspheres by dispersion polymerization, then mix the two, add hydrazine hydrate for reduction .
  • the graphene-polystyrene composite material prepared by the preparation method is not tightly bonded, and the graphene is unevenly distributed on the surface of the polystyrene matrix.
  • Chinese patent CN106220774A proposed a method for preparing polystyrene and graphene nanocomposites: by combining liquid dimethylamine (DMA) dispersion aid with graphene nano The flake powder is mixed, and the graphene nano flake dispersant is obtained through ultrasonic treatment. Other processing steps are similar to the above-mentioned Chinese patent CN102344700A.
  • the above two methods are methods of reducing graphene oxide using hydrazine hydrate to obtain graphene coated with polystyrene microspheres.
  • hydrazine hydrate is a highly toxic reagent; and the entire process requires the graphene to undergo multiple oxidation-reduction processes, resulting in low production efficiency, long reaction time, and high cost.
  • the purpose of the present invention is to provide a processing polystyrene, graphene nanocomposite microstructure array device.
  • Processing polystyrene, graphene nanocomposite microstructure array device including laser generator, vacuum cavity, stage, ultraviolet filter and gas flow control unit;
  • the stage is detachably installed at the bottom of the vacuum chamber, and the vacuum chamber has open and closed channels;
  • the ultraviolet filter is installed in the vacuum cavity, and the laser generator emits laser light through the ultraviolet filter to irradiate a stage in the vacuum cavity, and the stage is used to place the object to be processed;
  • the gas flow control unit is connected to the vacuum chamber, and the gas flow control unit is used to control the gas entering the vacuum chamber;
  • the vacuum chamber is fixedly installed on a three-axis precision motion platform through a vacuum chamber clamp.
  • the gas flow control unit includes a gas flow meter and a flow controller
  • One end of the flow controller is connected to the vacuum chamber, and the other end is connected to a gas source, and the gas flow meter is connected to the pipeline between the flow controller and the gas source;
  • It also includes a vacuum pressure gauge and a vacuum pump, where the vacuum pressure gauge is installed and connected to the vacuum chamber, and the vacuum pump is connected to the interface of the vacuum chamber through a connecting pipe to exhaust gas in the chamber.
  • the connecting pipe is a 304 stainless steel KF16 vacuum bellows.
  • the maximum range of the gas flow meter is 300 mL/min; the vacuum pump function raises the vacuum degree in the vacuum chamber to above 0.1 KPa.
  • the purpose of the present invention is also to provide a method for processing polystyrene and graphene nanocomposite microstructure arrays, which includes the following steps:
  • step 2 Put the silicon wafer with polystyrene microspheres in step 2) to dry in a vacuum drying oven, set the working parameters as vacuum degree of 0.1KPa, temperature of 60°C, and drying time of 1 hour to complete sample preparation , So that the ethanol solution volatilizes, and the polystyrene microspheres form a compact monolayer structure;
  • step 4 Put the dried sample in step 3) on the stage in the vacuum chamber of the laser processing system, and lock the vacuum chamber to prevent external air from entering the vacuum chamber;
  • the beneficial effects of the present invention 1.
  • the polystyrene microspheres are processed efficiently by laser to reconstruct the atoms on the surface and generate graphene. Therefore, the laser generator and vacuum cavity are used in the structure of the solution.
  • this solution fixes the vacuum chamber to a three-axis precision motion platform, so that the platform drives the vacuum chamber and the objects fixed in the vacuum chamber to move; 2.
  • the purpose of setting the gas flow unit in this solution is to accurately control the gas delivery volume, and the setting of the vacuum pump and vacuum pressure gauge is to accurately set the vacuum environment, in general, to improve the quality and yield of the product.
  • Fig. 1 is a schematic diagram of a processing flow of an embodiment of the present invention
  • Figure 2 is a schematic diagram of a processing device according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of laser processing nano-level patterns according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of converting a polystyrene surface layer into graphene according to an embodiment of the present invention
  • Fig. 5 is an overall schematic diagram of a processing device according to an embodiment of the present invention.
  • laser generator 1 incident laser beam 2, ultraviolet filter 3, vacuum chamber 4, gas flow control unit 5, vacuum chamber fixture 6, vacuum pressure gauge 7, silicon wafer coated with polystyrene microspheres 8, Stage 9, three-axis precision motion platform 10, vacuum pump 11, polystyrene microsphere 12, graphene/polystyrene microsphere composite material 14.
  • the stage is detachably installed at the bottom of the vacuum chamber 4, and the vacuum chamber 4 has open and closed channels;
  • the ultraviolet filter 3 is installed in the vacuum cavity 4, and the laser generator 1 emits laser light through the ultraviolet filter 3 to irradiate the stage located in the vacuum cavity 4, and the stage is used to place the to-be-processed Thing
  • the gas flow control unit 5 is connected to the vacuum chamber 4, and the gas flow control unit 5 is used to control the gas entering the vacuum chamber 4;
  • the vacuum chamber 4 is fixedly installed on the three-axis precision motion platform 10 through a vacuum chamber clamp 6.
  • the polystyrene microspheres 12 are processed efficiently by laser to reconstruct the atoms on the surface and generate graphene. Therefore, the laser generator 1 and the vacuum cavity 4 are used in the structure of this solution. In addition, in order to achieve the Various patterns are processed on the surface of the processed medium to form various microstructure arrays.
  • the vacuum chamber 4 is fixed to the three-axis precision motion platform 10 so that the platform drives the vacuum chamber 4 and the objects fixed in the vacuum chamber 4 to move.
  • the gas flow control unit 5 includes a gas flow meter and a flow controller
  • One end of the flow controller is connected to the vacuum chamber 4, and the other end is connected to a gas source, and the gas flow meter is connected to the pipeline between the flow controller and the gas source;
  • the vacuum pressure gauge 7 is installed and connected to the vacuum chamber 4, and the vacuum pump 11 is connected to the interface of the vacuum chamber 4 through a connecting pipe to remove gas from the chamber.
  • the purpose of setting the gas flow unit in this solution is to accurately control the gas delivery volume, and the setting of the vacuum pump 11 and the vacuum pressure gauge 7 is to accurately set the vacuum environment, generally to improve product quality and yield.
  • the connecting pipe is a 304 stainless steel KF16 vacuum bellows.
  • the vacuum bellows is easy to bend and not easily deformed. It is more efficient when creating a vacuum environment and is more convenient in loading and unloading.
  • the maximum range of the gas flow meter is 300 mL/min; the vacuum pump function raises the vacuum in the vacuum chamber 4 to above 0.1 KPa.
  • the method for processing polystyrene and graphene nanocomposite microstructure array devices includes the following steps:
  • step 2 Put the silicon wafer with polystyrene microspheres in step 2) to dry in a vacuum drying oven, set the working parameters as vacuum degree of 0.1KPa, temperature of 60°C, and drying time of 1 hour to complete sample preparation ;
  • step 4 Put the dried sample in step 3) on the stage in the vacuum chamber of the laser processing system, and lock the vacuum chamber;
  • the distance between the surface of the silicon wafer 8 coated with styrene microspheres, start the laser generator 1 to start processing, and the distance between the laser focus and the surface of the silicon wafer 8 coated with polystyrene microspheres ranges from 3mm to 5mm;
  • the polystyrene microspheres are processed efficiently by laser to reconstruct the atoms on the surface and generate graphene.
  • the formed graphene can be firmly attached to the surface of the polystyrene microspheres, greatly improving the polystyrene and graphite The bonding strength of olefin composites.
  • Various patterns can be quickly processed by laser to form various microstructure arrays. The processing method is simple and fast, has high production efficiency, and has great application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

加工聚苯乙烯、石墨烯纳米复合微结构阵列装置,包括激光发生器、真空腔、载物台、紫外滤光镜和气体流量控制单元;载物台以可拆卸固定的方式安装于真空腔内的底部,真空腔具有开启和密闭的通道;紫外滤光镜安装于真空腔,激光发生器发射激光透过紫外滤光镜照射到位于真空腔中的载物台,载物台用于放置待加工物;气体流量控制单元连通于真空腔,气体流量控制单元用于控制进入到真空腔中的气体;真空腔通过真空腔夹具固定安装于三轴精密运动平台。针对当前难以加工聚苯乙烯、石墨烯纳米复合材料微结构阵列的问题,本发明的目的在于提出一种加工聚苯乙烯、石墨烯纳米复合微结构阵列装置。

Description

加工聚苯乙烯、石墨烯纳米复合微结构阵列的方法与装置 技术领域
本发明涉及紫外激光加工领域,特别是一种加工聚苯乙烯、石墨烯纳米复合微结构阵列的方法与装置。
背景技术
石墨烯具有多种优异和非典型特性,包括高表面积、高载流子迁移率、导热系数、高透过率、优异的机械力学性能、良好的化学稳定性和生物相容性,使得石墨烯在微电子学、储能、柔性显示器、透明导电电极、复合材料和仿生设备等领域具有广泛的应用前景。
为了使石墨烯的优异性能得到充分的利用,将其与基底材料进行复合,制备出复合材料是最有效的方法之一。近年来,大量研究报道了将石墨烯与聚合物复合、从而制备出高性能导电聚合物基底复合材料。然而,由于石墨烯特有的小尺寸效应、表面效应和自身极强的范德华作用力,使其极易在聚合物基体内部发生团聚,导致分布不均匀;另一方面,石墨烯表面具有较强的疏水性和化学惰性,导致与聚合物基底的相容性差,明显降低了复合材料界面的结合强度。这不仅限制了石墨烯优异性能的发挥,还会降低聚合物基底的性能。因此,如何改善石墨烯与聚合物基底之间的结合力是当前制备高性能聚合物/石墨烯纳米复合材料的瓶颈。
目前主要通过改善复合材料的制备技术和制备工艺来改善分散性;或者通过对石墨烯进行功能化的改性,以改善分散性。所发展的方法主要包括:溶液插层法、微球覆盖还原法、原位乳液聚合法、Pickering乳液聚合法、点击化学法、ATRP法等。但是,这些方法步骤繁多,操作复杂,生产效率低,质量难以控制。如《塑料工业》第46卷第4期论文“石墨烯/聚苯乙烯导热复合材料的制备”提出:以偶氮二异丁脒盐酸盐(AIBA)为引发剂,采用分散聚合的方法,合成表面带正电荷、粒径在600nm的聚苯乙烯(PS)微球,然后通过自组装的办法将氧化石墨烯包覆与PS微 球表面;再用化学还原法将氧化石墨烯还原为石墨烯,从而获得石墨烯包覆聚苯乙烯微球的复合材料。该方案中使用的偶氮二异丁脒盐酸盐(AIBA)为高毒试剂,且并不能将石墨烯直接包覆在聚苯乙烯微球上,需要对氧化石墨烯进行还原,步骤繁多、生产效率低、成本较高。中国专利CN102344700A提供了一种制备石墨烯/聚苯乙烯导电复合材料的方法:首先制备氧化石墨烯,然后通过分散聚合制备阳离子聚苯乙烯微球,再将上述两者混合,加入水合肼进行还原。其制备得到的石墨烯聚苯乙烯复合材料结合面不紧密,石墨烯在聚苯乙烯基体表面分布不均匀。而中国专利CN106220774A为在解决残留溶剂和分散不均的问题,提出了一种制备聚苯乙烯、石墨烯纳米复合材料的方法:通过将液态二甲胺(DMA)分散助剂、与石墨烯纳米片粉体混合,并经超声处理获得石墨烯纳米片分散剂。其他处理步骤与上述中国专利CN102344700A相近。上述两种方法都是使用了水合肼还原氧化石墨烯的方法,从而得到包覆聚苯乙烯微球的石墨烯。但是,水合肼属于高毒试剂;且整个过程需要将石墨烯历经氧化-还原多个过程,导致生产效率低、反应时间长、成本高。
综上,亟需发展一种高效低廉的加工聚苯乙烯、石墨烯纳米复合材料微结构阵列的新方法与装置。
发明内容
针对上述缺陷,本发明的目的在于提出一种加工聚苯乙烯、石墨烯纳米复合微结构阵列装置。
加工聚苯乙烯、石墨烯纳米复合微结构阵列装置,包括激光发生器、真空腔、载物台、紫外滤光镜和气体流量控制单元;
所述载物台以可拆卸固定的方式安装于所述真空腔内的底部,所述真空腔具有开启和密闭的通道;
所述紫外滤光镜安装于所述真空腔,激光发生器发射激光透过紫外滤光镜照射到位于真空腔中的载物台,所述载物台用于放置待加工物;
所述气体流量控制单元连通于所述真空腔,所述气体流量控制单元用于控制进入到真空腔中的气体;
所述真空腔通过真空腔夹具固定安装于三轴精密运动平台。
较佳地,所述气体流量控制单元包括气体流量计和流量控制器;
所述流量控制器一端与真空腔相连,另一端与气源相连,所述气体流量计连通于所述流量控制器与气源之间的管路;
还包括真空压力表和真空泵,所述真空压力表安装并连通于所述真空腔,所述真空泵通过连接管与真空腔的接口相连,将腔体内气体排除。
较佳地,所述连接管为304不锈钢KF16真空波纹管。
较佳地,所述气体流量计最大量程为300mL/min;所述真空泵功能将真空腔内的真空度升到0.1KPa以上。
本发明目的还在于提出一种加工聚苯乙烯、石墨烯纳米复合微结构阵列的方法,包括以下步骤:
1、配置聚苯乙烯微球溶液,将聚苯乙烯微球粉末与无水乙醇按照1:1混合,然后在磁力搅拌器中搅拌10min,使得聚苯乙烯微球粉末均匀地分散在无水乙醇中;
2、选取大小为2cm×2cm的硅片,放置在旋涂机的工作台上,用移液器去上述步骤1)配置好聚苯乙烯微球乙醇溶液滴在硅片上,设置工作参数为低速转400转/分钟、高速转1000转/分钟,旋涂时间为50秒,使得聚苯乙烯微球乙醇溶液在硅片上均匀铺展;
3、将步骤2)处理后带聚苯乙烯微球的硅片放入真空干燥箱中干燥,设置工作参数为真空度为0.1KPa、温度为60℃、干燥时间为1小时,完成样品的准备,使得乙醇溶液挥发,聚苯乙烯微球形成紧凑单层结构;
4、将步骤3)干燥后的样品放入激光加工系统真空腔中的载物台上,并锁紧真空腔,防止外部气体进入真空腔内;
5、计算机软件控制界面上操作,移动运动平台,将待加工位置定位到激光发生器正下方,此时,紫外滤光镜位于激光发生器正下方,紫外滤光镜仅允许紫外光透过而其他波段的光线不能通过,从而保证样品在加工过程中不会被其他波段的光线损伤;
6、打开真空泵,将真空度降低至0.1KPa,并保持真空泵开启时间大于1min,从而尽可能地降低真空腔内的氧气含量,避免在加工过程中样品因受热而燃烧;
7、打开保护气开关,并通过调节保护气节流阀,使得通入保护气的流量保持在300mL/min,保持真空泵开启且持续大于3min;此时真空泵仍然保持开启,通入的氮气将真空腔内残留的氧气等除去,防止加工过程中生成的游离碳、石墨烯等被氧化,这个过程持续3min,从而通过保护气排出真空腔内残留的氧气,避免在加工过程中样品因受热而燃烧。
8、关闭真空泵,此时仍然保持通入保护气,直至真空度为100KPa后关闭,使真空腔4中充满氮气,进一步稀释真空腔4中残余氮气,保护气开关,保证真空腔能形成一定压强的保护气氛围,防止后续外部空气突然涌入造成样品移动并损坏;
9、重复操作步骤吸气、放气过程三次,排除墙体内残留的气体,防止激光加工过程中,其他气体对加工的影响;
10、打开真空泵,打开保护气开关,并通过调节保护气节流阀,使得通入保护气的流量保持在300mL/min,此时真空泵和保护气同时保持开启,真空度维持在0.1KPa,保证真空腔内能够维持较为稳定的保护气氛围,直至加工结束;
11、绘制由线条阵列组成的加工图案,图案中线条间隔为0.03mm-0.05mm;
12、将激光发生器1参数设置为打标次数为1、打标速度为100mm/s、分离器数为1个、功率百分比为40%、校准功率为1.8W,然后调整激光焦点到带聚苯乙烯微球涂层的硅片8表面的距离,启动激光发生器1开始加工,激光焦点与带聚苯乙烯微球涂层的硅片8表面的距离范围为3mm-5mm,避免焦点过于接近样品从而导 致能量太高而损坏样品,也避免过于远离样品从而导致能量过低而无法将聚苯乙烯小球表面转化为石墨烯;
13、加工完成后,控制精三轴精密运动平台10到下料点,打开真空腔4,取出表面有石墨烯/聚苯乙烯微球复合材料14微结构阵列的成品。
本发明的有益效果:1、通过激光高效地加工聚苯乙烯微球,使其表面的原子发生重构并生成石墨烯,所以本方案在结构部分就要使用到激光发生器和真空腔,此外,为了实现能在被加工介质的表面加工出各种图案,形成各种微结构阵列,本方案将真空腔固定三轴精密运动平台,使平台带动真空腔和固定于真空腔中的物体运动;2、本方案中设置气体流量单元的目的是能够精确控制气体的输送量,设置真空泵和真空压力表则是为了精确的设置真空环境,总的来说是为了提高产品的品质和出良率。
附图说明
图1是本发明的一个实施例的加工流程示意图;
图2是本发明的一个实施例的加工装置示意图;
图3是本发明的一个实施例的激光加工纳米级图案示意图;
图4是本发明的一个实施例的聚苯乙烯表层转化为石墨烯示意图;
图5是本发明的一个实施例的加工装置整体示意图。
附图标记
其中:激光发生器1,入射激光束2,紫外滤光镜3,真空腔4,气体流量控制单元5,真空腔夹具6,真空压力表7,涂有聚苯乙烯微球的硅片8,载物台9,三轴精密运动平台10、真空泵11、聚苯乙烯微球12、石墨烯/聚苯乙烯微球复合材料14。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
如图1-5所示,1、加工聚苯乙烯、石墨烯纳米复合微结构阵列装置,包括激光发生器1、真空腔4、载物台、紫外滤光镜3和气体流量控制单元5;
所述载物台以可拆卸固定的方式安装于所述真空腔4内的底部,所述真空腔4具有开启和密闭的通道;
所述紫外滤光镜3安装于所述真空腔4,激光发生器1发射激光透过紫外滤光镜3照射到位于真空腔4中的载物台,所述载物台用于放置待加工物;
所述气体流量控制单元5连通于所述真空腔4,所述气体流量控制单元5用于控制进入到真空腔4中的气体;
所述真空腔4通过真空腔夹具6固定安装于三轴精密运动平台10。
通过激光高效地加工聚苯乙烯微球12,使其表面的原子发生重构并生成石墨烯,所以本方案在结构部分就要使用到激光发生器1和真空腔4,此外,为了实现能在被加工介质的表面加工出各种图案,形成各种微结构阵列,本方案将真空腔4固定三轴精密运动平台10,使平台带动真空腔4和固定于真空腔4中的物体运动。
其中,所述气体流量控制单元5包括气体流量计和流量控制器;
所述流量控制器一端与真空腔4相连,另一端与气源相连,所述气体流量计连通于所述流量控制器与气源之间的管路;
还包括真空压力表7和真空泵11,所述真空压力表7安装并连通于所述真空腔4,所述真空泵11通过连接管与真空腔4的接口相连,将腔体内气体排除。
本方案中设置气体流量单元的目的是能够精确控制气体的输送量,设置真空泵11和真空压力表7则是为了精确的设置真空环境,总的来说是为了提高产品的品质和出良率。
其中,所述连接管为304不锈钢KF16真空波纹管。
真空波纹管弯折方便,不易变形,在创造真空环境时,效率较高,在装卸方面 也比较方便。
此外,所述气体流量计最大量程为300mL/min;所述真空泵功能将真空腔4内的真空度升到0.1KPa以上。
加工聚苯乙烯、石墨烯纳米复合微结构阵列装置的方法,包括以下步骤:
1、配置聚苯乙烯微球溶液,将聚苯乙烯微球粉末与无水乙醇按照1:1混合,然后在磁力搅拌器中搅拌10min;
2、选取大小为2cm×2cm的硅片,放置在旋涂机的工作台上,用移液器去上述步骤1)配置好聚苯乙烯微球乙醇溶液滴在硅片上,设置工作参数为低速转400转/分钟、高速转1000转/分钟,旋涂时间为50秒;
3、将步骤2)处理后带聚苯乙烯微球的硅片放入真空干燥箱中干燥,设置工作参数为真空度为0.1KPa、温度为60℃、干燥时间为1小时,完成样品的准备;
4、将步骤3)干燥后的样品放入激光加工系统真空腔中的载物台上,并锁紧真空腔;
5、计算机软件控制界面上操作,移动运动平台,将待加工位置定位到激光发生器正下方,此时,紫外滤光镜位于激光发生器正下方;
6、打开真空泵,将真空度降低至0.1KPa,并保持真空泵开启时间大于1min;
7、打开保护气开关,并通过调节保护气节流阀,使得通入保护气的流量保持在300mL/min,保持真空泵开启且持续大于3min;此时真空泵仍然保持开启,通入的氮气将真空腔内残留的氧气等除去,防止加工过程中生成的游离碳、石墨烯等被氧化,这个过程持续3min。
8、关闭真空泵,此时仍然保持通入保护气,直至真空度为100KPa后关闭,使真空腔4中充满氮气,进一步稀释真空腔4中残余氮气,保护气开关;
9、重复操作步骤吸气、放气过程三次,排除墙体内残留的气体,防止激光加工过程中,其他气体对加工的影响;
10、打开真空泵,打开保护气开关,并通过调节保护气节流阀,使得通入保护气的流量保持在300mL/min,此时真空泵和保护气同时保持开启,真空度维持在0.1KPa,直至加工结束;
11、绘制由线条阵列组成的加工图案,图案中线条间隔为0.03mm-0.05mm;
12、将激光发生器1参数设置为打标次数为1、打标速度为100mm/s、分离器数为1个、功率百分比为40%、校准功率为1.8W,然后调整激光焦点到带聚苯乙烯微球涂层的硅片8表面的距离,启动激光发生器1开始加工,激光焦点与带聚苯乙烯微球涂层的硅片8表面的距离范围为3mm-5mm;
13、加工完成后,控制精三轴精密运动平台10到下料点,打开真空腔4,取出表面有石墨烯/聚苯乙烯微球复合材料14微结构阵列的成品。
通过激光高效地加工聚苯乙烯微球,使其表面的原子发生重构并生成石墨烯,形成的石墨烯能够牢牢地附着在聚苯乙烯微球的表面,大大提高了聚苯乙烯、石墨烯复合材料的结合强度。并可通过激光快速的加工出各种图案,形成各种微结构阵列,该加工方法简便快捷,生产效率高,具有极大的应用前景。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (1)

  1. 加工聚苯乙烯、石墨烯纳米复合微结构阵列装置的方法,其特征在于,包括以下步骤:
    步骤1、配置聚苯乙烯微球溶液,将聚苯乙烯微球粉末与无水乙醇按照1:1混合,然后在磁力搅拌器中搅拌10min,使得聚苯乙烯微球粉末均匀地分散在无水乙醇中;
    步骤2、选取大小为2cm×2cm的硅片,放置在旋涂机的工作台上,用移液器将上述步骤1)配置好聚苯乙烯微球乙醇溶液滴在硅片上,设置工作参数为低速转400转/分钟、高速转1000转/分钟,旋涂时间为50秒,使得聚苯乙烯微球乙醇溶液在硅片上均匀铺展;
    步骤3、将步骤2)处理后带聚苯乙烯微球的硅片放入真空干燥箱中干燥,设置工作参数为真空度为0.1KPa、温度为60℃、干燥时间为1小时,完成样品的准备,使得乙醇溶液挥发,聚苯乙烯微球形成紧凑单层结构;
    步骤4、将步骤3)干燥后的样品放入激光加工系统真空腔中的载物台上,并锁紧真空腔,防止外部气体进入真空腔内;
    步骤5、计算机软件控制界面上操作,移动运动平台,将待加工位置定位到激光发生器正下方,此时,紫外滤光镜位于激光发生器正下方,紫外滤光镜仅允许紫外光透过而其他波段的光线不能通过,从而保证样品在加工过程中不会被其他波段的光线损伤;
    步骤6、打开真空泵,将真空度降低至0.1KPa,并保持真空泵开启时间大于1min,从而尽可能地降低真空腔内的氧气含量,避免在加工过程中样品因受热而燃烧;
    步骤7、打开保护气开关,并通过调节保护气节流阀,使得通入保护气的流量保持在300mL/min,保持真空泵开启且持续大于3min;此时真空泵仍然保持开启,通入的氮气将真空腔内残留的氧气除去,防止加工过程中生成的游离碳、石墨烯被氧化,这个过程持续3min,从而通过保护气排出真空腔内残留的氧气,避免在加工过程中样品因受热而燃烧;
    步骤8、关闭真空泵,此时仍然保持通入保护气,直至真空度为100KPa后关 闭,使真空腔中充满氮气,进一步稀释真空腔中残余氮气,保护气开关,保证真空腔能形成一定压强的保护气氛围,防止后续外部空气突然涌入造成样品移动并损坏;
    步骤9、重复操作步骤吸气、放气过程三次,排除墙体内残留的气体,防止激光加工过程中,其他气体对加工的影响;
    步骤10、打开真空泵,打开保护气开关,并通过调节保护气节流阀,使得通入保护气的流量保持在300mL/min,此时真空泵和保护气同时保持开启,真空度维持在0.1KPa,保证真空腔内能够维持较为稳定的保护气氛围,直至加工结束;
    步骤11、绘制由线条阵列组成的加工图案,图案中线条间隔为0.03mm-0.05mm;
    步骤12、调节激光发生器参数,将激光焦点调节到距离加工位置合适的位置,避免焦点过于接近样品从而导致能量太高而损坏样品,也避免过于远离样品从而导致能量过低而无法将聚苯乙烯小球表面转化为石墨烯,并按照预定设计的图案开始加工;
    步骤13、加工完成后,控制精三轴精密运动平台到下料点,打开真空腔,取出表面有石墨烯/聚苯乙烯微球复合材料微结构阵列的成品。
PCT/CN2019/113344 2019-01-21 2019-10-25 加工聚苯乙烯、石墨烯纳米复合微结构阵列的方法与装置 WO2020151276A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/717,331 US10850304B2 (en) 2019-01-21 2019-12-17 Method and device for processing microstructure arrays of polystyrene-graphene nanocomposites

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910054318.0 2019-01-21
CN201910054318.0A CN109762194B (zh) 2019-01-21 2019-01-21 加工聚苯乙烯、石墨烯纳米复合微结构阵列的方法与装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/717,331 Continuation US10850304B2 (en) 2019-01-21 2019-12-17 Method and device for processing microstructure arrays of polystyrene-graphene nanocomposites

Publications (1)

Publication Number Publication Date
WO2020151276A1 true WO2020151276A1 (zh) 2020-07-30

Family

ID=66454880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113344 WO2020151276A1 (zh) 2019-01-21 2019-10-25 加工聚苯乙烯、石墨烯纳米复合微结构阵列的方法与装置

Country Status (2)

Country Link
CN (1) CN109762194B (zh)
WO (1) WO2020151276A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762194B (zh) * 2019-01-21 2019-08-13 广东工业大学 加工聚苯乙烯、石墨烯纳米复合微结构阵列的方法与装置
CN111958102B (zh) * 2020-07-06 2022-10-28 北京华卓精科科技股份有限公司 一种运动式的激光加工环境控制腔室系统
CN114985378A (zh) * 2022-06-09 2022-09-02 安图实验仪器(郑州)有限公司 一种质谱仪中离子源极板的清洗装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011112598A1 (en) * 2010-03-08 2011-09-15 William Marsh Rice University Growth of graphene films from non-gaseous carbon sources
CN102583338A (zh) * 2012-01-20 2012-07-18 中国科学院上海硅酸盐研究所 高质量石墨烯粉末及其制备方法
CN104140092A (zh) * 2013-05-09 2014-11-12 国家纳米科学中心 一种具有褶皱的石墨烯片层及其制备方法
CN106232520A (zh) * 2014-02-17 2016-12-14 威廉马歇莱思大学 激光诱导的石墨烯材料和它们在电子装置中的用途
CN106868471A (zh) * 2017-03-17 2017-06-20 厦门大学 一种双光束快速制备石墨烯图形的方法及装置
CN106947956A (zh) * 2017-03-17 2017-07-14 厦门大学 一种层数可控的石墨烯微纳结构快速制备装置
CN107215857A (zh) * 2017-07-12 2017-09-29 福州大学 一种在大气环境下利用激光快速制备石墨烯的方法
WO2018085789A1 (en) * 2016-11-06 2018-05-11 William Marsh Rice University Methods of fabricating laser-induced graphene and compositions thereof
CN109573990A (zh) * 2019-01-21 2019-04-05 广东工业大学 一种通过紫外激光快速制备图案化掺杂石墨烯的方法
CN109762194A (zh) * 2019-01-21 2019-05-17 广东工业大学 加工聚苯乙烯、石墨烯纳米复合微结构阵列的方法与装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3102538B1 (en) * 2014-02-04 2020-10-07 National University of Singapore Method of pulsed laser-based large area graphene synthesis on metallic and crystalline substrates
CN106057644A (zh) * 2016-06-07 2016-10-26 中国船舶重工集团公司第七二五研究所 一种激光在非金属表面直写石墨烯图案的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011112598A1 (en) * 2010-03-08 2011-09-15 William Marsh Rice University Growth of graphene films from non-gaseous carbon sources
CN102583338A (zh) * 2012-01-20 2012-07-18 中国科学院上海硅酸盐研究所 高质量石墨烯粉末及其制备方法
CN104140092A (zh) * 2013-05-09 2014-11-12 国家纳米科学中心 一种具有褶皱的石墨烯片层及其制备方法
CN106232520A (zh) * 2014-02-17 2016-12-14 威廉马歇莱思大学 激光诱导的石墨烯材料和它们在电子装置中的用途
WO2018085789A1 (en) * 2016-11-06 2018-05-11 William Marsh Rice University Methods of fabricating laser-induced graphene and compositions thereof
CN106868471A (zh) * 2017-03-17 2017-06-20 厦门大学 一种双光束快速制备石墨烯图形的方法及装置
CN106947956A (zh) * 2017-03-17 2017-07-14 厦门大学 一种层数可控的石墨烯微纳结构快速制备装置
CN107215857A (zh) * 2017-07-12 2017-09-29 福州大学 一种在大气环境下利用激光快速制备石墨烯的方法
CN109573990A (zh) * 2019-01-21 2019-04-05 广东工业大学 一种通过紫外激光快速制备图案化掺杂石墨烯的方法
CN109762194A (zh) * 2019-01-21 2019-05-17 广东工业大学 加工聚苯乙烯、石墨烯纳米复合微结构阵列的方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TONG LI, ZHOU CHUNLIN, JIANG MING: "UV absorption spectra of polystyrene", POLYMER BULLETIN, vol. 25, no. 2, 28 February 1991 (1991-02-28), pages 211 - 216, XP055723577, ISSN: 0170-0839, DOI: 10.1007/BF00310794 *

Also Published As

Publication number Publication date
CN109762194A (zh) 2019-05-17
CN109762194B (zh) 2019-08-13

Similar Documents

Publication Publication Date Title
WO2020151276A1 (zh) 加工聚苯乙烯、石墨烯纳米复合微结构阵列的方法与装置
CN101338447B (zh) 自组装光子晶体的方法
KR101765585B1 (ko) 세라믹 하이브리드 코팅막, 세라믹 하이브리드 다층 코팅막, 및 이의 제조 방법, 그리고 이를 포함하는 자동차 헤드램프
CN103050640B (zh) 一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法
KR102207095B1 (ko) 열적으로 경화가능한 코팅 시스템
CN102755950A (zh) 制备石墨烯涂层的方法及由此制得的石墨烯涂层
CN110668399A (zh) 一种高度有序并且重复性好的呈轴对称的周期性的纳米孔洞结构的制备方法
CN106916334B (zh) 一种环氧化纳米粒子的制备方法
CN109440072A (zh) 一种新颖纳米周期阵列及其制备方法
CN111003702B (zh) 一种由石墨烯纳米片组成的二维层流矩阵碳材料及其制备方法
JP5545694B2 (ja) カーボン含有金属酸化物中空粒子及びその製造方法
CN109081327A (zh) 一种碗状多孔碳微球及其制备方法
CN108004590A (zh) 纳米多孔表面等离激元晶体及其制备方法
CN105810530B (zh) 氮掺杂石墨烯@SiO2同轴纳米管的制备方法和应用
CN113549377B (zh) 一种跨尺度结构光学吸收涂层材料及涂层制备工艺
CN110668396A (zh) 一种周期波浪状纳米孔结构阵列的制备方法
US10850304B2 (en) Method and device for processing microstructure arrays of polystyrene-graphene nanocomposites
TWI610886B (zh) 複合材料及其製造方法
CN106317714B (zh) 纳米三氧化二铝低温等离子体改性处理方法
CN108444973A (zh) 一种具有SERS活性的Ag/FeS复合材料及其制备方法
JP6283847B2 (ja) コア・シェル複合粒子の製造方法
CN108569721A (zh) 一种MoS2@g-C3N4核壳纳米球及其制备方法
JP2008264732A (ja) 多孔性イオン交換体およびその製造方法
Liu et al. Superamphiphilic Ag–CNTs electrode by atmosphere plasma treatment
KR101894543B1 (ko) 환원 그래핀 옥사이드 및 이의 현탁액의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911547

Country of ref document: EP

Kind code of ref document: A1