WO2020149052A1 - 触感提示装置、触感提示方法、及びアクチュエータ - Google Patents

触感提示装置、触感提示方法、及びアクチュエータ Download PDF

Info

Publication number
WO2020149052A1
WO2020149052A1 PCT/JP2019/048103 JP2019048103W WO2020149052A1 WO 2020149052 A1 WO2020149052 A1 WO 2020149052A1 JP 2019048103 W JP2019048103 W JP 2019048103W WO 2020149052 A1 WO2020149052 A1 WO 2020149052A1
Authority
WO
WIPO (PCT)
Prior art keywords
tactile sensation
sensation providing
electric field
responsive polymer
user
Prior art date
Application number
PCT/JP2019/048103
Other languages
English (en)
French (fr)
Inventor
武彦 神崎
宏充 竹内
Original Assignee
豊田合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊田合成株式会社 filed Critical 豊田合成株式会社
Priority to CN201980088828.8A priority Critical patent/CN113302671A/zh
Priority to JP2020566147A priority patent/JPWO2020149052A1/ja
Publication of WO2020149052A1 publication Critical patent/WO2020149052A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • G09B23/32Anatomical models with moving parts
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the present disclosure relates to a tactile presentation device, a tactile presentation method, and an actuator.
  • the pulsation generator described in Patent Document 1 applies a pulse wave signal having a voltage waveform approximated to the pulse wave waveform in an artery to a piezoelectric element such as PZT ceramics, and the pulse wave is generated by the piezoelectric element.
  • a vibration similar to the pulsation perceived by the palpation of the examiner is generated.
  • actuators using electric field responsive polymer actuators such as sheet-shaped dielectric elastomer actuators that expand and contract in the surface direction and the thickness direction according to applied voltage have been developed.
  • the dielectric elastomer actuator contracts in the thickness direction and expands in the surface direction.
  • a first object of the present disclosure is to provide a tactile sensation presentation device that allows a user to more strongly recognize the vibration of an electric field responsive polymer actuator as a tactile sensation.
  • a second object of the present disclosure is to provide a tactile sensation presentation method that allows a user to more strongly recognize the vibration of a sheet-like material that expands and contracts in the surface direction as a tactile sensation.
  • a third object of the present disclosure is to provide an actuator that can obtain an output in the radial direction by using a sheet-like electric field responsive polymer actuator that expands and contracts in the surface direction according to an applied voltage.
  • the tactile sensation providing apparatus includes a sheet-shaped electric field responsive polymer actuator that expands and contracts in a surface direction and a thickness direction according to an applied voltage, and provides the user with the electric field response.
  • a tactile sensation providing device for recognizing vibration based on expansion and contraction of a responsive polymer actuator as a tactile sensation, wherein the electric field responsive polymer actuator has a tactile sensation providing unit arranged in a plane, and the inside of the tactile sensation providing unit.
  • the portion is a portion (first portion) which is sandwiched between the user and the sandwiching member and is limited in expansion and contraction in the surface direction, and a portion which is not in contact with the sandwiching member and is not restricted in expansion and contraction in the surface direction (second portion). Part) and are formed.
  • the present inventor has discovered that, when the electric field responsive polymer actuator is vibrated in this state, the user is presented with a tactile sensation such that the tactile sensation providing section is displaced in the thickness direction. By utilizing this phenomenon, the user can more strongly recognize the vibration of the electric field responsive polymer actuator as a tactile sensation in the plane direction.
  • the sandwiching member is a flexible elastic member.
  • the sandwiching member has a shape that is convex toward the tactile sensation providing unit.
  • the tactile sensation providing device includes a restriction unit that restricts displacement of the tactile sensation providing unit toward both ends in a specific linear direction along the surface direction.
  • the vibration of the tactile sensation providing unit can be amplified.
  • the tactile sensation providing device further includes a control device that controls an applied voltage applied to the electric field responsive polymer actuator so as to simulate arterial vibration.
  • the electric field responsive polymer actuator is a dielectric elastomer actuator
  • the control device may estimate an external force acting on the tactile sensation providing unit based on a capacitance of the dielectric elastomer actuator. preferable.
  • the external force acting on the tactile sensation providing unit can be detected with a simple configuration.
  • the tactile sensation providing unit is planar, the relationship between the magnitude of the external force acting on the tactile sensation providing unit and the magnitude of the capacitance when the external force is applied to the tactile sensation providing unit is simple.
  • the external force acting on the presentation unit can be easily estimated.
  • the electric field responsive polymer actuator is one of a plurality of electric field responsive polymer actuators arranged side by side in the surface direction, and the control device is configured to generate the electric field response. It is preferable to separately control the applied voltage applied to the polymer electrolyte actuator.
  • the control device individually controls the applied voltage applied to the plurality of electric field responsive polymer actuators arranged side by side in the plane direction, thereby faithfully reproducing the vibration of the radial artery and the like. be able to.
  • a tactile sensation providing apparatus is a sheet-shaped electric field responsive polymer actuator that expands and contracts in a surface direction and a thickness direction according to an applied voltage, and the electric field responsiveness enhancer.
  • a flexible elastic member provided adjacent to the inside of the molecular actuator, and the electric field responsive polymer according to an applied voltage in a state in which the electric field responsive polymer actuator and the elastic member are both deformed. The user is made to recognize the vibration of the actuator and the elastic member as a tactile sensation.
  • the elastic member has a cylindrical shape or a columnar shape.
  • the elastic member has a cylindrical shape or a cylindrical shape.
  • the tactile sensation providing device further includes a control device that controls an applied voltage applied to the electric field responsive polymer actuator so as to simulate arterial vibration.
  • the electric field responsive polymer actuator can be vibrated like an artery. ..
  • the tactile sensation providing method is a tactile sensation providing method for allowing a user to recognize a motion based on the expansion and contraction of the sheet-like material as a tactile sensation by using a sheet-like material that expands and contracts in a plane direction.
  • the sheet-shaped material in contact with only a user, a first portion sandwiched between the user and a sandwiching member, and adjacent to the first portion.
  • the second portion is formed.
  • vibrations in the thickness direction of the sheet-shaped material are mainly transmitted to the portion of the user's finger that is in contact with the first portion, and the portion that is in contact with the second portion is the sheet-shaped portion.
  • a pulling force is transmitted due to the expansion and contraction of the sheet material in the surface direction.
  • a pulling force due to extension in the plane direction is transmitted to a portion of the user's finger which is adjacent to a portion where vibration in the thickness direction of the sheet is mainly transmitted, so that the sheet is moved in the thickness direction.
  • the user's finger is presented with a tactile sensation of movement and swelling of the holding member and a pressing force.
  • a tactile sensation as if the sheet-like object moved in the thickness direction is strongly presented to the portion of the user's finger that is in contact with the second portion.
  • An actuator of one aspect for achieving the third object is an actuator including a sheet-shaped electric field responsive polymer actuator that expands and contracts in a surface direction according to an applied voltage, and the electric field responsive polymer actuator is A curved portion curved in an arc shape, and a limiting portion that limits a displacement of the curved portion toward both ends in the circumferential direction of the curved portion, and the planar direction according to the applied voltage.
  • the force to expand and contract is converted into a force that displaces in the radial direction of the bending portion.
  • the electric field responsive polymer actuator tries to expand and contract in the plane direction according to the applied voltage.
  • the displacement of the bending portion toward both ends in the circumferential direction of the bending portion in the surface direction is limited by the limiting portion.
  • the force that tends to displace in the direction is converted into the force that displaces in the radial direction of the bending portion. Therefore, it is possible to obtain an output in the radial direction by using a sheet-shaped electric field responsive polymer actuator that expands and contracts in the surface direction according to the applied voltage.
  • the curved portion is provided in a part of the electric field responsive polymer actuator.
  • the output in the radial direction can be further increased as compared with the case where the curved portion is provided over the entire circumferential direction.
  • the actuator is provided with restriction portions that restrict the displacement of the curved portion toward both ends in the axial direction.
  • the tactile sensation providing apparatus of the present disclosure it is possible for the user to more strongly recognize the vibration of the electric field responsive polymer actuator as a tactile sensation.
  • the tactile sensation presentation method of the present disclosure it is possible for the user to more strongly recognize the vibration of the sheet-like material that expands and contracts in the surface direction as a tactile sensation.
  • the actuator of the present disclosure it is possible to obtain a radial output by using a sheet-shaped electric field responsive polymer actuator that expands and contracts in the surface direction according to an applied voltage.
  • FIG. 2 is a sectional view taken along line 2-2 of FIG. 3 is a sectional view taken along line 3-3 of FIG. Sectional drawing which shows the cross-section of a dielectric elastomer actuator.
  • FIG. 2 is an exploded perspective view of the tactile sensation providing device of FIG. 1.
  • FIG. 4 is a partial cross-sectional view showing a state of the tactile sensation providing device when in use.
  • the partial cross section figure which shows the clamping member of a modification.
  • (A) (b) is a fragmentary sectional view showing a pinch member of a modification.
  • FIG. 3 is a plan view of the dielectric elastomer actuator. Sectional drawing which shows the cross-section of a dielectric elastomer actuator.
  • the tactile sensation providing device 10 makes a user recognize the vibration generated according to the applied voltage as a tactile sensation of the pulsation of the human body, and includes a control device 30.
  • the tactile sensation providing apparatus 10 includes a box-shaped casing 11 having an opening 11a in the upper portion.
  • a support 12 is housed inside the casing 11.
  • the support 12 includes a square plate-shaped top plate 12a having a circular through hole in the center, and leg portions 12b extending downward from the four corners of the top plate 12a.
  • the support base 12 is fixed to the casing 11 by screws 12c inserted into the leg portions 12b with the bottom wall of the casing 11 interposed therebetween.
  • a simulated blood vessel 13 as a sandwiching member and a spacer 14 are arranged on the support 12 in the casing 11.
  • the simulated blood vessel 13 is a hollow cylindrical body that imitates a blood vessel and extends linearly, and has a shape that is convex toward the upper side.
  • the simulated blood vessel 13 is a flexible elastic member. Examples of the elastic material forming the simulated blood vessel 13 include elastomers such as silicone and urethane.
  • Two simulated blood vessels 13 are accommodated in the casing 11, and the two simulated blood vessels 13 are arranged on the top plate 12a of the support 12 in a state of being vertically stacked.
  • the spacers 14 are arranged on the top plate 12a of the support 12 on both sides of the simulated blood vessel 13 so as to be vertically stacked two by two.
  • the upper surface of the upper spacer 14 is located at the same height as the top of the simulated blood vessel 13.
  • a substantially rectangular sheet-shaped dielectric elastomer actuator 15 (DEA: Dielectric Elastomer Actuator) is arranged straddling the spacers 14 arranged on both sides of the simulated blood vessel 13.
  • the DEA 15 is arranged on the spacer 14 so that the entire DEA 15 has a planar shape, and the simulated blood vessels 13 are arranged adjacent to each other inside or in contact with the inside of the DEA 15.
  • the above-mentioned planar shape is a concept excluding a state in which it is intentionally curved, and a state in which it is slightly along due to slack due to gravity or the like is also included in the planar shape.
  • first direction A1 a direction along the extending direction of the simulated blood vessel 13
  • second direction A2 a direction orthogonal to the first direction A1
  • the DEA 15 has a combination of a sheet-shaped dielectric layer 20 made of a dielectric elastomer, and a positive electrode 21 and a negative electrode 22 as electrode layers arranged on both sides of the dielectric layer 20 in the thickness direction. It is a multilayer structure in which a plurality of layers are stacked. An insulating layer 23 is laminated on the outermost layer of the DEA 15. When a DC voltage is applied between the positive electrode 21 and the negative electrode 22, the DEA 15 compresses the dielectric layer 20 in the thickness direction according to the magnitude of the applied voltage, and along the surface of the dielectric layer 20. It deforms so as to extend in the surface direction of the DEA 15 which is the closed direction.
  • the dielectric elastomer forming the dielectric layer 20 is not particularly limited, and a known dielectric elastomer used for DEA can be used.
  • Examples of the dielectric elastomer include crosslinked polyrotaxane, silicone elastomer, acrylic elastomer, and urethane elastomer. One of these dielectric elastomers may be used, or a plurality of them may be used in combination.
  • the dielectric layer 20 has a thickness of, for example, 20 to 200 ⁇ m.
  • Examples of the material forming the positive electrode 21 and the negative electrode 22 include conductive elastomer, carbon nanotube, Ketjen Black (registered trademark), and metal vapor deposition film.
  • Examples of the conductive elastomer include a conductive elastomer containing an insulating polymer and a conductive filler.
  • Examples of the insulating polymer include crosslinked polyrotaxane, silicone elastomer, acrylic elastomer, and urethane elastomer. One of these insulating polymers may be used, or a plurality of them may be used in combination.
  • Examples of the conductive filler include carbon nanotubes, Ketjen Black (registered trademark), carbon black, and metal particles such as copper and silver. One of these conductive fillers may be used, or a plurality of them may be used in combination.
  • the thickness of the positive electrode 21 and the negative electrode 22 is, for example, 1 to 100 ⁇ m.
  • the insulating elastomer forming the insulating layer 23 is not particularly limited, and a known insulating elastomer used for the insulating portion of a known DEA can be used.
  • the insulating elastomer include crosslinked polyrotaxane, silicone elastomer, acrylic elastomer, and urethane elastomer.
  • One of these insulating elastomers may be used, or a plurality of them may be used in combination.
  • the insulating layer 23 has a thickness of, for example, 10 to 100 ⁇ m. Further, the total thickness of the DEA 15 is preferably 0.3 to 3 mm, for example, from the viewpoint of ensuring flexibility and strength.
  • a pair of plate-shaped pressing members 16 are arranged on the portion of the DEA 15 located above the spacer 14.
  • the pressing member 16 is arranged on the DEA 15 so as to cover both side edge portions of the DEA 15 which are located at the ends in the second direction A2.
  • the portion of the DEA 15 located between the pair of pressing members 16 constitutes the planar tactile sensation providing unit 15a.
  • the pressing member 16 configures a restriction unit that restricts the displacement of the tactile sensation providing unit 15a toward both ends in the second direction A2.
  • a cover 17 that closes the opening 11 a is arranged on the upper portion of the casing 11.
  • the cover 17 is fixed to the casing 11 using a bush 19a and a pin 19b.
  • a rectangular window portion 17a for exposing at least a portion of the tactile sensation providing portion 15a of the DEA 15 located above the simulated blood vessel 13 is provided.
  • the length of the window portion 17a in the second direction A2 is set to be longer than the width of the simulated blood vessel 13.
  • the control device 30 controls the applied voltage applied to the DEA 15 from a power source (not shown) such as a battery so as to simulate the vibration of the artery.
  • the control device 30 includes 1) one or more processors that operate according to a computer program (software), and 2) one or more dedicated applications such as an application-specific integrated circuit (ASIC) that executes at least a part of various processes.
  • Hardware circuit, or 3) a combination thereof, can be configured as a circuit.
  • the processor includes a CPU and memories such as RAM and ROM, and the memory stores program codes or instructions configured to cause the CPU to perform processing.
  • Memory or computer readable media includes any available media that can be accessed by a general purpose or special purpose computer.
  • the control device 30 stores the signal of the applied voltage corresponding to the vibration pattern of the artery when normal and healthy, and the signal of the applied voltage corresponding to the vibration pattern of the artery when the disease is predetermined. It has a storage unit and is configured to be able to switch the signal of the applied voltage based on the operation of the changeover switch 31.
  • the vibration pattern of the arteries in a normal healthy state corresponds to the vibration pattern of a so-called flat vein.
  • the vibration pattern of the artery in the case of a predetermined disease corresponds to the vibration pattern of a so-called disease pulse.
  • control device 30 utilizes the self-sensing characteristic of the DEA 15 to estimate the external force acting on the DEA 15, that is, the pressing force with which the user presses the DEA 15, and informs the informing unit 32 of the estimation result. More specifically, the control device 30 measures the capacitance of the DEA 15 by applying an AC voltage that is sufficiently smaller than the applied voltage for vibrating the DEA 15, to the measured capacitance of the DEA 15. Based on this, the external force acting on the DEA 15 is estimated.
  • the capacitance of the DEA 15 is a parameter that is inversely proportional to the distance between the electrodes of the DEA 15 and proportional to the area of the electrodes (opposing area), and changes according to the shape of the DEA 15. Therefore, when a large voltage is applied to the DEA 15 and the amount of deformation of the dielectric layer 20 due to compression in the thickness direction increases, the capacitance of the DEA 15 also increases. Therefore, there is a correlation between the applied voltage of the DEA 15 and the electrostatic capacitance, in which the larger one becomes, the larger the other becomes. Then, the shape and the amount of deformation of the DEA 15 and the capacitance have a correlative relationship with each other.
  • the amount of deformation of the DEA 15 increases when an external force that compresses the DEA 15 is applied.
  • the capacitance of the DEA 15 decreases even if the applied voltage is the same. Therefore, the difference in electrostatic capacitance between the state in which the external force is acting on the DEA 15 and the state in which the external force is not acting can be regarded as a parameter indicating the magnitude of the external force acting on the DEA 15.
  • a voltage is applied to the DEA 15 while the user's finger is pressed against the tactile sensation providing unit 15a so that the DEA 15 is sandwiched between the simulated blood vessel 13.
  • the tactile sensation providing unit 15a vibrates based on the expansion and contraction of the DEA 15 in the surface direction and the thickness direction according to the applied voltage, and the vibration is transmitted to the user's finger.
  • the vibration of the tactile sense presentation unit 15a is amplified by limiting the displacement of the tactile sense presentation unit 15a toward both ends in the second direction A2.
  • the user recognizes the vibration of the tactile sensation providing unit 15a as a tactile sensation in the thickness direction of the DEA 15.
  • the mechanism is speculated as follows.
  • a portion of the tactile sensation providing unit 15a that is in contact with the user's finger is in contact with the simulated blood vessel 13, and the first portion P1 sandwiched between the user's finger and the simulated blood vessel 13 and the simulated blood vessel 13 are simulated.
  • a second portion P2 that is not in contact with the blood vessel 13 but only with the user's finger is formed.
  • the first portion P1 and the second portion P2 are adjacent to each other.
  • the first portion P1 of the tactile sensation providing unit 15a is sandwiched between the user's finger and the simulated blood vessel 13, so that the first portion P1 is in a state in which the expansion and contraction in the surface direction is more restricted than the other portions of the tactile sensation providing unit 15a.
  • the second portion P2 of the tactile sensation providing unit 15a expands and contracts in the surface direction so as to pull the surface of the user's finger.
  • vibrations in the thickness direction of the tactile sensation providing unit 15a are mainly transmitted to the portion of the user's finger that is in contact with the first sensation providing unit 15a, and touch the second portion P2 of the tactile sensation providing unit 15a.
  • a pulling force due to the expansion and contraction of the tactile sensation providing unit 15a in the surface direction is transmitted to the portion where the tactile sensation providing unit 15a is in the thickness direction.
  • the tactile sense providing portion 15a has a thickness due to the pulling force transmitted by the extension in the surface direction to a portion adjacent to a portion of the tactile sense presenting portion 15a mainly transmitting the vibration in the thickness direction.
  • the user's finger is presented with a tactile sensation such that the simulated blood vessel 13 is swollen, and the simulated blood vessel 13 expands and receives a pressing force.
  • a tactile sensation such that the tactile sensation providing unit 15a moves in the thickness direction is strongly presented to the portion of the user's finger that is in contact with the second portion P2.
  • the above-described tactile sensation presented to the user's finger causes the simulated blood vessel 13 to pulsate by adjusting the magnitude of the applied voltage to the DEA 15, the duration of the applied voltage, the interval of the applied voltage before and after, and the like. It feels like.
  • the notification unit 32 notifies the pressing force of the user pressing the DEA 15.
  • the tactile sensation providing apparatus 10 can be used as a simulator for training and analyzing pulse diagnosis. For example, by switching the signal of the applied voltage to the DEA 15, the user can perceive the difference between the flat vein and the disease pulse. Moreover, by performing a simulation of pulse diagnosis using the tactile sensation providing apparatus 10 and analyzing the pressing force notified to the notification unit 32 at that time, the pressing force at the time of pulse diagnosis can be quantitatively evaluated.
  • the tactile sensation providing apparatus 10 includes a sheet-shaped DEA 15 that expands and contracts in a surface direction and a thickness direction according to an applied voltage, and causes a user to recognize vibration based on expansion and contraction of the DEA 15 as a tactile sensation.
  • the DEA 15 has a tactile sensation providing unit 15a arranged in a plane. By sandwiching the tactile sensation providing unit 15a between the tactile sensation providing unit 15a and the user's finger that presses the tactile sensation providing unit 15a inward, the tactile sensation providing unit 15a has a surface direction of the sandwiched first portion P1.
  • a simulated blood vessel 13 is arranged as a sandwiching member that partially restricts expansion and contraction.
  • the tactile sense presentation unit 15a is presented to the user. Is presented as if it were displaced in the thickness direction.
  • the user can more strongly recognize the vibration of the DEA 15 as a tactile sensation in the surface direction.
  • the tactile sensation providing unit 15a is planar, the device can be easily designed and assembled.
  • the simulated blood vessel 13 is a flexible elastic member.
  • the simulated blood vessel 13 has a shape that is convex toward the tactile sensation providing unit 15a.
  • the tactile sensation providing unit 15a when the tactile sensation providing unit 15a is pressed inward, the entire portion of the tactile sensation providing unit 15a that is in contact with the user's finger is sandwiched between the user's finger and the simulated blood vessel 13. The part P1 is suppressed.
  • the tactile sensation providing apparatus 10 includes the pressing member 16 as a restriction unit that restricts the displacement of the tactile sensation providing unit 15a toward both ends in the second direction A2 along the surface direction.
  • the vibration of the tactile sensation providing unit 15a can be amplified.
  • the tactile sense presentation device 10 includes a control device 30 that controls the applied voltage applied to the DEA 15 so as to simulate the vibration of the artery.
  • the tactile sensation providing unit 15a can be vibrated like an artery by controlling the applied voltage applied to the DEA 15 so as to simulate the vibration of the artery. Therefore, the configuration of the tactile sensation providing device can be simplified as compared with the conventional configuration in which the fluid as the simulated blood is pumped to the simulated blood vessel and the flow rate of the fluid is controlled.
  • the simulated blood vessel 13 is an elastic member made of a hollow body, and a plurality of elastic members made of a hollow body are arranged in a stacked manner in the thickness direction of the DEA 15.
  • the vibration of the DEA 15 can be more strongly recognized by the user as a tactile sensation in the thickness direction. Further, by stacking the elastic member made of a hollow body in the thickness direction of the DEA 15, the vibration of the DEA 15 can be more strongly recognized by the user as a tactile sensation in the thickness direction.
  • the control device 30 estimates the external force acting on the tactile sensation providing unit 15a based on the capacitance of the DEA 15.
  • the external force acting on the tactile sensation providing unit 15a can be detected with a simple configuration. Further, since the tactile sensation providing unit 15a is planar, the relationship between the magnitude of the external force acting on the tactile sensation providing unit 15a and the magnitude of the capacitance when the external force is applied to the tactile sensation providing unit 15a is simple. Therefore, the external force acting on the tactile sensation providing unit 15a can be easily estimated.
  • the capacitance is a period during which the tactile sensation providing unit 15a is deformed from the outward convex to the planar state, The changing direction of the electrostatic capacitance is switched at the boundary with the period in which the flat state is deformed to the outward concave state.
  • the tactile sensation providing unit 15a has a planar shape, when the external force is applied to the tactile sensation providing unit 15a, the changing direction of the capacitance does not switch, and thus the tactile sensation based on the capacitance is applied.
  • the external force acting on the presentation unit 15a can be easily estimated.
  • a sheet-like material (DEA15) is partially used as a tactile sensation presentation method in which the user uses the DEA15 that is a sheet-like material that expands and contracts in the plane direction and makes the user recognize a motion based on the expansion and contraction of the sheet-like object as a tactile sensation.
  • the sheet-like material (DEA15) is used by adhering to the first portion P1 sandwiched between the user and the sandwiching member (simulated blood vessel 13) and adjacent to the first portion P1.
  • the second portion P2 that is in contact with only the person is formed.
  • the vibration in the thickness direction of the sheet-like material (DEA15) is mainly transmitted to the portion of the user's finger that is in contact with the first portion P1 and is in contact with the second portion P2.
  • a pulling force due to expansion and contraction in the surface direction of the sheet-like material is transmitted to the sheet.
  • a pulling force due to extension in the plane direction is transmitted to a portion of the user's finger which is adjacent to a portion where vibration in the thickness direction of the sheet is mainly transmitted, so that the sheet is moved in the thickness direction.
  • the user's finger is presented with a tactile sensation of movement and swelling of the sandwiching member (simulated blood vessel 13) and a pressing force.
  • a tactile sensation as if the sheet-like object moved in the thickness direction is strongly presented to the portion of the user's finger that is in contact with the second portion P2.
  • the above-described first embodiment can be modified and implemented as follows.
  • the first embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
  • the number of hollow bodies to be stacked in the thickness direction of the DEA 15 is not particularly limited, and three or more hollow bodies may be stacked and arranged, or only one hollow body may be arranged. May be.
  • the sandwiching member may be a hard member made of metal or plastic.
  • the shape and size of the sandwiching member are not particularly limited, and when the tactile sensation providing unit 15a is pressed inward, the portion of the tactile sensation providing unit 15a that is in contact with the user's finger contacts the sandwiching member. Any shape and size may be used as long as the first portion P1 and the second portion P2 that is not in contact with the sandwiching member are formed.
  • examples of the shape other than the cylindrical shape that is convex toward the tactile sensation providing unit 15a include a columnar shape, a polygonal cylindrical shape whose corners face the tactile sensation providing unit 15a side, a polygonal column shape, and a spherical shape.
  • the holding member 13a may have a planar surface on the tactile sensation providing unit 15a side.
  • the upper surface of the sandwiching member 13a may be formed in a plane shape parallel to the tactile sensation providing unit 15a and smaller than a portion of the tactile sensation providing unit 15a which is not in contact with the spacer 14.
  • the user's finger is pressed against the tactile sensation providing section 15a so as to straddle the edge 13a1 on the upper surface of the holding member 13a.
  • a first portion P1 that contacts the holding member 13a and a second portion P2 that does not contact the holding member 13a can be formed at the portion of the tactile sensation providing unit 15a that is in contact with the user's finger.
  • the upper surface of the sandwiching member 13a is formed in a planar shape parallel to the tactile sensation providing unit 15a and approximately the same size as the portion of the tactile sensation providing unit 15a which is not in contact with the spacer 14. At the same time, it may be arranged apart from the tactile sensation providing unit 15a.
  • FIG. 8B when the tactile sensation providing unit 15a is pressed inward by the user's finger, the tactile sensation providing unit 15a is projected downward from the planar shape along the finger. While deforming into a curved surface, a part of the tip end side thereof contacts the holding member 13a. As a result, a first portion P1 that contacts the sandwiching member 13a and a second portion P2 that does not contact the sandwiching member 13a can be formed in a portion of the tactile sensation providing unit 15a that is in contact with the user's finger.
  • the restricting part is not limited to the pressing member 16 and may be any structure capable of restricting the displacement of the tactile sensation providing part 15a toward both ends in the second direction A2.
  • both ends of the tactile sensation providing unit 15a in the second direction A2 may be fixed to the spacers 14 to restrict the displacement of the tactile sensation providing unit 15a toward both ends in the second direction A2.
  • the restriction unit may be omitted.
  • a second restriction unit may be provided to restrict the displacement of the tactile sensation providing unit 15a toward both ends in the first direction A1 orthogonal to the second direction A2. In this case, since the vibration amplitude of the tactile sensation providing unit 15a can be increased, the user can more strongly recognize the vibration of the DEA 15 as a tactile sensation.
  • the tactile sensation providing device 10 is not limited to the device including the DEA 15.
  • it may be provided with another electric field responsive polymer actuator (EPA: Electroactive Polymer Actuator) such as an ion exchange polymer metal composite (IPMC: Ionic Polymer Metal Composite).
  • EPA Electroactive Polymer Actuator
  • IPMC ion exchange polymer metal composite
  • the sheet-like material used in the tactile sensation providing method is not limited to the DEA 15 as long as the sheet-like material expands and contracts in the surface direction.
  • an electric field responsive polymer actuator EPA: Electroactive Polymer Actuator
  • IPMC ion exchange polymer Metal Composite
  • the method for estimating the external force acting on the tactile sensation providing unit 15a is not limited to the method based on the capacitance of the DEA 15.
  • a displacement sensor may be attached to the tactile sensation providing unit 15a, and the external force acting on the tactile sensation providing unit 15a may be estimated based on the amount of displacement detected by the displacement sensor.
  • the material and shape of part or all of the part of the tactile sensation providing device 10, such as the casing 11 and the cover 17, that constitutes the outer surface may be changed so as to simulate the forearm and hand of the human body.
  • the cover 17 may be formed of a flexible material such as sponge so that a tactile sensation close to that of the skin can be obtained when the tactile sensation providing apparatus of the present embodiment is used for palpation.
  • the tactile sensation providing device 10 may include two or more DEA 15.
  • Chinese medicine for example, to grasp the condition of the heart (heart, blood vessels, etc.), liver (liver, muscles, etc.), and kidney (kidneys, hormones, urinary organs, etc.) by diagnosing the three radial arteries of the left hand. It is said to be possible.
  • the tactile sense presentation device 10 illustrated in FIG. 9 the tactile sense presentation units 15a of the three DEAs 15 are regarded as the above three places, and the tactile sense presentation units 15a are arranged side by side in the first direction A1.
  • the control device 30 controls the applied voltages applied to the three DEAs 15 separately, so that the vibration of the radial artery including the phase difference at each location can be faithfully reproduced.
  • the plurality of DEA 15 may be configured as separate sheets, for example, by providing a common sheet-shaped insulating layer 23 on the outermost layer of each DEA 15 and integrating them, It may be configured as a single sheet.
  • the application target of the tactile sensation providing device 10 is not limited to the one that causes the user to recognize the vibration of the DEA 15 that occurs according to the applied voltage as the tactile sensation of the pulsation of the human body. It can also be applied to a stuffed animal or the like as long as the user can feel the displaced touch.
  • the part of the user's body that presses the tactile sensation providing portion 15a inward is not particularly limited, and may be a part other than the finger of the hand such as the palm.
  • the sandwiching member is a hollow body.
  • the sandwiching member is formed by stacking a plurality of hollow bodies in the thickness direction of the electric field responsive polymer actuator.
  • the sandwiching member is arranged such that at least a part of an edge of an upper surface thereof is located inside the tactile sensation providing unit.
  • the tactile sensation providing device 210 allows the user to recognize the vibration generated according to the applied voltage as a tactile sensation of the pulsation of the human body, and includes a control device 240.
  • the tactile sensation providing device 210 simulates the outer shape of the forearm and hand of the human body, and includes a base material 230 made of a flexible material. ..
  • the flexible material forming the base material 230 include elastomers such as silicone and urethane.
  • first core portion 231 and a second core portion 232 simulating the radius and ulna of the human body, respectively, and an actuator 211 simulating the radial artery.
  • the actuator 211 includes a plurality (three in the present embodiment) of dielectric elastomer actuators 212 (DEA: Dielectric Elastomer Actuator) in a substantially rectangular sheet shape.
  • DEA Dielectric Elastomer Actuator
  • the DEA 212 has a combination of a sheet-shaped dielectric layer 220 made of a dielectric elastomer and a positive electrode 221 and a negative electrode 222 as electrode layers arranged on both sides of the dielectric layer 220 in the thickness direction. It is a multilayer structure in which a plurality of layers are stacked. An insulating layer 223 is laminated on the outermost layer of the DEA 212.
  • the dielectric layer 220 when a DC voltage is applied between the positive electrode 221 and the negative electrode 222, the dielectric layer 220 is compressed in the thickness direction according to the magnitude of the applied voltage and along the surface of the dielectric layer 220. It deforms so as to extend in the surface direction of the DEA 212, which is the vertical direction.
  • the dielectric elastomer forming the dielectric layer 220 is not particularly limited, and the same dielectric elastomer as the dielectric layer 20 of the first embodiment can be used. Similar to the dielectric layer 20, the thickness of the dielectric layer 220 is, for example, 20 to 200 ⁇ m.
  • a conductive elastomer As the material forming the positive electrode 221 and the negative electrode 222, for example, a conductive elastomer, carbon nanotube, Ketjen Black (registered trademark), or a metal deposition film may be used as in the case of the positive electrode 21 and the negative electrode 22 of the first embodiment.
  • a conductive elastomer examples include a conductive elastomer containing an insulating polymer and a conductive filler.
  • Examples of the insulating polymer include crosslinked polyrotaxane, silicone elastomer, acrylic elastomer, and urethane elastomer. One of these insulating polymers may be used, or a plurality of them may be used in combination.
  • Examples of the conductive filler include Ketjen Black (registered trademark), carbon black, and metal particles such as copper and silver. One of these conductive fillers may be used, or a plurality of them may be used in combination.
  • the thickness of the positive electrode 221 and the negative electrode 222 is, for example, 1 to 100 ⁇ m.
  • the insulating elastomer forming the insulating layer 223 is not particularly limited, and the same insulating elastomer as the insulating layer 23 of the first embodiment can be used. Similar to the insulating layer 23, the insulating layer 223 has a thickness of, for example, 10 to 100 ⁇ m.
  • three DEA 212 are provided side by side with a predetermined interval in the direction of their short sides.
  • the outermost layer of the three DEAs 212 is provided with one rectangular sheet-shaped insulating layer 223 common to them, and the three DEAs 212 are integrated.
  • the DEA 212 has a curved portion 212a that is curved in a semi-circular shape. That is, the DEA 212 is formed by joining the flat plate shown in FIG. 12 to each other so that both ends in the short side direction of the insulating layer 223 are joined to each other so that the center of the insulating layer 223 in the short side direction is rounded into a semi-circular cross section. ing. Note that, hereinafter, the circumferential direction, the radial direction, and the axial direction of the bending portion 212a will be described as the circumferential direction A, the radial direction B, and the axial direction C, respectively.
  • three DEA 212 are arranged side by side in the axial direction C.
  • the curved portion 212a of the present embodiment is provided in a part of the DEA 212, more specifically, in a half portion in the circumferential direction A.
  • the DEA 212 has limiting portions 212b that limit the displacement toward both ends in the circumferential direction A of the surface direction.
  • the limiting portion 212b of the present embodiment is formed by joining both ends in the short side direction to each other.
  • the restriction portion 212b is arranged in contact with or close to the first core portion 231.
  • the DEA 212 having such a configuration converts a force that expands and contracts in the surface direction according to an applied voltage into a force that displaces in the radial direction B of the bending portion 212a.
  • a flexible cylindrical elastic member 215 is inserted inside the DEA 212.
  • the elastic members 215 are provided adjacent to each other on the inner peripheral side of the curved portion 212a.
  • a slight gap is set between the elastic member 215 and the DEA 212.
  • examples of the material forming the elastic member 215 include elastomers such as silicone and urethane.
  • a pair of restriction portions 213 for restricting the displacement of the curved portion 212a toward both ends in the axial direction C are provided at both ends in the axial direction C of the DEA 212.
  • the pair of restricting portions 213 are fixed to the base material 230 and the first core portion 231 respectively.
  • the control device 240 controls the applied voltage applied to the DEA 212 from a power source (not shown) such as a battery so as to simulate the vibration of the artery.
  • the control device 240 includes 1) one or more processors that operate according to computer programs (software), and 2) one or more dedicated applications such as an application-specific integrated circuit (ASIC) that executes at least a part of various processes.
  • Hardware circuit, or 3) a combination thereof, can be configured as a circuit.
  • the processor includes a CPU and memories such as RAM and ROM, and the memory stores program codes or instructions configured to cause the CPU to perform processing.
  • Memory or computer readable media includes any available media that can be accessed by a general purpose or special purpose computer.
  • the controller 240 separately controls the applied voltage applied to the three DEAs 212.
  • the control device 240 when the magnitude of the applied voltage to each DEA 212, the duration of the applied voltage, the interval between the applied voltages before and after, etc. are changed, the vibration pattern of the bending portion 212a of each DEA 212 is changed accordingly. .. Specifically, the control device 240 stores the signal of the applied voltage corresponding to the vibration pattern of the artery in the normal and healthy state and the signal of the applied voltage corresponding to the vibration pattern of the artery in the predetermined disease. It has a storage unit and is configured to be able to switch the signal of the applied voltage based on the operation of the changeover switch 241.
  • the vibration pattern of the arteries in a normal healthy state corresponds to the vibration pattern of a so-called flat vein.
  • the vibration pattern of the artery in the case of a predetermined disease corresponds to the vibration pattern of a so-called disease pulse.
  • the tactile sensation providing device 210 includes a sheet-shaped electric field responsive polymer actuator (DEA212) that expands and contracts in the surface direction and the thickness direction according to an applied voltage, and a flexible elastic member provided inside the DEA212 adjacent to each other. 215, and.
  • the tactile sensation providing device 210 causes the user to recognize the vibration of the DEA 212 and the elastic member 215 according to the applied voltage as a tactile sensation while the DEA 212 and the elastic member 215 are both deformed.
  • the vibration of the DEA 212 can be more strongly recognized by the user as a tactile sensation.
  • the tactile sensation providing device 210 includes a control device 240 that controls the applied voltage applied to the DEA 212 so as to simulate the vibration of the artery.
  • the DEA 212 can be vibrated like the artery. Therefore, the configuration of the tactile sensation providing device can be simplified as compared with the conventional configuration in which the fluid as the simulated blood is pumped to the simulated blood vessel and the flow rate of the fluid is controlled.
  • the actuator 211 includes a sheet-shaped dielectric elastomer actuator (DEA212) that expands and contracts in the surface direction according to an applied voltage.
  • the DEA 212 has a curved portion 212a that is curved in an arc shape and a limiting portion 212b that limits the displacement of the curved portion 212a toward both ends in the circumferential direction of the surface direction.
  • the force to expand and contract is converted into a force that displaces in the radial direction of the bending portion 212a.
  • DEA 212 tries to expand and contract in the surface direction according to the applied voltage.
  • the displacement of the bending portion 212a toward both ends in the circumferential direction A in the surface direction is limited by the limiting portion 212b, so that the bending force of the bending force in the surface direction is curved.
  • the force of the portion 212a that tends to displace in the circumferential direction A is converted into the force that displaces the curved portion 212a in the radial direction B. Therefore, the output in the radial direction B can be obtained by using the sheet-shaped DEA 212 that expands and contracts in the surface direction according to the applied voltage.
  • the actuator 211 is provided with the restriction portion 213 that restricts the displacement of the curved portion 212a toward both ends in the axial direction C.
  • the displacement of the curved portion 212a toward both ends in the axial direction C is regulated by the regulating portion 213. Therefore, of the force to expand and contract in the plane direction, both ends in the axial direction C of the curved portion 212a.
  • the force of displacing to the portion side is converted into the force of displacing the bending portion 212a in the radial direction B.
  • the output in the radial direction B can be further increased as compared with the case where the displacement of the bending portion 212a in the axial direction C is not restricted.
  • the tactile sensation providing device 210 is provided with the actuator 211, and makes the user recognize the vibration in the radial direction B of the bending portion 212a generated according to the applied voltage as a tactile sensation, and the inner peripheral side of the bending portion 212a. And a flexible elastic member 215 provided adjacent to each other.
  • the vibration of the bending portion 212a in the radial direction B can be recognized as a tactile sensation by the user according to the applied voltage.
  • the elastic member 215 and the DEA 212 come into contact with each other by the pressing force of the user and are deformed together. Therefore, since the elastic repulsive force of the flexible elastic member 215 is added to the vibration, the vibration of the DEA 212 can be more strongly recognized by the user as a tactile sensation of pulsation.
  • a plurality of DEAs 212 are arranged side by side in the axial direction C.
  • the control device 240 individually controls the applied voltage applied to the plurality of DEAs 212.
  • control device 240 individually controls the applied voltage applied to the plurality of DEA 212 arranged side by side in the axial direction C, thereby faithfully vibrating the radial artery including the phase difference at each place. Can be reproduced.
  • the above-described second embodiment can be modified and implemented as follows.
  • the second embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
  • the depth of the pulse that is, the curved portion 212a of the curved portion 212a is smaller when the pressure is medium than when the pressure is small.
  • the displacement amount in the radial direction B increases.
  • the greater the pressing force with which the finger presses the artery the smaller the amplitude of the pulsation, that is, the amount of displacement of the curved portion 212a in the radial direction B.
  • the capacitance of the DEA 212 is a parameter that is inversely proportional to the distance between the electrodes of the DEA 212 and proportional to the area of the electrodes (opposing area), and changes according to the shape of the DEA 212. Therefore, when a large voltage is applied to the DEA 212 and the amount of deformation of the dielectric layer 220 due to compression in the thickness direction increases, the capacitance of the DEA 212 also increases. Therefore, there is a correlation between the applied voltage of the DEA 212 and the electrostatic capacitance, in which the other increases as the one increases. Then, the shape (deformation amount) of the DEA 212 and the capacitance have a mutually convertible correlation.
  • the amount of deformation of the DEA 212 increases when an external force that compresses the DEA 212 (in this case, a pressing force that presses the DEA 212 with a finger) is acting.
  • an external force that compresses the DEA 212 in this case, a pressing force that presses the DEA 212 with a finger
  • the capacitance of the DEA 212 decreases even if the applied voltage is the same. Therefore, the difference in electrostatic capacitance between the state in which the external force is acting on the DEA 212 and the state in which the external force is not acting can be regarded as a parameter indicating the magnitude of the external force acting on the DEA 212.
  • control device 240 by applying an AC voltage that is sufficiently smaller than the applied voltage to each DEA 212 to the applied voltage, the capacitance of each DEA 212 is measured and the pressing force is estimated from the applied voltage and the electrostatic capacity. can do.
  • the base material 230 is not limited to the one that imitates the forearm and hand of the human body, and may have a cylindrical shape or a box shape.
  • the actuator 211 may be provided with two or four or more DEA 212, or may be provided with one DEA 212.
  • the elastic member 215 is not limited to a cylindrical shape, and its shape can be appropriately changed such as a semi-cylindrical shape, a cylindrical shape, a semi-cylindrical shape, or a prismatic shape.
  • both ends of the DEA 212 in the axial direction C may be fixed to the base material 230 to restrict the displacement of the DEA 212 toward both ends in the axial direction C.
  • the control part of the actuator 211 can be omitted. Even in this case, the output in the radial direction B can be obtained using the DEA 212.
  • -DEA212 may be semi-cylindrical. In this case, the entire DEA 212 becomes the curved portion 212a. Further, for example, both ends of the DEA 212 in the circumferential direction may be fixed to the base material 230 to form the limiting portion.
  • the curved portion of the DEA 212 may be provided over the entire circumferential direction A. That is, the DEA 212 can be cylindrical.
  • the actuator 211 is not limited to one having a dielectric elastomer actuator.
  • another electric field responsive polymer actuator EPA: Electroactive Polymer Actuator
  • IPMC ion exchange polymer metal composite
  • the tactile sensation providing apparatus is not limited to the one in which the vibration of the DEA 212 generated according to the applied voltage is recognized by the user as the tactile sensation of pulsation, and the vibration of the DEA 212 is tactile to the user. It can also be applied to stuffed animals as long as it can be recognized.
  • the application target of the actuator according to the second embodiment is not limited to the tactile sensation providing device, and may be any as long as the displacement of the bending portion in the radial direction is used.
  • DEA Dielectric elastomer actuator

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Educational Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

触感提示装置は、印加電圧に応じて面方向及び厚さ方向に伸縮するシート状の電場応答性高分子アクチュエータを備え、使用者に電場応答性高分子アクチュエータの伸縮に基づく振動を触感として認識させる。電場応答性高分子アクチュエータは、面状に配置される触感提示部(15a)を有する。触感提示部(15a)の内側には、触感提示部(15a)を内側へ押し付ける使用者の体の一部との間で触感提示部(15a)を挟み込むことにより、触感提示部(15a)における挟み込まれた部分(P1)の面方向の伸縮を部分的に制限する挟持部材が配置されている。

Description

触感提示装置、触感提示方法、及びアクチュエータ
 本開示は、触感提示装置、触感提示方法、及びアクチュエータに関する。
 従来、印加電圧に応じて伸縮するアクチュエータとして、チタン酸ジルコン酸鉛、所謂PZT系セラミックス等の圧電素子を有するものがある。例えば、特許文献1に記載の脈動発生装置は、動脈における脈波波形に近似させた電圧波形を持つ脈波信号を、PZT系セラミックスなどの圧電素子に対して印加し、圧電素子によって上記脈波信号を機械的振動に変換することで、診察者の触診によって知覚される脈動に類似する振動を発生させる。
 また、近年、印加電圧に応じて面方向及び厚さ方向に伸縮するシート状の誘電エラストマーアクチュエータ等の電場応答性高分子アクチュエータを利用したアクチュエータの開発が行われている。誘電エラストマーアクチュエータは、電圧が印加されると厚さ方向に収縮する一方、面方向に伸長する。
特開2000-10468号公報
 本開示の第1の目的は、使用者に電場応答性高分子アクチュエータの振動をより強く触感として認識させることのできる触感提示装置を提供することにある。
 本開示の第2の目的は、使用者に、面方向に伸縮するシート状物の振動をより強く触感として認識させることのできる触感提示方法を提供することにある。
 本開示の第3の目的は、印加電圧に応じて面方向に伸縮するシート状の電場応答性高分子アクチュエータを用いて径方向の出力を得ることのできるアクチュエータを提供することにある。
 上記第1の目的を達成する第1の態様の触感提示装置は、印加電圧に応じて面方向及び厚さ方向に伸縮するシート状の電場応答性高分子アクチュエータを備え、使用者に前記電場応答性高分子アクチュエータの伸縮に基づく振動を触感として認識させる触感提示装置であって、前記電場応答性高分子アクチュエータは、面状に配置される触感提示部を有し、前記触感提示部の内側には、前記触感提示部を内側へ押し付ける使用者の体の一部との間で前記触感提示部を挟み込むことにより、前記触感提示部における挟み込まれた部分の面方向の伸縮を部分的に制限する挟持部材が配置されている。
 上記構成によれば、挟持部材との間に電場応答性高分子アクチュエータを挟み込むように使用者の指等を触感提示部に押し付けた状態とした際に、触感提示部における使用者に接している部分に、使用者と挟持部材とに挟まれて面方向の伸縮が制限される部分(第1部分)と、挟持部材に接しておらず、面方向の伸縮が制限されていない部分(第2部分)とが形成される。本発明者は、この状態で電場応答性高分子アクチュエータを振動させると、使用者に対して、触感提示部が厚さ方向に変位したような触感が提示されることを発見した。この現象を利用することにより、使用者に電場応答性高分子アクチュエータの振動を面方向の触感としてより強く認識させることができる。
 上記触感提示装置において、前記挟持部材は、柔軟な弾性部材であることが好ましい。
 上記構成によれば、電場応答性高分子アクチュエータの振動を厚さ方向に変位しているような触感として使用者に認識させやすくなる。
 上記触感提示装置において、前記挟持部材は、前記触感提示部に向かって凸となる形状を有することが好ましい。
 上記構成によれば、触感提示部を内側へ押し付けた際に、触感提示部における使用者の指に接している部分の全てが、使用者の指と挟持部材とに挟まれる部分となってしまうことを抑制できる。
 上記触感提示装置は、前記面方向に沿った特定の直線方向の両端部側への前記触感提示部の変位を制限する制限部を備えることが好ましい。
 上記構成によれば、触感提示部の振動を増幅させることができる。
 上記触感提示装置は、動脈の振動を模擬するように前記電場応答性高分子アクチュエータへ印加される印加電圧を制御する制御装置をさらに備えることが好ましい。
 上記構成によれば、動脈の振動を模擬するように電場応答性高分子アクチュエータへ印加される印加電圧を制御することによって、電場応答性高分子アクチュエータを動脈のように振動させることが可能となる。
 上記触感提示装置において、前記電場応答性高分子アクチュエータは、誘電エラストマーアクチュエータであり、前記制御装置は、前記誘電エラストマーアクチュエータの静電容量に基づいて前記触感提示部に作用する外力を推定することが好ましい。
 上記構成によれば、簡易な構成で触感提示部に作用する外力を検出することができる。また、触感提示部が面状であることにより、触感提示部に作用する外力の大きさと、触感提示部に外力を作用させた際の静電容量の大きさとの関係が単純なものとなり、触感提示部に作用する外力を容易に推定できる。
 上記触感提示装置において、前記電場応答性高分子アクチュエータは、前記面方向に並んで配置される複数の電場応答性高分子アクチュエータのうちの一つであり、前記制御装置は、前記複数の電場応答性高分子アクチュエータへ印加される印加電圧を各別に制御することが好ましい。
 中国医学においては、例えば、左手の橈骨動脈の3箇所の脈診によって心(心臓や血管等)、肝(肝臓や筋肉等)、及び腎(腎臓、ホルモン、泌尿器等)の状態を把握することができる。上記構成によれば、制御装置により、面方向に並んで配置された複数の電場応答性高分子アクチュエータへ印加される印加電圧を各別に制御することによって、橈骨動脈の振動等を忠実に再現することができる。
 上記第1の目的を達成するための第2の態様の触感提示装置は、印加電圧に応じて面方向及び厚さ方向に伸縮するシート状の電場応答性高分子アクチュエータと、前記電場応答性高分子アクチュエータの内側に隣り合って設けられる柔軟な弾性部材と、を備え、前記電場応答性高分子アクチュエータと前記弾性部材とを共に変形させた状態で、印加電圧に応じた前記電場応答性高分子アクチュエータ及び前記弾性部材の振動を触感として使用者に認識させる。
 同構成によれば、使用者に電場応答性高分子アクチュエータの振動をより強く触感として認識させることができる。
 上記触感提示装置において、前記弾性部材は、筒状または柱状であることが好ましい。
 上記触感提示装置において、前記弾性部材は、円筒状または円柱状であることが好ましい。
 上記触感提示装置は、動脈の振動を模擬するように前記電場応答性高分子アクチュエータへ印加される印加電圧を制御する制御装置をさらに備えることが好ましい。
 同構成によれば、動脈の振動を模擬するように電場応答性高分子アクチュエータへ印加される印加電圧を制御することによって、電場応答性高分子アクチュエータを動脈のように振動させることが可能となる。
 上記第2の目的を達成する一態様の触感提示方法は、面方向に伸縮するシート状物を用い、使用者に前記シート状物の伸縮に基づく動作を触感として認識させる触感提示方法であって、前記シート状物を部分的に使用者のみと接触させる第1工程と、前記シート状物における前記使用者のみと接触した部分を面方向に伸長させることにより、使用者に前記シート状物の厚さ方向の押圧力を提示する第2工程とを含む。
 同構成によれば、使用者に、面方向に伸縮するシート状物の振動をより強く触感として認識させることができる。
 上記触感提示方法において、前記第1工程では、前記シート状物には、前記使用者と挟持部材とで挟まれた第1部分と、前記第1部分に隣接して、使用者のみと接触した第2部分とが形成されることが好ましい。
 同構成によれば、使用者の指における上記第1部分に接している部分には、主としてシート状物の厚さ方向の振動が伝わり、上記第2部分に触れている部分には、シート状物の厚さ方向の振動に加えて、シート状物の面方向の伸縮による引っ張るような力が伝わる。この時、使用者の指において、主としてシート状物の厚さ方向の振動が伝わる部分に隣接する部分に、面方向の伸長による引っ張るような力が伝わることにより、シート状物が厚さ方向に動き、挟持部材が膨らんで押圧力を受けたような触感が使用者の指に提示される。特に、使用者の指における上記第2部分に触れている部分に、シート状物が厚さ方向に動いたような触感が強く提示される。
 上記第3の目的を達成するための一態様のアクチュエータは、印加電圧に応じて面方向に伸縮するシート状の電場応答性高分子アクチュエータを備えるアクチュエータであって、前記電場応答性高分子アクチュエータは、弧状に湾曲された湾曲部と、前記面方向のうち前記湾曲部の周方向における両端部側への変位を制限する制限部と、を有しており、前記印加電圧に応じて前記面方向に伸縮しようとする力を前記湾曲部の径方向に変位する力に変換する。
 電場応答性高分子アクチュエータは、印加電圧に応じて面方向に伸縮しようとする。このとき、上記構成によれば、上記面方向のうち湾曲部の周方向における両端部側への変位が制限部によって制限されるため、上記面方向に伸縮しようとする力のうち湾曲部の周方向に変位しようとする力が湾曲部の径方向に変位する力に変換されるようになる。したがって、印加電圧に応じて面方向に伸縮するシート状の電場応答性高分子アクチュエータを用いて径方向の出力を得ることができる。
 上記アクチュエータにおいて、前記湾曲部は、前記電場応答性高分子アクチュエータの一部に設けられていることが好ましい。
 例えば電場応答性高分子アクチュエータが円筒状をなす場合のように湾曲部が周方向の全体にわたって設けられていても、湾曲部を径方向に変位させる力が周方向の全体にわたって分散される結果、径方向の変位の増加は少なく、効率的ではない。
 この点、上記構成によれば、湾曲部を周方向の全体にわたって設ける場合と比較して、径方向の出力を一層大きく得ることができる。
 上記アクチュエータは、前記湾曲部の軸線方向の両端部側への変位を規制する規制部を備えることが好ましい。
 同構成によれば、湾曲部の軸線方向の両端部側への変位が規制部によって規制されるため、上記面方向に伸縮しようとする力のうち湾曲部の軸線方向の両側へ変位しようとする力が湾曲部の径方向に変位する力に変換されるようになる。これにより、湾曲部の軸線方向の変位を規制しない場合と比較して、径方向の出力を一層大きく得ることができる。
 本開示の触感提示装置によれば、使用者に電場応答性高分子アクチュエータの振動をより強く触感として認識させることができる。
 また、本開示の触感提示方法によれば、使用者に、面方向に伸縮するシート状物の振動をより強く触感として認識させることができる。
 また、本開示のアクチュエータによれば、印加電圧に応じて面方向に伸縮するシート状の電場応答性高分子アクチュエータを用いて径方向の出力を得ることができる。
第1実施形態の触感提示装置の概略図。 図1の2-2線断面図。 図1の3-3線断面図。 誘電エラストマーアクチュエータの断面構造を示す断面図。 図1の触感提示装置の分解斜視図。 使用時の触感提示装置の状態を示す部分断面図。 変更例の挟持部材を示す部分断面図。 (a)、(b)は、変更例の挟持部材を示す部分断面図。 変更例の触感提示装置の斜視図。 第2実施形態の触感提示装置について、(a)は、触感提示装置の概略図、(b)は、触感提示装置の横断面図。 第2実施形態の触感提示装置を構成するアクチュエータ及び弾性部材を示す斜視図。 誘電エラストマーアクチュエータの平面図。 誘電エラストマーアクチュエータの断面構造を示す断面図。
 (第1実施形態)
 以下、第1実施形態の触感提示装置10について説明する。
 図1に示すように、触感提示装置10は、印加電圧に応じて発生する振動を人体の脈動の触感として使用者に認識させるものであり、制御装置30を備えている。
 また、図2及び図5に示すように、触感提示装置10は、上部に開口11aを有する箱状のケーシング11を備えている。ケーシング11の内部には、支持台12が収容されている。支持台12は、中央に円形の貫通孔を有する四角板状の天板12aと、天板12aの四隅から下方に延びる脚部12bとを備えている。支持台12は、ケーシング11の底壁を挟んで脚部12bに挿入されるネジ12cによってケーシング11に固定されている。
 ケーシング11内における支持台12の上には、挟持部材としての模擬血管13と、スペーサ14とが配置されている。模擬血管13は、血管を模擬して直線状に延びる円筒状の中空体であり、上側に向かって凸となる形状を有している。また、模擬血管13は、柔軟な弾性部材である。模擬血管13を構成する弾性材料としては、例えば、シリコーンやウレタン等のエラストマーが挙げられる。ケーシング11には、2本の模擬血管13が収容されており、2本の模擬血管13は、上下に積み重ねられた状態で、支持台12の天板12aの上に配置されている。
 スペーサ14は、支持台12の天板12aの上における模擬血管13を挟んだ両側において、上下に2個ずつ積み重ねられた状態で配置される。上側のスペーサ14の上面は、模擬血管13の頂部と同じ高さに位置している。
 スペーサ14の上には、模擬血管13の両側に配置されたスペーサ14に跨って、略矩形シート状の誘電エラストマーアクチュエータ15(DEA:Dielectric Elastomer Actuator)が配置されている。スペーサ14の上において、DEA15は、その全体が面状をなすように配置されるとともに、DEA15の内側に模擬血管13が近接又は接触した状態で隣り合うように配置されている。なお、上記面状は、意図的に湾曲させている状態を除く概念であり、重力による弛み等により僅かに沿っている状態も面状に含まれる。また、以下では、DEA15の面方向において、模擬血管13の延びる方向に沿った方向を第1方向A1とし、第1方向A1に直交する方向を第2方向A2として説明する。
 図4に示すように、DEA15は、誘電エラストマーからなるシート状の誘電層20と、誘電層20の厚さ方向の両側に配置された電極層としての正極電極21及び負極電極22との組み合わせが複数積層された多層構造体である。DEA15の最外層には絶縁層23が積層されている。DEA15は、正極電極21と負極電極22との間に直流電圧が印加されると、印加電圧の大きさに応じて、誘電層20が厚さ方向に圧縮されるとともに誘電層20の面に沿った方向であるDEA15の面方向に伸長するように変形する。
 誘電層20を構成する誘電エラストマーは特に限定されるものではなく、公知のDEAに用いられる誘電エラストマーを用いることができる。上記誘電エラストマーとしては、例えば、架橋されたポリロタキサン、シリコーンエラストマー、アクリルエラストマー、ウレタンエラストマーが挙げられる。これら誘電エラストマーのうちの一種を用いてもよいし、複数種を併用してもよい。誘電層20の厚さは、例えば、20~200μmである。
 正極電極21及び負極電極22を構成する材料としては、例えば、導電エラストマー、カーボンナノチューブ、ケッチェンブラック(登録商標)、金属蒸着膜が挙げられる。上記導電エラストマーとしては、例えば、絶縁性高分子及び導電性フィラーを含有する導電エラストマーが挙げられる。
 上記絶縁性高分子としては、例えば、架橋されたポリロタキサン、シリコーンエラストマー、アクリルエラストマー、ウレタンエラストマーが挙げられる。これら絶縁性高分子のうちの一種を用いてもよいし、複数種を併用してもよい。上記導電性フィラーとしては、例えば、カーボンナノチューブ、ケッチェンブラック(登録商標)、カーボンブラック、銅や銀等の金属粒子が挙げられる。これら導電性フィラーのうちの一種を用いてもよいし、複数種を併用してもよい。正極電極21及び負極電極22の厚さは、例えば、1~100μmである。
 絶縁層23を構成する絶縁エラストマーは特に限定されるものではなく、公知のDEAの絶縁部分に用いられる公知の絶縁エラストマーを用いることができる。上記絶縁エラストマーとしては、例えば、架橋されたポリロタキサン、シリコーンエラストマー、アクリルエラストマー、ウレタンエラストマーが挙げられる。これら絶縁エラストマーのうちの一種を用いてもよいし、複数種を併用してもよい。絶縁層23の厚さは、例えば、10~100μmである。また、DEA15全体の厚さは、柔軟性及び強度の確保の観点から、例えば、0.3~3mmであることが好ましい。
 図2及び図5に示すように、DEA15におけるスペーサ14の上に位置する部分の上には、板状の一対の押さえ部材16が配置されている。押さえ部材16は、DEA15の第2方向A2の端部に位置する両側縁部を覆うようにDEA15の上に配置されている。本実施形態においては、DEA15における一対の押さえ部材16の間に位置する部分が面状の触感提示部15aを構成する。そして、押さえ部材16が第2方向A2の両端部側への触感提示部15aの変位を制限する制限部を構成する。
 図3及び図5に示すように、ケーシング11の上部には、開口11aを塞ぐカバー17が配置されている。カバー17は、ブッシュ19a及びピン19bを用いてケーシング11に固定されている。
 図2に示すように、ケーシング11にカバー17を固定した状態においては、カバー17によって押さえ部材16がDEA15に押し付けられる。このため、DEA15の両側縁部が押さえ部材16とスペーサ14との間に所定の押圧力をもって挟み込まれた状態になる。これにより、触感提示部15aの押さえ部材16側、即ち、第2方向A2の両端部側への変位が制限された状態になる。
 カバー17の中央部には、DEA15の触感提示部15aにおける少なくとも模擬血管13の上に位置する部分を露出させる矩形状の窓部17aが設けられている。窓部17aの第2方向A2の長さは、模擬血管13の幅よりも長く設定されている。
 図1に示すように、制御装置30は、動脈の振動を模擬するように、バッテリー等の電源(図示略)からDEA15へ印加される印加電圧を制御する。制御装置30は、1)コンピュータプログラム(ソフトウェア)に従って動作する1つ以上のプロセッサ、2)各種処理のうち少なくとも一部の処理を実行する特定用途向け集積回路(ASIC)等の1つ以上の専用のハードウェア回路、或いは3)それらの組み合わせ、を含む回路(circuitry)として構成し得る。プロセッサは、CPU並びに、RAM及びROM等のメモリを含み、メモリは、処理をCPUに実行させるように構成されたプログラムコードまたは指令を格納している。メモリすなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。制御装置30において、DEA15に対する印加電圧の大きさや、印加電圧の継続時間、前後の印加電圧の間隔等が変更されると、これらに応じてDEA15の振動パターンが変更される。具体的には、制御装置30は、平生の健康なときの動脈の振動パターンに対応する印加電圧の信号と、所定の疾患のときの動脈の振動パターンに対応する印加電圧の信号とを記憶した記憶部を有しており、切替スイッチ31の操作に基づいて印加電圧の信号を切り替え可能に構成されている。平生の健康なときの動脈の振動パターンは、所謂平脈の振動パターンに対応する。所定の疾患のときの動脈の振動パターンは、所謂病脈の振動パターンに対応する。
 また、制御装置30は、DEA15のセルフセンシング特性を利用して、DEA15に作用する外力、即ち、使用者がDEA15を押圧する押圧力を推定し、推定結果を報知部32に報知させる。詳述すると、制御装置30は、DEA15を振動させるための印加電圧に比べて十分小さな交流電圧を印加電圧に加えることで、DEA15の静電容量を測定し、測定されたDEA15の静電容量に基づいてDEA15に作用する外力を推定する。
 DEA15の静電容量は、DEA15の電極間の間隔に反比例し、電極の面積(対向面積)に比例するパラメータであり、DEA15の形状に応じて変化する。そのため、DEA15に対して、大きな電圧が印加されて、誘電層20の厚さ方向の圧縮に基づく変形量が増大すると、DEA15の静電容量も増大する。したがって、DEA15の印加電圧と静電容量との間には、一方が大きくなるに従って他方も大きくなる相関関係が成立している。そして、DEA15の形状や変形量と静電容量との間には、互いに変換可能な相関関係が成立している。
 また、DEA15に対して圧縮する外力が作用している状態ではDEA15の変形量が増大する。その結果、印加電圧が同じであっても、DEA15の静電容量は減少する。したがって、DEA15に外力が作用している状態と外力が作用していない状態との間の静電容量の相違は、DEA15に作用している外力の大きさを示すパラメータと見なすことができる。
 次に、第1実施形態の作用について説明する。
 図6に示すように、模擬血管13との間にDEA15を挟み込むように触感提示部15aに使用者の指を押し付けた状態で、DEA15に電圧を印加する。DEA15に電圧が印加されると、触感提示部15aは、印加電圧に応じたDEA15の面方向及び厚さ方向の伸縮に基づいて振動し、その振動が使用者の指に伝わる。本実施形態においては、触感提示部15aの第2方向A2の両端部側への変位を制限することにより、触感提示部15aの振動を増幅させている。
 使用者は、触感提示部15aの振動をDEA15の厚さ方向の触感として認識する。そのメカニズムは、以下のように推測される。
 図6に示すように、触感提示部15aにおける使用者の指に接している部分には、模擬血管13に接して、使用者の指と模擬血管13とに挟まれる第1部分P1と、模擬血管13に接しておらず、使用者の指のみに接する第2部分P2とが形成される。第1部分P1と第2部分P2とは互いに隣接している。触感提示部15aの第1部分P1は、使用者の指と模擬血管13とに挟まれることにより、触感提示部15aの他の部分よりも面方向の伸縮が制限された状態になる。一方、触感提示部15aの第2部分P2は、使用者の指の表面を引っ張るように面方向に伸縮する。
 これにより、使用者の指における触感提示部15aの第1部分P1に接している部分には、主として触感提示部15aの厚さ方向の振動が伝わり、触感提示部15aの第2部分P2に触れている部分には、触感提示部15aの厚さ方向の振動に加えて、触感提示部15aの面方向の伸縮による引っ張るような力が伝わる。この時、使用者の指において、主として触感提示部15aの厚さ方向の振動が伝わる部分に隣接する部分に、面方向の伸長による引っ張るような力が伝わることにより、触感提示部15aが厚さ方向に動き、模擬血管13が膨らんで押圧力を受けたような触感が使用者の指に提示される。特に、使用者の指における上記第2部分P2に触れている部分に、触感提示部15aが厚さ方向に動いたような触感が強く提示される。
 そして、使用者の指に提示される上記の触感は、DEA15に対する印加電圧の大きさや、印加電圧の継続時間、前後の印加電圧の間隔等を調整することにより、模擬血管13が脈動しているような触感になる。また、報知部32には、使用者がDEA15を押圧している押圧力が報知される。
 本実施形態の触感提示装置10は、脈診についての訓練や解析を行うためのシミュレーターとして用いることができる。例えば、DEA15に対する印加電圧の信号を切り替えることにより、使用者は、平脈と病脈との違いを体感的に理解できる。また、触感提示装置10を用いて脈診のシミュレーションを実施し、その際に報知部32に報知される押圧力を解析することにより、脈診時の押圧力を定量的に評価できる。
 次に、第1実施形態の効果について説明する。
 (1)触感提示装置10は、印加電圧に応じて面方向及び厚さ方向に伸縮するシート状のDEA15を備え、使用者にDEA15の伸縮に基づく振動を触感として認識させる。DEA15は、面状に配置される触感提示部15aを有する。触感提示部15aの内側には、触感提示部15aを内側へ押し付ける使用者の指との間で触感提示部15aを挟み込むことにより、触感提示部15aにおける挟み込まれた第1部分P1の面方向の伸縮を部分的に制限する挟持部材としての模擬血管13が配置されている。
 上記構成によれば、模擬血管13との間にDEA15を挟み込むように、触感提示部15aに使用者の指を押し付けた状態で、DEA15を振動させると、使用者に対して、触感提示部15aが厚さ方向に変位したような触感が提示される。この現象を利用することにより、使用者にDEA15の振動を面方向の触感としてより強く認識させることができる。また、触感提示部15aが面状であるため、装置の設計や組み立てを容易に行うことができる。
 (2)模擬血管13は、柔軟な弾性部材である。
 上記構成によれば、DEA15の振動を厚さ方向に変位しているような触感として使用者に認識させやすくなる。また、模擬血管13が動作しているように使用者に認識させやすくなる。
 (3)模擬血管13は、触感提示部15aに向かって凸となる形状を有する。
 上記構成によれば、触感提示部15aを内側へ押し付けた際に、触感提示部15aにおける使用者の指に接している部分の全てが、使用者の指と模擬血管13とに挟まれる第1部分P1となってしまうことが抑制される。
 (4)触感提示装置10は、面方向に沿った第2方向A2の両端部側への触感提示部15aの変位を制限する制限部としての押さえ部材16を備えている。
 上記構成によれば、触感提示部15aの振動を増幅させることができる。
 (5)触感提示装置10は、動脈の振動を模擬するようにDEA15へ印加される印加電圧を制御する制御装置30を備える。
 上記構成によれば、動脈の振動を模擬するようにDEA15へ印加される印加電圧を制御することによって、触感提示部15aを動脈のように振動させることが可能となる。したがって、模擬血管に対して模擬血液としての流体を圧送するとともに同流体の流量制御を行う従来の構成と比較して、触感提示装置の構成を簡単にすることができる。
 (6)模擬血管13は、中空体からなる弾性部材であり、中空体からなる複数の弾性部材をDEA15の厚さ方向に重ねて配置している。
 中空体を模擬血管13として用いることにより、DEA15の振動を厚さ方向の触感として更に強く使用者に認識させることができる。また、中空体からなる弾性部材をDEA15の厚さ方向に重ねることにより、DEA15の振動を厚さ方向の触感として更に強く使用者に認識させることができる。
 (7)制御装置30は、DEA15の静電容量に基づいて触感提示部15aに作用する外力を推定する。
 上記構成によれば、簡易な構成で触感提示部15aに作用する外力を検出することができる。また、触感提示部15aが面状であることにより、触感提示部15aに作用する外力の大きさと、触感提示部15aに外力を作用させた際の静電容量の大きさとの関係が単純なものとなり、触感提示部15aに作用する外力を容易に推定できる。
 例えば、外側に凸となるように湾曲した触感提示部15aに対して外力を作用させた場合、静電容量は、触感提示部15aが外側に凸の状態から平面の状態に変形する期間と、平面の状態から外側に凹の状態に変形する期間と境で静電容量の変化方向が切り替わってしまう。これに対して、触感提示部15aが面状である場合には、触感提示部15aに外力を作用させた際に静電容量の変化方向が切り替わることがないため、静電容量に基づいて触感提示部15aに作用する外力を容易に推定できる。
 (8)面方向に伸縮するシート状物であるDEA15を用い、使用者にそのシート状物の伸縮に基づく動作を触感として認識させる触感提示方法は、シート状物(DEA15)を部分的に使用者のみと接触させる第1工程と、シート状物(DEA15)における使用者のみと接触した部分を面方向に伸長させることにより、使用者にシート状物の厚さ方向の押圧力を提示する第2工程とを含む。
 上記構成によれば、使用者に、面方向に伸縮するシート状物の振動をより強く触感として認識させることができる。
 (9)上記第1工程では、シート状物(DEA15)には、使用者と挟持部材(模擬血管13)とで挟まれた第1部分P1と、その第1部分P1に隣接して、使用者のみと接触した第2部分P2とが形成される。
 上記構成によれば、使用者の指における上記第1部分P1に接している部分には、主としてシート状物(DEA15)の厚さ方向の振動が伝わり、上記第2部分P2に触れている部分には、シート状物の厚さ方向の振動に加えて、シート状物の面方向の伸縮による引っ張るような力が伝わる。この時、使用者の指において、主としてシート状物の厚さ方向の振動が伝わる部分に隣接する部分に、面方向の伸長による引っ張るような力が伝わることにより、シート状物が厚さ方向に動き、挟持部材(模擬血管13)が膨らんで押圧力を受けたような触感が使用者の指に提示される。特に、使用者の指における上記第2部分P2に触れている部分に、シート状物が厚さ方向に動いたような触感が強く提示される。
 なお、上記第1実施形態は、以下のように変更して実施することができる。第1実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ・挟持部材に関して、DEA15の厚さ方向に重ねられる中空体の個数は特に限定されるものではなく、3個以上の中空体を重ねて配置してもよいし、中空体を1個のみ配置してもよい。
 ・挟持部材は、金属やプラスチック等からなる硬質部材であってもよい。
 ・挟持部材の形状及び大きさは特に限定されるものではなく、触感提示部15aを内側へ押し付けた際に、触感提示部15aにおける使用者の指に触れている部分に、挟持部材に接する第1部分P1と挟持部材に接しない第2部分P2とが形成される形状及び大きさであればよい。例えば、触感提示部15aに向かって凸となる円筒状以外の形状としては、円柱状、角部が触感提示部15a側を向く多角筒状及び多角柱状、球体状が挙げられる。また、挟持部材13aは、触感提示部15a側の表面が面状であってもよい。
 例えば、図7に示すように、挟持部材13aの上面を、触感提示部15aと平行かつ触感提示部15aにおけるスペーサ14が接していない部分よりも小さい面状に形成してもよい。この場合には、挟持部材13aの上面の縁13a1に跨るようにして、使用者の指を触感提示部15aに押し付ける。これにより、触感提示部15aにおける使用者の指に接している部分に、挟持部材13aに接する第1部分P1と、挟持部材13aに接しない第2部分P2とを形成することができる。
 また、図8(a)に示すように、挟持部材13aの上面を、触感提示部15aと平行かつ触感提示部15aにおけるスペーサ14が接していない部分と同程度の大きさの面状に形成するとともに、触感提示部15aから離間して配置してもよい。この場合には、図8(b)に示すように、使用者の指により触感提示部15aを内側へ押し付けた際に、触感提示部15aは、面状から指に沿った下側に凸となる曲面状に変形しつつ、その先端側の一部が挟持部材13aに接触する。これにより、触感提示部15aにおける使用者の指に接している部分に、挟持部材13aに接する第1部分P1と挟持部材13aに接しない第2部分P2とを形成することができる。
 ・制限部は、押さえ部材16に限定されるものではなく、触感提示部15aの第2方向A2の両端部側への変位を制限できる構成であればよい。例えば、触感提示部15aの第2方向A2の両端部をスペーサ14に固定することで、触感提示部15aの第2方向A2の両端部側への変位を規制するようにしてもよい。また、制限部を省略してもよい。
 ・触感提示部15aにおける第2方向A2に直交する第1方向A1の両端部側への変位を制限する第2の制限部を設けてもよい。この場合には、触感提示部15aの振動の振幅をより大きくできるため、使用者にDEA15の振動を触感としてより強く認識させることができる。
 ・触感提示装置10は、DEA15を備えるものに限定されない。他に例えば、イオン交換ポリマーメタル複合体(IPMC:Ionic Polymer Metal Composite)等の他の電場応答性高分子アクチュエータ(EPA:Electroactive Polymer Actuator)を備えるものであってもよい。また、上記触感提示方法に用いられるシート状物は、面方向に伸縮するものであればDEA15に限定されない。例えば、イオン交換ポリマーメタル複合体(IPMC:Ionic Polymer Metal Composite)等の電場応答性高分子アクチュエータ(EPA:Electroactive Polymer Actuator)をシート状物として用いてもよい。
 ・触感提示部15aに作用する外力を推定する方法は、DEA15の静電容量に基づく方法に限定されない。例えば、触感提示部15aに変位センサを取り付けて、変位センサにより検出される変位量に基づいて、触感提示部15aに作用する外力を推定してもよい。
 ・ケーシング11やカバー17等の触感提示装置10の外表面を構成する部分の一部又は全部を人体の前腕及び手を模擬するように、その材質や形状を変更してもよい。例えば、本実施形態の触感提示装置を用いて触診を行う際に、皮膚に近い触感が得られるように、カバー17をスポンジ等の柔軟材料により形成してもよい。
 ・図9に示すように、触感提示装置10は、2以上のDEA15を備えるものであってもよい。中国医学においては、例えば、左手の橈骨動脈の3箇所の脈診によって心(心臓や血管等)、肝(肝臓や筋肉等)、及び腎(腎臓、ホルモン、泌尿器等)の状態を把握することができるとされている。図9に示す触感提示装置10は、3個のDEA15の各触感提示部15aを上記の3箇所に見立てて、各触感提示部15aが第1方向A1に並んで配置されている。この場合、制御装置30により、3個のDEA15へ印加される印加電圧を各別に制御することによって、各所の位相差を含め、橈骨動脈の振動を忠実に再現することができる。
 また、複数のDEA15は、それぞれ別のシートとして構成されるものであってもよいし、例えば、各DEA15の最外層に、共通のシート状の絶縁層23を設けて一体化する等して、一枚のシートとして構成されたものであってもよい。
 ・触感提示装置10の適用対象は、印加電圧に応じて発生するDEA15の振動を人体の脈動の触感として使用者に認識させるものに限定されるものではなく、触感提示部15aが厚さ方向に変位したような触感を使用者に認識させるものであれば、ぬいぐるみ等に対して適用することもできる。
 ・触感提示部15aを内側へ押し付ける使用者の体の部位は特に限定されるものではなく、掌等の手の指以外の部位であってもよい。
 次に、上記実施形態及び変更例から把握できる技術的思想を以下に記載する。
 (A)前記触感提示装置において、前記挟持部材は、中空体である。
 (B)前記触感提示装置において、前記挟持部材は、複数の中空体を前記電場応答性高分子アクチュエータの厚さ方向に重ねて配置してなる。
 (C)前記触感提示装置において、前記挟持部材は、その上面の縁の少なくとも一部が前記触感提示部の内側に位置するように配置されている。
 (第2実施形態)
 以下、図10~図13を参照して、第2実施形態の触感提示装置210について説明する。
 図10(a)に示すように、触感提示装置210は、印加電圧に応じて発生する振動を人体の脈動の触感として使用者に認識させるものであり、制御装置240を備えている。
 また、図10(a)及び図10(b)に示すように、触感提示装置210は、人体の前腕及び手の外側形状を模擬したものであり、柔軟材料からなる基材230を備えている。基材230を構成する柔軟材料としては、例えばシリコーンやウレタンなどのエラストマーが挙げられる。
 基材230の内部には、人体の橈骨及び尺骨をそれぞれ模擬した第1芯部231及び第2芯部232と、橈骨動脈を模擬したアクチュエータ211とが設けられている。
 図11及び図12に示すように、アクチュエータ211は、略矩形シート状の複数(本実施形態では3つ)の誘電エラストマーアクチュエータ212(DEA:Dielectric Elastomer Actuator)を備えている。
 図13に示すように、DEA212は、誘電エラストマーからなるシート状の誘電層220と、誘電層220の厚さ方向の両側に配置された電極層としての正極電極221及び負極電極222との組み合わせが複数積層された多層構造体である。DEA212の最外層には絶縁層223が積層されている。DEA212は、正極電極221と負極電極222との間に直流電圧が印加されると、印加電圧の大きさに応じて、誘電層220が厚さ方向に圧縮されるとともに誘電層220の面に沿った方向であるDEA212の面方向に伸長するように変形する。
 誘電層220を構成する誘電エラストマーは特に限定されるものではなく、第1実施形態の誘電層20と同様の誘電エラストマーを用いることができる。誘電層20と同様に、誘電層220の厚さは、例えば、20~200μmである。
 正極電極221及び負極電極222を構成する材料としては、第1実施形態の正極電極21及び負極電極22と同様に、例えば、導電エラストマー、カーボンナノチューブ、ケッチェンブラック(登録商標)、金属蒸着膜が挙げられる。上記導電エラストマーとしては、例えば、絶縁性高分子及び導電性フィラーを含有する導電エラストマーが挙げられる。
 上記絶縁性高分子としては、例えば、架橋されたポリロタキサン、シリコーンエラストマー、アクリルエラストマー、ウレタンエラストマーが挙げられる。これら絶縁性高分子のうちの一種を用いてもよいし、複数種を併用してもよい。上記導電性フィラーとしては、例えば、ケッチェンブラック(登録商標)、カーボンブラック、銅や銀等の金属粒子が挙げられる。これら導電性フィラーのうちの一種を用いてもよいし、複数種を併用してもよい。正極電極221及び負極電極222の厚さは、例えば、1~100μmである。
 絶縁層223を構成する絶縁エラストマーは特に限定されるものではなく、第1実施形態の絶縁層23と同様の絶縁エラストマーを用いることができる。絶縁層23と同様に、絶縁層223の厚さは、例えば、10~100μmである。
 図12に示すように、本実施形態では、3つのDEA212が、それらの短辺方向に互いに所定の間隔をおいて並んで設けられている。また、3つのDEA212の最外層には、それらに共通の1つの矩形シート状の絶縁層223が設けられており、3つのDEA212が一体化されている。
 図11及び図12に示すように、DEA212は、半円弧状に湾曲された湾曲部212aを有している。すなわち、DEA212は、図12に示す平板状のものを、絶縁層223の短辺方向の中央部が断面半円弧状に丸まるように同短辺方向の両端部同士を互いに接合することで形成されている。なお、以降において、湾曲部212aの周方向、径方向、及び軸線方向をそれぞれ周方向A、径方向B、及び軸線方向Cとして説明する。
 本実施形態では、3つのDEA212が軸線方向Cに並んで配置されている。
 本実施形態の湾曲部212aは、DEA212の一部、より詳しくは、周方向Aの半分の部分に設けられている。
 DEA212は、面方向のうち周方向Aにおける両端部側への変位を制限する制限部212bを有している。本実施形態の制限部212bは、上記短辺方向の両端部同士を互いに接合することで形成されている。制限部212bは、第1芯部231に当接または近接して配置される。
 こうした構成を備えるDEA212は、印加電圧に応じて面方向に伸縮しようとする力を湾曲部212aの径方向Bに変位する力に変換する。
 図11に示すように、DEA212の内部には、柔軟な円筒状の弾性部材215が挿通されている。弾性部材215は、湾曲部212aの内周側に隣り合って設けられている。本実施形態では、弾性部材215とDEA212との間に僅かな隙間が設定されている。なお、弾性部材215を構成する材料としては、例えばシリコーンやウレタンなどのエラストマーが挙げられる。
 DEA212の軸線方向Cの両端部には、湾曲部212aの軸線方向Cの両端部側への変位を規制する一対の規制部213が設けられている。一対の規制部213は、基材230や、第1芯部231に対してそれぞれ固定される。
 制御装置240は、動脈の振動を模擬するように、バッテリなどの電源(図示略)からDEA212へ印加される印加電圧を制御する。制御装置240は、1)コンピュータプログラム(ソフトウェア)に従って動作する1つ以上のプロセッサ、2)各種処理のうち少なくとも一部の処理を実行する特定用途向け集積回路(ASIC)等の1つ以上の専用のハードウェア回路、或いは3)それらの組み合わせ、を含む回路(circuitry)として構成し得る。プロセッサは、CPU並びに、RAM及びROM等のメモリを含み、メモリは、処理をCPUに実行させるように構成されたプログラムコードまたは指令を格納している。メモリすなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。制御装置240は、3つのDEA212へ印加される印加電圧を各別に制御する。
 制御装置240において、各DEA212に対する印加電圧の大きさや、印加電圧の継続時間、前後の印加電圧の間隔などが変更されると、これらに応じて各DEA212の湾曲部212aの振動パターンが変更される。具体的には、制御装置240は、平生の健康なときの動脈の振動パターンに対応する印加電圧の信号と、所定の疾患のときの動脈の振動パターンに対応する印加電圧の信号とを記憶した記憶部を有しており、切替スイッチ241の操作に基づいて印加電圧の信号を切り替え可能に構成されている。平生の健康なときの動脈の振動パターンは、所謂平脈の振動パターンに対応する。所定の疾患のときの動脈の振動パターンは、所謂病脈の振動パターンに対応する。
 以上説明した第2実施形態に係るアクチュエータ及び触感提示装置によれば、以下に示す作用効果が得られるようになる。
 (10)触感提示装置210は、印加電圧に応じて面方向及び厚さ方向に伸縮するシート状の電場応答性高分子アクチュエータ(DEA212)と、DEA212の内側に隣り合って設けられる柔軟な弾性部材215と、を備える。触感提示装置210は、DEA212と弾性部材215とを共に変形させた状態で、印加電圧に応じたDEA212及び弾性部材215の振動を触感として使用者に認識させる。
 こうした構成によれば、DEA212の振動をより強く触感として使用者に認識させることができる。
 (11)触感提示装置210は、動脈の振動を模擬するようにDEA212へ印加される印加電圧を制御する制御装置240を備える。
 こうした構成によれば、動脈の振動を模擬するようにDEA212へ印加される印加電圧を制御することによって、DEA212を動脈のように振動させることが可能となる。したがって、模擬血管に対して模擬血液としての流体を圧送するとともに同流体の流量制御を行う従来の構成と比較して、触感提示装置の構成を簡単にすることができる。
 (12)アクチュエータ211は、印加電圧に応じて面方向に伸縮するシート状の誘電エラストマーアクチュエータ(DEA212)を備える。DEA212は、弧状に湾曲された湾曲部212aと、面方向のうち湾曲部212aの周方向における両端部側への変位を制限する制限部212bとを有しており、印加電圧に応じて面方向に伸縮しようとする力を湾曲部212aの径方向に変位する力に変換する。
 DEA212は、印加電圧に応じて面方向に伸縮しようとする。このとき、上記構成によれば、上記面方向のうち湾曲部212aの周方向Aにおける両端部側への変位が制限部212bによって制限されるため、上記面方向に伸縮しようとする力のうち湾曲部212aの周方向Aに変位しようとする力が湾曲部212aの径方向Bに変位する力に変換されるようになる。したがって、印加電圧に応じて面方向に伸縮するシート状のDEA212を用いて径方向Bの出力を得ることができる。
 (13)アクチュエータ211は、湾曲部212aの軸線方向Cの両端部側への変位を規制する規制部213を備える。
 こうした構成によれば、湾曲部212aの軸線方向Cの両端部側への変位が規制部213によって規制されるため、上記面方向に伸縮しようとする力のうち湾曲部212aの軸線方向Cの両端部側へ変位しようとする力が湾曲部212aの径方向Bに変位する力に変換されるようになる。これにより、湾曲部212aの軸線方向Cの変位を規制しない場合と比較して、径方向Bの出力を一層大きく得ることができる。
 (14)触感提示装置210は、アクチュエータ211を備え、印加電圧に応じて発生する湾曲部212aの径方向Bの振動を触感として使用者に認識させるものであって、湾曲部212aの内周側に隣り合って設けられる柔軟な弾性部材215を備える。
 こうした構成によれば、触感提示装置210の使用者が強くアクチュエータ211を押圧しても、アクチュエータ211がキンクすることを低減できる。また、印加電圧に応じて湾曲部212aの径方向Bの振動を触感として使用者に認識させることができる。弾性部材215とDEA212とは使用者の押圧力により接触するとともに、供に変形する。よって、上記振動には、柔軟な弾性部材215の弾性反発力が加わるため、DEA212の振動をより強く脈動の触感として使用者に認識させることができる。
 (15)複数のDEA212が軸線方向Cに並んで配置されている。制御装置240は、複数のDEA212へ印加される印加電圧を各別に制御する。
 中国医学においては、例えば左手の橈骨動脈の3箇所の脈診によって心臓、肝臓、及び腎臓の状態を把握することができるとされている。
 上記構成によれば、制御装置240により、軸線方向Cに並んで配置された複数のDEA212へ印加される印加電圧を各別に制御することによって、各所の位相差を含め、橈骨動脈の振動を忠実に再現することができる。
 上記第2実施形態は、以下のように変更して実施することができる。第2実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ・脈診において、平脈の場合には、指により動脈を押圧する押圧力を3段階で大きくすると、小さい場合及び大きい場合よりも中くらいの場合のときに脈の深さ、すなわち湾曲部212aの径方向Bの変位量が大きくなる。これに対して、例えば浮脈と称される病脈の場合には、指により動脈を押圧する押圧力が大きくなるほど、脈動の振幅、すなわち湾曲部212aの径方向Bの変位量が小さくなる。
 これに対して、DEA212のセルフセンシング特性を利用することにより、DEA212の湾曲部212aを押圧する押圧力を推定し、その押圧力に応じてDEA212へ印加される印加電圧を変更することもできる。
 DEA212の静電容量は、DEA212の電極間の間隔に反比例し、電極の面積(対向面積)に比例するパラメータであり、DEA212の形状に応じて変化する。そのため、DEA212に対して、大きな電圧が印加されて、誘電層220の厚さ方向の圧縮に基づく変形量が増大すると、DEA212の静電容量も増大する。したがって、DEA212の印加電圧と静電容量との間には、一方が大きくなるに従って他方も大きくなる相関関係が成立している。そして、DEA212の形状(変形量)と静電容量との間には、互いに変換可能な相関関係が成立している。
 また、DEA212に対して圧縮する外力(この場合、指によりDEA212を押圧する押圧力)が作用している状態ではDEA212の変形量が増大する。その結果、印加電圧が同じであっても、DEA212の静電容量は減少する。したがって、DEA212に外力が作用している状態と外力が作用していない状態との間の静電容量の相違は、DEA212に作用している外力の大きさを示すパラメータと見なすことができる。
 そこで、制御装置240において、各DEA212への印加電圧に比べて十分小さな交流電圧を印加電圧に加えることで、各DEA212の静電容量を測定するとともに、印加電圧及び静電容量から押圧力を推定することができる。
 ・基材230は人体の前腕及び手を模擬したものに限らず、円筒状や箱状をなすものであってもよい。
 ・上記実施形態では、3つのDEA212を絶縁層223を介して一体に設けた例について示したが、3つのDEA212を互いに分離して設けることもできる。
 ・アクチュエータ211は、2つや4つ以上のDEA212を備えるものであってもよいし、1つのDEA212を備えるものであってもよい。
 ・弾性部材215は円筒状のものに限らず、半円筒状、円柱状、半円柱状、角柱状などその形状を適宜変更することができる。
 ・例えば一対の規制部213に代えて、DEA212の軸線方向Cの両端部を基材230に固定することで、DEA212の軸線方向Cの両端部側への変位を規制するようにしてもよい。
 ・アクチュエータ211の規制部を省略することもできる。この場合であっても、DEA212を用いて径方向Bの出力を得ることができる。
 ・DEA212は半円筒状であってもよい。この場合、DEA212全体が湾曲部212aとなる。また、例えばDEA212の周方向の両端部を基材230に固定することで制限部を構成するようにしてもよい。
 ・DEA212の湾曲部を周方向Aの全体にわたって設けてもよい。すなわち、DEA212を円筒状にすることもできる。
 ・アクチュエータ211は、誘電エラストマーアクチュエータを備えるものに限定されない。他に例えば、イオン交換ポリマーメタル複合体(IPMC:Ionic Polymer Metal Composite)などの他の電場応答性高分子アクチュエータ(EPA:Electroactive Polymer Actuator)を採用することもできる。
 ・第2実施形態に係る触感提示装置は、印加電圧に応じて発生するDEA212の振動を脈動の触感として使用者に認識させるものに限定されるものではなく、DEA212の振動を触感として使用者に認識させるものであれば、ぬいぐるみなどに対して適用することもできる。
 ・第2実施形態に係るアクチュエータの適用対象は、触感提示装置に限らず、湾曲部の径方向の変位を利用するものであれば任意である。
 P1…第1部分、P2…第2部分、10…触感提示装置、13…模擬血管、13a…挟持部材、15…誘電エラストマーアクチュエータ(DEA)、15a…触感提示部、20…誘電層、21…正極電極、22…負極電極、23…絶縁層、30…制御装置、32…報知部、210…触感提示装置、211…アクチュエータ、212…誘電エラストマーアクチュエータ(DEA)、212a…湾曲部、212b…制限部、213…規制部、215…弾性部材、220…誘電層、221…正極電極、222…負極電極、223…絶縁層、230…基材、231…第1芯部、232…第2芯部、240…制御装置、241…切替スイッチ。

Claims (16)

  1.  印加電圧に応じて面方向及び厚さ方向に伸縮するシート状の電場応答性高分子アクチュエータを備え、使用者に前記電場応答性高分子アクチュエータの伸縮に基づく振動を触感として認識させる触感提示装置であって、
     前記電場応答性高分子アクチュエータは、面状に配置される触感提示部を有し、
     前記触感提示部の内側には、前記触感提示部を内側へ押し付ける使用者の体の一部との間で前記触感提示部を挟み込むことにより、前記触感提示部における挟み込まれた部分の面方向の伸縮を部分的に制限する挟持部材が配置されていることを特徴とする触感提示装置。
  2.  前記挟持部材は、柔軟な弾性部材である請求項1に記載の触感提示装置。
  3.  前記挟持部材は、前記触感提示部に向かって凸となる形状を有する請求項1又は請求項2に記載の触感提示装置。
  4.  前記面方向に沿った特定の直線方向の両端部側への前記触感提示部の変位を制限する制限部を備える請求項1~3のいずれか一項に記載の触感提示装置。
  5.  動脈の振動を模擬するように前記電場応答性高分子アクチュエータへ印加される印加電圧を制御する制御装置をさらに備える請求項1~4のいずれか一項に記載の触感提示装置。
  6.  前記電場応答性高分子アクチュエータは、誘電エラストマーアクチュエータであり、
     前記制御装置は、前記誘電エラストマーアクチュエータの静電容量に基づいて前記触感提示部に作用する外力を推定する請求項5に記載の触感提示装置。
  7.  前記電場応答性高分子アクチュエータは、前記面方向に並んで配置される複数の電場応答性高分子アクチュエータのうちの一つであり、
     前記制御装置は、前記複数の電場応答性高分子アクチュエータへ印加される印加電圧を各別に制御する請求項5又は請求項6に記載の触感提示装置。
  8.  印加電圧に応じて面方向及び厚さ方向に伸縮するシート状の電場応答性高分子アクチュエータと、前記電場応答性高分子アクチュエータの内側に隣り合って設けられる柔軟な弾性部材と、を備え、
     前記電場応答性高分子アクチュエータと前記弾性部材とを共に変形させた状態で、印加電圧に応じた前記電場応答性高分子アクチュエータ及び前記弾性部材の振動を触感として使用者に認識させる、
     触感提示装置。
  9.  前記弾性部材は、筒状または柱状である、
     請求項8に記載の触感提示装置。
  10.  前記弾性部材は、円筒状または円柱状である、
     請求項9に記載の触感提示装置。
  11.  動脈の振動を模擬するように前記電場応答性高分子アクチュエータへ印加される印加電圧を制御する制御装置をさらに備える請求項8~請求項10のいずれか一項に記載の触感提示装置。
  12.  面方向に伸縮するシート状物を用い、使用者に前記シート状物の伸縮に基づく動作を触感として認識させる触感提示方法であって、
     前記シート状物を部分的に使用者のみと接触させる第1工程と、
     前記シート状物における前記使用者のみと接触した部分を面方向に伸長させることにより、使用者に前記シート状物の厚さ方向の押圧力を提示する第2工程とを含む触感提示方法。
  13.  前記第1工程では、前記シート状物には、前記使用者と挟持部材とで挟まれた第1部分と、前記第1部分に隣接して、使用者のみと接触した第2部分とが形成される、
     請求項12に記載の触感提示方法。
  14.  印加電圧に応じて面方向に伸縮するシート状の電場応答性高分子アクチュエータを備えるアクチュエータであって、
     前記電場応答性高分子アクチュエータは、弧状に湾曲された湾曲部と、前記面方向のうち前記湾曲部の周方向における両端部側への変位を制限する制限部と、を有しており、前記印加電圧に応じて前記面方向に伸縮しようとする力を前記湾曲部の径方向に変位する力に変換する、
     アクチュエータ。
  15.  前記湾曲部は、前記電場応答性高分子アクチュエータの一部に設けられている、
     請求項14に記載のアクチュエータ。
  16.  前記湾曲部の軸線方向の両端部側への変位を規制する規制部を備える、
     請求項14または請求項15に記載のアクチュエータ。
PCT/JP2019/048103 2019-01-15 2019-12-09 触感提示装置、触感提示方法、及びアクチュエータ WO2020149052A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980088828.8A CN113302671A (zh) 2019-01-15 2019-12-09 触觉提示装置、触觉提示方法以及致动器
JP2020566147A JPWO2020149052A1 (ja) 2019-01-15 2019-12-09 触感提示装置、触感提示方法、及びアクチュエータ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-004295 2019-01-15
JP2019004295 2019-01-15
JP2019121520 2019-06-28
JP2019-121520 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020149052A1 true WO2020149052A1 (ja) 2020-07-23

Family

ID=71613776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048103 WO2020149052A1 (ja) 2019-01-15 2019-12-09 触感提示装置、触感提示方法、及びアクチュエータ

Country Status (3)

Country Link
JP (1) JPWO2020149052A1 (ja)
CN (1) CN113302671A (ja)
WO (1) WO2020149052A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000010468A (ja) * 1998-06-18 2000-01-14 Seiko Epson Corp 脈動発生装置
JP2012520516A (ja) * 2009-03-10 2012-09-06 バイヤー・マテリアルサイエンス・アーゲー 触覚フィードバックデバイスのための電気活性ポリマトランスデューサ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000056674A (ja) * 1998-08-10 2000-02-25 Minolta Co Ltd 触覚ディスプレイ装置
US20130207793A1 (en) * 2009-01-21 2013-08-15 Bayer Materialscience Ag Electroactive polymer transducers for tactile feedback devices
US8915151B2 (en) * 2009-06-05 2014-12-23 Sungkyunkwan University Foundation For Corporate Collaboration Active skin for conformable tactile interface
EP2320488A1 (de) * 2009-11-07 2011-05-11 Bayer MaterialScience AG Elektromechanischer Wandler mit dielektrischem Elastomer
CN206179374U (zh) * 2016-05-31 2017-05-17 福州金典工业产品设计有限公司 一种脉象模拟器
US10706742B2 (en) * 2017-01-17 2020-07-07 Texas Tech University System Method and system for creating a synthetic pulse
JP2018149488A (ja) * 2017-03-13 2018-09-27 ローム株式会社 加振モジュールおよび触覚発生システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000010468A (ja) * 1998-06-18 2000-01-14 Seiko Epson Corp 脈動発生装置
JP2012520516A (ja) * 2009-03-10 2012-09-06 バイヤー・マテリアルサイエンス・アーゲー 触覚フィードバックデバイスのための電気活性ポリマトランスデューサ

Also Published As

Publication number Publication date
JPWO2020149052A1 (ja) 2021-10-21
CN113302671A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
Carpi et al. Biomedical applications of electroactive polymer actuators
Carpi et al. Enabling variable-stiffness hand rehabilitation orthoses with dielectric elastomer transducers
Frediani et al. Wearable wireless tactile display for virtual interactions with soft bodies
JP5472539B2 (ja) 指刺激呈示装置
Ho et al. Experimental characterization of a dielectric elastomer fluid pump and optimizing performance via composite materials
Li et al. Lightweight, soft variable stiffness gel spats for walking assistance
JP2016018420A (ja) 触覚型デバイス
JP6594731B2 (ja) 触覚出力装置
CN104934250B (zh) 键盘装置、按钮装置以及电子设备
Carpi et al. Electroactive elastomeric haptic displays of organ motility and tissue compliance for medical training and surgical force feedback
Qiu et al. A Moisture-Resistant Soft Actuator with Low Driving Voltages for Haptic Stimulations in Virtual Games
Frediani et al. A soft touch: wearable tactile display of softness made of electroactive elastomers
Van Duong et al. Localized fretting-vibrotactile sensations for large-area displays
JP7032763B2 (ja) 手術訓練装置
WO2020149052A1 (ja) 触感提示装置、触感提示方法、及びアクチュエータ
Carpi et al. Opportunities of hydrostatically coupled dielectric elastomer actuators for haptic interfaces
JP6630000B2 (ja) 摩擦制御装置および方法
WO2021179563A1 (zh) 体感触觉装置
Trase et al. Thin-film bidirectional transducers for haptic wearables
JP2019200699A (ja) 触感提示装置
Ye et al. Robust control of dielectric elastomer diaphragm actuator for replicating human pulse
KR101284132B1 (ko) 고분자 유전체 기반 고성능 구동기, 그 구동기를 이용한 촉감제공 액추에이터, 진동모터, 작동방법, 촉각 감성 피드백 제공장치 및 시청각장애인을 위한 고분자 유전체 기반 촉각 감성피드백 제공장치
KR102287050B1 (ko) 유전 탄성체 구동기 기반 햅틱 디스플레이
KR101562240B1 (ko) 주름진 코러게이티드 고분자 유전체를 이용한 플렉서블 햅틱모듈 및 촉감제공방법
KR100904389B1 (ko) 박형 촉감장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910295

Country of ref document: EP

Kind code of ref document: A1