WO2020147788A1 - 透射式光分束器及其制造方法 - Google Patents

透射式光分束器及其制造方法 Download PDF

Info

Publication number
WO2020147788A1
WO2020147788A1 PCT/CN2020/072481 CN2020072481W WO2020147788A1 WO 2020147788 A1 WO2020147788 A1 WO 2020147788A1 CN 2020072481 W CN2020072481 W CN 2020072481W WO 2020147788 A1 WO2020147788 A1 WO 2020147788A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
superstructure
electron beam
beam splitter
meta
Prior art date
Application number
PCT/CN2020/072481
Other languages
English (en)
French (fr)
Inventor
李贵新
邓俊鸿
刘萱
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Publication of WO2020147788A1 publication Critical patent/WO2020147788A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor

Definitions

  • the present disclosure relates to the field of optical technology, for example, to a transmissive light beam splitter and a manufacturing method thereof.
  • the optical beam splitter is an important part of light field and light information control. There are many situations in the field of light field processing that need to adjust the polarization and phase of the light field while dividing the incident light into multiple beams.
  • Current optical beam splitters are mainly manufactured based on traditional optical waveguides. They are mostly used as light intensity beam splitting devices in the field of optical communications. They have too much loss, large volume, and high cost, and they cannot control the intensity, polarization, and polarization of multi-channel optical fields.
  • the degree of freedom of the optical signal such as the phase is precisely regulated, which greatly limits the application range of the optical beam splitter.
  • the present disclosure provides a transmissive light beam splitter and a manufacturing method thereof, so as to realize precise control of the quantity, light intensity, polarization and phase of the emitted light.
  • the embodiment of the present invention provides a transmissive light beam splitter, comprising: a substrate and a dielectric layer provided on one side of the substrate, and a metasurface is formed in the dielectric layer;
  • the metasurface includes at least one of the following: a plurality of one-fold rotationally symmetric superstructure functional motifs and a plurality of two-fold rotationally symmetric superstructure functional motifs.
  • the one-fold rotationally symmetric superstructure functional motif may include at least one of the following: U-type superstructure functional motif, V-type superstructure functional motif, and W-type superstructure functional motif;
  • the two-fold rotationally symmetric superstructure functional primitive may include a rectangular superstructure functional primitive.
  • the working wavelength of the transmissive optical beam splitter may be L1, where 380nm ⁇ L1 ⁇ 2 ⁇ m;
  • each cuboid meta-functional element in the plane where the meta-surface is located may be L2
  • the width in the plane where the meta-surface is located may be L3, and is perpendicular to the plane where the meta-surface is located.
  • the thickness in the direction may be L4, where 30nm ⁇ L2 ⁇ 1000nm, 30nm ⁇ L3 ⁇ 1000nm, and 30nm ⁇ L4 ⁇ 3000nm.
  • the shape of the metasurface may be a rectangle, the length of the metasurface may be D1, and the width may be D2, where 100 ⁇ m ⁇ D1 ⁇ 15mm, 100 ⁇ m ⁇ D2 ⁇ 15mm.
  • the preparation material of the dielectric layer may include at least one of the following: metal material, single crystal silicon, polycrystalline silicon, amorphous silicon, titanium oxide, silicon nitride, and gallium nitride.
  • the preparation material of the substrate may include at least one of the following: glass, quartz, fused silica, and sapphire.
  • the embodiment of the present invention also provides a method for preparing a transmissive light beam splitter, which is used to prepare any transmissive light beam splitter described in the first aspect, and the method includes:
  • a superstructure surface is prepared in the medium layer, wherein the superstructure surface includes at least one of the following: a plurality of one-fold rotationally symmetric superstructure functional primitives and a plurality of two-fold rotationally symmetric superstructure functional primitives.
  • the preparation of a metasurface in the dielectric layer may include:
  • An electron beam photolithography process is used to write a superstructure surface pattern on the electron beam photoresist, and a special developer is used to remove the electron beam photoresist at the superstructure surface pattern and expose the medium Floor;
  • the metal protection layer on the dielectric layer is removed to form a meta-surface pattern of the dielectric layer.
  • the preparation of a metasurface in the dielectric layer may include:
  • the negative electron beam photoresist on the remaining dielectric layer is removed to form a meta-surface pattern of the dielectric layer.
  • Preparing a dielectric layer on one side of the substrate may include:
  • Electron beam evaporation, thermal evaporation, magnetron sputtering or atomic vapor deposition processes are used to prepare a dielectric layer on one side of the substrate.
  • the present disclosure designs a metasurface with at least one of the following based on the Berry geometric phase in the dielectric layer: multiple one-fold rotationally symmetric meta-functional primitives and multiple two-fold rotationally symmetric meta-functional primitives, It solves the problem that the optical beam splitter in the related technology cannot accurately control the degree of freedom of the optical signal such as the light intensity, polarization and phase of the multi-channel optical field, and realizes the accuracy of the quantity, light intensity, polarization and phase of the emitted light The effect of regulation.
  • FIG. 1 is a schematic diagram of a transmissive optical beam splitter provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a metasurface of a transmissive light beam splitter provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a transmissive optical beam splitter provided by an embodiment of the present invention during operation
  • FIG. 4 is a partial schematic diagram of a transmissive optical beam splitter provided by an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for manufacturing a transmissive light beam splitter provided by an embodiment of the present invention
  • FIG. 6 is a schematic flow chart of a method for manufacturing a transmissive optical beam splitter provided by an embodiment of the present invention
  • FIGS. 7-13 are schematic diagrams of various steps of preparing a transmissive optical beam splitter provided by an embodiment of the present invention.
  • FIG. 14 is a schematic flow chart of another method for manufacturing a transmissive optical beam splitter provided by an embodiment of the present invention.
  • 15-19 are schematic diagrams of various steps of preparing another transmissive optical beam splitter provided by embodiments of the present invention.
  • Optical metamaterials are new optical structural materials made by artificial design and construction.
  • the metastructure unit is the basic unit among them, which enables light to propagate in a way that cannot be achieved in natural materials.
  • We adjust the electromagnetic response of optical metamaterials by changing the constituent materials, geometric shapes and other parameters in the metastructure unit, so that its basic optical parameters, such as effective dielectric constant, permeability, and refractive index, will change without being affected by Limited by its own chemical composition.
  • optical metamaterials with reasonable materials and structures, some optical phenomena that natural materials cannot provide can be obtained, such as optical stealth, negative refraction, and super-resolution imaging.
  • optical metasurface is an interface composed of meta units with spatially varying patterns.
  • the meta units can be formed by combining metal and dielectric materials on a substrate through geometric design.
  • the metasurface makes full use of this principle to precisely control the amplitude, polarization, and phase of light at the subwavelength scale, which is different from the three-dimensional metasurface.
  • the two-dimensional properties of the material and the optical metasurface make the volume more compact and the light transmission efficiency higher.
  • the preparation process of the optical metasurface is compatible with the current complementary metal oxide semiconductor technology, and is easy to integrate into related optoelectronic technology and its devices.
  • the emergence of optical metasurfaces heralds the arrival of a new era of "planar optics".
  • the use of optical metasurfaces can realize high-efficiency beam splitters, optical holographic imaging, high numerical aperture lenses, and various Planar diffractive optical elements, etc.
  • Optical beam splitter is an important part of optical field and optical information regulation.
  • Current optical beam splitters generally use traditional optical waveguide technology, which mainly splits optical signals by splitting waveguides. This method can only The beam splitting of light intensity is mostly used as a light intensity beam splitting device in the field of optical communications, and it is impossible to accurately control the degree of freedom of optical signals such as light intensity, polarization, phase and orbital angular momentum at the same time, and it has excessive volume and loss Too big and other issues.
  • There are many situations in the field of light field processing that need to adjust the polarization and phase of the light field while dividing the incident light into multiple beams. This cannot be achieved under the background of traditional technology.
  • a large number of optical components are required for adjustment, resulting in device failure.
  • the problems of large size and high cost greatly limit the use scenarios of optical beam splitters and the development of optical information technology.
  • the embodiments of the present invention provide a transmissive optical beam splitter and a manufacturing method thereof, by designing an optical metasurface with at least one of the following based on the Berry geometric phase in the dielectric layer:
  • One-fold rotationally symmetric superstructure functional primitives and optical metasurfaces of multiple two-fold rotationally symmetric superstructure functional primitives are used to split incident light, which can be divided into four or five beams.
  • optical metastructures based on Berry's geometric phase design are more compact, with low loss and flexible design.
  • they can perform precise directional beam splitting for incident circularly polarized light, which solves the problem of optical splitting in related technologies.
  • the beamer cannot precisely control the degree of freedom of optical signals such as light intensity, polarization, and phase of a multi-channel optical field through a single chip, which provides an effective solution for the polarization and phase control of the split beam.
  • FIG. 1 is a schematic diagram of a transmissive light beam splitter provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a metasurface of a transmissive light beam splitter provided by an embodiment of the present invention
  • the transmissive light beam splitter provided by the embodiment of the present invention includes: a substrate 11 and a dielectric layer 12 provided on one side of the substrate 11.
  • the dielectric layer 12 is formed with a superstructure surface 13, and the superstructure
  • the surface 13 includes at least one of the following: a plurality of one-fold rotationally symmetric superstructure functional primitives 14 and a plurality of two-fold rotationally symmetric superstructure functional primitives 14.
  • One-fold rotational symmetry means that after the superstructure functional element 14 is rotated at least 360 degrees around the center of rotational symmetry, it coincides with the initial state of the superstructure functional element 14.
  • Two-fold rotational symmetry means that after the superstructure functional element 14 is rotated at least 180 degrees around the center of rotational symmetry, it coincides with the initial state of the superstructure functional element 14.
  • the metasurface 13 makes full use of this principle and can accurately control the amplitude, polarization, and phase of incident light on a sub-wavelength scale.
  • the meta-functional element 14 with rotational symmetry allows only a specific order of nonlinear harmonic radiation. Therefore, by selecting the rotational symmetry of the meta-functional element 14, nonlinear harmonic radiation in a specific circular polarization state can be obtained. By further rotating the superstructure functional element 14, the nonlinear Berry geometric phase of the harmonic radiation can be continuously adjusted from 0-2 ⁇ .
  • FIG. 3 is a schematic diagram of a transmissive optical beam splitter provided by an embodiment of the present invention during operation.
  • the metasurface 13 with multiple metafunction elements 14 can divide the circularly polarized incident light 31 into four or five circularly polarized outgoing lights, thereby realizing the transmissive light passing through only a single chip.
  • the beam splitter splits the circularly polarized light, reducing the volume of the device.
  • the transmissive light beam splitter provided by the embodiment of the present invention is based on the principle of optical holographic imaging, and based on the Berry geometric phase in the medium layer, a superstructure surface 13 having at least one of the following is designed: multiple one-fold rotationally symmetric superstructures
  • the functional primitive 14 and multiple two-fold rotationally symmetric superstructure functional primitives 14 can efficiently directionally generate multiple Gaussian beams and vortex beams, and can flexibly control the spin angular momentum of light (left/right circular polarization ), the intensity and the phase of the light, it solves the problem that the optical beam splitter in the related technology cannot accurately control the degree of freedom of the optical signal such as the intensity, polarization, and phase of the multi-channel optical field, and realizes the quantity and The effect of precise control of light intensity, polarization and phase.
  • the transmissive light beam splitter provided by the embodiment of the present invention will provide a powerful circular polarization transmissive light beam splitter element for the meta-surface using the spin and orbital angular momentum of light to realize multi-dimensional classical light and quantum light communication. It can also provide multi-dimensional information coding technology for classical optical communication and quantum optical communication.
  • the one-fold rotationally symmetric superstructural functional motif 14 includes at least one of U-shaped superstructural functional motifs, V-shaped superstructural functional motifs, and W-shaped superstructural functional motifs, with two-fold rotational symmetry
  • the superstructural functional motifs 14 include cuboid superstructural functional motifs.
  • One-fold rotationally symmetric superstructure functional primitives 14 such as U-type superstructure functional primitives, V-type superstructure functional primitives, and W-type superstructure functional primitives can be used to generate frequency doubles whose circular polarization state is the same as or opposite to the fundamental wave.
  • the circular polarization state of the triple frequency generated by the cuboid superstructure function element is the same as or opposite to the fundamental wave, and the Berry can be achieved by rotating the direction of the above superstructure function element 14 to achieve different orders of nonlinear harmonic radiation. Continuously adjustable geometric phase.
  • FIG. 4 is a partial schematic diagram of a transmissive optical beam splitter provided by an embodiment of the present invention.
  • the working wavelength of the transmissive optical beam splitter provided by the embodiment of the present invention is L1, where 380nm ⁇ L1 ⁇ 2 ⁇ m, the length of each cuboid meta-functional element 14 in the plane of the meta-surface 13 is L2, The width in the plane where the structured surface 13 is located is L3, and the thickness in the direction perpendicular to the plane where the metasurface 13 is located is L4, where 30nm ⁇ L2 ⁇ 1000nm, 30nm ⁇ L3 ⁇ 1000nm, 30nm ⁇ L4 ⁇ 3000nm.
  • the size of the meta-functional element 14 is equivalent to or smaller than the working wavelength, and its reflectance, transmittance, polarization characteristics, and spectral characteristics all show completely different characteristics from conventional optical elements.
  • Introducing the phase mutation of light can realize the effective control of the polarization, amplitude and phase of the light at the sub-wavelength scale.
  • the ultra-thin metasurface 13 is more easily compatible with complementary metal oxide semiconductor technology, and therefore easier to integrate into related optoelectronic technologies.
  • the shape of the metasurface 13 is rectangular, the length of the metasurface 13 is D1, and the width is D2, where 100 ⁇ m ⁇ D1 ⁇ 15mm, 100 ⁇ m ⁇ D2 ⁇ 15mm, micron
  • the size of the superstructured surface makes the transmissive beam splitter smaller and lower loss.
  • the preparation material of the dielectric layer 12 includes at least one of the following: metal material, single crystal silicon, polysilicon, amorphous silicon, titanium oxide, silicon nitride, and gallium nitride.
  • the structure of the surface 13 can better realize the precise control of the quantity, intensity, polarization and phase of the emitted light by the optical beam splitter.
  • the preparation material of the substrate 11 includes at least one of the following: glass, quartz and sapphire.
  • the transparent substrate 11 ensures that the light beam splitter can work in the transmission mode.
  • FIG. 5 is a schematic flow chart of a manufacturing method of a transmissive optical beam splitter provided by an embodiment of the present invention. As shown in FIG. 5, the method includes the following steps:
  • Step 110 Provide a substrate.
  • Step 120 Prepare a dielectric layer on one side of the substrate.
  • Step 130 Prepare a metasurface in the medium layer, wherein the metasurface includes at least one of the following: a plurality of one-fold rotationally symmetric superstructure functional elements and a plurality of two-fold rotationally symmetric superstructure functional groups yuan.
  • the preparation material of the substrate is a transparent substrate, including at least one of the following: glass, quartz, and sapphire substrate.
  • a dielectric layer can be prepared on the substrate using micro-nano coating preparation technology, and the thickness of the dielectric layer is 100 -5000nm, the preparation material of the dielectric layer includes at least one of the following: metal material, monocrystalline silicon, polycrystalline silicon, amorphous silicon, titanium oxide, silicon nitride, and gallium nitride.
  • a metasurface with at least one of the following is designed based on the Berry geometric phase in the dielectric layer: a plurality of one-fold rotationally symmetric metastructure functional elements And the metasurfaces of multiple two-fold rotationally symmetrical metafunction primitives, the metasurface can efficiently directional generate multiple Gaussian beams and vortex beams, and can flexibly control the spin angular momentum of light (left/right Circular polarization), intensity and phase of light, solve the problem that the optical beam splitter in the related technology cannot accurately control the degree of freedom of the optical signal such as the intensity, polarization, and phase of the multi-channel optical field, and realize the control of the emitted light.
  • the precise control effect of quantity, light intensity, polarization and phase can be applied to various scenarios such as beam fraction and quantum beam splitting.
  • the transmissive light beam splitter prepared by the method provided in the embodiment of the present invention will provide a powerful circularly polarized transmissive light beam splitter for the metasurface to realize multi-dimensional classical light and quantum beam splitting using the spin and orbital angular momentum of light It can provide multi-dimensional information coding technology for classical optical communication and quantum optical communication.
  • the preparation of the meta-structured surface on the dielectric layer can be achieved by means of positive electron beam photoresist and negative electron beam photoresist respectively. The two implementation methods will be described in detail below.
  • Fig. 6 is a schematic flow chart of a method for manufacturing a transmissive light beam splitter provided by an embodiment of the present invention. As shown in Fig. 6, the method for manufacturing a transmissive light beam splitter provided by an embodiment of the present invention may include:
  • Step 210 Provide a substrate.
  • Step 220 Prepare a dielectric layer on one side of the substrate.
  • Step 230 Prepare a positive electron beam photoresist on the dielectric layer.
  • Step 240 Use an electron beam lithography process to write a superstructure surface pattern on the positive electron beam photoresist.
  • this step S240 may include: using an electron beam lithography process to write a meta-surface pattern on the positive electron beam photoresist, and removing the electron beam light at the meta-surface pattern by immersing a special developer solution. The resist is etched and the dielectric layer is exposed.
  • Step 250 preparing a metal protective layer on the dielectric layer and the positive electron beam photoresist.
  • the step 250 may include: preparing a metal protective layer on the exposed dielectric layer and the remaining positive electron beam photoresist.
  • Step 260 Remove the positive electron beam photoresist and the metal protection layer on the positive electron beam photoresist, and retain the metal protection layer on the dielectric layer.
  • this step 260 may include: removing the remaining electron beam photoresist and the metal protection layer on the remaining electron beam photoresist, leaving the metal protection layer on the dielectric layer
  • Step 270 Use an etching process to write the superstructure surface pattern in the dielectric layer.
  • this step 270 may include: etching the dielectric layer without the metal protection layer by using an etching process to write the meta-surface pattern on the dielectric layer.
  • Step 280 Remove the metal protection layer on the dielectric layer.
  • this step 280 may include: removing the metal protection layer on the dielectric layer to form a meta-surface pattern of the dielectric layer.
  • Figures 7-13 are schematic diagrams of various steps of preparing a transmissive light beam splitter provided by an embodiment of the present invention.
  • an electron beam photoresist positive resist 53 is prepared on the dielectric layer 52, wherein The positive electron beam photoresist 53 includes poly-methyl Methacrylate (PMMA) or ZEP glue, etc., and the thickness of the positive electron beam photoresist 53 is 70-500 nm.
  • PMMA poly-methyl Methacrylate
  • ZEP glue etc.
  • an electron beam lithography process to write a meta-surface pattern on the positive electron beam photoresist 53 wherein the writing of the meta-surface pattern includes: importing the meta-surface pattern into an electron beam lithography instrument;
  • the photoresist 53 is subjected to electron beam exposure processing, the electron beam exposure area in the electron beam photoresist 53 changes, and the characteristics of the unexposed electron beam photoresist 53 remain unchanged;
  • the developer is used for the electron beam photoresist 53 is developed, and the electron beam exposure area in the positive electron beam photoresist 53 is dissolved in the developing solution, so that the meta-structured surface pattern is transferred to the positive electron beam photoresist 53.
  • a metal protective layer 54 is prepared on the dielectric layer 52 and the positive electron beam photoresist 53, wherein an electron beam evaporation technique can be used to vaporize the dielectric layer 52 and the positive electron beam photoresist 53
  • An anti-etching metal protective layer 54 is plated, and the material of the metal protective layer 54 includes metallic chromium (Cr).
  • the positive electron beam photoresist 53 and the metal protection layer 54 on the positive electron beam photoresist 53 are removed, and the metal protection layer 54 on the dielectric layer 52 is retained.
  • the electron beam photoresist paste 53 is removed by using a degreasing solution corresponding to the electron beam photoresist paste 53, and the metal protective layer 54 on the electron beam photoresist paste 53 will be together with the electron beam photoresist paste 53 Is removed.
  • etching process is used to write the meta-surface pattern in the dielectric layer, wherein the dielectric layer 52 may be etched by an etching process such as ICP (Inductively Coupled Plasma) dry etching technology,
  • ICP Inductively Coupled Plasma
  • the depth of the etching may be the thickness of the dielectric layer.
  • the depth of the etching is 100-5000 nm.
  • the metal protective layer 54 on the dielectric layer 52 is removed. If metal chromium is used as the metal protective layer 54, a chromium etching solution can be used to clean and dissolve the metal chromium protective layer to obtain a transmissive beam splitter based on a meta-surface.
  • FIG. 14 is a schematic flowchart of another method for manufacturing a transmissive optical beam splitter provided by an embodiment of the present invention. As shown in FIG. 14, the method for manufacturing a transmissive optical beam splitter provided by an embodiment of the present invention may include:
  • Step 310 Provide a substrate.
  • Step 320 Prepare a dielectric layer on one side of the substrate.
  • Step 330 Prepare an electron beam photoresist negative resin on the dielectric layer.
  • Step 340 Use an electron beam lithography process to write a superstructure surface pattern on the negative electron beam photoresist.
  • this step 340 may include: using an electron beam lithography process to write a superstructure surface pattern on the electron beam photoresist negative, and using a special developer to remove the electron beam lithography negative other than the superstructure surface pattern. Glue and expose the dielectric layer.
  • Step 350 Use an etching process to write the superstructure surface pattern in the dielectric layer.
  • this step 350 may include: removing the exposed dielectric layer by an etching process.
  • Step 360 Remove the negative electron beam photoresist on the dielectric layer.
  • this step 360 may include: removing the negative electron beam photoresist on the remaining dielectric layer to form a meta-surface pattern of the dielectric layer
  • FIGs 15-19 are schematic diagrams of various steps of preparing a transmissive light beam splitter provided by embodiments of the present invention.
  • an electron beam photoresist negative resin 55 is prepared on the dielectric layer, wherein, The electron beam photoresist negative 55 includes HSQ (Hydrogen Silsesquioxane, hydrosilicate) glue, etc.
  • the electron beam photoresist negative 55 can be prepared on the dielectric layer 52 by spin coating.
  • the electron beam The thickness of the photoresist negative 55 coating is 70-500 nm.
  • writing the superstructure surface pattern includes: importing the metasurface pattern into an electron beam lithography instrument;
  • the glue 55 is subjected to electron beam exposure processing, the electron beam exposure area in the electron beam photoresist negative glue 55 changes, and the characteristics of the unexposed electron beam photoresist negative glue area 55 do not change; use a developer to treat the electron beam photoresist negative glue 55 Perform development processing.
  • the non-exposed area in the negative electron beam photoresist 55 is dissolved in the developing solution, so that the meta-surface pattern is transferred to the negative electron beam photoresist 55.
  • An etching process is used to etch the superstructure surface pattern in the dielectric layer 52, wherein electron beam photoresist negative resin 55 is used as a protective layer, and the dielectric layer 52 is etched by ICP dry etching technology.
  • the depth of the etching may be the thickness of the dielectric layer.
  • the depth of the etching is 100-5000 nm.
  • the electron beam photoresist negative resin 55 on the dielectric layer 52 is removed, wherein the electron beam photoresist negative resin 55 is removed by a degreasing solution corresponding to the electron beam photoresist negative resin 55, thereby obtaining a transmissive type based on a metasurface Optical beam splitter.
  • preparing the dielectric layer 52 on one side of the substrate 51 may include:
  • the dielectric layer 52 is prepared on the side of the substrate 51 by using electron beam evaporation, thermal evaporation, magnetron sputtering or atomic vapor deposition processes.
  • the manufacturing method of the transmission type beam splitter uses electron beam lithography technology to manufacture the transmission type light beam splitter based on the optical meta-surface, and the prepared transmission type light beam splitter can efficiently directional produce multiple The method can realize the large-scale production of high-precision directional transmission light beam splitter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

一种透射式光分束器及其制造方法,其中,透射式光分束器包括:基板(11)和设置在基板(11)一侧的介质层(12),介质层(12)中形成有超构表面(13);超构表面(13)包括如下至少之一:多个一重旋转对称的超构功能基元(14)和多个两重旋转对称的超构功能基元(14)。

Description

透射式光分束器及其制造方法
本申请要求在2019年1月16日提交中国专利局、申请号为201910039830.8的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及光学技术领域,例如涉及一种透射式光分束器及其制造方法。
背景技术
光分束器为光场及光信息调控中的一个重要组成部分,光场处理领域中有很多情况需要在将入射光分为多束的同时对光场偏振及其相位进行调控。目前的光分束器主要基于传统光波导制造,多在光通讯领域中作为光强分束器件,损耗过大、体积过大、成本高,并且无法对多信道光场的光强、偏振、相位等光信号的自由度进行精确调控,这极大限制了光分束器的应用范围。
发明内容
本公开提供一种透射式光分束器及其制造方法,以实现对出射光的数量、光强、偏振及相位的精确调控。
本发明实施例提供了一种透射式光分束器,包括:基板和设置在所述基板一侧的介质层,所述介质层中形成有超构表面;
所述超构表面包括如下至少之一:多个一重旋转对称的超构功能基元和多个两重旋转对称的超构功能基元。
所述一重旋转对称的超构功能基元可以包括以下至少之一:U型超构功能基元、V型超构功能基元以及W型超构功能基元;
所述两重旋转对称的超构功能基元可以包括长方形超构功能基元。
所述透射式光分束器的工作波长可以为L1,其中,380nm≤L1≤2μm;
每个所述长方体超构功能基元在所述超构表面所在平面内的长度可以为L2,在所述超构表面所在平面内的宽度可以为L3,在垂直所述超构表面所在平面的方向上的厚度可以为L4,其中,30nm≤L2≤1000nm,30nm≤L3≤1000nm,30nm≤L4≤3000nm。
所述超构表面的形状可以为矩形,所述超构表面的长度可以为D1,宽度可以为D2,其中,100μm≤D1≤15mm,100μm≤D2≤15mm。
所述介质层的制备材料可以包括以下至少之一:金属材料、单晶硅、多晶硅、非晶硅、氧化钛、氮化硅以及氮化镓。
所述基板的制备材料可以包括以下至少之一:玻璃、石英、熔石英以及蓝宝石。
本发明实施例还提供了一种透射式光分束器的制备方法,用于制备第一方面所述的任一透射式光分束器,该方法包括:
提供一基板;
在所述基板一侧制备介质层;
在所述介质层中制备超构表面,其中,所述超构表面包括如下至少之一:多个一重旋转对称的超构功能基元和多个两重旋转对称的超构功能基元。
在所述介质层中制备超构表面,可以包括:
在所述介质层上制备电子束光刻正胶;
采用电子束光刻工艺在所述电子束光刻正胶上刻写超构表面图案,通过浸泡专用显影液以去除所述超构表面图案处的所述电子束光刻正胶并露出所述介质层;
在露出的介质层以及剩余的电子束光刻正胶上制备金属保护层;
去除所述剩余的电子束光刻正胶以及所述剩余的电子束光刻正胶上的金属保护层,保留所述介质层上的金属保护层;
采用刻蚀工艺刻蚀没有所述金属保护层的介质层,以在所述介质层上刻写出所述超构表面图案;
去除所述介质层上的金属保护层以形成介质层的超构表面图案。
在所述介质层中制备超构表面,可以包括:
在所述介质层上制备电子束光刻负胶;
采用电子束光刻工艺在所述电子束光刻负胶上刻写超构表面图案,以去除所述超构表面图案以外的所述电子束光刻负胶并露出所述介质层;
采用刻蚀工艺去除露出的介质层;
去除剩余的介质层上的电子束光刻负胶以形成介质层的超构表面图案。
在所述基板一侧制备介质层,可以包括:
采用电子束蒸镀、热蒸镀、磁控溅射或原子气相沉积工艺,在所述基板一侧制备介质层。
本公开通过在介质层中基于贝里几何相位,设计出具有以下至少之一的超构表面:多个一重旋转对称的超构功能基元和多个两重旋转对称的超构功能基元,解决了相关技术中的光分束器无法对多信道光场的光强、偏振、相位等光信号的自由度进行精确调控的问题,实现了对出射光的数量、光强、偏振及相位精确调控的效果。
附图说明
图1为本发明实施例提供的一种透射式光分束器的示意图;
图2为本发明实施例提供的一种透射式光分束器的超构表面的示意图;
图3为本发明实施例提供的一种透射式光分束器工作时的示意图;
图4为本发明实施例提供的一种透射式光分束器的局部示意图;
图5为本发明实施例提供的透射式光分束器的制备方法的流程示意图;
图6是本发明实施例提供的一种透射式光分束器的制备方法流程示意图;
图7-图13为本发明实施例提供的制备透射式光分束器各个步骤的示意图;
图14是本发明实施例提供的另一种透射式光分束器的制备方法流程示意图;
图15-图19为本发明实施例提供的制备另一种透射式光分束器各个步骤的示意图。
具体实施方式
下面结合附图和实施例对本公开作详细说明。为了便于描述,附图中仅示出了与本公开相关的部分而非全部结构。
光学超构材料是人工设计构建而制成的新型光学结构材料,超构单元是其中的基本单元,能够使光以在天然材料中无法实现的方式进行传播。我们通过改变超构单元中的组成材料、几何形状等参数来调控光学超构材料的电磁响应,从而使其基本光学参数,比如有效电介质常数、磁导率和折射率等发生变化,而不受自身的化学组成所限制。通过合理的材料与结构搭配来设计光学超构材料,可以得到一些天然材料无法提供的光学现象,如光学隐身、负折射和超分辨成像等。但是由于三维超构材料在微纳加工中遇到了极大的挑战,以及光在其传播时有着巨大的光学损耗,其在光学领域的应用受到了极大的限制,多年来鲜有重大的突破。光学超构表面(Metasurface)的出现很好地解决了三维超构材料在微纳加工以及光学传播测量中遇到的困难。光学超构表面是由具有空 间变化图案的超构单元所构成的界面,超构单元可由金属和电介质材料在衬底上通过几何设计组合而成。
光学上,光的传播在通过不同材料界面时会出现相位突变,超构表面充分利用了这一原理,在亚波长尺度下对光的振幅、偏振、相位等进行精确调控,区别于三维超构材料,光学超构表面的二维属性使其体积更加紧凑,光传播效率更高。另外,光学超构表面的制备工艺与目前互补金属氧化物半导体技术兼容,容易集成到相关的光电技术及其器件中。从某种程度上说,光学超构表面的出现预示着“平面光学”新时代的到来,利用光学超构表面可以实现高效率的光分束器、光学全息成像、高数值孔径透镜,各种平面衍射光学元件等。
光分束器为光场及光信息调控中的一个重要组成部分,目前的光分束器一般采用传统光波导技术,主要通过对波导的分束来对光信号进行分束,此方法只能对光强进行分束,多在光通讯领域中作为光强分束器件,而无法同时对光强、偏振、相位和轨道角动量等光信号的自由度进行精确调控,并且有体积过大和损耗过大等问题。光场处理领域中有很多情况需要在将入射光分为多束的同时对光场偏振及其相位进行调控,这在传统技术背景下无法达成,需要使用大量的光学元件进行调控,致使器件过大、成本高等问题,极大地限制了光分束器的使用场景与光信息技术的发展。
目前国内也未有基于电介质(如多晶硅、氧化钛和氮化硅等)超构表面所制成的透射式圆偏振光分束器的相关研究。为此,通过设计开发此类圆偏振光分束器,有望将其应用于量子分束和集成光学等领域,填补这些领域的研究与应用空白。
基于上述技术问题,本发明实施例提供了一种透射式光分束器及其制造方法,通过在介质层中基于贝里几何相位,设计出具有以下至少之一的光学超构 表面:多个一重旋转对称的超构功能基元和多个两重旋转对称的超构功能基元的光学超构表面,以对入射光进行分束,可将入射光分为四束或者五束。不同于传统光波导,基于贝里几何相位设计的光学超构表面体积更紧凑,并且损耗小、设计灵活,同时能针对入射圆偏振光进行精确的定向分束,解决了相关技术中的光分束器无法通过单芯片对多信道光场的光强、偏振、相位等光信号的自由度进行精确调控的问题,为分束光偏振及相位调控提供了有效的解决方案。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
图1为本发明实施例提供的一种透射式光分束器的示意图,图2为本发明实施例提供的一种透射式光分束器的超构表面的示意图。参考图1和图2所示,本发明实施例提供的透射式光分束器包括:基板11和设置在基板11一侧的介质层12,介质层12中形成有超构表面13,超构表面13包括以下至少之一:多个一重旋转对称的超构功能基元14和多个两重旋转对称的超构功能基元14。
一重旋转对称是指超构功能基元14绕旋转对称中心旋转至少360度后,与超构功能基元14的初始状态重合。两重旋转对称是指超构功能基元14绕旋转对称中心旋转至少180度后,与超构功能基元14的初始状态重合。
在光学上,光在传播通过不同材料界面时会出现相位突变,超构表面13充分利用了这一原理,能够在亚波长尺度下对入射光的振幅、偏振、相位等进行精确调控。具有旋转对称特性的超构功能基元14仅允许特定级数的非线性谐波辐射,因此通过选择超构功能基元14的旋转对称性,可以获得特定圆偏振态的非线性谐波辐射,通过进一步旋转超构功能基元14,可以实现谐波辐射的非线性贝里几何相位从0-2π连续可调。
图3为本发明实施例提供的一种透射式光分束器工作时的示意图。如图3 所示,具有多个超构功能基元14的超构表面13可将圆偏振入射光31分为四束或者五束圆偏振出射光,从而实现了仅通过单芯片的透射式光分束器对圆偏振光进行分束,减小了器件体积。
本发明实施例提供的透射式光分束器基于光学全息成像原理,通过在介质层中基于贝里几何相位,设计出具有以下至少之一的超构表面13:多个一重旋转对称的超构功能基元14和多个两重旋转对称的超构功能基元14,可以高效率地定向产生多束高斯光束和涡旋光束,并且能够灵活控制光的自旋角动量(左/右圆偏振)、强度和光的相位,解决了相关技术中的光分束器无法对多信道光场的光强、偏振、相位等光信号的自由度进行精确调控的问题,实现了对出射光的数量、光强、偏振及相位精确调控的效果。本发明实施例提供的透射式光分束器将为超构表面在利用光的自旋、轨道角动量实现多维度经典光、量子光通信提供功能强大的圆偏振透射式光分束器元件,并可为经典光通信、量子光通信提供多维度信息编码技术。
在一实施方式中,一重旋转对称的超构功能基元14包括U型超构功能基元、V型超构功能基元以及W型超构功能基元中的至少一种,两重旋转对称的超构功能基元14包括长方体超构功能基元。U型超构功能基元、V型超构功能基元以及W型超构功能基元等一重旋转对称的超构功能基元14可用于产生圆偏振态与基波相同或相反的倍频,长方体超构功能基元产生的三倍频的圆偏振态分别与基波相同或相反,可以通过旋转上述超构功能基元14的方向,实现对不同级次的非线性谐波辐射的贝里几何相位的连续可调。
在一实施方式中,图4为本发明实施例提供的一种透射式光分束器的局部示意图。本发明实施例提供的透射式光分束器的工作波长为L1,其中,380nm≤L1≤2μm,每个长方体超构功能基元14在超构表面13所在平面内的长度 为L2、在超构表面13所在平面内的宽度为L3、在垂直超构表面13所在平面的方向上的厚度为L4,其中,30nm≤L2≤1000nm,30nm≤L3≤1000nm,30nm≤L4≤3000nm。超构功能基元14的尺寸与工作波长相当或者小于工作波长,其反射率、透射率、偏振特性和光谱特性等都显示出与常规光学元件截然不同的特征,从而通过在超构表面13上引入光的相位突变,可以在亚波长尺度下实现对光的偏振、振幅和相位的有效调控,光在通过亚波长厚度的超构表面13时会减少对传播效应的依赖,因此所带来的色散效应更弱。此外,超薄的超构表面13更易与互补金属氧化物半导体技术兼容,因此更容易集成到相关的光电技术中。
在一实施方式中,继续参考图2所示,超构表面13的形状为矩形,超构表面13的长度为D1,宽度为D2,其中,100μm≤D1≤15mm,100μm≤D2≤15mm,微米尺度的超构表面使得透射式光分束器的体积小,损耗更低。
在一实施方式中,介质层12的制备材料包括以下至少之一:金属材料、单晶硅、多晶硅、非晶硅、氧化钛、氮化硅以及氮化镓,通过合理的制备材料与超构表面13的结构搭配能够更好地实现光分束器对出射光的数量、光强、偏振及相位的精确调控。
在一实施方式中,基板11的制备材料包括以下至少之一:玻璃、石英以及蓝宝石,透明的基板11保证光分束器能够工作在透射模式下。
本发明实施例还提供了一种透射式光分束器的制备方法,用于制备上述实施例提供的任一透射式光分束器,与上述实施例相同或相应的结构以及术语的解释在此不再赘述。图5为本发明实施例提供的透射式光分束器的制备方法的流程示意图,如图5所示,该方法包括如下步骤:
步骤110、提供一基板。
步骤120、在所述基板一侧制备介质层。
步骤130、在所述介质层中制备超构表面,其中,所述超构表面包括以下至少之一:多个一重旋转对称的超构功能基元和多个两重旋转对称的超构功能基元。
其中,所述基板的制备材料为透明衬底,包括以下至少之一:玻璃、石英以及蓝宝石基片,可利用微纳镀膜制备技术在基板上制备出介质层,所述介质层的厚度为100-5000nm,所述介质层的制备材料包括以下至少之一:金属材料、单晶硅、多晶硅、非晶硅、氧化钛、氮化硅以及氮化镓。
本发明实施例提供的透射式光分束器的制备方法,通过在介质层中基于贝里几何相位,设计出具有以下至少之一的超构表面:多个一重旋转对称的超构功能基元和多个两重旋转对称的超构功能基元的超构表面,超构表面可以高效率地定向产生多束高斯光束和涡旋光束,并且能够灵活控制光的自旋角动量(左/右圆偏振)、强度和光的相位,解决了相关技术中的光分束器无法对多信道光场的光强、偏振、相位等光信号的自由度进行精确调控的问题,实现了对出射光的数量、光强、偏振及相位精确调控的效果,可应用于光束分数及量子分束等多种场景。本发明实施例提供方法所制备的透射式光分束器将为超构表面在利用光的自旋、轨道角动量实现多维度经典光及量子分束提供功能强大的圆偏振透射式光分束器元件,并可为经典光通信、量子光通信提供多维度信息编码技术。
在介质层制备超构表面可以分别通过电子束光刻正胶和电子束光刻负胶的方式实现,下面将分别针对上述两种实现方式进行详细说明。
图6是本发明实施例提供的一种透射式光分束器的制备方法流程示意图,如图6所示,本发明实施例提供的透射式光分束器的制备方法可以包括:
步骤210、提供一基板。
步骤220、在所述基板一侧制备介质层。
步骤230、在所述介质层上制备电子束光刻正胶。
步骤240、采用电子束光刻工艺在在所述电子束光刻正胶上刻写超构表面图案。
例如,该步骤S240可以包括:采用电子束光刻工艺在所述电子束光刻正胶上刻写超构表面图案,通过浸泡专用显影液以去除所述超构表面图案处的所述电子束光刻正胶并露出所述介质层。
步骤250、在所述介质层以及所述电子束光刻正胶上制备金属保护层。
例如,该步骤250可以包括:在露出的介质层以及剩余的电子束光刻正胶上制备金属保护层。
步骤260、去除所述电子束光刻正胶以及所述电子束光刻正胶上的金属保护层,保留所述介质层上的金属保护层。
例如,该步骤260可以包括:去除所述剩余的电子束光刻正胶以及所述剩余的电子束光刻正胶上的金属保护层,保留所述介质层上的金属保护层
步骤270、采用刻蚀工艺在所述介质层中刻写所述超构表面图案。
例如,该步骤270可以包括:采用刻蚀工艺刻蚀没有所述金属保护层的介质层,以在所述介质层上刻写出所述超构表面图案。
步骤280、去除所述介质层上的金属保护层。
例如,该步骤280可以包括:去除所述介质层上的金属保护层以形成介质层的超构表面图案。
图7-图13为本发明实施例提供的制备透射式光分束器各个步骤的示意图,参考图7-图13所示,在所述介质层52上制备电子束光刻正胶53,其中,电子 束光刻正胶53包括聚甲基丙烯酸甲酯(Poly-methyl Methacrylate,PMMA)或ZEP胶等,所述电子束光刻正胶53涂覆的厚度为70-500nm。
采用电子束光刻工艺在所述电子束光刻正胶53上刻写超构表面图案,其中,刻写超构表面图案包括:将超构表面图案导入电子束光刻仪器;对所述电子束光刻正胶53进行电子束曝光处理,电子束光刻正胶53内电子束曝光区域发生变化,没有曝光的电子束光刻正胶53特性没有发生变化;使用显影液对电子束光刻正胶53进行显影处理,电子束光刻正胶53内电子束曝光区域溶于显影液,从而将超构表面图案转移到电子束光刻正胶53中。
在所述介质层52以及所述电子束光刻正胶53上制备金属保护层54,其中,可利用电子束蒸镀技术在所述介质层52以及所述电子束光刻正胶53上蒸镀一层抗刻蚀的金属保护层54,所述金属保护层54的材料包括金属铬(Cr)。
去除所述电子束光刻正胶53以及所述电子束光刻正胶53上的金属保护层54,保留所述介质层52上的金属保护层54。其中,采用与电子束光刻正胶53相应的去胶液去除电子束光刻正胶53,所述电子束光刻正胶53上的金属保护层54会随电子束光刻正胶53一起被去除。
采用刻蚀工艺在所述介质层中刻写所述超构表面图案,其中,可采用ICP(Inductively Coupled Plasma,电感耦合等离子体)干法刻蚀技术等刻蚀工艺刻蚀所述介质层52,在一实施例中,刻蚀的深度可以为介质层的厚度,示例性地,刻蚀的深度为100-5000nm。
去除所述介质层52上的金属保护层54,其中,若采用金属铬为金属保护层54,可用铬刻蚀液清洗溶解金属铬保护层从而得到基于超构表面的透射式光分束器。
图14是本发明实施例提供的另一种透射式光分束器的制备方法流程示意图, 如图14所示,本发明实施例提供的透射式光分束器的制备方法可以包括:
步骤310、提供一基板。
步骤320、在所述基板一侧制备介质层。
步骤330、在所述介质层上制备电子束光刻负胶。
步骤340、采用电子束光刻工艺在所述电子束光刻负胶上刻写超构表面图案。
例如,该步骤340可以包括:采用电子束光刻工艺在所述电子束光刻负胶上刻写超构表面图案,用专用显影液去除所述超构表面图案以外的所述电子束光刻负胶并露出所述介质层。
步骤350、采用刻蚀工艺在所述介质层中刻写所述超构表面图案。
例如,该步骤350可以包括:采用刻蚀工艺去除露出的介质层。
步骤360、去除所述介质层上的电子束光刻负胶。
例如,该步骤360可以包括:去除剩余的介质层上的电子束光刻负胶以形成介质层的超构表面图案
图15-图19为本发明实施例提供的制备透射式光分束器各个步骤的示意图,参考图15-图19所示,在所述介质层上制备电子束光刻负胶55,其中,所述电子束光刻负胶55包括HSQ(Hydrogen Silsesquioxane,氢硅酸盐类)胶等,可采用旋涂的方式在所述介质层52上制备电子束光刻负胶55,所述电子束光刻负胶55涂覆的厚度为70-500nm。
采用电子束光刻工艺在所述电子束光刻负胶55上刻写超构表面图案,其中,刻写超构表面图案包括:将超构表面图案导入电子束光刻仪器;对电子束光刻负胶55进行电子束曝光处理,电子束光刻负胶55内电子束曝光区域发生变化,没有曝光的电子束光刻负胶区域55特性没有发生变化;使用显影液对电子束光刻负胶55进行显影处理。电子束光刻负胶55内没有曝光区域溶于显影液,从 而将超构表面图案转移到电子束光刻负胶55中。
采用刻蚀工艺在所述介质层52中刻写所述超构表面图案,其中,利用电子束光刻负胶55作为保护层,采用ICP干法刻蚀技术刻蚀所述介质层52,在一实施例中,刻蚀的深度可以为介质层的厚度,示例性地,刻蚀的深度为100-5000nm。
去除所述介质层52上的电子束光刻负胶55,其中,采用与电子束光刻负胶55相应的去胶液去除电子束光刻负胶55,从而得到基于超构表面的透射式光分束器。
在一实施例中,在所述基板51一侧制备介质层52,可以包括:
采用电子束蒸镀、热蒸镀、磁控溅射或原子气相沉积工艺,在所述基板51一侧制备介质层52。
本发明实施例提供的透射式光分束器的制备方法利用电子束光刻技术制作基于光学超构表面的透射式光分束器,制备的透射式光分束器可以高效率地定向产生多束圆偏振光,该方法能够实现高精度定向透射式光分束器的规模化生产。

Claims (15)

  1. 一种透射式光分束器,包括:基板和设置在所述基板一侧的介质层,所述介质层中形成有超构表面;
    所述超构表面包括如下至少之一:多个一重旋转对称的超构功能基元和多个两重旋转对称的超构功能基元。
  2. 根据权利要求1所述的透射式光分束器,其中,所述一重旋转对称的超构功能基元包括以下至少之一:U型超构功能基元、V型超构功能基元以及W型超构功能基元;
    所述两重旋转对称的超构功能基元包括长方体超构功能基元。
  3. 根据权利要求2所述的透射式光分束器,其中,所述透射式光分束器的工作波长为L1,其中,380nm≤L1≤2μm;
    每个所述长方体超构功能基元在所述超构表面所在平面内的长度为L2、在所述超构表面所在平面内的宽度为L3、在垂直所述超构表面所在平面的方向上的厚度为L4,其中,30nm≤L2≤1000nm,30nm≤L3≤1000nm,30nm≤L4≤3000nm。
  4. 根据权利要求1、2或3所述的透射式光分束器,其中,所述超构表面的形状为矩形,所述超构表面的长度为D1,宽度为D2,其中,100μm≤D1≤15mm,100μm≤D2≤15mm。
  5. 根据权利要求1-4中任一项所述的透射式光分束器,其中,所述介质层的制备材料包括以下至少之一:金属材料、单晶硅、多晶硅、非晶硅、氧化钛、氮化硅以及氮化镓。
  6. 根据权利要求1-5中任一项所述的透射式光分束器,其中,所述基板的制备材料包括以下至少之一:玻璃、石英以及蓝宝石。
  7. 一种透射式光分束器的制备方法,包括:
    提供一基板;
    在所述基板一侧制备介质层;
    在所述介质层中制备超构表面,其中,所述超构表面包括如下至少之一:多个一重旋转对称的超构功能基元和多个两重旋转对称的超构功能基元。
  8. 根据权利要求7所述的方法,其中,所述在所述介质层中制备超构表面,包括:
    在所述介质层上制备电子束光刻正胶;
    采用电子束光刻工艺在所述电子束光刻正胶上刻写超构表面图案,通过浸泡专用显影液以去除所述超构表面图案处的所述电子束光刻正胶并露出所述介质层;
    在露出的介质层以及剩余的电子束光刻正胶上制备金属保护层;
    去除所述剩余的电子束光刻正胶以及所述剩余的电子束光刻正胶上的金属保护层,保留所述介质层上的金属保护层;
    采用刻蚀工艺刻蚀没有所述金属保护层的介质层,以在所述介质层上刻写出所述超构表面图案;
    去除所述介质层上的金属保护层以形成介质层的超构表面图案。
  9. 根据权利要求7所述的方法,其中,所述在所述介质层中制备超构表面,包括:
    在所述介质层上制备电子束光刻负胶;
    采用电子束光刻工艺在所述电子束光刻负胶上刻写超构表面图案,以去除所述超构表面图案以外的所述电子束光刻负胶并露出所述介质层;
    采用刻蚀工艺去除露出的介质层;
    去除剩余的介质层上的电子束光刻负胶以形成介质层的超构表面图案。
  10. 根据权利要求7、8或9所述的方法,其中,所述在所述基板一侧制备介质层,包括:
    采用电子束蒸镀、热蒸镀、磁控溅射或原子气相沉积工艺,在所述基板一侧制备介质层。
  11. 根据权利要求10所述的方法,其中,所述一重旋转对称的超构功能基元包括以下至少之一:U型超构功能基元、V型超构功能基元以及W型超构功能基元;
    所述两重旋转对称的超构功能基元包括长方体超构功能基元。
  12. 根据权利要求11所述的透射式光分束器,其中,所述透射式光分束器的工作波长为L1,其中,380nm≤L1≤2μm;
    每个所述长方体超构功能基元在所述超构表面所在平面内的长度为L2、在所述超构表面所在平面内的宽度为L3、在垂直所述超构表面所在平面的方向上的厚度为L4,其中,30nm≤L2≤1000nm,30nm≤L3≤1000nm,30nm≤L4≤3000nm。
  13. 根据权利要求11或12所述的透射式光分束器,其中,所述超构表面的形状为矩形,所述超构表面的长度为D1,宽度为D2,其中,100μm≤D1≤15mm,100μm≤D2≤15mm。
  14. 根据权利要求11-13中任一项所述的透射式光分束器,其中,所述介质层的制备材料包括以下至少之一:金属材料、单晶硅、多晶硅、非晶硅、氧化钛、氮化硅以及氮化镓。
  15. 根据权利要求11-14中任一项所述的透射式光分束器,其中,所述基板的制备材料包括以下至少之一:玻璃、石英以及蓝宝石。
PCT/CN2020/072481 2019-01-16 2020-01-16 透射式光分束器及其制造方法 WO2020147788A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910039830.8A CN109683334B (zh) 2019-01-16 2019-01-16 一种透射式光分束器及其制造方法
CN201910039830.8 2019-01-16

Publications (1)

Publication Number Publication Date
WO2020147788A1 true WO2020147788A1 (zh) 2020-07-23

Family

ID=66193297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072481 WO2020147788A1 (zh) 2019-01-16 2020-01-16 透射式光分束器及其制造方法

Country Status (2)

Country Link
CN (1) CN109683334B (zh)
WO (1) WO2020147788A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109683334B (zh) * 2019-01-16 2021-07-27 南方科技大学 一种透射式光分束器及其制造方法
CN112558218A (zh) * 2019-09-26 2021-03-26 中国科学院苏州纳米技术与纳米仿生研究所 全介质透射型高效超薄分束器及其制备方法与应用
CN111258059B (zh) * 2020-01-21 2021-09-03 中国科学院上海微系统与信息技术研究所 柔性手机摄像头光学镜片及其制作方法
CN114527569B (zh) * 2022-03-02 2023-04-11 中山大学 一种空分超构透镜的设计方法及其立体成像系统
WO2023168555A1 (zh) * 2022-03-07 2023-09-14 中国科学院光电技术研究所 基于高阶旋转对称单元的非线性几何相位超表面
CN114966967B (zh) * 2022-06-15 2023-04-25 兰州大学 一种基于导波驱动超构表面的空间光场调控器件
CN117092727B (zh) * 2023-10-20 2024-01-30 广东工业大学 一种双光束偏折器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103649718A (zh) * 2011-06-07 2014-03-19 南洋理工大学 生成超材料的方法及由此生成的超材料
US20140085693A1 (en) * 2012-09-26 2014-03-27 Northeastern University Metasurface nanoantennas for light processing
CN104777545A (zh) * 2015-05-05 2015-07-15 武汉大学 一种硅纳米砖阵列偏振分光器
CN107783309A (zh) * 2017-11-23 2018-03-09 武汉大学 金属纳米砖阵列结构及其用作偏振分光器的应用
CN107861257A (zh) * 2017-12-08 2018-03-30 武汉邮电科学研究院 基于超表面材料的光混频器及其制备方法
CN109683334A (zh) * 2019-01-16 2019-04-26 南方科技大学 一种透射式光分束器及其制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8837031B2 (en) * 2007-11-09 2014-09-16 Duke University Finite-embedded coordinate designed transformation-optical devices
CN103794488B (zh) * 2012-11-02 2018-01-09 北京北方华创微电子装备有限公司 一种衬底的刻蚀方法
CN105511117B (zh) * 2016-01-13 2018-06-26 中国科学院上海技术物理研究所 一种超表面偏振调控器
US10725290B2 (en) * 2016-04-29 2020-07-28 The Board Of Trustees Of The Leland Stanford Junior University Device components formed of geometric structures
CN106646715B (zh) * 2016-11-28 2019-03-08 南京大学 一种对称l形金属超构表面分束器以及制备方法
CN108061936B (zh) * 2017-12-21 2019-07-12 南开大学 一种分光器以及采用该分光器的分光方法
CN108640080B (zh) * 2018-04-09 2020-10-02 上海集成电路研发中心有限公司 一种探测器的金属电极形成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103649718A (zh) * 2011-06-07 2014-03-19 南洋理工大学 生成超材料的方法及由此生成的超材料
US20140085693A1 (en) * 2012-09-26 2014-03-27 Northeastern University Metasurface nanoantennas for light processing
CN104777545A (zh) * 2015-05-05 2015-07-15 武汉大学 一种硅纳米砖阵列偏振分光器
CN107783309A (zh) * 2017-11-23 2018-03-09 武汉大学 金属纳米砖阵列结构及其用作偏振分光器的应用
CN107861257A (zh) * 2017-12-08 2018-03-30 武汉邮电科学研究院 基于超表面材料的光混频器及其制备方法
CN109683334A (zh) * 2019-01-16 2019-04-26 南方科技大学 一种透射式光分束器及其制造方法

Also Published As

Publication number Publication date
CN109683334B (zh) 2021-07-27
CN109683334A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
WO2020147788A1 (zh) 透射式光分束器及其制造方法
US9354362B2 (en) Optical devices based on diffraction gratings
KR20210106516A (ko) 선형 편광 전환 소자, 제조 방법 및 선형 편광 전환 시스템
US9958784B2 (en) Super-resolution imaging photolithography
Chou et al. Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates
CN102636967B (zh) 表面等离子体纳米光刻结构及方法
US8265435B2 (en) Optical fiber coupling systems and methods for fabricating the same
US10061139B2 (en) Optical devices based on non-periodic sub-wavelength gratings
EP0964305A1 (en) Method of making a photonic crystal
JP2010261999A (ja) 光学素子、偏光フィルタ、光アイソレータ、光学装置
KR102252049B1 (ko) 노광용 마스크, 이의 제조 방법 및 이를 이용한 기판의 제조 방법
JP2005520187A (ja) 結晶レンズを有する対物レンズ
Wu et al. Ultra‐broadband terahertz polarization conversion enabled by all‐dielectric grating structures
WO2014003146A1 (ja) 偏光制御素子、近接場光源、および並列電子線装置
CN109116687B (zh) 一种超分辨光刻的光生成器件
CN110456426A (zh) 亚波长介质柱阵列结构的超材料双功能太赫兹波片
CN101718883A (zh) 高密度深刻蚀正弦槽型光栅偏振分束器
CN116299810A (zh) 一种反射式弯曲叉形面光栅的制备装置和方法
CN101614836A (zh) 石英透射偏振分束光栅
Kampfe et al. Hydrogenated Amorphous Silicon Microstructuring for 0th-Order Polarization Elements at 1.0–1.1$\mu\hbox {m} $ Wavelength
JP4491682B2 (ja) フォトマスク
Wang et al. High-performance large-area ultra-broadband (UV to IR) nanowire-grid polarizers and polarizing beam-splitters
JPH052261A (ja) マスクとそれを用いた投影露光方法
CN103364873B (zh) 一种硅基二氧化硅波导及其制作与应用方法
JP5256945B2 (ja) 光処理素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741579

Country of ref document: EP

Kind code of ref document: A1