WO2020147473A1 - 滤光结构、其制备方法及显示装置 - Google Patents

滤光结构、其制备方法及显示装置 Download PDF

Info

Publication number
WO2020147473A1
WO2020147473A1 PCT/CN2019/125382 CN2019125382W WO2020147473A1 WO 2020147473 A1 WO2020147473 A1 WO 2020147473A1 CN 2019125382 W CN2019125382 W CN 2019125382W WO 2020147473 A1 WO2020147473 A1 WO 2020147473A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
quantum dot
base substrate
layer
blue
Prior art date
Application number
PCT/CN2019/125382
Other languages
English (en)
French (fr)
Inventor
宋晓欣
张锋
刘文渠
吕志军
董立文
崔钊
姚琪
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/763,257 priority Critical patent/US11397290B2/en
Publication of WO2020147473A1 publication Critical patent/WO2020147473A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01791Quantum boxes or quantum dots
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133567Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the back side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a filter structure, a preparation method thereof, and a display device.
  • Quantum dots have the advantages of tunable luminescence wavelength, narrow luminous coverage wavelength range, high luminous efficiency, and good light, thermal and chemical stability. They are a new generation of luminescent materials used in solid-state lighting and full-color flat panel displays.
  • the filter structure provided by the embodiments of the present disclosure includes:
  • a plurality of filter units are located on the base substrate, and at least part of the filter units include a quantum dot filter layer;
  • the filter unit further includes a reflective structure, the orthographic projection of the reflective structure on the base substrate surrounds the orthographic projection of the quantum dot filter layer on the base substrate;
  • the distance between the plane of the reflective structure on the side facing away from the base substrate and the base substrate is greater than the distance between the plane of the quantum dot filter layer on the side close to the base substrate and the base substrate the distance.
  • the distance between the plane of the reflective structure on the side far from the base substrate and the base substrate is greater than or equal to the The distance between the plane on the side of the quantum dot filter layer away from the base substrate and the base substrate.
  • the reflective structure is far from the plane of the base substrate and each of the quantum dot filter layers is far from the base substrate The plane on one side is flush.
  • the reflective structure includes a supporting structure and a reflective metal layer covering the supporting structure.
  • the filter structure further includes: a color filter
  • the color filters are located between the quantum dot filter layer and the base substrate, and each of the color filters is corresponding to the quantum dot filter layer of each color;
  • the side of the base substrate away from the color filter is the light exit side of the filter structure.
  • the color filter includes: a red filter, a green filter, and a blue filter;
  • the edge thickness of the red filter and the green filter is greater than the middle thickness, the thickness of the blue filter is uniform, and the thickness of the blue filter is equal to the thickness of the green filter and the green filter. Describe the edge thickness of the red filter.
  • the red quantum dot filter layer faces away from the plane of the base substrate and the green quantum dot filter layer faces away from the The plane on one side of the base substrate is flush with the plane on the side of the blue-green quantum dot filter layer facing away from the base substrate.
  • the filter structure provided in the embodiment of the present disclosure further includes: a protective layer covering the quantum dot filter layer and the reflective structure.
  • the embodiments of the present disclosure also provide a method for preparing a filter structure, the method including:
  • the quantum dot filter layer is formed in an area surrounded by the reflective structure.
  • the forming the reflective structure on the base substrate specifically includes:
  • a reflective layer covering the supporting structure is formed on the base substrate.
  • the filter unit when the filter unit includes a red filter unit, a green filter unit, and a blue filter unit, the formation of the quantum dot filter layer on the base substrate specifically includes:
  • a halftone mask process is used to form a red filter in the red filter unit
  • a halftone mask process is used to form a green filter in the green filter unit
  • a blue filter is formed in the blue filter unit.
  • Filter wherein the edge thickness of the red filter and the green filter is greater than the middle thickness, the thickness of the blue filter is uniform, and the thickness of the blue filter is equal to the thickness of the The edge thickness of the green filter and the red filter;
  • a red quantum dot filter layer is formed on the red filter, a green quantum dot filter layer is formed on the green filter, and a blue-green quantum dot is formed on the blue filter Filter layer.
  • an embodiment of the present disclosure further provides a display device, the display device including: the filter structure provided by any one of the embodiments of the first aspect of the present disclosure.
  • the display device further includes: a white light organic light emitting diode display panel; the filter structure is located on the light emitting surface of the white light organic light emitting diode display panel And the filter unit is located between the base substrate and the white light organic light emitting diode display panel;
  • the white organic light emitting diode display panel has a plurality of sub-pixel units, and the sub-pixel units and the filter units are arranged in a one-to-one correspondence.
  • the display device further includes: a blue light drive backplane disposed on a side of the quantum dot filter layer away from the base substrate, A colorless liquid crystal display panel arranged on the side of the base substrate away from the quantum dot filter layer.
  • FIG. 1 is a schematic structural diagram of a filter structure provided by an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of another filter structure provided by an embodiment of the disclosure.
  • FIG. 3 is a schematic structural diagram of yet another light filtering structure provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic structural diagram of yet another light filtering structure provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic structural diagram of yet another light filtering structure provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of a method for preparing a filter structure provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of a display device provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of another display device provided by an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of another display device provided by an embodiment of the disclosure.
  • an embodiment of the present disclosure provides a filter structure, and the filter structure includes:
  • a plurality of filter units 1, the plurality of filter units 1 are located on the base substrate 4, and at least part of the filter units 1 includes a quantum dot filter layer 2;
  • the filter unit 1 further includes: a reflective structure 3, the orthographic projection of the reflective structure 3 on the base substrate 4 surrounds the orthographic projection of the quantum dot filter layer 2 on the base substrate 4;
  • the distance between the plane of the reflective structure 3 facing away from the base substrate 4 and the base substrate 4 is greater than the distance between the plane of the quantum dot filter layer 2 on the side close to the base substrate 4 and the base substrate 4 distance.
  • the area where the reflective structure is located not only needs to surround the area where the quantum dot filter layer is located, but also in order to reflect the light on both sides of the quantum dot filter layer.
  • the quantum dot filter layer it is also necessary to make the quantum dot filter layer have an orthographic projection on the reflective structure to prevent light leakage and increase the light output efficiency of the quantum dot filter layer.
  • the reflective structure since the reflective structure surrounding the quantum dot filter layer is arranged between the filter units, the reflective structure can prevent light leakage and can reflect light scattered around the quantum dot filter layer to In the light exit area of the filter unit, the light reflected by the reflective structure can re-excite the quantum dot filter layer, thereby improving the luminous efficiency of the quantum dot filter layer and improving the light exit efficiency of the filter structure. And it can also increase the light intensity under front view conditions and improve the display effect.
  • the distance between the plane of the reflective structure 3 on the side away from the base substrate 4 and the base substrate 4 is greater than or equal to the quantum dot filter The distance between the plane on the side of the layer 2 away from the base substrate 4 and the base substrate 4.
  • the filter structure provided by the embodiments of the present disclosure, a plurality of filter units are included, and the luminous intensity of the quantum dot filter layer in the filter units of different colors will be different, so that the quantum dots of each color can be filtered.
  • the luminous intensity of the optical layer tends to be uniform, which will reduce the thickness of the quantum dot filter layer with high luminous intensity, and appropriately increase the thickness of the quantum dot filter layer with low luminous intensity. Therefore, when setting the reflective structure, the height of the reflective structure needs to be at least equal to the thickness of the thickest quantum dot filter layer, and the height of the reflective structure is greater than the thickness corresponding to the smallest thickness of the quantum dot filter layer. This arrangement can reduce the crosstalk between adjacent quantum dot filter layers, and can increase the luminous efficiency of each quantum dot filter layer.
  • the reflection The plane of the structure 3 on the side away from the base substrate 4 is flush with the plane on the side of each quantum dot filter layer 2 away from the base substrate 4.
  • the reflective structure 3 includes a supporting structure 6 and a reflective metal layer 5 covering the supporting structure 6.
  • the reflective metal layer can reflect the light scattered around the quantum dot filter layer to the light output area of the filter unit, and the light reflected by the reflective structure can re-excite the quantum dot filter layer to improve
  • the luminous efficiency of the quantum dot filter layer can improve the light-emitting efficiency of the filter structure, and can also increase the light intensity under front view conditions and improve the display effect.
  • the support structure is provided and the reflective metal layer covering the support structure is provided, and the process is simple and easy to implement.
  • the filter unit 1 includes: a red quantum dot filter layer 9, a green quantum dot filter layer 11, and a blue quantum dot filter Layer 13
  • the thickness of the red quantum dot filter layer 9 and the thickness of the green quantum dot filter layer 11 are both greater than the thickness of the blue quantum dot filter layer 13.
  • the luminous intensity of the blue quantum dot filter layer is greater than the luminous intensity of the red quantum dot filter layer and the luminous intensity of the green quantum dot filter layer. Therefore, The thickness of the red quantum dot filter layer and the thickness of the green quantum dot filter layer are set to be greater than the thickness of the blue quantum dot filter layer to ensure that the luminous intensity of the quantum dot filter layer of each color is consistent.
  • the blue quantum dot filter layer may not be provided, and the blue light emitted by the backlight can be directly from the corresponding position in the area corresponding to the blue light. Just go through. Therefore, the blue quantum dot filter layer can be selectively arranged.
  • the filter structure further includes: a color filter 7;
  • the color filter 7 is located between the quantum dot filter layer 2 and the base substrate 4, and the color filter 7 is arranged corresponding to the quantum dot filter layer 2 of each color;
  • the side of the base substrate 4 away from the color filter 7 is the light exit side of the filter structure.
  • the filter structure provided by the embodiment of the present disclosure is provided with a color filter corresponding to the color of the quantum dot filter layer, so that the color gamut of the light color of the filter unit can be broadened, the display effect is improved, and the user experience is improved.
  • the color filter 7 includes: a red filter 8, a green filter 10, and a blue filter 12;
  • the edge thickness of the red filter 8 and the green filter 10 is greater than the middle thickness, wherein the difference between the edge thickness and the middle thickness is about 0.5um, and the width of the area where the edges are located is 1um-5um; and the blue filter
  • the thickness of the blue filter 12 is uniform, and the thickness of the blue filter 12 can be equal to the edge thickness of the red filter 8 and the green filter 10.
  • the thickness of the blue filter 12 can also be greater than that of the red filter 8 and
  • the thickness of the edge of the green filter 10 effectively ensures that the thickness of the red quantum dot filter layer 9 and the green quantum dot filter layer 11 are both greater than the thickness of the blue quantum dot filter layer 13 to ensure red and green light And the uniformity of blue light.
  • the thickness of the middle of the red quantum dot filter layer and the green quantum dot filter layer is greater than the thickness of the edge, the thickness of the blue-green quantum dot filter layer is uniform, and the thickness of the blue-green quantum dot filter layer is smaller than that of the red quantum dot filter layer.
  • the thickness between the red quantum dot filter layer and the green quantum dot filter layer is greater than the thickness of the blue-green quantum dot filter layer, which can improve the red filter unit and the green quantum dot filter layer.
  • the luminous intensity of the filter unit is provided.
  • a blue backlight (blue driver backplane) is used to excite the quantum dot filter layer of each color, and the choice of the blue backlight determines the blue quantum dot
  • the light intensity of the filter layer will be greater than the light intensity of other colors, causing the display screen of the display panel to become bluish.
  • the red quantum dot filter layer and the green quantum dot filter can be added The thickness of the layer to increase the light intensity of red and green light.
  • the arrangement of the concave grooves can increase The thickness of the red quantum dot filter layer 9 and the green quantum dot filter layer 11, at this time, the red quantum dot filter layer 9 can be away from the base substrate 4 and the green quantum dot filter layer 11 can be away from the base substrate 4
  • the plane on one side is flush with the plane on the side of the blue-green quantum dot filter layer 13 away from the base substrate 4, which facilitates the production of the packaging film layer.
  • the red filter and the green filter are arranged as concave grooves.
  • the concave grooves can also play a role in concentrating light, enhancing the light intensity that excites the quantum dots, thereby achieving the purpose of increasing the intensity of red light and green light. .
  • the reflective structure 3 can also prevent the red filter during the manufacturing process of forming the red filter 8 and the green filter 10 whose thickness in the middle is greater than that of the edge. The light sheet 8 and the green filter 10 collapse.
  • the filter structure further includes a protective layer 14 covering the quantum dot filter layer 2 and the reflective structure 3 to encapsulate the quantum dot filter layer 2 and the reflective structure 3 to prevent quantum dot filtering
  • the optical layer 2 and the reflective structure 3 are corroded.
  • the protective layer 14 may include a first protective layer 15 and a second protective layer 16 on the side of the first protective layer 15 away from the base substrate 4.
  • the materials of the first protective layer and the second protective layer can be made of acrylic system materials, but the acrylic system material of the first protective layer accounts for about 15%, and the acrylic system material of the second protective layer accounts for 8% ⁇ 12%, and the viscosity of the first protective layer is greater than the viscosity of the second protective layer, so that the first protective layer can cover other layers in the filter structure, and flatten the interlayer difference, while the second The protective layer has a low viscosity and can be spread on the surface of the first protective layer to further planarize the first protective layer.
  • An embodiment of the present disclosure provides a method for preparing a filter structure, the method includes:
  • a quantum dot filter layer is formed in the area surrounded by the reflective structure.
  • forming a reflective structure on the base substrate specifically includes:
  • a reflective layer covering the supporting structure is formed on the base substrate.
  • forming the supporting structure in the filter unit on the base substrate specifically includes:
  • the photoresist is coated on the base substrate, and the photoresist is processed by a patterning process to form a supporting structure.
  • forming a reflective layer covering the support structure on the base substrate specifically includes:
  • a metal material is deposited on the base substrate, and the metal material is processed by a patterning process to form a reflective layer covering the supporting structure.
  • the metal material may be, for example, a laminate of multiple layers of metal, for example, it may be a laminate of titanium (Ti)/aluminum (Al)/Ti.
  • the filter unit includes a red filter unit, a green filter unit, and a blue filter unit.
  • the quantum dot filter layer in the plurality of filter units is formed on the base substrate, which specifically includes:
  • a halftone mask process is used to form a red filter in the red filter unit, a halftone mask process is used to form a green filter in the green filter unit, and a blue filter is formed in the blue filter unit;
  • the edge thickness of the red filter and the green filter is greater than the middle thickness, the thickness of the blue filter is uniform, and the thickness of the blue filter is equal to the edge thickness of the green filter and the red filter;
  • a red quantum dot filter layer is formed on the red filter, a green quantum dot filter layer is formed on the green filter, and a blue-green quantum dot filter layer is formed on the blue filter.
  • the intermediate thickness of the formed red quantum dot filter layer and the green quantum dot filter layer is greater than the edge thickness, the thickness of the blue-green quantum dot filter layer is uniform, and the thickness of the blue-green quantum dot filter layer is smaller than that of the red quantum dot filter layer Layer and the middle thickness of the green quantum dot filter layer.
  • the thickness of the blue filter equal to the edge thickness of the green filter and the red filter can effectively ensure that the deposition amount of the blue quantum dot filter layer corresponding to the blue filter can be less than that of the red quantum dot filter
  • the deposition amount of the light layer and the deposition amount of the green quantum dot filter layer due to the anisotropy of the emitted light of the quantum dot, not only the deposition thickness of the quantum dot has an effect on the luminous intensity, but also the area occupied by the quantum dot of the corresponding color There is also an influence on the luminous intensity of the color.
  • the thickness of the blue filter is equal to the edge thickness of the green filter and the red filter
  • the corresponding mask can be designed with two different exposure levels, one corresponding to the opening area of the concave groove , A type corresponding to the edge area of the concave groove and the area where the blue filter is located; if the thickness of the blue filter is set to be different from the edge thickness of the green filter and the red filter, the mask The exposure level corresponding to the area where the blue filter is located is separately designed on the plate.
  • the method further includes forming a protective layer covering the quantum dot filter layer and the reflective structure.
  • forming a protective layer covering the quantum dot filter layer and the reflective structure specifically includes: forming a first protective layer with a planarizing effect covering the quantum dot filter layer and the reflective structure, and forming a first protective layer that is located away from the reflective structure.
  • a second protective layer is formed on one side of the structure.
  • the materials of the first protective layer and the second protective layer can be made of acrylic system materials, but the acrylic system material of the first protective layer accounts for about 15%, and the acrylic system material of the second protective layer accounts for 8% ⁇ 12%, and the viscosity of the first protective layer is greater than the viscosity of the second protective layer, so that the first protective layer can cover other layers in the filter structure, and flatten the interlayer difference, while the second The protective layer has a low viscosity and can be spread on the surface of the first protective layer to further planarize the first protective layer.
  • the method for preparing the filter structure includes:
  • a glue coating process can be used to coat a photoresist layer with a thickness of 7 microns at a rate of 450 microliters (uL)/second (s), followed by a 900 megajoule (mJ) exposure for 140s, with a content of 2.38%
  • TMAH tetramethyl ammonium hydroxide
  • a sputtering process can be used to deposit Ti/Al/Ti stacks, and a patterning process including exposure, development and etching can be used to form the reflective layer;
  • the area adjacent to the reflective metal layer that is, the edge of the filter can be 100% fully exposed, and the middle area of the filter can be exposed 50% to form the edge thickness Filters larger than the middle thickness;
  • a red quantum dot filter layer 9 is formed on the red filter 8
  • a green quantum dot filter layer 11 is formed on the green filter 10
  • blue-green quantum dots are formed on the blue filter 12 Point filter layer 13;
  • forming the protective layer 14 specifically including forming a first protective layer 15 with a planarization effect and forming a second protective layer 16 on the first protective layer 15.
  • An embodiment of the present disclosure provides a display device, and the display device includes: the above-mentioned filter structure provided in the embodiment of the present disclosure.
  • the display device provided by the embodiment of the present disclosure may be, for example, a mobile phone, a computer, a television, and other devices.
  • the display device further includes: a white light-emitting diode (Organic Light-Emitting Diode, OLED) display panel 17;
  • the filter structure is located on one side of the light-emitting surface of the white light-emitting diode display panel 17, and
  • the filter unit is located between the substrate base 4 and the white light organic light emitting diode display panel 17;
  • the white light organic light emitting diode display panel 17 has a plurality of sub-pixel units, and each sub-pixel unit corresponds to each filter unit one to one.
  • the display device further includes: a blue light drive backplane 19 disposed on the side of the quantum dot filter layer 2 away from the base substrate 4, and disposed on the base substrate away from the quantum dot filter layer 2.
  • This kind of setting filter structure can use blue light to drive all the light emitted by the backplane. If the liquid crystal display panel 18 is arranged between the blue driving backplane 19 and the filter structure as shown in FIG. 9, the light emitted by the blue driving backplane 19 will pass through the liquid crystal display panel 18 first, and part of the blue light will be absorbed by the liquid crystal. Blocking, the intensity of blue light shining on the filter structure will decrease.
  • FIG. 8 and FIG. 9 can all realize display, and are within the protection scope of the present disclosure, and can be specifically selected according to actual usage conditions, which are not specifically limited herein.
  • the filter structure and the driving backplane can be used as a backlight module, for example, a blue light emitting diode can be used as a backlight source, blue light excites the red quantum dot filter layer to emit red light, and blue light excites the green quantum dot filter layer to emit green light.
  • a blue light emitting diode can be used as a backlight source, blue light excites the red quantum dot filter layer to emit red light, and blue light excites the green quantum dot filter layer to emit green light.
  • the blue light is used to excite the quantum dot filter layer to emit light of the sub-pixel luminous color.
  • the blue filter unit even if the filter layer is not provided, the blue light can be directly emitted.
  • the light unit is provided with a quantum dot filter layer of a corresponding color, and the blue light filter unit directly emits blue light, which will cause the light of the blue sub-pixel to be stronger than the light of the red sub-pixel and the green sub-pixel, resulting in chromatic aberration.
  • a quantum dot filter layer can be provided in the blue filter unit, so that the light intensity of the blue sub-pixel, the green sub-pixel, and the red sub-pixel can be balanced, and the color difference of different filter units can be eliminated. Further, taking the filter structure shown in FIG.
  • the maximum thickness of the red quantum dot filter layer and the green quantum dot filter layer is greater than the thickness of the blue-green quantum dot filter layer, so that the red sub-pixel and The luminous intensity of the green sub-pixel can further eliminate the chromatic aberration of different filter units.
  • the preparation of the liquid crystal display device includes the step of forming a thin film transistor on a base substrate, and subsequently a quantum dot filter layer and a reflective structure are arranged on the side of the base substrate away from the thin film transistor. That is, the base substrate provided in the process of preparing the filter structure is the base substrate provided with thin film transistors, and the process of preparing thin film transistors is also included before step S101, such as amorphous silicon (a-Si) process, oxide ( oxide) process or Low Temperature Poly-silicon (LTPS) process. It also includes the steps of forming a blue light driving backplane and bonding the blue light driving backplane to the filter structure, for example, a nanoimprinting process may be used to bond the blue light driving backplane and the second protective layer.
  • a-Si amorphous silicon
  • oxide oxide
  • LTPS Low Temperature Poly-silicon
  • the display device because the reflective structure surrounding the quantum dot filter layer is arranged between the filter units, the reflective structure can prevent light leakage and can The light scattered by the sub-dot filter layer is reflected to the light output area of the filter unit, and the light reflected by the reflective structure can re-excite the quantum dot filter layer, which improves the luminous efficiency of the quantum dot filter layer and the light output of the filter structure effectiveness. And it can also increase the light intensity under front view conditions and improve the display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

一种滤光结构、其制备方法及显示装置,滤光结构包括:衬底基板(4);多个滤光单元(1),多个滤光单元(1)位于衬底基板(4)之上,且至少部分滤光单元(1)包括量子点滤光层(2);滤光单元(1)还包括:反射结构(3),反射结构(3)在衬底基板(4)上的正投影包围量子点滤光层(2)在衬底基板(4)上的正投影;反射结构(3)背离衬底基板(4)一侧的平面与衬底基板(4)之间的距离大于量子点滤光层(2)靠近衬底基板(4)一侧的平面与衬底基板(4)之间的距离,用以提高量子点滤光层(2)的发光效率。

Description

滤光结构、其制备方法及显示装置
本公开要求在2019年01月16日提交中国专利局、公开号为201910039622.8、公开名称为“一种滤光结构及其制备方法、显示装置”的中国专利公开的优先权,其全部内容以引入的方式并入本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及滤光结构、其制备方法及显示装置。
背景技术
量子点具有发光波长可调谐,发光覆盖波长范围窄,发光效率高,光、热及化学稳定性好等优点,是应用于固态照明和全色平板显示的新一代发光材料。
发明内容
第一方面,本公开实施例提供的滤光结构,其中,包括:
衬底基板;
多个滤光单元,多个所述滤光单元位于所述衬底基板之上,且至少部分所述滤光单元包括量子点滤光层;
所述滤光单元还包括:反射结构,所述反射结构在所述衬底基板上的正投影包围所述量子点滤光层在所述衬底基板上的正投影;
所述反射结构背离所述衬底基板一侧的平面与所述衬底基板之间的距离大于所述量子点滤光层靠近所述衬底基板一侧的平面与所述衬底基板之间的距离。
在一种可能的实施方式中,在本公开实施例提供的滤光结构中,所述反射结构远离所述衬底基板一侧的平面与所述衬底基板之间的距离大于或等于所述量子点滤光层远离所述衬底基板一侧的平面与所述衬底基板之间的距离。
在一种可能的实施方式中,在本公开实施例提供的滤光结构中,所述反射结构远离所述衬底基板一侧的平面与各所述量子点滤光层远离所述衬底基板一侧的平面齐平。
在一种可能的实施方式中,在本公开实施例提供的滤光结构中,所述反射结构包括:支撑结构以及包覆所述支撑结构的反射金属层。
在一种可能的实施方式中,在本公开实施例提供的滤光结构中,所述滤光结构还包括:彩色滤光片;
所述彩色滤光片位于所述量子点滤光层与所述衬底基板之间,且各所述彩色滤光片与各颜色的所述量子点滤光层对应设置;
所述衬底基板远离所述彩色滤光片的一侧为所述滤光结构的出光侧。
在一种可能的实施方式中,在本公开实施例提供的滤光结构中,所述彩色滤光片包括:红色滤光片、绿色滤光片和蓝色滤光片;
所述红色滤光片以及所述绿色滤光片的边缘厚度大于中间厚度,所述蓝色滤光片的厚度均一,且所述蓝色滤光片的厚度等于所述绿色滤光片以及所述红色滤光片的边缘厚度。
在一种可能的实施方式中,在本公开实施例提供的滤光结构中,所述红色量子点滤光层背离所述衬底基板一侧平面和所述绿色量子点滤光层背离所述衬底基板一侧的平面,与所述蓝绿色量子点滤光层背离所述衬底基板一侧的平面齐平。
在一种可能的实施方式中,在本公开实施例提供的滤光结构中,还包括:覆盖所述量子点滤光层以及所述反射结构的保护层。
第二方面,本公开实施例还提供了滤光结构的制备方法,所述方法包括:
提供一衬底基板;
在所述衬底基板上形成所述反射结构;
在所述反射结构包围的区域内形成所述量子点滤光层。
在一种可能的实施方式中,在本公开实施例提供的滤光结构的制备方法中,所述在所述衬底基板上形成所述反射结构,具体包括:
在所述衬底基板上形成支撑结构;
在所述衬底基板上形成包覆所述支撑结构的反射层。
在一种可能的实施方式中,在本公开实施例提供的滤光结构的制备方法中,在所述滤光单元包括红色滤光单元,绿色滤光单元,以及蓝色滤光单元时,在所述衬底基板上形成所述量子点滤光层,具体包括:
在所述红色滤光单元采用半色调掩膜工艺形成红色滤光片,在所述绿色滤光单元采用半色调掩膜工艺形成绿色滤光片,以及在所述蓝色滤光单元形成蓝色滤光片;其中,所述红色滤光片以及所述绿色滤光片的边缘厚度大于中间厚度,所述蓝色滤光片的厚度均一,且所述蓝色滤光片的厚度等于所述绿色滤光片以及所述红色滤光片的边缘厚度;
在所述红色滤光片之上形成红色量子点滤光层,在所述绿色滤光片之上形成绿色量子点滤光层,以及在所述蓝色滤光片之上形成蓝绿色量子点滤光层。
第三方面,本公开实施例还提供的一种显示装置,所述显示装置包括:本公开第一方面任一实施例提供的滤光结构。
在一种可能的实施方式中,在本公开实施例提供的显示装置中,所述显示装置还包括:白光有机发光二极管显示面板;所述滤光结构位于所述白光有机发光二极管显示面板出光面的一侧,且所述滤光单元位于所述衬底基板与所述白光有机发光二极管显示面板之间;
所述白光有机发光二极管显示面板具有多个子像素单元,所述子像素单元与所述滤光单元一一对应设置。
在一种可能的实施方式中,在本公开实施例提供的显示装置中,所述显示装置还包括:设置在所述量子点滤光层背离所述衬底基板一侧的蓝光驱动背板,设置在所述衬底基板背离所述量子点滤光层一侧的无色阻的液晶显示面板。
附图说明
图1为本公开实施例提供的一种滤光结构的结构示意图;
图2为本公开实施例提供的另一种滤光结构的结构示意图;
图3为本公开实施例提供的又一种滤光结构的结构示意图;
图4为本公开实施例提供的又一种滤光结构的结构示意图;
图5为本公开实施例提供的又一种滤光结构的结构示意图;
图6为本公开实施例提供的一种滤光结构制备方法示意图;
图7为本公开实施例提供的一种显示装置的示意图;
图8为本公开实施例提供的另一种显示装置的示意图;
图9为本公开实施例提供的又一种显示装置的示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例,仅用于说明和解释本公开,并不用于限定本公开。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。并且,基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
需要注意的是,附图中各部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
如图1和图2所示,本公开实施例提供了滤光结构,该滤光结构包括:
衬底基板4;
多个滤光单元1,多个滤光单元1位于衬底基板4之上,至少部分滤光单元1包括量子点滤光层2;
该滤光单元1还包括:反射结构3,该反射结构3在衬底基板4上的正投影包围量子点滤光层2在衬底基板4上的正投影;
且该反射结构3背离衬底基板4一侧的平面与该衬底基板4之间的距离大于该量子点滤光层2靠近衬底基板4一侧的平面与该衬底基板4之间的距离。
需要说明的是,在本公开实施例提供的滤光结构中,该反射结构所在区域不仅需要包围该量子点滤光层所在的区域,为了能够将量子点滤光层射向两侧的光反射回该量子点滤光层所在区域,还需要使得该量子点滤光层在该反射结构上存在正投影,防止漏光的同时增加量子点滤光层的出光效率。
本公开实施例提供的滤光结构,由于在滤光单元之间设置有包围量子点滤光层的反射结构,从而反射结构可以防止漏光并且可以将量子点滤光层向四周散射的光反射到滤光单元的出光区域,反射结构反射的光可以对量子点滤光层再次激发,提高量子点滤光层的发光效率,提高滤光结构的出光效率。并且还可以提高正视条件下光强,提高显示效果。
可选地,在本公开实施例提供的滤光结构中,如图2所示,反射结构3远离衬底基板4一侧的平面与衬底基板4之间的距离大于或等于量子点滤光层2远离衬底基板4一侧的平面与衬底基板4之间的距离。
具体地,在本公开实施例提供的滤光结构中,包括多个滤光单元,不同颜色的滤光单元内的量子点滤光层的发光强度会存在差异,为使得各颜色的量子点滤光层的发光强度趋于一致,会降低发光强度高的量子点滤光层的厚度,适当增加发光强度低的量子点滤光层的厚度。因此,在设置反射结构时,需要使该反射结构的高度至少等于最厚的量子点滤光层的厚度,则反射结构的高度就大于了最小厚度的量子点滤光层对应的厚度。该种设置可以减少相邻的量子点滤光层之间的串扰,同时能够增加各量子点滤光层的发光效率。
可选地,在本公开实施例提供的滤光结构中,如图1和图3所示,当各量子点滤光层2远离衬底基板4的一侧的平面保持齐平时,可以将反射结构3远离衬底基板4一侧的平面与各量子点滤光层2远离衬底基板4一侧的平面齐平。
可选地,如图3所示,反射结构3包括:支撑结构6以及包覆支撑结构6的反射金属层5。
本公开实施例提供的滤光结构,反射金属层可以将量子点滤光层向四周 散射的光反射到滤光单元的出光区域,反射结构反射的光可以对量子点滤光层再次激发,提高量子点滤光层的发光效率,提高滤光结构的出光效率,还可以提高正视条件下光强,提高显示效果。并且,设置支撑结构并设置包覆支撑结构的反射金属层,工艺简单易于实现。
可选地,在本公开实施例提供的滤光结构中,如图2所示,滤光单元1包括:红色量子点滤光层9、绿色量子点滤光层11和蓝色量子点滤光层13;
红色量子点滤光层9的厚度和绿色量子点滤光层11的厚度均大于蓝色量子点滤光层13的厚度。
具体地,在本公开实施例提供的滤光结构中,蓝色量子点滤光层的发光强度会大于红色量子点滤光层的发光强度和绿色量子点滤光层的发光强度,因此,可以将红色量子点滤光层的厚度和绿色量子点滤光层的厚度设置为大于蓝色量子点滤光层的厚度,以保证各颜色的量子点滤光层的发光强度一致。
需要说明的是,当采用蓝光背光源对各颜色量子点滤光层进行激发时,可以不设置蓝色量子点滤光层,在蓝光对应的区域直接让背光源所发出的蓝光直接从对应位置透过即可。因此,该蓝色量子点滤光层可以选择性的设置。
可选地,如图3所示,滤光结构还包括:彩色滤光片7;
该彩色滤光片7位于量子点滤光层2与衬底基板4之间,且彩色滤光片7与各颜色的量子点滤光层2对应设置;
且该衬底基板4远离彩色滤光片7的一侧为该滤光结构的出光侧。
本公开实施例提供的滤光结构,设置有与量子点滤光层的颜色对应的彩色滤光片,从而可以拓宽滤光单元出光颜色的色域,提高显示效果,提升用户体验。
可选地,在本公开实施例提供的滤光结构中,如图3所示,该彩色滤光片7包括:红色滤光片8、绿色滤光片10和蓝色滤光片12;
具体地,红色滤光片8以及绿色滤光片10的边缘厚度大于中间厚度,其中,边缘厚度与中间厚度差约为0.5um,边缘所在区域的宽度为1um~5um;而蓝色滤光片12的厚度均一,且蓝色滤光片12的厚度可以等于红色滤光片8以及绿色 滤光片10的边缘厚度,当然该蓝色滤光片12的厚度也可以大于红色滤光片8以及绿色滤光片10的边缘厚度,从而有效的保证红色量子点滤光层9和绿色量子点滤光层11的厚度均大于蓝色量子点滤光层13的厚度,以保证红光、绿光和蓝光的出光均一性。
例如,红色量子点滤光层以及绿色量子点滤光层的中间的厚度大于边缘的厚度,蓝绿色量子点滤光层的厚度均一,蓝绿色量子点滤光层的厚度小于红色量子点滤光层以及绿色量子点滤光层的中间的厚度,即红色量子点滤光层以及绿色量子点滤光层的最大厚度大于蓝绿色量子点滤光层的厚度,从而可以提高红色滤光单元以及绿色滤光单元的发光强度。
在该滤光结构的应用于显示的过程中,一般采用蓝色背光源(蓝色驱动背板)对各颜色的量子点滤光层进行激发,蓝色背光源的选择决定了蓝色量子点滤光层的出光强度会大于其他颜色的出光强度,导致显示面板的显示画面偏蓝,为了增加显示面板各子像素的出光均一性,可以通过增加红色量子点滤光层和绿色量子点滤光层的厚度,来增加红光和绿光的出光强度。
可选地,在本公开实施例提供的滤光结构中,如图3所示,将红色滤光片8和绿色滤光片10设置为凹形槽后,可以通过该凹形槽的设置增加红色量子点滤光层9和绿色量子点滤光层11的厚度,此时可以将红色量子点滤光层9背离衬底基板4一侧平面和绿色量子点滤光层11背离衬底基板4一侧的平面,与蓝绿色量子点滤光层13背离衬底基板4一侧的平面齐平,便于封装膜层的制作。
将红色滤光片和绿色滤光片设置为凹形槽,该凹形槽还可以起到一定的聚光作用,增强激发量子点的光强,从而达到提高红光和绿光出光强度的目的。
本公开实施例提供的如图3所示的滤光结构中,反射结构3还可以在形成中间的厚度大于边缘的厚度的红色滤光片8和绿色滤光片10的制作过程中防止红色滤光片8和绿色滤光片10塌陷。
可选地,如图4所示,滤光结构还包括覆盖量子点滤光层2以及反射结构3的保护层14,以对量子点滤光层2和反射结构3进行封装,防止量子点滤光层2 和反射结构3被腐蚀。
具体地,如图5所示,该保护层14可以包括第一保护层15以及位于第一保护层15背离衬底基板4一侧的第二保护层16。
其中,该第一保护层和第二保护层的材料可以均采用丙烯酸体系材料,但是第一保护层的丙烯酸体系材料占比在15%左右,第二保护层的丙烯酸体系材料占比在8%~12%,且第一保护层的粘度要大于第二保护层的粘度,从而使得第一保护层可以包覆滤光结构中的其他膜层,并对层间断差进行平坦化,而第二保护层的粘度较小,可以平铺在第一保护层的表面,进一步的对第一保护层进行平坦化。
本公开实施例提供的一种滤光结构的制备方法,方法包括:
提供一衬底基板;
在衬底基板上形成反射结构;
在反射结构包围的区域内形成量子点滤光层。
可选地,在衬底基板上形成反射结构,具体包括:
在衬底基板上形成支撑结构;
在衬底基板上形成包覆支撑结构的反射层。
可选地,在衬底基板上形成滤光单元中的支撑结构,具体包括:
在衬底基板上涂覆光刻胶,采用图形化工艺处理光刻胶,形成支撑结构。
可选地,在衬底基板上形成包覆支撑结构的反射层,具体包括:
在衬底基板上沉积金属材料,采用图形化工艺处理金属材料,形成包覆支撑结构的反射层。
金属材料例如可以是多层金属的叠层,例如可以是钛(Ti)/铝(Al)/Ti的叠层。
可选地,滤光单元包括红色滤光单元,绿色滤光单元,以及蓝色滤光单元,在衬底基板上形成多个滤光单元中的量子点滤光层,具体包括:
在红色滤光单元采用半色调掩膜工艺形成红色滤光片,在绿色滤光单元采用半色调掩膜工艺形成绿色滤光片,以及在蓝色滤光单元形成蓝色滤光片; 其中,红色滤光片以及绿色滤光片的边缘厚度大于中间厚度,蓝色滤光片的厚度均一,且蓝色滤光片的厚度等于绿色滤光片以及红色滤光片的边缘厚度;
在红色滤光片之上形成红色量子点滤光层,在绿色滤光片之上形成绿色量子点滤光层,以及在蓝色滤光片之上形成蓝绿色量子点滤光层。
这样,形成的红色量子点滤光层以及绿色量子点滤光层的中间厚度大于边缘厚度,蓝绿色量子点滤光层厚度均一,且蓝绿色量子点滤光层的厚度小于红色量子点滤光层以及绿色量子点滤光层的中间厚度。
将蓝色滤光片的厚度设置为等于绿色滤光片和红色滤光片的边缘厚度可以有效的保证蓝色滤光片对应的蓝色量子点滤光层的沉积量可以小于红色量子点滤光层的沉积量和绿色量子点滤光层的沉积量,由于量子点的出射光具有各向异性,不仅量子点的沉积厚度对发光强度有影响,对应颜色的量子点所占的区域面积也对该颜色的光发光强度也存在影响。
并且,将蓝色滤光片的厚度设置为等于绿色滤光片和红色滤光片的边缘厚度,更加便于掩膜版的设计。具体地,当蓝色滤光片的厚度等于绿色滤光片和红色滤光片的边缘厚度时,对应的掩膜版设计两种不同的曝光量即可,一种对应凹形槽的开口区域,一种对应凹形槽的边缘区域和蓝色滤光片所在区域;若将蓝色滤光片的厚度设置为与绿色滤光片和红色滤光片的边缘厚度不同,则需要在掩膜版上单独再设计蓝色滤光片所在区域对应的曝光量。
可选地,该方法还包括形成覆盖量子点滤光层以及反射结构的保护层。
可选地,形成覆盖量子点滤光层以及反射结构的保护层具体包括:形成覆盖量子点滤光层以及反射结构的具有平坦化作用的第一保护层,以及在位于第一保护层背离反射结构一侧形成第二保护层。
其中,该第一保护层和第二保护层的材料可以均采用丙烯酸体系材料,但是第一保护层的丙烯酸体系材料占比在15%左右,第二保护层的丙烯酸体系材料占比在8%~12%,且第一保护层的粘度要大于第二保护层的粘度,从而使得第一保护层可以包覆滤光结构中的其他膜层,并对层间断差进行平坦化,而第二保护层的粘度较小,可以平铺在第一保护层的表面,进一步的对第一 保护层进行平坦化。
接下来,对本公开实施例提供的滤光结构制备方法进行举例说明,如图6所示,滤光结构制备方法包括:
S101、在衬底基板4上涂覆光刻胶,采用图形化工艺处理光刻胶,形成支撑结构6;
例如,可以采用涂胶工艺,采用450微升(uL)/秒(s)的速率涂覆厚度为7微米的光刻胶层,之后进行900兆焦耳(mJ)曝光140s,采用含量为2.38%四甲基氢氧化铵(TMAH)的显影液进行显影工艺,并进行230度(℃)/60分钟(min)的固化;
S102、在衬底基板4上沉积金属材料,采用图形化工艺处理金属材料,形成包覆支撑结构6的反射层5;
可以采用溅射工艺沉积Ti/Al/Ti的叠层,采用包括曝光显影刻蚀的图形化工艺形成反射层;
S103、在红色滤光单元采用半色调掩膜工艺形成红色滤光片8,在绿色滤光单元采用半色调掩膜工艺形成绿色滤光片10,以及在蓝色滤光单元形成蓝色滤光片12;
例如,对于红色滤光单元以及绿色滤光单元,可以对与反射金属层相邻的区域即滤光片的边缘进行100%全曝光,对滤光片的中间区域进行50%曝光,形成边缘厚度大于中间厚度的滤光片;
S104、在红色滤光片8之上形成红色量子点滤光层9,在绿色滤光片10之上形成绿色量子点滤光层11,以及在蓝色滤光片12之上形成蓝绿色量子点滤光层13;
S105、形成保护层14,具体包括形成具有平坦化作用的第一保护层15以及在第一保护层15之上形成第二保护层16。
本公开实施例提供的一种显示装置,显示装置包括:本公开实施例提供的上述滤光结构。
本公开实施例提供的显示装置,例如可以是手机、电脑、电视等装置。
可选地,如图7所示,显示装置还包括:白光有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板17;滤光结构位于白光有机发光二极管显示面板17出光面的一侧,且滤光单元位于衬底基4板与白光有机发光二极管显示面板17之间;
其中,白光有机发光二极管显示面板17具有多个子像素单元,各子像素单元与各滤光单元一一对应。
可选地,如图8所示,显示装置还包括:设置在量子点滤光层2背离衬底基板4一侧的蓝光驱动背板19,设置在衬底基板背离量子点滤光层2一侧的无色阻的液晶显示面板18。
由于该滤光结构靠近蓝光驱动背板,该蓝光驱动背板发出的蓝光直接照射在滤光结构上,对各颜色的量子点滤光层进行激发,激发出的光再经过液晶显示面板进行显示,该种设置滤光结构可以利用蓝光驱动背板发出的所有的光。若如图9所示,将液晶显示面板18设置在蓝光驱动背板19背板与滤光结构之间,蓝光驱动背板19发出的光会先经过液晶显示面板18,一部分的蓝光会被液晶遮挡,照射在滤光结构上的蓝光强度会下降。
当然,图8和图9中所示的显示装置的结构均能够实现显示,且均在本公开的保护范围内,具体可根据实际使用情况进行选择,在此不作具体限定。
即滤光结构与驱动背板可以作为背光模组,例如可以采用蓝光发光二极管作为背光源,蓝光激发红色量子点滤光层出射红光,蓝光激发绿色量子点滤光层出射绿光。需要说明的是,采用蓝光激发量子点滤光层出射子像素发光颜色的光,对于蓝色滤光单元,即便不设置滤光层也可以直接实现出射蓝光,但由于红色滤光单元以及绿色滤光单元设置有相应颜色的量子点滤光层,蓝色滤光单元直接实现出射蓝光会导致蓝色子像素的光强大于红色子像素以及绿色子像素的光强,从而产生色差。本公开实施例提供的显示装置,可以在蓝色滤光单元设置量子点滤光层,从而可以平衡蓝色子像素、绿色子像素以及红色子像素的光强,消除不同滤光单元的色差。进一步的,以如图2所示的滤光结构为例,红色量子点滤光层以及绿色量子点滤光层的最大厚度大于 蓝绿色量子点滤光层的厚度,从而可以提高红色子像素以及绿色子像素的发光强度,从而可以进一步消除不同滤光单元的色差。
对于液晶显示装置的制备,包括在衬底基板上形成薄膜晶体管的步骤,后续在衬底基板背离薄膜晶体管的一侧设置量子点滤光层以及反射结构。即在滤光结构制备过程中提供的衬底基板为设置有薄膜晶体管的衬底基板,在步骤S101之前还包括制备薄膜晶体管的工艺,例如可以是非晶硅(a-Si)工艺,氧化物(oxide)工艺或低温多晶硅(Low Temperature Poly-silicon,LTPS)工艺。还包括形成蓝光驱动背板以及将蓝光驱动背板与滤光结构贴合的步骤例如可以采用纳米压印工艺将蓝光驱动背板与第二保护层贴合。
综上所述,本公开实施例提供的滤光结构及其制备方法,显示装置,由于在滤光单元之间设置有包围量子点滤光层的反射结构,从而反射结构可以防止漏光并且可以将子点滤光层向四周散射的光反射到滤光单元的出光区域,反射结构反射的光可以对量子点滤光层再次激发,提高量子点滤光层的发光效率,提高滤光结构的出光效率。并且还可以提高正视条件下光强,提高显示效果。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种滤光结构,其中,所述滤光结构包括:
    衬底基板;
    多个滤光单元,多个所述滤光单元位于所述衬底基板之上,且至少部分所述滤光单元包括量子点滤光层;
    所述滤光单元还包括:反射结构,所述反射结构在所述衬底基板上的正投影包围所述量子点滤光层在所述衬底基板上的正投影;
    所述反射结构背离所述衬底基板一侧的平面与所述衬底基板之间的距离大于所述量子点滤光层靠近所述衬底基板一侧的平面与所述衬底基板之间的距离。
  2. 根据权利要求1所述的滤光结构,其中,所述反射结构远离所述衬底基板一侧的平面与所述衬底基板之间的距离大于或等于所述量子点滤光层远离所述衬底基板一侧的平面与所述衬底基板之间的距离。
  3. 根据权利要求2所述的滤光结构,其中,所述反射结构远离所述衬底基板一侧的平面与各所述量子点滤光层远离所述衬底基板一侧的平面齐平。
  4. 根据权利要求1所述的滤光结构,其中,所述反射结构包括:支撑结构以及包覆所述支撑结构的反射金属层。
  5. 根据权利要求1所述的滤光结构,其中,所述滤光单元包括:红色量子点滤光层、绿色量子点滤光层和蓝色量子点滤光层;
    所述红色量子点滤光层的厚度和所述绿色量子点滤光层的厚度均大于所述蓝色量子点滤光层的厚度。
  6. 根据权利要求1所述的滤光结构,其中,所述滤光结构还包括:彩色滤光片;
    所述彩色滤光片位于所述量子点滤光层与所述衬底基板之间,且各所述彩色滤光片与各颜色的所述量子点滤光层对应设置;
    所述衬底基板远离所述彩色滤光片的一侧为所述滤光结构的出光侧。
  7. 根据权利要求6所述的滤光结构,其中,所述彩色滤光片包括:红色滤光片、绿色滤光片和蓝色滤光片;
    所述红色滤光片以及所述绿色滤光片的边缘厚度大于中间厚度,所述蓝色滤光片的厚度均一,且所述蓝色滤光片的厚度等于所述绿色滤光片以及所述红色滤光片的边缘厚度。
  8. 根据权利要求7所述的滤光结构,其中,所述红色量子点滤光层背离所述衬底基板一侧平面和所述绿色量子点滤光层背离所述衬底基板一侧的平面,与所述蓝绿色量子点滤光层背离所述衬底基板一侧的平面齐平。
  9. 根据权利要求1-8任一项所述的滤光结构,其中,还包括:覆盖所述量子点滤光层以及所述反射结构的保护层。
  10. 一种如权利要求1-9任一项所述的滤光结构的制备方法,其中,所述方法包括:
    提供一衬底基板;
    在所述衬底基板上形成所述反射结构;
    在所述反射结构包围的区域内形成所述量子点滤光层。
  11. 根据权利要求10所述的方法,其中,所述在所述衬底基板上形成所述反射结构,具体包括:
    在所述衬底基板上形成支撑结构;
    在所述衬底基板上形成包覆所述支撑结构的反射层。
  12. 根据权利要求10所述的方法,其中,在所述滤光单元包括红色滤光单元,绿色滤光单元,以及蓝色滤光单元时,在所述衬底基板上形成所述量子点滤光层,具体包括:
    在所述红色滤光单元采用半色调掩膜工艺形成红色滤光片,在所述绿色滤光单元采用半色调掩膜工艺形成绿色滤光片,以及在所述蓝色滤光单元形成蓝色滤光片;其中,所述红色滤光片以及所述绿色滤光片的边缘厚度大于中间厚度,所述蓝色滤光片的厚度均一,且所述蓝色滤光片的厚度等于所述绿色滤光片以及所述红色滤光片的边缘厚度;
    在所述红色滤光片之上形成红色量子点滤光层,在所述绿色滤光片之上形成绿色量子点滤光层,以及在所述蓝色滤光片之上形成蓝绿色量子点滤光层。
  13. 一种显示装置,其中,包括权利要求1~9任一项所述的滤光结构。
  14. 根据权利要求13所述的显示装置,其中,所述显示装置还包括:白光有机发光二极管显示面板;所述滤光结构位于所述白光有机发光二极管显示面板出光面的一侧,且所述滤光单元位于所述衬底基板与所述白光有机发光二极管显示面板之间;
    所述白光有机发光二极管显示面板具有多个子像素单元,所述子像素单元与所述滤光单元一一对应设置。
  15. 根据权利要求13所述的显示装置,其中,所述显示装置还包括:设置在所述量子点滤光层背离所述衬底基板一侧的蓝光驱动背板,设置在所述衬底基板背离所述量子点滤光层一侧的无色阻的液晶显示面板。
PCT/CN2019/125382 2019-01-16 2019-12-13 滤光结构、其制备方法及显示装置 WO2020147473A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/763,257 US11397290B2 (en) 2019-01-16 2019-12-13 Filter structure and method for manufacturing same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910039622.8 2019-01-16
CN201910039622.8A CN109491136A (zh) 2019-01-16 2019-01-16 一种滤光结构及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2020147473A1 true WO2020147473A1 (zh) 2020-07-23

Family

ID=65714661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125382 WO2020147473A1 (zh) 2019-01-16 2019-12-13 滤光结构、其制备方法及显示装置

Country Status (3)

Country Link
US (1) US11397290B2 (zh)
CN (1) CN109491136A (zh)
WO (1) WO2020147473A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114981715A (zh) * 2020-10-19 2022-08-30 京东方科技集团股份有限公司 对置基板、显示面板和显示设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109491136A (zh) 2019-01-16 2019-03-19 京东方科技集团股份有限公司 一种滤光结构及其制备方法、显示装置
CN112713165B (zh) * 2019-10-24 2023-06-16 成都辰显光电有限公司 显示面板及其制作方法、电子设备
CN112750862B (zh) * 2019-10-31 2022-11-11 成都辰显光电有限公司 色彩转换结构、显示装置及色彩转换结构的制备方法
CN111063269A (zh) * 2019-12-17 2020-04-24 深圳市华星光电半导体显示技术有限公司 显示面板
CN111416048B (zh) * 2020-04-02 2022-09-09 京东方科技集团股份有限公司 显示装置、显示装置的盖板的制作方法
CN112310326A (zh) * 2020-10-30 2021-02-02 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN112462552A (zh) * 2020-12-10 2021-03-09 深圳市华星光电半导体显示技术有限公司 彩膜基板及显示面板
CN112599575A (zh) * 2020-12-10 2021-04-02 北京维信诺科技有限公司 一种显示面板及其制备方法、显示装置
CN113985512A (zh) * 2021-11-25 2022-01-28 京东方科技集团股份有限公司 滤光片bank的制备方法、滤光片bank、滤光片及显示装置
KR20230132020A (ko) * 2022-03-07 2023-09-15 삼성디스플레이 주식회사 디스플레이 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808383A (zh) * 2015-05-15 2015-07-29 京东方科技集团股份有限公司 一种显示基板、其制作方法、显示面板及显示装置
CN105929590A (zh) * 2016-07-08 2016-09-07 京东方科技集团股份有限公司 显示基板、显示装置
CN106707607A (zh) * 2017-03-20 2017-05-24 青岛海信电器股份有限公司 一种量子点彩色滤光片及其制造方法、显示装置
CN107728368A (zh) * 2016-08-11 2018-02-23 三星显示有限公司 滤色器及其制造方法以及包括该滤色器的显示设备
KR20180036180A (ko) * 2016-09-30 2018-04-09 한국기술교육대학교 산학협력단 디스플레이에 레이저 포인터가 표시되도록 하는 컬러필터 기판 및 그 제작방법
CN108107627A (zh) * 2017-10-03 2018-06-01 友达光电股份有限公司 显示面板及其使用的光学片
CN109491136A (zh) * 2019-01-16 2019-03-19 京东方科技集团股份有限公司 一种滤光结构及其制备方法、显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791271B2 (en) * 2006-02-24 2010-09-07 Global Oled Technology Llc Top-emitting OLED device with light-scattering layer and color-conversion
US20120019740A1 (en) * 2009-03-19 2012-01-26 Sharp Kabushiki Kaisha Display panel and display device
KR101698544B1 (ko) * 2009-12-02 2017-01-23 엘지디스플레이 주식회사 액정표시모듈
CN104752620A (zh) * 2013-12-26 2015-07-01 业鑫科技顾问股份有限公司 颜色转换层、有机电致发光显示面板及液晶显示面板
CN105044974B (zh) * 2015-08-28 2017-08-29 京东方科技集团股份有限公司 彩色滤光层、显示基板及显示装置
CN105353556B (zh) * 2015-12-09 2017-12-29 深圳市华星光电技术有限公司 显示装置
CN106681046B (zh) * 2016-11-21 2020-03-17 京东方科技集团股份有限公司 一种彩膜基板及显示装置
KR20180064629A (ko) * 2016-12-05 2018-06-15 삼성디스플레이 주식회사 표시 장치
CN113861760B (zh) * 2016-12-28 2023-05-05 Dic株式会社 分散体
KR102354529B1 (ko) * 2017-09-18 2022-01-24 삼성디스플레이 주식회사 색 변환소자 및 그 제조 방법
CN108761894B (zh) * 2018-07-03 2022-04-15 京东方科技集团股份有限公司 一种彩膜基板、其制备方法、显示面板及显示装置
KR20200049929A (ko) * 2018-10-29 2020-05-11 삼성디스플레이 주식회사 광학 부재 및 이를 포함하는 표시 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808383A (zh) * 2015-05-15 2015-07-29 京东方科技集团股份有限公司 一种显示基板、其制作方法、显示面板及显示装置
CN105929590A (zh) * 2016-07-08 2016-09-07 京东方科技集团股份有限公司 显示基板、显示装置
CN107728368A (zh) * 2016-08-11 2018-02-23 三星显示有限公司 滤色器及其制造方法以及包括该滤色器的显示设备
KR20180036180A (ko) * 2016-09-30 2018-04-09 한국기술교육대학교 산학협력단 디스플레이에 레이저 포인터가 표시되도록 하는 컬러필터 기판 및 그 제작방법
CN106707607A (zh) * 2017-03-20 2017-05-24 青岛海信电器股份有限公司 一种量子点彩色滤光片及其制造方法、显示装置
CN108107627A (zh) * 2017-10-03 2018-06-01 友达光电股份有限公司 显示面板及其使用的光学片
CN109491136A (zh) * 2019-01-16 2019-03-19 京东方科技集团股份有限公司 一种滤光结构及其制备方法、显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114981715A (zh) * 2020-10-19 2022-08-30 京东方科技集团股份有限公司 对置基板、显示面板和显示设备

Also Published As

Publication number Publication date
CN109491136A (zh) 2019-03-19
US20210033761A1 (en) 2021-02-04
US11397290B2 (en) 2022-07-26

Similar Documents

Publication Publication Date Title
WO2020147473A1 (zh) 滤光结构、其制备方法及显示装置
US10620478B2 (en) Photoluminescent display device and method for manufacturing the same
TWI544620B (zh) 顯示面板
JP6890470B2 (ja) フォトルミネセンス表示装置およびその製造方法
US9274371B2 (en) Color conversion substrate, method for manufacturing same, and display device
US20180088416A1 (en) Array substrate and method for manufacturing the same, and display panel
WO2017092131A1 (zh) 彩膜基板的制作方法及液晶显示装置
US11106102B2 (en) Display substrate, method for manufacturing same, and display device
WO2020224088A1 (zh) 阵列基板及其制作方法
WO2019169773A1 (zh) 彩膜基板及其制造方法、显示面板、显示装置
CN110045539A (zh) 显示面板、显示面板的制造方法和显示装置
CN107450218B (zh) 光致发光显示装置及其制造方法
US20150003056A1 (en) Method and hardware to enhance light out-coupling
WO2018228024A1 (zh) 显示基板及其制备方法、显示面板及显示装置
WO2015081692A1 (zh) 一种导光板、背光源及液晶显示装置
WO2020140771A1 (zh) 彩膜基板、制作方法、显示装置
WO2016074267A1 (zh) 背光模块及液晶显示装置
WO2022083304A1 (zh) 显示面板及其制备方法、显示装置
WO2020087777A1 (zh) 一种显示面板及其显示器件
JP5294667B2 (ja) 液晶表示装置
US20120275045A1 (en) Blue photoresist and color filter substrate and display device using the same
JP2010096955A (ja) 表示装置
JP2019129065A (ja) 照明装置及び表示装置
CN110473892B (zh) 显示装置
CN112599705A (zh) 显示面板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910129

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19910129

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC 21.01.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19910129

Country of ref document: EP

Kind code of ref document: A1